SemaDecl.cpp revision 88d936b245978038a14b9c7acc062d12bc46096a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/SourceManager.h"
26// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Lex/HeaderSearch.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32#include <functional>
33using namespace clang;
34
35/// getDeclName - Return a pretty name for the specified decl if possible, or
36/// an empty string if not.  This is used for pretty crash reporting.
37std::string Sema::getDeclName(DeclPtrTy d) {
38  Decl *D = d.getAs<Decl>();
39  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
40    return DN->getQualifiedNameAsString();
41  return "";
42}
43
44Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
45  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
46}
47
48/// \brief If the identifier refers to a type name within this scope,
49/// return the declaration of that type.
50///
51/// This routine performs ordinary name lookup of the identifier II
52/// within the given scope, with optional C++ scope specifier SS, to
53/// determine whether the name refers to a type. If so, returns an
54/// opaque pointer (actually a QualType) corresponding to that
55/// type. Otherwise, returns NULL.
56///
57/// If name lookup results in an ambiguity, this routine will complain
58/// and then return NULL.
59Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
60                                Scope *S, const CXXScopeSpec *SS) {
61  // C++ [temp.res]p3:
62  //   A qualified-id that refers to a type and in which the
63  //   nested-name-specifier depends on a template-parameter (14.6.2)
64  //   shall be prefixed by the keyword typename to indicate that the
65  //   qualified-id denotes a type, forming an
66  //   elaborated-type-specifier (7.1.5.3).
67  //
68  // We therefore do not perform any name lookup if the result would
69  // refer to a member of an unknown specialization.
70  if (SS && isUnknownSpecialization(*SS))
71    return 0;
72
73  LookupResult Result
74    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
75
76  NamedDecl *IIDecl = 0;
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      if (getLangOptions().CPlusPlus) {
128        // C++ [temp.local]p2:
129        //   Within the scope of a class template specialization or
130        //   partial specialization, when the injected-class-name is
131        //   not followed by a <, it is equivalent to the
132        //   injected-class-name followed by the template-argument s
133        //   of the class template specialization or partial
134        //   specialization enclosed in <>.
135        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
136          if (RD->isInjectedClassName())
137            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
138              T = Template->getInjectedClassNameType(Context);
139      }
140
141      if (T.isNull())
142        T = Context.getTypeDeclType(TD);
143    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
144      // Check whether we can use this interface.
145      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147      T = Context.getObjCInterfaceType(IDecl);
148    } else
149      return 0;
150
151    if (SS)
152      T = getQualifiedNameType(*SS, T);
153
154    return T.getAsOpaquePtr();
155  }
156
157  return 0;
158}
159
160/// isTagName() - This method is called *for error recovery purposes only*
161/// to determine if the specified name is a valid tag name ("struct foo").  If
162/// so, this returns the TST for the tag corresponding to it (TST_enum,
163/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
164/// where the user forgot to specify the tag.
165DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
166  // Do a tag name lookup in this scope.
167  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
168  if (R.getKind() == LookupResult::Found)
169    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
170      switch (TD->getTagKind()) {
171      case TagDecl::TK_struct: return DeclSpec::TST_struct;
172      case TagDecl::TK_union:  return DeclSpec::TST_union;
173      case TagDecl::TK_class:  return DeclSpec::TST_class;
174      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
175      }
176    }
177
178  return DeclSpec::TST_unspecified;
179}
180
181
182
183DeclContext *Sema::getContainingDC(DeclContext *DC) {
184  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
185    // A C++ out-of-line method will return to the file declaration context.
186    if (MD->isOutOfLineDefinition())
187      return MD->getLexicalDeclContext();
188
189    // A C++ inline method is parsed *after* the topmost class it was declared
190    // in is fully parsed (it's "complete").
191    // The parsing of a C++ inline method happens at the declaration context of
192    // the topmost (non-nested) class it is lexically declared in.
193    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
194    DC = MD->getParent();
195    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
196      DC = RD;
197
198    // Return the declaration context of the topmost class the inline method is
199    // declared in.
200    return DC;
201  }
202
203  if (isa<ObjCMethodDecl>(DC))
204    return Context.getTranslationUnitDecl();
205
206  return DC->getLexicalParent();
207}
208
209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
210  assert(getContainingDC(DC) == CurContext &&
211      "The next DeclContext should be lexically contained in the current one.");
212  CurContext = DC;
213  S->setEntity(DC);
214}
215
216void Sema::PopDeclContext() {
217  assert(CurContext && "DeclContext imbalance!");
218
219  CurContext = getContainingDC(CurContext);
220}
221
222/// \brief Determine whether we allow overloading of the function
223/// PrevDecl with another declaration.
224///
225/// This routine determines whether overloading is possible, not
226/// whether some new function is actually an overload. It will return
227/// true in C++ (where we can always provide overloads) or, as an
228/// extension, in C when the previous function is already an
229/// overloaded function declaration or has the "overloadable"
230/// attribute.
231static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
232  if (Context.getLangOptions().CPlusPlus)
233    return true;
234
235  if (isa<OverloadedFunctionDecl>(PrevDecl))
236    return true;
237
238  return PrevDecl->getAttr<OverloadableAttr>() != 0;
239}
240
241/// Add this decl to the scope shadowed decl chains.
242void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
243  // Move up the scope chain until we find the nearest enclosing
244  // non-transparent context. The declaration will be introduced into this
245  // scope.
246  while (S->getEntity() &&
247         ((DeclContext *)S->getEntity())->isTransparentContext())
248    S = S->getParent();
249
250  S->AddDecl(DeclPtrTy::make(D));
251
252  // Add scoped declarations into their context, so that they can be
253  // found later. Declarations without a context won't be inserted
254  // into any context.
255  CurContext->addDecl(Context, D);
256
257  // C++ [basic.scope]p4:
258  //   -- exactly one declaration shall declare a class name or
259  //   enumeration name that is not a typedef name and the other
260  //   declarations shall all refer to the same object or
261  //   enumerator, or all refer to functions and function templates;
262  //   in this case the class name or enumeration name is hidden.
263  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
264    // We are pushing the name of a tag (enum or class).
265    if (CurContext->getLookupContext()
266          == TD->getDeclContext()->getLookupContext()) {
267      // We're pushing the tag into the current context, which might
268      // require some reshuffling in the identifier resolver.
269      IdentifierResolver::iterator
270        I = IdResolver.begin(TD->getDeclName()),
271        IEnd = IdResolver.end();
272      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
273        NamedDecl *PrevDecl = *I;
274        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
275             PrevDecl = *I, ++I) {
276          if (TD->declarationReplaces(*I)) {
277            // This is a redeclaration. Remove it from the chain and
278            // break out, so that we'll add in the shadowed
279            // declaration.
280            S->RemoveDecl(DeclPtrTy::make(*I));
281            if (PrevDecl == *I) {
282              IdResolver.RemoveDecl(*I);
283              IdResolver.AddDecl(TD);
284              return;
285            } else {
286              IdResolver.RemoveDecl(*I);
287              break;
288            }
289          }
290        }
291
292        // There is already a declaration with the same name in the same
293        // scope, which is not a tag declaration. It must be found
294        // before we find the new declaration, so insert the new
295        // declaration at the end of the chain.
296        IdResolver.AddShadowedDecl(TD, PrevDecl);
297
298        return;
299      }
300    }
301  } else if (isa<FunctionDecl>(D) &&
302             AllowOverloadingOfFunction(D, Context)) {
303    // We are pushing the name of a function, which might be an
304    // overloaded name.
305    FunctionDecl *FD = cast<FunctionDecl>(D);
306    IdentifierResolver::iterator Redecl
307      = std::find_if(IdResolver.begin(FD->getDeclName()),
308                     IdResolver.end(),
309                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
310                                  FD));
311    if (Redecl != IdResolver.end() &&
312        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
313      // There is already a declaration of a function on our
314      // IdResolver chain. Replace it with this declaration.
315      S->RemoveDecl(DeclPtrTy::make(*Redecl));
316      IdResolver.RemoveDecl(*Redecl);
317    }
318  } else if (isa<ObjCInterfaceDecl>(D)) {
319    // We're pushing an Objective-C interface into the current
320    // context. If there is already an alias declaration, remove it first.
321    for (IdentifierResolver::iterator
322           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
323         I != IEnd; ++I) {
324      if (isa<ObjCCompatibleAliasDecl>(*I)) {
325        S->RemoveDecl(DeclPtrTy::make(*I));
326        IdResolver.RemoveDecl(*I);
327        break;
328      }
329    }
330  }
331
332  IdResolver.AddDecl(D);
333}
334
335void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
336  if (S->decl_empty()) return;
337  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
338	 "Scope shouldn't contain decls!");
339
340  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
341       I != E; ++I) {
342    Decl *TmpD = (*I).getAs<Decl>();
343    assert(TmpD && "This decl didn't get pushed??");
344
345    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
346    NamedDecl *D = cast<NamedDecl>(TmpD);
347
348    if (!D->getDeclName()) continue;
349
350    // Remove this name from our lexical scope.
351    IdResolver.RemoveDecl(D);
352  }
353}
354
355/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
356/// return 0 if one not found.
357ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
358  // The third "scope" argument is 0 since we aren't enabling lazy built-in
359  // creation from this context.
360  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
361
362  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
363}
364
365/// getNonFieldDeclScope - Retrieves the innermost scope, starting
366/// from S, where a non-field would be declared. This routine copes
367/// with the difference between C and C++ scoping rules in structs and
368/// unions. For example, the following code is well-formed in C but
369/// ill-formed in C++:
370/// @code
371/// struct S6 {
372///   enum { BAR } e;
373/// };
374///
375/// void test_S6() {
376///   struct S6 a;
377///   a.e = BAR;
378/// }
379/// @endcode
380/// For the declaration of BAR, this routine will return a different
381/// scope. The scope S will be the scope of the unnamed enumeration
382/// within S6. In C++, this routine will return the scope associated
383/// with S6, because the enumeration's scope is a transparent
384/// context but structures can contain non-field names. In C, this
385/// routine will return the translation unit scope, since the
386/// enumeration's scope is a transparent context and structures cannot
387/// contain non-field names.
388Scope *Sema::getNonFieldDeclScope(Scope *S) {
389  while (((S->getFlags() & Scope::DeclScope) == 0) ||
390         (S->getEntity() &&
391          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
392         (S->isClassScope() && !getLangOptions().CPlusPlus))
393    S = S->getParent();
394  return S;
395}
396
397void Sema::InitBuiltinVaListType() {
398  if (!Context.getBuiltinVaListType().isNull())
399    return;
400
401  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
402  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
403  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
404  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
405}
406
407/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
408/// file scope.  lazily create a decl for it. ForRedeclaration is true
409/// if we're creating this built-in in anticipation of redeclaring the
410/// built-in.
411NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
412                                     Scope *S, bool ForRedeclaration,
413                                     SourceLocation Loc) {
414  Builtin::ID BID = (Builtin::ID)bid;
415
416  if (Context.BuiltinInfo.hasVAListUse(BID))
417    InitBuiltinVaListType();
418
419  Builtin::Context::GetBuiltinTypeError Error;
420  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
421  switch (Error) {
422  case Builtin::Context::GE_None:
423    // Okay
424    break;
425
426  case Builtin::Context::GE_Missing_FILE:
427    if (ForRedeclaration)
428      Diag(Loc, diag::err_implicit_decl_requires_stdio)
429        << Context.BuiltinInfo.GetName(BID);
430    return 0;
431  }
432
433  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
434    Diag(Loc, diag::ext_implicit_lib_function_decl)
435      << Context.BuiltinInfo.GetName(BID)
436      << R;
437    if (Context.BuiltinInfo.getHeaderName(BID) &&
438        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
439          != Diagnostic::Ignored)
440      Diag(Loc, diag::note_please_include_header)
441        << Context.BuiltinInfo.getHeaderName(BID)
442        << Context.BuiltinInfo.GetName(BID);
443  }
444
445  FunctionDecl *New = FunctionDecl::Create(Context,
446                                           Context.getTranslationUnitDecl(),
447                                           Loc, II, R,
448                                           FunctionDecl::Extern, false,
449                                           /*hasPrototype=*/true);
450  New->setImplicit();
451
452  // Create Decl objects for each parameter, adding them to the
453  // FunctionDecl.
454  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
455    llvm::SmallVector<ParmVarDecl*, 16> Params;
456    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
457      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
458                                           FT->getArgType(i), VarDecl::None, 0));
459    New->setParams(Context, &Params[0], Params.size());
460  }
461
462  AddKnownFunctionAttributes(New);
463
464  // TUScope is the translation-unit scope to insert this function into.
465  // FIXME: This is hideous. We need to teach PushOnScopeChains to
466  // relate Scopes to DeclContexts, and probably eliminate CurContext
467  // entirely, but we're not there yet.
468  DeclContext *SavedContext = CurContext;
469  CurContext = Context.getTranslationUnitDecl();
470  PushOnScopeChains(New, TUScope);
471  CurContext = SavedContext;
472  return New;
473}
474
475/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
476/// everything from the standard library is defined.
477NamespaceDecl *Sema::GetStdNamespace() {
478  if (!StdNamespace) {
479    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
480    DeclContext *Global = Context.getTranslationUnitDecl();
481    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
482    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
483  }
484  return StdNamespace;
485}
486
487/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
488/// same name and scope as a previous declaration 'Old'.  Figure out
489/// how to resolve this situation, merging decls or emitting
490/// diagnostics as appropriate. If there was an error, set New to be invalid.
491///
492void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
493  // If either decl is known invalid already, set the new one to be invalid and
494  // don't bother doing any merging checks.
495  if (New->isInvalidDecl() || OldD->isInvalidDecl())
496    return New->setInvalidDecl();
497
498  bool objc_types = false;
499
500  // Allow multiple definitions for ObjC built-in typedefs.
501  // FIXME: Verify the underlying types are equivalent!
502  if (getLangOptions().ObjC1) {
503    const IdentifierInfo *TypeID = New->getIdentifier();
504    switch (TypeID->getLength()) {
505    default: break;
506    case 2:
507      if (!TypeID->isStr("id"))
508        break;
509      Context.setObjCIdType(Context.getTypeDeclType(New));
510      objc_types = true;
511      break;
512    case 5:
513      if (!TypeID->isStr("Class"))
514        break;
515      Context.setObjCClassType(Context.getTypeDeclType(New));
516      return;
517    case 3:
518      if (!TypeID->isStr("SEL"))
519        break;
520      Context.setObjCSelType(Context.getTypeDeclType(New));
521      return;
522    case 8:
523      if (!TypeID->isStr("Protocol"))
524        break;
525      Context.setObjCProtoType(New->getUnderlyingType());
526      return;
527    }
528    // Fall through - the typedef name was not a builtin type.
529  }
530  // Verify the old decl was also a type.
531  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
532  if (!Old) {
533    Diag(New->getLocation(), diag::err_redefinition_different_kind)
534      << New->getDeclName();
535    if (OldD->getLocation().isValid())
536      Diag(OldD->getLocation(), diag::note_previous_definition);
537    return New->setInvalidDecl();
538  }
539
540  // Determine the "old" type we'll use for checking and diagnostics.
541  QualType OldType;
542  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
543    OldType = OldTypedef->getUnderlyingType();
544  else
545    OldType = Context.getTypeDeclType(Old);
546
547  // If the typedef types are not identical, reject them in all languages and
548  // with any extensions enabled.
549
550  if (OldType != New->getUnderlyingType() &&
551      Context.getCanonicalType(OldType) !=
552      Context.getCanonicalType(New->getUnderlyingType())) {
553    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
554      << New->getUnderlyingType() << OldType;
555    if (Old->getLocation().isValid())
556      Diag(Old->getLocation(), diag::note_previous_definition);
557    return New->setInvalidDecl();
558  }
559
560  if (objc_types || getLangOptions().Microsoft)
561    return;
562
563  // C++ [dcl.typedef]p2:
564  //   In a given non-class scope, a typedef specifier can be used to
565  //   redefine the name of any type declared in that scope to refer
566  //   to the type to which it already refers.
567  if (getLangOptions().CPlusPlus) {
568    if (!isa<CXXRecordDecl>(CurContext))
569      return;
570    Diag(New->getLocation(), diag::err_redefinition)
571      << New->getDeclName();
572    Diag(Old->getLocation(), diag::note_previous_definition);
573    return New->setInvalidDecl();
574  }
575
576  // If we have a redefinition of a typedef in C, emit a warning.  This warning
577  // is normally mapped to an error, but can be controlled with
578  // -Wtypedef-redefinition.  If either the original was in a system header,
579  // don't emit this for compatibility with GCC.
580  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
581      Context.getSourceManager().isInSystemHeader(Old->getLocation()))
582    return;
583
584  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
585    << New->getDeclName();
586  Diag(Old->getLocation(), diag::note_previous_definition);
587  return;
588}
589
590/// DeclhasAttr - returns true if decl Declaration already has the target
591/// attribute.
592static bool DeclHasAttr(const Decl *decl, const Attr *target) {
593  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
594    if (attr->getKind() == target->getKind())
595      return true;
596
597  return false;
598}
599
600/// MergeAttributes - append attributes from the Old decl to the New one.
601static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
602  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
603    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
604      Attr *NewAttr = attr->clone(C);
605      NewAttr->setInherited(true);
606      New->addAttr(NewAttr);
607    }
608  }
609}
610
611/// Used in MergeFunctionDecl to keep track of function parameters in
612/// C.
613struct GNUCompatibleParamWarning {
614  ParmVarDecl *OldParm;
615  ParmVarDecl *NewParm;
616  QualType PromotedType;
617};
618
619/// MergeFunctionDecl - We just parsed a function 'New' from
620/// declarator D which has the same name and scope as a previous
621/// declaration 'Old'.  Figure out how to resolve this situation,
622/// merging decls or emitting diagnostics as appropriate.
623///
624/// In C++, New and Old must be declarations that are not
625/// overloaded. Use IsOverload to determine whether New and Old are
626/// overloaded, and to select the Old declaration that New should be
627/// merged with.
628///
629/// Returns true if there was an error, false otherwise.
630bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
631  assert(!isa<OverloadedFunctionDecl>(OldD) &&
632         "Cannot merge with an overloaded function declaration");
633
634  // Verify the old decl was also a function.
635  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
636  if (!Old) {
637    Diag(New->getLocation(), diag::err_redefinition_different_kind)
638      << New->getDeclName();
639    Diag(OldD->getLocation(), diag::note_previous_definition);
640    return true;
641  }
642
643  // Determine whether the previous declaration was a definition,
644  // implicit declaration, or a declaration.
645  diag::kind PrevDiag;
646  if (Old->isThisDeclarationADefinition())
647    PrevDiag = diag::note_previous_definition;
648  else if (Old->isImplicit())
649    PrevDiag = diag::note_previous_implicit_declaration;
650  else
651    PrevDiag = diag::note_previous_declaration;
652
653  QualType OldQType = Context.getCanonicalType(Old->getType());
654  QualType NewQType = Context.getCanonicalType(New->getType());
655
656  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
657      New->getStorageClass() == FunctionDecl::Static &&
658      Old->getStorageClass() != FunctionDecl::Static) {
659    Diag(New->getLocation(), diag::err_static_non_static)
660      << New;
661    Diag(Old->getLocation(), PrevDiag);
662    return true;
663  }
664
665  if (getLangOptions().CPlusPlus) {
666    // (C++98 13.1p2):
667    //   Certain function declarations cannot be overloaded:
668    //     -- Function declarations that differ only in the return type
669    //        cannot be overloaded.
670    QualType OldReturnType
671      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
672    QualType NewReturnType
673      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
674    if (OldReturnType != NewReturnType) {
675      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
676      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
677      return true;
678    }
679
680    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
681    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
682    if (OldMethod && NewMethod &&
683        OldMethod->getLexicalDeclContext() ==
684          NewMethod->getLexicalDeclContext()) {
685      //    -- Member function declarations with the same name and the
686      //       same parameter types cannot be overloaded if any of them
687      //       is a static member function declaration.
688      if (OldMethod->isStatic() || NewMethod->isStatic()) {
689        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
690        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
691        return true;
692      }
693
694      // C++ [class.mem]p1:
695      //   [...] A member shall not be declared twice in the
696      //   member-specification, except that a nested class or member
697      //   class template can be declared and then later defined.
698      unsigned NewDiag;
699      if (isa<CXXConstructorDecl>(OldMethod))
700        NewDiag = diag::err_constructor_redeclared;
701      else if (isa<CXXDestructorDecl>(NewMethod))
702        NewDiag = diag::err_destructor_redeclared;
703      else if (isa<CXXConversionDecl>(NewMethod))
704        NewDiag = diag::err_conv_function_redeclared;
705      else
706        NewDiag = diag::err_member_redeclared;
707
708      Diag(New->getLocation(), NewDiag);
709      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
710    }
711
712    // (C++98 8.3.5p3):
713    //   All declarations for a function shall agree exactly in both the
714    //   return type and the parameter-type-list.
715    if (OldQType == NewQType)
716      return MergeCompatibleFunctionDecls(New, Old);
717
718    // Fall through for conflicting redeclarations and redefinitions.
719  }
720
721  // C: Function types need to be compatible, not identical. This handles
722  // duplicate function decls like "void f(int); void f(enum X);" properly.
723  if (!getLangOptions().CPlusPlus &&
724      Context.typesAreCompatible(OldQType, NewQType)) {
725    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
726    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
727    const FunctionProtoType *OldProto = 0;
728    if (isa<FunctionNoProtoType>(NewFuncType) &&
729        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
730      // The old declaration provided a function prototype, but the
731      // new declaration does not. Merge in the prototype.
732      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
733                                                 OldProto->arg_type_end());
734      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
735                                         &ParamTypes[0], ParamTypes.size(),
736                                         OldProto->isVariadic(),
737                                         OldProto->getTypeQuals());
738      New->setType(NewQType);
739      New->setHasInheritedPrototype();
740
741      // Synthesize a parameter for each argument type.
742      llvm::SmallVector<ParmVarDecl*, 16> Params;
743      for (FunctionProtoType::arg_type_iterator
744             ParamType = OldProto->arg_type_begin(),
745             ParamEnd = OldProto->arg_type_end();
746           ParamType != ParamEnd; ++ParamType) {
747        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
748                                                 SourceLocation(), 0,
749                                                 *ParamType, VarDecl::None,
750                                                 0);
751        Param->setImplicit();
752        Params.push_back(Param);
753      }
754
755      New->setParams(Context, &Params[0], Params.size());
756    }
757
758    return MergeCompatibleFunctionDecls(New, Old);
759  }
760
761  // GNU C permits a K&R definition to follow a prototype declaration
762  // if the declared types of the parameters in the K&R definition
763  // match the types in the prototype declaration, even when the
764  // promoted types of the parameters from the K&R definition differ
765  // from the types in the prototype. GCC then keeps the types from
766  // the prototype.
767  if (!getLangOptions().CPlusPlus &&
768      Old->hasPrototype() && !New->hasPrototype() &&
769      New->getType()->getAsFunctionProtoType() &&
770      Old->getNumParams() == New->getNumParams()) {
771    llvm::SmallVector<QualType, 16> ArgTypes;
772    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
773    const FunctionProtoType *OldProto
774      = Old->getType()->getAsFunctionProtoType();
775    const FunctionProtoType *NewProto
776      = New->getType()->getAsFunctionProtoType();
777
778    // Determine whether this is the GNU C extension.
779    bool GNUCompatible =
780      Context.typesAreCompatible(OldProto->getResultType(),
781                                 NewProto->getResultType()) &&
782      (OldProto->isVariadic() == NewProto->isVariadic());
783    for (unsigned Idx = 0, End = Old->getNumParams();
784         GNUCompatible && Idx != End; ++Idx) {
785      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
786      ParmVarDecl *NewParm = New->getParamDecl(Idx);
787      if (Context.typesAreCompatible(OldParm->getType(),
788                                     NewProto->getArgType(Idx))) {
789        ArgTypes.push_back(NewParm->getType());
790      } else if (Context.typesAreCompatible(OldParm->getType(),
791                                            NewParm->getType())) {
792        GNUCompatibleParamWarning Warn
793          = { OldParm, NewParm, NewProto->getArgType(Idx) };
794        Warnings.push_back(Warn);
795        ArgTypes.push_back(NewParm->getType());
796      } else
797        GNUCompatible = false;
798    }
799
800    if (GNUCompatible) {
801      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
802        Diag(Warnings[Warn].NewParm->getLocation(),
803             diag::ext_param_promoted_not_compatible_with_prototype)
804          << Warnings[Warn].PromotedType
805          << Warnings[Warn].OldParm->getType();
806        Diag(Warnings[Warn].OldParm->getLocation(),
807             diag::note_previous_declaration);
808      }
809
810      New->setType(Context.getFunctionType(NewProto->getResultType(),
811                                           &ArgTypes[0], ArgTypes.size(),
812                                           NewProto->isVariadic(),
813                                           NewProto->getTypeQuals()));
814      return MergeCompatibleFunctionDecls(New, Old);
815    }
816
817    // Fall through to diagnose conflicting types.
818  }
819
820  // A function that has already been declared has been redeclared or defined
821  // with a different type- show appropriate diagnostic
822  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
823    // The user has declared a builtin function with an incompatible
824    // signature.
825    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
826      // The function the user is redeclaring is a library-defined
827      // function like 'malloc' or 'printf'. Warn about the
828      // redeclaration, then pretend that we don't know about this
829      // library built-in.
830      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
831      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
832        << Old << Old->getType();
833      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
834      Old->setInvalidDecl();
835      return false;
836    }
837
838    PrevDiag = diag::note_previous_builtin_declaration;
839  }
840
841  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
842  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
843  return true;
844}
845
846/// \brief Completes the merge of two function declarations that are
847/// known to be compatible.
848///
849/// This routine handles the merging of attributes and other
850/// properties of function declarations form the old declaration to
851/// the new declaration, once we know that New is in fact a
852/// redeclaration of Old.
853///
854/// \returns false
855bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
856  // Merge the attributes
857  MergeAttributes(New, Old, Context);
858
859  // Merge the storage class.
860  if (Old->getStorageClass() != FunctionDecl::Extern)
861    New->setStorageClass(Old->getStorageClass());
862
863  // Merge "inline"
864  if (Old->isInline())
865    New->setInline(true);
866
867  // If this function declaration by itself qualifies as a C99 inline
868  // definition (C99 6.7.4p6), but the previous definition did not,
869  // then the function is not a C99 inline definition.
870  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
871    New->setC99InlineDefinition(false);
872  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
873    // Mark all preceding definitions as not being C99 inline definitions.
874    for (const FunctionDecl *Prev = Old; Prev;
875         Prev = Prev->getPreviousDeclaration())
876      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
877  }
878
879  // Merge "pure" flag.
880  if (Old->isPure())
881    New->setPure();
882
883  // Merge the "deleted" flag.
884  if (Old->isDeleted())
885    New->setDeleted();
886
887  if (getLangOptions().CPlusPlus)
888    return MergeCXXFunctionDecl(New, Old);
889
890  return false;
891}
892
893/// MergeVarDecl - We just parsed a variable 'New' which has the same name
894/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
895/// situation, merging decls or emitting diagnostics as appropriate.
896///
897/// Tentative definition rules (C99 6.9.2p2) are checked by
898/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
899/// definitions here, since the initializer hasn't been attached.
900///
901void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
902  // If either decl is invalid, make sure the new one is marked invalid and
903  // don't do any other checking.
904  if (New->isInvalidDecl() || OldD->isInvalidDecl())
905    return New->setInvalidDecl();
906
907  // Verify the old decl was also a variable.
908  VarDecl *Old = dyn_cast<VarDecl>(OldD);
909  if (!Old) {
910    Diag(New->getLocation(), diag::err_redefinition_different_kind)
911      << New->getDeclName();
912    Diag(OldD->getLocation(), diag::note_previous_definition);
913    return New->setInvalidDecl();
914  }
915
916  MergeAttributes(New, Old, Context);
917
918  // Merge the types
919  QualType MergedT;
920  if (getLangOptions().CPlusPlus) {
921    if (Context.hasSameType(New->getType(), Old->getType()))
922      MergedT = New->getType();
923  } else {
924    MergedT = Context.mergeTypes(New->getType(), Old->getType());
925  }
926  if (MergedT.isNull()) {
927    Diag(New->getLocation(), diag::err_redefinition_different_type)
928      << New->getDeclName();
929    Diag(Old->getLocation(), diag::note_previous_definition);
930    return New->setInvalidDecl();
931  }
932  New->setType(MergedT);
933
934  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
935  if (New->getStorageClass() == VarDecl::Static &&
936      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
937    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
938    Diag(Old->getLocation(), diag::note_previous_definition);
939    return New->setInvalidDecl();
940  }
941  // C99 6.2.2p4:
942  //   For an identifier declared with the storage-class specifier
943  //   extern in a scope in which a prior declaration of that
944  //   identifier is visible,23) if the prior declaration specifies
945  //   internal or external linkage, the linkage of the identifier at
946  //   the later declaration is the same as the linkage specified at
947  //   the prior declaration. If no prior declaration is visible, or
948  //   if the prior declaration specifies no linkage, then the
949  //   identifier has external linkage.
950  if (New->hasExternalStorage() && Old->hasLinkage())
951    /* Okay */;
952  else if (New->getStorageClass() != VarDecl::Static &&
953           Old->getStorageClass() == VarDecl::Static) {
954    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
955    Diag(Old->getLocation(), diag::note_previous_definition);
956    return New->setInvalidDecl();
957  }
958
959  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
960
961  // FIXME: The test for external storage here seems wrong? We still
962  // need to check for mismatches.
963  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
964      // Don't complain about out-of-line definitions of static members.
965      !(Old->getLexicalDeclContext()->isRecord() &&
966        !New->getLexicalDeclContext()->isRecord())) {
967    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
968    Diag(Old->getLocation(), diag::note_previous_definition);
969    return New->setInvalidDecl();
970  }
971
972  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
973    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
974    Diag(Old->getLocation(), diag::note_previous_definition);
975  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
976    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
977    Diag(Old->getLocation(), diag::note_previous_definition);
978  }
979
980  // Keep a chain of previous declarations.
981  New->setPreviousDeclaration(Old);
982}
983
984/// CheckParmsForFunctionDef - Check that the parameters of the given
985/// function are appropriate for the definition of a function. This
986/// takes care of any checks that cannot be performed on the
987/// declaration itself, e.g., that the types of each of the function
988/// parameters are complete.
989bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
990  bool HasInvalidParm = false;
991  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
992    ParmVarDecl *Param = FD->getParamDecl(p);
993
994    // C99 6.7.5.3p4: the parameters in a parameter type list in a
995    // function declarator that is part of a function definition of
996    // that function shall not have incomplete type.
997    //
998    // This is also C++ [dcl.fct]p6.
999    if (!Param->isInvalidDecl() &&
1000        RequireCompleteType(Param->getLocation(), Param->getType(),
1001                               diag::err_typecheck_decl_incomplete_type)) {
1002      Param->setInvalidDecl();
1003      HasInvalidParm = true;
1004    }
1005
1006    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1007    // declaration of each parameter shall include an identifier.
1008    if (Param->getIdentifier() == 0 &&
1009        !Param->isImplicit() &&
1010        !getLangOptions().CPlusPlus)
1011      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1012  }
1013
1014  return HasInvalidParm;
1015}
1016
1017/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1018/// no declarator (e.g. "struct foo;") is parsed.
1019Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1020  // FIXME: Error on auto/register at file scope
1021  // FIXME: Error on inline/virtual/explicit
1022  // FIXME: Error on invalid restrict
1023  // FIXME: Warn on useless __thread
1024  // FIXME: Warn on useless const/volatile
1025  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1026  // FIXME: Warn on useless attributes
1027  TagDecl *Tag = 0;
1028  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1029      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1030      DS.getTypeSpecType() == DeclSpec::TST_union ||
1031      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1032    if (!DS.getTypeRep()) // We probably had an error
1033      return DeclPtrTy();
1034
1035    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1036  }
1037
1038  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1039    if (!Record->getDeclName() && Record->isDefinition() &&
1040        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1041      if (getLangOptions().CPlusPlus ||
1042          Record->getDeclContext()->isRecord())
1043        return BuildAnonymousStructOrUnion(S, DS, Record);
1044
1045      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1046        << DS.getSourceRange();
1047    }
1048
1049    // Microsoft allows unnamed struct/union fields. Don't complain
1050    // about them.
1051    // FIXME: Should we support Microsoft's extensions in this area?
1052    if (Record->getDeclName() && getLangOptions().Microsoft)
1053      return DeclPtrTy::make(Tag);
1054  }
1055
1056  if (!DS.isMissingDeclaratorOk() &&
1057      DS.getTypeSpecType() != DeclSpec::TST_error) {
1058    // Warn about typedefs of enums without names, since this is an
1059    // extension in both Microsoft an GNU.
1060    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1061        Tag && isa<EnumDecl>(Tag)) {
1062      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1063        << DS.getSourceRange();
1064      return DeclPtrTy::make(Tag);
1065    }
1066
1067    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1068      << DS.getSourceRange();
1069    return DeclPtrTy();
1070  }
1071
1072  return DeclPtrTy::make(Tag);
1073}
1074
1075/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1076/// anonymous struct or union AnonRecord into the owning context Owner
1077/// and scope S. This routine will be invoked just after we realize
1078/// that an unnamed union or struct is actually an anonymous union or
1079/// struct, e.g.,
1080///
1081/// @code
1082/// union {
1083///   int i;
1084///   float f;
1085/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1086///    // f into the surrounding scope.x
1087/// @endcode
1088///
1089/// This routine is recursive, injecting the names of nested anonymous
1090/// structs/unions into the owning context and scope as well.
1091bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1092                                               RecordDecl *AnonRecord) {
1093  bool Invalid = false;
1094  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1095                               FEnd = AnonRecord->field_end(Context);
1096       F != FEnd; ++F) {
1097    if ((*F)->getDeclName()) {
1098      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1099                                                LookupOrdinaryName, true);
1100      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1101        // C++ [class.union]p2:
1102        //   The names of the members of an anonymous union shall be
1103        //   distinct from the names of any other entity in the
1104        //   scope in which the anonymous union is declared.
1105        unsigned diagKind
1106          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1107                                 : diag::err_anonymous_struct_member_redecl;
1108        Diag((*F)->getLocation(), diagKind)
1109          << (*F)->getDeclName();
1110        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1111        Invalid = true;
1112      } else {
1113        // C++ [class.union]p2:
1114        //   For the purpose of name lookup, after the anonymous union
1115        //   definition, the members of the anonymous union are
1116        //   considered to have been defined in the scope in which the
1117        //   anonymous union is declared.
1118        Owner->makeDeclVisibleInContext(Context, *F);
1119        S->AddDecl(DeclPtrTy::make(*F));
1120        IdResolver.AddDecl(*F);
1121      }
1122    } else if (const RecordType *InnerRecordType
1123                 = (*F)->getType()->getAsRecordType()) {
1124      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1125      if (InnerRecord->isAnonymousStructOrUnion())
1126        Invalid = Invalid ||
1127          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1128    }
1129  }
1130
1131  return Invalid;
1132}
1133
1134/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1135/// anonymous structure or union. Anonymous unions are a C++ feature
1136/// (C++ [class.union]) and a GNU C extension; anonymous structures
1137/// are a GNU C and GNU C++ extension.
1138Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1139                                                  RecordDecl *Record) {
1140  DeclContext *Owner = Record->getDeclContext();
1141
1142  // Diagnose whether this anonymous struct/union is an extension.
1143  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1144    Diag(Record->getLocation(), diag::ext_anonymous_union);
1145  else if (!Record->isUnion())
1146    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1147
1148  // C and C++ require different kinds of checks for anonymous
1149  // structs/unions.
1150  bool Invalid = false;
1151  if (getLangOptions().CPlusPlus) {
1152    const char* PrevSpec = 0;
1153    // C++ [class.union]p3:
1154    //   Anonymous unions declared in a named namespace or in the
1155    //   global namespace shall be declared static.
1156    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1157        (isa<TranslationUnitDecl>(Owner) ||
1158         (isa<NamespaceDecl>(Owner) &&
1159          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1160      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1161      Invalid = true;
1162
1163      // Recover by adding 'static'.
1164      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1165    }
1166    // C++ [class.union]p3:
1167    //   A storage class is not allowed in a declaration of an
1168    //   anonymous union in a class scope.
1169    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1170             isa<RecordDecl>(Owner)) {
1171      Diag(DS.getStorageClassSpecLoc(),
1172           diag::err_anonymous_union_with_storage_spec);
1173      Invalid = true;
1174
1175      // Recover by removing the storage specifier.
1176      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1177                             PrevSpec);
1178    }
1179
1180    // C++ [class.union]p2:
1181    //   The member-specification of an anonymous union shall only
1182    //   define non-static data members. [Note: nested types and
1183    //   functions cannot be declared within an anonymous union. ]
1184    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1185                                 MemEnd = Record->decls_end(Context);
1186         Mem != MemEnd; ++Mem) {
1187      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1188        // C++ [class.union]p3:
1189        //   An anonymous union shall not have private or protected
1190        //   members (clause 11).
1191        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1192          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1193            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1194          Invalid = true;
1195        }
1196      } else if ((*Mem)->isImplicit()) {
1197        // Any implicit members are fine.
1198      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1199        // This is a type that showed up in an
1200        // elaborated-type-specifier inside the anonymous struct or
1201        // union, but which actually declares a type outside of the
1202        // anonymous struct or union. It's okay.
1203      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1204        if (!MemRecord->isAnonymousStructOrUnion() &&
1205            MemRecord->getDeclName()) {
1206          // This is a nested type declaration.
1207          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1208            << (int)Record->isUnion();
1209          Invalid = true;
1210        }
1211      } else {
1212        // We have something that isn't a non-static data
1213        // member. Complain about it.
1214        unsigned DK = diag::err_anonymous_record_bad_member;
1215        if (isa<TypeDecl>(*Mem))
1216          DK = diag::err_anonymous_record_with_type;
1217        else if (isa<FunctionDecl>(*Mem))
1218          DK = diag::err_anonymous_record_with_function;
1219        else if (isa<VarDecl>(*Mem))
1220          DK = diag::err_anonymous_record_with_static;
1221        Diag((*Mem)->getLocation(), DK)
1222            << (int)Record->isUnion();
1223          Invalid = true;
1224      }
1225    }
1226  }
1227
1228  if (!Record->isUnion() && !Owner->isRecord()) {
1229    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1230      << (int)getLangOptions().CPlusPlus;
1231    Invalid = true;
1232  }
1233
1234  // Create a declaration for this anonymous struct/union.
1235  NamedDecl *Anon = 0;
1236  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1237    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1238                             /*IdentifierInfo=*/0,
1239                             Context.getTypeDeclType(Record),
1240                             /*BitWidth=*/0, /*Mutable=*/false);
1241    Anon->setAccess(AS_public);
1242    if (getLangOptions().CPlusPlus)
1243      FieldCollector->Add(cast<FieldDecl>(Anon));
1244  } else {
1245    VarDecl::StorageClass SC;
1246    switch (DS.getStorageClassSpec()) {
1247    default: assert(0 && "Unknown storage class!");
1248    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1249    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1250    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1251    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1252    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1253    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1254    case DeclSpec::SCS_mutable:
1255      // mutable can only appear on non-static class members, so it's always
1256      // an error here
1257      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1258      Invalid = true;
1259      SC = VarDecl::None;
1260      break;
1261    }
1262
1263    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1264                           /*IdentifierInfo=*/0,
1265                           Context.getTypeDeclType(Record),
1266                           SC, DS.getSourceRange().getBegin());
1267  }
1268  Anon->setImplicit();
1269
1270  // Add the anonymous struct/union object to the current
1271  // context. We'll be referencing this object when we refer to one of
1272  // its members.
1273  Owner->addDecl(Context, Anon);
1274
1275  // Inject the members of the anonymous struct/union into the owning
1276  // context and into the identifier resolver chain for name lookup
1277  // purposes.
1278  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1279    Invalid = true;
1280
1281  // Mark this as an anonymous struct/union type. Note that we do not
1282  // do this until after we have already checked and injected the
1283  // members of this anonymous struct/union type, because otherwise
1284  // the members could be injected twice: once by DeclContext when it
1285  // builds its lookup table, and once by
1286  // InjectAnonymousStructOrUnionMembers.
1287  Record->setAnonymousStructOrUnion(true);
1288
1289  if (Invalid)
1290    Anon->setInvalidDecl();
1291
1292  return DeclPtrTy::make(Anon);
1293}
1294
1295
1296/// GetNameForDeclarator - Determine the full declaration name for the
1297/// given Declarator.
1298DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1299  switch (D.getKind()) {
1300  case Declarator::DK_Abstract:
1301    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1302    return DeclarationName();
1303
1304  case Declarator::DK_Normal:
1305    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1306    return DeclarationName(D.getIdentifier());
1307
1308  case Declarator::DK_Constructor: {
1309    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1310    Ty = Context.getCanonicalType(Ty);
1311    return Context.DeclarationNames.getCXXConstructorName(Ty);
1312  }
1313
1314  case Declarator::DK_Destructor: {
1315    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1316    Ty = Context.getCanonicalType(Ty);
1317    return Context.DeclarationNames.getCXXDestructorName(Ty);
1318  }
1319
1320  case Declarator::DK_Conversion: {
1321    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1322    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1323    Ty = Context.getCanonicalType(Ty);
1324    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1325  }
1326
1327  case Declarator::DK_Operator:
1328    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1329    return Context.DeclarationNames.getCXXOperatorName(
1330                                                D.getOverloadedOperator());
1331  }
1332
1333  assert(false && "Unknown name kind");
1334  return DeclarationName();
1335}
1336
1337/// isNearlyMatchingFunction - Determine whether the C++ functions
1338/// Declaration and Definition are "nearly" matching. This heuristic
1339/// is used to improve diagnostics in the case where an out-of-line
1340/// function definition doesn't match any declaration within
1341/// the class or namespace.
1342static bool isNearlyMatchingFunction(ASTContext &Context,
1343                                     FunctionDecl *Declaration,
1344                                     FunctionDecl *Definition) {
1345  if (Declaration->param_size() != Definition->param_size())
1346    return false;
1347  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1348    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1349    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1350
1351    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1352    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1353    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1354      return false;
1355  }
1356
1357  return true;
1358}
1359
1360Sema::DeclPtrTy
1361Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1362  DeclarationName Name = GetNameForDeclarator(D);
1363
1364  // All of these full declarators require an identifier.  If it doesn't have
1365  // one, the ParsedFreeStandingDeclSpec action should be used.
1366  if (!Name) {
1367    if (!D.isInvalidType())  // Reject this if we think it is valid.
1368      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1369           diag::err_declarator_need_ident)
1370        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1371    return DeclPtrTy();
1372  }
1373
1374  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1375  // we find one that is.
1376  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1377         (S->getFlags() & Scope::TemplateParamScope) != 0)
1378    S = S->getParent();
1379
1380  DeclContext *DC;
1381  NamedDecl *PrevDecl;
1382  NamedDecl *New;
1383
1384  QualType R = GetTypeForDeclarator(D, S);
1385
1386  // See if this is a redefinition of a variable in the same scope.
1387  if (D.getCXXScopeSpec().isInvalid()) {
1388    DC = CurContext;
1389    PrevDecl = 0;
1390    D.setInvalidType();
1391  } else if (!D.getCXXScopeSpec().isSet()) {
1392    LookupNameKind NameKind = LookupOrdinaryName;
1393
1394    // If the declaration we're planning to build will be a function
1395    // or object with linkage, then look for another declaration with
1396    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1397    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1398      /* Do nothing*/;
1399    else if (R->isFunctionType()) {
1400      if (CurContext->isFunctionOrMethod())
1401        NameKind = LookupRedeclarationWithLinkage;
1402    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1403      NameKind = LookupRedeclarationWithLinkage;
1404
1405    DC = CurContext;
1406    PrevDecl = LookupName(S, Name, NameKind, true,
1407                          D.getDeclSpec().getStorageClassSpec() !=
1408                            DeclSpec::SCS_static,
1409                          D.getIdentifierLoc());
1410  } else { // Something like "int foo::x;"
1411    DC = computeDeclContext(D.getCXXScopeSpec());
1412    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1413    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1414
1415    // C++ 7.3.1.2p2:
1416    // Members (including explicit specializations of templates) of a named
1417    // namespace can also be defined outside that namespace by explicit
1418    // qualification of the name being defined, provided that the entity being
1419    // defined was already declared in the namespace and the definition appears
1420    // after the point of declaration in a namespace that encloses the
1421    // declarations namespace.
1422    //
1423    // Note that we only check the context at this point. We don't yet
1424    // have enough information to make sure that PrevDecl is actually
1425    // the declaration we want to match. For example, given:
1426    //
1427    //   class X {
1428    //     void f();
1429    //     void f(float);
1430    //   };
1431    //
1432    //   void X::f(int) { } // ill-formed
1433    //
1434    // In this case, PrevDecl will point to the overload set
1435    // containing the two f's declared in X, but neither of them
1436    // matches.
1437
1438    // First check whether we named the global scope.
1439    if (isa<TranslationUnitDecl>(DC)) {
1440      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1441        << Name << D.getCXXScopeSpec().getRange();
1442    } else if (!CurContext->Encloses(DC)) {
1443      // The qualifying scope doesn't enclose the original declaration.
1444      // Emit diagnostic based on current scope.
1445      SourceLocation L = D.getIdentifierLoc();
1446      SourceRange R = D.getCXXScopeSpec().getRange();
1447      if (isa<FunctionDecl>(CurContext))
1448        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1449      else
1450        Diag(L, diag::err_invalid_declarator_scope)
1451          << Name << cast<NamedDecl>(DC) << R;
1452      D.setInvalidType();
1453    }
1454  }
1455
1456  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1457    // Maybe we will complain about the shadowed template parameter.
1458    if (!D.isInvalidType())
1459      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1460        D.setInvalidType();
1461
1462    // Just pretend that we didn't see the previous declaration.
1463    PrevDecl = 0;
1464  }
1465
1466  // In C++, the previous declaration we find might be a tag type
1467  // (class or enum). In this case, the new declaration will hide the
1468  // tag type. Note that this does does not apply if we're declaring a
1469  // typedef (C++ [dcl.typedef]p4).
1470  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1471      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1472    PrevDecl = 0;
1473
1474  bool Redeclaration = false;
1475  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1476    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1477  } else if (R->isFunctionType()) {
1478    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1479                                  IsFunctionDefinition, Redeclaration);
1480  } else {
1481    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1482  }
1483
1484  if (New == 0)
1485    return DeclPtrTy();
1486
1487  // If this has an identifier and is not an invalid redeclaration,
1488  // add it to the scope stack.
1489  if (Name && !(Redeclaration && New->isInvalidDecl()))
1490    PushOnScopeChains(New, S);
1491
1492  return DeclPtrTy::make(New);
1493}
1494
1495/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1496/// types into constant array types in certain situations which would otherwise
1497/// be errors (for GCC compatibility).
1498static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1499                                                    ASTContext &Context,
1500                                                    bool &SizeIsNegative) {
1501  // This method tries to turn a variable array into a constant
1502  // array even when the size isn't an ICE.  This is necessary
1503  // for compatibility with code that depends on gcc's buggy
1504  // constant expression folding, like struct {char x[(int)(char*)2];}
1505  SizeIsNegative = false;
1506
1507  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1508    QualType Pointee = PTy->getPointeeType();
1509    QualType FixedType =
1510        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1511    if (FixedType.isNull()) return FixedType;
1512    FixedType = Context.getPointerType(FixedType);
1513    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1514    return FixedType;
1515  }
1516
1517  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1518  if (!VLATy)
1519    return QualType();
1520  // FIXME: We should probably handle this case
1521  if (VLATy->getElementType()->isVariablyModifiedType())
1522    return QualType();
1523
1524  Expr::EvalResult EvalResult;
1525  if (!VLATy->getSizeExpr() ||
1526      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1527      !EvalResult.Val.isInt())
1528    return QualType();
1529
1530  llvm::APSInt &Res = EvalResult.Val.getInt();
1531  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1532    return Context.getConstantArrayType(VLATy->getElementType(),
1533                                        Res, ArrayType::Normal, 0);
1534
1535  SizeIsNegative = true;
1536  return QualType();
1537}
1538
1539/// \brief Register the given locally-scoped external C declaration so
1540/// that it can be found later for redeclarations
1541void
1542Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1543                                       Scope *S) {
1544  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1545         "Decl is not a locally-scoped decl!");
1546  // Note that we have a locally-scoped external with this name.
1547  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1548
1549  if (!PrevDecl)
1550    return;
1551
1552  // If there was a previous declaration of this variable, it may be
1553  // in our identifier chain. Update the identifier chain with the new
1554  // declaration.
1555  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1556    // The previous declaration was found on the identifer resolver
1557    // chain, so remove it from its scope.
1558    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1559      S = S->getParent();
1560
1561    if (S)
1562      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1563  }
1564}
1565
1566/// \brief Diagnose function specifiers on a declaration of an identifier that
1567/// does not identify a function.
1568void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1569  // FIXME: We should probably indicate the identifier in question to avoid
1570  // confusion for constructs like "inline int a(), b;"
1571  if (D.getDeclSpec().isInlineSpecified())
1572    Diag(D.getDeclSpec().getInlineSpecLoc(),
1573         diag::err_inline_non_function);
1574
1575  if (D.getDeclSpec().isVirtualSpecified())
1576    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1577         diag::err_virtual_non_function);
1578
1579  if (D.getDeclSpec().isExplicitSpecified())
1580    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1581         diag::err_explicit_non_function);
1582}
1583
1584NamedDecl*
1585Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1586                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1587  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1588  if (D.getCXXScopeSpec().isSet()) {
1589    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1590      << D.getCXXScopeSpec().getRange();
1591    D.setInvalidType();
1592    // Pretend we didn't see the scope specifier.
1593    DC = 0;
1594  }
1595
1596  if (getLangOptions().CPlusPlus) {
1597    // Check that there are no default arguments (C++ only).
1598    CheckExtraCXXDefaultArguments(D);
1599  }
1600
1601  DiagnoseFunctionSpecifiers(D);
1602
1603  if (D.getDeclSpec().isThreadSpecified())
1604    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1605
1606  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1607  if (!NewTD) return 0;
1608
1609  if (D.isInvalidType())
1610    NewTD->setInvalidDecl();
1611
1612  // Handle attributes prior to checking for duplicates in MergeVarDecl
1613  ProcessDeclAttributes(NewTD, D);
1614  // Merge the decl with the existing one if appropriate. If the decl is
1615  // in an outer scope, it isn't the same thing.
1616  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1617    Redeclaration = true;
1618    MergeTypeDefDecl(NewTD, PrevDecl);
1619  }
1620
1621  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1622  // then it shall have block scope.
1623  QualType T = NewTD->getUnderlyingType();
1624  if (T->isVariablyModifiedType()) {
1625    CurFunctionNeedsScopeChecking = true;
1626
1627    if (S->getFnParent() == 0) {
1628      bool SizeIsNegative;
1629      QualType FixedTy =
1630          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1631      if (!FixedTy.isNull()) {
1632        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1633        NewTD->setUnderlyingType(FixedTy);
1634      } else {
1635        if (SizeIsNegative)
1636          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1637        else if (T->isVariableArrayType())
1638          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1639        else
1640          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1641        NewTD->setInvalidDecl();
1642      }
1643    }
1644  }
1645  return NewTD;
1646}
1647
1648/// \brief Determines whether the given declaration is an out-of-scope
1649/// previous declaration.
1650///
1651/// This routine should be invoked when name lookup has found a
1652/// previous declaration (PrevDecl) that is not in the scope where a
1653/// new declaration by the same name is being introduced. If the new
1654/// declaration occurs in a local scope, previous declarations with
1655/// linkage may still be considered previous declarations (C99
1656/// 6.2.2p4-5, C++ [basic.link]p6).
1657///
1658/// \param PrevDecl the previous declaration found by name
1659/// lookup
1660///
1661/// \param DC the context in which the new declaration is being
1662/// declared.
1663///
1664/// \returns true if PrevDecl is an out-of-scope previous declaration
1665/// for a new delcaration with the same name.
1666static bool
1667isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1668                                ASTContext &Context) {
1669  if (!PrevDecl)
1670    return 0;
1671
1672  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1673  // case we need to check each of the overloaded functions.
1674  if (!PrevDecl->hasLinkage())
1675    return false;
1676
1677  if (Context.getLangOptions().CPlusPlus) {
1678    // C++ [basic.link]p6:
1679    //   If there is a visible declaration of an entity with linkage
1680    //   having the same name and type, ignoring entities declared
1681    //   outside the innermost enclosing namespace scope, the block
1682    //   scope declaration declares that same entity and receives the
1683    //   linkage of the previous declaration.
1684    DeclContext *OuterContext = DC->getLookupContext();
1685    if (!OuterContext->isFunctionOrMethod())
1686      // This rule only applies to block-scope declarations.
1687      return false;
1688    else {
1689      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1690      if (PrevOuterContext->isRecord())
1691        // We found a member function: ignore it.
1692        return false;
1693      else {
1694        // Find the innermost enclosing namespace for the new and
1695        // previous declarations.
1696        while (!OuterContext->isFileContext())
1697          OuterContext = OuterContext->getParent();
1698        while (!PrevOuterContext->isFileContext())
1699          PrevOuterContext = PrevOuterContext->getParent();
1700
1701        // The previous declaration is in a different namespace, so it
1702        // isn't the same function.
1703        if (OuterContext->getPrimaryContext() !=
1704            PrevOuterContext->getPrimaryContext())
1705          return false;
1706      }
1707    }
1708  }
1709
1710  return true;
1711}
1712
1713NamedDecl*
1714Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1715                              QualType R,NamedDecl* PrevDecl,
1716                              bool &Redeclaration) {
1717  DeclarationName Name = GetNameForDeclarator(D);
1718
1719  // Check that there are no default arguments (C++ only).
1720  if (getLangOptions().CPlusPlus)
1721    CheckExtraCXXDefaultArguments(D);
1722
1723  VarDecl *NewVD;
1724  VarDecl::StorageClass SC;
1725  switch (D.getDeclSpec().getStorageClassSpec()) {
1726  default: assert(0 && "Unknown storage class!");
1727  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1728  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1729  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1730  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1731  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1732  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1733  case DeclSpec::SCS_mutable:
1734    // mutable can only appear on non-static class members, so it's always
1735    // an error here
1736    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1737    D.setInvalidType();
1738    SC = VarDecl::None;
1739    break;
1740  }
1741
1742  IdentifierInfo *II = Name.getAsIdentifierInfo();
1743  if (!II) {
1744    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1745      << Name.getAsString();
1746    return 0;
1747  }
1748
1749  DiagnoseFunctionSpecifiers(D);
1750
1751  if (!DC->isRecord() && S->getFnParent() == 0) {
1752    // C99 6.9p2: The storage-class specifiers auto and register shall not
1753    // appear in the declaration specifiers in an external declaration.
1754    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1755
1756      // If this is a register variable with an asm label specified, then this
1757      // is a GNU extension.
1758      if (SC == VarDecl::Register && D.getAsmLabel())
1759        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1760      else
1761        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1762      D.setInvalidType();
1763    }
1764  }
1765  if (DC->isRecord() && !CurContext->isRecord()) {
1766    // This is an out-of-line definition of a static data member.
1767    if (SC == VarDecl::Static) {
1768      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1769           diag::err_static_out_of_line)
1770        << CodeModificationHint::CreateRemoval(
1771                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1772    } else if (SC == VarDecl::None)
1773      SC = VarDecl::Static;
1774  }
1775
1776  // The variable can not
1777  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1778                          II, R, SC,
1779                          // FIXME: Move to DeclGroup...
1780                          D.getDeclSpec().getSourceRange().getBegin());
1781
1782  if (D.isInvalidType())
1783    NewVD->setInvalidDecl();
1784
1785  if (D.getDeclSpec().isThreadSpecified()) {
1786    if (NewVD->hasLocalStorage())
1787      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1788    else if (!Context.Target.isTLSSupported())
1789      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1790    else
1791      NewVD->setThreadSpecified(true);
1792  }
1793
1794  // Set the lexical context. If the declarator has a C++ scope specifier, the
1795  // lexical context will be different from the semantic context.
1796  NewVD->setLexicalDeclContext(CurContext);
1797
1798  // Handle attributes prior to checking for duplicates in MergeVarDecl
1799  ProcessDeclAttributes(NewVD, D);
1800
1801  // Handle GNU asm-label extension (encoded as an attribute).
1802  if (Expr *E = (Expr*) D.getAsmLabel()) {
1803    // The parser guarantees this is a string.
1804    StringLiteral *SE = cast<StringLiteral>(E);
1805    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1806                                                        SE->getByteLength())));
1807  }
1808
1809  // If name lookup finds a previous declaration that is not in the
1810  // same scope as the new declaration, this may still be an
1811  // acceptable redeclaration.
1812  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1813      !(NewVD->hasLinkage() &&
1814        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1815    PrevDecl = 0;
1816
1817  // Merge the decl with the existing one if appropriate.
1818  if (PrevDecl) {
1819    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1820      // The user tried to define a non-static data member
1821      // out-of-line (C++ [dcl.meaning]p1).
1822      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1823        << D.getCXXScopeSpec().getRange();
1824      PrevDecl = 0;
1825      NewVD->setInvalidDecl();
1826    }
1827  } else if (D.getCXXScopeSpec().isSet()) {
1828    // No previous declaration in the qualifying scope.
1829    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1830      << Name << D.getCXXScopeSpec().getRange();
1831    NewVD->setInvalidDecl();
1832  }
1833
1834  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1835
1836  // If this is a locally-scoped extern C variable, update the map of
1837  // such variables.
1838  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1839      !NewVD->isInvalidDecl())
1840    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1841
1842  return NewVD;
1843}
1844
1845/// \brief Perform semantic checking on a newly-created variable
1846/// declaration.
1847///
1848/// This routine performs all of the type-checking required for a
1849/// variable declaration once it has been built. It is used both to
1850/// check variables after they have been parsed and their declarators
1851/// have been translated into a declaration, and to check variables
1852/// that have been instantiated from a template.
1853///
1854/// Sets NewVD->isInvalidDecl() if an error was encountered.
1855void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1856                                    bool &Redeclaration) {
1857  // If the decl is already known invalid, don't check it.
1858  if (NewVD->isInvalidDecl())
1859    return;
1860
1861  QualType T = NewVD->getType();
1862
1863  if (T->isObjCInterfaceType()) {
1864    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1865    return NewVD->setInvalidDecl();
1866  }
1867
1868  // The variable can not have an abstract class type.
1869  if (RequireNonAbstractType(NewVD->getLocation(), T,
1870                             diag::err_abstract_type_in_decl,
1871                             AbstractVariableType))
1872    return NewVD->setInvalidDecl();
1873
1874  // Emit an error if an address space was applied to decl with local storage.
1875  // This includes arrays of objects with address space qualifiers, but not
1876  // automatic variables that point to other address spaces.
1877  // ISO/IEC TR 18037 S5.1.2
1878  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1879    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1880    return NewVD->setInvalidDecl();
1881  }
1882
1883  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1884      && !NewVD->hasAttr<BlocksAttr>())
1885    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1886
1887  bool isVM = T->isVariablyModifiedType();
1888  if (isVM || NewVD->hasAttr<CleanupAttr>())
1889    CurFunctionNeedsScopeChecking = true;
1890
1891  if ((isVM && NewVD->hasLinkage()) ||
1892      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1893    bool SizeIsNegative;
1894    QualType FixedTy =
1895        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1896
1897    if (FixedTy.isNull() && T->isVariableArrayType()) {
1898      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1899      // FIXME: This won't give the correct result for
1900      // int a[10][n];
1901      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1902
1903      if (NewVD->isFileVarDecl())
1904        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1905        << SizeRange;
1906      else if (NewVD->getStorageClass() == VarDecl::Static)
1907        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1908        << SizeRange;
1909      else
1910        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1911        << SizeRange;
1912      return NewVD->setInvalidDecl();
1913    }
1914
1915    if (FixedTy.isNull()) {
1916      if (NewVD->isFileVarDecl())
1917        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1918      else
1919        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1920      return NewVD->setInvalidDecl();
1921    }
1922
1923    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1924    NewVD->setType(FixedTy);
1925  }
1926
1927  if (!PrevDecl && NewVD->isExternC(Context)) {
1928    // Since we did not find anything by this name and we're declaring
1929    // an extern "C" variable, look for a non-visible extern "C"
1930    // declaration with the same name.
1931    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1932      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1933    if (Pos != LocallyScopedExternalDecls.end())
1934      PrevDecl = Pos->second;
1935  }
1936
1937  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
1938    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1939      << T;
1940    return NewVD->setInvalidDecl();
1941  }
1942
1943  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
1944    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
1945    return NewVD->setInvalidDecl();
1946  }
1947
1948  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
1949    Diag(NewVD->getLocation(), diag::err_block_on_vm);
1950    return NewVD->setInvalidDecl();
1951  }
1952
1953  if (PrevDecl) {
1954    Redeclaration = true;
1955    MergeVarDecl(NewVD, PrevDecl);
1956  }
1957}
1958
1959NamedDecl*
1960Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1961                              QualType R, NamedDecl* PrevDecl,
1962                              bool IsFunctionDefinition, bool &Redeclaration) {
1963  assert(R.getTypePtr()->isFunctionType());
1964
1965  DeclarationName Name = GetNameForDeclarator(D);
1966  FunctionDecl::StorageClass SC = FunctionDecl::None;
1967  switch (D.getDeclSpec().getStorageClassSpec()) {
1968  default: assert(0 && "Unknown storage class!");
1969  case DeclSpec::SCS_auto:
1970  case DeclSpec::SCS_register:
1971  case DeclSpec::SCS_mutable:
1972    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1973         diag::err_typecheck_sclass_func);
1974    D.setInvalidType();
1975    break;
1976  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1977  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1978  case DeclSpec::SCS_static: {
1979    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1980      // C99 6.7.1p5:
1981      //   The declaration of an identifier for a function that has
1982      //   block scope shall have no explicit storage-class specifier
1983      //   other than extern
1984      // See also (C++ [dcl.stc]p4).
1985      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1986           diag::err_static_block_func);
1987      SC = FunctionDecl::None;
1988    } else
1989      SC = FunctionDecl::Static;
1990    break;
1991  }
1992  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1993  }
1994
1995  if (D.getDeclSpec().isThreadSpecified())
1996    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1997
1998  bool isInline = D.getDeclSpec().isInlineSpecified();
1999  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2000  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2001
2002  // Check that the return type is not an abstract class type.
2003  // For record types, this is done by the AbstractClassUsageDiagnoser once
2004  // the class has been completely parsed.
2005  if (!DC->isRecord() &&
2006      RequireNonAbstractType(D.getIdentifierLoc(),
2007                             R->getAsFunctionType()->getResultType(),
2008                             diag::err_abstract_type_in_decl,
2009                             AbstractReturnType))
2010    D.setInvalidType();
2011
2012  // Do not allow returning a objc interface by-value.
2013  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2014    Diag(D.getIdentifierLoc(),
2015         diag::err_object_cannot_be_passed_returned_by_value) << 0
2016      << R->getAsFunctionType()->getResultType();
2017    D.setInvalidType();
2018  }
2019
2020  bool isVirtualOkay = false;
2021  FunctionDecl *NewFD;
2022  if (D.getKind() == Declarator::DK_Constructor) {
2023    // This is a C++ constructor declaration.
2024    assert(DC->isRecord() &&
2025           "Constructors can only be declared in a member context");
2026
2027    R = CheckConstructorDeclarator(D, R, SC);
2028
2029    // Create the new declaration
2030    NewFD = CXXConstructorDecl::Create(Context,
2031                                       cast<CXXRecordDecl>(DC),
2032                                       D.getIdentifierLoc(), Name, R,
2033                                       isExplicit, isInline,
2034                                       /*isImplicitlyDeclared=*/false);
2035  } else if (D.getKind() == Declarator::DK_Destructor) {
2036    // This is a C++ destructor declaration.
2037    if (DC->isRecord()) {
2038      R = CheckDestructorDeclarator(D, SC);
2039
2040      NewFD = CXXDestructorDecl::Create(Context,
2041                                        cast<CXXRecordDecl>(DC),
2042                                        D.getIdentifierLoc(), Name, R,
2043                                        isInline,
2044                                        /*isImplicitlyDeclared=*/false);
2045
2046      isVirtualOkay = true;
2047    } else {
2048      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2049
2050      // Create a FunctionDecl to satisfy the function definition parsing
2051      // code path.
2052      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2053                                   Name, R, SC, isInline,
2054                                   /*hasPrototype=*/true,
2055                                   // FIXME: Move to DeclGroup...
2056                                   D.getDeclSpec().getSourceRange().getBegin());
2057      D.setInvalidType();
2058    }
2059  } else if (D.getKind() == Declarator::DK_Conversion) {
2060    if (!DC->isRecord()) {
2061      Diag(D.getIdentifierLoc(),
2062           diag::err_conv_function_not_member);
2063      return 0;
2064    }
2065
2066    CheckConversionDeclarator(D, R, SC);
2067    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2068                                      D.getIdentifierLoc(), Name, R,
2069                                      isInline, isExplicit);
2070
2071    isVirtualOkay = true;
2072  } else if (DC->isRecord()) {
2073    // If the of the function is the same as the name of the record, then this
2074    // must be an invalid constructor that has a return type.
2075    // (The parser checks for a return type and makes the declarator a
2076    // constructor if it has no return type).
2077    // must have an invalid constructor that has a return type
2078    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2079      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2080        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2081        << SourceRange(D.getIdentifierLoc());
2082      return 0;
2083    }
2084
2085    // This is a C++ method declaration.
2086    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2087                                  D.getIdentifierLoc(), Name, R,
2088                                  (SC == FunctionDecl::Static), isInline);
2089
2090    isVirtualOkay = (SC != FunctionDecl::Static);
2091  } else {
2092    // Determine whether the function was written with a
2093    // prototype. This true when:
2094    //   - we're in C++ (where every function has a prototype),
2095    //   - there is a prototype in the declarator, or
2096    //   - the type R of the function is some kind of typedef or other reference
2097    //     to a type name (which eventually refers to a function type).
2098    bool HasPrototype =
2099       getLangOptions().CPlusPlus ||
2100       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2101       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2102
2103    NewFD = FunctionDecl::Create(Context, DC,
2104                                 D.getIdentifierLoc(),
2105                                 Name, R, SC, isInline, HasPrototype,
2106                                 // FIXME: Move to DeclGroup...
2107                                 D.getDeclSpec().getSourceRange().getBegin());
2108  }
2109
2110  if (D.isInvalidType())
2111    NewFD->setInvalidDecl();
2112
2113  // Set the lexical context. If the declarator has a C++
2114  // scope specifier, the lexical context will be different
2115  // from the semantic context.
2116  NewFD->setLexicalDeclContext(CurContext);
2117
2118  // C++ [dcl.fct.spec]p5:
2119  //   The virtual specifier shall only be used in declarations of
2120  //   nonstatic class member functions that appear within a
2121  //   member-specification of a class declaration; see 10.3.
2122  //
2123  if (isVirtual && !NewFD->isInvalidDecl()) {
2124    if (!isVirtualOkay) {
2125       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2126           diag::err_virtual_non_function);
2127    } else if (!CurContext->isRecord()) {
2128      // 'virtual' was specified outside of the class.
2129      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2130        << CodeModificationHint::CreateRemoval(
2131                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2132    } else {
2133      // Okay: Add virtual to the method.
2134      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2135      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2136      CurClass->setAggregate(false);
2137      CurClass->setPOD(false);
2138      CurClass->setPolymorphic(true);
2139      CurClass->setHasTrivialConstructor(false);
2140    }
2141  }
2142
2143  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2144    // Look for virtual methods in base classes that this method might override.
2145
2146    BasePaths Paths;
2147    // FIXME: This will not include hidden member functions.
2148    if (LookupInBases(cast<CXXRecordDecl>(DC),
2149                      MemberLookupCriteria(Name, LookupMemberName,
2150                                           // FIXME: Shouldn't IDNS_Member be
2151                                           // enough here?
2152                                           Decl::IDNS_Member |
2153                                           Decl::IDNS_Ordinary), Paths)) {
2154      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2155           E = Paths.found_decls_end(); I != E; ++I) {
2156        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2157          OverloadedFunctionDecl::function_iterator MatchedDecl;
2158          // FIXME: Is this OK? Should it be done by LookupInBases?
2159          if (IsOverload(NewMD, OldMD, MatchedDecl))
2160            continue;
2161          if (!OldMD->isVirtual())
2162            continue;
2163
2164          if (!CheckOverridingFunctionReturnType(NewMD, OldMD)) {
2165            // FIXME: Add OldMD to the list of methods NewMD overrides.
2166          }
2167
2168        }
2169      }
2170
2171    }
2172
2173  }
2174
2175  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2176      !CurContext->isRecord()) {
2177    // C++ [class.static]p1:
2178    //   A data or function member of a class may be declared static
2179    //   in a class definition, in which case it is a static member of
2180    //   the class.
2181
2182    // Complain about the 'static' specifier if it's on an out-of-line
2183    // member function definition.
2184    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2185         diag::err_static_out_of_line)
2186      << CodeModificationHint::CreateRemoval(
2187                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2188  }
2189
2190  // Handle GNU asm-label extension (encoded as an attribute).
2191  if (Expr *E = (Expr*) D.getAsmLabel()) {
2192    // The parser guarantees this is a string.
2193    StringLiteral *SE = cast<StringLiteral>(E);
2194    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2195                                                        SE->getByteLength())));
2196  }
2197
2198  // Copy the parameter declarations from the declarator D to the function
2199  // declaration NewFD, if they are available.  First scavenge them into Params.
2200  llvm::SmallVector<ParmVarDecl*, 16> Params;
2201  if (D.getNumTypeObjects() > 0) {
2202    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2203
2204    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2205    // function that takes no arguments, not a function that takes a
2206    // single void argument.
2207    // We let through "const void" here because Sema::GetTypeForDeclarator
2208    // already checks for that case.
2209    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2210        FTI.ArgInfo[0].Param &&
2211        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2212      // Empty arg list, don't push any params.
2213      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2214
2215      // In C++, the empty parameter-type-list must be spelled "void"; a
2216      // typedef of void is not permitted.
2217      if (getLangOptions().CPlusPlus &&
2218          Param->getType().getUnqualifiedType() != Context.VoidTy)
2219        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2220      // FIXME: Leaks decl?
2221    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2222      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2223        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2224    }
2225
2226  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2227    // When we're declaring a function with a typedef, typeof, etc as in the
2228    // following example, we'll need to synthesize (unnamed)
2229    // parameters for use in the declaration.
2230    //
2231    // @code
2232    // typedef void fn(int);
2233    // fn f;
2234    // @endcode
2235
2236    // Synthesize a parameter for each argument type.
2237    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2238         AE = FT->arg_type_end(); AI != AE; ++AI) {
2239      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2240                                               SourceLocation(), 0,
2241                                               *AI, VarDecl::None, 0);
2242      Param->setImplicit();
2243      Params.push_back(Param);
2244    }
2245  } else {
2246    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2247           "Should not need args for typedef of non-prototype fn");
2248  }
2249  // Finally, we know we have the right number of parameters, install them.
2250  NewFD->setParams(Context, &Params[0], Params.size());
2251
2252
2253
2254  // If name lookup finds a previous declaration that is not in the
2255  // same scope as the new declaration, this may still be an
2256  // acceptable redeclaration.
2257  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2258      !(NewFD->hasLinkage() &&
2259        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2260    PrevDecl = 0;
2261
2262  // Perform semantic checking on the function declaration.
2263  bool OverloadableAttrRequired = false; // FIXME: HACK!
2264  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2265                           /*FIXME:*/OverloadableAttrRequired);
2266
2267  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2268    // An out-of-line member function declaration must also be a
2269    // definition (C++ [dcl.meaning]p1).
2270    if (!IsFunctionDefinition) {
2271      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2272        << D.getCXXScopeSpec().getRange();
2273      NewFD->setInvalidDecl();
2274    } else if (!Redeclaration) {
2275      // The user tried to provide an out-of-line definition for a
2276      // function that is a member of a class or namespace, but there
2277      // was no such member function declared (C++ [class.mfct]p2,
2278      // C++ [namespace.memdef]p2). For example:
2279      //
2280      // class X {
2281      //   void f() const;
2282      // };
2283      //
2284      // void X::f() { } // ill-formed
2285      //
2286      // Complain about this problem, and attempt to suggest close
2287      // matches (e.g., those that differ only in cv-qualifiers and
2288      // whether the parameter types are references).
2289      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2290        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2291      NewFD->setInvalidDecl();
2292
2293      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2294                                              true);
2295      assert(!Prev.isAmbiguous() &&
2296             "Cannot have an ambiguity in previous-declaration lookup");
2297      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2298           Func != FuncEnd; ++Func) {
2299        if (isa<FunctionDecl>(*Func) &&
2300            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2301          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2302      }
2303
2304      PrevDecl = 0;
2305    }
2306  }
2307
2308  // Handle attributes. We need to have merged decls when handling attributes
2309  // (for example to check for conflicts, etc).
2310  // FIXME: This needs to happen before we merge declarations. Then,
2311  // let attribute merging cope with attribute conflicts.
2312  ProcessDeclAttributes(NewFD, D);
2313  AddKnownFunctionAttributes(NewFD);
2314
2315  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2316    // If a function name is overloadable in C, then every function
2317    // with that name must be marked "overloadable".
2318    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2319      << Redeclaration << NewFD;
2320    if (PrevDecl)
2321      Diag(PrevDecl->getLocation(),
2322           diag::note_attribute_overloadable_prev_overload);
2323    NewFD->addAttr(::new (Context) OverloadableAttr());
2324  }
2325
2326  // If this is a locally-scoped extern C function, update the
2327  // map of such names.
2328  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2329      && !NewFD->isInvalidDecl())
2330    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2331
2332  return NewFD;
2333}
2334
2335/// \brief Perform semantic checking of a new function declaration.
2336///
2337/// Performs semantic analysis of the new function declaration
2338/// NewFD. This routine performs all semantic checking that does not
2339/// require the actual declarator involved in the declaration, and is
2340/// used both for the declaration of functions as they are parsed
2341/// (called via ActOnDeclarator) and for the declaration of functions
2342/// that have been instantiated via C++ template instantiation (called
2343/// via InstantiateDecl).
2344///
2345/// This sets NewFD->isInvalidDecl() to true if there was an error.
2346void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2347                                    bool &Redeclaration,
2348                                    bool &OverloadableAttrRequired) {
2349  // If NewFD is already known erroneous, don't do any of this checking.
2350  if (NewFD->isInvalidDecl())
2351    return;
2352
2353  if (NewFD->getResultType()->isVariablyModifiedType()) {
2354    // Functions returning a variably modified type violate C99 6.7.5.2p2
2355    // because all functions have linkage.
2356    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2357    return NewFD->setInvalidDecl();
2358  }
2359
2360  // Semantic checking for this function declaration (in isolation).
2361  if (getLangOptions().CPlusPlus) {
2362    // C++-specific checks.
2363    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2364      CheckConstructor(Constructor);
2365    } else if (isa<CXXDestructorDecl>(NewFD)) {
2366      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2367      Record->setUserDeclaredDestructor(true);
2368      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2369      // user-defined destructor.
2370      Record->setPOD(false);
2371
2372      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2373      // declared destructor.
2374      Record->setHasTrivialDestructor(false);
2375    } else if (CXXConversionDecl *Conversion
2376               = dyn_cast<CXXConversionDecl>(NewFD))
2377      ActOnConversionDeclarator(Conversion);
2378
2379    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2380    if (NewFD->isOverloadedOperator() &&
2381        CheckOverloadedOperatorDeclaration(NewFD))
2382      return NewFD->setInvalidDecl();
2383  }
2384
2385  // C99 6.7.4p6:
2386  //   [... ] For a function with external linkage, the following
2387  //   restrictions apply: [...] If all of the file scope declarations
2388  //   for a function in a translation unit include the inline
2389  //   function specifier without extern, then the definition in that
2390  //   translation unit is an inline definition. An inline definition
2391  //   does not provide an external definition for the function, and
2392  //   does not forbid an external definition in another translation
2393  //   unit.
2394  //
2395  // Here we determine whether this function, in isolation, would be a
2396  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2397  // previous declarations.
2398  if (NewFD->isInline() && getLangOptions().C99 &&
2399      NewFD->getStorageClass() == FunctionDecl::None &&
2400      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2401    NewFD->setC99InlineDefinition(true);
2402
2403  // Check for a previous declaration of this name.
2404  if (!PrevDecl && NewFD->isExternC(Context)) {
2405    // Since we did not find anything by this name and we're declaring
2406    // an extern "C" function, look for a non-visible extern "C"
2407    // declaration with the same name.
2408    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2409      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2410    if (Pos != LocallyScopedExternalDecls.end())
2411      PrevDecl = Pos->second;
2412  }
2413
2414  // Merge or overload the declaration with an existing declaration of
2415  // the same name, if appropriate.
2416  if (PrevDecl) {
2417    // Determine whether NewFD is an overload of PrevDecl or
2418    // a declaration that requires merging. If it's an overload,
2419    // there's no more work to do here; we'll just add the new
2420    // function to the scope.
2421    OverloadedFunctionDecl::function_iterator MatchedDecl;
2422
2423    if (!getLangOptions().CPlusPlus &&
2424        AllowOverloadingOfFunction(PrevDecl, Context)) {
2425      OverloadableAttrRequired = true;
2426
2427      // Functions marked "overloadable" must have a prototype (that
2428      // we can't get through declaration merging).
2429      if (!NewFD->getType()->getAsFunctionProtoType()) {
2430        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2431          << NewFD;
2432        Redeclaration = true;
2433
2434        // Turn this into a variadic function with no parameters.
2435        QualType R = Context.getFunctionType(
2436                       NewFD->getType()->getAsFunctionType()->getResultType(),
2437                       0, 0, true, 0);
2438        NewFD->setType(R);
2439        return NewFD->setInvalidDecl();
2440      }
2441    }
2442
2443    if (PrevDecl &&
2444        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2445         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2446      Redeclaration = true;
2447      Decl *OldDecl = PrevDecl;
2448
2449      // If PrevDecl was an overloaded function, extract the
2450      // FunctionDecl that matched.
2451      if (isa<OverloadedFunctionDecl>(PrevDecl))
2452        OldDecl = *MatchedDecl;
2453
2454      // NewFD and OldDecl represent declarations that need to be
2455      // merged.
2456      if (MergeFunctionDecl(NewFD, OldDecl))
2457        return NewFD->setInvalidDecl();
2458
2459      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2460    }
2461  }
2462
2463  // In C++, check default arguments now that we have merged decls. Unless
2464  // the lexical context is the class, because in this case this is done
2465  // during delayed parsing anyway.
2466  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2467    CheckCXXDefaultArguments(NewFD);
2468}
2469
2470bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2471  // FIXME: Need strict checking.  In C89, we need to check for
2472  // any assignment, increment, decrement, function-calls, or
2473  // commas outside of a sizeof.  In C99, it's the same list,
2474  // except that the aforementioned are allowed in unevaluated
2475  // expressions.  Everything else falls under the
2476  // "may accept other forms of constant expressions" exception.
2477  // (We never end up here for C++, so the constant expression
2478  // rules there don't matter.)
2479  if (Init->isConstantInitializer(Context))
2480    return false;
2481  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2482    << Init->getSourceRange();
2483  return true;
2484}
2485
2486void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2487  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2488}
2489
2490/// AddInitializerToDecl - Adds the initializer Init to the
2491/// declaration dcl. If DirectInit is true, this is C++ direct
2492/// initialization rather than copy initialization.
2493void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2494  Decl *RealDecl = dcl.getAs<Decl>();
2495  // If there is no declaration, there was an error parsing it.  Just ignore
2496  // the initializer.
2497  if (RealDecl == 0)
2498    return;
2499
2500  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2501    // With declarators parsed the way they are, the parser cannot
2502    // distinguish between a normal initializer and a pure-specifier.
2503    // Thus this grotesque test.
2504    IntegerLiteral *IL;
2505    Expr *Init = static_cast<Expr *>(init.get());
2506    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2507        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2508      if (Method->isVirtualAsWritten()) {
2509        Method->setPure();
2510
2511        // A class is abstract if at least one function is pure virtual.
2512        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2513      } else if (!Method->isInvalidDecl()) {
2514        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2515          << Method->getDeclName() << Init->getSourceRange();
2516        Method->setInvalidDecl();
2517      }
2518    } else {
2519      Diag(Method->getLocation(), diag::err_member_function_initialization)
2520        << Method->getDeclName() << Init->getSourceRange();
2521      Method->setInvalidDecl();
2522    }
2523    return;
2524  }
2525
2526  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2527  if (!VDecl) {
2528    if (getLangOptions().CPlusPlus &&
2529        RealDecl->getLexicalDeclContext()->isRecord() &&
2530        isa<NamedDecl>(RealDecl))
2531      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2532        << cast<NamedDecl>(RealDecl)->getDeclName();
2533    else
2534      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2535    RealDecl->setInvalidDecl();
2536    return;
2537  }
2538
2539  if (!VDecl->getType()->isArrayType() &&
2540      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2541                          diag::err_typecheck_decl_incomplete_type)) {
2542    RealDecl->setInvalidDecl();
2543    return;
2544  }
2545
2546  const VarDecl *Def = 0;
2547  if (VDecl->getDefinition(Def)) {
2548    Diag(VDecl->getLocation(), diag::err_redefinition)
2549      << VDecl->getDeclName();
2550    Diag(Def->getLocation(), diag::note_previous_definition);
2551    VDecl->setInvalidDecl();
2552    return;
2553  }
2554
2555  // Take ownership of the expression, now that we're sure we have somewhere
2556  // to put it.
2557  Expr *Init = init.takeAs<Expr>();
2558  assert(Init && "missing initializer");
2559
2560  // Get the decls type and save a reference for later, since
2561  // CheckInitializerTypes may change it.
2562  QualType DclT = VDecl->getType(), SavT = DclT;
2563  if (VDecl->isBlockVarDecl()) {
2564    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2565      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2566      VDecl->setInvalidDecl();
2567    } else if (!VDecl->isInvalidDecl()) {
2568      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2569                                VDecl->getDeclName(), DirectInit))
2570        VDecl->setInvalidDecl();
2571
2572      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2573      // Don't check invalid declarations to avoid emitting useless diagnostics.
2574      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2575        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2576          CheckForConstantInitializer(Init, DclT);
2577      }
2578    }
2579  } else if (VDecl->isStaticDataMember() &&
2580             VDecl->getLexicalDeclContext()->isRecord()) {
2581    // This is an in-class initialization for a static data member, e.g.,
2582    //
2583    // struct S {
2584    //   static const int value = 17;
2585    // };
2586
2587    // Attach the initializer
2588    VDecl->setInit(Init);
2589
2590    // C++ [class.mem]p4:
2591    //   A member-declarator can contain a constant-initializer only
2592    //   if it declares a static member (9.4) of const integral or
2593    //   const enumeration type, see 9.4.2.
2594    QualType T = VDecl->getType();
2595    if (!T->isDependentType() &&
2596        (!Context.getCanonicalType(T).isConstQualified() ||
2597         !T->isIntegralType())) {
2598      Diag(VDecl->getLocation(), diag::err_member_initialization)
2599        << VDecl->getDeclName() << Init->getSourceRange();
2600      VDecl->setInvalidDecl();
2601    } else {
2602      // C++ [class.static.data]p4:
2603      //   If a static data member is of const integral or const
2604      //   enumeration type, its declaration in the class definition
2605      //   can specify a constant-initializer which shall be an
2606      //   integral constant expression (5.19).
2607      if (!Init->isTypeDependent() &&
2608          !Init->getType()->isIntegralType()) {
2609        // We have a non-dependent, non-integral or enumeration type.
2610        Diag(Init->getSourceRange().getBegin(),
2611             diag::err_in_class_initializer_non_integral_type)
2612          << Init->getType() << Init->getSourceRange();
2613        VDecl->setInvalidDecl();
2614      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2615        // Check whether the expression is a constant expression.
2616        llvm::APSInt Value;
2617        SourceLocation Loc;
2618        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2619          Diag(Loc, diag::err_in_class_initializer_non_constant)
2620            << Init->getSourceRange();
2621          VDecl->setInvalidDecl();
2622        } else if (!VDecl->getType()->isDependentType())
2623          ImpCastExprToType(Init, VDecl->getType());
2624      }
2625    }
2626  } else if (VDecl->isFileVarDecl()) {
2627    if (VDecl->getStorageClass() == VarDecl::Extern)
2628      Diag(VDecl->getLocation(), diag::warn_extern_init);
2629    if (!VDecl->isInvalidDecl())
2630      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2631                                VDecl->getDeclName(), DirectInit))
2632        VDecl->setInvalidDecl();
2633
2634    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2635    // Don't check invalid declarations to avoid emitting useless diagnostics.
2636    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2637      // C99 6.7.8p4. All file scoped initializers need to be constant.
2638      CheckForConstantInitializer(Init, DclT);
2639    }
2640  }
2641  // If the type changed, it means we had an incomplete type that was
2642  // completed by the initializer. For example:
2643  //   int ary[] = { 1, 3, 5 };
2644  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2645  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2646    VDecl->setType(DclT);
2647    Init->setType(DclT);
2648  }
2649
2650  // Attach the initializer to the decl.
2651  VDecl->setInit(Init);
2652
2653  // If the previous declaration of VDecl was a tentative definition,
2654  // remove it from the set of tentative definitions.
2655  if (VDecl->getPreviousDeclaration() &&
2656      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2657    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2658      = TentativeDefinitions.find(VDecl->getDeclName());
2659    assert(Pos != TentativeDefinitions.end() &&
2660           "Unrecorded tentative definition?");
2661    TentativeDefinitions.erase(Pos);
2662  }
2663
2664  return;
2665}
2666
2667void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2668  Decl *RealDecl = dcl.getAs<Decl>();
2669
2670  // If there is no declaration, there was an error parsing it. Just ignore it.
2671  if (RealDecl == 0)
2672    return;
2673
2674  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2675    QualType Type = Var->getType();
2676
2677    // Record tentative definitions.
2678    if (Var->isTentativeDefinition(Context))
2679      TentativeDefinitions[Var->getDeclName()] = Var;
2680
2681    // C++ [dcl.init.ref]p3:
2682    //   The initializer can be omitted for a reference only in a
2683    //   parameter declaration (8.3.5), in the declaration of a
2684    //   function return type, in the declaration of a class member
2685    //   within its class declaration (9.2), and where the extern
2686    //   specifier is explicitly used.
2687    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2688      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2689        << Var->getDeclName()
2690        << SourceRange(Var->getLocation(), Var->getLocation());
2691      Var->setInvalidDecl();
2692      return;
2693    }
2694
2695    // C++ [dcl.init]p9:
2696    //
2697    //   If no initializer is specified for an object, and the object
2698    //   is of (possibly cv-qualified) non-POD class type (or array
2699    //   thereof), the object shall be default-initialized; if the
2700    //   object is of const-qualified type, the underlying class type
2701    //   shall have a user-declared default constructor.
2702    if (getLangOptions().CPlusPlus) {
2703      QualType InitType = Type;
2704      if (const ArrayType *Array = Context.getAsArrayType(Type))
2705        InitType = Array->getElementType();
2706      if (!Var->hasExternalStorage() && InitType->isRecordType()) {
2707        CXXRecordDecl *RD =
2708          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2709        CXXConstructorDecl *Constructor = 0;
2710        if (!RequireCompleteType(Var->getLocation(), InitType,
2711                                    diag::err_invalid_incomplete_type_use))
2712          Constructor
2713            = PerformInitializationByConstructor(InitType, 0, 0,
2714                                                 Var->getLocation(),
2715                                               SourceRange(Var->getLocation(),
2716                                                           Var->getLocation()),
2717                                                 Var->getDeclName(),
2718                                                 IK_Default);
2719        if (!Constructor)
2720          Var->setInvalidDecl();
2721        else if (!RD->hasTrivialConstructor())
2722          InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2723      }
2724    }
2725
2726#if 0
2727    // FIXME: Temporarily disabled because we are not properly parsing
2728    // linkage specifications on declarations, e.g.,
2729    //
2730    //   extern "C" const CGPoint CGPointerZero;
2731    //
2732    // C++ [dcl.init]p9:
2733    //
2734    //     If no initializer is specified for an object, and the
2735    //     object is of (possibly cv-qualified) non-POD class type (or
2736    //     array thereof), the object shall be default-initialized; if
2737    //     the object is of const-qualified type, the underlying class
2738    //     type shall have a user-declared default
2739    //     constructor. Otherwise, if no initializer is specified for
2740    //     an object, the object and its subobjects, if any, have an
2741    //     indeterminate initial value; if the object or any of its
2742    //     subobjects are of const-qualified type, the program is
2743    //     ill-formed.
2744    //
2745    // This isn't technically an error in C, so we don't diagnose it.
2746    //
2747    // FIXME: Actually perform the POD/user-defined default
2748    // constructor check.
2749    if (getLangOptions().CPlusPlus &&
2750        Context.getCanonicalType(Type).isConstQualified() &&
2751        !Var->hasExternalStorage())
2752      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2753        << Var->getName()
2754        << SourceRange(Var->getLocation(), Var->getLocation());
2755#endif
2756  }
2757}
2758
2759Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2760                                                   unsigned NumDecls) {
2761  llvm::SmallVector<Decl*, 8> Decls;
2762
2763  for (unsigned i = 0; i != NumDecls; ++i)
2764    if (Decl *D = Group[i].getAs<Decl>())
2765      Decls.push_back(D);
2766
2767  // Perform semantic analysis that depends on having fully processed both
2768  // the declarator and initializer.
2769  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2770    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2771    if (!IDecl)
2772      continue;
2773    QualType T = IDecl->getType();
2774
2775    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2776    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2777    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2778      if (!IDecl->isInvalidDecl() &&
2779          RequireCompleteType(IDecl->getLocation(), T,
2780                              diag::err_typecheck_decl_incomplete_type))
2781        IDecl->setInvalidDecl();
2782    }
2783    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2784    // object that has file scope without an initializer, and without a
2785    // storage-class specifier or with the storage-class specifier "static",
2786    // constitutes a tentative definition. Note: A tentative definition with
2787    // external linkage is valid (C99 6.2.2p5).
2788    if (IDecl->isTentativeDefinition(Context)) {
2789      QualType CheckType = T;
2790      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2791
2792      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2793      if (ArrayT) {
2794        CheckType = ArrayT->getElementType();
2795        DiagID = diag::err_illegal_decl_array_incomplete_type;
2796      }
2797
2798      if (IDecl->isInvalidDecl()) {
2799        // Do nothing with invalid declarations
2800      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2801                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2802        // C99 6.9.2p3: If the declaration of an identifier for an object is
2803        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2804        // declared type shall not be an incomplete type.
2805        IDecl->setInvalidDecl();
2806      }
2807    }
2808  }
2809  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2810                                                   &Decls[0], Decls.size()));
2811}
2812
2813
2814/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2815/// to introduce parameters into function prototype scope.
2816Sema::DeclPtrTy
2817Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2818  const DeclSpec &DS = D.getDeclSpec();
2819
2820  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2821  VarDecl::StorageClass StorageClass = VarDecl::None;
2822  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2823    StorageClass = VarDecl::Register;
2824  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2825    Diag(DS.getStorageClassSpecLoc(),
2826         diag::err_invalid_storage_class_in_func_decl);
2827    D.getMutableDeclSpec().ClearStorageClassSpecs();
2828  }
2829
2830  if (D.getDeclSpec().isThreadSpecified())
2831    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2832
2833  DiagnoseFunctionSpecifiers(D);
2834
2835  // Check that there are no default arguments inside the type of this
2836  // parameter (C++ only).
2837  if (getLangOptions().CPlusPlus)
2838    CheckExtraCXXDefaultArguments(D);
2839
2840  QualType parmDeclType = GetTypeForDeclarator(D, S);
2841
2842  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2843  // Can this happen for params?  We already checked that they don't conflict
2844  // among each other.  Here they can only shadow globals, which is ok.
2845  IdentifierInfo *II = D.getIdentifier();
2846  if (II) {
2847    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2848      if (PrevDecl->isTemplateParameter()) {
2849        // Maybe we will complain about the shadowed template parameter.
2850        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2851        // Just pretend that we didn't see the previous declaration.
2852        PrevDecl = 0;
2853      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2854        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2855
2856        // Recover by removing the name
2857        II = 0;
2858        D.SetIdentifier(0, D.getIdentifierLoc());
2859      }
2860    }
2861  }
2862
2863  // Parameters can not be abstract class types.
2864  // For record types, this is done by the AbstractClassUsageDiagnoser once
2865  // the class has been completely parsed.
2866  if (!CurContext->isRecord() &&
2867      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2868                             diag::err_abstract_type_in_decl,
2869                             AbstractParamType))
2870    D.setInvalidType(true);
2871
2872  QualType T = adjustParameterType(parmDeclType);
2873
2874  ParmVarDecl *New;
2875  if (T == parmDeclType) // parameter type did not need adjustment
2876    New = ParmVarDecl::Create(Context, CurContext,
2877                              D.getIdentifierLoc(), II,
2878                              parmDeclType, StorageClass,
2879                              0);
2880  else // keep track of both the adjusted and unadjusted types
2881    New = OriginalParmVarDecl::Create(Context, CurContext,
2882                                      D.getIdentifierLoc(), II, T,
2883                                      parmDeclType, StorageClass, 0);
2884
2885  if (D.isInvalidType())
2886    New->setInvalidDecl();
2887
2888  // Parameter declarators cannot be interface types. All ObjC objects are
2889  // passed by reference.
2890  if (T->isObjCInterfaceType()) {
2891    Diag(D.getIdentifierLoc(),
2892         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2893    New->setInvalidDecl();
2894  }
2895
2896  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2897  if (D.getCXXScopeSpec().isSet()) {
2898    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2899      << D.getCXXScopeSpec().getRange();
2900    New->setInvalidDecl();
2901  }
2902
2903  // Add the parameter declaration into this scope.
2904  S->AddDecl(DeclPtrTy::make(New));
2905  if (II)
2906    IdResolver.AddDecl(New);
2907
2908  ProcessDeclAttributes(New, D);
2909
2910  if (New->hasAttr<BlocksAttr>()) {
2911    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2912  }
2913  return DeclPtrTy::make(New);
2914}
2915
2916void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2917                                           SourceLocation LocAfterDecls) {
2918  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2919         "Not a function declarator!");
2920  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2921
2922  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2923  // for a K&R function.
2924  if (!FTI.hasPrototype) {
2925    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2926      --i;
2927      if (FTI.ArgInfo[i].Param == 0) {
2928        std::string Code = "  int ";
2929        Code += FTI.ArgInfo[i].Ident->getName();
2930        Code += ";\n";
2931        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2932          << FTI.ArgInfo[i].Ident
2933          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2934
2935        // Implicitly declare the argument as type 'int' for lack of a better
2936        // type.
2937        DeclSpec DS;
2938        const char* PrevSpec; // unused
2939        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2940                           PrevSpec);
2941        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2942        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2943        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2944      }
2945    }
2946  }
2947}
2948
2949Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2950                                              Declarator &D) {
2951  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2952  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2953         "Not a function declarator!");
2954  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2955
2956  if (FTI.hasPrototype) {
2957    // FIXME: Diagnose arguments without names in C.
2958  }
2959
2960  Scope *ParentScope = FnBodyScope->getParent();
2961
2962  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2963  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2964}
2965
2966Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2967  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2968
2969  CurFunctionNeedsScopeChecking = false;
2970
2971  // See if this is a redefinition.
2972  const FunctionDecl *Definition;
2973  if (FD->getBody(Context, Definition)) {
2974    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2975    Diag(Definition->getLocation(), diag::note_previous_definition);
2976  }
2977
2978  // Builtin functions cannot be defined.
2979  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2980    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2981      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2982      FD->setInvalidDecl();
2983    }
2984  }
2985
2986  // The return type of a function definition must be complete
2987  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2988  QualType ResultType = FD->getResultType();
2989  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2990      !FD->isInvalidDecl() &&
2991      RequireCompleteType(FD->getLocation(), ResultType,
2992                          diag::err_func_def_incomplete_result))
2993    FD->setInvalidDecl();
2994
2995  // GNU warning -Wmissing-prototypes:
2996  //   Warn if a global function is defined without a previous
2997  //   prototype declaration. This warning is issued even if the
2998  //   definition itself provides a prototype. The aim is to detect
2999  //   global functions that fail to be declared in header files.
3000  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3001      !FD->isMain()) {
3002    bool MissingPrototype = true;
3003    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3004         Prev; Prev = Prev->getPreviousDeclaration()) {
3005      // Ignore any declarations that occur in function or method
3006      // scope, because they aren't visible from the header.
3007      if (Prev->getDeclContext()->isFunctionOrMethod())
3008        continue;
3009
3010      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3011      break;
3012    }
3013
3014    if (MissingPrototype)
3015      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3016  }
3017
3018  if (FnBodyScope)
3019    PushDeclContext(FnBodyScope, FD);
3020
3021  // Check the validity of our function parameters
3022  CheckParmsForFunctionDef(FD);
3023
3024  // Introduce our parameters into the function scope
3025  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3026    ParmVarDecl *Param = FD->getParamDecl(p);
3027    Param->setOwningFunction(FD);
3028
3029    // If this has an identifier, add it to the scope stack.
3030    if (Param->getIdentifier() && FnBodyScope)
3031      PushOnScopeChains(Param, FnBodyScope);
3032  }
3033
3034  // Checking attributes of current function definition
3035  // dllimport attribute.
3036  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
3037    // dllimport attribute cannot be applied to definition.
3038    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3039      Diag(FD->getLocation(),
3040           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3041        << "dllimport";
3042      FD->setInvalidDecl();
3043      return DeclPtrTy::make(FD);
3044    } else {
3045      // If a symbol previously declared dllimport is later defined, the
3046      // attribute is ignored in subsequent references, and a warning is
3047      // emitted.
3048      Diag(FD->getLocation(),
3049           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3050        << FD->getNameAsCString() << "dllimport";
3051    }
3052  }
3053  return DeclPtrTy::make(FD);
3054}
3055
3056Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3057  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3058}
3059
3060Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3061                                              bool IsInstantiation) {
3062  Decl *dcl = D.getAs<Decl>();
3063  Stmt *Body = BodyArg.takeAs<Stmt>();
3064  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3065    FD->setBody(Body);
3066    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3067  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3068    assert(MD == getCurMethodDecl() && "Method parsing confused");
3069    MD->setBody(Body);
3070  } else {
3071    Body->Destroy(Context);
3072    return DeclPtrTy();
3073  }
3074  if (!IsInstantiation)
3075    PopDeclContext();
3076
3077  // Verify and clean out per-function state.
3078
3079  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3080
3081  // Check goto/label use.
3082  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3083       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3084    LabelStmt *L = I->second;
3085
3086    // Verify that we have no forward references left.  If so, there was a goto
3087    // or address of a label taken, but no definition of it.  Label fwd
3088    // definitions are indicated with a null substmt.
3089    if (L->getSubStmt() != 0)
3090      continue;
3091
3092    // Emit error.
3093    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3094
3095    // At this point, we have gotos that use the bogus label.  Stitch it into
3096    // the function body so that they aren't leaked and that the AST is well
3097    // formed.
3098    if (Body == 0) {
3099      // The whole function wasn't parsed correctly, just delete this.
3100      L->Destroy(Context);
3101      continue;
3102    }
3103
3104    // Otherwise, the body is valid: we want to stitch the label decl into the
3105    // function somewhere so that it is properly owned and so that the goto
3106    // has a valid target.  Do this by creating a new compound stmt with the
3107    // label in it.
3108
3109    // Give the label a sub-statement.
3110    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3111
3112    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3113                               cast<CXXTryStmt>(Body)->getTryBlock() :
3114                               cast<CompoundStmt>(Body);
3115    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3116    Elements.push_back(L);
3117    Compound->setStmts(Context, &Elements[0], Elements.size());
3118  }
3119  FunctionLabelMap.clear();
3120
3121  if (!Body) return D;
3122
3123  // Verify that that gotos and switch cases don't jump into scopes illegally.
3124  if (CurFunctionNeedsScopeChecking)
3125    DiagnoseInvalidJumps(Body);
3126
3127  // C++ constructors that have function-try-blocks can't have return statements
3128  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
3129  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3130    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3131
3132  return D;
3133}
3134
3135/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3136/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3137NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3138                                          IdentifierInfo &II, Scope *S) {
3139  // Before we produce a declaration for an implicitly defined
3140  // function, see whether there was a locally-scoped declaration of
3141  // this name as a function or variable. If so, use that
3142  // (non-visible) declaration, and complain about it.
3143  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3144    = LocallyScopedExternalDecls.find(&II);
3145  if (Pos != LocallyScopedExternalDecls.end()) {
3146    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3147    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3148    return Pos->second;
3149  }
3150
3151  // Extension in C99.  Legal in C90, but warn about it.
3152  if (getLangOptions().C99)
3153    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3154  else
3155    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3156
3157  // FIXME: handle stuff like:
3158  // void foo() { extern float X(); }
3159  // void bar() { X(); }  <-- implicit decl for X in another scope.
3160
3161  // Set a Declarator for the implicit definition: int foo();
3162  const char *Dummy;
3163  DeclSpec DS;
3164  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3165  Error = Error; // Silence warning.
3166  assert(!Error && "Error setting up implicit decl!");
3167  Declarator D(DS, Declarator::BlockContext);
3168  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3169                                             0, 0, false, false, 0, 0, Loc, D),
3170                SourceLocation());
3171  D.SetIdentifier(&II, Loc);
3172
3173  // Insert this function into translation-unit scope.
3174
3175  DeclContext *PrevDC = CurContext;
3176  CurContext = Context.getTranslationUnitDecl();
3177
3178  FunctionDecl *FD =
3179 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3180  FD->setImplicit();
3181
3182  CurContext = PrevDC;
3183
3184  AddKnownFunctionAttributes(FD);
3185
3186  return FD;
3187}
3188
3189/// \brief Adds any function attributes that we know a priori based on
3190/// the declaration of this function.
3191///
3192/// These attributes can apply both to implicitly-declared builtins
3193/// (like __builtin___printf_chk) or to library-declared functions
3194/// like NSLog or printf.
3195void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3196  if (FD->isInvalidDecl())
3197    return;
3198
3199  // If this is a built-in function, map its builtin attributes to
3200  // actual attributes.
3201  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3202    // Handle printf-formatting attributes.
3203    unsigned FormatIdx;
3204    bool HasVAListArg;
3205    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3206      if (!FD->getAttr<FormatAttr>())
3207        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3208                                               FormatIdx + 2));
3209    }
3210
3211    // Mark const if we don't care about errno and that is the only
3212    // thing preventing the function from being const. This allows
3213    // IRgen to use LLVM intrinsics for such functions.
3214    if (!getLangOptions().MathErrno &&
3215        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3216      if (!FD->getAttr<ConstAttr>())
3217        FD->addAttr(::new (Context) ConstAttr());
3218    }
3219  }
3220
3221  IdentifierInfo *Name = FD->getIdentifier();
3222  if (!Name)
3223    return;
3224  if ((!getLangOptions().CPlusPlus &&
3225       FD->getDeclContext()->isTranslationUnit()) ||
3226      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3227       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3228       LinkageSpecDecl::lang_c)) {
3229    // Okay: this could be a libc/libm/Objective-C function we know
3230    // about.
3231  } else
3232    return;
3233
3234  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3235    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3236      // FIXME: We known better than our headers.
3237      const_cast<FormatAttr *>(Format)->setType("printf");
3238    } else
3239      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3240  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3241    if (!FD->getAttr<FormatAttr>())
3242      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3243  }
3244}
3245
3246TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3247  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3248  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3249
3250  // Scope manipulation handled by caller.
3251  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3252                                           D.getIdentifierLoc(),
3253                                           D.getIdentifier(),
3254                                           T);
3255
3256  if (TagType *TT = dyn_cast<TagType>(T)) {
3257    TagDecl *TD = TT->getDecl();
3258
3259    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3260    // keep track of the TypedefDecl.
3261    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3262      TD->setTypedefForAnonDecl(NewTD);
3263  }
3264
3265  if (D.isInvalidType())
3266    NewTD->setInvalidDecl();
3267  return NewTD;
3268}
3269
3270
3271/// \brief Determine whether a tag with a given kind is acceptable
3272/// as a redeclaration of the given tag declaration.
3273///
3274/// \returns true if the new tag kind is acceptable, false otherwise.
3275bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3276                                        TagDecl::TagKind NewTag,
3277                                        SourceLocation NewTagLoc,
3278                                        const IdentifierInfo &Name) {
3279  // C++ [dcl.type.elab]p3:
3280  //   The class-key or enum keyword present in the
3281  //   elaborated-type-specifier shall agree in kind with the
3282  //   declaration to which the name in theelaborated-type-specifier
3283  //   refers. This rule also applies to the form of
3284  //   elaborated-type-specifier that declares a class-name or
3285  //   friend class since it can be construed as referring to the
3286  //   definition of the class. Thus, in any
3287  //   elaborated-type-specifier, the enum keyword shall be used to
3288  //   refer to an enumeration (7.2), the union class-keyshall be
3289  //   used to refer to a union (clause 9), and either the class or
3290  //   struct class-key shall be used to refer to a class (clause 9)
3291  //   declared using the class or struct class-key.
3292  TagDecl::TagKind OldTag = Previous->getTagKind();
3293  if (OldTag == NewTag)
3294    return true;
3295
3296  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3297      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3298    // Warn about the struct/class tag mismatch.
3299    bool isTemplate = false;
3300    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3301      isTemplate = Record->getDescribedClassTemplate();
3302
3303    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3304      << (NewTag == TagDecl::TK_class)
3305      << isTemplate << &Name
3306      << (OldTag == TagDecl::TK_class)
3307      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3308                              OldTag == TagDecl::TK_class? "class" : "struct");
3309    Diag(Previous->getLocation(), diag::note_previous_use);
3310    return true;
3311  }
3312  return false;
3313}
3314
3315/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3316/// former case, Name will be non-null.  In the later case, Name will be null.
3317/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3318/// reference/declaration/definition of a tag.
3319Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3320                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3321                               IdentifierInfo *Name, SourceLocation NameLoc,
3322                               AttributeList *Attr, AccessSpecifier AS) {
3323  // If this is not a definition, it must have a name.
3324  assert((Name != 0 || TK == TK_Definition) &&
3325         "Nameless record must be a definition!");
3326
3327  TagDecl::TagKind Kind;
3328  switch (TagSpec) {
3329  default: assert(0 && "Unknown tag type!");
3330  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3331  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3332  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3333  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3334  }
3335
3336  DeclContext *SearchDC = CurContext;
3337  DeclContext *DC = CurContext;
3338  NamedDecl *PrevDecl = 0;
3339
3340  bool Invalid = false;
3341
3342  if (Name && SS.isNotEmpty()) {
3343    // We have a nested-name tag ('struct foo::bar').
3344
3345    // Check for invalid 'foo::'.
3346    if (SS.isInvalid()) {
3347      Name = 0;
3348      goto CreateNewDecl;
3349    }
3350
3351    if (RequireCompleteDeclContext(SS))
3352      return DeclPtrTy::make((Decl *)0);
3353
3354    DC = computeDeclContext(SS);
3355    SearchDC = DC;
3356    // Look-up name inside 'foo::'.
3357    PrevDecl
3358      = dyn_cast_or_null<TagDecl>(
3359               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3360
3361    // A tag 'foo::bar' must already exist.
3362    if (PrevDecl == 0) {
3363      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3364      Name = 0;
3365      goto CreateNewDecl;
3366    }
3367  } else if (Name) {
3368    // If this is a named struct, check to see if there was a previous forward
3369    // declaration or definition.
3370    // FIXME: We're looking into outer scopes here, even when we
3371    // shouldn't be. Doing so can result in ambiguities that we
3372    // shouldn't be diagnosing.
3373    LookupResult R = LookupName(S, Name, LookupTagName,
3374                                /*RedeclarationOnly=*/(TK != TK_Reference));
3375    if (R.isAmbiguous()) {
3376      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3377      // FIXME: This is not best way to recover from case like:
3378      //
3379      // struct S s;
3380      //
3381      // causes needless "incomplete type" error later.
3382      Name = 0;
3383      PrevDecl = 0;
3384      Invalid = true;
3385    }
3386    else
3387      PrevDecl = R;
3388
3389    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3390      // FIXME: This makes sure that we ignore the contexts associated
3391      // with C structs, unions, and enums when looking for a matching
3392      // tag declaration or definition. See the similar lookup tweak
3393      // in Sema::LookupName; is there a better way to deal with this?
3394      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3395        SearchDC = SearchDC->getParent();
3396    }
3397  }
3398
3399  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3400    // Maybe we will complain about the shadowed template parameter.
3401    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3402    // Just pretend that we didn't see the previous declaration.
3403    PrevDecl = 0;
3404  }
3405
3406  if (PrevDecl) {
3407    // Check whether the previous declaration is usable.
3408    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3409
3410    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3411      // If this is a use of a previous tag, or if the tag is already declared
3412      // in the same scope (so that the definition/declaration completes or
3413      // rementions the tag), reuse the decl.
3414      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3415        // Make sure that this wasn't declared as an enum and now used as a
3416        // struct or something similar.
3417        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3418          bool SafeToContinue
3419            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3420               Kind != TagDecl::TK_enum);
3421          if (SafeToContinue)
3422            Diag(KWLoc, diag::err_use_with_wrong_tag)
3423              << Name
3424              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3425                                                  PrevTagDecl->getKindName());
3426          else
3427            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3428          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3429
3430          if (SafeToContinue)
3431            Kind = PrevTagDecl->getTagKind();
3432          else {
3433            // Recover by making this an anonymous redefinition.
3434            Name = 0;
3435            PrevDecl = 0;
3436            Invalid = true;
3437          }
3438        }
3439
3440        if (!Invalid) {
3441          // If this is a use, just return the declaration we found.
3442
3443          // FIXME: In the future, return a variant or some other clue
3444          // for the consumer of this Decl to know it doesn't own it.
3445          // For our current ASTs this shouldn't be a problem, but will
3446          // need to be changed with DeclGroups.
3447          if (TK == TK_Reference)
3448            return DeclPtrTy::make(PrevDecl);
3449
3450          // Diagnose attempts to redefine a tag.
3451          if (TK == TK_Definition) {
3452            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3453              Diag(NameLoc, diag::err_redefinition) << Name;
3454              Diag(Def->getLocation(), diag::note_previous_definition);
3455              // If this is a redefinition, recover by making this
3456              // struct be anonymous, which will make any later
3457              // references get the previous definition.
3458              Name = 0;
3459              PrevDecl = 0;
3460              Invalid = true;
3461            } else {
3462              // If the type is currently being defined, complain
3463              // about a nested redefinition.
3464              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3465              if (Tag->isBeingDefined()) {
3466                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3467                Diag(PrevTagDecl->getLocation(),
3468                     diag::note_previous_definition);
3469                Name = 0;
3470                PrevDecl = 0;
3471                Invalid = true;
3472              }
3473            }
3474
3475            // Okay, this is definition of a previously declared or referenced
3476            // tag PrevDecl. We're going to create a new Decl for it.
3477          }
3478        }
3479        // If we get here we have (another) forward declaration or we
3480        // have a definition.  Just create a new decl.
3481      } else {
3482        // If we get here, this is a definition of a new tag type in a nested
3483        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3484        // new decl/type.  We set PrevDecl to NULL so that the entities
3485        // have distinct types.
3486        PrevDecl = 0;
3487      }
3488      // If we get here, we're going to create a new Decl. If PrevDecl
3489      // is non-NULL, it's a definition of the tag declared by
3490      // PrevDecl. If it's NULL, we have a new definition.
3491    } else {
3492      // PrevDecl is a namespace, template, or anything else
3493      // that lives in the IDNS_Tag identifier namespace.
3494      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3495        // The tag name clashes with a namespace name, issue an error and
3496        // recover by making this tag be anonymous.
3497        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3498        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3499        Name = 0;
3500        PrevDecl = 0;
3501        Invalid = true;
3502      } else {
3503        // The existing declaration isn't relevant to us; we're in a
3504        // new scope, so clear out the previous declaration.
3505        PrevDecl = 0;
3506      }
3507    }
3508  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3509             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3510    // C++ [basic.scope.pdecl]p5:
3511    //   -- for an elaborated-type-specifier of the form
3512    //
3513    //          class-key identifier
3514    //
3515    //      if the elaborated-type-specifier is used in the
3516    //      decl-specifier-seq or parameter-declaration-clause of a
3517    //      function defined in namespace scope, the identifier is
3518    //      declared as a class-name in the namespace that contains
3519    //      the declaration; otherwise, except as a friend
3520    //      declaration, the identifier is declared in the smallest
3521    //      non-class, non-function-prototype scope that contains the
3522    //      declaration.
3523    //
3524    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3525    // C structs and unions.
3526    //
3527    // GNU C also supports this behavior as part of its incomplete
3528    // enum types extension, while GNU C++ does not.
3529    //
3530    // Find the context where we'll be declaring the tag.
3531    // FIXME: We would like to maintain the current DeclContext as the
3532    // lexical context,
3533    while (SearchDC->isRecord())
3534      SearchDC = SearchDC->getParent();
3535
3536    // Find the scope where we'll be declaring the tag.
3537    while (S->isClassScope() ||
3538           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3539           ((S->getFlags() & Scope::DeclScope) == 0) ||
3540           (S->getEntity() &&
3541            ((DeclContext *)S->getEntity())->isTransparentContext()))
3542      S = S->getParent();
3543  }
3544
3545CreateNewDecl:
3546
3547  // If there is an identifier, use the location of the identifier as the
3548  // location of the decl, otherwise use the location of the struct/union
3549  // keyword.
3550  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3551
3552  // Otherwise, create a new declaration. If there is a previous
3553  // declaration of the same entity, the two will be linked via
3554  // PrevDecl.
3555  TagDecl *New;
3556
3557  if (Kind == TagDecl::TK_enum) {
3558    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3559    // enum X { A, B, C } D;    D should chain to X.
3560    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3561                           cast_or_null<EnumDecl>(PrevDecl));
3562    // If this is an undefined enum, warn.
3563    if (TK != TK_Definition && !Invalid)  {
3564      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3565                                              : diag::ext_forward_ref_enum;
3566      Diag(Loc, DK);
3567    }
3568  } else {
3569    // struct/union/class
3570
3571    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3572    // struct X { int A; } D;    D should chain to X.
3573    if (getLangOptions().CPlusPlus)
3574      // FIXME: Look for a way to use RecordDecl for simple structs.
3575      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3576                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3577    else
3578      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3579                               cast_or_null<RecordDecl>(PrevDecl));
3580  }
3581
3582  if (Kind != TagDecl::TK_enum) {
3583    // Handle #pragma pack: if the #pragma pack stack has non-default
3584    // alignment, make up a packed attribute for this decl. These
3585    // attributes are checked when the ASTContext lays out the
3586    // structure.
3587    //
3588    // It is important for implementing the correct semantics that this
3589    // happen here (in act on tag decl). The #pragma pack stack is
3590    // maintained as a result of parser callbacks which can occur at
3591    // many points during the parsing of a struct declaration (because
3592    // the #pragma tokens are effectively skipped over during the
3593    // parsing of the struct).
3594    if (unsigned Alignment = getPragmaPackAlignment())
3595      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3596  }
3597
3598  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3599    // C++ [dcl.typedef]p3:
3600    //   [...] Similarly, in a given scope, a class or enumeration
3601    //   shall not be declared with the same name as a typedef-name
3602    //   that is declared in that scope and refers to a type other
3603    //   than the class or enumeration itself.
3604    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3605    TypedefDecl *PrevTypedef = 0;
3606    if (Lookup.getKind() == LookupResult::Found)
3607      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3608
3609    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3610        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3611          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3612      Diag(Loc, diag::err_tag_definition_of_typedef)
3613        << Context.getTypeDeclType(New)
3614        << PrevTypedef->getUnderlyingType();
3615      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3616      Invalid = true;
3617    }
3618  }
3619
3620  if (Invalid)
3621    New->setInvalidDecl();
3622
3623  if (Attr)
3624    ProcessDeclAttributeList(New, Attr);
3625
3626  // If we're declaring or defining a tag in function prototype scope
3627  // in C, note that this type can only be used within the function.
3628  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3629    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3630
3631  // Set the lexical context. If the tag has a C++ scope specifier, the
3632  // lexical context will be different from the semantic context.
3633  New->setLexicalDeclContext(CurContext);
3634
3635  // Set the access specifier.
3636  SetMemberAccessSpecifier(New, PrevDecl, AS);
3637
3638  if (TK == TK_Definition)
3639    New->startDefinition();
3640
3641  // If this has an identifier, add it to the scope stack.
3642  if (Name) {
3643    S = getNonFieldDeclScope(S);
3644    PushOnScopeChains(New, S);
3645  } else {
3646    CurContext->addDecl(Context, New);
3647  }
3648
3649  return DeclPtrTy::make(New);
3650}
3651
3652void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3653  AdjustDeclIfTemplate(TagD);
3654  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3655
3656  // Enter the tag context.
3657  PushDeclContext(S, Tag);
3658
3659  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3660    FieldCollector->StartClass();
3661
3662    if (Record->getIdentifier()) {
3663      // C++ [class]p2:
3664      //   [...] The class-name is also inserted into the scope of the
3665      //   class itself; this is known as the injected-class-name. For
3666      //   purposes of access checking, the injected-class-name is treated
3667      //   as if it were a public member name.
3668      CXXRecordDecl *InjectedClassName
3669        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3670                                CurContext, Record->getLocation(),
3671                                Record->getIdentifier(), Record);
3672      InjectedClassName->setImplicit();
3673      InjectedClassName->setAccess(AS_public);
3674      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3675        InjectedClassName->setDescribedClassTemplate(Template);
3676      PushOnScopeChains(InjectedClassName, S);
3677      assert(InjectedClassName->isInjectedClassName() &&
3678             "Broken injected-class-name");
3679    }
3680  }
3681}
3682
3683void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3684  AdjustDeclIfTemplate(TagD);
3685  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3686
3687  if (isa<CXXRecordDecl>(Tag))
3688    FieldCollector->FinishClass();
3689
3690  // Exit this scope of this tag's definition.
3691  PopDeclContext();
3692
3693  // Notify the consumer that we've defined a tag.
3694  Consumer.HandleTagDeclDefinition(Tag);
3695}
3696
3697// Note that FieldName may be null for anonymous bitfields.
3698bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3699                          QualType FieldTy, const Expr *BitWidth) {
3700
3701  // C99 6.7.2.1p4 - verify the field type.
3702  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3703  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3704    // Handle incomplete types with specific error.
3705    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3706      return true;
3707    if (FieldName)
3708      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3709        << FieldName << FieldTy << BitWidth->getSourceRange();
3710    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3711      << FieldTy << BitWidth->getSourceRange();
3712  }
3713
3714  // If the bit-width is type- or value-dependent, don't try to check
3715  // it now.
3716  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3717    return false;
3718
3719  llvm::APSInt Value;
3720  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3721    return true;
3722
3723  // Zero-width bitfield is ok for anonymous field.
3724  if (Value == 0 && FieldName)
3725    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3726
3727  if (Value.isSigned() && Value.isNegative()) {
3728    if (FieldName)
3729      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3730               << FieldName << Value.toString(10);
3731    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3732      << Value.toString(10);
3733  }
3734
3735  if (!FieldTy->isDependentType()) {
3736    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3737    if (Value.getZExtValue() > TypeSize) {
3738      if (FieldName)
3739        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3740          << FieldName << (unsigned)TypeSize;
3741      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3742        << (unsigned)TypeSize;
3743    }
3744  }
3745
3746  return false;
3747}
3748
3749/// ActOnField - Each field of a struct/union/class is passed into this in order
3750/// to create a FieldDecl object for it.
3751Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3752                                 SourceLocation DeclStart,
3753                                 Declarator &D, ExprTy *BitfieldWidth) {
3754  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3755                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3756                               AS_public);
3757  return DeclPtrTy::make(Res);
3758}
3759
3760/// HandleField - Analyze a field of a C struct or a C++ data member.
3761///
3762FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3763                             SourceLocation DeclStart,
3764                             Declarator &D, Expr *BitWidth,
3765                             AccessSpecifier AS) {
3766  IdentifierInfo *II = D.getIdentifier();
3767  SourceLocation Loc = DeclStart;
3768  if (II) Loc = D.getIdentifierLoc();
3769
3770  QualType T = GetTypeForDeclarator(D, S);
3771  if (getLangOptions().CPlusPlus)
3772    CheckExtraCXXDefaultArguments(D);
3773
3774  DiagnoseFunctionSpecifiers(D);
3775
3776  if (D.getDeclSpec().isThreadSpecified())
3777    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3778
3779  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3780  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3781    PrevDecl = 0;
3782
3783  FieldDecl *NewFD
3784    = CheckFieldDecl(II, T, Record, Loc,
3785               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3786                     BitWidth, AS, PrevDecl, &D);
3787  if (NewFD->isInvalidDecl() && PrevDecl) {
3788    // Don't introduce NewFD into scope; there's already something
3789    // with the same name in the same scope.
3790  } else if (II) {
3791    PushOnScopeChains(NewFD, S);
3792  } else
3793    Record->addDecl(Context, NewFD);
3794
3795  return NewFD;
3796}
3797
3798/// \brief Build a new FieldDecl and check its well-formedness.
3799///
3800/// This routine builds a new FieldDecl given the fields name, type,
3801/// record, etc. \p PrevDecl should refer to any previous declaration
3802/// with the same name and in the same scope as the field to be
3803/// created.
3804///
3805/// \returns a new FieldDecl.
3806///
3807/// \todo The Declarator argument is a hack. It will be removed once
3808FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3809                                RecordDecl *Record, SourceLocation Loc,
3810                                bool Mutable, Expr *BitWidth,
3811                                AccessSpecifier AS, NamedDecl *PrevDecl,
3812                                Declarator *D) {
3813  IdentifierInfo *II = Name.getAsIdentifierInfo();
3814  bool InvalidDecl = false;
3815  if (D) InvalidDecl = D->isInvalidType();
3816
3817  // If we receive a broken type, recover by assuming 'int' and
3818  // marking this declaration as invalid.
3819  if (T.isNull()) {
3820    InvalidDecl = true;
3821    T = Context.IntTy;
3822  }
3823
3824  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3825  // than a variably modified type.
3826  if (T->isVariablyModifiedType()) {
3827    bool SizeIsNegative;
3828    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3829                                                           SizeIsNegative);
3830    if (!FixedTy.isNull()) {
3831      Diag(Loc, diag::warn_illegal_constant_array_size);
3832      T = FixedTy;
3833    } else {
3834      if (SizeIsNegative)
3835        Diag(Loc, diag::err_typecheck_negative_array_size);
3836      else
3837        Diag(Loc, diag::err_typecheck_field_variable_size);
3838      T = Context.IntTy;
3839      InvalidDecl = true;
3840    }
3841  }
3842
3843  // Fields can not have abstract class types
3844  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3845                             AbstractFieldType))
3846    InvalidDecl = true;
3847
3848  // If this is declared as a bit-field, check the bit-field.
3849  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3850    InvalidDecl = true;
3851    DeleteExpr(BitWidth);
3852    BitWidth = 0;
3853  }
3854
3855  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3856                                       Mutable);
3857  if (InvalidDecl)
3858    NewFD->setInvalidDecl();
3859
3860  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3861    Diag(Loc, diag::err_duplicate_member) << II;
3862    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3863    NewFD->setInvalidDecl();
3864  }
3865
3866  if (getLangOptions().CPlusPlus && !T->isPODType())
3867    cast<CXXRecordDecl>(Record)->setPOD(false);
3868
3869  // FIXME: We need to pass in the attributes given an AST
3870  // representation, not a parser representation.
3871  if (D)
3872    ProcessDeclAttributes(NewFD, *D);
3873
3874  if (T.isObjCGCWeak())
3875    Diag(Loc, diag::warn_attribute_weak_on_field);
3876
3877  NewFD->setAccess(AS);
3878
3879  // C++ [dcl.init.aggr]p1:
3880  //   An aggregate is an array or a class (clause 9) with [...] no
3881  //   private or protected non-static data members (clause 11).
3882  // A POD must be an aggregate.
3883  if (getLangOptions().CPlusPlus &&
3884      (AS == AS_private || AS == AS_protected)) {
3885    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3886    CXXRecord->setAggregate(false);
3887    CXXRecord->setPOD(false);
3888  }
3889
3890  return NewFD;
3891}
3892
3893/// TranslateIvarVisibility - Translate visibility from a token ID to an
3894///  AST enum value.
3895static ObjCIvarDecl::AccessControl
3896TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3897  switch (ivarVisibility) {
3898  default: assert(0 && "Unknown visitibility kind");
3899  case tok::objc_private: return ObjCIvarDecl::Private;
3900  case tok::objc_public: return ObjCIvarDecl::Public;
3901  case tok::objc_protected: return ObjCIvarDecl::Protected;
3902  case tok::objc_package: return ObjCIvarDecl::Package;
3903  }
3904}
3905
3906/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3907/// in order to create an IvarDecl object for it.
3908Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3909                                SourceLocation DeclStart,
3910                                Declarator &D, ExprTy *BitfieldWidth,
3911                                tok::ObjCKeywordKind Visibility) {
3912
3913  IdentifierInfo *II = D.getIdentifier();
3914  Expr *BitWidth = (Expr*)BitfieldWidth;
3915  SourceLocation Loc = DeclStart;
3916  if (II) Loc = D.getIdentifierLoc();
3917
3918  // FIXME: Unnamed fields can be handled in various different ways, for
3919  // example, unnamed unions inject all members into the struct namespace!
3920
3921  QualType T = GetTypeForDeclarator(D, S);
3922
3923  if (BitWidth) {
3924    // 6.7.2.1p3, 6.7.2.1p4
3925    if (VerifyBitField(Loc, II, T, BitWidth)) {
3926      D.setInvalidType();
3927      DeleteExpr(BitWidth);
3928      BitWidth = 0;
3929    }
3930  } else {
3931    // Not a bitfield.
3932
3933    // validate II.
3934
3935  }
3936
3937  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3938  // than a variably modified type.
3939  if (T->isVariablyModifiedType()) {
3940    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3941    D.setInvalidType();
3942  }
3943
3944  // Get the visibility (access control) for this ivar.
3945  ObjCIvarDecl::AccessControl ac =
3946    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3947                                        : ObjCIvarDecl::None;
3948
3949  // Construct the decl.
3950  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3951                                             (Expr *)BitfieldWidth);
3952
3953  if (II) {
3954    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3955    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3956        && !isa<TagDecl>(PrevDecl)) {
3957      Diag(Loc, diag::err_duplicate_member) << II;
3958      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3959      NewID->setInvalidDecl();
3960    }
3961  }
3962
3963  // Process attributes attached to the ivar.
3964  ProcessDeclAttributes(NewID, D);
3965
3966  if (D.isInvalidType())
3967    NewID->setInvalidDecl();
3968
3969  if (II) {
3970    // FIXME: When interfaces are DeclContexts, we'll need to add
3971    // these to the interface.
3972    S->AddDecl(DeclPtrTy::make(NewID));
3973    IdResolver.AddDecl(NewID);
3974  }
3975
3976  return DeclPtrTy::make(NewID);
3977}
3978
3979void Sema::ActOnFields(Scope* S,
3980                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3981                       DeclPtrTy *Fields, unsigned NumFields,
3982                       SourceLocation LBrac, SourceLocation RBrac,
3983                       AttributeList *Attr) {
3984  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3985  assert(EnclosingDecl && "missing record or interface decl");
3986
3987  // If the decl this is being inserted into is invalid, then it may be a
3988  // redeclaration or some other bogus case.  Don't try to add fields to it.
3989  if (EnclosingDecl->isInvalidDecl()) {
3990    // FIXME: Deallocate fields?
3991    return;
3992  }
3993
3994
3995  // Verify that all the fields are okay.
3996  unsigned NumNamedMembers = 0;
3997  llvm::SmallVector<FieldDecl*, 32> RecFields;
3998
3999  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4000  for (unsigned i = 0; i != NumFields; ++i) {
4001    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4002
4003    // Get the type for the field.
4004    Type *FDTy = FD->getType().getTypePtr();
4005
4006    if (!FD->isAnonymousStructOrUnion()) {
4007      // Remember all fields written by the user.
4008      RecFields.push_back(FD);
4009    }
4010
4011    // If the field is already invalid for some reason, don't emit more
4012    // diagnostics about it.
4013    if (FD->isInvalidDecl())
4014      continue;
4015
4016    // C99 6.7.2.1p2:
4017    //   A structure or union shall not contain a member with
4018    //   incomplete or function type (hence, a structure shall not
4019    //   contain an instance of itself, but may contain a pointer to
4020    //   an instance of itself), except that the last member of a
4021    //   structure with more than one named member may have incomplete
4022    //   array type; such a structure (and any union containing,
4023    //   possibly recursively, a member that is such a structure)
4024    //   shall not be a member of a structure or an element of an
4025    //   array.
4026    if (FDTy->isFunctionType()) {
4027      // Field declared as a function.
4028      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4029        << FD->getDeclName();
4030      FD->setInvalidDecl();
4031      EnclosingDecl->setInvalidDecl();
4032      continue;
4033    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4034               Record && Record->isStruct()) {
4035      // Flexible array member.
4036      if (NumNamedMembers < 1) {
4037        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4038          << FD->getDeclName();
4039        FD->setInvalidDecl();
4040        EnclosingDecl->setInvalidDecl();
4041        continue;
4042      }
4043      // Okay, we have a legal flexible array member at the end of the struct.
4044      if (Record)
4045        Record->setHasFlexibleArrayMember(true);
4046    } else if (!FDTy->isDependentType() &&
4047               RequireCompleteType(FD->getLocation(), FD->getType(),
4048                                   diag::err_field_incomplete)) {
4049      // Incomplete type
4050      FD->setInvalidDecl();
4051      EnclosingDecl->setInvalidDecl();
4052      continue;
4053    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4054      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4055        // If this is a member of a union, then entire union becomes "flexible".
4056        if (Record && Record->isUnion()) {
4057          Record->setHasFlexibleArrayMember(true);
4058        } else {
4059          // If this is a struct/class and this is not the last element, reject
4060          // it.  Note that GCC supports variable sized arrays in the middle of
4061          // structures.
4062          if (i != NumFields-1)
4063            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4064              << FD->getDeclName() << FD->getType();
4065          else {
4066            // We support flexible arrays at the end of structs in
4067            // other structs as an extension.
4068            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4069              << FD->getDeclName();
4070            if (Record)
4071              Record->setHasFlexibleArrayMember(true);
4072          }
4073        }
4074      }
4075    } else if (FDTy->isObjCInterfaceType()) {
4076      /// A field cannot be an Objective-c object
4077      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4078      FD->setInvalidDecl();
4079      EnclosingDecl->setInvalidDecl();
4080      continue;
4081    }
4082    // Keep track of the number of named members.
4083    if (FD->getIdentifier())
4084      ++NumNamedMembers;
4085  }
4086
4087  // Okay, we successfully defined 'Record'.
4088  if (Record) {
4089    Record->completeDefinition(Context);
4090  } else {
4091    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
4092    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4093      ID->setIVarList(ClsFields, RecFields.size(), Context);
4094      ID->setLocEnd(RBrac);
4095
4096      // Must enforce the rule that ivars in the base classes may not be
4097      // duplicates.
4098      if (ID->getSuperClass()) {
4099        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4100             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4101          ObjCIvarDecl* Ivar = (*IVI);
4102
4103          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4104            ObjCIvarDecl* prevIvar =
4105              ID->getSuperClass()->lookupInstanceVariable(Context, II);
4106            if (prevIvar) {
4107              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4108              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4109            }
4110          }
4111        }
4112      }
4113    } else if (ObjCImplementationDecl *IMPDecl =
4114                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4115      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4116      for (unsigned I = 0, N = RecFields.size(); I != N; ++I) {
4117        // FIXME: Set the DeclContext correctly when we build the
4118        // declarations.
4119        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4120        IMPDecl->addDecl(Context, ClsFields[I]);
4121      }
4122      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4123    }
4124  }
4125
4126  if (Attr)
4127    ProcessDeclAttributeList(Record, Attr);
4128}
4129
4130EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4131                                          EnumConstantDecl *LastEnumConst,
4132                                          SourceLocation IdLoc,
4133                                          IdentifierInfo *Id,
4134                                          ExprArg val) {
4135  Expr *Val = (Expr *)val.get();
4136
4137  llvm::APSInt EnumVal(32);
4138  QualType EltTy;
4139  if (Val && !Val->isTypeDependent()) {
4140    // Make sure to promote the operand type to int.
4141    UsualUnaryConversions(Val);
4142    if (Val != val.get()) {
4143      val.release();
4144      val = Val;
4145    }
4146
4147    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4148    SourceLocation ExpLoc;
4149    if (!Val->isValueDependent() &&
4150        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4151      Val = 0;
4152    } else {
4153      EltTy = Val->getType();
4154    }
4155  }
4156
4157  if (!Val) {
4158    if (LastEnumConst) {
4159      // Assign the last value + 1.
4160      EnumVal = LastEnumConst->getInitVal();
4161      ++EnumVal;
4162
4163      // Check for overflow on increment.
4164      if (EnumVal < LastEnumConst->getInitVal())
4165        Diag(IdLoc, diag::warn_enum_value_overflow);
4166
4167      EltTy = LastEnumConst->getType();
4168    } else {
4169      // First value, set to zero.
4170      EltTy = Context.IntTy;
4171      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4172    }
4173  }
4174
4175  val.release();
4176  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4177                                  Val, EnumVal);
4178}
4179
4180
4181Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4182                                        DeclPtrTy lastEnumConst,
4183                                        SourceLocation IdLoc,
4184                                        IdentifierInfo *Id,
4185                                        SourceLocation EqualLoc, ExprTy *val) {
4186  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4187  EnumConstantDecl *LastEnumConst =
4188    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4189  Expr *Val = static_cast<Expr*>(val);
4190
4191  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4192  // we find one that is.
4193  S = getNonFieldDeclScope(S);
4194
4195  // Verify that there isn't already something declared with this name in this
4196  // scope.
4197  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4198  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4199    // Maybe we will complain about the shadowed template parameter.
4200    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4201    // Just pretend that we didn't see the previous declaration.
4202    PrevDecl = 0;
4203  }
4204
4205  if (PrevDecl) {
4206    // When in C++, we may get a TagDecl with the same name; in this case the
4207    // enum constant will 'hide' the tag.
4208    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4209           "Received TagDecl when not in C++!");
4210    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4211      if (isa<EnumConstantDecl>(PrevDecl))
4212        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4213      else
4214        Diag(IdLoc, diag::err_redefinition) << Id;
4215      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4216      if (Val) Val->Destroy(Context);
4217      return DeclPtrTy();
4218    }
4219  }
4220
4221  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4222                                            IdLoc, Id, Owned(Val));
4223
4224  // Register this decl in the current scope stack.
4225  if (New)
4226    PushOnScopeChains(New, S);
4227
4228  return DeclPtrTy::make(New);
4229}
4230
4231void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4232                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4233                         DeclPtrTy *Elements, unsigned NumElements) {
4234  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4235  QualType EnumType = Context.getTypeDeclType(Enum);
4236
4237  // TODO: If the result value doesn't fit in an int, it must be a long or long
4238  // long value.  ISO C does not support this, but GCC does as an extension,
4239  // emit a warning.
4240  unsigned IntWidth = Context.Target.getIntWidth();
4241
4242  // Verify that all the values are okay, compute the size of the values, and
4243  // reverse the list.
4244  unsigned NumNegativeBits = 0;
4245  unsigned NumPositiveBits = 0;
4246
4247  // Keep track of whether all elements have type int.
4248  bool AllElementsInt = true;
4249
4250  for (unsigned i = 0; i != NumElements; ++i) {
4251    EnumConstantDecl *ECD =
4252      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4253    if (!ECD) continue;  // Already issued a diagnostic.
4254
4255    // If the enum value doesn't fit in an int, emit an extension warning.
4256    const llvm::APSInt &InitVal = ECD->getInitVal();
4257    assert(InitVal.getBitWidth() >= IntWidth &&
4258           "Should have promoted value to int");
4259    if (InitVal.getBitWidth() > IntWidth) {
4260      llvm::APSInt V(InitVal);
4261      V.trunc(IntWidth);
4262      V.extend(InitVal.getBitWidth());
4263      if (V != InitVal)
4264        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4265          << InitVal.toString(10);
4266    }
4267
4268    // Keep track of the size of positive and negative values.
4269    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4270      NumPositiveBits = std::max(NumPositiveBits,
4271                                 (unsigned)InitVal.getActiveBits());
4272    else
4273      NumNegativeBits = std::max(NumNegativeBits,
4274                                 (unsigned)InitVal.getMinSignedBits());
4275
4276    // Keep track of whether every enum element has type int (very commmon).
4277    if (AllElementsInt)
4278      AllElementsInt = ECD->getType() == Context.IntTy;
4279  }
4280
4281  // Figure out the type that should be used for this enum.
4282  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4283  QualType BestType;
4284  unsigned BestWidth;
4285
4286  if (NumNegativeBits) {
4287    // If there is a negative value, figure out the smallest integer type (of
4288    // int/long/longlong) that fits.
4289    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4290      BestType = Context.IntTy;
4291      BestWidth = IntWidth;
4292    } else {
4293      BestWidth = Context.Target.getLongWidth();
4294
4295      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4296        BestType = Context.LongTy;
4297      else {
4298        BestWidth = Context.Target.getLongLongWidth();
4299
4300        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4301          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4302        BestType = Context.LongLongTy;
4303      }
4304    }
4305  } else {
4306    // If there is no negative value, figure out which of uint, ulong, ulonglong
4307    // fits.
4308    if (NumPositiveBits <= IntWidth) {
4309      BestType = Context.UnsignedIntTy;
4310      BestWidth = IntWidth;
4311    } else if (NumPositiveBits <=
4312               (BestWidth = Context.Target.getLongWidth())) {
4313      BestType = Context.UnsignedLongTy;
4314    } else {
4315      BestWidth = Context.Target.getLongLongWidth();
4316      assert(NumPositiveBits <= BestWidth &&
4317             "How could an initializer get larger than ULL?");
4318      BestType = Context.UnsignedLongLongTy;
4319    }
4320  }
4321
4322  // Loop over all of the enumerator constants, changing their types to match
4323  // the type of the enum if needed.
4324  for (unsigned i = 0; i != NumElements; ++i) {
4325    EnumConstantDecl *ECD =
4326      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4327    if (!ECD) continue;  // Already issued a diagnostic.
4328
4329    // Standard C says the enumerators have int type, but we allow, as an
4330    // extension, the enumerators to be larger than int size.  If each
4331    // enumerator value fits in an int, type it as an int, otherwise type it the
4332    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4333    // that X has type 'int', not 'unsigned'.
4334    if (ECD->getType() == Context.IntTy) {
4335      // Make sure the init value is signed.
4336      llvm::APSInt IV = ECD->getInitVal();
4337      IV.setIsSigned(true);
4338      ECD->setInitVal(IV);
4339
4340      if (getLangOptions().CPlusPlus)
4341        // C++ [dcl.enum]p4: Following the closing brace of an
4342        // enum-specifier, each enumerator has the type of its
4343        // enumeration.
4344        ECD->setType(EnumType);
4345      continue;  // Already int type.
4346    }
4347
4348    // Determine whether the value fits into an int.
4349    llvm::APSInt InitVal = ECD->getInitVal();
4350    bool FitsInInt;
4351    if (InitVal.isUnsigned() || !InitVal.isNegative())
4352      FitsInInt = InitVal.getActiveBits() < IntWidth;
4353    else
4354      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4355
4356    // If it fits into an integer type, force it.  Otherwise force it to match
4357    // the enum decl type.
4358    QualType NewTy;
4359    unsigned NewWidth;
4360    bool NewSign;
4361    if (FitsInInt) {
4362      NewTy = Context.IntTy;
4363      NewWidth = IntWidth;
4364      NewSign = true;
4365    } else if (ECD->getType() == BestType) {
4366      // Already the right type!
4367      if (getLangOptions().CPlusPlus)
4368        // C++ [dcl.enum]p4: Following the closing brace of an
4369        // enum-specifier, each enumerator has the type of its
4370        // enumeration.
4371        ECD->setType(EnumType);
4372      continue;
4373    } else {
4374      NewTy = BestType;
4375      NewWidth = BestWidth;
4376      NewSign = BestType->isSignedIntegerType();
4377    }
4378
4379    // Adjust the APSInt value.
4380    InitVal.extOrTrunc(NewWidth);
4381    InitVal.setIsSigned(NewSign);
4382    ECD->setInitVal(InitVal);
4383
4384    // Adjust the Expr initializer and type.
4385    if (ECD->getInitExpr())
4386      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4387                                                      /*isLvalue=*/false));
4388    if (getLangOptions().CPlusPlus)
4389      // C++ [dcl.enum]p4: Following the closing brace of an
4390      // enum-specifier, each enumerator has the type of its
4391      // enumeration.
4392      ECD->setType(EnumType);
4393    else
4394      ECD->setType(NewTy);
4395  }
4396
4397  Enum->completeDefinition(Context, BestType);
4398}
4399
4400Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4401                                            ExprArg expr) {
4402  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4403
4404  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4405                                                  Loc, AsmString));
4406}
4407