SemaDecl.cpp revision 99a000e3ca7224cd70a2e87cc2751d78595c97f5
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Analysis/CFG.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/BitVector.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cstring>
37#include <functional>
38#include <queue>
39using namespace clang;
40
41/// getDeclName - Return a pretty name for the specified decl if possible, or
42/// an empty string if not.  This is used for pretty crash reporting.
43std::string Sema::getDeclName(DeclPtrTy d) {
44  Decl *D = d.getAs<Decl>();
45  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
46    return DN->getQualifiedNameAsString();
47  return "";
48}
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
51  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
52}
53
54/// \brief If the identifier refers to a type name within this scope,
55/// return the declaration of that type.
56///
57/// This routine performs ordinary name lookup of the identifier II
58/// within the given scope, with optional C++ scope specifier SS, to
59/// determine whether the name refers to a type. If so, returns an
60/// opaque pointer (actually a QualType) corresponding to that
61/// type. Otherwise, returns NULL.
62///
63/// If name lookup results in an ambiguity, this routine will complain
64/// and then return NULL.
65Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
66                                Scope *S, const CXXScopeSpec *SS,
67                                bool isClassName) {
68  // C++ [temp.res]p3:
69  //   A qualified-id that refers to a type and in which the
70  //   nested-name-specifier depends on a template-parameter (14.6.2)
71  //   shall be prefixed by the keyword typename to indicate that the
72  //   qualified-id denotes a type, forming an
73  //   elaborated-type-specifier (7.1.5.3).
74  //
75  // We therefore do not perform any name lookup if the result would
76  // refer to a member of an unknown specialization.
77  if (SS && isUnknownSpecialization(*SS)) {
78    if (!isClassName)
79      return 0;
80
81    // We know from the grammar that this name refers to a type, so build a
82    // TypenameType node to describe the type.
83    // FIXME: Record somewhere that this TypenameType node has no "typename"
84    // keyword associated with it.
85    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
86                             II, SS->getRange()).getAsOpaquePtr();
87  }
88
89  LookupResult Result;
90  LookupParsedName(Result, S, SS, &II, LookupOrdinaryName, false, false);
91
92  NamedDecl *IIDecl = 0;
93  switch (Result.getKind()) {
94  case LookupResult::NotFound:
95  case LookupResult::FoundOverloaded:
96    return 0;
97
98  case LookupResult::Ambiguous:
99    // Recover from type-hiding ambiguities by hiding the type.  We'll
100    // do the lookup again when looking for an object, and we can
101    // diagnose the error then.  If we don't do this, then the error
102    // about hiding the type will be immediately followed by an error
103    // that only makes sense if the identifier was treated like a type.
104    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding)
105      return 0;
106
107    // Look to see if we have a type anywhere in the list of results.
108    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
109         Res != ResEnd; ++Res) {
110      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
111        if (!IIDecl ||
112            (*Res)->getLocation().getRawEncoding() <
113              IIDecl->getLocation().getRawEncoding())
114          IIDecl = *Res;
115      }
116    }
117
118    if (!IIDecl) {
119      // None of the entities we found is a type, so there is no way
120      // to even assume that the result is a type. In this case, don't
121      // complain about the ambiguity. The parser will either try to
122      // perform this lookup again (e.g., as an object name), which
123      // will produce the ambiguity, or will complain that it expected
124      // a type name.
125      return 0;
126    }
127
128    // We found a type within the ambiguous lookup; diagnose the
129    // ambiguity and then return that type. This might be the right
130    // answer, or it might not be, but it suppresses any attempt to
131    // perform the name lookup again.
132    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
133    break;
134
135  case LookupResult::Found:
136    IIDecl = Result.getFoundDecl();
137    break;
138  }
139
140  assert(IIDecl && "Didn't find decl");
141
142  QualType T;
143  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
144    DiagnoseUseOfDecl(IIDecl, NameLoc);
145
146    // C++ [temp.local]p2:
147    //   Within the scope of a class template specialization or
148    //   partial specialization, when the injected-class-name is
149    //   not followed by a <, it is equivalent to the
150    //   injected-class-name followed by the template-argument s
151    //   of the class template specialization or partial
152    //   specialization enclosed in <>.
153    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
154      if (RD->isInjectedClassName())
155        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
156          T = Template->getInjectedClassNameType(Context);
157
158    if (T.isNull())
159      T = Context.getTypeDeclType(TD);
160
161    if (SS)
162      T = getQualifiedNameType(*SS, T);
163
164  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
165    DiagnoseUseOfDecl(IIDecl, NameLoc);
166    T = Context.getObjCInterfaceType(IDecl);
167  } else
168    return 0;
169
170  return T.getAsOpaquePtr();
171}
172
173/// isTagName() - This method is called *for error recovery purposes only*
174/// to determine if the specified name is a valid tag name ("struct foo").  If
175/// so, this returns the TST for the tag corresponding to it (TST_enum,
176/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
177/// where the user forgot to specify the tag.
178DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
179  // Do a tag name lookup in this scope.
180  LookupResult R;
181  LookupName(R, S, &II, LookupTagName, false, false);
182  if (R.getKind() == LookupResult::Found)
183    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsSingleDecl(Context))) {
184      switch (TD->getTagKind()) {
185      case TagDecl::TK_struct: return DeclSpec::TST_struct;
186      case TagDecl::TK_union:  return DeclSpec::TST_union;
187      case TagDecl::TK_class:  return DeclSpec::TST_class;
188      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
189      }
190    }
191
192  return DeclSpec::TST_unspecified;
193}
194
195bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
196                                   SourceLocation IILoc,
197                                   Scope *S,
198                                   const CXXScopeSpec *SS,
199                                   TypeTy *&SuggestedType) {
200  // We don't have anything to suggest (yet).
201  SuggestedType = 0;
202
203  // FIXME: Should we move the logic that tries to recover from a missing tag
204  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
205
206  if (!SS)
207    Diag(IILoc, diag::err_unknown_typename) << &II;
208  else if (DeclContext *DC = computeDeclContext(*SS, false))
209    Diag(IILoc, diag::err_typename_nested_not_found)
210      << &II << DC << SS->getRange();
211  else if (isDependentScopeSpecifier(*SS)) {
212    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
213      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
214      << SourceRange(SS->getRange().getBegin(), IILoc)
215      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
216                                               "typename ");
217    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
218  } else {
219    assert(SS && SS->isInvalid() &&
220           "Invalid scope specifier has already been diagnosed");
221  }
222
223  return true;
224}
225
226// Determines the context to return to after temporarily entering a
227// context.  This depends in an unnecessarily complicated way on the
228// exact ordering of callbacks from the parser.
229DeclContext *Sema::getContainingDC(DeclContext *DC) {
230
231  // Functions defined inline within classes aren't parsed until we've
232  // finished parsing the top-level class, so the top-level class is
233  // the context we'll need to return to.
234  if (isa<FunctionDecl>(DC)) {
235    DC = DC->getLexicalParent();
236
237    // A function not defined within a class will always return to its
238    // lexical context.
239    if (!isa<CXXRecordDecl>(DC))
240      return DC;
241
242    // A C++ inline method/friend is parsed *after* the topmost class
243    // it was declared in is fully parsed ("complete");  the topmost
244    // class is the context we need to return to.
245    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
246      DC = RD;
247
248    // Return the declaration context of the topmost class the inline method is
249    // declared in.
250    return DC;
251  }
252
253  if (isa<ObjCMethodDecl>(DC))
254    return Context.getTranslationUnitDecl();
255
256  return DC->getLexicalParent();
257}
258
259void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
260  assert(getContainingDC(DC) == CurContext &&
261      "The next DeclContext should be lexically contained in the current one.");
262  CurContext = DC;
263  S->setEntity(DC);
264}
265
266void Sema::PopDeclContext() {
267  assert(CurContext && "DeclContext imbalance!");
268
269  CurContext = getContainingDC(CurContext);
270}
271
272/// EnterDeclaratorContext - Used when we must lookup names in the context
273/// of a declarator's nested name specifier.
274void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
275  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
276  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
277  CurContext = DC;
278  assert(CurContext && "No context?");
279  S->setEntity(CurContext);
280}
281
282void Sema::ExitDeclaratorContext(Scope *S) {
283  S->setEntity(PreDeclaratorDC);
284  PreDeclaratorDC = 0;
285
286  // Reset CurContext to the nearest enclosing context.
287  while (!S->getEntity() && S->getParent())
288    S = S->getParent();
289  CurContext = static_cast<DeclContext*>(S->getEntity());
290  assert(CurContext && "No context?");
291}
292
293/// \brief Determine whether we allow overloading of the function
294/// PrevDecl with another declaration.
295///
296/// This routine determines whether overloading is possible, not
297/// whether some new function is actually an overload. It will return
298/// true in C++ (where we can always provide overloads) or, as an
299/// extension, in C when the previous function is already an
300/// overloaded function declaration or has the "overloadable"
301/// attribute.
302static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
303  if (Context.getLangOptions().CPlusPlus)
304    return true;
305
306  if (isa<OverloadedFunctionDecl>(PrevDecl))
307    return true;
308
309  return PrevDecl->getAttr<OverloadableAttr>() != 0;
310}
311
312/// Add this decl to the scope shadowed decl chains.
313void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
314  // Move up the scope chain until we find the nearest enclosing
315  // non-transparent context. The declaration will be introduced into this
316  // scope.
317  while (S->getEntity() &&
318         ((DeclContext *)S->getEntity())->isTransparentContext())
319    S = S->getParent();
320
321  // Add scoped declarations into their context, so that they can be
322  // found later. Declarations without a context won't be inserted
323  // into any context.
324  if (AddToContext)
325    CurContext->addDecl(D);
326
327  // Out-of-line function and variable definitions should not be pushed into
328  // scope.
329  if ((isa<FunctionTemplateDecl>(D) &&
330       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
331      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
332      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
333    return;
334
335  // If this replaces anything in the current scope,
336  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
337                               IEnd = IdResolver.end();
338  for (; I != IEnd; ++I) {
339    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
340      S->RemoveDecl(DeclPtrTy::make(*I));
341      IdResolver.RemoveDecl(*I);
342
343      // Should only need to replace one decl.
344      break;
345    }
346  }
347
348  S->AddDecl(DeclPtrTy::make(D));
349  IdResolver.AddDecl(D);
350}
351
352bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
353  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
354    // Look inside the overload set to determine if any of the declarations
355    // are in scope. (Possibly) build a new overload set containing only
356    // those declarations that are in scope.
357    OverloadedFunctionDecl *NewOvl = 0;
358    bool FoundInScope = false;
359    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
360         FEnd = Ovl->function_end();
361         F != FEnd; ++F) {
362      NamedDecl *FD = F->get();
363      if (!isDeclInScope(FD, Ctx, S)) {
364        if (!NewOvl && F != Ovl->function_begin()) {
365          NewOvl = OverloadedFunctionDecl::Create(Context,
366                                                  F->get()->getDeclContext(),
367                                                  F->get()->getDeclName());
368          D = NewOvl;
369          for (OverloadedFunctionDecl::function_iterator
370               First = Ovl->function_begin();
371               First != F; ++First)
372            NewOvl->addOverload(*First);
373        }
374      } else {
375        FoundInScope = true;
376        if (NewOvl)
377          NewOvl->addOverload(*F);
378      }
379    }
380
381    return FoundInScope;
382  }
383
384  return IdResolver.isDeclInScope(D, Ctx, Context, S);
385}
386
387static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
388  return (!D->isUsed() && !D->hasAttr<UnusedAttr>() && isa<VarDecl>(D) &&
389          !isa<ParmVarDecl>(D) && !isa<ImplicitParamDecl>(D) &&
390          D->getDeclContext()->isFunctionOrMethod());
391}
392
393void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
394  if (S->decl_empty()) return;
395  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
396         "Scope shouldn't contain decls!");
397
398  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
399       I != E; ++I) {
400    Decl *TmpD = (*I).getAs<Decl>();
401    assert(TmpD && "This decl didn't get pushed??");
402
403    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
404    NamedDecl *D = cast<NamedDecl>(TmpD);
405
406    if (!D->getDeclName()) continue;
407
408    // Diagnose unused variables in this scope.
409    if (ShouldDiagnoseUnusedDecl(D))
410      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
411
412    // Remove this name from our lexical scope.
413    IdResolver.RemoveDecl(D);
414  }
415}
416
417/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
418/// return 0 if one not found.
419ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
420  // The third "scope" argument is 0 since we aren't enabling lazy built-in
421  // creation from this context.
422  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
423
424  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
425}
426
427/// getNonFieldDeclScope - Retrieves the innermost scope, starting
428/// from S, where a non-field would be declared. This routine copes
429/// with the difference between C and C++ scoping rules in structs and
430/// unions. For example, the following code is well-formed in C but
431/// ill-formed in C++:
432/// @code
433/// struct S6 {
434///   enum { BAR } e;
435/// };
436///
437/// void test_S6() {
438///   struct S6 a;
439///   a.e = BAR;
440/// }
441/// @endcode
442/// For the declaration of BAR, this routine will return a different
443/// scope. The scope S will be the scope of the unnamed enumeration
444/// within S6. In C++, this routine will return the scope associated
445/// with S6, because the enumeration's scope is a transparent
446/// context but structures can contain non-field names. In C, this
447/// routine will return the translation unit scope, since the
448/// enumeration's scope is a transparent context and structures cannot
449/// contain non-field names.
450Scope *Sema::getNonFieldDeclScope(Scope *S) {
451  while (((S->getFlags() & Scope::DeclScope) == 0) ||
452         (S->getEntity() &&
453          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
454         (S->isClassScope() && !getLangOptions().CPlusPlus))
455    S = S->getParent();
456  return S;
457}
458
459void Sema::InitBuiltinVaListType() {
460  if (!Context.getBuiltinVaListType().isNull())
461    return;
462
463  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
464  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
465  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
466  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
467}
468
469/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
470/// file scope.  lazily create a decl for it. ForRedeclaration is true
471/// if we're creating this built-in in anticipation of redeclaring the
472/// built-in.
473NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
474                                     Scope *S, bool ForRedeclaration,
475                                     SourceLocation Loc) {
476  Builtin::ID BID = (Builtin::ID)bid;
477
478  if (Context.BuiltinInfo.hasVAListUse(BID))
479    InitBuiltinVaListType();
480
481  ASTContext::GetBuiltinTypeError Error;
482  QualType R = Context.GetBuiltinType(BID, Error);
483  switch (Error) {
484  case ASTContext::GE_None:
485    // Okay
486    break;
487
488  case ASTContext::GE_Missing_stdio:
489    if (ForRedeclaration)
490      Diag(Loc, diag::err_implicit_decl_requires_stdio)
491        << Context.BuiltinInfo.GetName(BID);
492    return 0;
493
494  case ASTContext::GE_Missing_setjmp:
495    if (ForRedeclaration)
496      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
497        << Context.BuiltinInfo.GetName(BID);
498    return 0;
499  }
500
501  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
502    Diag(Loc, diag::ext_implicit_lib_function_decl)
503      << Context.BuiltinInfo.GetName(BID)
504      << R;
505    if (Context.BuiltinInfo.getHeaderName(BID) &&
506        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
507          != Diagnostic::Ignored)
508      Diag(Loc, diag::note_please_include_header)
509        << Context.BuiltinInfo.getHeaderName(BID)
510        << Context.BuiltinInfo.GetName(BID);
511  }
512
513  FunctionDecl *New = FunctionDecl::Create(Context,
514                                           Context.getTranslationUnitDecl(),
515                                           Loc, II, R, /*DInfo=*/0,
516                                           FunctionDecl::Extern, false,
517                                           /*hasPrototype=*/true);
518  New->setImplicit();
519
520  // Create Decl objects for each parameter, adding them to the
521  // FunctionDecl.
522  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
523    llvm::SmallVector<ParmVarDecl*, 16> Params;
524    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
525      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
526                                           FT->getArgType(i), /*DInfo=*/0,
527                                           VarDecl::None, 0));
528    New->setParams(Context, Params.data(), Params.size());
529  }
530
531  AddKnownFunctionAttributes(New);
532
533  // TUScope is the translation-unit scope to insert this function into.
534  // FIXME: This is hideous. We need to teach PushOnScopeChains to
535  // relate Scopes to DeclContexts, and probably eliminate CurContext
536  // entirely, but we're not there yet.
537  DeclContext *SavedContext = CurContext;
538  CurContext = Context.getTranslationUnitDecl();
539  PushOnScopeChains(New, TUScope);
540  CurContext = SavedContext;
541  return New;
542}
543
544/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
545/// same name and scope as a previous declaration 'Old'.  Figure out
546/// how to resolve this situation, merging decls or emitting
547/// diagnostics as appropriate. If there was an error, set New to be invalid.
548///
549void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
550  // If either decl is known invalid already, set the new one to be invalid and
551  // don't bother doing any merging checks.
552  if (New->isInvalidDecl() || OldD->isInvalidDecl())
553    return New->setInvalidDecl();
554
555  // Allow multiple definitions for ObjC built-in typedefs.
556  // FIXME: Verify the underlying types are equivalent!
557  if (getLangOptions().ObjC1) {
558    const IdentifierInfo *TypeID = New->getIdentifier();
559    switch (TypeID->getLength()) {
560    default: break;
561    case 2:
562      if (!TypeID->isStr("id"))
563        break;
564      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
565      // Install the built-in type for 'id', ignoring the current definition.
566      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
567      return;
568    case 5:
569      if (!TypeID->isStr("Class"))
570        break;
571      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
572      // Install the built-in type for 'Class', ignoring the current definition.
573      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
574      return;
575    case 3:
576      if (!TypeID->isStr("SEL"))
577        break;
578      Context.setObjCSelType(Context.getTypeDeclType(New));
579      return;
580    case 8:
581      if (!TypeID->isStr("Protocol"))
582        break;
583      Context.setObjCProtoType(New->getUnderlyingType());
584      return;
585    }
586    // Fall through - the typedef name was not a builtin type.
587  }
588  // Verify the old decl was also a type.
589  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
590  if (!Old) {
591    Diag(New->getLocation(), diag::err_redefinition_different_kind)
592      << New->getDeclName();
593    if (OldD->getLocation().isValid())
594      Diag(OldD->getLocation(), diag::note_previous_definition);
595    return New->setInvalidDecl();
596  }
597
598  // Determine the "old" type we'll use for checking and diagnostics.
599  QualType OldType;
600  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
601    OldType = OldTypedef->getUnderlyingType();
602  else
603    OldType = Context.getTypeDeclType(Old);
604
605  // If the typedef types are not identical, reject them in all languages and
606  // with any extensions enabled.
607
608  if (OldType != New->getUnderlyingType() &&
609      Context.getCanonicalType(OldType) !=
610      Context.getCanonicalType(New->getUnderlyingType())) {
611    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
612      << New->getUnderlyingType() << OldType;
613    if (Old->getLocation().isValid())
614      Diag(Old->getLocation(), diag::note_previous_definition);
615    return New->setInvalidDecl();
616  }
617
618  if (getLangOptions().Microsoft)
619    return;
620
621  // C++ [dcl.typedef]p2:
622  //   In a given non-class scope, a typedef specifier can be used to
623  //   redefine the name of any type declared in that scope to refer
624  //   to the type to which it already refers.
625  if (getLangOptions().CPlusPlus) {
626    if (!isa<CXXRecordDecl>(CurContext))
627      return;
628    Diag(New->getLocation(), diag::err_redefinition)
629      << New->getDeclName();
630    Diag(Old->getLocation(), diag::note_previous_definition);
631    return New->setInvalidDecl();
632  }
633
634  // If we have a redefinition of a typedef in C, emit a warning.  This warning
635  // is normally mapped to an error, but can be controlled with
636  // -Wtypedef-redefinition.  If either the original or the redefinition is
637  // in a system header, don't emit this for compatibility with GCC.
638  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
639      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
640       Context.getSourceManager().isInSystemHeader(New->getLocation())))
641    return;
642
643  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
644    << New->getDeclName();
645  Diag(Old->getLocation(), diag::note_previous_definition);
646  return;
647}
648
649/// DeclhasAttr - returns true if decl Declaration already has the target
650/// attribute.
651static bool
652DeclHasAttr(const Decl *decl, const Attr *target) {
653  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
654    if (attr->getKind() == target->getKind())
655      return true;
656
657  return false;
658}
659
660/// MergeAttributes - append attributes from the Old decl to the New one.
661static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
662  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
663    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
664      Attr *NewAttr = attr->clone(C);
665      NewAttr->setInherited(true);
666      New->addAttr(NewAttr);
667    }
668  }
669}
670
671/// Used in MergeFunctionDecl to keep track of function parameters in
672/// C.
673struct GNUCompatibleParamWarning {
674  ParmVarDecl *OldParm;
675  ParmVarDecl *NewParm;
676  QualType PromotedType;
677};
678
679/// MergeFunctionDecl - We just parsed a function 'New' from
680/// declarator D which has the same name and scope as a previous
681/// declaration 'Old'.  Figure out how to resolve this situation,
682/// merging decls or emitting diagnostics as appropriate.
683///
684/// In C++, New and Old must be declarations that are not
685/// overloaded. Use IsOverload to determine whether New and Old are
686/// overloaded, and to select the Old declaration that New should be
687/// merged with.
688///
689/// Returns true if there was an error, false otherwise.
690bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
691  assert(!isa<OverloadedFunctionDecl>(OldD) &&
692         "Cannot merge with an overloaded function declaration");
693
694  // Verify the old decl was also a function.
695  FunctionDecl *Old = 0;
696  if (FunctionTemplateDecl *OldFunctionTemplate
697        = dyn_cast<FunctionTemplateDecl>(OldD))
698    Old = OldFunctionTemplate->getTemplatedDecl();
699  else
700    Old = dyn_cast<FunctionDecl>(OldD);
701  if (!Old) {
702    Diag(New->getLocation(), diag::err_redefinition_different_kind)
703      << New->getDeclName();
704    Diag(OldD->getLocation(), diag::note_previous_definition);
705    return true;
706  }
707
708  // Determine whether the previous declaration was a definition,
709  // implicit declaration, or a declaration.
710  diag::kind PrevDiag;
711  if (Old->isThisDeclarationADefinition())
712    PrevDiag = diag::note_previous_definition;
713  else if (Old->isImplicit())
714    PrevDiag = diag::note_previous_implicit_declaration;
715  else
716    PrevDiag = diag::note_previous_declaration;
717
718  QualType OldQType = Context.getCanonicalType(Old->getType());
719  QualType NewQType = Context.getCanonicalType(New->getType());
720
721  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
722      New->getStorageClass() == FunctionDecl::Static &&
723      Old->getStorageClass() != FunctionDecl::Static) {
724    Diag(New->getLocation(), diag::err_static_non_static)
725      << New;
726    Diag(Old->getLocation(), PrevDiag);
727    return true;
728  }
729
730  if (getLangOptions().CPlusPlus) {
731    // (C++98 13.1p2):
732    //   Certain function declarations cannot be overloaded:
733    //     -- Function declarations that differ only in the return type
734    //        cannot be overloaded.
735    QualType OldReturnType
736      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
737    QualType NewReturnType
738      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
739    if (OldReturnType != NewReturnType) {
740      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
741      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
742      return true;
743    }
744
745    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
746    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
747    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
748        NewMethod->getLexicalDeclContext()->isRecord()) {
749      //    -- Member function declarations with the same name and the
750      //       same parameter types cannot be overloaded if any of them
751      //       is a static member function declaration.
752      if (OldMethod->isStatic() || NewMethod->isStatic()) {
753        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
754        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
755        return true;
756      }
757
758      // C++ [class.mem]p1:
759      //   [...] A member shall not be declared twice in the
760      //   member-specification, except that a nested class or member
761      //   class template can be declared and then later defined.
762      unsigned NewDiag;
763      if (isa<CXXConstructorDecl>(OldMethod))
764        NewDiag = diag::err_constructor_redeclared;
765      else if (isa<CXXDestructorDecl>(NewMethod))
766        NewDiag = diag::err_destructor_redeclared;
767      else if (isa<CXXConversionDecl>(NewMethod))
768        NewDiag = diag::err_conv_function_redeclared;
769      else
770        NewDiag = diag::err_member_redeclared;
771
772      Diag(New->getLocation(), NewDiag);
773      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
774    }
775
776    // (C++98 8.3.5p3):
777    //   All declarations for a function shall agree exactly in both the
778    //   return type and the parameter-type-list.
779    if (OldQType == NewQType)
780      return MergeCompatibleFunctionDecls(New, Old);
781
782    // Fall through for conflicting redeclarations and redefinitions.
783  }
784
785  // C: Function types need to be compatible, not identical. This handles
786  // duplicate function decls like "void f(int); void f(enum X);" properly.
787  if (!getLangOptions().CPlusPlus &&
788      Context.typesAreCompatible(OldQType, NewQType)) {
789    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
790    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
791    const FunctionProtoType *OldProto = 0;
792    if (isa<FunctionNoProtoType>(NewFuncType) &&
793        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
794      // The old declaration provided a function prototype, but the
795      // new declaration does not. Merge in the prototype.
796      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
797      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
798                                                 OldProto->arg_type_end());
799      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
800                                         ParamTypes.data(), ParamTypes.size(),
801                                         OldProto->isVariadic(),
802                                         OldProto->getTypeQuals());
803      New->setType(NewQType);
804      New->setHasInheritedPrototype();
805
806      // Synthesize a parameter for each argument type.
807      llvm::SmallVector<ParmVarDecl*, 16> Params;
808      for (FunctionProtoType::arg_type_iterator
809             ParamType = OldProto->arg_type_begin(),
810             ParamEnd = OldProto->arg_type_end();
811           ParamType != ParamEnd; ++ParamType) {
812        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
813                                                 SourceLocation(), 0,
814                                                 *ParamType, /*DInfo=*/0,
815                                                 VarDecl::None, 0);
816        Param->setImplicit();
817        Params.push_back(Param);
818      }
819
820      New->setParams(Context, Params.data(), Params.size());
821    }
822
823    return MergeCompatibleFunctionDecls(New, Old);
824  }
825
826  // GNU C permits a K&R definition to follow a prototype declaration
827  // if the declared types of the parameters in the K&R definition
828  // match the types in the prototype declaration, even when the
829  // promoted types of the parameters from the K&R definition differ
830  // from the types in the prototype. GCC then keeps the types from
831  // the prototype.
832  //
833  // If a variadic prototype is followed by a non-variadic K&R definition,
834  // the K&R definition becomes variadic.  This is sort of an edge case, but
835  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
836  // C99 6.9.1p8.
837  if (!getLangOptions().CPlusPlus &&
838      Old->hasPrototype() && !New->hasPrototype() &&
839      New->getType()->getAs<FunctionProtoType>() &&
840      Old->getNumParams() == New->getNumParams()) {
841    llvm::SmallVector<QualType, 16> ArgTypes;
842    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
843    const FunctionProtoType *OldProto
844      = Old->getType()->getAs<FunctionProtoType>();
845    const FunctionProtoType *NewProto
846      = New->getType()->getAs<FunctionProtoType>();
847
848    // Determine whether this is the GNU C extension.
849    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
850                                               NewProto->getResultType());
851    bool LooseCompatible = !MergedReturn.isNull();
852    for (unsigned Idx = 0, End = Old->getNumParams();
853         LooseCompatible && Idx != End; ++Idx) {
854      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
855      ParmVarDecl *NewParm = New->getParamDecl(Idx);
856      if (Context.typesAreCompatible(OldParm->getType(),
857                                     NewProto->getArgType(Idx))) {
858        ArgTypes.push_back(NewParm->getType());
859      } else if (Context.typesAreCompatible(OldParm->getType(),
860                                            NewParm->getType())) {
861        GNUCompatibleParamWarning Warn
862          = { OldParm, NewParm, NewProto->getArgType(Idx) };
863        Warnings.push_back(Warn);
864        ArgTypes.push_back(NewParm->getType());
865      } else
866        LooseCompatible = false;
867    }
868
869    if (LooseCompatible) {
870      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
871        Diag(Warnings[Warn].NewParm->getLocation(),
872             diag::ext_param_promoted_not_compatible_with_prototype)
873          << Warnings[Warn].PromotedType
874          << Warnings[Warn].OldParm->getType();
875        Diag(Warnings[Warn].OldParm->getLocation(),
876             diag::note_previous_declaration);
877      }
878
879      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
880                                           ArgTypes.size(),
881                                           OldProto->isVariadic(), 0));
882      return MergeCompatibleFunctionDecls(New, Old);
883    }
884
885    // Fall through to diagnose conflicting types.
886  }
887
888  // A function that has already been declared has been redeclared or defined
889  // with a different type- show appropriate diagnostic
890  if (unsigned BuiltinID = Old->getBuiltinID()) {
891    // The user has declared a builtin function with an incompatible
892    // signature.
893    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
894      // The function the user is redeclaring is a library-defined
895      // function like 'malloc' or 'printf'. Warn about the
896      // redeclaration, then pretend that we don't know about this
897      // library built-in.
898      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
899      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
900        << Old << Old->getType();
901      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
902      Old->setInvalidDecl();
903      return false;
904    }
905
906    PrevDiag = diag::note_previous_builtin_declaration;
907  }
908
909  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
910  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
911  return true;
912}
913
914/// \brief Completes the merge of two function declarations that are
915/// known to be compatible.
916///
917/// This routine handles the merging of attributes and other
918/// properties of function declarations form the old declaration to
919/// the new declaration, once we know that New is in fact a
920/// redeclaration of Old.
921///
922/// \returns false
923bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
924  // Merge the attributes
925  MergeAttributes(New, Old, Context);
926
927  // Merge the storage class.
928  if (Old->getStorageClass() != FunctionDecl::Extern &&
929      Old->getStorageClass() != FunctionDecl::None)
930    New->setStorageClass(Old->getStorageClass());
931
932  // Merge "pure" flag.
933  if (Old->isPure())
934    New->setPure();
935
936  // Merge the "deleted" flag.
937  if (Old->isDeleted())
938    New->setDeleted();
939
940  if (getLangOptions().CPlusPlus)
941    return MergeCXXFunctionDecl(New, Old);
942
943  return false;
944}
945
946/// MergeVarDecl - We just parsed a variable 'New' which has the same name
947/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
948/// situation, merging decls or emitting diagnostics as appropriate.
949///
950/// Tentative definition rules (C99 6.9.2p2) are checked by
951/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
952/// definitions here, since the initializer hasn't been attached.
953///
954void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
955  // If either decl is invalid, make sure the new one is marked invalid and
956  // don't do any other checking.
957  if (New->isInvalidDecl() || OldD->isInvalidDecl())
958    return New->setInvalidDecl();
959
960  // Verify the old decl was also a variable.
961  VarDecl *Old = dyn_cast<VarDecl>(OldD);
962  if (!Old) {
963    Diag(New->getLocation(), diag::err_redefinition_different_kind)
964      << New->getDeclName();
965    Diag(OldD->getLocation(), diag::note_previous_definition);
966    return New->setInvalidDecl();
967  }
968
969  MergeAttributes(New, Old, Context);
970
971  // Merge the types
972  QualType MergedT;
973  if (getLangOptions().CPlusPlus) {
974    if (Context.hasSameType(New->getType(), Old->getType()))
975      MergedT = New->getType();
976    // C++ [basic.types]p7:
977    //   [...] The declared type of an array object might be an array of
978    //   unknown size and therefore be incomplete at one point in a
979    //   translation unit and complete later on; [...]
980    else if (Old->getType()->isIncompleteArrayType() &&
981             New->getType()->isArrayType()) {
982      CanQual<ArrayType> OldArray
983        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
984      CanQual<ArrayType> NewArray
985        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
986      if (OldArray->getElementType() == NewArray->getElementType())
987        MergedT = New->getType();
988    }
989  } else {
990    MergedT = Context.mergeTypes(New->getType(), Old->getType());
991  }
992  if (MergedT.isNull()) {
993    Diag(New->getLocation(), diag::err_redefinition_different_type)
994      << New->getDeclName();
995    Diag(Old->getLocation(), diag::note_previous_definition);
996    return New->setInvalidDecl();
997  }
998  New->setType(MergedT);
999
1000  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1001  if (New->getStorageClass() == VarDecl::Static &&
1002      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1003    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1004    Diag(Old->getLocation(), diag::note_previous_definition);
1005    return New->setInvalidDecl();
1006  }
1007  // C99 6.2.2p4:
1008  //   For an identifier declared with the storage-class specifier
1009  //   extern in a scope in which a prior declaration of that
1010  //   identifier is visible,23) if the prior declaration specifies
1011  //   internal or external linkage, the linkage of the identifier at
1012  //   the later declaration is the same as the linkage specified at
1013  //   the prior declaration. If no prior declaration is visible, or
1014  //   if the prior declaration specifies no linkage, then the
1015  //   identifier has external linkage.
1016  if (New->hasExternalStorage() && Old->hasLinkage())
1017    /* Okay */;
1018  else if (New->getStorageClass() != VarDecl::Static &&
1019           Old->getStorageClass() == VarDecl::Static) {
1020    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1021    Diag(Old->getLocation(), diag::note_previous_definition);
1022    return New->setInvalidDecl();
1023  }
1024
1025  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1026
1027  // FIXME: The test for external storage here seems wrong? We still
1028  // need to check for mismatches.
1029  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1030      // Don't complain about out-of-line definitions of static members.
1031      !(Old->getLexicalDeclContext()->isRecord() &&
1032        !New->getLexicalDeclContext()->isRecord())) {
1033    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1034    Diag(Old->getLocation(), diag::note_previous_definition);
1035    return New->setInvalidDecl();
1036  }
1037
1038  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1039    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1040    Diag(Old->getLocation(), diag::note_previous_definition);
1041  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1042    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1043    Diag(Old->getLocation(), diag::note_previous_definition);
1044  }
1045
1046  // Keep a chain of previous declarations.
1047  New->setPreviousDeclaration(Old);
1048}
1049
1050/// CheckFallThrough - Check that we don't fall off the end of a
1051/// Statement that should return a value.
1052///
1053/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1054/// MaybeFallThrough iff we might or might not fall off the end,
1055/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1056/// return.  We assume NeverFallThrough iff we never fall off the end of the
1057/// statement but we may return.  We assume that functions not marked noreturn
1058/// will return.
1059Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1060  // FIXME: Eventually share this CFG object when we have other warnings based
1061  // of the CFG.  This can be done using AnalysisContext.
1062  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1063
1064  // FIXME: They should never return 0, fix that, delete this code.
1065  if (cfg == 0)
1066    // FIXME: This should be NeverFallThrough
1067    return NeverFallThroughOrReturn;
1068  // The CFG leaves in dead things, and we don't want to dead code paths to
1069  // confuse us, so we mark all live things first.
1070  std::queue<CFGBlock*> workq;
1071  llvm::BitVector live(cfg->getNumBlockIDs());
1072  // Prep work queue
1073  workq.push(&cfg->getEntry());
1074  // Solve
1075  while (!workq.empty()) {
1076    CFGBlock *item = workq.front();
1077    workq.pop();
1078    live.set(item->getBlockID());
1079    for (CFGBlock::succ_iterator I=item->succ_begin(),
1080           E=item->succ_end();
1081         I != E;
1082         ++I) {
1083      if ((*I) && !live[(*I)->getBlockID()]) {
1084        live.set((*I)->getBlockID());
1085        workq.push(*I);
1086      }
1087    }
1088  }
1089
1090  // Now we know what is live, we check the live precessors of the exit block
1091  // and look for fall through paths, being careful to ignore normal returns,
1092  // and exceptional paths.
1093  bool HasLiveReturn = false;
1094  bool HasFakeEdge = false;
1095  bool HasPlainEdge = false;
1096  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1097         E = cfg->getExit().pred_end();
1098       I != E;
1099       ++I) {
1100    CFGBlock& B = **I;
1101    if (!live[B.getBlockID()])
1102      continue;
1103    if (B.size() == 0) {
1104      // A labeled empty statement, or the entry block...
1105      HasPlainEdge = true;
1106      continue;
1107    }
1108    Stmt *S = B[B.size()-1];
1109    if (isa<ReturnStmt>(S)) {
1110      HasLiveReturn = true;
1111      continue;
1112    }
1113    if (isa<ObjCAtThrowStmt>(S)) {
1114      HasFakeEdge = true;
1115      continue;
1116    }
1117    if (isa<CXXThrowExpr>(S)) {
1118      HasFakeEdge = true;
1119      continue;
1120    }
1121    bool NoReturnEdge = false;
1122    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1123      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1124      if (CEE->getType().getNoReturnAttr()) {
1125        NoReturnEdge = true;
1126        HasFakeEdge = true;
1127      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1128        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1129          if (FD->hasAttr<NoReturnAttr>()) {
1130            NoReturnEdge = true;
1131            HasFakeEdge = true;
1132          }
1133        }
1134      }
1135    }
1136    // FIXME: Add noreturn message sends.
1137    if (NoReturnEdge == false)
1138      HasPlainEdge = true;
1139  }
1140  if (!HasPlainEdge) {
1141    if (HasLiveReturn)
1142      return NeverFallThrough;
1143    return NeverFallThroughOrReturn;
1144  }
1145  if (HasFakeEdge || HasLiveReturn)
1146    return MaybeFallThrough;
1147  // This says AlwaysFallThrough for calls to functions that are not marked
1148  // noreturn, that don't return.  If people would like this warning to be more
1149  // accurate, such functions should be marked as noreturn.
1150  return AlwaysFallThrough;
1151}
1152
1153/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1154/// function that should return a value.  Check that we don't fall off the end
1155/// of a noreturn function.  We assume that functions and blocks not marked
1156/// noreturn will return.
1157void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1158  // FIXME: Would be nice if we had a better way to control cascading errors,
1159  // but for now, avoid them.  The problem is that when Parse sees:
1160  //   int foo() { return a; }
1161  // The return is eaten and the Sema code sees just:
1162  //   int foo() { }
1163  // which this code would then warn about.
1164  if (getDiagnostics().hasErrorOccurred())
1165    return;
1166
1167  bool ReturnsVoid = false;
1168  bool HasNoReturn = false;
1169  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1170    // If the result type of the function is a dependent type, we don't know
1171    // whether it will be void or not, so don't
1172    if (FD->getResultType()->isDependentType())
1173      return;
1174    if (FD->getResultType()->isVoidType())
1175      ReturnsVoid = true;
1176    if (FD->hasAttr<NoReturnAttr>())
1177      HasNoReturn = true;
1178  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1179    if (MD->getResultType()->isVoidType())
1180      ReturnsVoid = true;
1181    if (MD->hasAttr<NoReturnAttr>())
1182      HasNoReturn = true;
1183  }
1184
1185  // Short circuit for compilation speed.
1186  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1187       == Diagnostic::Ignored || ReturnsVoid)
1188      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1189          == Diagnostic::Ignored || !HasNoReturn)
1190      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1191          == Diagnostic::Ignored || !ReturnsVoid))
1192    return;
1193  // FIXME: Function try block
1194  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1195    switch (CheckFallThrough(Body)) {
1196    case MaybeFallThrough:
1197      if (HasNoReturn)
1198        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1199      else if (!ReturnsVoid)
1200        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1201      break;
1202    case AlwaysFallThrough:
1203      if (HasNoReturn)
1204        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1205      else if (!ReturnsVoid)
1206        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1207      break;
1208    case NeverFallThroughOrReturn:
1209      if (ReturnsVoid && !HasNoReturn)
1210        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1211      break;
1212    case NeverFallThrough:
1213      break;
1214    }
1215  }
1216}
1217
1218/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1219/// that should return a value.  Check that we don't fall off the end of a
1220/// noreturn block.  We assume that functions and blocks not marked noreturn
1221/// will return.
1222void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1223  // FIXME: Would be nice if we had a better way to control cascading errors,
1224  // but for now, avoid them.  The problem is that when Parse sees:
1225  //   int foo() { return a; }
1226  // The return is eaten and the Sema code sees just:
1227  //   int foo() { }
1228  // which this code would then warn about.
1229  if (getDiagnostics().hasErrorOccurred())
1230    return;
1231  bool ReturnsVoid = false;
1232  bool HasNoReturn = false;
1233  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1234    if (FT->getResultType()->isVoidType())
1235      ReturnsVoid = true;
1236    if (FT->getNoReturnAttr())
1237      HasNoReturn = true;
1238  }
1239
1240  // Short circuit for compilation speed.
1241  if (ReturnsVoid
1242      && !HasNoReturn
1243      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1244          == Diagnostic::Ignored || !ReturnsVoid))
1245    return;
1246  // FIXME: Funtion try block
1247  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1248    switch (CheckFallThrough(Body)) {
1249    case MaybeFallThrough:
1250      if (HasNoReturn)
1251        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1252      else if (!ReturnsVoid)
1253        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1254      break;
1255    case AlwaysFallThrough:
1256      if (HasNoReturn)
1257        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1258      else if (!ReturnsVoid)
1259        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1260      break;
1261    case NeverFallThroughOrReturn:
1262      if (ReturnsVoid)
1263        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1264      break;
1265    case NeverFallThrough:
1266      break;
1267    }
1268  }
1269}
1270
1271/// CheckParmsForFunctionDef - Check that the parameters of the given
1272/// function are appropriate for the definition of a function. This
1273/// takes care of any checks that cannot be performed on the
1274/// declaration itself, e.g., that the types of each of the function
1275/// parameters are complete.
1276bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1277  bool HasInvalidParm = false;
1278  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1279    ParmVarDecl *Param = FD->getParamDecl(p);
1280
1281    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1282    // function declarator that is part of a function definition of
1283    // that function shall not have incomplete type.
1284    //
1285    // This is also C++ [dcl.fct]p6.
1286    if (!Param->isInvalidDecl() &&
1287        RequireCompleteType(Param->getLocation(), Param->getType(),
1288                               diag::err_typecheck_decl_incomplete_type)) {
1289      Param->setInvalidDecl();
1290      HasInvalidParm = true;
1291    }
1292
1293    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1294    // declaration of each parameter shall include an identifier.
1295    if (Param->getIdentifier() == 0 &&
1296        !Param->isImplicit() &&
1297        !getLangOptions().CPlusPlus)
1298      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1299  }
1300
1301  return HasInvalidParm;
1302}
1303
1304/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1305/// no declarator (e.g. "struct foo;") is parsed.
1306Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1307  // FIXME: Error on auto/register at file scope
1308  // FIXME: Error on inline/virtual/explicit
1309  // FIXME: Error on invalid restrict
1310  // FIXME: Warn on useless __thread
1311  // FIXME: Warn on useless const/volatile
1312  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1313  // FIXME: Warn on useless attributes
1314  Decl *TagD = 0;
1315  TagDecl *Tag = 0;
1316  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1317      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1318      DS.getTypeSpecType() == DeclSpec::TST_union ||
1319      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1320    TagD = static_cast<Decl *>(DS.getTypeRep());
1321
1322    if (!TagD) // We probably had an error
1323      return DeclPtrTy();
1324
1325    // Note that the above type specs guarantee that the
1326    // type rep is a Decl, whereas in many of the others
1327    // it's a Type.
1328    Tag = dyn_cast<TagDecl>(TagD);
1329  }
1330
1331  if (DS.isFriendSpecified()) {
1332    // If we're dealing with a class template decl, assume that the
1333    // template routines are handling it.
1334    if (TagD && isa<ClassTemplateDecl>(TagD))
1335      return DeclPtrTy();
1336    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1337  }
1338
1339  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1340    // If there are attributes in the DeclSpec, apply them to the record.
1341    if (const AttributeList *AL = DS.getAttributes())
1342      ProcessDeclAttributeList(S, Record, AL);
1343
1344    if (!Record->getDeclName() && Record->isDefinition() &&
1345        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1346      if (getLangOptions().CPlusPlus ||
1347          Record->getDeclContext()->isRecord())
1348        return BuildAnonymousStructOrUnion(S, DS, Record);
1349
1350      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1351        << DS.getSourceRange();
1352    }
1353
1354    // Microsoft allows unnamed struct/union fields. Don't complain
1355    // about them.
1356    // FIXME: Should we support Microsoft's extensions in this area?
1357    if (Record->getDeclName() && getLangOptions().Microsoft)
1358      return DeclPtrTy::make(Tag);
1359  }
1360
1361  if (!DS.isMissingDeclaratorOk() &&
1362      DS.getTypeSpecType() != DeclSpec::TST_error) {
1363    // Warn about typedefs of enums without names, since this is an
1364    // extension in both Microsoft an GNU.
1365    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1366        Tag && isa<EnumDecl>(Tag)) {
1367      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1368        << DS.getSourceRange();
1369      return DeclPtrTy::make(Tag);
1370    }
1371
1372    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1373      << DS.getSourceRange();
1374    return DeclPtrTy();
1375  }
1376
1377  return DeclPtrTy::make(Tag);
1378}
1379
1380/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1381/// anonymous struct or union AnonRecord into the owning context Owner
1382/// and scope S. This routine will be invoked just after we realize
1383/// that an unnamed union or struct is actually an anonymous union or
1384/// struct, e.g.,
1385///
1386/// @code
1387/// union {
1388///   int i;
1389///   float f;
1390/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1391///    // f into the surrounding scope.x
1392/// @endcode
1393///
1394/// This routine is recursive, injecting the names of nested anonymous
1395/// structs/unions into the owning context and scope as well.
1396bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1397                                               RecordDecl *AnonRecord) {
1398  bool Invalid = false;
1399  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1400                               FEnd = AnonRecord->field_end();
1401       F != FEnd; ++F) {
1402    if ((*F)->getDeclName()) {
1403      LookupResult R;
1404      LookupQualifiedName(R, Owner, (*F)->getDeclName(),
1405                          LookupOrdinaryName, true);
1406      NamedDecl *PrevDecl = R.getAsSingleDecl(Context);
1407      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1408        // C++ [class.union]p2:
1409        //   The names of the members of an anonymous union shall be
1410        //   distinct from the names of any other entity in the
1411        //   scope in which the anonymous union is declared.
1412        unsigned diagKind
1413          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1414                                 : diag::err_anonymous_struct_member_redecl;
1415        Diag((*F)->getLocation(), diagKind)
1416          << (*F)->getDeclName();
1417        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1418        Invalid = true;
1419      } else {
1420        // C++ [class.union]p2:
1421        //   For the purpose of name lookup, after the anonymous union
1422        //   definition, the members of the anonymous union are
1423        //   considered to have been defined in the scope in which the
1424        //   anonymous union is declared.
1425        Owner->makeDeclVisibleInContext(*F);
1426        S->AddDecl(DeclPtrTy::make(*F));
1427        IdResolver.AddDecl(*F);
1428      }
1429    } else if (const RecordType *InnerRecordType
1430                 = (*F)->getType()->getAs<RecordType>()) {
1431      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1432      if (InnerRecord->isAnonymousStructOrUnion())
1433        Invalid = Invalid ||
1434          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1435    }
1436  }
1437
1438  return Invalid;
1439}
1440
1441/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1442/// anonymous structure or union. Anonymous unions are a C++ feature
1443/// (C++ [class.union]) and a GNU C extension; anonymous structures
1444/// are a GNU C and GNU C++ extension.
1445Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1446                                                  RecordDecl *Record) {
1447  DeclContext *Owner = Record->getDeclContext();
1448
1449  // Diagnose whether this anonymous struct/union is an extension.
1450  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1451    Diag(Record->getLocation(), diag::ext_anonymous_union);
1452  else if (!Record->isUnion())
1453    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1454
1455  // C and C++ require different kinds of checks for anonymous
1456  // structs/unions.
1457  bool Invalid = false;
1458  if (getLangOptions().CPlusPlus) {
1459    const char* PrevSpec = 0;
1460    unsigned DiagID;
1461    // C++ [class.union]p3:
1462    //   Anonymous unions declared in a named namespace or in the
1463    //   global namespace shall be declared static.
1464    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1465        (isa<TranslationUnitDecl>(Owner) ||
1466         (isa<NamespaceDecl>(Owner) &&
1467          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1468      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1469      Invalid = true;
1470
1471      // Recover by adding 'static'.
1472      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1473                             PrevSpec, DiagID);
1474    }
1475    // C++ [class.union]p3:
1476    //   A storage class is not allowed in a declaration of an
1477    //   anonymous union in a class scope.
1478    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1479             isa<RecordDecl>(Owner)) {
1480      Diag(DS.getStorageClassSpecLoc(),
1481           diag::err_anonymous_union_with_storage_spec);
1482      Invalid = true;
1483
1484      // Recover by removing the storage specifier.
1485      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1486                             PrevSpec, DiagID);
1487    }
1488
1489    // C++ [class.union]p2:
1490    //   The member-specification of an anonymous union shall only
1491    //   define non-static data members. [Note: nested types and
1492    //   functions cannot be declared within an anonymous union. ]
1493    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1494                                 MemEnd = Record->decls_end();
1495         Mem != MemEnd; ++Mem) {
1496      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1497        // C++ [class.union]p3:
1498        //   An anonymous union shall not have private or protected
1499        //   members (clause 11).
1500        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1501          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1502            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1503          Invalid = true;
1504        }
1505      } else if ((*Mem)->isImplicit()) {
1506        // Any implicit members are fine.
1507      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1508        // This is a type that showed up in an
1509        // elaborated-type-specifier inside the anonymous struct or
1510        // union, but which actually declares a type outside of the
1511        // anonymous struct or union. It's okay.
1512      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1513        if (!MemRecord->isAnonymousStructOrUnion() &&
1514            MemRecord->getDeclName()) {
1515          // This is a nested type declaration.
1516          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1517            << (int)Record->isUnion();
1518          Invalid = true;
1519        }
1520      } else {
1521        // We have something that isn't a non-static data
1522        // member. Complain about it.
1523        unsigned DK = diag::err_anonymous_record_bad_member;
1524        if (isa<TypeDecl>(*Mem))
1525          DK = diag::err_anonymous_record_with_type;
1526        else if (isa<FunctionDecl>(*Mem))
1527          DK = diag::err_anonymous_record_with_function;
1528        else if (isa<VarDecl>(*Mem))
1529          DK = diag::err_anonymous_record_with_static;
1530        Diag((*Mem)->getLocation(), DK)
1531            << (int)Record->isUnion();
1532          Invalid = true;
1533      }
1534    }
1535  }
1536
1537  if (!Record->isUnion() && !Owner->isRecord()) {
1538    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1539      << (int)getLangOptions().CPlusPlus;
1540    Invalid = true;
1541  }
1542
1543  // Mock up a declarator.
1544  Declarator Dc(DS, Declarator::TypeNameContext);
1545  DeclaratorInfo *DInfo = 0;
1546  GetTypeForDeclarator(Dc, S, &DInfo);
1547  assert(DInfo && "couldn't build declarator info for anonymous struct/union");
1548
1549  // Create a declaration for this anonymous struct/union.
1550  NamedDecl *Anon = 0;
1551  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1552    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1553                             /*IdentifierInfo=*/0,
1554                             Context.getTypeDeclType(Record),
1555                             DInfo,
1556                             /*BitWidth=*/0, /*Mutable=*/false);
1557    Anon->setAccess(AS_public);
1558    if (getLangOptions().CPlusPlus)
1559      FieldCollector->Add(cast<FieldDecl>(Anon));
1560  } else {
1561    VarDecl::StorageClass SC;
1562    switch (DS.getStorageClassSpec()) {
1563    default: assert(0 && "Unknown storage class!");
1564    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1565    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1566    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1567    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1568    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1569    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1570    case DeclSpec::SCS_mutable:
1571      // mutable can only appear on non-static class members, so it's always
1572      // an error here
1573      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1574      Invalid = true;
1575      SC = VarDecl::None;
1576      break;
1577    }
1578
1579    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1580                           /*IdentifierInfo=*/0,
1581                           Context.getTypeDeclType(Record),
1582                           DInfo,
1583                           SC);
1584  }
1585  Anon->setImplicit();
1586
1587  // Add the anonymous struct/union object to the current
1588  // context. We'll be referencing this object when we refer to one of
1589  // its members.
1590  Owner->addDecl(Anon);
1591
1592  // Inject the members of the anonymous struct/union into the owning
1593  // context and into the identifier resolver chain for name lookup
1594  // purposes.
1595  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1596    Invalid = true;
1597
1598  // Mark this as an anonymous struct/union type. Note that we do not
1599  // do this until after we have already checked and injected the
1600  // members of this anonymous struct/union type, because otherwise
1601  // the members could be injected twice: once by DeclContext when it
1602  // builds its lookup table, and once by
1603  // InjectAnonymousStructOrUnionMembers.
1604  Record->setAnonymousStructOrUnion(true);
1605
1606  if (Invalid)
1607    Anon->setInvalidDecl();
1608
1609  return DeclPtrTy::make(Anon);
1610}
1611
1612
1613/// GetNameForDeclarator - Determine the full declaration name for the
1614/// given Declarator.
1615DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1616  return GetNameFromUnqualifiedId(D.getName());
1617}
1618
1619/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1620DeclarationName Sema::GetNameFromUnqualifiedId(UnqualifiedId &Name) {
1621  switch (Name.getKind()) {
1622    case UnqualifiedId::IK_Identifier:
1623      return DeclarationName(Name.Identifier);
1624
1625    case UnqualifiedId::IK_OperatorFunctionId:
1626      return Context.DeclarationNames.getCXXOperatorName(
1627                                                         Name.OperatorFunctionId.Operator);
1628
1629    case UnqualifiedId::IK_ConversionFunctionId: {
1630      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1631      if (Ty.isNull())
1632        return DeclarationName();
1633
1634      return Context.DeclarationNames.getCXXConversionFunctionName(
1635                                                                   Context.getCanonicalType(Ty));
1636    }
1637
1638    case UnqualifiedId::IK_ConstructorName: {
1639      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1640      if (Ty.isNull())
1641        return DeclarationName();
1642
1643      return Context.DeclarationNames.getCXXConstructorName(
1644                                                            Context.getCanonicalType(Ty));
1645    }
1646
1647    case UnqualifiedId::IK_DestructorName: {
1648      QualType Ty = GetTypeFromParser(Name.DestructorName);
1649      if (Ty.isNull())
1650        return DeclarationName();
1651
1652      return Context.DeclarationNames.getCXXDestructorName(
1653                                                           Context.getCanonicalType(Ty));
1654    }
1655
1656    case UnqualifiedId::IK_TemplateId: {
1657      TemplateName TName
1658      = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1659      if (TemplateDecl *Template = TName.getAsTemplateDecl())
1660        return Template->getDeclName();
1661      if (OverloadedFunctionDecl *Ovl = TName.getAsOverloadedFunctionDecl())
1662        return Ovl->getDeclName();
1663
1664      return DeclarationName();
1665    }
1666  }
1667
1668  assert(false && "Unknown name kind");
1669  return DeclarationName();
1670}
1671
1672/// isNearlyMatchingFunction - Determine whether the C++ functions
1673/// Declaration and Definition are "nearly" matching. This heuristic
1674/// is used to improve diagnostics in the case where an out-of-line
1675/// function definition doesn't match any declaration within
1676/// the class or namespace.
1677static bool isNearlyMatchingFunction(ASTContext &Context,
1678                                     FunctionDecl *Declaration,
1679                                     FunctionDecl *Definition) {
1680  if (Declaration->param_size() != Definition->param_size())
1681    return false;
1682  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1683    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1684    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1685
1686    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1687    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1688    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1689      return false;
1690  }
1691
1692  return true;
1693}
1694
1695Sema::DeclPtrTy
1696Sema::HandleDeclarator(Scope *S, Declarator &D,
1697                       MultiTemplateParamsArg TemplateParamLists,
1698                       bool IsFunctionDefinition) {
1699  DeclarationName Name = GetNameForDeclarator(D);
1700
1701  // All of these full declarators require an identifier.  If it doesn't have
1702  // one, the ParsedFreeStandingDeclSpec action should be used.
1703  if (!Name) {
1704    if (!D.isInvalidType())  // Reject this if we think it is valid.
1705      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1706           diag::err_declarator_need_ident)
1707        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1708    return DeclPtrTy();
1709  }
1710
1711  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1712  // we find one that is.
1713  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1714         (S->getFlags() & Scope::TemplateParamScope) != 0)
1715    S = S->getParent();
1716
1717  // If this is an out-of-line definition of a member of a class template
1718  // or class template partial specialization, we may need to rebuild the
1719  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1720  // for more information.
1721  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1722  // handle expressions properly.
1723  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1724  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1725      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1726      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1727       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1728       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1729       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1730    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1731      // FIXME: Preserve type source info.
1732      QualType T = GetTypeFromParser(DS.getTypeRep());
1733      EnterDeclaratorContext(S, DC);
1734      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1735      ExitDeclaratorContext(S);
1736      if (T.isNull())
1737        return DeclPtrTy();
1738      DS.UpdateTypeRep(T.getAsOpaquePtr());
1739    }
1740  }
1741
1742  DeclContext *DC;
1743  NamedDecl *PrevDecl;
1744  NamedDecl *New;
1745
1746  DeclaratorInfo *DInfo = 0;
1747  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1748
1749  // See if this is a redefinition of a variable in the same scope.
1750  if (D.getCXXScopeSpec().isInvalid()) {
1751    DC = CurContext;
1752    PrevDecl = 0;
1753    D.setInvalidType();
1754  } else if (!D.getCXXScopeSpec().isSet()) {
1755    LookupNameKind NameKind = LookupOrdinaryName;
1756
1757    // If the declaration we're planning to build will be a function
1758    // or object with linkage, then look for another declaration with
1759    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1760    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1761      /* Do nothing*/;
1762    else if (R->isFunctionType()) {
1763      if (CurContext->isFunctionOrMethod() ||
1764          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1765        NameKind = LookupRedeclarationWithLinkage;
1766    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1767      NameKind = LookupRedeclarationWithLinkage;
1768    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1769             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1770      NameKind = LookupRedeclarationWithLinkage;
1771
1772    DC = CurContext;
1773    LookupResult R;
1774    LookupName(R, S, Name, NameKind, true,
1775               NameKind == LookupRedeclarationWithLinkage,
1776               D.getIdentifierLoc());
1777    PrevDecl = R.getAsSingleDecl(Context);
1778  } else { // Something like "int foo::x;"
1779    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1780
1781    if (!DC) {
1782      // If we could not compute the declaration context, it's because the
1783      // declaration context is dependent but does not refer to a class,
1784      // class template, or class template partial specialization. Complain
1785      // and return early, to avoid the coming semantic disaster.
1786      Diag(D.getIdentifierLoc(),
1787           diag::err_template_qualified_declarator_no_match)
1788        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1789        << D.getCXXScopeSpec().getRange();
1790      return DeclPtrTy();
1791    }
1792
1793    if (!DC->isDependentContext() &&
1794        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1795      return DeclPtrTy();
1796
1797    LookupResult Res;
1798    LookupQualifiedName(Res, DC, Name, LookupOrdinaryName, true);
1799    PrevDecl = Res.getAsSingleDecl(Context);
1800
1801    // C++ 7.3.1.2p2:
1802    // Members (including explicit specializations of templates) of a named
1803    // namespace can also be defined outside that namespace by explicit
1804    // qualification of the name being defined, provided that the entity being
1805    // defined was already declared in the namespace and the definition appears
1806    // after the point of declaration in a namespace that encloses the
1807    // declarations namespace.
1808    //
1809    // Note that we only check the context at this point. We don't yet
1810    // have enough information to make sure that PrevDecl is actually
1811    // the declaration we want to match. For example, given:
1812    //
1813    //   class X {
1814    //     void f();
1815    //     void f(float);
1816    //   };
1817    //
1818    //   void X::f(int) { } // ill-formed
1819    //
1820    // In this case, PrevDecl will point to the overload set
1821    // containing the two f's declared in X, but neither of them
1822    // matches.
1823
1824    // First check whether we named the global scope.
1825    if (isa<TranslationUnitDecl>(DC)) {
1826      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1827        << Name << D.getCXXScopeSpec().getRange();
1828    } else if (!CurContext->Encloses(DC)) {
1829      // The qualifying scope doesn't enclose the original declaration.
1830      // Emit diagnostic based on current scope.
1831      SourceLocation L = D.getIdentifierLoc();
1832      SourceRange R = D.getCXXScopeSpec().getRange();
1833      if (isa<FunctionDecl>(CurContext))
1834        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1835      else
1836        Diag(L, diag::err_invalid_declarator_scope)
1837          << Name << cast<NamedDecl>(DC) << R;
1838      D.setInvalidType();
1839    }
1840  }
1841
1842  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1843    // Maybe we will complain about the shadowed template parameter.
1844    if (!D.isInvalidType())
1845      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1846        D.setInvalidType();
1847
1848    // Just pretend that we didn't see the previous declaration.
1849    PrevDecl = 0;
1850  }
1851
1852  // In C++, the previous declaration we find might be a tag type
1853  // (class or enum). In this case, the new declaration will hide the
1854  // tag type. Note that this does does not apply if we're declaring a
1855  // typedef (C++ [dcl.typedef]p4).
1856  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1857      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1858    PrevDecl = 0;
1859
1860  bool Redeclaration = false;
1861  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1862    if (TemplateParamLists.size()) {
1863      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1864      return DeclPtrTy();
1865    }
1866
1867    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1868  } else if (R->isFunctionType()) {
1869    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1870                                  move(TemplateParamLists),
1871                                  IsFunctionDefinition, Redeclaration);
1872  } else {
1873    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1874                                  move(TemplateParamLists),
1875                                  Redeclaration);
1876  }
1877
1878  if (New == 0)
1879    return DeclPtrTy();
1880
1881  // If this has an identifier and is not an invalid redeclaration or
1882  // function template specialization, add it to the scope stack.
1883  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1884      !(isa<FunctionDecl>(New) &&
1885        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1886    PushOnScopeChains(New, S);
1887
1888  return DeclPtrTy::make(New);
1889}
1890
1891/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1892/// types into constant array types in certain situations which would otherwise
1893/// be errors (for GCC compatibility).
1894static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1895                                                    ASTContext &Context,
1896                                                    bool &SizeIsNegative) {
1897  // This method tries to turn a variable array into a constant
1898  // array even when the size isn't an ICE.  This is necessary
1899  // for compatibility with code that depends on gcc's buggy
1900  // constant expression folding, like struct {char x[(int)(char*)2];}
1901  SizeIsNegative = false;
1902
1903  QualifierCollector Qs;
1904  const Type *Ty = Qs.strip(T);
1905
1906  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1907    QualType Pointee = PTy->getPointeeType();
1908    QualType FixedType =
1909        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1910    if (FixedType.isNull()) return FixedType;
1911    FixedType = Context.getPointerType(FixedType);
1912    return Qs.apply(FixedType);
1913  }
1914
1915  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1916  if (!VLATy)
1917    return QualType();
1918  // FIXME: We should probably handle this case
1919  if (VLATy->getElementType()->isVariablyModifiedType())
1920    return QualType();
1921
1922  Expr::EvalResult EvalResult;
1923  if (!VLATy->getSizeExpr() ||
1924      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1925      !EvalResult.Val.isInt())
1926    return QualType();
1927
1928  llvm::APSInt &Res = EvalResult.Val.getInt();
1929  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1930    // TODO: preserve the size expression in declarator info
1931    return Context.getConstantArrayType(VLATy->getElementType(),
1932                                        Res, ArrayType::Normal, 0);
1933  }
1934
1935  SizeIsNegative = true;
1936  return QualType();
1937}
1938
1939/// \brief Register the given locally-scoped external C declaration so
1940/// that it can be found later for redeclarations
1941void
1942Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1943                                       Scope *S) {
1944  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1945         "Decl is not a locally-scoped decl!");
1946  // Note that we have a locally-scoped external with this name.
1947  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1948
1949  if (!PrevDecl)
1950    return;
1951
1952  // If there was a previous declaration of this variable, it may be
1953  // in our identifier chain. Update the identifier chain with the new
1954  // declaration.
1955  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1956    // The previous declaration was found on the identifer resolver
1957    // chain, so remove it from its scope.
1958    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1959      S = S->getParent();
1960
1961    if (S)
1962      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1963  }
1964}
1965
1966/// \brief Diagnose function specifiers on a declaration of an identifier that
1967/// does not identify a function.
1968void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1969  // FIXME: We should probably indicate the identifier in question to avoid
1970  // confusion for constructs like "inline int a(), b;"
1971  if (D.getDeclSpec().isInlineSpecified())
1972    Diag(D.getDeclSpec().getInlineSpecLoc(),
1973         diag::err_inline_non_function);
1974
1975  if (D.getDeclSpec().isVirtualSpecified())
1976    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1977         diag::err_virtual_non_function);
1978
1979  if (D.getDeclSpec().isExplicitSpecified())
1980    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1981         diag::err_explicit_non_function);
1982}
1983
1984NamedDecl*
1985Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1986                             QualType R,  DeclaratorInfo *DInfo,
1987                             NamedDecl* PrevDecl, bool &Redeclaration) {
1988  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1989  if (D.getCXXScopeSpec().isSet()) {
1990    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1991      << D.getCXXScopeSpec().getRange();
1992    D.setInvalidType();
1993    // Pretend we didn't see the scope specifier.
1994    DC = 0;
1995  }
1996
1997  if (getLangOptions().CPlusPlus) {
1998    // Check that there are no default arguments (C++ only).
1999    CheckExtraCXXDefaultArguments(D);
2000  }
2001
2002  DiagnoseFunctionSpecifiers(D);
2003
2004  if (D.getDeclSpec().isThreadSpecified())
2005    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2006
2007  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, DInfo);
2008  if (!NewTD) return 0;
2009
2010  // Handle attributes prior to checking for duplicates in MergeVarDecl
2011  ProcessDeclAttributes(S, NewTD, D);
2012  // Merge the decl with the existing one if appropriate. If the decl is
2013  // in an outer scope, it isn't the same thing.
2014  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
2015    Redeclaration = true;
2016    MergeTypeDefDecl(NewTD, PrevDecl);
2017  }
2018
2019  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2020  // then it shall have block scope.
2021  QualType T = NewTD->getUnderlyingType();
2022  if (T->isVariablyModifiedType()) {
2023    CurFunctionNeedsScopeChecking = true;
2024
2025    if (S->getFnParent() == 0) {
2026      bool SizeIsNegative;
2027      QualType FixedTy =
2028          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2029      if (!FixedTy.isNull()) {
2030        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2031        NewTD->setTypeDeclaratorInfo(Context.getTrivialDeclaratorInfo(FixedTy));
2032      } else {
2033        if (SizeIsNegative)
2034          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2035        else if (T->isVariableArrayType())
2036          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2037        else
2038          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2039        NewTD->setInvalidDecl();
2040      }
2041    }
2042  }
2043
2044  // If this is the C FILE type, notify the AST context.
2045  if (IdentifierInfo *II = NewTD->getIdentifier())
2046    if (!NewTD->isInvalidDecl() &&
2047        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2048      if (II->isStr("FILE"))
2049        Context.setFILEDecl(NewTD);
2050      else if (II->isStr("jmp_buf"))
2051        Context.setjmp_bufDecl(NewTD);
2052      else if (II->isStr("sigjmp_buf"))
2053        Context.setsigjmp_bufDecl(NewTD);
2054    }
2055
2056  return NewTD;
2057}
2058
2059/// \brief Determines whether the given declaration is an out-of-scope
2060/// previous declaration.
2061///
2062/// This routine should be invoked when name lookup has found a
2063/// previous declaration (PrevDecl) that is not in the scope where a
2064/// new declaration by the same name is being introduced. If the new
2065/// declaration occurs in a local scope, previous declarations with
2066/// linkage may still be considered previous declarations (C99
2067/// 6.2.2p4-5, C++ [basic.link]p6).
2068///
2069/// \param PrevDecl the previous declaration found by name
2070/// lookup
2071///
2072/// \param DC the context in which the new declaration is being
2073/// declared.
2074///
2075/// \returns true if PrevDecl is an out-of-scope previous declaration
2076/// for a new delcaration with the same name.
2077static bool
2078isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2079                                ASTContext &Context) {
2080  if (!PrevDecl)
2081    return 0;
2082
2083  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2084  // case we need to check each of the overloaded functions.
2085  if (!PrevDecl->hasLinkage())
2086    return false;
2087
2088  if (Context.getLangOptions().CPlusPlus) {
2089    // C++ [basic.link]p6:
2090    //   If there is a visible declaration of an entity with linkage
2091    //   having the same name and type, ignoring entities declared
2092    //   outside the innermost enclosing namespace scope, the block
2093    //   scope declaration declares that same entity and receives the
2094    //   linkage of the previous declaration.
2095    DeclContext *OuterContext = DC->getLookupContext();
2096    if (!OuterContext->isFunctionOrMethod())
2097      // This rule only applies to block-scope declarations.
2098      return false;
2099    else {
2100      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2101      if (PrevOuterContext->isRecord())
2102        // We found a member function: ignore it.
2103        return false;
2104      else {
2105        // Find the innermost enclosing namespace for the new and
2106        // previous declarations.
2107        while (!OuterContext->isFileContext())
2108          OuterContext = OuterContext->getParent();
2109        while (!PrevOuterContext->isFileContext())
2110          PrevOuterContext = PrevOuterContext->getParent();
2111
2112        // The previous declaration is in a different namespace, so it
2113        // isn't the same function.
2114        if (OuterContext->getPrimaryContext() !=
2115            PrevOuterContext->getPrimaryContext())
2116          return false;
2117      }
2118    }
2119  }
2120
2121  return true;
2122}
2123
2124NamedDecl*
2125Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2126                              QualType R, DeclaratorInfo *DInfo,
2127                              NamedDecl* PrevDecl,
2128                              MultiTemplateParamsArg TemplateParamLists,
2129                              bool &Redeclaration) {
2130  DeclarationName Name = GetNameForDeclarator(D);
2131
2132  // Check that there are no default arguments (C++ only).
2133  if (getLangOptions().CPlusPlus)
2134    CheckExtraCXXDefaultArguments(D);
2135
2136  VarDecl *NewVD;
2137  VarDecl::StorageClass SC;
2138  switch (D.getDeclSpec().getStorageClassSpec()) {
2139  default: assert(0 && "Unknown storage class!");
2140  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2141  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2142  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2143  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2144  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2145  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2146  case DeclSpec::SCS_mutable:
2147    // mutable can only appear on non-static class members, so it's always
2148    // an error here
2149    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2150    D.setInvalidType();
2151    SC = VarDecl::None;
2152    break;
2153  }
2154
2155  IdentifierInfo *II = Name.getAsIdentifierInfo();
2156  if (!II) {
2157    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2158      << Name.getAsString();
2159    return 0;
2160  }
2161
2162  DiagnoseFunctionSpecifiers(D);
2163
2164  if (!DC->isRecord() && S->getFnParent() == 0) {
2165    // C99 6.9p2: The storage-class specifiers auto and register shall not
2166    // appear in the declaration specifiers in an external declaration.
2167    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2168
2169      // If this is a register variable with an asm label specified, then this
2170      // is a GNU extension.
2171      if (SC == VarDecl::Register && D.getAsmLabel())
2172        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2173      else
2174        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2175      D.setInvalidType();
2176    }
2177  }
2178  if (DC->isRecord() && !CurContext->isRecord()) {
2179    // This is an out-of-line definition of a static data member.
2180    if (SC == VarDecl::Static) {
2181      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2182           diag::err_static_out_of_line)
2183        << CodeModificationHint::CreateRemoval(
2184                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2185    } else if (SC == VarDecl::None)
2186      SC = VarDecl::Static;
2187  }
2188  if (SC == VarDecl::Static) {
2189    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2190      if (RD->isLocalClass())
2191        Diag(D.getIdentifierLoc(),
2192             diag::err_static_data_member_not_allowed_in_local_class)
2193          << Name << RD->getDeclName();
2194    }
2195  }
2196
2197  // Match up the template parameter lists with the scope specifier, then
2198  // determine whether we have a template or a template specialization.
2199  bool isExplicitSpecialization = false;
2200  if (TemplateParameterList *TemplateParams
2201        = MatchTemplateParametersToScopeSpecifier(
2202                                  D.getDeclSpec().getSourceRange().getBegin(),
2203                                                  D.getCXXScopeSpec(),
2204                        (TemplateParameterList**)TemplateParamLists.get(),
2205                                                   TemplateParamLists.size(),
2206                                                  isExplicitSpecialization)) {
2207    if (TemplateParams->size() > 0) {
2208      // There is no such thing as a variable template.
2209      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2210        << II
2211        << SourceRange(TemplateParams->getTemplateLoc(),
2212                       TemplateParams->getRAngleLoc());
2213      return 0;
2214    } else {
2215      // There is an extraneous 'template<>' for this variable. Complain
2216      // about it, but allow the declaration of the variable.
2217      Diag(TemplateParams->getTemplateLoc(),
2218           diag::err_template_variable_noparams)
2219        << II
2220        << SourceRange(TemplateParams->getTemplateLoc(),
2221                       TemplateParams->getRAngleLoc());
2222
2223      isExplicitSpecialization = true;
2224    }
2225  }
2226
2227  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2228                          II, R, DInfo, SC);
2229
2230  if (D.isInvalidType())
2231    NewVD->setInvalidDecl();
2232
2233  if (D.getDeclSpec().isThreadSpecified()) {
2234    if (NewVD->hasLocalStorage())
2235      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2236    else if (!Context.Target.isTLSSupported())
2237      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2238    else
2239      NewVD->setThreadSpecified(true);
2240  }
2241
2242  // Set the lexical context. If the declarator has a C++ scope specifier, the
2243  // lexical context will be different from the semantic context.
2244  NewVD->setLexicalDeclContext(CurContext);
2245
2246  // Handle attributes prior to checking for duplicates in MergeVarDecl
2247  ProcessDeclAttributes(S, NewVD, D);
2248
2249  // Handle GNU asm-label extension (encoded as an attribute).
2250  if (Expr *E = (Expr*) D.getAsmLabel()) {
2251    // The parser guarantees this is a string.
2252    StringLiteral *SE = cast<StringLiteral>(E);
2253    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2254                                                        SE->getByteLength())));
2255  }
2256
2257  // If name lookup finds a previous declaration that is not in the
2258  // same scope as the new declaration, this may still be an
2259  // acceptable redeclaration.
2260  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2261      !(NewVD->hasLinkage() &&
2262        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2263    PrevDecl = 0;
2264
2265  // Merge the decl with the existing one if appropriate.
2266  if (PrevDecl) {
2267    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2268      // The user tried to define a non-static data member
2269      // out-of-line (C++ [dcl.meaning]p1).
2270      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2271        << D.getCXXScopeSpec().getRange();
2272      PrevDecl = 0;
2273      NewVD->setInvalidDecl();
2274    }
2275  } else if (D.getCXXScopeSpec().isSet()) {
2276    // No previous declaration in the qualifying scope.
2277    Diag(D.getIdentifierLoc(), diag::err_no_member)
2278      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2279      << D.getCXXScopeSpec().getRange();
2280    NewVD->setInvalidDecl();
2281  }
2282
2283  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2284
2285  // This is an explicit specialization of a static data member. Check it.
2286  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2287      CheckMemberSpecialization(NewVD, PrevDecl))
2288    NewVD->setInvalidDecl();
2289
2290  // attributes declared post-definition are currently ignored
2291  if (PrevDecl) {
2292    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2293    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2294      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2295      Diag(Def->getLocation(), diag::note_previous_definition);
2296    }
2297  }
2298
2299  // If this is a locally-scoped extern C variable, update the map of
2300  // such variables.
2301  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2302      !NewVD->isInvalidDecl())
2303    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2304
2305  return NewVD;
2306}
2307
2308/// \brief Perform semantic checking on a newly-created variable
2309/// declaration.
2310///
2311/// This routine performs all of the type-checking required for a
2312/// variable declaration once it has been built. It is used both to
2313/// check variables after they have been parsed and their declarators
2314/// have been translated into a declaration, and to check variables
2315/// that have been instantiated from a template.
2316///
2317/// Sets NewVD->isInvalidDecl() if an error was encountered.
2318void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2319                                    bool &Redeclaration) {
2320  // If the decl is already known invalid, don't check it.
2321  if (NewVD->isInvalidDecl())
2322    return;
2323
2324  QualType T = NewVD->getType();
2325
2326  if (T->isObjCInterfaceType()) {
2327    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2328    return NewVD->setInvalidDecl();
2329  }
2330
2331  // The variable can not have an abstract class type.
2332  if (RequireNonAbstractType(NewVD->getLocation(), T,
2333                             diag::err_abstract_type_in_decl,
2334                             AbstractVariableType))
2335    return NewVD->setInvalidDecl();
2336
2337  // Emit an error if an address space was applied to decl with local storage.
2338  // This includes arrays of objects with address space qualifiers, but not
2339  // automatic variables that point to other address spaces.
2340  // ISO/IEC TR 18037 S5.1.2
2341  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2342    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2343    return NewVD->setInvalidDecl();
2344  }
2345
2346  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2347      && !NewVD->hasAttr<BlocksAttr>())
2348    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2349
2350  bool isVM = T->isVariablyModifiedType();
2351  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2352      NewVD->hasAttr<BlocksAttr>())
2353    CurFunctionNeedsScopeChecking = true;
2354
2355  if ((isVM && NewVD->hasLinkage()) ||
2356      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2357    bool SizeIsNegative;
2358    QualType FixedTy =
2359        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2360
2361    if (FixedTy.isNull() && T->isVariableArrayType()) {
2362      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2363      // FIXME: This won't give the correct result for
2364      // int a[10][n];
2365      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2366
2367      if (NewVD->isFileVarDecl())
2368        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2369        << SizeRange;
2370      else if (NewVD->getStorageClass() == VarDecl::Static)
2371        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2372        << SizeRange;
2373      else
2374        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2375        << SizeRange;
2376      return NewVD->setInvalidDecl();
2377    }
2378
2379    if (FixedTy.isNull()) {
2380      if (NewVD->isFileVarDecl())
2381        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2382      else
2383        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2384      return NewVD->setInvalidDecl();
2385    }
2386
2387    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2388    NewVD->setType(FixedTy);
2389  }
2390
2391  if (!PrevDecl && NewVD->isExternC()) {
2392    // Since we did not find anything by this name and we're declaring
2393    // an extern "C" variable, look for a non-visible extern "C"
2394    // declaration with the same name.
2395    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2396      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2397    if (Pos != LocallyScopedExternalDecls.end())
2398      PrevDecl = Pos->second;
2399  }
2400
2401  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2402    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2403      << T;
2404    return NewVD->setInvalidDecl();
2405  }
2406
2407  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2408    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2409    return NewVD->setInvalidDecl();
2410  }
2411
2412  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2413    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2414    return NewVD->setInvalidDecl();
2415  }
2416
2417  if (PrevDecl) {
2418    Redeclaration = true;
2419    MergeVarDecl(NewVD, PrevDecl);
2420  }
2421}
2422
2423static bool isUsingDecl(Decl *D) {
2424  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2425}
2426
2427/// \brief Data used with FindOverriddenMethod
2428struct FindOverriddenMethodData {
2429  Sema *S;
2430  CXXMethodDecl *Method;
2431};
2432
2433/// \brief Member lookup function that determines whether a given C++
2434/// method overrides a method in a base class, to be used with
2435/// CXXRecordDecl::lookupInBases().
2436static bool FindOverriddenMethod(CXXBaseSpecifier *Specifier,
2437                                 CXXBasePath &Path,
2438                                 void *UserData) {
2439  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2440
2441  FindOverriddenMethodData *Data
2442    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2443  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2444       Path.Decls.first != Path.Decls.second;
2445       ++Path.Decls.first) {
2446    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2447      OverloadedFunctionDecl::function_iterator MatchedDecl;
2448      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, MatchedDecl))
2449        return true;
2450    }
2451  }
2452
2453  return false;
2454}
2455
2456NamedDecl*
2457Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2458                              QualType R, DeclaratorInfo *DInfo,
2459                              NamedDecl* PrevDecl,
2460                              MultiTemplateParamsArg TemplateParamLists,
2461                              bool IsFunctionDefinition, bool &Redeclaration) {
2462  assert(R.getTypePtr()->isFunctionType());
2463
2464  DeclarationName Name = GetNameForDeclarator(D);
2465  FunctionDecl::StorageClass SC = FunctionDecl::None;
2466  switch (D.getDeclSpec().getStorageClassSpec()) {
2467  default: assert(0 && "Unknown storage class!");
2468  case DeclSpec::SCS_auto:
2469  case DeclSpec::SCS_register:
2470  case DeclSpec::SCS_mutable:
2471    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2472         diag::err_typecheck_sclass_func);
2473    D.setInvalidType();
2474    break;
2475  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2476  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2477  case DeclSpec::SCS_static: {
2478    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2479      // C99 6.7.1p5:
2480      //   The declaration of an identifier for a function that has
2481      //   block scope shall have no explicit storage-class specifier
2482      //   other than extern
2483      // See also (C++ [dcl.stc]p4).
2484      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2485           diag::err_static_block_func);
2486      SC = FunctionDecl::None;
2487    } else
2488      SC = FunctionDecl::Static;
2489    break;
2490  }
2491  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2492  }
2493
2494  if (D.getDeclSpec().isThreadSpecified())
2495    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2496
2497  bool isFriend = D.getDeclSpec().isFriendSpecified();
2498  bool isInline = D.getDeclSpec().isInlineSpecified();
2499  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2500  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2501
2502  // Check that the return type is not an abstract class type.
2503  // For record types, this is done by the AbstractClassUsageDiagnoser once
2504  // the class has been completely parsed.
2505  if (!DC->isRecord() &&
2506      RequireNonAbstractType(D.getIdentifierLoc(),
2507                             R->getAs<FunctionType>()->getResultType(),
2508                             diag::err_abstract_type_in_decl,
2509                             AbstractReturnType))
2510    D.setInvalidType();
2511
2512  // Do not allow returning a objc interface by-value.
2513  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2514    Diag(D.getIdentifierLoc(),
2515         diag::err_object_cannot_be_passed_returned_by_value) << 0
2516      << R->getAs<FunctionType>()->getResultType();
2517    D.setInvalidType();
2518  }
2519
2520  bool isVirtualOkay = false;
2521  FunctionDecl *NewFD;
2522
2523  if (isFriend) {
2524    // DC is the namespace in which the function is being declared.
2525    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2526           "friend function being created in a non-namespace context");
2527
2528    // C++ [class.friend]p5
2529    //   A function can be defined in a friend declaration of a
2530    //   class . . . . Such a function is implicitly inline.
2531    isInline |= IsFunctionDefinition;
2532  }
2533
2534  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2535    // This is a C++ constructor declaration.
2536    assert(DC->isRecord() &&
2537           "Constructors can only be declared in a member context");
2538
2539    R = CheckConstructorDeclarator(D, R, SC);
2540
2541    // Create the new declaration
2542    NewFD = CXXConstructorDecl::Create(Context,
2543                                       cast<CXXRecordDecl>(DC),
2544                                       D.getIdentifierLoc(), Name, R, DInfo,
2545                                       isExplicit, isInline,
2546                                       /*isImplicitlyDeclared=*/false);
2547  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2548    // This is a C++ destructor declaration.
2549    if (DC->isRecord()) {
2550      R = CheckDestructorDeclarator(D, SC);
2551
2552      NewFD = CXXDestructorDecl::Create(Context,
2553                                        cast<CXXRecordDecl>(DC),
2554                                        D.getIdentifierLoc(), Name, R,
2555                                        isInline,
2556                                        /*isImplicitlyDeclared=*/false);
2557
2558      isVirtualOkay = true;
2559    } else {
2560      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2561
2562      // Create a FunctionDecl to satisfy the function definition parsing
2563      // code path.
2564      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2565                                   Name, R, DInfo, SC, isInline,
2566                                   /*hasPrototype=*/true);
2567      D.setInvalidType();
2568    }
2569  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2570    if (!DC->isRecord()) {
2571      Diag(D.getIdentifierLoc(),
2572           diag::err_conv_function_not_member);
2573      return 0;
2574    }
2575
2576    CheckConversionDeclarator(D, R, SC);
2577    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2578                                      D.getIdentifierLoc(), Name, R, DInfo,
2579                                      isInline, isExplicit);
2580
2581    isVirtualOkay = true;
2582  } else if (DC->isRecord()) {
2583    // If the of the function is the same as the name of the record, then this
2584    // must be an invalid constructor that has a return type.
2585    // (The parser checks for a return type and makes the declarator a
2586    // constructor if it has no return type).
2587    // must have an invalid constructor that has a return type
2588    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2589      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2590        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2591        << SourceRange(D.getIdentifierLoc());
2592      return 0;
2593    }
2594
2595    // This is a C++ method declaration.
2596    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2597                                  D.getIdentifierLoc(), Name, R, DInfo,
2598                                  (SC == FunctionDecl::Static), isInline);
2599
2600    isVirtualOkay = (SC != FunctionDecl::Static);
2601  } else {
2602    // Determine whether the function was written with a
2603    // prototype. This true when:
2604    //   - we're in C++ (where every function has a prototype),
2605    //   - there is a prototype in the declarator, or
2606    //   - the type R of the function is some kind of typedef or other reference
2607    //     to a type name (which eventually refers to a function type).
2608    bool HasPrototype =
2609       getLangOptions().CPlusPlus ||
2610       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2611       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2612
2613    NewFD = FunctionDecl::Create(Context, DC,
2614                                 D.getIdentifierLoc(),
2615                                 Name, R, DInfo, SC, isInline, HasPrototype);
2616  }
2617
2618  if (D.isInvalidType())
2619    NewFD->setInvalidDecl();
2620
2621  // Set the lexical context. If the declarator has a C++
2622  // scope specifier, or is the object of a friend declaration, the
2623  // lexical context will be different from the semantic context.
2624  NewFD->setLexicalDeclContext(CurContext);
2625
2626  // Match up the template parameter lists with the scope specifier, then
2627  // determine whether we have a template or a template specialization.
2628  FunctionTemplateDecl *FunctionTemplate = 0;
2629  bool isExplicitSpecialization = false;
2630  bool isFunctionTemplateSpecialization = false;
2631  if (TemplateParameterList *TemplateParams
2632        = MatchTemplateParametersToScopeSpecifier(
2633                                  D.getDeclSpec().getSourceRange().getBegin(),
2634                                  D.getCXXScopeSpec(),
2635                           (TemplateParameterList**)TemplateParamLists.get(),
2636                                                  TemplateParamLists.size(),
2637                                                  isExplicitSpecialization)) {
2638    if (TemplateParams->size() > 0) {
2639      // This is a function template
2640
2641      // Check that we can declare a template here.
2642      if (CheckTemplateDeclScope(S, TemplateParams))
2643        return 0;
2644
2645      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2646                                                      NewFD->getLocation(),
2647                                                      Name, TemplateParams,
2648                                                      NewFD);
2649      FunctionTemplate->setLexicalDeclContext(CurContext);
2650      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2651    } else {
2652      // This is a function template specialization.
2653      isFunctionTemplateSpecialization = true;
2654    }
2655
2656    // FIXME: Free this memory properly.
2657    TemplateParamLists.release();
2658  }
2659
2660  // C++ [dcl.fct.spec]p5:
2661  //   The virtual specifier shall only be used in declarations of
2662  //   nonstatic class member functions that appear within a
2663  //   member-specification of a class declaration; see 10.3.
2664  //
2665  if (isVirtual && !NewFD->isInvalidDecl()) {
2666    if (!isVirtualOkay) {
2667       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2668           diag::err_virtual_non_function);
2669    } else if (!CurContext->isRecord()) {
2670      // 'virtual' was specified outside of the class.
2671      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2672        << CodeModificationHint::CreateRemoval(
2673                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2674    } else {
2675      // Okay: Add virtual to the method.
2676      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2677      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2678      CurClass->setAggregate(false);
2679      CurClass->setPOD(false);
2680      CurClass->setEmpty(false);
2681      CurClass->setPolymorphic(true);
2682      CurClass->setHasTrivialConstructor(false);
2683      CurClass->setHasTrivialCopyConstructor(false);
2684      CurClass->setHasTrivialCopyAssignment(false);
2685    }
2686  }
2687
2688  if (isFriend) {
2689    if (FunctionTemplate) {
2690      FunctionTemplate->setObjectOfFriendDecl(
2691                                   /* PreviouslyDeclared= */ PrevDecl != NULL);
2692      FunctionTemplate->setAccess(AS_public);
2693    }
2694    else
2695      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2696
2697    NewFD->setAccess(AS_public);
2698  }
2699
2700
2701  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2702    // Look for virtual methods in base classes that this method might override.
2703    CXXBasePaths Paths;
2704    FindOverriddenMethodData Data;
2705    Data.Method = NewMD;
2706    Data.S = this;
2707    if (cast<CXXRecordDecl>(DC)->lookupInBases(&FindOverriddenMethod, &Data,
2708                                                Paths)) {
2709      for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2710           E = Paths.found_decls_end(); I != E; ++I) {
2711        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2712          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2713              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2714            NewMD->addOverriddenMethod(OldMD);
2715        }
2716      }
2717    }
2718  }
2719
2720  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2721      !CurContext->isRecord()) {
2722    // C++ [class.static]p1:
2723    //   A data or function member of a class may be declared static
2724    //   in a class definition, in which case it is a static member of
2725    //   the class.
2726
2727    // Complain about the 'static' specifier if it's on an out-of-line
2728    // member function definition.
2729    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2730         diag::err_static_out_of_line)
2731      << CodeModificationHint::CreateRemoval(
2732                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2733  }
2734
2735  // Handle GNU asm-label extension (encoded as an attribute).
2736  if (Expr *E = (Expr*) D.getAsmLabel()) {
2737    // The parser guarantees this is a string.
2738    StringLiteral *SE = cast<StringLiteral>(E);
2739    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2740                                                        SE->getByteLength())));
2741  }
2742
2743  // Copy the parameter declarations from the declarator D to the function
2744  // declaration NewFD, if they are available.  First scavenge them into Params.
2745  llvm::SmallVector<ParmVarDecl*, 16> Params;
2746  if (D.getNumTypeObjects() > 0) {
2747    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2748
2749    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2750    // function that takes no arguments, not a function that takes a
2751    // single void argument.
2752    // We let through "const void" here because Sema::GetTypeForDeclarator
2753    // already checks for that case.
2754    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2755        FTI.ArgInfo[0].Param &&
2756        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2757      // Empty arg list, don't push any params.
2758      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2759
2760      // In C++, the empty parameter-type-list must be spelled "void"; a
2761      // typedef of void is not permitted.
2762      if (getLangOptions().CPlusPlus &&
2763          Param->getType().getUnqualifiedType() != Context.VoidTy)
2764        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2765      // FIXME: Leaks decl?
2766    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2767      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2768        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2769        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2770        Param->setDeclContext(NewFD);
2771        Params.push_back(Param);
2772      }
2773    }
2774
2775  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2776    // When we're declaring a function with a typedef, typeof, etc as in the
2777    // following example, we'll need to synthesize (unnamed)
2778    // parameters for use in the declaration.
2779    //
2780    // @code
2781    // typedef void fn(int);
2782    // fn f;
2783    // @endcode
2784
2785    // Synthesize a parameter for each argument type.
2786    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2787         AE = FT->arg_type_end(); AI != AE; ++AI) {
2788      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2789                                               SourceLocation(), 0,
2790                                               *AI, /*DInfo=*/0,
2791                                               VarDecl::None, 0);
2792      Param->setImplicit();
2793      Params.push_back(Param);
2794    }
2795  } else {
2796    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2797           "Should not need args for typedef of non-prototype fn");
2798  }
2799  // Finally, we know we have the right number of parameters, install them.
2800  NewFD->setParams(Context, Params.data(), Params.size());
2801
2802  // If name lookup finds a previous declaration that is not in the
2803  // same scope as the new declaration, this may still be an
2804  // acceptable redeclaration.
2805  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2806      !(NewFD->hasLinkage() &&
2807        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2808    PrevDecl = 0;
2809
2810  // If the declarator is a template-id, translate the parser's template
2811  // argument list into our AST format.
2812  bool HasExplicitTemplateArgs = false;
2813  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
2814  SourceLocation LAngleLoc, RAngleLoc;
2815  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2816    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2817    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2818                                       TemplateId->getTemplateArgs(),
2819                                       TemplateId->getTemplateArgIsType(),
2820                                       TemplateId->NumArgs);
2821    translateTemplateArguments(TemplateArgsPtr,
2822                               TemplateId->getTemplateArgLocations(),
2823                               TemplateArgs);
2824    TemplateArgsPtr.release();
2825
2826    HasExplicitTemplateArgs = true;
2827    LAngleLoc = TemplateId->LAngleLoc;
2828    RAngleLoc = TemplateId->RAngleLoc;
2829
2830    if (FunctionTemplate) {
2831      // FIXME: Diagnose function template with explicit template
2832      // arguments.
2833      HasExplicitTemplateArgs = false;
2834    } else if (!isFunctionTemplateSpecialization &&
2835               !D.getDeclSpec().isFriendSpecified()) {
2836      // We have encountered something that the user meant to be a
2837      // specialization (because it has explicitly-specified template
2838      // arguments) but that was not introduced with a "template<>" (or had
2839      // too few of them).
2840      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2841        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2842        << CodeModificationHint::CreateInsertion(
2843                                   D.getDeclSpec().getSourceRange().getBegin(),
2844                                                 "template<> ");
2845      isFunctionTemplateSpecialization = true;
2846    }
2847  }
2848
2849  if (isFunctionTemplateSpecialization) {
2850      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2851                                              LAngleLoc, TemplateArgs.data(),
2852                                              TemplateArgs.size(), RAngleLoc,
2853                                              PrevDecl))
2854        NewFD->setInvalidDecl();
2855  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2856             CheckMemberSpecialization(NewFD, PrevDecl))
2857    NewFD->setInvalidDecl();
2858
2859  // Perform semantic checking on the function declaration.
2860  bool OverloadableAttrRequired = false; // FIXME: HACK!
2861  CheckFunctionDeclaration(NewFD, PrevDecl, isExplicitSpecialization,
2862                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2863
2864  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2865    // An out-of-line member function declaration must also be a
2866    // definition (C++ [dcl.meaning]p1).
2867    // Note that this is not the case for explicit specializations of
2868    // function templates or member functions of class templates, per
2869    // C++ [temp.expl.spec]p2.
2870    if (!IsFunctionDefinition && !isFriend &&
2871        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
2872      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2873        << D.getCXXScopeSpec().getRange();
2874      NewFD->setInvalidDecl();
2875    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2876      // The user tried to provide an out-of-line definition for a
2877      // function that is a member of a class or namespace, but there
2878      // was no such member function declared (C++ [class.mfct]p2,
2879      // C++ [namespace.memdef]p2). For example:
2880      //
2881      // class X {
2882      //   void f() const;
2883      // };
2884      //
2885      // void X::f() { } // ill-formed
2886      //
2887      // Complain about this problem, and attempt to suggest close
2888      // matches (e.g., those that differ only in cv-qualifiers and
2889      // whether the parameter types are references).
2890      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2891        << Name << DC << D.getCXXScopeSpec().getRange();
2892      NewFD->setInvalidDecl();
2893
2894      LookupResult Prev;
2895      LookupQualifiedName(Prev, DC, Name, LookupOrdinaryName, true);
2896      assert(!Prev.isAmbiguous() &&
2897             "Cannot have an ambiguity in previous-declaration lookup");
2898      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2899           Func != FuncEnd; ++Func) {
2900        if (isa<FunctionDecl>(*Func) &&
2901            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2902          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2903      }
2904
2905      PrevDecl = 0;
2906    }
2907  }
2908
2909  // Handle attributes. We need to have merged decls when handling attributes
2910  // (for example to check for conflicts, etc).
2911  // FIXME: This needs to happen before we merge declarations. Then,
2912  // let attribute merging cope with attribute conflicts.
2913  ProcessDeclAttributes(S, NewFD, D);
2914
2915  // attributes declared post-definition are currently ignored
2916  if (Redeclaration && PrevDecl) {
2917    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2918    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2919      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2920      Diag(Def->getLocation(), diag::note_previous_definition);
2921    }
2922  }
2923
2924  AddKnownFunctionAttributes(NewFD);
2925
2926  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2927    // If a function name is overloadable in C, then every function
2928    // with that name must be marked "overloadable".
2929    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2930      << Redeclaration << NewFD;
2931    if (PrevDecl)
2932      Diag(PrevDecl->getLocation(),
2933           diag::note_attribute_overloadable_prev_overload);
2934    NewFD->addAttr(::new (Context) OverloadableAttr());
2935  }
2936
2937  // If this is a locally-scoped extern C function, update the
2938  // map of such names.
2939  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2940      && !NewFD->isInvalidDecl())
2941    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2942
2943  // Set this FunctionDecl's range up to the right paren.
2944  NewFD->setLocEnd(D.getSourceRange().getEnd());
2945
2946  if (FunctionTemplate && NewFD->isInvalidDecl())
2947    FunctionTemplate->setInvalidDecl();
2948
2949  if (FunctionTemplate)
2950    return FunctionTemplate;
2951
2952  return NewFD;
2953}
2954
2955/// \brief Perform semantic checking of a new function declaration.
2956///
2957/// Performs semantic analysis of the new function declaration
2958/// NewFD. This routine performs all semantic checking that does not
2959/// require the actual declarator involved in the declaration, and is
2960/// used both for the declaration of functions as they are parsed
2961/// (called via ActOnDeclarator) and for the declaration of functions
2962/// that have been instantiated via C++ template instantiation (called
2963/// via InstantiateDecl).
2964///
2965/// \param IsExplicitSpecialiation whether this new function declaration is
2966/// an explicit specialization of the previous declaration.
2967///
2968/// This sets NewFD->isInvalidDecl() to true if there was an error.
2969void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2970                                    bool IsExplicitSpecialization,
2971                                    bool &Redeclaration,
2972                                    bool &OverloadableAttrRequired) {
2973  // If NewFD is already known erroneous, don't do any of this checking.
2974  if (NewFD->isInvalidDecl())
2975    return;
2976
2977  if (NewFD->getResultType()->isVariablyModifiedType()) {
2978    // Functions returning a variably modified type violate C99 6.7.5.2p2
2979    // because all functions have linkage.
2980    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2981    return NewFD->setInvalidDecl();
2982  }
2983
2984  if (NewFD->isMain())
2985    CheckMain(NewFD);
2986
2987  // Check for a previous declaration of this name.
2988  if (!PrevDecl && NewFD->isExternC()) {
2989    // Since we did not find anything by this name and we're declaring
2990    // an extern "C" function, look for a non-visible extern "C"
2991    // declaration with the same name.
2992    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2993      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2994    if (Pos != LocallyScopedExternalDecls.end())
2995      PrevDecl = Pos->second;
2996  }
2997
2998  // Merge or overload the declaration with an existing declaration of
2999  // the same name, if appropriate.
3000  if (PrevDecl) {
3001    // Determine whether NewFD is an overload of PrevDecl or
3002    // a declaration that requires merging. If it's an overload,
3003    // there's no more work to do here; we'll just add the new
3004    // function to the scope.
3005    OverloadedFunctionDecl::function_iterator MatchedDecl;
3006
3007    if (!getLangOptions().CPlusPlus &&
3008        AllowOverloadingOfFunction(PrevDecl, Context)) {
3009      OverloadableAttrRequired = true;
3010
3011      // Functions marked "overloadable" must have a prototype (that
3012      // we can't get through declaration merging).
3013      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3014        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
3015          << NewFD;
3016        Redeclaration = true;
3017
3018        // Turn this into a variadic function with no parameters.
3019        QualType R = Context.getFunctionType(
3020                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
3021                       0, 0, true, 0);
3022        NewFD->setType(R);
3023        return NewFD->setInvalidDecl();
3024      }
3025    }
3026
3027    if (PrevDecl &&
3028        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
3029         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
3030      Redeclaration = true;
3031      Decl *OldDecl = PrevDecl;
3032
3033      // If PrevDecl was an overloaded function, extract the
3034      // FunctionDecl that matched.
3035      if (isa<OverloadedFunctionDecl>(PrevDecl))
3036        OldDecl = *MatchedDecl;
3037
3038      // NewFD and OldDecl represent declarations that need to be
3039      // merged.
3040      if (MergeFunctionDecl(NewFD, OldDecl))
3041        return NewFD->setInvalidDecl();
3042
3043      if (FunctionTemplateDecl *OldTemplateDecl
3044                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3045        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3046        FunctionTemplateDecl *NewTemplateDecl
3047          = NewFD->getDescribedFunctionTemplate();
3048        assert(NewTemplateDecl && "Template/non-template mismatch");
3049        if (CXXMethodDecl *Method
3050              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3051          Method->setAccess(OldTemplateDecl->getAccess());
3052          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3053        }
3054
3055        // If this is an explicit specialization of a member that is a function
3056        // template, mark it as a member specialization.
3057        if (IsExplicitSpecialization &&
3058            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3059          NewTemplateDecl->setMemberSpecialization();
3060          assert(OldTemplateDecl->isMemberSpecialization());
3061        }
3062      } else {
3063        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3064          NewFD->setAccess(OldDecl->getAccess());
3065        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3066      }
3067    }
3068  }
3069
3070  // Semantic checking for this function declaration (in isolation).
3071  if (getLangOptions().CPlusPlus) {
3072    // C++-specific checks.
3073    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3074      CheckConstructor(Constructor);
3075    } else if (isa<CXXDestructorDecl>(NewFD)) {
3076      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
3077      QualType ClassType = Context.getTypeDeclType(Record);
3078      if (!ClassType->isDependentType()) {
3079        DeclarationName Name
3080          = Context.DeclarationNames.getCXXDestructorName(
3081                                        Context.getCanonicalType(ClassType));
3082        if (NewFD->getDeclName() != Name) {
3083          Diag(NewFD->getLocation(), diag::err_destructor_name);
3084          return NewFD->setInvalidDecl();
3085        }
3086      }
3087      Record->setUserDeclaredDestructor(true);
3088      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3089      // user-defined destructor.
3090      Record->setPOD(false);
3091
3092      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3093      // declared destructor.
3094      // FIXME: C++0x: don't do this for "= default" destructors
3095      Record->setHasTrivialDestructor(false);
3096    } else if (CXXConversionDecl *Conversion
3097               = dyn_cast<CXXConversionDecl>(NewFD))
3098      ActOnConversionDeclarator(Conversion);
3099
3100    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3101    if (NewFD->isOverloadedOperator() &&
3102        CheckOverloadedOperatorDeclaration(NewFD))
3103      return NewFD->setInvalidDecl();
3104
3105    // In C++, check default arguments now that we have merged decls. Unless
3106    // the lexical context is the class, because in this case this is done
3107    // during delayed parsing anyway.
3108    if (!CurContext->isRecord())
3109      CheckCXXDefaultArguments(NewFD);
3110  }
3111}
3112
3113void Sema::CheckMain(FunctionDecl* FD) {
3114  // C++ [basic.start.main]p3:  A program that declares main to be inline
3115  //   or static is ill-formed.
3116  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3117  //   shall not appear in a declaration of main.
3118  // static main is not an error under C99, but we should warn about it.
3119  bool isInline = FD->isInlineSpecified();
3120  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3121  if (isInline || isStatic) {
3122    unsigned diagID = diag::warn_unusual_main_decl;
3123    if (isInline || getLangOptions().CPlusPlus)
3124      diagID = diag::err_unusual_main_decl;
3125
3126    int which = isStatic + (isInline << 1) - 1;
3127    Diag(FD->getLocation(), diagID) << which;
3128  }
3129
3130  QualType T = FD->getType();
3131  assert(T->isFunctionType() && "function decl is not of function type");
3132  const FunctionType* FT = T->getAs<FunctionType>();
3133
3134  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3135    // TODO: add a replacement fixit to turn the return type into 'int'.
3136    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3137    FD->setInvalidDecl(true);
3138  }
3139
3140  // Treat protoless main() as nullary.
3141  if (isa<FunctionNoProtoType>(FT)) return;
3142
3143  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3144  unsigned nparams = FTP->getNumArgs();
3145  assert(FD->getNumParams() == nparams);
3146
3147  if (nparams > 3) {
3148    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3149    FD->setInvalidDecl(true);
3150    nparams = 3;
3151  }
3152
3153  // FIXME: a lot of the following diagnostics would be improved
3154  // if we had some location information about types.
3155
3156  QualType CharPP =
3157    Context.getPointerType(Context.getPointerType(Context.CharTy));
3158  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3159
3160  for (unsigned i = 0; i < nparams; ++i) {
3161    QualType AT = FTP->getArgType(i);
3162
3163    bool mismatch = true;
3164
3165    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3166      mismatch = false;
3167    else if (Expected[i] == CharPP) {
3168      // As an extension, the following forms are okay:
3169      //   char const **
3170      //   char const * const *
3171      //   char * const *
3172
3173      QualifierCollector qs;
3174      const PointerType* PT;
3175      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3176          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3177          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3178        qs.removeConst();
3179        mismatch = !qs.empty();
3180      }
3181    }
3182
3183    if (mismatch) {
3184      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3185      // TODO: suggest replacing given type with expected type
3186      FD->setInvalidDecl(true);
3187    }
3188  }
3189
3190  if (nparams == 1 && !FD->isInvalidDecl()) {
3191    Diag(FD->getLocation(), diag::warn_main_one_arg);
3192  }
3193}
3194
3195bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3196  // FIXME: Need strict checking.  In C89, we need to check for
3197  // any assignment, increment, decrement, function-calls, or
3198  // commas outside of a sizeof.  In C99, it's the same list,
3199  // except that the aforementioned are allowed in unevaluated
3200  // expressions.  Everything else falls under the
3201  // "may accept other forms of constant expressions" exception.
3202  // (We never end up here for C++, so the constant expression
3203  // rules there don't matter.)
3204  if (Init->isConstantInitializer(Context))
3205    return false;
3206  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3207    << Init->getSourceRange();
3208  return true;
3209}
3210
3211void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3212  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3213}
3214
3215/// AddInitializerToDecl - Adds the initializer Init to the
3216/// declaration dcl. If DirectInit is true, this is C++ direct
3217/// initialization rather than copy initialization.
3218void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3219  Decl *RealDecl = dcl.getAs<Decl>();
3220  // If there is no declaration, there was an error parsing it.  Just ignore
3221  // the initializer.
3222  if (RealDecl == 0)
3223    return;
3224
3225  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3226    // With declarators parsed the way they are, the parser cannot
3227    // distinguish between a normal initializer and a pure-specifier.
3228    // Thus this grotesque test.
3229    IntegerLiteral *IL;
3230    Expr *Init = static_cast<Expr *>(init.get());
3231    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3232        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3233      if (Method->isVirtualAsWritten()) {
3234        Method->setPure();
3235
3236        // A class is abstract if at least one function is pure virtual.
3237        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3238      } else if (!Method->isInvalidDecl()) {
3239        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3240          << Method->getDeclName() << Init->getSourceRange();
3241        Method->setInvalidDecl();
3242      }
3243    } else {
3244      Diag(Method->getLocation(), diag::err_member_function_initialization)
3245        << Method->getDeclName() << Init->getSourceRange();
3246      Method->setInvalidDecl();
3247    }
3248    return;
3249  }
3250
3251  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3252  if (!VDecl) {
3253    if (getLangOptions().CPlusPlus &&
3254        RealDecl->getLexicalDeclContext()->isRecord() &&
3255        isa<NamedDecl>(RealDecl))
3256      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3257        << cast<NamedDecl>(RealDecl)->getDeclName();
3258    else
3259      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3260    RealDecl->setInvalidDecl();
3261    return;
3262  }
3263
3264  if (!VDecl->getType()->isArrayType() &&
3265      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3266                          diag::err_typecheck_decl_incomplete_type)) {
3267    RealDecl->setInvalidDecl();
3268    return;
3269  }
3270
3271  const VarDecl *Def = 0;
3272  if (VDecl->getDefinition(Def)) {
3273    Diag(VDecl->getLocation(), diag::err_redefinition)
3274      << VDecl->getDeclName();
3275    Diag(Def->getLocation(), diag::note_previous_definition);
3276    VDecl->setInvalidDecl();
3277    return;
3278  }
3279
3280  // Take ownership of the expression, now that we're sure we have somewhere
3281  // to put it.
3282  Expr *Init = init.takeAs<Expr>();
3283  assert(Init && "missing initializer");
3284
3285  // Get the decls type and save a reference for later, since
3286  // CheckInitializerTypes may change it.
3287  QualType DclT = VDecl->getType(), SavT = DclT;
3288  if (VDecl->isBlockVarDecl()) {
3289    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3290      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3291      VDecl->setInvalidDecl();
3292    } else if (!VDecl->isInvalidDecl()) {
3293      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3294                                VDecl->getDeclName(), DirectInit))
3295        VDecl->setInvalidDecl();
3296
3297      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3298      // Don't check invalid declarations to avoid emitting useless diagnostics.
3299      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3300        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3301          CheckForConstantInitializer(Init, DclT);
3302      }
3303    }
3304  } else if (VDecl->isStaticDataMember() &&
3305             VDecl->getLexicalDeclContext()->isRecord()) {
3306    // This is an in-class initialization for a static data member, e.g.,
3307    //
3308    // struct S {
3309    //   static const int value = 17;
3310    // };
3311
3312    // Attach the initializer
3313    VDecl->setInit(Context, Init);
3314
3315    // C++ [class.mem]p4:
3316    //   A member-declarator can contain a constant-initializer only
3317    //   if it declares a static member (9.4) of const integral or
3318    //   const enumeration type, see 9.4.2.
3319    QualType T = VDecl->getType();
3320    if (!T->isDependentType() &&
3321        (!Context.getCanonicalType(T).isConstQualified() ||
3322         !T->isIntegralType())) {
3323      Diag(VDecl->getLocation(), diag::err_member_initialization)
3324        << VDecl->getDeclName() << Init->getSourceRange();
3325      VDecl->setInvalidDecl();
3326    } else {
3327      // C++ [class.static.data]p4:
3328      //   If a static data member is of const integral or const
3329      //   enumeration type, its declaration in the class definition
3330      //   can specify a constant-initializer which shall be an
3331      //   integral constant expression (5.19).
3332      if (!Init->isTypeDependent() &&
3333          !Init->getType()->isIntegralType()) {
3334        // We have a non-dependent, non-integral or enumeration type.
3335        Diag(Init->getSourceRange().getBegin(),
3336             diag::err_in_class_initializer_non_integral_type)
3337          << Init->getType() << Init->getSourceRange();
3338        VDecl->setInvalidDecl();
3339      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3340        // Check whether the expression is a constant expression.
3341        llvm::APSInt Value;
3342        SourceLocation Loc;
3343        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3344          Diag(Loc, diag::err_in_class_initializer_non_constant)
3345            << Init->getSourceRange();
3346          VDecl->setInvalidDecl();
3347        } else if (!VDecl->getType()->isDependentType())
3348          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3349      }
3350    }
3351  } else if (VDecl->isFileVarDecl()) {
3352    if (VDecl->getStorageClass() == VarDecl::Extern)
3353      Diag(VDecl->getLocation(), diag::warn_extern_init);
3354    if (!VDecl->isInvalidDecl())
3355      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3356                                VDecl->getDeclName(), DirectInit))
3357        VDecl->setInvalidDecl();
3358
3359    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3360    // Don't check invalid declarations to avoid emitting useless diagnostics.
3361    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3362      // C99 6.7.8p4. All file scoped initializers need to be constant.
3363      CheckForConstantInitializer(Init, DclT);
3364    }
3365  }
3366  // If the type changed, it means we had an incomplete type that was
3367  // completed by the initializer. For example:
3368  //   int ary[] = { 1, 3, 5 };
3369  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3370  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3371    VDecl->setType(DclT);
3372    Init->setType(DclT);
3373  }
3374
3375  Init = MaybeCreateCXXExprWithTemporaries(Init,
3376                                           /*ShouldDestroyTemporaries=*/true);
3377  // Attach the initializer to the decl.
3378  VDecl->setInit(Context, Init);
3379
3380  // If the previous declaration of VDecl was a tentative definition,
3381  // remove it from the set of tentative definitions.
3382  if (VDecl->getPreviousDeclaration() &&
3383      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3384    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3385    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3386  }
3387
3388  return;
3389}
3390
3391void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3392                                  bool TypeContainsUndeducedAuto) {
3393  Decl *RealDecl = dcl.getAs<Decl>();
3394
3395  // If there is no declaration, there was an error parsing it. Just ignore it.
3396  if (RealDecl == 0)
3397    return;
3398
3399  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3400    QualType Type = Var->getType();
3401
3402    // Record tentative definitions.
3403    if (Var->isTentativeDefinition(Context)) {
3404      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3405        InsertPair =
3406           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3407
3408      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3409      // want the second one in the map.
3410      InsertPair.first->second = Var;
3411
3412      // However, for the list, we don't care about the order, just make sure
3413      // that there are no dupes for a given declaration name.
3414      if (InsertPair.second)
3415        TentativeDefinitionList.push_back(Var->getDeclName());
3416    }
3417
3418    // C++ [dcl.init.ref]p3:
3419    //   The initializer can be omitted for a reference only in a
3420    //   parameter declaration (8.3.5), in the declaration of a
3421    //   function return type, in the declaration of a class member
3422    //   within its class declaration (9.2), and where the extern
3423    //   specifier is explicitly used.
3424    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3425      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3426        << Var->getDeclName()
3427        << SourceRange(Var->getLocation(), Var->getLocation());
3428      Var->setInvalidDecl();
3429      return;
3430    }
3431
3432    // C++0x [dcl.spec.auto]p3
3433    if (TypeContainsUndeducedAuto) {
3434      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3435        << Var->getDeclName() << Type;
3436      Var->setInvalidDecl();
3437      return;
3438    }
3439
3440    // An array without size is an incomplete type, and there are no special
3441    // rules in C++ to make such a definition acceptable.
3442    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3443        !Var->hasExternalStorage()) {
3444      Diag(Var->getLocation(),
3445           diag::err_typecheck_incomplete_array_needs_initializer);
3446      Var->setInvalidDecl();
3447      return;
3448    }
3449
3450    // C++ [temp.expl.spec]p15:
3451    //   An explicit specialization of a static data member of a template is a
3452    //   definition if the declaration includes an initializer; otherwise, it
3453    //   is a declaration.
3454    if (Var->isStaticDataMember() &&
3455        Var->getInstantiatedFromStaticDataMember() &&
3456        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3457      return;
3458
3459    // C++ [dcl.init]p9:
3460    //   If no initializer is specified for an object, and the object
3461    //   is of (possibly cv-qualified) non-POD class type (or array
3462    //   thereof), the object shall be default-initialized; if the
3463    //   object is of const-qualified type, the underlying class type
3464    //   shall have a user-declared default constructor.
3465    //
3466    // FIXME: Diagnose the "user-declared default constructor" bit.
3467    if (getLangOptions().CPlusPlus) {
3468      QualType InitType = Type;
3469      if (const ArrayType *Array = Context.getAsArrayType(Type))
3470        InitType = Context.getBaseElementType(Array);
3471      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3472          InitType->isRecordType() && !InitType->isDependentType()) {
3473        if (!RequireCompleteType(Var->getLocation(), InitType,
3474                                 diag::err_invalid_incomplete_type_use)) {
3475          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3476
3477          CXXConstructorDecl *Constructor
3478            = PerformInitializationByConstructor(InitType,
3479                                                 MultiExprArg(*this, 0, 0),
3480                                                 Var->getLocation(),
3481                                               SourceRange(Var->getLocation(),
3482                                                           Var->getLocation()),
3483                                                 Var->getDeclName(),
3484                                                 IK_Default,
3485                                                 ConstructorArgs);
3486
3487          // FIXME: Location info for the variable initialization?
3488          if (!Constructor)
3489            Var->setInvalidDecl();
3490          else {
3491            // FIXME: Cope with initialization of arrays
3492            if (!Constructor->isTrivial() &&
3493                InitializeVarWithConstructor(Var, Constructor,
3494                                             move_arg(ConstructorArgs)))
3495              Var->setInvalidDecl();
3496
3497            FinalizeVarWithDestructor(Var, InitType);
3498          }
3499        } else {
3500          Var->setInvalidDecl();
3501        }
3502      }
3503    }
3504
3505#if 0
3506    // FIXME: Temporarily disabled because we are not properly parsing
3507    // linkage specifications on declarations, e.g.,
3508    //
3509    //   extern "C" const CGPoint CGPointerZero;
3510    //
3511    // C++ [dcl.init]p9:
3512    //
3513    //     If no initializer is specified for an object, and the
3514    //     object is of (possibly cv-qualified) non-POD class type (or
3515    //     array thereof), the object shall be default-initialized; if
3516    //     the object is of const-qualified type, the underlying class
3517    //     type shall have a user-declared default
3518    //     constructor. Otherwise, if no initializer is specified for
3519    //     an object, the object and its subobjects, if any, have an
3520    //     indeterminate initial value; if the object or any of its
3521    //     subobjects are of const-qualified type, the program is
3522    //     ill-formed.
3523    //
3524    // This isn't technically an error in C, so we don't diagnose it.
3525    //
3526    // FIXME: Actually perform the POD/user-defined default
3527    // constructor check.
3528    if (getLangOptions().CPlusPlus &&
3529        Context.getCanonicalType(Type).isConstQualified() &&
3530        !Var->hasExternalStorage())
3531      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3532        << Var->getName()
3533        << SourceRange(Var->getLocation(), Var->getLocation());
3534#endif
3535  }
3536}
3537
3538Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3539                                                   DeclPtrTy *Group,
3540                                                   unsigned NumDecls) {
3541  llvm::SmallVector<Decl*, 8> Decls;
3542
3543  if (DS.isTypeSpecOwned())
3544    Decls.push_back((Decl*)DS.getTypeRep());
3545
3546  for (unsigned i = 0; i != NumDecls; ++i)
3547    if (Decl *D = Group[i].getAs<Decl>())
3548      Decls.push_back(D);
3549
3550  // Perform semantic analysis that depends on having fully processed both
3551  // the declarator and initializer.
3552  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3553    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3554    if (!IDecl)
3555      continue;
3556    QualType T = IDecl->getType();
3557
3558    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3559    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3560    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3561      if (T->isDependentType()) {
3562        // If T is dependent, we should not require a complete type.
3563        // (RequireCompleteType shouldn't be called with dependent types.)
3564        // But we still can at least check if we've got an array of unspecified
3565        // size without an initializer.
3566        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3567            !IDecl->getInit()) {
3568          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3569            << T;
3570          IDecl->setInvalidDecl();
3571        }
3572      } else if (!IDecl->isInvalidDecl()) {
3573        // If T is an incomplete array type with an initializer list that is
3574        // dependent on something, its size has not been fixed. We could attempt
3575        // to fix the size for such arrays, but we would still have to check
3576        // here for initializers containing a C++0x vararg expansion, e.g.
3577        // template <typename... Args> void f(Args... args) {
3578        //   int vals[] = { args };
3579        // }
3580        const IncompleteArrayType *IAT = T->getAs<IncompleteArrayType>();
3581        Expr *Init = IDecl->getInit();
3582        if (IAT && Init &&
3583            (Init->isTypeDependent() || Init->isValueDependent())) {
3584          // Check that the member type of the array is complete, at least.
3585          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3586                                  diag::err_typecheck_decl_incomplete_type))
3587            IDecl->setInvalidDecl();
3588        } else if (RequireCompleteType(IDecl->getLocation(), T,
3589                                      diag::err_typecheck_decl_incomplete_type))
3590          IDecl->setInvalidDecl();
3591      }
3592    }
3593    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3594    // object that has file scope without an initializer, and without a
3595    // storage-class specifier or with the storage-class specifier "static",
3596    // constitutes a tentative definition. Note: A tentative definition with
3597    // external linkage is valid (C99 6.2.2p5).
3598    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3599      if (const IncompleteArrayType *ArrayT
3600          = Context.getAsIncompleteArrayType(T)) {
3601        if (RequireCompleteType(IDecl->getLocation(),
3602                                ArrayT->getElementType(),
3603                                diag::err_illegal_decl_array_incomplete_type))
3604          IDecl->setInvalidDecl();
3605      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3606        // C99 6.9.2p3: If the declaration of an identifier for an object is
3607        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3608        // declared type shall not be an incomplete type.
3609        // NOTE: code such as the following
3610        //     static struct s;
3611        //     struct s { int a; };
3612        // is accepted by gcc. Hence here we issue a warning instead of
3613        // an error and we do not invalidate the static declaration.
3614        // NOTE: to avoid multiple warnings, only check the first declaration.
3615        if (IDecl->getPreviousDeclaration() == 0)
3616          RequireCompleteType(IDecl->getLocation(), T,
3617                              diag::ext_typecheck_decl_incomplete_type);
3618      }
3619    }
3620  }
3621  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3622                                                   Decls.data(), Decls.size()));
3623}
3624
3625
3626/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3627/// to introduce parameters into function prototype scope.
3628Sema::DeclPtrTy
3629Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3630  const DeclSpec &DS = D.getDeclSpec();
3631
3632  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3633  VarDecl::StorageClass StorageClass = VarDecl::None;
3634  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3635    StorageClass = VarDecl::Register;
3636  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3637    Diag(DS.getStorageClassSpecLoc(),
3638         diag::err_invalid_storage_class_in_func_decl);
3639    D.getMutableDeclSpec().ClearStorageClassSpecs();
3640  }
3641
3642  if (D.getDeclSpec().isThreadSpecified())
3643    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3644
3645  DiagnoseFunctionSpecifiers(D);
3646
3647  // Check that there are no default arguments inside the type of this
3648  // parameter (C++ only).
3649  if (getLangOptions().CPlusPlus)
3650    CheckExtraCXXDefaultArguments(D);
3651
3652  DeclaratorInfo *DInfo = 0;
3653  TagDecl *OwnedDecl = 0;
3654  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, &OwnedDecl);
3655
3656  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3657    // C++ [dcl.fct]p6:
3658    //   Types shall not be defined in return or parameter types.
3659    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3660      << Context.getTypeDeclType(OwnedDecl);
3661  }
3662
3663  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3664  // Can this happen for params?  We already checked that they don't conflict
3665  // among each other.  Here they can only shadow globals, which is ok.
3666  IdentifierInfo *II = D.getIdentifier();
3667  if (II) {
3668    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3669      if (PrevDecl->isTemplateParameter()) {
3670        // Maybe we will complain about the shadowed template parameter.
3671        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3672        // Just pretend that we didn't see the previous declaration.
3673        PrevDecl = 0;
3674      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3675        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3676
3677        // Recover by removing the name
3678        II = 0;
3679        D.SetIdentifier(0, D.getIdentifierLoc());
3680      }
3681    }
3682  }
3683
3684  // Parameters can not be abstract class types.
3685  // For record types, this is done by the AbstractClassUsageDiagnoser once
3686  // the class has been completely parsed.
3687  if (!CurContext->isRecord() &&
3688      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3689                             diag::err_abstract_type_in_decl,
3690                             AbstractParamType))
3691    D.setInvalidType(true);
3692
3693  QualType T = adjustParameterType(parmDeclType);
3694
3695  ParmVarDecl *New
3696    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3697                          T, DInfo, StorageClass, 0);
3698
3699  if (D.isInvalidType())
3700    New->setInvalidDecl();
3701
3702  // Parameter declarators cannot be interface types. All ObjC objects are
3703  // passed by reference.
3704  if (T->isObjCInterfaceType()) {
3705    Diag(D.getIdentifierLoc(),
3706         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3707    New->setInvalidDecl();
3708  }
3709
3710  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3711  if (D.getCXXScopeSpec().isSet()) {
3712    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3713      << D.getCXXScopeSpec().getRange();
3714    New->setInvalidDecl();
3715  }
3716
3717  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3718  // duration shall not be qualified by an address-space qualifier."
3719  // Since all parameters have automatic store duration, they can not have
3720  // an address space.
3721  if (T.getAddressSpace() != 0) {
3722    Diag(D.getIdentifierLoc(),
3723         diag::err_arg_with_address_space);
3724    New->setInvalidDecl();
3725  }
3726
3727
3728  // Add the parameter declaration into this scope.
3729  S->AddDecl(DeclPtrTy::make(New));
3730  if (II)
3731    IdResolver.AddDecl(New);
3732
3733  ProcessDeclAttributes(S, New, D);
3734
3735  if (New->hasAttr<BlocksAttr>()) {
3736    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3737  }
3738  return DeclPtrTy::make(New);
3739}
3740
3741void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3742                                           SourceLocation LocAfterDecls) {
3743  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3744         "Not a function declarator!");
3745  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3746
3747  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3748  // for a K&R function.
3749  if (!FTI.hasPrototype) {
3750    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3751      --i;
3752      if (FTI.ArgInfo[i].Param == 0) {
3753        llvm::SmallString<256> Code;
3754        llvm::raw_svector_ostream(Code) << "  int "
3755                                        << FTI.ArgInfo[i].Ident->getName()
3756                                        << ";\n";
3757        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3758          << FTI.ArgInfo[i].Ident
3759          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3760
3761        // Implicitly declare the argument as type 'int' for lack of a better
3762        // type.
3763        DeclSpec DS;
3764        const char* PrevSpec; // unused
3765        unsigned DiagID; // unused
3766        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3767                           PrevSpec, DiagID);
3768        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3769        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3770        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3771      }
3772    }
3773  }
3774}
3775
3776Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3777                                              Declarator &D) {
3778  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3779  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3780         "Not a function declarator!");
3781  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3782
3783  if (FTI.hasPrototype) {
3784    // FIXME: Diagnose arguments without names in C.
3785  }
3786
3787  Scope *ParentScope = FnBodyScope->getParent();
3788
3789  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3790                                  MultiTemplateParamsArg(*this),
3791                                  /*IsFunctionDefinition=*/true);
3792  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3793}
3794
3795Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3796  // Clear the last template instantiation error context.
3797  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
3798
3799  if (!D)
3800    return D;
3801  FunctionDecl *FD = 0;
3802
3803  if (FunctionTemplateDecl *FunTmpl
3804        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3805    FD = FunTmpl->getTemplatedDecl();
3806  else
3807    FD = cast<FunctionDecl>(D.getAs<Decl>());
3808
3809  CurFunctionNeedsScopeChecking = false;
3810
3811  // See if this is a redefinition.
3812  const FunctionDecl *Definition;
3813  if (FD->getBody(Definition)) {
3814    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3815    Diag(Definition->getLocation(), diag::note_previous_definition);
3816  }
3817
3818  // Builtin functions cannot be defined.
3819  if (unsigned BuiltinID = FD->getBuiltinID()) {
3820    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3821      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3822      FD->setInvalidDecl();
3823    }
3824  }
3825
3826  // The return type of a function definition must be complete
3827  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3828  QualType ResultType = FD->getResultType();
3829  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3830      !FD->isInvalidDecl() &&
3831      RequireCompleteType(FD->getLocation(), ResultType,
3832                          diag::err_func_def_incomplete_result))
3833    FD->setInvalidDecl();
3834
3835  // GNU warning -Wmissing-prototypes:
3836  //   Warn if a global function is defined without a previous
3837  //   prototype declaration. This warning is issued even if the
3838  //   definition itself provides a prototype. The aim is to detect
3839  //   global functions that fail to be declared in header files.
3840  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3841      !FD->isMain()) {
3842    bool MissingPrototype = true;
3843    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3844         Prev; Prev = Prev->getPreviousDeclaration()) {
3845      // Ignore any declarations that occur in function or method
3846      // scope, because they aren't visible from the header.
3847      if (Prev->getDeclContext()->isFunctionOrMethod())
3848        continue;
3849
3850      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3851      break;
3852    }
3853
3854    if (MissingPrototype)
3855      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3856  }
3857
3858  if (FnBodyScope)
3859    PushDeclContext(FnBodyScope, FD);
3860
3861  // Check the validity of our function parameters
3862  CheckParmsForFunctionDef(FD);
3863
3864  // Introduce our parameters into the function scope
3865  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3866    ParmVarDecl *Param = FD->getParamDecl(p);
3867    Param->setOwningFunction(FD);
3868
3869    // If this has an identifier, add it to the scope stack.
3870    if (Param->getIdentifier() && FnBodyScope)
3871      PushOnScopeChains(Param, FnBodyScope);
3872  }
3873
3874  // Checking attributes of current function definition
3875  // dllimport attribute.
3876  if (FD->getAttr<DLLImportAttr>() &&
3877      (!FD->getAttr<DLLExportAttr>())) {
3878    // dllimport attribute cannot be applied to definition.
3879    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3880      Diag(FD->getLocation(),
3881           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3882        << "dllimport";
3883      FD->setInvalidDecl();
3884      return DeclPtrTy::make(FD);
3885    } else {
3886      // If a symbol previously declared dllimport is later defined, the
3887      // attribute is ignored in subsequent references, and a warning is
3888      // emitted.
3889      Diag(FD->getLocation(),
3890           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3891        << FD->getNameAsCString() << "dllimport";
3892    }
3893  }
3894  return DeclPtrTy::make(FD);
3895}
3896
3897Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3898  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3899}
3900
3901Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3902                                              bool IsInstantiation) {
3903  Decl *dcl = D.getAs<Decl>();
3904  Stmt *Body = BodyArg.takeAs<Stmt>();
3905
3906  FunctionDecl *FD = 0;
3907  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3908  if (FunTmpl)
3909    FD = FunTmpl->getTemplatedDecl();
3910  else
3911    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3912
3913  if (FD) {
3914    FD->setBody(Body);
3915    if (FD->isMain())
3916      // C and C++ allow for main to automagically return 0.
3917      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3918      FD->setHasImplicitReturnZero(true);
3919    else
3920      CheckFallThroughForFunctionDef(FD, Body);
3921
3922    if (!FD->isInvalidDecl())
3923      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3924
3925    // C++ [basic.def.odr]p2:
3926    //   [...] A virtual member function is used if it is not pure. [...]
3927    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3928      if (Method->isVirtual() && !Method->isPure())
3929        MarkDeclarationReferenced(Method->getLocation(), Method);
3930
3931    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3932  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3933    assert(MD == getCurMethodDecl() && "Method parsing confused");
3934    MD->setBody(Body);
3935    CheckFallThroughForFunctionDef(MD, Body);
3936    MD->setEndLoc(Body->getLocEnd());
3937
3938    if (!MD->isInvalidDecl())
3939      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3940  } else {
3941    Body->Destroy(Context);
3942    return DeclPtrTy();
3943  }
3944  if (!IsInstantiation)
3945    PopDeclContext();
3946
3947  // Verify and clean out per-function state.
3948
3949  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3950
3951  // Check goto/label use.
3952  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3953       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3954    LabelStmt *L = I->second;
3955
3956    // Verify that we have no forward references left.  If so, there was a goto
3957    // or address of a label taken, but no definition of it.  Label fwd
3958    // definitions are indicated with a null substmt.
3959    if (L->getSubStmt() != 0)
3960      continue;
3961
3962    // Emit error.
3963    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3964
3965    // At this point, we have gotos that use the bogus label.  Stitch it into
3966    // the function body so that they aren't leaked and that the AST is well
3967    // formed.
3968    if (Body == 0) {
3969      // The whole function wasn't parsed correctly, just delete this.
3970      L->Destroy(Context);
3971      continue;
3972    }
3973
3974    // Otherwise, the body is valid: we want to stitch the label decl into the
3975    // function somewhere so that it is properly owned and so that the goto
3976    // has a valid target.  Do this by creating a new compound stmt with the
3977    // label in it.
3978
3979    // Give the label a sub-statement.
3980    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3981
3982    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3983                               cast<CXXTryStmt>(Body)->getTryBlock() :
3984                               cast<CompoundStmt>(Body);
3985    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3986    Elements.push_back(L);
3987    Compound->setStmts(Context, &Elements[0], Elements.size());
3988  }
3989  FunctionLabelMap.clear();
3990
3991  if (!Body) return D;
3992
3993  // Verify that that gotos and switch cases don't jump into scopes illegally.
3994  if (CurFunctionNeedsScopeChecking)
3995    DiagnoseInvalidJumps(Body);
3996
3997  // C++ constructors that have function-try-blocks can't have return
3998  // statements in the handlers of that block. (C++ [except.handle]p14)
3999  // Verify this.
4000  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4001    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4002
4003  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4004    computeBaseOrMembersToDestroy(Destructor);
4005  return D;
4006}
4007
4008/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4009/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4010NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4011                                          IdentifierInfo &II, Scope *S) {
4012  // Before we produce a declaration for an implicitly defined
4013  // function, see whether there was a locally-scoped declaration of
4014  // this name as a function or variable. If so, use that
4015  // (non-visible) declaration, and complain about it.
4016  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4017    = LocallyScopedExternalDecls.find(&II);
4018  if (Pos != LocallyScopedExternalDecls.end()) {
4019    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4020    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4021    return Pos->second;
4022  }
4023
4024  // Extension in C99.  Legal in C90, but warn about it.
4025  if (II.getName().startswith("__builtin_"))
4026    Diag(Loc, diag::warn_builtin_unknown) << &II;
4027  else if (getLangOptions().C99)
4028    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4029  else
4030    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4031
4032  // Set a Declarator for the implicit definition: int foo();
4033  const char *Dummy;
4034  DeclSpec DS;
4035  unsigned DiagID;
4036  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4037  Error = Error; // Silence warning.
4038  assert(!Error && "Error setting up implicit decl!");
4039  Declarator D(DS, Declarator::BlockContext);
4040  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4041                                             0, 0, false, SourceLocation(),
4042                                             false, 0,0,0, Loc, Loc, D),
4043                SourceLocation());
4044  D.SetIdentifier(&II, Loc);
4045
4046  // Insert this function into translation-unit scope.
4047
4048  DeclContext *PrevDC = CurContext;
4049  CurContext = Context.getTranslationUnitDecl();
4050
4051  FunctionDecl *FD =
4052 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4053  FD->setImplicit();
4054
4055  CurContext = PrevDC;
4056
4057  AddKnownFunctionAttributes(FD);
4058
4059  return FD;
4060}
4061
4062/// \brief Adds any function attributes that we know a priori based on
4063/// the declaration of this function.
4064///
4065/// These attributes can apply both to implicitly-declared builtins
4066/// (like __builtin___printf_chk) or to library-declared functions
4067/// like NSLog or printf.
4068void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4069  if (FD->isInvalidDecl())
4070    return;
4071
4072  // If this is a built-in function, map its builtin attributes to
4073  // actual attributes.
4074  if (unsigned BuiltinID = FD->getBuiltinID()) {
4075    // Handle printf-formatting attributes.
4076    unsigned FormatIdx;
4077    bool HasVAListArg;
4078    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4079      if (!FD->getAttr<FormatAttr>())
4080        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4081                                             HasVAListArg ? 0 : FormatIdx + 2));
4082    }
4083
4084    // Mark const if we don't care about errno and that is the only
4085    // thing preventing the function from being const. This allows
4086    // IRgen to use LLVM intrinsics for such functions.
4087    if (!getLangOptions().MathErrno &&
4088        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4089      if (!FD->getAttr<ConstAttr>())
4090        FD->addAttr(::new (Context) ConstAttr());
4091    }
4092
4093    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4094      FD->addAttr(::new (Context) NoReturnAttr());
4095  }
4096
4097  IdentifierInfo *Name = FD->getIdentifier();
4098  if (!Name)
4099    return;
4100  if ((!getLangOptions().CPlusPlus &&
4101       FD->getDeclContext()->isTranslationUnit()) ||
4102      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4103       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4104       LinkageSpecDecl::lang_c)) {
4105    // Okay: this could be a libc/libm/Objective-C function we know
4106    // about.
4107  } else
4108    return;
4109
4110  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4111    // FIXME: NSLog and NSLogv should be target specific
4112    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4113      // FIXME: We known better than our headers.
4114      const_cast<FormatAttr *>(Format)->setType("printf");
4115    } else
4116      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4117                                             Name->isStr("NSLogv") ? 0 : 2));
4118  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4119    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4120    // target-specific builtins, perhaps?
4121    if (!FD->getAttr<FormatAttr>())
4122      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4123                                             Name->isStr("vasprintf") ? 0 : 3));
4124  }
4125}
4126
4127TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4128                                    DeclaratorInfo *DInfo) {
4129  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4130  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4131
4132  if (!DInfo) {
4133    assert(D.isInvalidType() && "no declarator info for valid type");
4134    DInfo = Context.getTrivialDeclaratorInfo(T);
4135  }
4136
4137  // Scope manipulation handled by caller.
4138  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4139                                           D.getIdentifierLoc(),
4140                                           D.getIdentifier(),
4141                                           DInfo);
4142
4143  if (const TagType *TT = T->getAs<TagType>()) {
4144    TagDecl *TD = TT->getDecl();
4145
4146    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4147    // keep track of the TypedefDecl.
4148    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4149      TD->setTypedefForAnonDecl(NewTD);
4150  }
4151
4152  if (D.isInvalidType())
4153    NewTD->setInvalidDecl();
4154  return NewTD;
4155}
4156
4157
4158/// \brief Determine whether a tag with a given kind is acceptable
4159/// as a redeclaration of the given tag declaration.
4160///
4161/// \returns true if the new tag kind is acceptable, false otherwise.
4162bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4163                                        TagDecl::TagKind NewTag,
4164                                        SourceLocation NewTagLoc,
4165                                        const IdentifierInfo &Name) {
4166  // C++ [dcl.type.elab]p3:
4167  //   The class-key or enum keyword present in the
4168  //   elaborated-type-specifier shall agree in kind with the
4169  //   declaration to which the name in theelaborated-type-specifier
4170  //   refers. This rule also applies to the form of
4171  //   elaborated-type-specifier that declares a class-name or
4172  //   friend class since it can be construed as referring to the
4173  //   definition of the class. Thus, in any
4174  //   elaborated-type-specifier, the enum keyword shall be used to
4175  //   refer to an enumeration (7.2), the union class-keyshall be
4176  //   used to refer to a union (clause 9), and either the class or
4177  //   struct class-key shall be used to refer to a class (clause 9)
4178  //   declared using the class or struct class-key.
4179  TagDecl::TagKind OldTag = Previous->getTagKind();
4180  if (OldTag == NewTag)
4181    return true;
4182
4183  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4184      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4185    // Warn about the struct/class tag mismatch.
4186    bool isTemplate = false;
4187    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4188      isTemplate = Record->getDescribedClassTemplate();
4189
4190    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4191      << (NewTag == TagDecl::TK_class)
4192      << isTemplate << &Name
4193      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4194                              OldTag == TagDecl::TK_class? "class" : "struct");
4195    Diag(Previous->getLocation(), diag::note_previous_use);
4196    return true;
4197  }
4198  return false;
4199}
4200
4201/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4202/// former case, Name will be non-null.  In the later case, Name will be null.
4203/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4204/// reference/declaration/definition of a tag.
4205Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4206                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4207                               IdentifierInfo *Name, SourceLocation NameLoc,
4208                               AttributeList *Attr, AccessSpecifier AS,
4209                               MultiTemplateParamsArg TemplateParameterLists,
4210                               bool &OwnedDecl, bool &IsDependent) {
4211  // If this is not a definition, it must have a name.
4212  assert((Name != 0 || TUK == TUK_Definition) &&
4213         "Nameless record must be a definition!");
4214
4215  OwnedDecl = false;
4216  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4217
4218  // FIXME: Check explicit specializations more carefully.
4219  bool isExplicitSpecialization = false;
4220  if (TUK != TUK_Reference) {
4221    if (TemplateParameterList *TemplateParams
4222          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4223                        (TemplateParameterList**)TemplateParameterLists.get(),
4224                                              TemplateParameterLists.size(),
4225                                                    isExplicitSpecialization)) {
4226      if (TemplateParams->size() > 0) {
4227        // This is a declaration or definition of a class template (which may
4228        // be a member of another template).
4229        OwnedDecl = false;
4230        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4231                                               SS, Name, NameLoc, Attr,
4232                                               TemplateParams,
4233                                               AS);
4234        TemplateParameterLists.release();
4235        return Result.get();
4236      } else {
4237        // The "template<>" header is extraneous.
4238        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4239          << ElaboratedType::getNameForTagKind(Kind) << Name;
4240        isExplicitSpecialization = true;
4241      }
4242    }
4243
4244    TemplateParameterLists.release();
4245  }
4246
4247  DeclContext *SearchDC = CurContext;
4248  DeclContext *DC = CurContext;
4249  NamedDecl *PrevDecl = 0;
4250  bool isStdBadAlloc = false;
4251  bool Invalid = false;
4252
4253  bool RedeclarationOnly = (TUK != TUK_Reference);
4254
4255  if (Name && SS.isNotEmpty()) {
4256    // We have a nested-name tag ('struct foo::bar').
4257
4258    // Check for invalid 'foo::'.
4259    if (SS.isInvalid()) {
4260      Name = 0;
4261      goto CreateNewDecl;
4262    }
4263
4264    // If this is a friend or a reference to a class in a dependent
4265    // context, don't try to make a decl for it.
4266    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4267      DC = computeDeclContext(SS, false);
4268      if (!DC) {
4269        IsDependent = true;
4270        return DeclPtrTy();
4271      }
4272    }
4273
4274    if (RequireCompleteDeclContext(SS))
4275      return DeclPtrTy::make((Decl *)0);
4276
4277    DC = computeDeclContext(SS, true);
4278    SearchDC = DC;
4279    // Look-up name inside 'foo::'.
4280    LookupResult R;
4281    LookupQualifiedName(R, DC, Name, LookupTagName, RedeclarationOnly);
4282
4283    if (R.isAmbiguous()) {
4284      DiagnoseAmbiguousLookup(R, Name, NameLoc, SS.getRange());
4285      return DeclPtrTy();
4286    }
4287
4288    if (R.getKind() == LookupResult::Found)
4289      PrevDecl = dyn_cast<TagDecl>(R.getFoundDecl());
4290
4291    // A tag 'foo::bar' must already exist.
4292    if (!PrevDecl) {
4293      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4294      Name = 0;
4295      Invalid = true;
4296      goto CreateNewDecl;
4297    }
4298  } else if (Name) {
4299    // If this is a named struct, check to see if there was a previous forward
4300    // declaration or definition.
4301    // FIXME: We're looking into outer scopes here, even when we
4302    // shouldn't be. Doing so can result in ambiguities that we
4303    // shouldn't be diagnosing.
4304    LookupResult R;
4305    LookupName(R, S, Name, LookupTagName, RedeclarationOnly);
4306    if (R.isAmbiguous()) {
4307      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4308      // FIXME: This is not best way to recover from case like:
4309      //
4310      // struct S s;
4311      //
4312      // causes needless "incomplete type" error later.
4313      Name = 0;
4314      PrevDecl = 0;
4315      Invalid = true;
4316    } else
4317      PrevDecl = R.getAsSingleDecl(Context);
4318
4319    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4320      // FIXME: This makes sure that we ignore the contexts associated
4321      // with C structs, unions, and enums when looking for a matching
4322      // tag declaration or definition. See the similar lookup tweak
4323      // in Sema::LookupName; is there a better way to deal with this?
4324      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4325        SearchDC = SearchDC->getParent();
4326    }
4327  }
4328
4329  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4330    // Maybe we will complain about the shadowed template parameter.
4331    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4332    // Just pretend that we didn't see the previous declaration.
4333    PrevDecl = 0;
4334  }
4335
4336  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4337      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4338    // This is a declaration of or a reference to "std::bad_alloc".
4339    isStdBadAlloc = true;
4340
4341    if (!PrevDecl && StdBadAlloc) {
4342      // std::bad_alloc has been implicitly declared (but made invisible to
4343      // name lookup). Fill in this implicit declaration as the previous
4344      // declaration, so that the declarations get chained appropriately.
4345      PrevDecl = StdBadAlloc;
4346    }
4347  }
4348
4349  if (PrevDecl) {
4350    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4351      // If this is a use of a previous tag, or if the tag is already declared
4352      // in the same scope (so that the definition/declaration completes or
4353      // rementions the tag), reuse the decl.
4354      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4355          isDeclInScope(PrevDecl, SearchDC, S)) {
4356        // Make sure that this wasn't declared as an enum and now used as a
4357        // struct or something similar.
4358        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4359          bool SafeToContinue
4360            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4361               Kind != TagDecl::TK_enum);
4362          if (SafeToContinue)
4363            Diag(KWLoc, diag::err_use_with_wrong_tag)
4364              << Name
4365              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4366                                                  PrevTagDecl->getKindName());
4367          else
4368            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4369          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4370
4371          if (SafeToContinue)
4372            Kind = PrevTagDecl->getTagKind();
4373          else {
4374            // Recover by making this an anonymous redefinition.
4375            Name = 0;
4376            PrevDecl = 0;
4377            Invalid = true;
4378          }
4379        }
4380
4381        if (!Invalid) {
4382          // If this is a use, just return the declaration we found.
4383
4384          // FIXME: In the future, return a variant or some other clue
4385          // for the consumer of this Decl to know it doesn't own it.
4386          // For our current ASTs this shouldn't be a problem, but will
4387          // need to be changed with DeclGroups.
4388          if (TUK == TUK_Reference || TUK == TUK_Friend)
4389            return DeclPtrTy::make(PrevDecl);
4390
4391          // Diagnose attempts to redefine a tag.
4392          if (TUK == TUK_Definition) {
4393            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4394              // If we're defining a specialization and the previous definition
4395              // is from an implicit instantiation, don't emit an error
4396              // here; we'll catch this in the general case below.
4397              if (!isExplicitSpecialization ||
4398                  !isa<CXXRecordDecl>(Def) ||
4399                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4400                                               == TSK_ExplicitSpecialization) {
4401                Diag(NameLoc, diag::err_redefinition) << Name;
4402                Diag(Def->getLocation(), diag::note_previous_definition);
4403                // If this is a redefinition, recover by making this
4404                // struct be anonymous, which will make any later
4405                // references get the previous definition.
4406                Name = 0;
4407                PrevDecl = 0;
4408                Invalid = true;
4409              }
4410            } else {
4411              // If the type is currently being defined, complain
4412              // about a nested redefinition.
4413              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4414              if (Tag->isBeingDefined()) {
4415                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4416                Diag(PrevTagDecl->getLocation(),
4417                     diag::note_previous_definition);
4418                Name = 0;
4419                PrevDecl = 0;
4420                Invalid = true;
4421              }
4422            }
4423
4424            // Okay, this is definition of a previously declared or referenced
4425            // tag PrevDecl. We're going to create a new Decl for it.
4426          }
4427        }
4428        // If we get here we have (another) forward declaration or we
4429        // have a definition.  Just create a new decl.
4430
4431      } else {
4432        // If we get here, this is a definition of a new tag type in a nested
4433        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4434        // new decl/type.  We set PrevDecl to NULL so that the entities
4435        // have distinct types.
4436        PrevDecl = 0;
4437      }
4438      // If we get here, we're going to create a new Decl. If PrevDecl
4439      // is non-NULL, it's a definition of the tag declared by
4440      // PrevDecl. If it's NULL, we have a new definition.
4441    } else {
4442      // PrevDecl is a namespace, template, or anything else
4443      // that lives in the IDNS_Tag identifier namespace.
4444      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4445        // The tag name clashes with a namespace name, issue an error and
4446        // recover by making this tag be anonymous.
4447        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4448        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4449        Name = 0;
4450        PrevDecl = 0;
4451        Invalid = true;
4452      } else {
4453        // The existing declaration isn't relevant to us; we're in a
4454        // new scope, so clear out the previous declaration.
4455        PrevDecl = 0;
4456      }
4457    }
4458  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4459             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4460    // C++ [basic.scope.pdecl]p5:
4461    //   -- for an elaborated-type-specifier of the form
4462    //
4463    //          class-key identifier
4464    //
4465    //      if the elaborated-type-specifier is used in the
4466    //      decl-specifier-seq or parameter-declaration-clause of a
4467    //      function defined in namespace scope, the identifier is
4468    //      declared as a class-name in the namespace that contains
4469    //      the declaration; otherwise, except as a friend
4470    //      declaration, the identifier is declared in the smallest
4471    //      non-class, non-function-prototype scope that contains the
4472    //      declaration.
4473    //
4474    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4475    // C structs and unions.
4476    //
4477    // GNU C also supports this behavior as part of its incomplete
4478    // enum types extension, while GNU C++ does not.
4479    //
4480    // Find the context where we'll be declaring the tag.
4481    // FIXME: We would like to maintain the current DeclContext as the
4482    // lexical context,
4483    while (SearchDC->isRecord())
4484      SearchDC = SearchDC->getParent();
4485
4486    // Find the scope where we'll be declaring the tag.
4487    while (S->isClassScope() ||
4488           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4489           ((S->getFlags() & Scope::DeclScope) == 0) ||
4490           (S->getEntity() &&
4491            ((DeclContext *)S->getEntity())->isTransparentContext()))
4492      S = S->getParent();
4493
4494  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4495    // C++ [namespace.memdef]p3:
4496    //   If a friend declaration in a non-local class first declares a
4497    //   class or function, the friend class or function is a member of
4498    //   the innermost enclosing namespace.
4499    while (!SearchDC->isFileContext())
4500      SearchDC = SearchDC->getParent();
4501
4502    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4503    while (S->getEntity() != SearchDC)
4504      S = S->getParent();
4505  }
4506
4507CreateNewDecl:
4508
4509  // If there is an identifier, use the location of the identifier as the
4510  // location of the decl, otherwise use the location of the struct/union
4511  // keyword.
4512  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4513
4514  // Otherwise, create a new declaration. If there is a previous
4515  // declaration of the same entity, the two will be linked via
4516  // PrevDecl.
4517  TagDecl *New;
4518
4519  if (Kind == TagDecl::TK_enum) {
4520    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4521    // enum X { A, B, C } D;    D should chain to X.
4522    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4523                           cast_or_null<EnumDecl>(PrevDecl));
4524    // If this is an undefined enum, warn.
4525    if (TUK != TUK_Definition && !Invalid)  {
4526      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4527                                              : diag::ext_forward_ref_enum;
4528      Diag(Loc, DK);
4529    }
4530  } else {
4531    // struct/union/class
4532
4533    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4534    // struct X { int A; } D;    D should chain to X.
4535    if (getLangOptions().CPlusPlus) {
4536      // FIXME: Look for a way to use RecordDecl for simple structs.
4537      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4538                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4539
4540      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4541        StdBadAlloc = cast<CXXRecordDecl>(New);
4542    } else
4543      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4544                               cast_or_null<RecordDecl>(PrevDecl));
4545  }
4546
4547  if (Kind != TagDecl::TK_enum) {
4548    // Handle #pragma pack: if the #pragma pack stack has non-default
4549    // alignment, make up a packed attribute for this decl. These
4550    // attributes are checked when the ASTContext lays out the
4551    // structure.
4552    //
4553    // It is important for implementing the correct semantics that this
4554    // happen here (in act on tag decl). The #pragma pack stack is
4555    // maintained as a result of parser callbacks which can occur at
4556    // many points during the parsing of a struct declaration (because
4557    // the #pragma tokens are effectively skipped over during the
4558    // parsing of the struct).
4559    if (unsigned Alignment = getPragmaPackAlignment())
4560      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4561  }
4562
4563  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4564    // C++ [dcl.typedef]p3:
4565    //   [...] Similarly, in a given scope, a class or enumeration
4566    //   shall not be declared with the same name as a typedef-name
4567    //   that is declared in that scope and refers to a type other
4568    //   than the class or enumeration itself.
4569    LookupResult Lookup;
4570    LookupName(Lookup, S, Name, LookupOrdinaryName, true);
4571    TypedefDecl *PrevTypedef = 0;
4572    if (NamedDecl *Prev = Lookup.getAsSingleDecl(Context))
4573      PrevTypedef = dyn_cast<TypedefDecl>(Prev);
4574
4575    NamedDecl *PrevTypedefNamed = PrevTypedef;
4576    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4577        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4578          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4579      Diag(Loc, diag::err_tag_definition_of_typedef)
4580        << Context.getTypeDeclType(New)
4581        << PrevTypedef->getUnderlyingType();
4582      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4583      Invalid = true;
4584    }
4585  }
4586
4587  // If this is a specialization of a member class (of a class template),
4588  // check the specialization.
4589  if (isExplicitSpecialization && CheckMemberSpecialization(New, PrevDecl))
4590    Invalid = true;
4591
4592  if (Invalid)
4593    New->setInvalidDecl();
4594
4595  if (Attr)
4596    ProcessDeclAttributeList(S, New, Attr);
4597
4598  // If we're declaring or defining a tag in function prototype scope
4599  // in C, note that this type can only be used within the function.
4600  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4601    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4602
4603  // Set the lexical context. If the tag has a C++ scope specifier, the
4604  // lexical context will be different from the semantic context.
4605  New->setLexicalDeclContext(CurContext);
4606
4607  // Mark this as a friend decl if applicable.
4608  if (TUK == TUK_Friend)
4609    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4610
4611  // Set the access specifier.
4612  if (!Invalid && TUK != TUK_Friend)
4613    SetMemberAccessSpecifier(New, PrevDecl, AS);
4614
4615  if (TUK == TUK_Definition)
4616    New->startDefinition();
4617
4618  // If this has an identifier, add it to the scope stack.
4619  if (TUK == TUK_Friend) {
4620    // We might be replacing an existing declaration in the lookup tables;
4621    // if so, borrow its access specifier.
4622    if (PrevDecl)
4623      New->setAccess(PrevDecl->getAccess());
4624
4625    // Friend tag decls are visible in fairly strange ways.
4626    if (!CurContext->isDependentContext()) {
4627      DeclContext *DC = New->getDeclContext()->getLookupContext();
4628      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4629      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4630        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4631    }
4632  } else if (Name) {
4633    S = getNonFieldDeclScope(S);
4634    PushOnScopeChains(New, S);
4635  } else {
4636    CurContext->addDecl(New);
4637  }
4638
4639  // If this is the C FILE type, notify the AST context.
4640  if (IdentifierInfo *II = New->getIdentifier())
4641    if (!New->isInvalidDecl() &&
4642        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4643        II->isStr("FILE"))
4644      Context.setFILEDecl(New);
4645
4646  OwnedDecl = true;
4647  return DeclPtrTy::make(New);
4648}
4649
4650void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4651  AdjustDeclIfTemplate(TagD);
4652  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4653
4654  // Enter the tag context.
4655  PushDeclContext(S, Tag);
4656
4657  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4658    FieldCollector->StartClass();
4659
4660    if (Record->getIdentifier()) {
4661      // C++ [class]p2:
4662      //   [...] The class-name is also inserted into the scope of the
4663      //   class itself; this is known as the injected-class-name. For
4664      //   purposes of access checking, the injected-class-name is treated
4665      //   as if it were a public member name.
4666      CXXRecordDecl *InjectedClassName
4667        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4668                                CurContext, Record->getLocation(),
4669                                Record->getIdentifier(),
4670                                Record->getTagKeywordLoc(),
4671                                Record);
4672      InjectedClassName->setImplicit();
4673      InjectedClassName->setAccess(AS_public);
4674      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4675        InjectedClassName->setDescribedClassTemplate(Template);
4676      PushOnScopeChains(InjectedClassName, S);
4677      assert(InjectedClassName->isInjectedClassName() &&
4678             "Broken injected-class-name");
4679    }
4680  }
4681}
4682
4683void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4684                                    SourceLocation RBraceLoc) {
4685  AdjustDeclIfTemplate(TagD);
4686  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4687  Tag->setRBraceLoc(RBraceLoc);
4688
4689  if (isa<CXXRecordDecl>(Tag))
4690    FieldCollector->FinishClass();
4691
4692  // Exit this scope of this tag's definition.
4693  PopDeclContext();
4694
4695  // Notify the consumer that we've defined a tag.
4696  Consumer.HandleTagDeclDefinition(Tag);
4697}
4698
4699// Note that FieldName may be null for anonymous bitfields.
4700bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4701                          QualType FieldTy, const Expr *BitWidth,
4702                          bool *ZeroWidth) {
4703  // Default to true; that shouldn't confuse checks for emptiness
4704  if (ZeroWidth)
4705    *ZeroWidth = true;
4706
4707  // C99 6.7.2.1p4 - verify the field type.
4708  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4709  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4710    // Handle incomplete types with specific error.
4711    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4712      return true;
4713    if (FieldName)
4714      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4715        << FieldName << FieldTy << BitWidth->getSourceRange();
4716    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4717      << FieldTy << BitWidth->getSourceRange();
4718  }
4719
4720  // If the bit-width is type- or value-dependent, don't try to check
4721  // it now.
4722  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4723    return false;
4724
4725  llvm::APSInt Value;
4726  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4727    return true;
4728
4729  if (Value != 0 && ZeroWidth)
4730    *ZeroWidth = false;
4731
4732  // Zero-width bitfield is ok for anonymous field.
4733  if (Value == 0 && FieldName)
4734    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4735
4736  if (Value.isSigned() && Value.isNegative()) {
4737    if (FieldName)
4738      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4739               << FieldName << Value.toString(10);
4740    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4741      << Value.toString(10);
4742  }
4743
4744  if (!FieldTy->isDependentType()) {
4745    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4746    if (Value.getZExtValue() > TypeSize) {
4747      if (FieldName)
4748        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4749          << FieldName << (unsigned)TypeSize;
4750      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4751        << (unsigned)TypeSize;
4752    }
4753  }
4754
4755  return false;
4756}
4757
4758/// ActOnField - Each field of a struct/union/class is passed into this in order
4759/// to create a FieldDecl object for it.
4760Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4761                                 SourceLocation DeclStart,
4762                                 Declarator &D, ExprTy *BitfieldWidth) {
4763  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4764                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4765                               AS_public);
4766  return DeclPtrTy::make(Res);
4767}
4768
4769/// HandleField - Analyze a field of a C struct or a C++ data member.
4770///
4771FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4772                             SourceLocation DeclStart,
4773                             Declarator &D, Expr *BitWidth,
4774                             AccessSpecifier AS) {
4775  IdentifierInfo *II = D.getIdentifier();
4776  SourceLocation Loc = DeclStart;
4777  if (II) Loc = D.getIdentifierLoc();
4778
4779  DeclaratorInfo *DInfo = 0;
4780  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4781  if (getLangOptions().CPlusPlus)
4782    CheckExtraCXXDefaultArguments(D);
4783
4784  DiagnoseFunctionSpecifiers(D);
4785
4786  if (D.getDeclSpec().isThreadSpecified())
4787    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4788
4789  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
4790
4791  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4792    // Maybe we will complain about the shadowed template parameter.
4793    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4794    // Just pretend that we didn't see the previous declaration.
4795    PrevDecl = 0;
4796  }
4797
4798  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4799    PrevDecl = 0;
4800
4801  bool Mutable
4802    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4803  SourceLocation TSSL = D.getSourceRange().getBegin();
4804  FieldDecl *NewFD
4805    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4806                     AS, PrevDecl, &D);
4807  if (NewFD->isInvalidDecl() && PrevDecl) {
4808    // Don't introduce NewFD into scope; there's already something
4809    // with the same name in the same scope.
4810  } else if (II) {
4811    PushOnScopeChains(NewFD, S);
4812  } else
4813    Record->addDecl(NewFD);
4814
4815  return NewFD;
4816}
4817
4818/// \brief Build a new FieldDecl and check its well-formedness.
4819///
4820/// This routine builds a new FieldDecl given the fields name, type,
4821/// record, etc. \p PrevDecl should refer to any previous declaration
4822/// with the same name and in the same scope as the field to be
4823/// created.
4824///
4825/// \returns a new FieldDecl.
4826///
4827/// \todo The Declarator argument is a hack. It will be removed once
4828FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4829                                DeclaratorInfo *DInfo,
4830                                RecordDecl *Record, SourceLocation Loc,
4831                                bool Mutable, Expr *BitWidth,
4832                                SourceLocation TSSL,
4833                                AccessSpecifier AS, NamedDecl *PrevDecl,
4834                                Declarator *D) {
4835  IdentifierInfo *II = Name.getAsIdentifierInfo();
4836  bool InvalidDecl = false;
4837  if (D) InvalidDecl = D->isInvalidType();
4838
4839  // If we receive a broken type, recover by assuming 'int' and
4840  // marking this declaration as invalid.
4841  if (T.isNull()) {
4842    InvalidDecl = true;
4843    T = Context.IntTy;
4844  }
4845
4846  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4847  // than a variably modified type.
4848  if (T->isVariablyModifiedType()) {
4849    bool SizeIsNegative;
4850    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4851                                                           SizeIsNegative);
4852    if (!FixedTy.isNull()) {
4853      Diag(Loc, diag::warn_illegal_constant_array_size);
4854      T = FixedTy;
4855    } else {
4856      if (SizeIsNegative)
4857        Diag(Loc, diag::err_typecheck_negative_array_size);
4858      else
4859        Diag(Loc, diag::err_typecheck_field_variable_size);
4860      InvalidDecl = true;
4861    }
4862  }
4863
4864  // Fields can not have abstract class types
4865  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4866                             AbstractFieldType))
4867    InvalidDecl = true;
4868
4869  bool ZeroWidth = false;
4870  // If this is declared as a bit-field, check the bit-field.
4871  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4872    InvalidDecl = true;
4873    DeleteExpr(BitWidth);
4874    BitWidth = 0;
4875    ZeroWidth = false;
4876  }
4877
4878  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4879                                       BitWidth, Mutable);
4880  if (InvalidDecl)
4881    NewFD->setInvalidDecl();
4882
4883  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4884    Diag(Loc, diag::err_duplicate_member) << II;
4885    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4886    NewFD->setInvalidDecl();
4887  }
4888
4889  if (getLangOptions().CPlusPlus) {
4890    QualType EltTy = Context.getBaseElementType(T);
4891
4892    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4893
4894    if (!T->isPODType())
4895      CXXRecord->setPOD(false);
4896    if (!ZeroWidth)
4897      CXXRecord->setEmpty(false);
4898
4899    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4900      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4901
4902      if (!RDecl->hasTrivialConstructor())
4903        CXXRecord->setHasTrivialConstructor(false);
4904      if (!RDecl->hasTrivialCopyConstructor())
4905        CXXRecord->setHasTrivialCopyConstructor(false);
4906      if (!RDecl->hasTrivialCopyAssignment())
4907        CXXRecord->setHasTrivialCopyAssignment(false);
4908      if (!RDecl->hasTrivialDestructor())
4909        CXXRecord->setHasTrivialDestructor(false);
4910
4911      // C++ 9.5p1: An object of a class with a non-trivial
4912      // constructor, a non-trivial copy constructor, a non-trivial
4913      // destructor, or a non-trivial copy assignment operator
4914      // cannot be a member of a union, nor can an array of such
4915      // objects.
4916      // TODO: C++0x alters this restriction significantly.
4917      if (Record->isUnion()) {
4918        // We check for copy constructors before constructors
4919        // because otherwise we'll never get complaints about
4920        // copy constructors.
4921
4922        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4923
4924        CXXSpecialMember member;
4925        if (!RDecl->hasTrivialCopyConstructor())
4926          member = CXXCopyConstructor;
4927        else if (!RDecl->hasTrivialConstructor())
4928          member = CXXDefaultConstructor;
4929        else if (!RDecl->hasTrivialCopyAssignment())
4930          member = CXXCopyAssignment;
4931        else if (!RDecl->hasTrivialDestructor())
4932          member = CXXDestructor;
4933        else
4934          member = invalid;
4935
4936        if (member != invalid) {
4937          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4938          DiagnoseNontrivial(RT, member);
4939          NewFD->setInvalidDecl();
4940        }
4941      }
4942    }
4943  }
4944
4945  // FIXME: We need to pass in the attributes given an AST
4946  // representation, not a parser representation.
4947  if (D)
4948    // FIXME: What to pass instead of TUScope?
4949    ProcessDeclAttributes(TUScope, NewFD, *D);
4950
4951  if (T.isObjCGCWeak())
4952    Diag(Loc, diag::warn_attribute_weak_on_field);
4953
4954  NewFD->setAccess(AS);
4955
4956  // C++ [dcl.init.aggr]p1:
4957  //   An aggregate is an array or a class (clause 9) with [...] no
4958  //   private or protected non-static data members (clause 11).
4959  // A POD must be an aggregate.
4960  if (getLangOptions().CPlusPlus &&
4961      (AS == AS_private || AS == AS_protected)) {
4962    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4963    CXXRecord->setAggregate(false);
4964    CXXRecord->setPOD(false);
4965  }
4966
4967  return NewFD;
4968}
4969
4970/// DiagnoseNontrivial - Given that a class has a non-trivial
4971/// special member, figure out why.
4972void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4973  QualType QT(T, 0U);
4974  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4975
4976  // Check whether the member was user-declared.
4977  switch (member) {
4978  case CXXDefaultConstructor:
4979    if (RD->hasUserDeclaredConstructor()) {
4980      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4981      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
4982        const FunctionDecl *body = 0;
4983        ci->getBody(body);
4984        if (!body ||
4985            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
4986          SourceLocation CtorLoc = ci->getLocation();
4987          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4988          return;
4989        }
4990      }
4991
4992      assert(0 && "found no user-declared constructors");
4993      return;
4994    }
4995    break;
4996
4997  case CXXCopyConstructor:
4998    if (RD->hasUserDeclaredCopyConstructor()) {
4999      SourceLocation CtorLoc =
5000        RD->getCopyConstructor(Context, 0)->getLocation();
5001      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5002      return;
5003    }
5004    break;
5005
5006  case CXXCopyAssignment:
5007    if (RD->hasUserDeclaredCopyAssignment()) {
5008      // FIXME: this should use the location of the copy
5009      // assignment, not the type.
5010      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5011      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5012      return;
5013    }
5014    break;
5015
5016  case CXXDestructor:
5017    if (RD->hasUserDeclaredDestructor()) {
5018      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5019      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5020      return;
5021    }
5022    break;
5023  }
5024
5025  typedef CXXRecordDecl::base_class_iterator base_iter;
5026
5027  // Virtual bases and members inhibit trivial copying/construction,
5028  // but not trivial destruction.
5029  if (member != CXXDestructor) {
5030    // Check for virtual bases.  vbases includes indirect virtual bases,
5031    // so we just iterate through the direct bases.
5032    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5033      if (bi->isVirtual()) {
5034        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5035        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5036        return;
5037      }
5038
5039    // Check for virtual methods.
5040    typedef CXXRecordDecl::method_iterator meth_iter;
5041    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5042         ++mi) {
5043      if (mi->isVirtual()) {
5044        SourceLocation MLoc = mi->getSourceRange().getBegin();
5045        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5046        return;
5047      }
5048    }
5049  }
5050
5051  bool (CXXRecordDecl::*hasTrivial)() const;
5052  switch (member) {
5053  case CXXDefaultConstructor:
5054    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5055  case CXXCopyConstructor:
5056    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5057  case CXXCopyAssignment:
5058    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5059  case CXXDestructor:
5060    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5061  default:
5062    assert(0 && "unexpected special member"); return;
5063  }
5064
5065  // Check for nontrivial bases (and recurse).
5066  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5067    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5068    assert(BaseRT && "Don't know how to handle dependent bases");
5069    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5070    if (!(BaseRecTy->*hasTrivial)()) {
5071      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5072      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5073      DiagnoseNontrivial(BaseRT, member);
5074      return;
5075    }
5076  }
5077
5078  // Check for nontrivial members (and recurse).
5079  typedef RecordDecl::field_iterator field_iter;
5080  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5081       ++fi) {
5082    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5083    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5084      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5085
5086      if (!(EltRD->*hasTrivial)()) {
5087        SourceLocation FLoc = (*fi)->getLocation();
5088        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5089        DiagnoseNontrivial(EltRT, member);
5090        return;
5091      }
5092    }
5093  }
5094
5095  assert(0 && "found no explanation for non-trivial member");
5096}
5097
5098/// TranslateIvarVisibility - Translate visibility from a token ID to an
5099///  AST enum value.
5100static ObjCIvarDecl::AccessControl
5101TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5102  switch (ivarVisibility) {
5103  default: assert(0 && "Unknown visitibility kind");
5104  case tok::objc_private: return ObjCIvarDecl::Private;
5105  case tok::objc_public: return ObjCIvarDecl::Public;
5106  case tok::objc_protected: return ObjCIvarDecl::Protected;
5107  case tok::objc_package: return ObjCIvarDecl::Package;
5108  }
5109}
5110
5111/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5112/// in order to create an IvarDecl object for it.
5113Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5114                                SourceLocation DeclStart,
5115                                DeclPtrTy IntfDecl,
5116                                Declarator &D, ExprTy *BitfieldWidth,
5117                                tok::ObjCKeywordKind Visibility) {
5118
5119  IdentifierInfo *II = D.getIdentifier();
5120  Expr *BitWidth = (Expr*)BitfieldWidth;
5121  SourceLocation Loc = DeclStart;
5122  if (II) Loc = D.getIdentifierLoc();
5123
5124  // FIXME: Unnamed fields can be handled in various different ways, for
5125  // example, unnamed unions inject all members into the struct namespace!
5126
5127  DeclaratorInfo *DInfo = 0;
5128  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5129
5130  if (BitWidth) {
5131    // 6.7.2.1p3, 6.7.2.1p4
5132    if (VerifyBitField(Loc, II, T, BitWidth)) {
5133      D.setInvalidType();
5134      DeleteExpr(BitWidth);
5135      BitWidth = 0;
5136    }
5137  } else {
5138    // Not a bitfield.
5139
5140    // validate II.
5141
5142  }
5143
5144  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5145  // than a variably modified type.
5146  if (T->isVariablyModifiedType()) {
5147    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5148    D.setInvalidType();
5149  }
5150
5151  // Get the visibility (access control) for this ivar.
5152  ObjCIvarDecl::AccessControl ac =
5153    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5154                                        : ObjCIvarDecl::None;
5155  // Must set ivar's DeclContext to its enclosing interface.
5156  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5157  DeclContext *EnclosingContext;
5158  if (ObjCImplementationDecl *IMPDecl =
5159      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5160    // Case of ivar declared in an implementation. Context is that of its class.
5161    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5162    assert(IDecl && "No class- ActOnIvar");
5163    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5164  } else
5165    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5166  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5167
5168  // Construct the decl.
5169  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5170                                             EnclosingContext, Loc, II, T,
5171                                             DInfo, ac, (Expr *)BitfieldWidth);
5172
5173  if (II) {
5174    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName, true);
5175    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5176        && !isa<TagDecl>(PrevDecl)) {
5177      Diag(Loc, diag::err_duplicate_member) << II;
5178      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5179      NewID->setInvalidDecl();
5180    }
5181  }
5182
5183  // Process attributes attached to the ivar.
5184  ProcessDeclAttributes(S, NewID, D);
5185
5186  if (D.isInvalidType())
5187    NewID->setInvalidDecl();
5188
5189  if (II) {
5190    // FIXME: When interfaces are DeclContexts, we'll need to add
5191    // these to the interface.
5192    S->AddDecl(DeclPtrTy::make(NewID));
5193    IdResolver.AddDecl(NewID);
5194  }
5195
5196  return DeclPtrTy::make(NewID);
5197}
5198
5199void Sema::ActOnFields(Scope* S,
5200                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5201                       DeclPtrTy *Fields, unsigned NumFields,
5202                       SourceLocation LBrac, SourceLocation RBrac,
5203                       AttributeList *Attr) {
5204  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5205  assert(EnclosingDecl && "missing record or interface decl");
5206
5207  // If the decl this is being inserted into is invalid, then it may be a
5208  // redeclaration or some other bogus case.  Don't try to add fields to it.
5209  if (EnclosingDecl->isInvalidDecl()) {
5210    // FIXME: Deallocate fields?
5211    return;
5212  }
5213
5214
5215  // Verify that all the fields are okay.
5216  unsigned NumNamedMembers = 0;
5217  llvm::SmallVector<FieldDecl*, 32> RecFields;
5218
5219  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5220  for (unsigned i = 0; i != NumFields; ++i) {
5221    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5222
5223    // Get the type for the field.
5224    Type *FDTy = FD->getType().getTypePtr();
5225
5226    if (!FD->isAnonymousStructOrUnion()) {
5227      // Remember all fields written by the user.
5228      RecFields.push_back(FD);
5229    }
5230
5231    // If the field is already invalid for some reason, don't emit more
5232    // diagnostics about it.
5233    if (FD->isInvalidDecl())
5234      continue;
5235
5236    // C99 6.7.2.1p2:
5237    //   A structure or union shall not contain a member with
5238    //   incomplete or function type (hence, a structure shall not
5239    //   contain an instance of itself, but may contain a pointer to
5240    //   an instance of itself), except that the last member of a
5241    //   structure with more than one named member may have incomplete
5242    //   array type; such a structure (and any union containing,
5243    //   possibly recursively, a member that is such a structure)
5244    //   shall not be a member of a structure or an element of an
5245    //   array.
5246    if (FDTy->isFunctionType()) {
5247      // Field declared as a function.
5248      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5249        << FD->getDeclName();
5250      FD->setInvalidDecl();
5251      EnclosingDecl->setInvalidDecl();
5252      continue;
5253    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5254               Record && Record->isStruct()) {
5255      // Flexible array member.
5256      if (NumNamedMembers < 1) {
5257        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5258          << FD->getDeclName();
5259        FD->setInvalidDecl();
5260        EnclosingDecl->setInvalidDecl();
5261        continue;
5262      }
5263      // Okay, we have a legal flexible array member at the end of the struct.
5264      if (Record)
5265        Record->setHasFlexibleArrayMember(true);
5266    } else if (!FDTy->isDependentType() &&
5267               RequireCompleteType(FD->getLocation(), FD->getType(),
5268                                   diag::err_field_incomplete)) {
5269      // Incomplete type
5270      FD->setInvalidDecl();
5271      EnclosingDecl->setInvalidDecl();
5272      continue;
5273    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5274      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5275        // If this is a member of a union, then entire union becomes "flexible".
5276        if (Record && Record->isUnion()) {
5277          Record->setHasFlexibleArrayMember(true);
5278        } else {
5279          // If this is a struct/class and this is not the last element, reject
5280          // it.  Note that GCC supports variable sized arrays in the middle of
5281          // structures.
5282          if (i != NumFields-1)
5283            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5284              << FD->getDeclName() << FD->getType();
5285          else {
5286            // We support flexible arrays at the end of structs in
5287            // other structs as an extension.
5288            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5289              << FD->getDeclName();
5290            if (Record)
5291              Record->setHasFlexibleArrayMember(true);
5292          }
5293        }
5294      }
5295      if (Record && FDTTy->getDecl()->hasObjectMember())
5296        Record->setHasObjectMember(true);
5297    } else if (FDTy->isObjCInterfaceType()) {
5298      /// A field cannot be an Objective-c object
5299      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5300      FD->setInvalidDecl();
5301      EnclosingDecl->setInvalidDecl();
5302      continue;
5303    } else if (getLangOptions().ObjC1 &&
5304               getLangOptions().getGCMode() != LangOptions::NonGC &&
5305               Record &&
5306               (FD->getType()->isObjCObjectPointerType() ||
5307                FD->getType().isObjCGCStrong()))
5308      Record->setHasObjectMember(true);
5309    // Keep track of the number of named members.
5310    if (FD->getIdentifier())
5311      ++NumNamedMembers;
5312  }
5313
5314  // Okay, we successfully defined 'Record'.
5315  if (Record) {
5316    Record->completeDefinition(Context);
5317  } else {
5318    ObjCIvarDecl **ClsFields =
5319      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5320    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5321      ID->setIVarList(ClsFields, RecFields.size(), Context);
5322      ID->setLocEnd(RBrac);
5323      // Add ivar's to class's DeclContext.
5324      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5325        ClsFields[i]->setLexicalDeclContext(ID);
5326        ID->addDecl(ClsFields[i]);
5327      }
5328      // Must enforce the rule that ivars in the base classes may not be
5329      // duplicates.
5330      if (ID->getSuperClass()) {
5331        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5332             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5333          ObjCIvarDecl* Ivar = (*IVI);
5334
5335          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5336            ObjCIvarDecl* prevIvar =
5337              ID->getSuperClass()->lookupInstanceVariable(II);
5338            if (prevIvar) {
5339              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5340              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5341            }
5342          }
5343        }
5344      }
5345    } else if (ObjCImplementationDecl *IMPDecl =
5346                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5347      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5348      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5349        // Ivar declared in @implementation never belongs to the implementation.
5350        // Only it is in implementation's lexical context.
5351        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5352      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5353    }
5354  }
5355
5356  if (Attr)
5357    ProcessDeclAttributeList(S, Record, Attr);
5358}
5359
5360EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5361                                          EnumConstantDecl *LastEnumConst,
5362                                          SourceLocation IdLoc,
5363                                          IdentifierInfo *Id,
5364                                          ExprArg val) {
5365  Expr *Val = (Expr *)val.get();
5366
5367  llvm::APSInt EnumVal(32);
5368  QualType EltTy;
5369  if (Val) {
5370    if (Val->isTypeDependent())
5371      EltTy = Context.DependentTy;
5372    else {
5373      // Make sure to promote the operand type to int.
5374      UsualUnaryConversions(Val);
5375      if (Val != val.get()) {
5376        val.release();
5377        val = Val;
5378      }
5379
5380      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5381      SourceLocation ExpLoc;
5382      if (!Val->isValueDependent() &&
5383          VerifyIntegerConstantExpression(Val, &EnumVal)) {
5384        Val = 0;
5385      } else {
5386        EltTy = Val->getType();
5387      }
5388    }
5389  }
5390
5391  if (!Val) {
5392    if (LastEnumConst) {
5393      // Assign the last value + 1.
5394      EnumVal = LastEnumConst->getInitVal();
5395      ++EnumVal;
5396
5397      // Check for overflow on increment.
5398      if (EnumVal < LastEnumConst->getInitVal())
5399        Diag(IdLoc, diag::warn_enum_value_overflow);
5400
5401      EltTy = LastEnumConst->getType();
5402    } else {
5403      // First value, set to zero.
5404      EltTy = Context.IntTy;
5405      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5406    }
5407  }
5408
5409  assert(!EltTy.isNull() && "Enum constant with NULL type");
5410
5411  val.release();
5412  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5413                                  Val, EnumVal);
5414}
5415
5416
5417Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5418                                        DeclPtrTy lastEnumConst,
5419                                        SourceLocation IdLoc,
5420                                        IdentifierInfo *Id,
5421                                        SourceLocation EqualLoc, ExprTy *val) {
5422  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5423  EnumConstantDecl *LastEnumConst =
5424    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5425  Expr *Val = static_cast<Expr*>(val);
5426
5427  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5428  // we find one that is.
5429  S = getNonFieldDeclScope(S);
5430
5431  // Verify that there isn't already something declared with this name in this
5432  // scope.
5433  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5434  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5435    // Maybe we will complain about the shadowed template parameter.
5436    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5437    // Just pretend that we didn't see the previous declaration.
5438    PrevDecl = 0;
5439  }
5440
5441  if (PrevDecl) {
5442    // When in C++, we may get a TagDecl with the same name; in this case the
5443    // enum constant will 'hide' the tag.
5444    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5445           "Received TagDecl when not in C++!");
5446    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5447      if (isa<EnumConstantDecl>(PrevDecl))
5448        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5449      else
5450        Diag(IdLoc, diag::err_redefinition) << Id;
5451      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5452      if (Val) Val->Destroy(Context);
5453      return DeclPtrTy();
5454    }
5455  }
5456
5457  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5458                                            IdLoc, Id, Owned(Val));
5459
5460  // Register this decl in the current scope stack.
5461  if (New)
5462    PushOnScopeChains(New, S);
5463
5464  return DeclPtrTy::make(New);
5465}
5466
5467void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5468                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5469                         DeclPtrTy *Elements, unsigned NumElements,
5470                         Scope *S, AttributeList *Attr) {
5471  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5472  QualType EnumType = Context.getTypeDeclType(Enum);
5473
5474  if (Attr)
5475    ProcessDeclAttributeList(S, Enum, Attr);
5476
5477  // TODO: If the result value doesn't fit in an int, it must be a long or long
5478  // long value.  ISO C does not support this, but GCC does as an extension,
5479  // emit a warning.
5480  unsigned IntWidth = Context.Target.getIntWidth();
5481  unsigned CharWidth = Context.Target.getCharWidth();
5482  unsigned ShortWidth = Context.Target.getShortWidth();
5483
5484  // Verify that all the values are okay, compute the size of the values, and
5485  // reverse the list.
5486  unsigned NumNegativeBits = 0;
5487  unsigned NumPositiveBits = 0;
5488
5489  // Keep track of whether all elements have type int.
5490  bool AllElementsInt = true;
5491
5492  for (unsigned i = 0; i != NumElements; ++i) {
5493    EnumConstantDecl *ECD =
5494      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5495    if (!ECD) continue;  // Already issued a diagnostic.
5496
5497    // If the enum value doesn't fit in an int, emit an extension warning.
5498    const llvm::APSInt &InitVal = ECD->getInitVal();
5499    assert(InitVal.getBitWidth() >= IntWidth &&
5500           "Should have promoted value to int");
5501    if (InitVal.getBitWidth() > IntWidth) {
5502      llvm::APSInt V(InitVal);
5503      V.trunc(IntWidth);
5504      V.extend(InitVal.getBitWidth());
5505      if (V != InitVal)
5506        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5507          << InitVal.toString(10);
5508    }
5509
5510    // Keep track of the size of positive and negative values.
5511    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5512      NumPositiveBits = std::max(NumPositiveBits,
5513                                 (unsigned)InitVal.getActiveBits());
5514    else
5515      NumNegativeBits = std::max(NumNegativeBits,
5516                                 (unsigned)InitVal.getMinSignedBits());
5517
5518    // Keep track of whether every enum element has type int (very commmon).
5519    if (AllElementsInt)
5520      AllElementsInt = ECD->getType() == Context.IntTy;
5521  }
5522
5523  // Figure out the type that should be used for this enum.
5524  // FIXME: Support -fshort-enums.
5525  QualType BestType;
5526  unsigned BestWidth;
5527
5528  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5529
5530  if (NumNegativeBits) {
5531    // If there is a negative value, figure out the smallest integer type (of
5532    // int/long/longlong) that fits.
5533    // If it's packed, check also if it fits a char or a short.
5534    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5535        BestType = Context.SignedCharTy;
5536        BestWidth = CharWidth;
5537    } else if (Packed && NumNegativeBits <= ShortWidth &&
5538               NumPositiveBits < ShortWidth) {
5539        BestType = Context.ShortTy;
5540        BestWidth = ShortWidth;
5541    }
5542    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5543      BestType = Context.IntTy;
5544      BestWidth = IntWidth;
5545    } else {
5546      BestWidth = Context.Target.getLongWidth();
5547
5548      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5549        BestType = Context.LongTy;
5550      else {
5551        BestWidth = Context.Target.getLongLongWidth();
5552
5553        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5554          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5555        BestType = Context.LongLongTy;
5556      }
5557    }
5558  } else {
5559    // If there is no negative value, figure out which of uint, ulong, ulonglong
5560    // fits.
5561    // If it's packed, check also if it fits a char or a short.
5562    if (Packed && NumPositiveBits <= CharWidth) {
5563        BestType = Context.UnsignedCharTy;
5564        BestWidth = CharWidth;
5565    } else if (Packed && NumPositiveBits <= ShortWidth) {
5566        BestType = Context.UnsignedShortTy;
5567        BestWidth = ShortWidth;
5568    }
5569    else if (NumPositiveBits <= IntWidth) {
5570      BestType = Context.UnsignedIntTy;
5571      BestWidth = IntWidth;
5572    } else if (NumPositiveBits <=
5573               (BestWidth = Context.Target.getLongWidth())) {
5574      BestType = Context.UnsignedLongTy;
5575    } else {
5576      BestWidth = Context.Target.getLongLongWidth();
5577      assert(NumPositiveBits <= BestWidth &&
5578             "How could an initializer get larger than ULL?");
5579      BestType = Context.UnsignedLongLongTy;
5580    }
5581  }
5582
5583  // Loop over all of the enumerator constants, changing their types to match
5584  // the type of the enum if needed.
5585  for (unsigned i = 0; i != NumElements; ++i) {
5586    EnumConstantDecl *ECD =
5587      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5588    if (!ECD) continue;  // Already issued a diagnostic.
5589
5590    // Standard C says the enumerators have int type, but we allow, as an
5591    // extension, the enumerators to be larger than int size.  If each
5592    // enumerator value fits in an int, type it as an int, otherwise type it the
5593    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5594    // that X has type 'int', not 'unsigned'.
5595    if (ECD->getType() == Context.IntTy) {
5596      // Make sure the init value is signed.
5597      llvm::APSInt IV = ECD->getInitVal();
5598      IV.setIsSigned(true);
5599      ECD->setInitVal(IV);
5600
5601      if (getLangOptions().CPlusPlus)
5602        // C++ [dcl.enum]p4: Following the closing brace of an
5603        // enum-specifier, each enumerator has the type of its
5604        // enumeration.
5605        ECD->setType(EnumType);
5606      continue;  // Already int type.
5607    }
5608
5609    // Determine whether the value fits into an int.
5610    llvm::APSInt InitVal = ECD->getInitVal();
5611    bool FitsInInt;
5612    if (InitVal.isUnsigned() || !InitVal.isNegative())
5613      FitsInInt = InitVal.getActiveBits() < IntWidth;
5614    else
5615      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5616
5617    // If it fits into an integer type, force it.  Otherwise force it to match
5618    // the enum decl type.
5619    QualType NewTy;
5620    unsigned NewWidth;
5621    bool NewSign;
5622    if (FitsInInt) {
5623      NewTy = Context.IntTy;
5624      NewWidth = IntWidth;
5625      NewSign = true;
5626    } else if (ECD->getType() == BestType) {
5627      // Already the right type!
5628      if (getLangOptions().CPlusPlus)
5629        // C++ [dcl.enum]p4: Following the closing brace of an
5630        // enum-specifier, each enumerator has the type of its
5631        // enumeration.
5632        ECD->setType(EnumType);
5633      continue;
5634    } else {
5635      NewTy = BestType;
5636      NewWidth = BestWidth;
5637      NewSign = BestType->isSignedIntegerType();
5638    }
5639
5640    // Adjust the APSInt value.
5641    InitVal.extOrTrunc(NewWidth);
5642    InitVal.setIsSigned(NewSign);
5643    ECD->setInitVal(InitVal);
5644
5645    // Adjust the Expr initializer and type.
5646    if (ECD->getInitExpr())
5647      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5648                                                      CastExpr::CK_IntegralCast,
5649                                                      ECD->getInitExpr(),
5650                                                      /*isLvalue=*/false));
5651    if (getLangOptions().CPlusPlus)
5652      // C++ [dcl.enum]p4: Following the closing brace of an
5653      // enum-specifier, each enumerator has the type of its
5654      // enumeration.
5655      ECD->setType(EnumType);
5656    else
5657      ECD->setType(NewTy);
5658  }
5659
5660  Enum->completeDefinition(Context, BestType);
5661}
5662
5663Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5664                                            ExprArg expr) {
5665  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5666
5667  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5668                                                   Loc, AsmString);
5669  CurContext->addDecl(New);
5670  return DeclPtrTy::make(New);
5671}
5672
5673void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5674                             SourceLocation PragmaLoc,
5675                             SourceLocation NameLoc) {
5676  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5677
5678  if (PrevDecl) {
5679    PrevDecl->addAttr(::new (Context) WeakAttr());
5680  } else {
5681    (void)WeakUndeclaredIdentifiers.insert(
5682      std::pair<IdentifierInfo*,WeakInfo>
5683        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5684  }
5685}
5686
5687void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5688                                IdentifierInfo* AliasName,
5689                                SourceLocation PragmaLoc,
5690                                SourceLocation NameLoc,
5691                                SourceLocation AliasNameLoc) {
5692  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5693  WeakInfo W = WeakInfo(Name, NameLoc);
5694
5695  if (PrevDecl) {
5696    if (!PrevDecl->hasAttr<AliasAttr>())
5697      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5698        DeclApplyPragmaWeak(TUScope, ND, W);
5699  } else {
5700    (void)WeakUndeclaredIdentifiers.insert(
5701      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5702  }
5703}
5704