SemaDecl.cpp revision 9a2b9d794bdf349b517ff799170f4409f45d147c
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Parse/ParseDiagnostic.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Lex/HeaderSearch.h"
38#include "llvm/ADT/Triple.h"
39#include <algorithm>
40#include <cstring>
41#include <functional>
42using namespace clang;
43using namespace sema;
44
45Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
46  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
47}
48
49/// \brief If the identifier refers to a type name within this scope,
50/// return the declaration of that type.
51///
52/// This routine performs ordinary name lookup of the identifier II
53/// within the given scope, with optional C++ scope specifier SS, to
54/// determine whether the name refers to a type. If so, returns an
55/// opaque pointer (actually a QualType) corresponding to that
56/// type. Otherwise, returns NULL.
57///
58/// If name lookup results in an ambiguity, this routine will complain
59/// and then return NULL.
60ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
61                             Scope *S, CXXScopeSpec *SS,
62                             bool isClassName,
63                             ParsedType ObjectTypePtr) {
64  // Determine where we will perform name lookup.
65  DeclContext *LookupCtx = 0;
66  if (ObjectTypePtr) {
67    QualType ObjectType = ObjectTypePtr.get();
68    if (ObjectType->isRecordType())
69      LookupCtx = computeDeclContext(ObjectType);
70  } else if (SS && SS->isNotEmpty()) {
71    LookupCtx = computeDeclContext(*SS, false);
72
73    if (!LookupCtx) {
74      if (isDependentScopeSpecifier(*SS)) {
75        // C++ [temp.res]p3:
76        //   A qualified-id that refers to a type and in which the
77        //   nested-name-specifier depends on a template-parameter (14.6.2)
78        //   shall be prefixed by the keyword typename to indicate that the
79        //   qualified-id denotes a type, forming an
80        //   elaborated-type-specifier (7.1.5.3).
81        //
82        // We therefore do not perform any name lookup if the result would
83        // refer to a member of an unknown specialization.
84        if (!isClassName)
85          return ParsedType();
86
87        // We know from the grammar that this name refers to a type,
88        // so build a dependent node to describe the type.
89        QualType T =
90          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
91                            SourceLocation(), SS->getRange(), NameLoc);
92        return ParsedType::make(T);
93      }
94
95      return ParsedType();
96    }
97
98    if (!LookupCtx->isDependentContext() &&
99        RequireCompleteDeclContext(*SS, LookupCtx))
100      return ParsedType();
101  }
102
103  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
104  // lookup for class-names.
105  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
106                                      LookupOrdinaryName;
107  LookupResult Result(*this, &II, NameLoc, Kind);
108  if (LookupCtx) {
109    // Perform "qualified" name lookup into the declaration context we
110    // computed, which is either the type of the base of a member access
111    // expression or the declaration context associated with a prior
112    // nested-name-specifier.
113    LookupQualifiedName(Result, LookupCtx);
114
115    if (ObjectTypePtr && Result.empty()) {
116      // C++ [basic.lookup.classref]p3:
117      //   If the unqualified-id is ~type-name, the type-name is looked up
118      //   in the context of the entire postfix-expression. If the type T of
119      //   the object expression is of a class type C, the type-name is also
120      //   looked up in the scope of class C. At least one of the lookups shall
121      //   find a name that refers to (possibly cv-qualified) T.
122      LookupName(Result, S);
123    }
124  } else {
125    // Perform unqualified name lookup.
126    LookupName(Result, S);
127  }
128
129  NamedDecl *IIDecl = 0;
130  switch (Result.getResultKind()) {
131  case LookupResult::NotFound:
132  case LookupResult::NotFoundInCurrentInstantiation:
133  case LookupResult::FoundOverloaded:
134  case LookupResult::FoundUnresolvedValue:
135    Result.suppressDiagnostics();
136    return ParsedType();
137
138  case LookupResult::Ambiguous:
139    // Recover from type-hiding ambiguities by hiding the type.  We'll
140    // do the lookup again when looking for an object, and we can
141    // diagnose the error then.  If we don't do this, then the error
142    // about hiding the type will be immediately followed by an error
143    // that only makes sense if the identifier was treated like a type.
144    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
145      Result.suppressDiagnostics();
146      return ParsedType();
147    }
148
149    // Look to see if we have a type anywhere in the list of results.
150    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
151         Res != ResEnd; ++Res) {
152      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
153        if (!IIDecl ||
154            (*Res)->getLocation().getRawEncoding() <
155              IIDecl->getLocation().getRawEncoding())
156          IIDecl = *Res;
157      }
158    }
159
160    if (!IIDecl) {
161      // None of the entities we found is a type, so there is no way
162      // to even assume that the result is a type. In this case, don't
163      // complain about the ambiguity. The parser will either try to
164      // perform this lookup again (e.g., as an object name), which
165      // will produce the ambiguity, or will complain that it expected
166      // a type name.
167      Result.suppressDiagnostics();
168      return ParsedType();
169    }
170
171    // We found a type within the ambiguous lookup; diagnose the
172    // ambiguity and then return that type. This might be the right
173    // answer, or it might not be, but it suppresses any attempt to
174    // perform the name lookup again.
175    break;
176
177  case LookupResult::Found:
178    IIDecl = Result.getFoundDecl();
179    break;
180  }
181
182  assert(IIDecl && "Didn't find decl");
183
184  QualType T;
185  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
186    DiagnoseUseOfDecl(IIDecl, NameLoc);
187
188    if (T.isNull())
189      T = Context.getTypeDeclType(TD);
190
191    if (SS)
192      T = getElaboratedType(ETK_None, *SS, T);
193
194  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
195    T = Context.getObjCInterfaceType(IDecl);
196  } else {
197    // If it's not plausibly a type, suppress diagnostics.
198    Result.suppressDiagnostics();
199    return ParsedType();
200  }
201
202  return ParsedType::make(T);
203}
204
205/// isTagName() - This method is called *for error recovery purposes only*
206/// to determine if the specified name is a valid tag name ("struct foo").  If
207/// so, this returns the TST for the tag corresponding to it (TST_enum,
208/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
209/// where the user forgot to specify the tag.
210DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
211  // Do a tag name lookup in this scope.
212  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
213  LookupName(R, S, false);
214  R.suppressDiagnostics();
215  if (R.getResultKind() == LookupResult::Found)
216    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
217      switch (TD->getTagKind()) {
218      default:         return DeclSpec::TST_unspecified;
219      case TTK_Struct: return DeclSpec::TST_struct;
220      case TTK_Union:  return DeclSpec::TST_union;
221      case TTK_Class:  return DeclSpec::TST_class;
222      case TTK_Enum:   return DeclSpec::TST_enum;
223      }
224    }
225
226  return DeclSpec::TST_unspecified;
227}
228
229bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
230                                   SourceLocation IILoc,
231                                   Scope *S,
232                                   CXXScopeSpec *SS,
233                                   ParsedType &SuggestedType) {
234  // We don't have anything to suggest (yet).
235  SuggestedType = ParsedType();
236
237  // There may have been a typo in the name of the type. Look up typo
238  // results, in case we have something that we can suggest.
239  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
240                      NotForRedeclaration);
241
242  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
243    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
244      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
245          !Result->isInvalidDecl()) {
246        // We found a similarly-named type or interface; suggest that.
247        if (!SS || !SS->isSet())
248          Diag(IILoc, diag::err_unknown_typename_suggest)
249            << &II << Lookup.getLookupName()
250            << FixItHint::CreateReplacement(SourceRange(IILoc),
251                                            Result->getNameAsString());
252        else if (DeclContext *DC = computeDeclContext(*SS, false))
253          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
254            << &II << DC << Lookup.getLookupName() << SS->getRange()
255            << FixItHint::CreateReplacement(SourceRange(IILoc),
256                                            Result->getNameAsString());
257        else
258          llvm_unreachable("could not have corrected a typo here");
259
260        Diag(Result->getLocation(), diag::note_previous_decl)
261          << Result->getDeclName();
262
263        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
264        return true;
265      }
266    } else if (Lookup.empty()) {
267      // We corrected to a keyword.
268      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
269      Diag(IILoc, diag::err_unknown_typename_suggest)
270        << &II << Corrected;
271      return true;
272    }
273  }
274
275  if (getLangOptions().CPlusPlus) {
276    // See if II is a class template that the user forgot to pass arguments to.
277    UnqualifiedId Name;
278    Name.setIdentifier(&II, IILoc);
279    CXXScopeSpec EmptySS;
280    TemplateTy TemplateResult;
281    bool MemberOfUnknownSpecialization;
282    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
283                       Name, ParsedType(), true, TemplateResult,
284                       MemberOfUnknownSpecialization) == TNK_Type_template) {
285      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
286      Diag(IILoc, diag::err_template_missing_args) << TplName;
287      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
288        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
289          << TplDecl->getTemplateParameters()->getSourceRange();
290      }
291      return true;
292    }
293  }
294
295  // FIXME: Should we move the logic that tries to recover from a missing tag
296  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
297
298  if (!SS || (!SS->isSet() && !SS->isInvalid()))
299    Diag(IILoc, diag::err_unknown_typename) << &II;
300  else if (DeclContext *DC = computeDeclContext(*SS, false))
301    Diag(IILoc, diag::err_typename_nested_not_found)
302      << &II << DC << SS->getRange();
303  else if (isDependentScopeSpecifier(*SS)) {
304    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
305      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
306      << SourceRange(SS->getRange().getBegin(), IILoc)
307      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
308    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
309  } else {
310    assert(SS && SS->isInvalid() &&
311           "Invalid scope specifier has already been diagnosed");
312  }
313
314  return true;
315}
316
317// Determines the context to return to after temporarily entering a
318// context.  This depends in an unnecessarily complicated way on the
319// exact ordering of callbacks from the parser.
320DeclContext *Sema::getContainingDC(DeclContext *DC) {
321
322  // Functions defined inline within classes aren't parsed until we've
323  // finished parsing the top-level class, so the top-level class is
324  // the context we'll need to return to.
325  if (isa<FunctionDecl>(DC)) {
326    DC = DC->getLexicalParent();
327
328    // A function not defined within a class will always return to its
329    // lexical context.
330    if (!isa<CXXRecordDecl>(DC))
331      return DC;
332
333    // A C++ inline method/friend is parsed *after* the topmost class
334    // it was declared in is fully parsed ("complete");  the topmost
335    // class is the context we need to return to.
336    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
337      DC = RD;
338
339    // Return the declaration context of the topmost class the inline method is
340    // declared in.
341    return DC;
342  }
343
344  // ObjCMethodDecls are parsed (for some reason) outside the context
345  // of the class.
346  if (isa<ObjCMethodDecl>(DC))
347    return DC->getLexicalParent()->getLexicalParent();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363  assert(CurContext && "Popped translation unit!");
364}
365
366/// EnterDeclaratorContext - Used when we must lookup names in the context
367/// of a declarator's nested name specifier.
368///
369void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
370  // C++0x [basic.lookup.unqual]p13:
371  //   A name used in the definition of a static data member of class
372  //   X (after the qualified-id of the static member) is looked up as
373  //   if the name was used in a member function of X.
374  // C++0x [basic.lookup.unqual]p14:
375  //   If a variable member of a namespace is defined outside of the
376  //   scope of its namespace then any name used in the definition of
377  //   the variable member (after the declarator-id) is looked up as
378  //   if the definition of the variable member occurred in its
379  //   namespace.
380  // Both of these imply that we should push a scope whose context
381  // is the semantic context of the declaration.  We can't use
382  // PushDeclContext here because that context is not necessarily
383  // lexically contained in the current context.  Fortunately,
384  // the containing scope should have the appropriate information.
385
386  assert(!S->getEntity() && "scope already has entity");
387
388#ifndef NDEBUG
389  Scope *Ancestor = S->getParent();
390  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
391  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
392#endif
393
394  CurContext = DC;
395  S->setEntity(DC);
396}
397
398void Sema::ExitDeclaratorContext(Scope *S) {
399  assert(S->getEntity() == CurContext && "Context imbalance!");
400
401  // Switch back to the lexical context.  The safety of this is
402  // enforced by an assert in EnterDeclaratorContext.
403  Scope *Ancestor = S->getParent();
404  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
405  CurContext = (DeclContext*) Ancestor->getEntity();
406
407  // We don't need to do anything with the scope, which is going to
408  // disappear.
409}
410
411/// \brief Determine whether we allow overloading of the function
412/// PrevDecl with another declaration.
413///
414/// This routine determines whether overloading is possible, not
415/// whether some new function is actually an overload. It will return
416/// true in C++ (where we can always provide overloads) or, as an
417/// extension, in C when the previous function is already an
418/// overloaded function declaration or has the "overloadable"
419/// attribute.
420static bool AllowOverloadingOfFunction(LookupResult &Previous,
421                                       ASTContext &Context) {
422  if (Context.getLangOptions().CPlusPlus)
423    return true;
424
425  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
426    return true;
427
428  return (Previous.getResultKind() == LookupResult::Found
429          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
430}
431
432/// Add this decl to the scope shadowed decl chains.
433void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
434  // Move up the scope chain until we find the nearest enclosing
435  // non-transparent context. The declaration will be introduced into this
436  // scope.
437  while (S->getEntity() &&
438         ((DeclContext *)S->getEntity())->isTransparentContext())
439    S = S->getParent();
440
441  // Add scoped declarations into their context, so that they can be
442  // found later. Declarations without a context won't be inserted
443  // into any context.
444  if (AddToContext)
445    CurContext->addDecl(D);
446
447  // Out-of-line definitions shouldn't be pushed into scope in C++.
448  // Out-of-line variable and function definitions shouldn't even in C.
449  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
450      D->isOutOfLine())
451    return;
452
453  // Template instantiations should also not be pushed into scope.
454  if (isa<FunctionDecl>(D) &&
455      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
456    return;
457
458  // If this replaces anything in the current scope,
459  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
460                               IEnd = IdResolver.end();
461  for (; I != IEnd; ++I) {
462    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
463      S->RemoveDecl(*I);
464      IdResolver.RemoveDecl(*I);
465
466      // Should only need to replace one decl.
467      break;
468    }
469  }
470
471  S->AddDecl(D);
472  IdResolver.AddDecl(D);
473}
474
475bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
476  return IdResolver.isDeclInScope(D, Ctx, Context, S);
477}
478
479Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
480  DeclContext *TargetDC = DC->getPrimaryContext();
481  do {
482    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
483      if (ScopeDC->getPrimaryContext() == TargetDC)
484        return S;
485  } while ((S = S->getParent()));
486
487  return 0;
488}
489
490static bool isOutOfScopePreviousDeclaration(NamedDecl *,
491                                            DeclContext*,
492                                            ASTContext&);
493
494/// Filters out lookup results that don't fall within the given scope
495/// as determined by isDeclInScope.
496static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
497                                 DeclContext *Ctx, Scope *S,
498                                 bool ConsiderLinkage) {
499  LookupResult::Filter F = R.makeFilter();
500  while (F.hasNext()) {
501    NamedDecl *D = F.next();
502
503    if (SemaRef.isDeclInScope(D, Ctx, S))
504      continue;
505
506    if (ConsiderLinkage &&
507        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
508      continue;
509
510    F.erase();
511  }
512
513  F.done();
514}
515
516static bool isUsingDecl(NamedDecl *D) {
517  return isa<UsingShadowDecl>(D) ||
518         isa<UnresolvedUsingTypenameDecl>(D) ||
519         isa<UnresolvedUsingValueDecl>(D);
520}
521
522/// Removes using shadow declarations from the lookup results.
523static void RemoveUsingDecls(LookupResult &R) {
524  LookupResult::Filter F = R.makeFilter();
525  while (F.hasNext())
526    if (isUsingDecl(F.next()))
527      F.erase();
528
529  F.done();
530}
531
532/// \brief Check for this common pattern:
533/// @code
534/// class S {
535///   S(const S&); // DO NOT IMPLEMENT
536///   void operator=(const S&); // DO NOT IMPLEMENT
537/// };
538/// @endcode
539static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
540  // FIXME: Should check for private access too but access is set after we get
541  // the decl here.
542  if (D->isThisDeclarationADefinition())
543    return false;
544
545  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
546    return CD->isCopyConstructor();
547  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
548    return Method->isCopyAssignmentOperator();
549  return false;
550}
551
552bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
553  assert(D);
554
555  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
556    return false;
557
558  // Ignore class templates.
559  if (D->getDeclContext()->isDependentContext())
560    return false;
561
562  // We warn for unused decls internal to the translation unit.
563  if (D->getLinkage() == ExternalLinkage)
564    return false;
565
566  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
567    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
568      return false;
569
570    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
571      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
572        return false;
573    } else {
574      // 'static inline' functions are used in headers; don't warn.
575      if (FD->getStorageClass() == SC_Static &&
576          FD->isInlineSpecified())
577        return false;
578    }
579
580    if (FD->isThisDeclarationADefinition())
581      return !Context.DeclMustBeEmitted(FD);
582    return true;
583  }
584
585  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
586    if (VD->isStaticDataMember() &&
587        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
588      return false;
589
590    if ( VD->isFileVarDecl() &&
591        !VD->getType().isConstant(Context))
592      return !Context.DeclMustBeEmitted(VD);
593  }
594
595   return false;
596 }
597
598 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
599  if (!D)
600    return;
601
602  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
603    const FunctionDecl *First = FD->getFirstDeclaration();
604    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
605      return; // First should already be in the vector.
606  }
607
608  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
609    const VarDecl *First = VD->getFirstDeclaration();
610    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
611      return; // First should already be in the vector.
612  }
613
614   if (ShouldWarnIfUnusedFileScopedDecl(D))
615     UnusedFileScopedDecls.push_back(D);
616 }
617
618static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
619  if (D->isInvalidDecl())
620    return false;
621
622  if (D->isUsed() || D->hasAttr<UnusedAttr>())
623    return false;
624
625  // White-list anything that isn't a local variable.
626  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
627      !D->getDeclContext()->isFunctionOrMethod())
628    return false;
629
630  // Types of valid local variables should be complete, so this should succeed.
631  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
632
633    // White-list anything with an __attribute__((unused)) type.
634    QualType Ty = VD->getType();
635
636    // Only look at the outermost level of typedef.
637    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
638      if (TT->getDecl()->hasAttr<UnusedAttr>())
639        return false;
640    }
641
642    // If we failed to complete the type for some reason, or if the type is
643    // dependent, don't diagnose the variable.
644    if (Ty->isIncompleteType() || Ty->isDependentType())
645      return false;
646
647    if (const TagType *TT = Ty->getAs<TagType>()) {
648      const TagDecl *Tag = TT->getDecl();
649      if (Tag->hasAttr<UnusedAttr>())
650        return false;
651
652      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
653        // FIXME: Checking for the presence of a user-declared constructor
654        // isn't completely accurate; we'd prefer to check that the initializer
655        // has no side effects.
656        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
657          return false;
658      }
659    }
660
661    // TODO: __attribute__((unused)) templates?
662  }
663
664  return true;
665}
666
667void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
668  if (!ShouldDiagnoseUnusedDecl(D))
669    return;
670
671  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
672    Diag(D->getLocation(), diag::warn_unused_exception_param)
673    << D->getDeclName();
674  else
675    Diag(D->getLocation(), diag::warn_unused_variable)
676    << D->getDeclName();
677}
678
679void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
680  if (S->decl_empty()) return;
681  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
682         "Scope shouldn't contain decls!");
683
684  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
685       I != E; ++I) {
686    Decl *TmpD = (*I);
687    assert(TmpD && "This decl didn't get pushed??");
688
689    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
690    NamedDecl *D = cast<NamedDecl>(TmpD);
691
692    if (!D->getDeclName()) continue;
693
694    // Diagnose unused variables in this scope.
695    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
696      DiagnoseUnusedDecl(D);
697
698    // Remove this name from our lexical scope.
699    IdResolver.RemoveDecl(D);
700  }
701}
702
703/// \brief Look for an Objective-C class in the translation unit.
704///
705/// \param Id The name of the Objective-C class we're looking for. If
706/// typo-correction fixes this name, the Id will be updated
707/// to the fixed name.
708///
709/// \param IdLoc The location of the name in the translation unit.
710///
711/// \param TypoCorrection If true, this routine will attempt typo correction
712/// if there is no class with the given name.
713///
714/// \returns The declaration of the named Objective-C class, or NULL if the
715/// class could not be found.
716ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
717                                              SourceLocation IdLoc,
718                                              bool TypoCorrection) {
719  // The third "scope" argument is 0 since we aren't enabling lazy built-in
720  // creation from this context.
721  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
722
723  if (!IDecl && TypoCorrection) {
724    // Perform typo correction at the given location, but only if we
725    // find an Objective-C class name.
726    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
727    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
728        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
729      Diag(IdLoc, diag::err_undef_interface_suggest)
730        << Id << IDecl->getDeclName()
731        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
732      Diag(IDecl->getLocation(), diag::note_previous_decl)
733        << IDecl->getDeclName();
734
735      Id = IDecl->getIdentifier();
736    }
737  }
738
739  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
740}
741
742/// getNonFieldDeclScope - Retrieves the innermost scope, starting
743/// from S, where a non-field would be declared. This routine copes
744/// with the difference between C and C++ scoping rules in structs and
745/// unions. For example, the following code is well-formed in C but
746/// ill-formed in C++:
747/// @code
748/// struct S6 {
749///   enum { BAR } e;
750/// };
751///
752/// void test_S6() {
753///   struct S6 a;
754///   a.e = BAR;
755/// }
756/// @endcode
757/// For the declaration of BAR, this routine will return a different
758/// scope. The scope S will be the scope of the unnamed enumeration
759/// within S6. In C++, this routine will return the scope associated
760/// with S6, because the enumeration's scope is a transparent
761/// context but structures can contain non-field names. In C, this
762/// routine will return the translation unit scope, since the
763/// enumeration's scope is a transparent context and structures cannot
764/// contain non-field names.
765Scope *Sema::getNonFieldDeclScope(Scope *S) {
766  while (((S->getFlags() & Scope::DeclScope) == 0) ||
767         (S->getEntity() &&
768          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
769         (S->isClassScope() && !getLangOptions().CPlusPlus))
770    S = S->getParent();
771  return S;
772}
773
774/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
775/// file scope.  lazily create a decl for it. ForRedeclaration is true
776/// if we're creating this built-in in anticipation of redeclaring the
777/// built-in.
778NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
779                                     Scope *S, bool ForRedeclaration,
780                                     SourceLocation Loc) {
781  Builtin::ID BID = (Builtin::ID)bid;
782
783  ASTContext::GetBuiltinTypeError Error;
784  QualType R = Context.GetBuiltinType(BID, Error);
785  switch (Error) {
786  case ASTContext::GE_None:
787    // Okay
788    break;
789
790  case ASTContext::GE_Missing_stdio:
791    if (ForRedeclaration)
792      Diag(Loc, diag::err_implicit_decl_requires_stdio)
793        << Context.BuiltinInfo.GetName(BID);
794    return 0;
795
796  case ASTContext::GE_Missing_setjmp:
797    if (ForRedeclaration)
798      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
799        << Context.BuiltinInfo.GetName(BID);
800    return 0;
801  }
802
803  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
804    Diag(Loc, diag::ext_implicit_lib_function_decl)
805      << Context.BuiltinInfo.GetName(BID)
806      << R;
807    if (Context.BuiltinInfo.getHeaderName(BID) &&
808        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
809          != Diagnostic::Ignored)
810      Diag(Loc, diag::note_please_include_header)
811        << Context.BuiltinInfo.getHeaderName(BID)
812        << Context.BuiltinInfo.GetName(BID);
813  }
814
815  FunctionDecl *New = FunctionDecl::Create(Context,
816                                           Context.getTranslationUnitDecl(),
817                                           Loc, II, R, /*TInfo=*/0,
818                                           SC_Extern,
819                                           SC_None, false,
820                                           /*hasPrototype=*/true);
821  New->setImplicit();
822
823  // Create Decl objects for each parameter, adding them to the
824  // FunctionDecl.
825  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
826    llvm::SmallVector<ParmVarDecl*, 16> Params;
827    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
828      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
829                                           FT->getArgType(i), /*TInfo=*/0,
830                                           SC_None, SC_None, 0));
831    New->setParams(Params.data(), Params.size());
832  }
833
834  AddKnownFunctionAttributes(New);
835
836  // TUScope is the translation-unit scope to insert this function into.
837  // FIXME: This is hideous. We need to teach PushOnScopeChains to
838  // relate Scopes to DeclContexts, and probably eliminate CurContext
839  // entirely, but we're not there yet.
840  DeclContext *SavedContext = CurContext;
841  CurContext = Context.getTranslationUnitDecl();
842  PushOnScopeChains(New, TUScope);
843  CurContext = SavedContext;
844  return New;
845}
846
847/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
848/// same name and scope as a previous declaration 'Old'.  Figure out
849/// how to resolve this situation, merging decls or emitting
850/// diagnostics as appropriate. If there was an error, set New to be invalid.
851///
852void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
853  // If the new decl is known invalid already, don't bother doing any
854  // merging checks.
855  if (New->isInvalidDecl()) return;
856
857  // Allow multiple definitions for ObjC built-in typedefs.
858  // FIXME: Verify the underlying types are equivalent!
859  if (getLangOptions().ObjC1) {
860    const IdentifierInfo *TypeID = New->getIdentifier();
861    switch (TypeID->getLength()) {
862    default: break;
863    case 2:
864      if (!TypeID->isStr("id"))
865        break;
866      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
867      // Install the built-in type for 'id', ignoring the current definition.
868      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
869      return;
870    case 5:
871      if (!TypeID->isStr("Class"))
872        break;
873      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
874      // Install the built-in type for 'Class', ignoring the current definition.
875      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
876      return;
877    case 3:
878      if (!TypeID->isStr("SEL"))
879        break;
880      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
881      // Install the built-in type for 'SEL', ignoring the current definition.
882      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
883      return;
884    case 8:
885      if (!TypeID->isStr("Protocol"))
886        break;
887      Context.setObjCProtoType(New->getUnderlyingType());
888      return;
889    }
890    // Fall through - the typedef name was not a builtin type.
891  }
892
893  // Verify the old decl was also a type.
894  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
895  if (!Old) {
896    Diag(New->getLocation(), diag::err_redefinition_different_kind)
897      << New->getDeclName();
898
899    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
900    if (OldD->getLocation().isValid())
901      Diag(OldD->getLocation(), diag::note_previous_definition);
902
903    return New->setInvalidDecl();
904  }
905
906  // If the old declaration is invalid, just give up here.
907  if (Old->isInvalidDecl())
908    return New->setInvalidDecl();
909
910  // Determine the "old" type we'll use for checking and diagnostics.
911  QualType OldType;
912  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
913    OldType = OldTypedef->getUnderlyingType();
914  else
915    OldType = Context.getTypeDeclType(Old);
916
917  // If the typedef types are not identical, reject them in all languages and
918  // with any extensions enabled.
919
920  if (OldType != New->getUnderlyingType() &&
921      Context.getCanonicalType(OldType) !=
922      Context.getCanonicalType(New->getUnderlyingType())) {
923    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
924      << New->getUnderlyingType() << OldType;
925    if (Old->getLocation().isValid())
926      Diag(Old->getLocation(), diag::note_previous_definition);
927    return New->setInvalidDecl();
928  }
929
930  // The types match.  Link up the redeclaration chain if the old
931  // declaration was a typedef.
932  // FIXME: this is a potential source of wierdness if the type
933  // spellings don't match exactly.
934  if (isa<TypedefDecl>(Old))
935    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
936
937  if (getLangOptions().Microsoft)
938    return;
939
940  if (getLangOptions().CPlusPlus) {
941    // C++ [dcl.typedef]p2:
942    //   In a given non-class scope, a typedef specifier can be used to
943    //   redefine the name of any type declared in that scope to refer
944    //   to the type to which it already refers.
945    if (!isa<CXXRecordDecl>(CurContext))
946      return;
947
948    // C++0x [dcl.typedef]p4:
949    //   In a given class scope, a typedef specifier can be used to redefine
950    //   any class-name declared in that scope that is not also a typedef-name
951    //   to refer to the type to which it already refers.
952    //
953    // This wording came in via DR424, which was a correction to the
954    // wording in DR56, which accidentally banned code like:
955    //
956    //   struct S {
957    //     typedef struct A { } A;
958    //   };
959    //
960    // in the C++03 standard. We implement the C++0x semantics, which
961    // allow the above but disallow
962    //
963    //   struct S {
964    //     typedef int I;
965    //     typedef int I;
966    //   };
967    //
968    // since that was the intent of DR56.
969    if (!isa<TypedefDecl >(Old))
970      return;
971
972    Diag(New->getLocation(), diag::err_redefinition)
973      << New->getDeclName();
974    Diag(Old->getLocation(), diag::note_previous_definition);
975    return New->setInvalidDecl();
976  }
977
978  // If we have a redefinition of a typedef in C, emit a warning.  This warning
979  // is normally mapped to an error, but can be controlled with
980  // -Wtypedef-redefinition.  If either the original or the redefinition is
981  // in a system header, don't emit this for compatibility with GCC.
982  if (getDiagnostics().getSuppressSystemWarnings() &&
983      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
984       Context.getSourceManager().isInSystemHeader(New->getLocation())))
985    return;
986
987  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
988    << New->getDeclName();
989  Diag(Old->getLocation(), diag::note_previous_definition);
990  return;
991}
992
993/// DeclhasAttr - returns true if decl Declaration already has the target
994/// attribute.
995static bool
996DeclHasAttr(const Decl *D, const Attr *A) {
997  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
998  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
999    if ((*i)->getKind() == A->getKind()) {
1000      // FIXME: Don't hardcode this check
1001      if (OA && isa<OwnershipAttr>(*i))
1002        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1003      return true;
1004    }
1005
1006  return false;
1007}
1008
1009/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1010static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1011  if (!Old->hasAttrs())
1012    return;
1013  // Ensure that any moving of objects within the allocated map is done before
1014  // we process them.
1015  if (!New->hasAttrs())
1016    New->setAttrs(AttrVec());
1017  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1018       ++i) {
1019    // FIXME: Make this more general than just checking for Overloadable.
1020    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1021      Attr *NewAttr = (*i)->clone(C);
1022      NewAttr->setInherited(true);
1023      New->addAttr(NewAttr);
1024    }
1025  }
1026}
1027
1028namespace {
1029
1030/// Used in MergeFunctionDecl to keep track of function parameters in
1031/// C.
1032struct GNUCompatibleParamWarning {
1033  ParmVarDecl *OldParm;
1034  ParmVarDecl *NewParm;
1035  QualType PromotedType;
1036};
1037
1038}
1039
1040/// getSpecialMember - get the special member enum for a method.
1041Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1042  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1043    if (Ctor->isCopyConstructor())
1044      return Sema::CXXCopyConstructor;
1045
1046    return Sema::CXXConstructor;
1047  }
1048
1049  if (isa<CXXDestructorDecl>(MD))
1050    return Sema::CXXDestructor;
1051
1052  assert(MD->isCopyAssignmentOperator() &&
1053         "Must have copy assignment operator");
1054  return Sema::CXXCopyAssignment;
1055}
1056
1057/// canRedefineFunction - checks if a function can be redefined. Currently,
1058/// only extern inline functions can be redefined, and even then only in
1059/// GNU89 mode.
1060static bool canRedefineFunction(const FunctionDecl *FD,
1061                                const LangOptions& LangOpts) {
1062  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1063          FD->isInlineSpecified() &&
1064          FD->getStorageClass() == SC_Extern);
1065}
1066
1067/// MergeFunctionDecl - We just parsed a function 'New' from
1068/// declarator D which has the same name and scope as a previous
1069/// declaration 'Old'.  Figure out how to resolve this situation,
1070/// merging decls or emitting diagnostics as appropriate.
1071///
1072/// In C++, New and Old must be declarations that are not
1073/// overloaded. Use IsOverload to determine whether New and Old are
1074/// overloaded, and to select the Old declaration that New should be
1075/// merged with.
1076///
1077/// Returns true if there was an error, false otherwise.
1078bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1079  // Verify the old decl was also a function.
1080  FunctionDecl *Old = 0;
1081  if (FunctionTemplateDecl *OldFunctionTemplate
1082        = dyn_cast<FunctionTemplateDecl>(OldD))
1083    Old = OldFunctionTemplate->getTemplatedDecl();
1084  else
1085    Old = dyn_cast<FunctionDecl>(OldD);
1086  if (!Old) {
1087    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1088      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1089      Diag(Shadow->getTargetDecl()->getLocation(),
1090           diag::note_using_decl_target);
1091      Diag(Shadow->getUsingDecl()->getLocation(),
1092           diag::note_using_decl) << 0;
1093      return true;
1094    }
1095
1096    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1097      << New->getDeclName();
1098    Diag(OldD->getLocation(), diag::note_previous_definition);
1099    return true;
1100  }
1101
1102  // Determine whether the previous declaration was a definition,
1103  // implicit declaration, or a declaration.
1104  diag::kind PrevDiag;
1105  if (Old->isThisDeclarationADefinition())
1106    PrevDiag = diag::note_previous_definition;
1107  else if (Old->isImplicit())
1108    PrevDiag = diag::note_previous_implicit_declaration;
1109  else
1110    PrevDiag = diag::note_previous_declaration;
1111
1112  QualType OldQType = Context.getCanonicalType(Old->getType());
1113  QualType NewQType = Context.getCanonicalType(New->getType());
1114
1115  // Don't complain about this if we're in GNU89 mode and the old function
1116  // is an extern inline function.
1117  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1118      New->getStorageClass() == SC_Static &&
1119      Old->getStorageClass() != SC_Static &&
1120      !canRedefineFunction(Old, getLangOptions())) {
1121    Diag(New->getLocation(), diag::err_static_non_static)
1122      << New;
1123    Diag(Old->getLocation(), PrevDiag);
1124    return true;
1125  }
1126
1127  // If a function is first declared with a calling convention, but is
1128  // later declared or defined without one, the second decl assumes the
1129  // calling convention of the first.
1130  //
1131  // For the new decl, we have to look at the NON-canonical type to tell the
1132  // difference between a function that really doesn't have a calling
1133  // convention and one that is declared cdecl. That's because in
1134  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1135  // because it is the default calling convention.
1136  //
1137  // Note also that we DO NOT return at this point, because we still have
1138  // other tests to run.
1139  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1140  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1141  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1142  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1143  if (OldTypeInfo.getCC() != CC_Default &&
1144      NewTypeInfo.getCC() == CC_Default) {
1145    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1146    New->setType(NewQType);
1147    NewQType = Context.getCanonicalType(NewQType);
1148  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1149                                     NewTypeInfo.getCC())) {
1150    // Calling conventions really aren't compatible, so complain.
1151    Diag(New->getLocation(), diag::err_cconv_change)
1152      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1153      << (OldTypeInfo.getCC() == CC_Default)
1154      << (OldTypeInfo.getCC() == CC_Default ? "" :
1155          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1156    Diag(Old->getLocation(), diag::note_previous_declaration);
1157    return true;
1158  }
1159
1160  // FIXME: diagnose the other way around?
1161  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1162    NewQType = Context.getNoReturnType(NewQType);
1163    New->setType(NewQType);
1164    assert(NewQType.isCanonical());
1165  }
1166
1167  // Merge regparm attribute.
1168  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1169    if (NewType->getRegParmType()) {
1170      Diag(New->getLocation(), diag::err_regparm_mismatch)
1171        << NewType->getRegParmType()
1172        << OldType->getRegParmType();
1173      Diag(Old->getLocation(), diag::note_previous_declaration);
1174      return true;
1175    }
1176
1177    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1178    New->setType(NewQType);
1179    assert(NewQType.isCanonical());
1180  }
1181
1182  if (getLangOptions().CPlusPlus) {
1183    // (C++98 13.1p2):
1184    //   Certain function declarations cannot be overloaded:
1185    //     -- Function declarations that differ only in the return type
1186    //        cannot be overloaded.
1187    QualType OldReturnType
1188      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1189    QualType NewReturnType
1190      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1191    QualType ResQT;
1192    if (OldReturnType != NewReturnType) {
1193      if (NewReturnType->isObjCObjectPointerType()
1194          && OldReturnType->isObjCObjectPointerType())
1195        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1196      if (ResQT.isNull()) {
1197        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1198        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1199        return true;
1200      }
1201      else
1202        NewQType = ResQT;
1203    }
1204
1205    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1206    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1207    if (OldMethod && NewMethod) {
1208      // Preserve triviality.
1209      NewMethod->setTrivial(OldMethod->isTrivial());
1210
1211      bool isFriend = NewMethod->getFriendObjectKind();
1212
1213      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1214        //    -- Member function declarations with the same name and the
1215        //       same parameter types cannot be overloaded if any of them
1216        //       is a static member function declaration.
1217        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1218          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1219          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1220          return true;
1221        }
1222
1223        // C++ [class.mem]p1:
1224        //   [...] A member shall not be declared twice in the
1225        //   member-specification, except that a nested class or member
1226        //   class template can be declared and then later defined.
1227        unsigned NewDiag;
1228        if (isa<CXXConstructorDecl>(OldMethod))
1229          NewDiag = diag::err_constructor_redeclared;
1230        else if (isa<CXXDestructorDecl>(NewMethod))
1231          NewDiag = diag::err_destructor_redeclared;
1232        else if (isa<CXXConversionDecl>(NewMethod))
1233          NewDiag = diag::err_conv_function_redeclared;
1234        else
1235          NewDiag = diag::err_member_redeclared;
1236
1237        Diag(New->getLocation(), NewDiag);
1238        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1239
1240      // Complain if this is an explicit declaration of a special
1241      // member that was initially declared implicitly.
1242      //
1243      // As an exception, it's okay to befriend such methods in order
1244      // to permit the implicit constructor/destructor/operator calls.
1245      } else if (OldMethod->isImplicit()) {
1246        if (isFriend) {
1247          NewMethod->setImplicit();
1248        } else {
1249          Diag(NewMethod->getLocation(),
1250               diag::err_definition_of_implicitly_declared_member)
1251            << New << getSpecialMember(OldMethod);
1252          return true;
1253        }
1254      }
1255    }
1256
1257    // (C++98 8.3.5p3):
1258    //   All declarations for a function shall agree exactly in both the
1259    //   return type and the parameter-type-list.
1260    // attributes should be ignored when comparing.
1261    if (Context.getNoReturnType(OldQType, false) ==
1262        Context.getNoReturnType(NewQType, false))
1263      return MergeCompatibleFunctionDecls(New, Old);
1264
1265    // Fall through for conflicting redeclarations and redefinitions.
1266  }
1267
1268  // C: Function types need to be compatible, not identical. This handles
1269  // duplicate function decls like "void f(int); void f(enum X);" properly.
1270  if (!getLangOptions().CPlusPlus &&
1271      Context.typesAreCompatible(OldQType, NewQType)) {
1272    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1273    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1274    const FunctionProtoType *OldProto = 0;
1275    if (isa<FunctionNoProtoType>(NewFuncType) &&
1276        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1277      // The old declaration provided a function prototype, but the
1278      // new declaration does not. Merge in the prototype.
1279      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1280      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1281                                                 OldProto->arg_type_end());
1282      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1283                                         ParamTypes.data(), ParamTypes.size(),
1284                                         OldProto->isVariadic(),
1285                                         OldProto->getTypeQuals(),
1286                                         false, false, 0, 0,
1287                                         OldProto->getExtInfo());
1288      New->setType(NewQType);
1289      New->setHasInheritedPrototype();
1290
1291      // Synthesize a parameter for each argument type.
1292      llvm::SmallVector<ParmVarDecl*, 16> Params;
1293      for (FunctionProtoType::arg_type_iterator
1294             ParamType = OldProto->arg_type_begin(),
1295             ParamEnd = OldProto->arg_type_end();
1296           ParamType != ParamEnd; ++ParamType) {
1297        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1298                                                 SourceLocation(), 0,
1299                                                 *ParamType, /*TInfo=*/0,
1300                                                 SC_None, SC_None,
1301                                                 0);
1302        Param->setImplicit();
1303        Params.push_back(Param);
1304      }
1305
1306      New->setParams(Params.data(), Params.size());
1307    }
1308
1309    return MergeCompatibleFunctionDecls(New, Old);
1310  }
1311
1312  // GNU C permits a K&R definition to follow a prototype declaration
1313  // if the declared types of the parameters in the K&R definition
1314  // match the types in the prototype declaration, even when the
1315  // promoted types of the parameters from the K&R definition differ
1316  // from the types in the prototype. GCC then keeps the types from
1317  // the prototype.
1318  //
1319  // If a variadic prototype is followed by a non-variadic K&R definition,
1320  // the K&R definition becomes variadic.  This is sort of an edge case, but
1321  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1322  // C99 6.9.1p8.
1323  if (!getLangOptions().CPlusPlus &&
1324      Old->hasPrototype() && !New->hasPrototype() &&
1325      New->getType()->getAs<FunctionProtoType>() &&
1326      Old->getNumParams() == New->getNumParams()) {
1327    llvm::SmallVector<QualType, 16> ArgTypes;
1328    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1329    const FunctionProtoType *OldProto
1330      = Old->getType()->getAs<FunctionProtoType>();
1331    const FunctionProtoType *NewProto
1332      = New->getType()->getAs<FunctionProtoType>();
1333
1334    // Determine whether this is the GNU C extension.
1335    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1336                                               NewProto->getResultType());
1337    bool LooseCompatible = !MergedReturn.isNull();
1338    for (unsigned Idx = 0, End = Old->getNumParams();
1339         LooseCompatible && Idx != End; ++Idx) {
1340      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1341      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1342      if (Context.typesAreCompatible(OldParm->getType(),
1343                                     NewProto->getArgType(Idx))) {
1344        ArgTypes.push_back(NewParm->getType());
1345      } else if (Context.typesAreCompatible(OldParm->getType(),
1346                                            NewParm->getType(),
1347                                            /*CompareUnqualified=*/true)) {
1348        GNUCompatibleParamWarning Warn
1349          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1350        Warnings.push_back(Warn);
1351        ArgTypes.push_back(NewParm->getType());
1352      } else
1353        LooseCompatible = false;
1354    }
1355
1356    if (LooseCompatible) {
1357      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1358        Diag(Warnings[Warn].NewParm->getLocation(),
1359             diag::ext_param_promoted_not_compatible_with_prototype)
1360          << Warnings[Warn].PromotedType
1361          << Warnings[Warn].OldParm->getType();
1362        if (Warnings[Warn].OldParm->getLocation().isValid())
1363          Diag(Warnings[Warn].OldParm->getLocation(),
1364               diag::note_previous_declaration);
1365      }
1366
1367      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1368                                           ArgTypes.size(),
1369                                           OldProto->isVariadic(), 0,
1370                                           false, false, 0, 0,
1371                                           OldProto->getExtInfo()));
1372      return MergeCompatibleFunctionDecls(New, Old);
1373    }
1374
1375    // Fall through to diagnose conflicting types.
1376  }
1377
1378  // A function that has already been declared has been redeclared or defined
1379  // with a different type- show appropriate diagnostic
1380  if (unsigned BuiltinID = Old->getBuiltinID()) {
1381    // The user has declared a builtin function with an incompatible
1382    // signature.
1383    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1384      // The function the user is redeclaring is a library-defined
1385      // function like 'malloc' or 'printf'. Warn about the
1386      // redeclaration, then pretend that we don't know about this
1387      // library built-in.
1388      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1389      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1390        << Old << Old->getType();
1391      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1392      Old->setInvalidDecl();
1393      return false;
1394    }
1395
1396    PrevDiag = diag::note_previous_builtin_declaration;
1397  }
1398
1399  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1400  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1401  return true;
1402}
1403
1404/// \brief Completes the merge of two function declarations that are
1405/// known to be compatible.
1406///
1407/// This routine handles the merging of attributes and other
1408/// properties of function declarations form the old declaration to
1409/// the new declaration, once we know that New is in fact a
1410/// redeclaration of Old.
1411///
1412/// \returns false
1413bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1414  // Merge the attributes
1415  MergeDeclAttributes(New, Old, Context);
1416
1417  // Merge the storage class.
1418  if (Old->getStorageClass() != SC_Extern &&
1419      Old->getStorageClass() != SC_None)
1420    New->setStorageClass(Old->getStorageClass());
1421
1422  // Merge "pure" flag.
1423  if (Old->isPure())
1424    New->setPure();
1425
1426  // Merge the "deleted" flag.
1427  if (Old->isDeleted())
1428    New->setDeleted();
1429
1430  if (getLangOptions().CPlusPlus)
1431    return MergeCXXFunctionDecl(New, Old);
1432
1433  return false;
1434}
1435
1436/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1437/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1438/// situation, merging decls or emitting diagnostics as appropriate.
1439///
1440/// Tentative definition rules (C99 6.9.2p2) are checked by
1441/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1442/// definitions here, since the initializer hasn't been attached.
1443///
1444void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1445  // If the new decl is already invalid, don't do any other checking.
1446  if (New->isInvalidDecl())
1447    return;
1448
1449  // Verify the old decl was also a variable.
1450  VarDecl *Old = 0;
1451  if (!Previous.isSingleResult() ||
1452      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1453    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1454      << New->getDeclName();
1455    Diag(Previous.getRepresentativeDecl()->getLocation(),
1456         diag::note_previous_definition);
1457    return New->setInvalidDecl();
1458  }
1459
1460  // C++ [class.mem]p1:
1461  //   A member shall not be declared twice in the member-specification [...]
1462  //
1463  // Here, we need only consider static data members.
1464  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1465    Diag(New->getLocation(), diag::err_duplicate_member)
1466      << New->getIdentifier();
1467    Diag(Old->getLocation(), diag::note_previous_declaration);
1468    New->setInvalidDecl();
1469  }
1470
1471  MergeDeclAttributes(New, Old, Context);
1472
1473  // Merge the types
1474  QualType MergedT;
1475  if (getLangOptions().CPlusPlus) {
1476    if (Context.hasSameType(New->getType(), Old->getType()))
1477      MergedT = New->getType();
1478    // C++ [basic.link]p10:
1479    //   [...] the types specified by all declarations referring to a given
1480    //   object or function shall be identical, except that declarations for an
1481    //   array object can specify array types that differ by the presence or
1482    //   absence of a major array bound (8.3.4).
1483    else if (Old->getType()->isIncompleteArrayType() &&
1484             New->getType()->isArrayType()) {
1485      CanQual<ArrayType> OldArray
1486        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1487      CanQual<ArrayType> NewArray
1488        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1489      if (OldArray->getElementType() == NewArray->getElementType())
1490        MergedT = New->getType();
1491    } else if (Old->getType()->isArrayType() &&
1492             New->getType()->isIncompleteArrayType()) {
1493      CanQual<ArrayType> OldArray
1494        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1495      CanQual<ArrayType> NewArray
1496        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1497      if (OldArray->getElementType() == NewArray->getElementType())
1498        MergedT = Old->getType();
1499    } else if (New->getType()->isObjCObjectPointerType()
1500               && Old->getType()->isObjCObjectPointerType()) {
1501        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1502    }
1503  } else {
1504    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1505  }
1506  if (MergedT.isNull()) {
1507    Diag(New->getLocation(), diag::err_redefinition_different_type)
1508      << New->getDeclName();
1509    Diag(Old->getLocation(), diag::note_previous_definition);
1510    return New->setInvalidDecl();
1511  }
1512  New->setType(MergedT);
1513
1514  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1515  if (New->getStorageClass() == SC_Static &&
1516      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1517    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1518    Diag(Old->getLocation(), diag::note_previous_definition);
1519    return New->setInvalidDecl();
1520  }
1521  // C99 6.2.2p4:
1522  //   For an identifier declared with the storage-class specifier
1523  //   extern in a scope in which a prior declaration of that
1524  //   identifier is visible,23) if the prior declaration specifies
1525  //   internal or external linkage, the linkage of the identifier at
1526  //   the later declaration is the same as the linkage specified at
1527  //   the prior declaration. If no prior declaration is visible, or
1528  //   if the prior declaration specifies no linkage, then the
1529  //   identifier has external linkage.
1530  if (New->hasExternalStorage() && Old->hasLinkage())
1531    /* Okay */;
1532  else if (New->getStorageClass() != SC_Static &&
1533           Old->getStorageClass() == SC_Static) {
1534    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1535    Diag(Old->getLocation(), diag::note_previous_definition);
1536    return New->setInvalidDecl();
1537  }
1538
1539  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1540
1541  // FIXME: The test for external storage here seems wrong? We still
1542  // need to check for mismatches.
1543  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1544      // Don't complain about out-of-line definitions of static members.
1545      !(Old->getLexicalDeclContext()->isRecord() &&
1546        !New->getLexicalDeclContext()->isRecord())) {
1547    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1548    Diag(Old->getLocation(), diag::note_previous_definition);
1549    return New->setInvalidDecl();
1550  }
1551
1552  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1553    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1554    Diag(Old->getLocation(), diag::note_previous_definition);
1555  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1556    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1557    Diag(Old->getLocation(), diag::note_previous_definition);
1558  }
1559
1560  // C++ doesn't have tentative definitions, so go right ahead and check here.
1561  const VarDecl *Def;
1562  if (getLangOptions().CPlusPlus &&
1563      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1564      (Def = Old->getDefinition())) {
1565    Diag(New->getLocation(), diag::err_redefinition)
1566      << New->getDeclName();
1567    Diag(Def->getLocation(), diag::note_previous_definition);
1568    New->setInvalidDecl();
1569    return;
1570  }
1571  // c99 6.2.2 P4.
1572  // For an identifier declared with the storage-class specifier extern in a
1573  // scope in which a prior declaration of that identifier is visible, if
1574  // the prior declaration specifies internal or external linkage, the linkage
1575  // of the identifier at the later declaration is the same as the linkage
1576  // specified at the prior declaration.
1577  // FIXME. revisit this code.
1578  if (New->hasExternalStorage() &&
1579      Old->getLinkage() == InternalLinkage &&
1580      New->getDeclContext() == Old->getDeclContext())
1581    New->setStorageClass(Old->getStorageClass());
1582
1583  // Keep a chain of previous declarations.
1584  New->setPreviousDeclaration(Old);
1585
1586  // Inherit access appropriately.
1587  New->setAccess(Old->getAccess());
1588}
1589
1590/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1591/// no declarator (e.g. "struct foo;") is parsed.
1592Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1593                                            DeclSpec &DS) {
1594  // FIXME: Error on auto/register at file scope
1595  // FIXME: Error on inline/virtual/explicit
1596  // FIXME: Warn on useless __thread
1597  // FIXME: Warn on useless const/volatile
1598  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1599  // FIXME: Warn on useless attributes
1600  Decl *TagD = 0;
1601  TagDecl *Tag = 0;
1602  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1603      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1604      DS.getTypeSpecType() == DeclSpec::TST_union ||
1605      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1606    TagD = DS.getRepAsDecl();
1607
1608    if (!TagD) // We probably had an error
1609      return 0;
1610
1611    // Note that the above type specs guarantee that the
1612    // type rep is a Decl, whereas in many of the others
1613    // it's a Type.
1614    Tag = dyn_cast<TagDecl>(TagD);
1615  }
1616
1617  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1618    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1619    // or incomplete types shall not be restrict-qualified."
1620    if (TypeQuals & DeclSpec::TQ_restrict)
1621      Diag(DS.getRestrictSpecLoc(),
1622           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1623           << DS.getSourceRange();
1624  }
1625
1626  if (DS.isFriendSpecified()) {
1627    // If we're dealing with a class template decl, assume that the
1628    // template routines are handling it.
1629    if (TagD && isa<ClassTemplateDecl>(TagD))
1630      return 0;
1631    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1632  }
1633
1634  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1635    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1636
1637    if (!Record->getDeclName() && Record->isDefinition() &&
1638        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1639      if (getLangOptions().CPlusPlus ||
1640          Record->getDeclContext()->isRecord())
1641        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1642
1643      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1644        << DS.getSourceRange();
1645    }
1646
1647    // Microsoft allows unnamed struct/union fields. Don't complain
1648    // about them.
1649    // FIXME: Should we support Microsoft's extensions in this area?
1650    if (Record->getDeclName() && getLangOptions().Microsoft)
1651      return Tag;
1652  }
1653
1654  if (getLangOptions().CPlusPlus &&
1655      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1656    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1657      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1658          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1659        Diag(Enum->getLocation(), diag::ext_no_declarators)
1660          << DS.getSourceRange();
1661
1662  if (!DS.isMissingDeclaratorOk() &&
1663      DS.getTypeSpecType() != DeclSpec::TST_error) {
1664    // Warn about typedefs of enums without names, since this is an
1665    // extension in both Microsoft and GNU.
1666    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1667        Tag && isa<EnumDecl>(Tag)) {
1668      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1669        << DS.getSourceRange();
1670      return Tag;
1671    }
1672
1673    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1674      << DS.getSourceRange();
1675  }
1676
1677  return TagD;
1678}
1679
1680/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1681/// builds a statement for it and returns it so it is evaluated.
1682StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1683  StmtResult R;
1684  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1685    Expr *Exp = DS.getRepAsExpr();
1686    QualType Ty = Exp->getType();
1687    if (Ty->isPointerType()) {
1688      do
1689        Ty = Ty->getAs<PointerType>()->getPointeeType();
1690      while (Ty->isPointerType());
1691    }
1692    if (Ty->isVariableArrayType()) {
1693      R = ActOnExprStmt(MakeFullExpr(Exp));
1694    }
1695  }
1696  return R;
1697}
1698
1699/// We are trying to inject an anonymous member into the given scope;
1700/// check if there's an existing declaration that can't be overloaded.
1701///
1702/// \return true if this is a forbidden redeclaration
1703static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1704                                         Scope *S,
1705                                         DeclContext *Owner,
1706                                         DeclarationName Name,
1707                                         SourceLocation NameLoc,
1708                                         unsigned diagnostic) {
1709  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1710                 Sema::ForRedeclaration);
1711  if (!SemaRef.LookupName(R, S)) return false;
1712
1713  if (R.getAsSingle<TagDecl>())
1714    return false;
1715
1716  // Pick a representative declaration.
1717  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1718  assert(PrevDecl && "Expected a non-null Decl");
1719
1720  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1721    return false;
1722
1723  SemaRef.Diag(NameLoc, diagnostic) << Name;
1724  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1725
1726  return true;
1727}
1728
1729/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1730/// anonymous struct or union AnonRecord into the owning context Owner
1731/// and scope S. This routine will be invoked just after we realize
1732/// that an unnamed union or struct is actually an anonymous union or
1733/// struct, e.g.,
1734///
1735/// @code
1736/// union {
1737///   int i;
1738///   float f;
1739/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1740///    // f into the surrounding scope.x
1741/// @endcode
1742///
1743/// This routine is recursive, injecting the names of nested anonymous
1744/// structs/unions into the owning context and scope as well.
1745static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1746                                                DeclContext *Owner,
1747                                                RecordDecl *AnonRecord,
1748                                                AccessSpecifier AS) {
1749  unsigned diagKind
1750    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1751                            : diag::err_anonymous_struct_member_redecl;
1752
1753  bool Invalid = false;
1754  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1755                               FEnd = AnonRecord->field_end();
1756       F != FEnd; ++F) {
1757    if ((*F)->getDeclName()) {
1758      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1759                                       (*F)->getLocation(), diagKind)) {
1760        // C++ [class.union]p2:
1761        //   The names of the members of an anonymous union shall be
1762        //   distinct from the names of any other entity in the
1763        //   scope in which the anonymous union is declared.
1764        Invalid = true;
1765      } else {
1766        // C++ [class.union]p2:
1767        //   For the purpose of name lookup, after the anonymous union
1768        //   definition, the members of the anonymous union are
1769        //   considered to have been defined in the scope in which the
1770        //   anonymous union is declared.
1771        Owner->makeDeclVisibleInContext(*F);
1772        S->AddDecl(*F);
1773        SemaRef.IdResolver.AddDecl(*F);
1774
1775        // That includes picking up the appropriate access specifier.
1776        if (AS != AS_none) (*F)->setAccess(AS);
1777      }
1778    } else if (const RecordType *InnerRecordType
1779                 = (*F)->getType()->getAs<RecordType>()) {
1780      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1781      if (InnerRecord->isAnonymousStructOrUnion())
1782        Invalid = Invalid ||
1783          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1784                                              InnerRecord, AS);
1785    }
1786  }
1787
1788  return Invalid;
1789}
1790
1791/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1792/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1793/// illegal input values are mapped to SC_None.
1794static StorageClass
1795StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1796  switch (StorageClassSpec) {
1797  case DeclSpec::SCS_unspecified:    return SC_None;
1798  case DeclSpec::SCS_extern:         return SC_Extern;
1799  case DeclSpec::SCS_static:         return SC_Static;
1800  case DeclSpec::SCS_auto:           return SC_Auto;
1801  case DeclSpec::SCS_register:       return SC_Register;
1802  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1803    // Illegal SCSs map to None: error reporting is up to the caller.
1804  case DeclSpec::SCS_mutable:        // Fall through.
1805  case DeclSpec::SCS_typedef:        return SC_None;
1806  }
1807  llvm_unreachable("unknown storage class specifier");
1808}
1809
1810/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1811/// a StorageClass. Any error reporting is up to the caller:
1812/// illegal input values are mapped to SC_None.
1813static StorageClass
1814StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1815  switch (StorageClassSpec) {
1816  case DeclSpec::SCS_unspecified:    return SC_None;
1817  case DeclSpec::SCS_extern:         return SC_Extern;
1818  case DeclSpec::SCS_static:         return SC_Static;
1819  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1820    // Illegal SCSs map to None: error reporting is up to the caller.
1821  case DeclSpec::SCS_auto:           // Fall through.
1822  case DeclSpec::SCS_mutable:        // Fall through.
1823  case DeclSpec::SCS_register:       // Fall through.
1824  case DeclSpec::SCS_typedef:        return SC_None;
1825  }
1826  llvm_unreachable("unknown storage class specifier");
1827}
1828
1829/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1830/// anonymous structure or union. Anonymous unions are a C++ feature
1831/// (C++ [class.union]) and a GNU C extension; anonymous structures
1832/// are a GNU C and GNU C++ extension.
1833Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1834                                             AccessSpecifier AS,
1835                                             RecordDecl *Record) {
1836  DeclContext *Owner = Record->getDeclContext();
1837
1838  // Diagnose whether this anonymous struct/union is an extension.
1839  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1840    Diag(Record->getLocation(), diag::ext_anonymous_union);
1841  else if (!Record->isUnion())
1842    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1843
1844  // C and C++ require different kinds of checks for anonymous
1845  // structs/unions.
1846  bool Invalid = false;
1847  if (getLangOptions().CPlusPlus) {
1848    const char* PrevSpec = 0;
1849    unsigned DiagID;
1850    // C++ [class.union]p3:
1851    //   Anonymous unions declared in a named namespace or in the
1852    //   global namespace shall be declared static.
1853    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1854        (isa<TranslationUnitDecl>(Owner) ||
1855         (isa<NamespaceDecl>(Owner) &&
1856          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1857      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1858      Invalid = true;
1859
1860      // Recover by adding 'static'.
1861      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1862                             PrevSpec, DiagID);
1863    }
1864    // C++ [class.union]p3:
1865    //   A storage class is not allowed in a declaration of an
1866    //   anonymous union in a class scope.
1867    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1868             isa<RecordDecl>(Owner)) {
1869      Diag(DS.getStorageClassSpecLoc(),
1870           diag::err_anonymous_union_with_storage_spec);
1871      Invalid = true;
1872
1873      // Recover by removing the storage specifier.
1874      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1875                             PrevSpec, DiagID);
1876    }
1877
1878    // C++ [class.union]p2:
1879    //   The member-specification of an anonymous union shall only
1880    //   define non-static data members. [Note: nested types and
1881    //   functions cannot be declared within an anonymous union. ]
1882    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1883                                 MemEnd = Record->decls_end();
1884         Mem != MemEnd; ++Mem) {
1885      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1886        // C++ [class.union]p3:
1887        //   An anonymous union shall not have private or protected
1888        //   members (clause 11).
1889        assert(FD->getAccess() != AS_none);
1890        if (FD->getAccess() != AS_public) {
1891          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1892            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1893          Invalid = true;
1894        }
1895
1896        if (CheckNontrivialField(FD))
1897          Invalid = true;
1898      } else if ((*Mem)->isImplicit()) {
1899        // Any implicit members are fine.
1900      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1901        // This is a type that showed up in an
1902        // elaborated-type-specifier inside the anonymous struct or
1903        // union, but which actually declares a type outside of the
1904        // anonymous struct or union. It's okay.
1905      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1906        if (!MemRecord->isAnonymousStructOrUnion() &&
1907            MemRecord->getDeclName()) {
1908          // Visual C++ allows type definition in anonymous struct or union.
1909          if (getLangOptions().Microsoft)
1910            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1911              << (int)Record->isUnion();
1912          else {
1913            // This is a nested type declaration.
1914            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1915              << (int)Record->isUnion();
1916            Invalid = true;
1917          }
1918        }
1919      } else if (isa<AccessSpecDecl>(*Mem)) {
1920        // Any access specifier is fine.
1921      } else {
1922        // We have something that isn't a non-static data
1923        // member. Complain about it.
1924        unsigned DK = diag::err_anonymous_record_bad_member;
1925        if (isa<TypeDecl>(*Mem))
1926          DK = diag::err_anonymous_record_with_type;
1927        else if (isa<FunctionDecl>(*Mem))
1928          DK = diag::err_anonymous_record_with_function;
1929        else if (isa<VarDecl>(*Mem))
1930          DK = diag::err_anonymous_record_with_static;
1931
1932        // Visual C++ allows type definition in anonymous struct or union.
1933        if (getLangOptions().Microsoft &&
1934            DK == diag::err_anonymous_record_with_type)
1935          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1936            << (int)Record->isUnion();
1937        else {
1938          Diag((*Mem)->getLocation(), DK)
1939              << (int)Record->isUnion();
1940          Invalid = true;
1941        }
1942      }
1943    }
1944  }
1945
1946  if (!Record->isUnion() && !Owner->isRecord()) {
1947    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1948      << (int)getLangOptions().CPlusPlus;
1949    Invalid = true;
1950  }
1951
1952  // Mock up a declarator.
1953  Declarator Dc(DS, Declarator::TypeNameContext);
1954  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1955  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1956
1957  // Create a declaration for this anonymous struct/union.
1958  NamedDecl *Anon = 0;
1959  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1960    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1961                             /*IdentifierInfo=*/0,
1962                             Context.getTypeDeclType(Record),
1963                             TInfo,
1964                             /*BitWidth=*/0, /*Mutable=*/false);
1965    Anon->setAccess(AS);
1966    if (getLangOptions().CPlusPlus)
1967      FieldCollector->Add(cast<FieldDecl>(Anon));
1968  } else {
1969    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1970    assert(SCSpec != DeclSpec::SCS_typedef &&
1971           "Parser allowed 'typedef' as storage class VarDecl.");
1972    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1973    if (SCSpec == DeclSpec::SCS_mutable) {
1974      // mutable can only appear on non-static class members, so it's always
1975      // an error here
1976      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1977      Invalid = true;
1978      SC = SC_None;
1979    }
1980    SCSpec = DS.getStorageClassSpecAsWritten();
1981    VarDecl::StorageClass SCAsWritten
1982      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1983
1984    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1985                           /*IdentifierInfo=*/0,
1986                           Context.getTypeDeclType(Record),
1987                           TInfo, SC, SCAsWritten);
1988  }
1989  Anon->setImplicit();
1990
1991  // Add the anonymous struct/union object to the current
1992  // context. We'll be referencing this object when we refer to one of
1993  // its members.
1994  Owner->addDecl(Anon);
1995
1996  // Inject the members of the anonymous struct/union into the owning
1997  // context and into the identifier resolver chain for name lookup
1998  // purposes.
1999  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
2000    Invalid = true;
2001
2002  // Mark this as an anonymous struct/union type. Note that we do not
2003  // do this until after we have already checked and injected the
2004  // members of this anonymous struct/union type, because otherwise
2005  // the members could be injected twice: once by DeclContext when it
2006  // builds its lookup table, and once by
2007  // InjectAnonymousStructOrUnionMembers.
2008  Record->setAnonymousStructOrUnion(true);
2009
2010  if (Invalid)
2011    Anon->setInvalidDecl();
2012
2013  return Anon;
2014}
2015
2016
2017/// GetNameForDeclarator - Determine the full declaration name for the
2018/// given Declarator.
2019DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2020  return GetNameFromUnqualifiedId(D.getName());
2021}
2022
2023/// \brief Retrieves the declaration name from a parsed unqualified-id.
2024DeclarationNameInfo
2025Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2026  DeclarationNameInfo NameInfo;
2027  NameInfo.setLoc(Name.StartLocation);
2028
2029  switch (Name.getKind()) {
2030
2031  case UnqualifiedId::IK_Identifier:
2032    NameInfo.setName(Name.Identifier);
2033    NameInfo.setLoc(Name.StartLocation);
2034    return NameInfo;
2035
2036  case UnqualifiedId::IK_OperatorFunctionId:
2037    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2038                                           Name.OperatorFunctionId.Operator));
2039    NameInfo.setLoc(Name.StartLocation);
2040    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2041      = Name.OperatorFunctionId.SymbolLocations[0];
2042    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2043      = Name.EndLocation.getRawEncoding();
2044    return NameInfo;
2045
2046  case UnqualifiedId::IK_LiteralOperatorId:
2047    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2048                                                           Name.Identifier));
2049    NameInfo.setLoc(Name.StartLocation);
2050    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2051    return NameInfo;
2052
2053  case UnqualifiedId::IK_ConversionFunctionId: {
2054    TypeSourceInfo *TInfo;
2055    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2056    if (Ty.isNull())
2057      return DeclarationNameInfo();
2058    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2059                                               Context.getCanonicalType(Ty)));
2060    NameInfo.setLoc(Name.StartLocation);
2061    NameInfo.setNamedTypeInfo(TInfo);
2062    return NameInfo;
2063  }
2064
2065  case UnqualifiedId::IK_ConstructorName: {
2066    TypeSourceInfo *TInfo;
2067    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2068    if (Ty.isNull())
2069      return DeclarationNameInfo();
2070    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2071                                              Context.getCanonicalType(Ty)));
2072    NameInfo.setLoc(Name.StartLocation);
2073    NameInfo.setNamedTypeInfo(TInfo);
2074    return NameInfo;
2075  }
2076
2077  case UnqualifiedId::IK_ConstructorTemplateId: {
2078    // In well-formed code, we can only have a constructor
2079    // template-id that refers to the current context, so go there
2080    // to find the actual type being constructed.
2081    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2082    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2083      return DeclarationNameInfo();
2084
2085    // Determine the type of the class being constructed.
2086    QualType CurClassType = Context.getTypeDeclType(CurClass);
2087
2088    // FIXME: Check two things: that the template-id names the same type as
2089    // CurClassType, and that the template-id does not occur when the name
2090    // was qualified.
2091
2092    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2093                                    Context.getCanonicalType(CurClassType)));
2094    NameInfo.setLoc(Name.StartLocation);
2095    // FIXME: should we retrieve TypeSourceInfo?
2096    NameInfo.setNamedTypeInfo(0);
2097    return NameInfo;
2098  }
2099
2100  case UnqualifiedId::IK_DestructorName: {
2101    TypeSourceInfo *TInfo;
2102    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2103    if (Ty.isNull())
2104      return DeclarationNameInfo();
2105    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2106                                              Context.getCanonicalType(Ty)));
2107    NameInfo.setLoc(Name.StartLocation);
2108    NameInfo.setNamedTypeInfo(TInfo);
2109    return NameInfo;
2110  }
2111
2112  case UnqualifiedId::IK_TemplateId: {
2113    TemplateName TName = Name.TemplateId->Template.get();
2114    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2115    return Context.getNameForTemplate(TName, TNameLoc);
2116  }
2117
2118  } // switch (Name.getKind())
2119
2120  assert(false && "Unknown name kind");
2121  return DeclarationNameInfo();
2122}
2123
2124/// isNearlyMatchingFunction - Determine whether the C++ functions
2125/// Declaration and Definition are "nearly" matching. This heuristic
2126/// is used to improve diagnostics in the case where an out-of-line
2127/// function definition doesn't match any declaration within
2128/// the class or namespace.
2129static bool isNearlyMatchingFunction(ASTContext &Context,
2130                                     FunctionDecl *Declaration,
2131                                     FunctionDecl *Definition) {
2132  if (Declaration->param_size() != Definition->param_size())
2133    return false;
2134  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2135    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2136    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2137
2138    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2139                                        DefParamTy.getNonReferenceType()))
2140      return false;
2141  }
2142
2143  return true;
2144}
2145
2146/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2147/// declarator needs to be rebuilt in the current instantiation.
2148/// Any bits of declarator which appear before the name are valid for
2149/// consideration here.  That's specifically the type in the decl spec
2150/// and the base type in any member-pointer chunks.
2151static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2152                                                    DeclarationName Name) {
2153  // The types we specifically need to rebuild are:
2154  //   - typenames, typeofs, and decltypes
2155  //   - types which will become injected class names
2156  // Of course, we also need to rebuild any type referencing such a
2157  // type.  It's safest to just say "dependent", but we call out a
2158  // few cases here.
2159
2160  DeclSpec &DS = D.getMutableDeclSpec();
2161  switch (DS.getTypeSpecType()) {
2162  case DeclSpec::TST_typename:
2163  case DeclSpec::TST_typeofType:
2164  case DeclSpec::TST_decltype: {
2165    // Grab the type from the parser.
2166    TypeSourceInfo *TSI = 0;
2167    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2168    if (T.isNull() || !T->isDependentType()) break;
2169
2170    // Make sure there's a type source info.  This isn't really much
2171    // of a waste; most dependent types should have type source info
2172    // attached already.
2173    if (!TSI)
2174      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2175
2176    // Rebuild the type in the current instantiation.
2177    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2178    if (!TSI) return true;
2179
2180    // Store the new type back in the decl spec.
2181    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2182    DS.UpdateTypeRep(LocType);
2183    break;
2184  }
2185
2186  case DeclSpec::TST_typeofExpr: {
2187    Expr *E = DS.getRepAsExpr();
2188    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2189    if (Result.isInvalid()) return true;
2190    DS.UpdateExprRep(Result.get());
2191    break;
2192  }
2193
2194  default:
2195    // Nothing to do for these decl specs.
2196    break;
2197  }
2198
2199  // It doesn't matter what order we do this in.
2200  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2201    DeclaratorChunk &Chunk = D.getTypeObject(I);
2202
2203    // The only type information in the declarator which can come
2204    // before the declaration name is the base type of a member
2205    // pointer.
2206    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2207      continue;
2208
2209    // Rebuild the scope specifier in-place.
2210    CXXScopeSpec &SS = Chunk.Mem.Scope();
2211    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2212      return true;
2213  }
2214
2215  return false;
2216}
2217
2218Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2219  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2220}
2221
2222Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2223                             MultiTemplateParamsArg TemplateParamLists,
2224                             bool IsFunctionDefinition) {
2225  // TODO: consider using NameInfo for diagnostic.
2226  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2227  DeclarationName Name = NameInfo.getName();
2228
2229  // All of these full declarators require an identifier.  If it doesn't have
2230  // one, the ParsedFreeStandingDeclSpec action should be used.
2231  if (!Name) {
2232    if (!D.isInvalidType())  // Reject this if we think it is valid.
2233      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2234           diag::err_declarator_need_ident)
2235        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2236    return 0;
2237  }
2238
2239  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2240  // we find one that is.
2241  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2242         (S->getFlags() & Scope::TemplateParamScope) != 0)
2243    S = S->getParent();
2244
2245  DeclContext *DC = CurContext;
2246  if (D.getCXXScopeSpec().isInvalid())
2247    D.setInvalidType();
2248  else if (D.getCXXScopeSpec().isSet()) {
2249    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2250    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2251    if (!DC) {
2252      // If we could not compute the declaration context, it's because the
2253      // declaration context is dependent but does not refer to a class,
2254      // class template, or class template partial specialization. Complain
2255      // and return early, to avoid the coming semantic disaster.
2256      Diag(D.getIdentifierLoc(),
2257           diag::err_template_qualified_declarator_no_match)
2258        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2259        << D.getCXXScopeSpec().getRange();
2260      return 0;
2261    }
2262
2263    bool IsDependentContext = DC->isDependentContext();
2264
2265    if (!IsDependentContext &&
2266        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2267      return 0;
2268
2269    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2270      Diag(D.getIdentifierLoc(),
2271           diag::err_member_def_undefined_record)
2272        << Name << DC << D.getCXXScopeSpec().getRange();
2273      D.setInvalidType();
2274    }
2275
2276    // Check whether we need to rebuild the type of the given
2277    // declaration in the current instantiation.
2278    if (EnteringContext && IsDependentContext &&
2279        TemplateParamLists.size() != 0) {
2280      ContextRAII SavedContext(*this, DC);
2281      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2282        D.setInvalidType();
2283    }
2284  }
2285
2286  NamedDecl *New;
2287
2288  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2289  QualType R = TInfo->getType();
2290
2291  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2292                        ForRedeclaration);
2293
2294  // See if this is a redefinition of a variable in the same scope.
2295  if (!D.getCXXScopeSpec().isSet()) {
2296    bool IsLinkageLookup = false;
2297
2298    // If the declaration we're planning to build will be a function
2299    // or object with linkage, then look for another declaration with
2300    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2301    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2302      /* Do nothing*/;
2303    else if (R->isFunctionType()) {
2304      if (CurContext->isFunctionOrMethod() ||
2305          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2306        IsLinkageLookup = true;
2307    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2308      IsLinkageLookup = true;
2309    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2310             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2311      IsLinkageLookup = true;
2312
2313    if (IsLinkageLookup)
2314      Previous.clear(LookupRedeclarationWithLinkage);
2315
2316    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2317  } else { // Something like "int foo::x;"
2318    LookupQualifiedName(Previous, DC);
2319
2320    // Don't consider using declarations as previous declarations for
2321    // out-of-line members.
2322    RemoveUsingDecls(Previous);
2323
2324    // C++ 7.3.1.2p2:
2325    // Members (including explicit specializations of templates) of a named
2326    // namespace can also be defined outside that namespace by explicit
2327    // qualification of the name being defined, provided that the entity being
2328    // defined was already declared in the namespace and the definition appears
2329    // after the point of declaration in a namespace that encloses the
2330    // declarations namespace.
2331    //
2332    // Note that we only check the context at this point. We don't yet
2333    // have enough information to make sure that PrevDecl is actually
2334    // the declaration we want to match. For example, given:
2335    //
2336    //   class X {
2337    //     void f();
2338    //     void f(float);
2339    //   };
2340    //
2341    //   void X::f(int) { } // ill-formed
2342    //
2343    // In this case, PrevDecl will point to the overload set
2344    // containing the two f's declared in X, but neither of them
2345    // matches.
2346
2347    // First check whether we named the global scope.
2348    if (isa<TranslationUnitDecl>(DC)) {
2349      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2350        << Name << D.getCXXScopeSpec().getRange();
2351    } else {
2352      DeclContext *Cur = CurContext;
2353      while (isa<LinkageSpecDecl>(Cur))
2354        Cur = Cur->getParent();
2355      if (!Cur->Encloses(DC)) {
2356        // The qualifying scope doesn't enclose the original declaration.
2357        // Emit diagnostic based on current scope.
2358        SourceLocation L = D.getIdentifierLoc();
2359        SourceRange R = D.getCXXScopeSpec().getRange();
2360        if (isa<FunctionDecl>(Cur))
2361          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2362        else
2363          Diag(L, diag::err_invalid_declarator_scope)
2364            << Name << cast<NamedDecl>(DC) << R;
2365        D.setInvalidType();
2366      }
2367    }
2368  }
2369
2370  if (Previous.isSingleResult() &&
2371      Previous.getFoundDecl()->isTemplateParameter()) {
2372    // Maybe we will complain about the shadowed template parameter.
2373    if (!D.isInvalidType())
2374      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2375                                          Previous.getFoundDecl()))
2376        D.setInvalidType();
2377
2378    // Just pretend that we didn't see the previous declaration.
2379    Previous.clear();
2380  }
2381
2382  // In C++, the previous declaration we find might be a tag type
2383  // (class or enum). In this case, the new declaration will hide the
2384  // tag type. Note that this does does not apply if we're declaring a
2385  // typedef (C++ [dcl.typedef]p4).
2386  if (Previous.isSingleTagDecl() &&
2387      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2388    Previous.clear();
2389
2390  bool Redeclaration = false;
2391  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2392    if (TemplateParamLists.size()) {
2393      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2394      return 0;
2395    }
2396
2397    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2398  } else if (R->isFunctionType()) {
2399    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2400                                  move(TemplateParamLists),
2401                                  IsFunctionDefinition, Redeclaration);
2402  } else {
2403    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2404                                  move(TemplateParamLists),
2405                                  Redeclaration);
2406  }
2407
2408  if (New == 0)
2409    return 0;
2410
2411  // If this has an identifier and is not an invalid redeclaration or
2412  // function template specialization, add it to the scope stack.
2413  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2414    PushOnScopeChains(New, S);
2415
2416  return New;
2417}
2418
2419/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2420/// types into constant array types in certain situations which would otherwise
2421/// be errors (for GCC compatibility).
2422static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2423                                                    ASTContext &Context,
2424                                                    bool &SizeIsNegative,
2425                                                    llvm::APSInt &Oversized) {
2426  // This method tries to turn a variable array into a constant
2427  // array even when the size isn't an ICE.  This is necessary
2428  // for compatibility with code that depends on gcc's buggy
2429  // constant expression folding, like struct {char x[(int)(char*)2];}
2430  SizeIsNegative = false;
2431  Oversized = 0;
2432
2433  if (T->isDependentType())
2434    return QualType();
2435
2436  QualifierCollector Qs;
2437  const Type *Ty = Qs.strip(T);
2438
2439  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2440    QualType Pointee = PTy->getPointeeType();
2441    QualType FixedType =
2442        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2443                                            Oversized);
2444    if (FixedType.isNull()) return FixedType;
2445    FixedType = Context.getPointerType(FixedType);
2446    return Qs.apply(FixedType);
2447  }
2448
2449  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2450  if (!VLATy)
2451    return QualType();
2452  // FIXME: We should probably handle this case
2453  if (VLATy->getElementType()->isVariablyModifiedType())
2454    return QualType();
2455
2456  Expr::EvalResult EvalResult;
2457  if (!VLATy->getSizeExpr() ||
2458      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2459      !EvalResult.Val.isInt())
2460    return QualType();
2461
2462  // Check whether the array size is negative.
2463  llvm::APSInt &Res = EvalResult.Val.getInt();
2464  if (Res.isSigned() && Res.isNegative()) {
2465    SizeIsNegative = true;
2466    return QualType();
2467  }
2468
2469  // Check whether the array is too large to be addressed.
2470  unsigned ActiveSizeBits
2471    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2472                                              Res);
2473  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2474    Oversized = Res;
2475    return QualType();
2476  }
2477
2478  return Context.getConstantArrayType(VLATy->getElementType(),
2479                                      Res, ArrayType::Normal, 0);
2480}
2481
2482/// \brief Register the given locally-scoped external C declaration so
2483/// that it can be found later for redeclarations
2484void
2485Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2486                                       const LookupResult &Previous,
2487                                       Scope *S) {
2488  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2489         "Decl is not a locally-scoped decl!");
2490  // Note that we have a locally-scoped external with this name.
2491  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2492
2493  if (!Previous.isSingleResult())
2494    return;
2495
2496  NamedDecl *PrevDecl = Previous.getFoundDecl();
2497
2498  // If there was a previous declaration of this variable, it may be
2499  // in our identifier chain. Update the identifier chain with the new
2500  // declaration.
2501  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2502    // The previous declaration was found on the identifer resolver
2503    // chain, so remove it from its scope.
2504    while (S && !S->isDeclScope(PrevDecl))
2505      S = S->getParent();
2506
2507    if (S)
2508      S->RemoveDecl(PrevDecl);
2509  }
2510}
2511
2512/// \brief Diagnose function specifiers on a declaration of an identifier that
2513/// does not identify a function.
2514void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2515  // FIXME: We should probably indicate the identifier in question to avoid
2516  // confusion for constructs like "inline int a(), b;"
2517  if (D.getDeclSpec().isInlineSpecified())
2518    Diag(D.getDeclSpec().getInlineSpecLoc(),
2519         diag::err_inline_non_function);
2520
2521  if (D.getDeclSpec().isVirtualSpecified())
2522    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2523         diag::err_virtual_non_function);
2524
2525  if (D.getDeclSpec().isExplicitSpecified())
2526    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2527         diag::err_explicit_non_function);
2528}
2529
2530NamedDecl*
2531Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2532                             QualType R,  TypeSourceInfo *TInfo,
2533                             LookupResult &Previous, bool &Redeclaration) {
2534  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2535  if (D.getCXXScopeSpec().isSet()) {
2536    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2537      << D.getCXXScopeSpec().getRange();
2538    D.setInvalidType();
2539    // Pretend we didn't see the scope specifier.
2540    DC = CurContext;
2541    Previous.clear();
2542  }
2543
2544  if (getLangOptions().CPlusPlus) {
2545    // Check that there are no default arguments (C++ only).
2546    CheckExtraCXXDefaultArguments(D);
2547  }
2548
2549  DiagnoseFunctionSpecifiers(D);
2550
2551  if (D.getDeclSpec().isThreadSpecified())
2552    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2553
2554  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2555    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2556      << D.getName().getSourceRange();
2557    return 0;
2558  }
2559
2560  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2561  if (!NewTD) return 0;
2562
2563  // Handle attributes prior to checking for duplicates in MergeVarDecl
2564  ProcessDeclAttributes(S, NewTD, D);
2565
2566  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2567  // then it shall have block scope.
2568  // Note that variably modified types must be fixed before merging the decl so
2569  // that redeclarations will match.
2570  QualType T = NewTD->getUnderlyingType();
2571  if (T->isVariablyModifiedType()) {
2572    getCurFunction()->setHasBranchProtectedScope();
2573
2574    if (S->getFnParent() == 0) {
2575      bool SizeIsNegative;
2576      llvm::APSInt Oversized;
2577      QualType FixedTy =
2578          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2579                                              Oversized);
2580      if (!FixedTy.isNull()) {
2581        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2582        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2583      } else {
2584        if (SizeIsNegative)
2585          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2586        else if (T->isVariableArrayType())
2587          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2588        else if (Oversized.getBoolValue())
2589          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2590            << Oversized.toString(10);
2591        else
2592          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2593        NewTD->setInvalidDecl();
2594      }
2595    }
2596  }
2597
2598  // Merge the decl with the existing one if appropriate. If the decl is
2599  // in an outer scope, it isn't the same thing.
2600  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2601  if (!Previous.empty()) {
2602    Redeclaration = true;
2603    MergeTypeDefDecl(NewTD, Previous);
2604  }
2605
2606  // If this is the C FILE type, notify the AST context.
2607  if (IdentifierInfo *II = NewTD->getIdentifier())
2608    if (!NewTD->isInvalidDecl() &&
2609        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2610      if (II->isStr("FILE"))
2611        Context.setFILEDecl(NewTD);
2612      else if (II->isStr("jmp_buf"))
2613        Context.setjmp_bufDecl(NewTD);
2614      else if (II->isStr("sigjmp_buf"))
2615        Context.setsigjmp_bufDecl(NewTD);
2616      else if (II->isStr("__builtin_va_list"))
2617        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2618    }
2619
2620  return NewTD;
2621}
2622
2623/// \brief Determines whether the given declaration is an out-of-scope
2624/// previous declaration.
2625///
2626/// This routine should be invoked when name lookup has found a
2627/// previous declaration (PrevDecl) that is not in the scope where a
2628/// new declaration by the same name is being introduced. If the new
2629/// declaration occurs in a local scope, previous declarations with
2630/// linkage may still be considered previous declarations (C99
2631/// 6.2.2p4-5, C++ [basic.link]p6).
2632///
2633/// \param PrevDecl the previous declaration found by name
2634/// lookup
2635///
2636/// \param DC the context in which the new declaration is being
2637/// declared.
2638///
2639/// \returns true if PrevDecl is an out-of-scope previous declaration
2640/// for a new delcaration with the same name.
2641static bool
2642isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2643                                ASTContext &Context) {
2644  if (!PrevDecl)
2645    return false;
2646
2647  if (!PrevDecl->hasLinkage())
2648    return false;
2649
2650  if (Context.getLangOptions().CPlusPlus) {
2651    // C++ [basic.link]p6:
2652    //   If there is a visible declaration of an entity with linkage
2653    //   having the same name and type, ignoring entities declared
2654    //   outside the innermost enclosing namespace scope, the block
2655    //   scope declaration declares that same entity and receives the
2656    //   linkage of the previous declaration.
2657    DeclContext *OuterContext = DC->getRedeclContext();
2658    if (!OuterContext->isFunctionOrMethod())
2659      // This rule only applies to block-scope declarations.
2660      return false;
2661
2662    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2663    if (PrevOuterContext->isRecord())
2664      // We found a member function: ignore it.
2665      return false;
2666
2667    // Find the innermost enclosing namespace for the new and
2668    // previous declarations.
2669    OuterContext = OuterContext->getEnclosingNamespaceContext();
2670    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2671
2672    // The previous declaration is in a different namespace, so it
2673    // isn't the same function.
2674    if (!OuterContext->Equals(PrevOuterContext))
2675      return false;
2676  }
2677
2678  return true;
2679}
2680
2681static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2682  CXXScopeSpec &SS = D.getCXXScopeSpec();
2683  if (!SS.isSet()) return;
2684  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2685                       SS.getRange());
2686}
2687
2688NamedDecl*
2689Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2690                              QualType R, TypeSourceInfo *TInfo,
2691                              LookupResult &Previous,
2692                              MultiTemplateParamsArg TemplateParamLists,
2693                              bool &Redeclaration) {
2694  DeclarationName Name = GetNameForDeclarator(D).getName();
2695
2696  // Check that there are no default arguments (C++ only).
2697  if (getLangOptions().CPlusPlus)
2698    CheckExtraCXXDefaultArguments(D);
2699
2700  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2701  assert(SCSpec != DeclSpec::SCS_typedef &&
2702         "Parser allowed 'typedef' as storage class VarDecl.");
2703  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2704  if (SCSpec == DeclSpec::SCS_mutable) {
2705    // mutable can only appear on non-static class members, so it's always
2706    // an error here
2707    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2708    D.setInvalidType();
2709    SC = SC_None;
2710  }
2711  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2712  VarDecl::StorageClass SCAsWritten
2713    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2714
2715  IdentifierInfo *II = Name.getAsIdentifierInfo();
2716  if (!II) {
2717    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2718      << Name.getAsString();
2719    return 0;
2720  }
2721
2722  DiagnoseFunctionSpecifiers(D);
2723
2724  if (!DC->isRecord() && S->getFnParent() == 0) {
2725    // C99 6.9p2: The storage-class specifiers auto and register shall not
2726    // appear in the declaration specifiers in an external declaration.
2727    if (SC == SC_Auto || SC == SC_Register) {
2728
2729      // If this is a register variable with an asm label specified, then this
2730      // is a GNU extension.
2731      if (SC == SC_Register && D.getAsmLabel())
2732        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2733      else
2734        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2735      D.setInvalidType();
2736    }
2737  }
2738  if (DC->isRecord() && !CurContext->isRecord()) {
2739    // This is an out-of-line definition of a static data member.
2740    if (SC == SC_Static) {
2741      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2742           diag::err_static_out_of_line)
2743        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2744    } else if (SC == SC_None)
2745      SC = SC_Static;
2746  }
2747  if (SC == SC_Static) {
2748    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2749      if (RD->isLocalClass())
2750        Diag(D.getIdentifierLoc(),
2751             diag::err_static_data_member_not_allowed_in_local_class)
2752          << Name << RD->getDeclName();
2753    }
2754  }
2755
2756  // Match up the template parameter lists with the scope specifier, then
2757  // determine whether we have a template or a template specialization.
2758  bool isExplicitSpecialization = false;
2759  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2760  bool Invalid = false;
2761  if (TemplateParameterList *TemplateParams
2762        = MatchTemplateParametersToScopeSpecifier(
2763                                  D.getDeclSpec().getSourceRange().getBegin(),
2764                                                  D.getCXXScopeSpec(),
2765                        (TemplateParameterList**)TemplateParamLists.get(),
2766                                                   TemplateParamLists.size(),
2767                                                  /*never a friend*/ false,
2768                                                  isExplicitSpecialization,
2769                                                  Invalid)) {
2770    // All but one template parameter lists have been matching.
2771    --NumMatchedTemplateParamLists;
2772
2773    if (TemplateParams->size() > 0) {
2774      // There is no such thing as a variable template.
2775      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2776        << II
2777        << SourceRange(TemplateParams->getTemplateLoc(),
2778                       TemplateParams->getRAngleLoc());
2779      return 0;
2780    } else {
2781      // There is an extraneous 'template<>' for this variable. Complain
2782      // about it, but allow the declaration of the variable.
2783      Diag(TemplateParams->getTemplateLoc(),
2784           diag::err_template_variable_noparams)
2785        << II
2786        << SourceRange(TemplateParams->getTemplateLoc(),
2787                       TemplateParams->getRAngleLoc());
2788
2789      isExplicitSpecialization = true;
2790    }
2791  }
2792
2793  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2794                                   II, R, TInfo, SC, SCAsWritten);
2795
2796  if (D.isInvalidType() || Invalid)
2797    NewVD->setInvalidDecl();
2798
2799  SetNestedNameSpecifier(NewVD, D);
2800
2801  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2802    NewVD->setTemplateParameterListsInfo(Context,
2803                                         NumMatchedTemplateParamLists,
2804                        (TemplateParameterList**)TemplateParamLists.release());
2805  }
2806
2807  if (D.getDeclSpec().isThreadSpecified()) {
2808    if (NewVD->hasLocalStorage())
2809      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2810    else if (!Context.Target.isTLSSupported())
2811      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2812    else
2813      NewVD->setThreadSpecified(true);
2814  }
2815
2816  // Set the lexical context. If the declarator has a C++ scope specifier, the
2817  // lexical context will be different from the semantic context.
2818  NewVD->setLexicalDeclContext(CurContext);
2819
2820  // Handle attributes prior to checking for duplicates in MergeVarDecl
2821  ProcessDeclAttributes(S, NewVD, D);
2822
2823  // Handle GNU asm-label extension (encoded as an attribute).
2824  if (Expr *E = (Expr*) D.getAsmLabel()) {
2825    // The parser guarantees this is a string.
2826    StringLiteral *SE = cast<StringLiteral>(E);
2827    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2828                                                Context, SE->getString()));
2829  }
2830
2831  // Diagnose shadowed variables before filtering for scope.
2832  if (!D.getCXXScopeSpec().isSet())
2833    CheckShadow(S, NewVD, Previous);
2834
2835  // Don't consider existing declarations that are in a different
2836  // scope and are out-of-semantic-context declarations (if the new
2837  // declaration has linkage).
2838  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2839
2840  // Merge the decl with the existing one if appropriate.
2841  if (!Previous.empty()) {
2842    if (Previous.isSingleResult() &&
2843        isa<FieldDecl>(Previous.getFoundDecl()) &&
2844        D.getCXXScopeSpec().isSet()) {
2845      // The user tried to define a non-static data member
2846      // out-of-line (C++ [dcl.meaning]p1).
2847      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2848        << D.getCXXScopeSpec().getRange();
2849      Previous.clear();
2850      NewVD->setInvalidDecl();
2851    }
2852  } else if (D.getCXXScopeSpec().isSet()) {
2853    // No previous declaration in the qualifying scope.
2854    Diag(D.getIdentifierLoc(), diag::err_no_member)
2855      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2856      << D.getCXXScopeSpec().getRange();
2857    NewVD->setInvalidDecl();
2858  }
2859
2860  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2861
2862  // This is an explicit specialization of a static data member. Check it.
2863  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2864      CheckMemberSpecialization(NewVD, Previous))
2865    NewVD->setInvalidDecl();
2866
2867  // attributes declared post-definition are currently ignored
2868  // FIXME: This should be handled in attribute merging, not
2869  // here.
2870  if (Previous.isSingleResult()) {
2871    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2872    if (Def && (Def = Def->getDefinition()) &&
2873        Def != NewVD && D.hasAttributes()) {
2874      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2875      Diag(Def->getLocation(), diag::note_previous_definition);
2876    }
2877  }
2878
2879  // If this is a locally-scoped extern C variable, update the map of
2880  // such variables.
2881  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2882      !NewVD->isInvalidDecl())
2883    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2884
2885  // If there's a #pragma GCC visibility in scope, and this isn't a class
2886  // member, set the visibility of this variable.
2887  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2888    AddPushedVisibilityAttribute(NewVD);
2889
2890  MarkUnusedFileScopedDecl(NewVD);
2891
2892  return NewVD;
2893}
2894
2895/// \brief Diagnose variable or built-in function shadowing.  Implements
2896/// -Wshadow.
2897///
2898/// This method is called whenever a VarDecl is added to a "useful"
2899/// scope.
2900///
2901/// \param S the scope in which the shadowing name is being declared
2902/// \param R the lookup of the name
2903///
2904void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2905  // Return if warning is ignored.
2906  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2907    return;
2908
2909  // Don't diagnose declarations at file scope.  The scope might not
2910  // have a DeclContext if (e.g.) we're parsing a function prototype.
2911  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2912  if (NewDC && NewDC->isFileContext())
2913    return;
2914
2915  // Only diagnose if we're shadowing an unambiguous field or variable.
2916  if (R.getResultKind() != LookupResult::Found)
2917    return;
2918
2919  NamedDecl* ShadowedDecl = R.getFoundDecl();
2920  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2921    return;
2922
2923  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2924
2925  // Only warn about certain kinds of shadowing for class members.
2926  if (NewDC && NewDC->isRecord()) {
2927    // In particular, don't warn about shadowing non-class members.
2928    if (!OldDC->isRecord())
2929      return;
2930
2931    // TODO: should we warn about static data members shadowing
2932    // static data members from base classes?
2933
2934    // TODO: don't diagnose for inaccessible shadowed members.
2935    // This is hard to do perfectly because we might friend the
2936    // shadowing context, but that's just a false negative.
2937  }
2938
2939  // Determine what kind of declaration we're shadowing.
2940  unsigned Kind;
2941  if (isa<RecordDecl>(OldDC)) {
2942    if (isa<FieldDecl>(ShadowedDecl))
2943      Kind = 3; // field
2944    else
2945      Kind = 2; // static data member
2946  } else if (OldDC->isFileContext())
2947    Kind = 1; // global
2948  else
2949    Kind = 0; // local
2950
2951  DeclarationName Name = R.getLookupName();
2952
2953  // Emit warning and note.
2954  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2955  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2956}
2957
2958/// \brief Check -Wshadow without the advantage of a previous lookup.
2959void Sema::CheckShadow(Scope *S, VarDecl *D) {
2960  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2961                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2962  LookupName(R, S);
2963  CheckShadow(S, D, R);
2964}
2965
2966/// \brief Perform semantic checking on a newly-created variable
2967/// declaration.
2968///
2969/// This routine performs all of the type-checking required for a
2970/// variable declaration once it has been built. It is used both to
2971/// check variables after they have been parsed and their declarators
2972/// have been translated into a declaration, and to check variables
2973/// that have been instantiated from a template.
2974///
2975/// Sets NewVD->isInvalidDecl() if an error was encountered.
2976void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2977                                    LookupResult &Previous,
2978                                    bool &Redeclaration) {
2979  // If the decl is already known invalid, don't check it.
2980  if (NewVD->isInvalidDecl())
2981    return;
2982
2983  QualType T = NewVD->getType();
2984
2985  if (T->isObjCObjectType()) {
2986    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2987    return NewVD->setInvalidDecl();
2988  }
2989
2990  // Emit an error if an address space was applied to decl with local storage.
2991  // This includes arrays of objects with address space qualifiers, but not
2992  // automatic variables that point to other address spaces.
2993  // ISO/IEC TR 18037 S5.1.2
2994  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2995    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2996    return NewVD->setInvalidDecl();
2997  }
2998
2999  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3000      && !NewVD->hasAttr<BlocksAttr>())
3001    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3002
3003  bool isVM = T->isVariablyModifiedType();
3004  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3005      NewVD->hasAttr<BlocksAttr>())
3006    getCurFunction()->setHasBranchProtectedScope();
3007
3008  if ((isVM && NewVD->hasLinkage()) ||
3009      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3010    bool SizeIsNegative;
3011    llvm::APSInt Oversized;
3012    QualType FixedTy =
3013        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3014                                            Oversized);
3015
3016    if (FixedTy.isNull() && T->isVariableArrayType()) {
3017      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3018      // FIXME: This won't give the correct result for
3019      // int a[10][n];
3020      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3021
3022      if (NewVD->isFileVarDecl())
3023        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3024        << SizeRange;
3025      else if (NewVD->getStorageClass() == SC_Static)
3026        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3027        << SizeRange;
3028      else
3029        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3030        << SizeRange;
3031      return NewVD->setInvalidDecl();
3032    }
3033
3034    if (FixedTy.isNull()) {
3035      if (NewVD->isFileVarDecl())
3036        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3037      else
3038        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3039      return NewVD->setInvalidDecl();
3040    }
3041
3042    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3043    NewVD->setType(FixedTy);
3044  }
3045
3046  if (Previous.empty() && NewVD->isExternC()) {
3047    // Since we did not find anything by this name and we're declaring
3048    // an extern "C" variable, look for a non-visible extern "C"
3049    // declaration with the same name.
3050    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3051      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3052    if (Pos != LocallyScopedExternalDecls.end())
3053      Previous.addDecl(Pos->second);
3054  }
3055
3056  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3057    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3058      << T;
3059    return NewVD->setInvalidDecl();
3060  }
3061
3062  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3063    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3064    return NewVD->setInvalidDecl();
3065  }
3066
3067  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3068    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3069    return NewVD->setInvalidDecl();
3070  }
3071
3072  // Function pointers and references cannot have qualified function type, only
3073  // function pointer-to-members can do that.
3074  QualType Pointee;
3075  unsigned PtrOrRef = 0;
3076  if (const PointerType *Ptr = T->getAs<PointerType>())
3077    Pointee = Ptr->getPointeeType();
3078  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3079    Pointee = Ref->getPointeeType();
3080    PtrOrRef = 1;
3081  }
3082  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3083      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3084    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3085        << PtrOrRef;
3086    return NewVD->setInvalidDecl();
3087  }
3088
3089  if (!Previous.empty()) {
3090    Redeclaration = true;
3091    MergeVarDecl(NewVD, Previous);
3092  }
3093}
3094
3095/// \brief Data used with FindOverriddenMethod
3096struct FindOverriddenMethodData {
3097  Sema *S;
3098  CXXMethodDecl *Method;
3099};
3100
3101/// \brief Member lookup function that determines whether a given C++
3102/// method overrides a method in a base class, to be used with
3103/// CXXRecordDecl::lookupInBases().
3104static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3105                                 CXXBasePath &Path,
3106                                 void *UserData) {
3107  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3108
3109  FindOverriddenMethodData *Data
3110    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3111
3112  DeclarationName Name = Data->Method->getDeclName();
3113
3114  // FIXME: Do we care about other names here too?
3115  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3116    // We really want to find the base class destructor here.
3117    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3118    CanQualType CT = Data->S->Context.getCanonicalType(T);
3119
3120    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3121  }
3122
3123  for (Path.Decls = BaseRecord->lookup(Name);
3124       Path.Decls.first != Path.Decls.second;
3125       ++Path.Decls.first) {
3126    NamedDecl *D = *Path.Decls.first;
3127    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3128      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3129        return true;
3130    }
3131  }
3132
3133  return false;
3134}
3135
3136/// AddOverriddenMethods - See if a method overrides any in the base classes,
3137/// and if so, check that it's a valid override and remember it.
3138void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3139  // Look for virtual methods in base classes that this method might override.
3140  CXXBasePaths Paths;
3141  FindOverriddenMethodData Data;
3142  Data.Method = MD;
3143  Data.S = this;
3144  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3145    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3146         E = Paths.found_decls_end(); I != E; ++I) {
3147      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3148        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3149            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3150            !CheckOverridingFunctionAttributes(MD, OldMD))
3151          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3152      }
3153    }
3154  }
3155}
3156
3157NamedDecl*
3158Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3159                              QualType R, TypeSourceInfo *TInfo,
3160                              LookupResult &Previous,
3161                              MultiTemplateParamsArg TemplateParamLists,
3162                              bool IsFunctionDefinition, bool &Redeclaration) {
3163  assert(R.getTypePtr()->isFunctionType());
3164
3165  // TODO: consider using NameInfo for diagnostic.
3166  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3167  DeclarationName Name = NameInfo.getName();
3168  FunctionDecl::StorageClass SC = SC_None;
3169  switch (D.getDeclSpec().getStorageClassSpec()) {
3170  default: assert(0 && "Unknown storage class!");
3171  case DeclSpec::SCS_auto:
3172  case DeclSpec::SCS_register:
3173  case DeclSpec::SCS_mutable:
3174    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3175         diag::err_typecheck_sclass_func);
3176    D.setInvalidType();
3177    break;
3178  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3179  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3180  case DeclSpec::SCS_static: {
3181    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3182      // C99 6.7.1p5:
3183      //   The declaration of an identifier for a function that has
3184      //   block scope shall have no explicit storage-class specifier
3185      //   other than extern
3186      // See also (C++ [dcl.stc]p4).
3187      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3188           diag::err_static_block_func);
3189      SC = SC_None;
3190    } else
3191      SC = SC_Static;
3192    break;
3193  }
3194  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3195  }
3196
3197  if (D.getDeclSpec().isThreadSpecified())
3198    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3199
3200  bool isFriend = D.getDeclSpec().isFriendSpecified();
3201  bool isInline = D.getDeclSpec().isInlineSpecified();
3202  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3203  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3204
3205  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3206  FunctionDecl::StorageClass SCAsWritten
3207    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3208
3209  // Check that the return type is not an abstract class type.
3210  // For record types, this is done by the AbstractClassUsageDiagnoser once
3211  // the class has been completely parsed.
3212  if (!DC->isRecord() &&
3213      RequireNonAbstractType(D.getIdentifierLoc(),
3214                             R->getAs<FunctionType>()->getResultType(),
3215                             diag::err_abstract_type_in_decl,
3216                             AbstractReturnType))
3217    D.setInvalidType();
3218
3219  // Do not allow returning a objc interface by-value.
3220  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3221    Diag(D.getIdentifierLoc(),
3222         diag::err_object_cannot_be_passed_returned_by_value) << 0
3223      << R->getAs<FunctionType>()->getResultType();
3224    D.setInvalidType();
3225  }
3226
3227  bool isVirtualOkay = false;
3228  FunctionDecl *NewFD;
3229
3230  if (isFriend) {
3231    // C++ [class.friend]p5
3232    //   A function can be defined in a friend declaration of a
3233    //   class . . . . Such a function is implicitly inline.
3234    isInline |= IsFunctionDefinition;
3235  }
3236
3237  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3238    // This is a C++ constructor declaration.
3239    assert(DC->isRecord() &&
3240           "Constructors can only be declared in a member context");
3241
3242    R = CheckConstructorDeclarator(D, R, SC);
3243
3244    // Create the new declaration
3245    NewFD = CXXConstructorDecl::Create(Context,
3246                                       cast<CXXRecordDecl>(DC),
3247                                       NameInfo, R, TInfo,
3248                                       isExplicit, isInline,
3249                                       /*isImplicitlyDeclared=*/false);
3250  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3251    // This is a C++ destructor declaration.
3252    if (DC->isRecord()) {
3253      R = CheckDestructorDeclarator(D, R, SC);
3254
3255      NewFD = CXXDestructorDecl::Create(Context,
3256                                        cast<CXXRecordDecl>(DC),
3257                                        NameInfo, R,
3258                                        isInline,
3259                                        /*isImplicitlyDeclared=*/false);
3260      NewFD->setTypeSourceInfo(TInfo);
3261
3262      isVirtualOkay = true;
3263    } else {
3264      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3265
3266      // Create a FunctionDecl to satisfy the function definition parsing
3267      // code path.
3268      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3269                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3270                                   /*hasPrototype=*/true);
3271      D.setInvalidType();
3272    }
3273  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3274    if (!DC->isRecord()) {
3275      Diag(D.getIdentifierLoc(),
3276           diag::err_conv_function_not_member);
3277      return 0;
3278    }
3279
3280    CheckConversionDeclarator(D, R, SC);
3281    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3282                                      NameInfo, R, TInfo,
3283                                      isInline, isExplicit);
3284
3285    isVirtualOkay = true;
3286  } else if (DC->isRecord()) {
3287    // If the of the function is the same as the name of the record, then this
3288    // must be an invalid constructor that has a return type.
3289    // (The parser checks for a return type and makes the declarator a
3290    // constructor if it has no return type).
3291    // must have an invalid constructor that has a return type
3292    if (Name.getAsIdentifierInfo() &&
3293        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3294      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3295        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3296        << SourceRange(D.getIdentifierLoc());
3297      return 0;
3298    }
3299
3300    bool isStatic = SC == SC_Static;
3301
3302    // [class.free]p1:
3303    // Any allocation function for a class T is a static member
3304    // (even if not explicitly declared static).
3305    if (Name.getCXXOverloadedOperator() == OO_New ||
3306        Name.getCXXOverloadedOperator() == OO_Array_New)
3307      isStatic = true;
3308
3309    // [class.free]p6 Any deallocation function for a class X is a static member
3310    // (even if not explicitly declared static).
3311    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3312        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3313      isStatic = true;
3314
3315    // This is a C++ method declaration.
3316    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3317                                  NameInfo, R, TInfo,
3318                                  isStatic, SCAsWritten, isInline);
3319
3320    isVirtualOkay = !isStatic;
3321  } else {
3322    // Determine whether the function was written with a
3323    // prototype. This true when:
3324    //   - we're in C++ (where every function has a prototype),
3325    //   - there is a prototype in the declarator, or
3326    //   - the type R of the function is some kind of typedef or other reference
3327    //     to a type name (which eventually refers to a function type).
3328    bool HasPrototype =
3329       getLangOptions().CPlusPlus ||
3330       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3331       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3332
3333    NewFD = FunctionDecl::Create(Context, DC,
3334                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3335                                 HasPrototype);
3336  }
3337
3338  if (D.isInvalidType())
3339    NewFD->setInvalidDecl();
3340
3341  SetNestedNameSpecifier(NewFD, D);
3342
3343  // Set the lexical context. If the declarator has a C++
3344  // scope specifier, or is the object of a friend declaration, the
3345  // lexical context will be different from the semantic context.
3346  NewFD->setLexicalDeclContext(CurContext);
3347
3348  // Match up the template parameter lists with the scope specifier, then
3349  // determine whether we have a template or a template specialization.
3350  FunctionTemplateDecl *FunctionTemplate = 0;
3351  bool isExplicitSpecialization = false;
3352  bool isFunctionTemplateSpecialization = false;
3353  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3354  bool Invalid = false;
3355  if (TemplateParameterList *TemplateParams
3356        = MatchTemplateParametersToScopeSpecifier(
3357                                  D.getDeclSpec().getSourceRange().getBegin(),
3358                                  D.getCXXScopeSpec(),
3359                           (TemplateParameterList**)TemplateParamLists.get(),
3360                                                  TemplateParamLists.size(),
3361                                                  isFriend,
3362                                                  isExplicitSpecialization,
3363                                                  Invalid)) {
3364    // All but one template parameter lists have been matching.
3365    --NumMatchedTemplateParamLists;
3366
3367    if (TemplateParams->size() > 0) {
3368      // This is a function template
3369
3370      // Check that we can declare a template here.
3371      if (CheckTemplateDeclScope(S, TemplateParams))
3372        return 0;
3373
3374      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3375                                                      NewFD->getLocation(),
3376                                                      Name, TemplateParams,
3377                                                      NewFD);
3378      FunctionTemplate->setLexicalDeclContext(CurContext);
3379      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3380    } else {
3381      // This is a function template specialization.
3382      isFunctionTemplateSpecialization = true;
3383
3384      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3385      if (isFriend && isFunctionTemplateSpecialization) {
3386        // We want to remove the "template<>", found here.
3387        SourceRange RemoveRange = TemplateParams->getSourceRange();
3388
3389        // If we remove the template<> and the name is not a
3390        // template-id, we're actually silently creating a problem:
3391        // the friend declaration will refer to an untemplated decl,
3392        // and clearly the user wants a template specialization.  So
3393        // we need to insert '<>' after the name.
3394        SourceLocation InsertLoc;
3395        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3396          InsertLoc = D.getName().getSourceRange().getEnd();
3397          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3398        }
3399
3400        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3401          << Name << RemoveRange
3402          << FixItHint::CreateRemoval(RemoveRange)
3403          << FixItHint::CreateInsertion(InsertLoc, "<>");
3404      }
3405    }
3406  }
3407
3408  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3409    NewFD->setTemplateParameterListsInfo(Context,
3410                                         NumMatchedTemplateParamLists,
3411                        (TemplateParameterList**)TemplateParamLists.release());
3412  }
3413
3414  if (Invalid) {
3415    NewFD->setInvalidDecl();
3416    if (FunctionTemplate)
3417      FunctionTemplate->setInvalidDecl();
3418  }
3419
3420  // C++ [dcl.fct.spec]p5:
3421  //   The virtual specifier shall only be used in declarations of
3422  //   nonstatic class member functions that appear within a
3423  //   member-specification of a class declaration; see 10.3.
3424  //
3425  if (isVirtual && !NewFD->isInvalidDecl()) {
3426    if (!isVirtualOkay) {
3427       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3428           diag::err_virtual_non_function);
3429    } else if (!CurContext->isRecord()) {
3430      // 'virtual' was specified outside of the class.
3431      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3432        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3433    } else {
3434      // Okay: Add virtual to the method.
3435      NewFD->setVirtualAsWritten(true);
3436    }
3437  }
3438
3439  // C++ [dcl.fct.spec]p3:
3440  //  The inline specifier shall not appear on a block scope function declaration.
3441  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3442    if (CurContext->isFunctionOrMethod()) {
3443      // 'inline' is not allowed on block scope function declaration.
3444      Diag(D.getDeclSpec().getInlineSpecLoc(),
3445           diag::err_inline_declaration_block_scope) << Name
3446        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3447    }
3448  }
3449
3450  // C++ [dcl.fct.spec]p6:
3451  //  The explicit specifier shall be used only in the declaration of a
3452  //  constructor or conversion function within its class definition; see 12.3.1
3453  //  and 12.3.2.
3454  if (isExplicit && !NewFD->isInvalidDecl()) {
3455    if (!CurContext->isRecord()) {
3456      // 'explicit' was specified outside of the class.
3457      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3458           diag::err_explicit_out_of_class)
3459        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3460    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3461               !isa<CXXConversionDecl>(NewFD)) {
3462      // 'explicit' was specified on a function that wasn't a constructor
3463      // or conversion function.
3464      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3465           diag::err_explicit_non_ctor_or_conv_function)
3466        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3467    }
3468  }
3469
3470  // Filter out previous declarations that don't match the scope.
3471  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3472
3473  if (isFriend) {
3474    // DC is the namespace in which the function is being declared.
3475    assert((DC->isFileContext() || !Previous.empty()) &&
3476           "previously-undeclared friend function being created "
3477           "in a non-namespace context");
3478
3479    // For now, claim that the objects have no previous declaration.
3480    if (FunctionTemplate) {
3481      FunctionTemplate->setObjectOfFriendDecl(false);
3482      FunctionTemplate->setAccess(AS_public);
3483    }
3484    NewFD->setObjectOfFriendDecl(false);
3485    NewFD->setAccess(AS_public);
3486  }
3487
3488  if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3489      !CurContext->isRecord()) {
3490    // C++ [class.static]p1:
3491    //   A data or function member of a class may be declared static
3492    //   in a class definition, in which case it is a static member of
3493    //   the class.
3494
3495    // Complain about the 'static' specifier if it's on an out-of-line
3496    // member function definition.
3497    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3498         diag::err_static_out_of_line)
3499      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3500  }
3501
3502  // Handle GNU asm-label extension (encoded as an attribute).
3503  if (Expr *E = (Expr*) D.getAsmLabel()) {
3504    // The parser guarantees this is a string.
3505    StringLiteral *SE = cast<StringLiteral>(E);
3506    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3507                                                SE->getString()));
3508  }
3509
3510  // Copy the parameter declarations from the declarator D to the function
3511  // declaration NewFD, if they are available.  First scavenge them into Params.
3512  llvm::SmallVector<ParmVarDecl*, 16> Params;
3513  if (D.getNumTypeObjects() > 0) {
3514    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3515
3516    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3517    // function that takes no arguments, not a function that takes a
3518    // single void argument.
3519    // We let through "const void" here because Sema::GetTypeForDeclarator
3520    // already checks for that case.
3521    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3522        FTI.ArgInfo[0].Param &&
3523        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3524      // Empty arg list, don't push any params.
3525      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3526
3527      // In C++, the empty parameter-type-list must be spelled "void"; a
3528      // typedef of void is not permitted.
3529      if (getLangOptions().CPlusPlus &&
3530          Param->getType().getUnqualifiedType() != Context.VoidTy)
3531        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3532      // FIXME: Leaks decl?
3533    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3534      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3535        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3536        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3537        Param->setDeclContext(NewFD);
3538        Params.push_back(Param);
3539
3540        if (Param->isInvalidDecl())
3541          NewFD->setInvalidDecl();
3542      }
3543    }
3544
3545  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3546    // When we're declaring a function with a typedef, typeof, etc as in the
3547    // following example, we'll need to synthesize (unnamed)
3548    // parameters for use in the declaration.
3549    //
3550    // @code
3551    // typedef void fn(int);
3552    // fn f;
3553    // @endcode
3554
3555    // Synthesize a parameter for each argument type.
3556    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3557         AE = FT->arg_type_end(); AI != AE; ++AI) {
3558      ParmVarDecl *Param =
3559        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3560      Params.push_back(Param);
3561    }
3562  } else {
3563    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3564           "Should not need args for typedef of non-prototype fn");
3565  }
3566  // Finally, we know we have the right number of parameters, install them.
3567  NewFD->setParams(Params.data(), Params.size());
3568
3569  // If the declarator is a template-id, translate the parser's template
3570  // argument list into our AST format.
3571  bool HasExplicitTemplateArgs = false;
3572  TemplateArgumentListInfo TemplateArgs;
3573  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3574    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3575    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3576    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3577    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3578                                       TemplateId->getTemplateArgs(),
3579                                       TemplateId->NumArgs);
3580    translateTemplateArguments(TemplateArgsPtr,
3581                               TemplateArgs);
3582    TemplateArgsPtr.release();
3583
3584    HasExplicitTemplateArgs = true;
3585
3586    if (FunctionTemplate) {
3587      // FIXME: Diagnose function template with explicit template
3588      // arguments.
3589      HasExplicitTemplateArgs = false;
3590    } else if (!isFunctionTemplateSpecialization &&
3591               !D.getDeclSpec().isFriendSpecified()) {
3592      // We have encountered something that the user meant to be a
3593      // specialization (because it has explicitly-specified template
3594      // arguments) but that was not introduced with a "template<>" (or had
3595      // too few of them).
3596      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3597        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3598        << FixItHint::CreateInsertion(
3599                                   D.getDeclSpec().getSourceRange().getBegin(),
3600                                                 "template<> ");
3601      isFunctionTemplateSpecialization = true;
3602    } else {
3603      // "friend void foo<>(int);" is an implicit specialization decl.
3604      isFunctionTemplateSpecialization = true;
3605    }
3606  } else if (isFriend && isFunctionTemplateSpecialization) {
3607    // This combination is only possible in a recovery case;  the user
3608    // wrote something like:
3609    //   template <> friend void foo(int);
3610    // which we're recovering from as if the user had written:
3611    //   friend void foo<>(int);
3612    // Go ahead and fake up a template id.
3613    HasExplicitTemplateArgs = true;
3614    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3615    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3616  }
3617
3618  // If it's a friend (and only if it's a friend), it's possible
3619  // that either the specialized function type or the specialized
3620  // template is dependent, and therefore matching will fail.  In
3621  // this case, don't check the specialization yet.
3622  if (isFunctionTemplateSpecialization && isFriend &&
3623      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3624    assert(HasExplicitTemplateArgs &&
3625           "friend function specialization without template args");
3626    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3627                                                     Previous))
3628      NewFD->setInvalidDecl();
3629  } else if (isFunctionTemplateSpecialization) {
3630    if (CheckFunctionTemplateSpecialization(NewFD,
3631                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3632                                            Previous))
3633      NewFD->setInvalidDecl();
3634  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3635    if (CheckMemberSpecialization(NewFD, Previous))
3636      NewFD->setInvalidDecl();
3637  }
3638
3639  // Perform semantic checking on the function declaration.
3640  bool OverloadableAttrRequired = false; // FIXME: HACK!
3641  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3642                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3643
3644  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3645          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3646         "previous declaration set still overloaded");
3647
3648  NamedDecl *PrincipalDecl = (FunctionTemplate
3649                              ? cast<NamedDecl>(FunctionTemplate)
3650                              : NewFD);
3651
3652  if (isFriend && Redeclaration) {
3653    AccessSpecifier Access = AS_public;
3654    if (!NewFD->isInvalidDecl())
3655      Access = NewFD->getPreviousDeclaration()->getAccess();
3656
3657    NewFD->setAccess(Access);
3658    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3659
3660    PrincipalDecl->setObjectOfFriendDecl(true);
3661  }
3662
3663  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3664      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3665    PrincipalDecl->setNonMemberOperator();
3666
3667  // If we have a function template, check the template parameter
3668  // list. This will check and merge default template arguments.
3669  if (FunctionTemplate) {
3670    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3671    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3672                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3673             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3674                                                : TPC_FunctionTemplate);
3675  }
3676
3677  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3678    if (!CurContext->isRecord()) {
3679      // Fake up an access specifier if it's supposed to be a class member.
3680      if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3681        NewFD->setAccess(AS_public);
3682
3683      // An out-of-line member function declaration must also be a
3684      // definition (C++ [dcl.meaning]p1).
3685      // Note that this is not the case for explicit specializations of
3686      // function templates or member functions of class templates, per
3687      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3688      // for compatibility with old SWIG code which likes to generate them.
3689      if (!IsFunctionDefinition && !isFriend &&
3690          !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3691        Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3692          << D.getCXXScopeSpec().getRange();
3693      }
3694      if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3695        // The user tried to provide an out-of-line definition for a
3696        // function that is a member of a class or namespace, but there
3697        // was no such member function declared (C++ [class.mfct]p2,
3698        // C++ [namespace.memdef]p2). For example:
3699        //
3700        // class X {
3701        //   void f() const;
3702        // };
3703        //
3704        // void X::f() { } // ill-formed
3705        //
3706        // Complain about this problem, and attempt to suggest close
3707        // matches (e.g., those that differ only in cv-qualifiers and
3708        // whether the parameter types are references).
3709        Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3710          << Name << DC << D.getCXXScopeSpec().getRange();
3711        NewFD->setInvalidDecl();
3712
3713        LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3714                          ForRedeclaration);
3715        LookupQualifiedName(Prev, DC);
3716        assert(!Prev.isAmbiguous() &&
3717               "Cannot have an ambiguity in previous-declaration lookup");
3718        for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3719             Func != FuncEnd; ++Func) {
3720          if (isa<FunctionDecl>(*Func) &&
3721              isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3722            Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3723        }
3724      }
3725    } else if (!isFriend) {
3726      // The user provided a superfluous scope specifier inside a class definition:
3727      //
3728      // class X {
3729      //   void X::f();
3730      // };
3731      Diag(NewFD->getLocation(), diag::warn_member_extra_qualification)
3732        << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3733    }
3734  }
3735
3736  // Handle attributes. We need to have merged decls when handling attributes
3737  // (for example to check for conflicts, etc).
3738  // FIXME: This needs to happen before we merge declarations. Then,
3739  // let attribute merging cope with attribute conflicts.
3740  ProcessDeclAttributes(S, NewFD, D);
3741
3742  // attributes declared post-definition are currently ignored
3743  // FIXME: This should happen during attribute merging
3744  if (Redeclaration && Previous.isSingleResult()) {
3745    const FunctionDecl *Def;
3746    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3747    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3748      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3749      Diag(Def->getLocation(), diag::note_previous_definition);
3750    }
3751  }
3752
3753  AddKnownFunctionAttributes(NewFD);
3754
3755  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3756    // If a function name is overloadable in C, then every function
3757    // with that name must be marked "overloadable".
3758    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3759      << Redeclaration << NewFD;
3760    if (!Previous.empty())
3761      Diag(Previous.getRepresentativeDecl()->getLocation(),
3762           diag::note_attribute_overloadable_prev_overload);
3763    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3764  }
3765
3766  if (NewFD->hasAttr<OverloadableAttr>() &&
3767      !NewFD->getType()->getAs<FunctionProtoType>()) {
3768    Diag(NewFD->getLocation(),
3769         diag::err_attribute_overloadable_no_prototype)
3770      << NewFD;
3771
3772    // Turn this into a variadic function with no parameters.
3773    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3774    QualType R = Context.getFunctionType(FT->getResultType(),
3775                                         0, 0, true, 0, false, false, 0, 0,
3776                                         FT->getExtInfo());
3777    NewFD->setType(R);
3778  }
3779
3780  // If there's a #pragma GCC visibility in scope, and this isn't a class
3781  // member, set the visibility of this function.
3782  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3783    AddPushedVisibilityAttribute(NewFD);
3784
3785  // If this is a locally-scoped extern C function, update the
3786  // map of such names.
3787  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3788      && !NewFD->isInvalidDecl())
3789    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3790
3791  // Set this FunctionDecl's range up to the right paren.
3792  NewFD->setLocEnd(D.getSourceRange().getEnd());
3793
3794  if (FunctionTemplate && NewFD->isInvalidDecl())
3795    FunctionTemplate->setInvalidDecl();
3796
3797  if (FunctionTemplate)
3798    return FunctionTemplate;
3799
3800  MarkUnusedFileScopedDecl(NewFD);
3801
3802  return NewFD;
3803}
3804
3805/// \brief Perform semantic checking of a new function declaration.
3806///
3807/// Performs semantic analysis of the new function declaration
3808/// NewFD. This routine performs all semantic checking that does not
3809/// require the actual declarator involved in the declaration, and is
3810/// used both for the declaration of functions as they are parsed
3811/// (called via ActOnDeclarator) and for the declaration of functions
3812/// that have been instantiated via C++ template instantiation (called
3813/// via InstantiateDecl).
3814///
3815/// \param IsExplicitSpecialiation whether this new function declaration is
3816/// an explicit specialization of the previous declaration.
3817///
3818/// This sets NewFD->isInvalidDecl() to true if there was an error.
3819void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3820                                    LookupResult &Previous,
3821                                    bool IsExplicitSpecialization,
3822                                    bool &Redeclaration,
3823                                    bool &OverloadableAttrRequired) {
3824  // If NewFD is already known erroneous, don't do any of this checking.
3825  if (NewFD->isInvalidDecl()) {
3826    // If this is a class member, mark the class invalid immediately.
3827    // This avoids some consistency errors later.
3828    if (isa<CXXMethodDecl>(NewFD))
3829      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3830
3831    return;
3832  }
3833
3834  if (NewFD->getResultType()->isVariablyModifiedType()) {
3835    // Functions returning a variably modified type violate C99 6.7.5.2p2
3836    // because all functions have linkage.
3837    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3838    return NewFD->setInvalidDecl();
3839  }
3840
3841  if (NewFD->isMain())
3842    CheckMain(NewFD);
3843
3844  // Check for a previous declaration of this name.
3845  if (Previous.empty() && NewFD->isExternC()) {
3846    // Since we did not find anything by this name and we're declaring
3847    // an extern "C" function, look for a non-visible extern "C"
3848    // declaration with the same name.
3849    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3850      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3851    if (Pos != LocallyScopedExternalDecls.end())
3852      Previous.addDecl(Pos->second);
3853  }
3854
3855  // Merge or overload the declaration with an existing declaration of
3856  // the same name, if appropriate.
3857  if (!Previous.empty()) {
3858    // Determine whether NewFD is an overload of PrevDecl or
3859    // a declaration that requires merging. If it's an overload,
3860    // there's no more work to do here; we'll just add the new
3861    // function to the scope.
3862
3863    NamedDecl *OldDecl = 0;
3864    if (!AllowOverloadingOfFunction(Previous, Context)) {
3865      Redeclaration = true;
3866      OldDecl = Previous.getFoundDecl();
3867    } else {
3868      if (!getLangOptions().CPlusPlus)
3869        OverloadableAttrRequired = true;
3870
3871      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3872                            /*NewIsUsingDecl*/ false)) {
3873      case Ovl_Match:
3874        Redeclaration = true;
3875        break;
3876
3877      case Ovl_NonFunction:
3878        Redeclaration = true;
3879        break;
3880
3881      case Ovl_Overload:
3882        Redeclaration = false;
3883        break;
3884      }
3885    }
3886
3887    if (Redeclaration) {
3888      // NewFD and OldDecl represent declarations that need to be
3889      // merged.
3890      if (MergeFunctionDecl(NewFD, OldDecl))
3891        return NewFD->setInvalidDecl();
3892
3893      Previous.clear();
3894      Previous.addDecl(OldDecl);
3895
3896      if (FunctionTemplateDecl *OldTemplateDecl
3897                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3898        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3899        FunctionTemplateDecl *NewTemplateDecl
3900          = NewFD->getDescribedFunctionTemplate();
3901        assert(NewTemplateDecl && "Template/non-template mismatch");
3902        if (CXXMethodDecl *Method
3903              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3904          Method->setAccess(OldTemplateDecl->getAccess());
3905          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3906        }
3907
3908        // If this is an explicit specialization of a member that is a function
3909        // template, mark it as a member specialization.
3910        if (IsExplicitSpecialization &&
3911            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3912          NewTemplateDecl->setMemberSpecialization();
3913          assert(OldTemplateDecl->isMemberSpecialization());
3914        }
3915      } else {
3916        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3917          NewFD->setAccess(OldDecl->getAccess());
3918        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3919      }
3920    }
3921  }
3922
3923  // Semantic checking for this function declaration (in isolation).
3924  if (getLangOptions().CPlusPlus) {
3925    // C++-specific checks.
3926    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3927      CheckConstructor(Constructor);
3928    } else if (CXXDestructorDecl *Destructor =
3929                dyn_cast<CXXDestructorDecl>(NewFD)) {
3930      CXXRecordDecl *Record = Destructor->getParent();
3931      QualType ClassType = Context.getTypeDeclType(Record);
3932
3933      // FIXME: Shouldn't we be able to perform this check even when the class
3934      // type is dependent? Both gcc and edg can handle that.
3935      if (!ClassType->isDependentType()) {
3936        DeclarationName Name
3937          = Context.DeclarationNames.getCXXDestructorName(
3938                                        Context.getCanonicalType(ClassType));
3939//         NewFD->getDeclName().dump();
3940//         Name.dump();
3941        if (NewFD->getDeclName() != Name) {
3942          Diag(NewFD->getLocation(), diag::err_destructor_name);
3943          return NewFD->setInvalidDecl();
3944        }
3945      }
3946    } else if (CXXConversionDecl *Conversion
3947               = dyn_cast<CXXConversionDecl>(NewFD)) {
3948      ActOnConversionDeclarator(Conversion);
3949    }
3950
3951    // Find any virtual functions that this function overrides.
3952    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3953      if (!Method->isFunctionTemplateSpecialization() &&
3954          !Method->getDescribedFunctionTemplate())
3955        AddOverriddenMethods(Method->getParent(), Method);
3956    }
3957
3958    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3959    if (NewFD->isOverloadedOperator() &&
3960        CheckOverloadedOperatorDeclaration(NewFD))
3961      return NewFD->setInvalidDecl();
3962
3963    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3964    if (NewFD->getLiteralIdentifier() &&
3965        CheckLiteralOperatorDeclaration(NewFD))
3966      return NewFD->setInvalidDecl();
3967
3968    // In C++, check default arguments now that we have merged decls. Unless
3969    // the lexical context is the class, because in this case this is done
3970    // during delayed parsing anyway.
3971    if (!CurContext->isRecord())
3972      CheckCXXDefaultArguments(NewFD);
3973  }
3974}
3975
3976void Sema::CheckMain(FunctionDecl* FD) {
3977  // C++ [basic.start.main]p3:  A program that declares main to be inline
3978  //   or static is ill-formed.
3979  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3980  //   shall not appear in a declaration of main.
3981  // static main is not an error under C99, but we should warn about it.
3982  bool isInline = FD->isInlineSpecified();
3983  bool isStatic = FD->getStorageClass() == SC_Static;
3984  if (isInline || isStatic) {
3985    unsigned diagID = diag::warn_unusual_main_decl;
3986    if (isInline || getLangOptions().CPlusPlus)
3987      diagID = diag::err_unusual_main_decl;
3988
3989    int which = isStatic + (isInline << 1) - 1;
3990    Diag(FD->getLocation(), diagID) << which;
3991  }
3992
3993  QualType T = FD->getType();
3994  assert(T->isFunctionType() && "function decl is not of function type");
3995  const FunctionType* FT = T->getAs<FunctionType>();
3996
3997  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3998    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
3999    TypeLoc TL = TSI->getTypeLoc();
4000    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4001                                          diag::err_main_returns_nonint);
4002    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4003      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4004                                        "int");
4005    }
4006    FD->setInvalidDecl(true);
4007  }
4008
4009  // Treat protoless main() as nullary.
4010  if (isa<FunctionNoProtoType>(FT)) return;
4011
4012  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4013  unsigned nparams = FTP->getNumArgs();
4014  assert(FD->getNumParams() == nparams);
4015
4016  bool HasExtraParameters = (nparams > 3);
4017
4018  // Darwin passes an undocumented fourth argument of type char**.  If
4019  // other platforms start sprouting these, the logic below will start
4020  // getting shifty.
4021  if (nparams == 4 &&
4022      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4023    HasExtraParameters = false;
4024
4025  if (HasExtraParameters) {
4026    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4027    FD->setInvalidDecl(true);
4028    nparams = 3;
4029  }
4030
4031  // FIXME: a lot of the following diagnostics would be improved
4032  // if we had some location information about types.
4033
4034  QualType CharPP =
4035    Context.getPointerType(Context.getPointerType(Context.CharTy));
4036  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4037
4038  for (unsigned i = 0; i < nparams; ++i) {
4039    QualType AT = FTP->getArgType(i);
4040
4041    bool mismatch = true;
4042
4043    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4044      mismatch = false;
4045    else if (Expected[i] == CharPP) {
4046      // As an extension, the following forms are okay:
4047      //   char const **
4048      //   char const * const *
4049      //   char * const *
4050
4051      QualifierCollector qs;
4052      const PointerType* PT;
4053      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4054          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4055          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4056        qs.removeConst();
4057        mismatch = !qs.empty();
4058      }
4059    }
4060
4061    if (mismatch) {
4062      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4063      // TODO: suggest replacing given type with expected type
4064      FD->setInvalidDecl(true);
4065    }
4066  }
4067
4068  if (nparams == 1 && !FD->isInvalidDecl()) {
4069    Diag(FD->getLocation(), diag::warn_main_one_arg);
4070  }
4071}
4072
4073bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4074  // FIXME: Need strict checking.  In C89, we need to check for
4075  // any assignment, increment, decrement, function-calls, or
4076  // commas outside of a sizeof.  In C99, it's the same list,
4077  // except that the aforementioned are allowed in unevaluated
4078  // expressions.  Everything else falls under the
4079  // "may accept other forms of constant expressions" exception.
4080  // (We never end up here for C++, so the constant expression
4081  // rules there don't matter.)
4082  if (Init->isConstantInitializer(Context, false))
4083    return false;
4084  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4085    << Init->getSourceRange();
4086  return true;
4087}
4088
4089void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4090  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4091}
4092
4093/// AddInitializerToDecl - Adds the initializer Init to the
4094/// declaration dcl. If DirectInit is true, this is C++ direct
4095/// initialization rather than copy initialization.
4096void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4097  // If there is no declaration, there was an error parsing it.  Just ignore
4098  // the initializer.
4099  if (RealDecl == 0)
4100    return;
4101
4102  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4103    // With declarators parsed the way they are, the parser cannot
4104    // distinguish between a normal initializer and a pure-specifier.
4105    // Thus this grotesque test.
4106    IntegerLiteral *IL;
4107    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4108        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4109      CheckPureMethod(Method, Init->getSourceRange());
4110    else {
4111      Diag(Method->getLocation(), diag::err_member_function_initialization)
4112        << Method->getDeclName() << Init->getSourceRange();
4113      Method->setInvalidDecl();
4114    }
4115    return;
4116  }
4117
4118  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4119  if (!VDecl) {
4120    if (getLangOptions().CPlusPlus &&
4121        RealDecl->getLexicalDeclContext()->isRecord() &&
4122        isa<NamedDecl>(RealDecl))
4123      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4124    else
4125      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4126    RealDecl->setInvalidDecl();
4127    return;
4128  }
4129
4130
4131
4132  // A definition must end up with a complete type, which means it must be
4133  // complete with the restriction that an array type might be completed by the
4134  // initializer; note that later code assumes this restriction.
4135  QualType BaseDeclType = VDecl->getType();
4136  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4137    BaseDeclType = Array->getElementType();
4138  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4139                          diag::err_typecheck_decl_incomplete_type)) {
4140    RealDecl->setInvalidDecl();
4141    return;
4142  }
4143
4144  // The variable can not have an abstract class type.
4145  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4146                             diag::err_abstract_type_in_decl,
4147                             AbstractVariableType))
4148    VDecl->setInvalidDecl();
4149
4150  const VarDecl *Def;
4151  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4152    Diag(VDecl->getLocation(), diag::err_redefinition)
4153      << VDecl->getDeclName();
4154    Diag(Def->getLocation(), diag::note_previous_definition);
4155    VDecl->setInvalidDecl();
4156    return;
4157  }
4158
4159  // C++ [class.static.data]p4
4160  //   If a static data member is of const integral or const
4161  //   enumeration type, its declaration in the class definition can
4162  //   specify a constant-initializer which shall be an integral
4163  //   constant expression (5.19). In that case, the member can appear
4164  //   in integral constant expressions. The member shall still be
4165  //   defined in a namespace scope if it is used in the program and the
4166  //   namespace scope definition shall not contain an initializer.
4167  //
4168  // We already performed a redefinition check above, but for static
4169  // data members we also need to check whether there was an in-class
4170  // declaration with an initializer.
4171  const VarDecl* PrevInit = 0;
4172  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4173    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4174    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4175    return;
4176  }
4177
4178  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4179    getCurFunction()->setHasBranchProtectedScope();
4180
4181  // Capture the variable that is being initialized and the style of
4182  // initialization.
4183  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4184
4185  // FIXME: Poor source location information.
4186  InitializationKind Kind
4187    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4188                                                   Init->getLocStart(),
4189                                                   Init->getLocEnd())
4190                : InitializationKind::CreateCopy(VDecl->getLocation(),
4191                                                 Init->getLocStart());
4192
4193  // Get the decls type and save a reference for later, since
4194  // CheckInitializerTypes may change it.
4195  QualType DclT = VDecl->getType(), SavT = DclT;
4196  if (VDecl->isBlockVarDecl()) {
4197    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4198      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4199      VDecl->setInvalidDecl();
4200    } else if (!VDecl->isInvalidDecl()) {
4201      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4202      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4203                                                MultiExprArg(*this, &Init, 1),
4204                                                &DclT);
4205      if (Result.isInvalid()) {
4206        VDecl->setInvalidDecl();
4207        return;
4208      }
4209
4210      Init = Result.takeAs<Expr>();
4211
4212      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4213      // Don't check invalid declarations to avoid emitting useless diagnostics.
4214      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4215        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4216          CheckForConstantInitializer(Init, DclT);
4217      }
4218    }
4219  } else if (VDecl->isStaticDataMember() &&
4220             VDecl->getLexicalDeclContext()->isRecord()) {
4221    // This is an in-class initialization for a static data member, e.g.,
4222    //
4223    // struct S {
4224    //   static const int value = 17;
4225    // };
4226
4227    // Try to perform the initialization regardless.
4228    if (!VDecl->isInvalidDecl()) {
4229      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4230      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4231                                          MultiExprArg(*this, &Init, 1),
4232                                          &DclT);
4233      if (Result.isInvalid()) {
4234        VDecl->setInvalidDecl();
4235        return;
4236      }
4237
4238      Init = Result.takeAs<Expr>();
4239    }
4240
4241    // C++ [class.mem]p4:
4242    //   A member-declarator can contain a constant-initializer only
4243    //   if it declares a static member (9.4) of const integral or
4244    //   const enumeration type, see 9.4.2.
4245    QualType T = VDecl->getType();
4246
4247    // Do nothing on dependent types.
4248    if (T->isDependentType()) {
4249
4250    // Require constness.
4251    } else if (!T.isConstQualified()) {
4252      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4253        << Init->getSourceRange();
4254      VDecl->setInvalidDecl();
4255
4256    // We allow integer constant expressions in all cases.
4257    } else if (T->isIntegralOrEnumerationType()) {
4258      if (!Init->isValueDependent()) {
4259        // Check whether the expression is a constant expression.
4260        llvm::APSInt Value;
4261        SourceLocation Loc;
4262        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4263          Diag(Loc, diag::err_in_class_initializer_non_constant)
4264            << Init->getSourceRange();
4265          VDecl->setInvalidDecl();
4266        }
4267      }
4268
4269    // We allow floating-point constants as an extension in C++03, and
4270    // C++0x has far more complicated rules that we don't really
4271    // implement fully.
4272    } else {
4273      bool Allowed = false;
4274      if (getLangOptions().CPlusPlus0x) {
4275        Allowed = T->isLiteralType();
4276      } else if (T->isFloatingType()) { // also permits complex, which is ok
4277        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4278          << T << Init->getSourceRange();
4279        Allowed = true;
4280      }
4281
4282      if (!Allowed) {
4283        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4284          << T << Init->getSourceRange();
4285        VDecl->setInvalidDecl();
4286
4287      // TODO: there are probably expressions that pass here that shouldn't.
4288      } else if (!Init->isValueDependent() &&
4289                 !Init->isConstantInitializer(Context, false)) {
4290        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4291          << Init->getSourceRange();
4292        VDecl->setInvalidDecl();
4293      }
4294    }
4295  } else if (VDecl->isFileVarDecl()) {
4296    if (VDecl->getStorageClass() == SC_Extern &&
4297        (!getLangOptions().CPlusPlus ||
4298         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4299      Diag(VDecl->getLocation(), diag::warn_extern_init);
4300    if (!VDecl->isInvalidDecl()) {
4301      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4302      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4303                                                MultiExprArg(*this, &Init, 1),
4304                                                &DclT);
4305      if (Result.isInvalid()) {
4306        VDecl->setInvalidDecl();
4307        return;
4308      }
4309
4310      Init = Result.takeAs<Expr>();
4311    }
4312
4313    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4314    // Don't check invalid declarations to avoid emitting useless diagnostics.
4315    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4316      // C99 6.7.8p4. All file scoped initializers need to be constant.
4317      CheckForConstantInitializer(Init, DclT);
4318    }
4319  }
4320  // If the type changed, it means we had an incomplete type that was
4321  // completed by the initializer. For example:
4322  //   int ary[] = { 1, 3, 5 };
4323  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4324  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4325    VDecl->setType(DclT);
4326    Init->setType(DclT);
4327  }
4328
4329  Init = MaybeCreateCXXExprWithTemporaries(Init);
4330  // Attach the initializer to the decl.
4331  VDecl->setInit(Init);
4332
4333  if (getLangOptions().CPlusPlus) {
4334    if (!VDecl->isInvalidDecl() &&
4335        !VDecl->getDeclContext()->isDependentContext() &&
4336        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4337        !Init->isConstantInitializer(Context,
4338                                     VDecl->getType()->isReferenceType()))
4339      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4340        << Init->getSourceRange();
4341
4342    // Make sure we mark the destructor as used if necessary.
4343    QualType InitType = VDecl->getType();
4344    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4345      InitType = Context.getBaseElementType(Array);
4346    if (const RecordType *Record = InitType->getAs<RecordType>())
4347      FinalizeVarWithDestructor(VDecl, Record);
4348  }
4349
4350  return;
4351}
4352
4353/// ActOnInitializerError - Given that there was an error parsing an
4354/// initializer for the given declaration, try to return to some form
4355/// of sanity.
4356void Sema::ActOnInitializerError(Decl *D) {
4357  // Our main concern here is re-establishing invariants like "a
4358  // variable's type is either dependent or complete".
4359  if (!D || D->isInvalidDecl()) return;
4360
4361  VarDecl *VD = dyn_cast<VarDecl>(D);
4362  if (!VD) return;
4363
4364  QualType Ty = VD->getType();
4365  if (Ty->isDependentType()) return;
4366
4367  // Require a complete type.
4368  if (RequireCompleteType(VD->getLocation(),
4369                          Context.getBaseElementType(Ty),
4370                          diag::err_typecheck_decl_incomplete_type)) {
4371    VD->setInvalidDecl();
4372    return;
4373  }
4374
4375  // Require an abstract type.
4376  if (RequireNonAbstractType(VD->getLocation(), Ty,
4377                             diag::err_abstract_type_in_decl,
4378                             AbstractVariableType)) {
4379    VD->setInvalidDecl();
4380    return;
4381  }
4382
4383  // Don't bother complaining about constructors or destructors,
4384  // though.
4385}
4386
4387void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4388                                  bool TypeContainsUndeducedAuto) {
4389  // If there is no declaration, there was an error parsing it. Just ignore it.
4390  if (RealDecl == 0)
4391    return;
4392
4393  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4394    QualType Type = Var->getType();
4395
4396    // C++0x [dcl.spec.auto]p3
4397    if (TypeContainsUndeducedAuto) {
4398      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4399        << Var->getDeclName() << Type;
4400      Var->setInvalidDecl();
4401      return;
4402    }
4403
4404    switch (Var->isThisDeclarationADefinition()) {
4405    case VarDecl::Definition:
4406      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4407        break;
4408
4409      // We have an out-of-line definition of a static data member
4410      // that has an in-class initializer, so we type-check this like
4411      // a declaration.
4412      //
4413      // Fall through
4414
4415    case VarDecl::DeclarationOnly:
4416      // It's only a declaration.
4417
4418      // Block scope. C99 6.7p7: If an identifier for an object is
4419      // declared with no linkage (C99 6.2.2p6), the type for the
4420      // object shall be complete.
4421      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4422          !Var->getLinkage() && !Var->isInvalidDecl() &&
4423          RequireCompleteType(Var->getLocation(), Type,
4424                              diag::err_typecheck_decl_incomplete_type))
4425        Var->setInvalidDecl();
4426
4427      // Make sure that the type is not abstract.
4428      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4429          RequireNonAbstractType(Var->getLocation(), Type,
4430                                 diag::err_abstract_type_in_decl,
4431                                 AbstractVariableType))
4432        Var->setInvalidDecl();
4433      return;
4434
4435    case VarDecl::TentativeDefinition:
4436      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4437      // object that has file scope without an initializer, and without a
4438      // storage-class specifier or with the storage-class specifier "static",
4439      // constitutes a tentative definition. Note: A tentative definition with
4440      // external linkage is valid (C99 6.2.2p5).
4441      if (!Var->isInvalidDecl()) {
4442        if (const IncompleteArrayType *ArrayT
4443                                    = Context.getAsIncompleteArrayType(Type)) {
4444          if (RequireCompleteType(Var->getLocation(),
4445                                  ArrayT->getElementType(),
4446                                  diag::err_illegal_decl_array_incomplete_type))
4447            Var->setInvalidDecl();
4448        } else if (Var->getStorageClass() == SC_Static) {
4449          // C99 6.9.2p3: If the declaration of an identifier for an object is
4450          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4451          // declared type shall not be an incomplete type.
4452          // NOTE: code such as the following
4453          //     static struct s;
4454          //     struct s { int a; };
4455          // is accepted by gcc. Hence here we issue a warning instead of
4456          // an error and we do not invalidate the static declaration.
4457          // NOTE: to avoid multiple warnings, only check the first declaration.
4458          if (Var->getPreviousDeclaration() == 0)
4459            RequireCompleteType(Var->getLocation(), Type,
4460                                diag::ext_typecheck_decl_incomplete_type);
4461        }
4462      }
4463
4464      // Record the tentative definition; we're done.
4465      if (!Var->isInvalidDecl())
4466        TentativeDefinitions.push_back(Var);
4467      return;
4468    }
4469
4470    // Provide a specific diagnostic for uninitialized variable
4471    // definitions with incomplete array type.
4472    if (Type->isIncompleteArrayType()) {
4473      Diag(Var->getLocation(),
4474           diag::err_typecheck_incomplete_array_needs_initializer);
4475      Var->setInvalidDecl();
4476      return;
4477    }
4478
4479    // Provide a specific diagnostic for uninitialized variable
4480    // definitions with reference type.
4481    if (Type->isReferenceType()) {
4482      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4483        << Var->getDeclName()
4484        << SourceRange(Var->getLocation(), Var->getLocation());
4485      Var->setInvalidDecl();
4486      return;
4487    }
4488
4489    // Do not attempt to type-check the default initializer for a
4490    // variable with dependent type.
4491    if (Type->isDependentType())
4492      return;
4493
4494    if (Var->isInvalidDecl())
4495      return;
4496
4497    if (RequireCompleteType(Var->getLocation(),
4498                            Context.getBaseElementType(Type),
4499                            diag::err_typecheck_decl_incomplete_type)) {
4500      Var->setInvalidDecl();
4501      return;
4502    }
4503
4504    // The variable can not have an abstract class type.
4505    if (RequireNonAbstractType(Var->getLocation(), Type,
4506                               diag::err_abstract_type_in_decl,
4507                               AbstractVariableType)) {
4508      Var->setInvalidDecl();
4509      return;
4510    }
4511
4512    const RecordType *Record
4513      = Context.getBaseElementType(Type)->getAs<RecordType>();
4514    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4515        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4516      // C++03 [dcl.init]p9:
4517      //   If no initializer is specified for an object, and the
4518      //   object is of (possibly cv-qualified) non-POD class type (or
4519      //   array thereof), the object shall be default-initialized; if
4520      //   the object is of const-qualified type, the underlying class
4521      //   type shall have a user-declared default
4522      //   constructor. Otherwise, if no initializer is specified for
4523      //   a non- static object, the object and its subobjects, if
4524      //   any, have an indeterminate initial value); if the object
4525      //   or any of its subobjects are of const-qualified type, the
4526      //   program is ill-formed.
4527      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4528    } else {
4529      // Check for jumps past the implicit initializer.  C++0x
4530      // clarifies that this applies to a "variable with automatic
4531      // storage duration", not a "local variable".
4532      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4533        getCurFunction()->setHasBranchProtectedScope();
4534
4535      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4536      InitializationKind Kind
4537        = InitializationKind::CreateDefault(Var->getLocation());
4538
4539      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4540      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4541                                        MultiExprArg(*this, 0, 0));
4542      if (Init.isInvalid())
4543        Var->setInvalidDecl();
4544      else if (Init.get()) {
4545        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4546
4547        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4548            Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4549            !Var->getDeclContext()->isDependentContext() &&
4550            !Var->getInit()->isConstantInitializer(Context, false))
4551          Diag(Var->getLocation(), diag::warn_global_constructor);
4552      }
4553    }
4554
4555    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4556      FinalizeVarWithDestructor(Var, Record);
4557  }
4558}
4559
4560Sema::DeclGroupPtrTy
4561Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4562                              Decl **Group, unsigned NumDecls) {
4563  llvm::SmallVector<Decl*, 8> Decls;
4564
4565  if (DS.isTypeSpecOwned())
4566    Decls.push_back(DS.getRepAsDecl());
4567
4568  for (unsigned i = 0; i != NumDecls; ++i)
4569    if (Decl *D = Group[i])
4570      Decls.push_back(D);
4571
4572  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4573                                                   Decls.data(), Decls.size()));
4574}
4575
4576
4577/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4578/// to introduce parameters into function prototype scope.
4579Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4580  const DeclSpec &DS = D.getDeclSpec();
4581
4582  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4583  VarDecl::StorageClass StorageClass = SC_None;
4584  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4585  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4586    StorageClass = SC_Register;
4587    StorageClassAsWritten = SC_Register;
4588  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4589    Diag(DS.getStorageClassSpecLoc(),
4590         diag::err_invalid_storage_class_in_func_decl);
4591    D.getMutableDeclSpec().ClearStorageClassSpecs();
4592  }
4593
4594  if (D.getDeclSpec().isThreadSpecified())
4595    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4596
4597  DiagnoseFunctionSpecifiers(D);
4598
4599  // Check that there are no default arguments inside the type of this
4600  // parameter (C++ only).
4601  if (getLangOptions().CPlusPlus)
4602    CheckExtraCXXDefaultArguments(D);
4603
4604  TagDecl *OwnedDecl = 0;
4605  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4606  QualType parmDeclType = TInfo->getType();
4607
4608  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4609    // C++ [dcl.fct]p6:
4610    //   Types shall not be defined in return or parameter types.
4611    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4612      << Context.getTypeDeclType(OwnedDecl);
4613  }
4614
4615  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4616  IdentifierInfo *II = D.getIdentifier();
4617  if (II) {
4618    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4619                   ForRedeclaration);
4620    LookupName(R, S);
4621    if (R.isSingleResult()) {
4622      NamedDecl *PrevDecl = R.getFoundDecl();
4623      if (PrevDecl->isTemplateParameter()) {
4624        // Maybe we will complain about the shadowed template parameter.
4625        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4626        // Just pretend that we didn't see the previous declaration.
4627        PrevDecl = 0;
4628      } else if (S->isDeclScope(PrevDecl)) {
4629        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4630        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4631
4632        // Recover by removing the name
4633        II = 0;
4634        D.SetIdentifier(0, D.getIdentifierLoc());
4635        D.setInvalidType(true);
4636      }
4637    }
4638  }
4639
4640  // Temporarily put parameter variables in the translation unit, not
4641  // the enclosing context.  This prevents them from accidentally
4642  // looking like class members in C++.
4643  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4644                                    TInfo, parmDeclType, II,
4645                                    D.getIdentifierLoc(),
4646                                    StorageClass, StorageClassAsWritten);
4647
4648  if (D.isInvalidType())
4649    New->setInvalidDecl();
4650
4651  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4652  if (D.getCXXScopeSpec().isSet()) {
4653    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4654      << D.getCXXScopeSpec().getRange();
4655    New->setInvalidDecl();
4656  }
4657
4658  // Add the parameter declaration into this scope.
4659  S->AddDecl(New);
4660  if (II)
4661    IdResolver.AddDecl(New);
4662
4663  ProcessDeclAttributes(S, New, D);
4664
4665  if (New->hasAttr<BlocksAttr>()) {
4666    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4667  }
4668  return New;
4669}
4670
4671/// \brief Synthesizes a variable for a parameter arising from a
4672/// typedef.
4673ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4674                                              SourceLocation Loc,
4675                                              QualType T) {
4676  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4677                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4678                                           SC_None, SC_None, 0);
4679  Param->setImplicit();
4680  return Param;
4681}
4682
4683void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
4684                                    ParmVarDecl * const *ParamEnd) {
4685  if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
4686        Diagnostic::Ignored)
4687    return;
4688
4689  // Don't diagnose unused-parameter errors in template instantiations; we
4690  // will already have done so in the template itself.
4691  if (!ActiveTemplateInstantiations.empty())
4692    return;
4693
4694  for (; Param != ParamEnd; ++Param) {
4695    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
4696        !(*Param)->hasAttr<UnusedAttr>()) {
4697      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
4698        << (*Param)->getDeclName();
4699    }
4700  }
4701}
4702
4703ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4704                                  TypeSourceInfo *TSInfo, QualType T,
4705                                  IdentifierInfo *Name,
4706                                  SourceLocation NameLoc,
4707                                  VarDecl::StorageClass StorageClass,
4708                                  VarDecl::StorageClass StorageClassAsWritten) {
4709  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4710                                         adjustParameterType(T), TSInfo,
4711                                         StorageClass, StorageClassAsWritten,
4712                                         0);
4713
4714  // Parameters can not be abstract class types.
4715  // For record types, this is done by the AbstractClassUsageDiagnoser once
4716  // the class has been completely parsed.
4717  if (!CurContext->isRecord() &&
4718      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4719                             AbstractParamType))
4720    New->setInvalidDecl();
4721
4722  // Parameter declarators cannot be interface types. All ObjC objects are
4723  // passed by reference.
4724  if (T->isObjCObjectType()) {
4725    Diag(NameLoc,
4726         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4727    New->setInvalidDecl();
4728  }
4729
4730  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4731  // duration shall not be qualified by an address-space qualifier."
4732  // Since all parameters have automatic store duration, they can not have
4733  // an address space.
4734  if (T.getAddressSpace() != 0) {
4735    Diag(NameLoc, diag::err_arg_with_address_space);
4736    New->setInvalidDecl();
4737  }
4738
4739  return New;
4740}
4741
4742void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4743                                           SourceLocation LocAfterDecls) {
4744  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4745         "Not a function declarator!");
4746  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4747
4748  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4749  // for a K&R function.
4750  if (!FTI.hasPrototype) {
4751    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4752      --i;
4753      if (FTI.ArgInfo[i].Param == 0) {
4754        llvm::SmallString<256> Code;
4755        llvm::raw_svector_ostream(Code) << "  int "
4756                                        << FTI.ArgInfo[i].Ident->getName()
4757                                        << ";\n";
4758        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4759          << FTI.ArgInfo[i].Ident
4760          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4761
4762        // Implicitly declare the argument as type 'int' for lack of a better
4763        // type.
4764        DeclSpec DS;
4765        const char* PrevSpec; // unused
4766        unsigned DiagID; // unused
4767        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4768                           PrevSpec, DiagID);
4769        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4770        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4771        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4772      }
4773    }
4774  }
4775}
4776
4777Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4778                                         Declarator &D) {
4779  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4780  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4781         "Not a function declarator!");
4782  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4783
4784  if (FTI.hasPrototype) {
4785    // FIXME: Diagnose arguments without names in C.
4786  }
4787
4788  Scope *ParentScope = FnBodyScope->getParent();
4789
4790  Decl *DP = HandleDeclarator(ParentScope, D,
4791                              MultiTemplateParamsArg(*this),
4792                              /*IsFunctionDefinition=*/true);
4793  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4794}
4795
4796static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4797  // Don't warn about invalid declarations.
4798  if (FD->isInvalidDecl())
4799    return false;
4800
4801  // Or declarations that aren't global.
4802  if (!FD->isGlobal())
4803    return false;
4804
4805  // Don't warn about C++ member functions.
4806  if (isa<CXXMethodDecl>(FD))
4807    return false;
4808
4809  // Don't warn about 'main'.
4810  if (FD->isMain())
4811    return false;
4812
4813  // Don't warn about inline functions.
4814  if (FD->isInlineSpecified())
4815    return false;
4816
4817  // Don't warn about function templates.
4818  if (FD->getDescribedFunctionTemplate())
4819    return false;
4820
4821  // Don't warn about function template specializations.
4822  if (FD->isFunctionTemplateSpecialization())
4823    return false;
4824
4825  bool MissingPrototype = true;
4826  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4827       Prev; Prev = Prev->getPreviousDeclaration()) {
4828    // Ignore any declarations that occur in function or method
4829    // scope, because they aren't visible from the header.
4830    if (Prev->getDeclContext()->isFunctionOrMethod())
4831      continue;
4832
4833    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4834    break;
4835  }
4836
4837  return MissingPrototype;
4838}
4839
4840Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4841  // Clear the last template instantiation error context.
4842  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4843
4844  if (!D)
4845    return D;
4846  FunctionDecl *FD = 0;
4847
4848  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4849    FD = FunTmpl->getTemplatedDecl();
4850  else
4851    FD = cast<FunctionDecl>(D);
4852
4853  // Enter a new function scope
4854  PushFunctionScope();
4855
4856  // See if this is a redefinition.
4857  // But don't complain if we're in GNU89 mode and the previous definition
4858  // was an extern inline function.
4859  const FunctionDecl *Definition;
4860  if (FD->hasBody(Definition) &&
4861      !canRedefineFunction(Definition, getLangOptions())) {
4862    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
4863        Definition->getStorageClass() == SC_Extern)
4864      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
4865        << FD->getDeclName() << getLangOptions().CPlusPlus;
4866    else
4867      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4868    Diag(Definition->getLocation(), diag::note_previous_definition);
4869  }
4870
4871  // Builtin functions cannot be defined.
4872  if (unsigned BuiltinID = FD->getBuiltinID()) {
4873    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4874      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4875      FD->setInvalidDecl();
4876    }
4877  }
4878
4879  // The return type of a function definition must be complete
4880  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4881  QualType ResultType = FD->getResultType();
4882  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4883      !FD->isInvalidDecl() &&
4884      RequireCompleteType(FD->getLocation(), ResultType,
4885                          diag::err_func_def_incomplete_result))
4886    FD->setInvalidDecl();
4887
4888  // GNU warning -Wmissing-prototypes:
4889  //   Warn if a global function is defined without a previous
4890  //   prototype declaration. This warning is issued even if the
4891  //   definition itself provides a prototype. The aim is to detect
4892  //   global functions that fail to be declared in header files.
4893  if (ShouldWarnAboutMissingPrototype(FD))
4894    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4895
4896  if (FnBodyScope)
4897    PushDeclContext(FnBodyScope, FD);
4898
4899  // Check the validity of our function parameters
4900  CheckParmsForFunctionDef(FD);
4901
4902  bool ShouldCheckShadow =
4903    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4904
4905  // Introduce our parameters into the function scope
4906  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4907    ParmVarDecl *Param = FD->getParamDecl(p);
4908    Param->setOwningFunction(FD);
4909
4910    // If this has an identifier, add it to the scope stack.
4911    if (Param->getIdentifier() && FnBodyScope) {
4912      if (ShouldCheckShadow)
4913        CheckShadow(FnBodyScope, Param);
4914
4915      PushOnScopeChains(Param, FnBodyScope);
4916    }
4917  }
4918
4919  // Checking attributes of current function definition
4920  // dllimport attribute.
4921  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
4922  if (DA && (!FD->getAttr<DLLExportAttr>())) {
4923    // dllimport attribute cannot be directly applied to definition.
4924    if (!DA->isInherited()) {
4925      Diag(FD->getLocation(),
4926           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4927        << "dllimport";
4928      FD->setInvalidDecl();
4929      return FD;
4930    }
4931
4932    // Visual C++ appears to not think this is an issue, so only issue
4933    // a warning when Microsoft extensions are disabled.
4934    if (!LangOpts.Microsoft) {
4935      // If a symbol previously declared dllimport is later defined, the
4936      // attribute is ignored in subsequent references, and a warning is
4937      // emitted.
4938      Diag(FD->getLocation(),
4939           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4940        << FD->getName() << "dllimport";
4941    }
4942  }
4943  return FD;
4944}
4945
4946/// \brief Given the set of return statements within a function body,
4947/// compute the variables that are subject to the named return value
4948/// optimization.
4949///
4950/// Each of the variables that is subject to the named return value
4951/// optimization will be marked as NRVO variables in the AST, and any
4952/// return statement that has a marked NRVO variable as its NRVO candidate can
4953/// use the named return value optimization.
4954///
4955/// This function applies a very simplistic algorithm for NRVO: if every return
4956/// statement in the function has the same NRVO candidate, that candidate is
4957/// the NRVO variable.
4958///
4959/// FIXME: Employ a smarter algorithm that accounts for multiple return
4960/// statements and the lifetimes of the NRVO candidates. We should be able to
4961/// find a maximal set of NRVO variables.
4962static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
4963  ReturnStmt **Returns = Scope->Returns.data();
4964
4965  const VarDecl *NRVOCandidate = 0;
4966  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
4967    if (!Returns[I]->getNRVOCandidate())
4968      return;
4969
4970    if (!NRVOCandidate)
4971      NRVOCandidate = Returns[I]->getNRVOCandidate();
4972    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4973      return;
4974  }
4975
4976  if (NRVOCandidate)
4977    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4978}
4979
4980Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
4981  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4982}
4983
4984Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
4985                                    bool IsInstantiation) {
4986  FunctionDecl *FD = 0;
4987  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4988  if (FunTmpl)
4989    FD = FunTmpl->getTemplatedDecl();
4990  else
4991    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4992
4993  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4994
4995  if (FD) {
4996    FD->setBody(Body);
4997    if (FD->isMain()) {
4998      // C and C++ allow for main to automagically return 0.
4999      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5000      FD->setHasImplicitReturnZero(true);
5001      WP.disableCheckFallThrough();
5002    }
5003
5004    if (!FD->isInvalidDecl()) {
5005      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5006
5007      // If this is a constructor, we need a vtable.
5008      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5009        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5010
5011      ComputeNRVO(Body, getCurFunction());
5012    }
5013
5014    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5015  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5016    assert(MD == getCurMethodDecl() && "Method parsing confused");
5017    MD->setBody(Body);
5018    MD->setEndLoc(Body->getLocEnd());
5019    if (!MD->isInvalidDecl())
5020      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5021  } else {
5022    return 0;
5023  }
5024
5025  // Verify and clean out per-function state.
5026
5027  // Check goto/label use.
5028  FunctionScopeInfo *CurFn = getCurFunction();
5029  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5030         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5031    LabelStmt *L = I->second;
5032
5033    // Verify that we have no forward references left.  If so, there was a goto
5034    // or address of a label taken, but no definition of it.  Label fwd
5035    // definitions are indicated with a null substmt.
5036    if (L->getSubStmt() != 0) {
5037      if (!L->isUsed())
5038        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5039      continue;
5040    }
5041
5042    // Emit error.
5043    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5044
5045    // At this point, we have gotos that use the bogus label.  Stitch it into
5046    // the function body so that they aren't leaked and that the AST is well
5047    // formed.
5048    if (Body == 0) {
5049      // The whole function wasn't parsed correctly.
5050      continue;
5051    }
5052
5053    // Otherwise, the body is valid: we want to stitch the label decl into the
5054    // function somewhere so that it is properly owned and so that the goto
5055    // has a valid target.  Do this by creating a new compound stmt with the
5056    // label in it.
5057
5058    // Give the label a sub-statement.
5059    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5060
5061    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5062                               cast<CXXTryStmt>(Body)->getTryBlock() :
5063                               cast<CompoundStmt>(Body);
5064    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5065                                          Compound->body_end());
5066    Elements.push_back(L);
5067    Compound->setStmts(Context, Elements.data(), Elements.size());
5068  }
5069
5070  if (Body) {
5071    // C++ constructors that have function-try-blocks can't have return
5072    // statements in the handlers of that block. (C++ [except.handle]p14)
5073    // Verify this.
5074    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5075      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5076
5077    // Verify that that gotos and switch cases don't jump into scopes illegally.
5078    // Verify that that gotos and switch cases don't jump into scopes illegally.
5079    if (getCurFunction()->NeedsScopeChecking() &&
5080        !dcl->isInvalidDecl() &&
5081        !hasAnyErrorsInThisFunction())
5082      DiagnoseInvalidJumps(Body);
5083
5084    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5085      if (!Destructor->getParent()->isDependentType())
5086        CheckDestructor(Destructor);
5087
5088      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5089                                             Destructor->getParent());
5090    }
5091
5092    // If any errors have occurred, clear out any temporaries that may have
5093    // been leftover. This ensures that these temporaries won't be picked up for
5094    // deletion in some later function.
5095    if (PP.getDiagnostics().hasErrorOccurred())
5096      ExprTemporaries.clear();
5097    else if (!isa<FunctionTemplateDecl>(dcl)) {
5098      // Since the body is valid, issue any analysis-based warnings that are
5099      // enabled.
5100      QualType ResultType;
5101      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5102        AnalysisWarnings.IssueWarnings(WP, FD);
5103      } else {
5104        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5105        AnalysisWarnings.IssueWarnings(WP, MD);
5106      }
5107    }
5108
5109    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5110  }
5111
5112  if (!IsInstantiation)
5113    PopDeclContext();
5114
5115  PopFunctionOrBlockScope();
5116
5117  // If any errors have occurred, clear out any temporaries that may have
5118  // been leftover. This ensures that these temporaries won't be picked up for
5119  // deletion in some later function.
5120  if (getDiagnostics().hasErrorOccurred())
5121    ExprTemporaries.clear();
5122
5123  return dcl;
5124}
5125
5126/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5127/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5128NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5129                                          IdentifierInfo &II, Scope *S) {
5130  // Before we produce a declaration for an implicitly defined
5131  // function, see whether there was a locally-scoped declaration of
5132  // this name as a function or variable. If so, use that
5133  // (non-visible) declaration, and complain about it.
5134  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5135    = LocallyScopedExternalDecls.find(&II);
5136  if (Pos != LocallyScopedExternalDecls.end()) {
5137    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5138    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5139    return Pos->second;
5140  }
5141
5142  // Extension in C99.  Legal in C90, but warn about it.
5143  if (II.getName().startswith("__builtin_"))
5144    Diag(Loc, diag::warn_builtin_unknown) << &II;
5145  else if (getLangOptions().C99)
5146    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5147  else
5148    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5149
5150  // Set a Declarator for the implicit definition: int foo();
5151  const char *Dummy;
5152  DeclSpec DS;
5153  unsigned DiagID;
5154  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5155  Error = Error; // Silence warning.
5156  assert(!Error && "Error setting up implicit decl!");
5157  Declarator D(DS, Declarator::BlockContext);
5158  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5159                                             0, 0, false, SourceLocation(),
5160                                             false, 0,0,0, Loc, Loc, D),
5161                SourceLocation());
5162  D.SetIdentifier(&II, Loc);
5163
5164  // Insert this function into translation-unit scope.
5165
5166  DeclContext *PrevDC = CurContext;
5167  CurContext = Context.getTranslationUnitDecl();
5168
5169  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5170  FD->setImplicit();
5171
5172  CurContext = PrevDC;
5173
5174  AddKnownFunctionAttributes(FD);
5175
5176  return FD;
5177}
5178
5179/// \brief Adds any function attributes that we know a priori based on
5180/// the declaration of this function.
5181///
5182/// These attributes can apply both to implicitly-declared builtins
5183/// (like __builtin___printf_chk) or to library-declared functions
5184/// like NSLog or printf.
5185void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5186  if (FD->isInvalidDecl())
5187    return;
5188
5189  // If this is a built-in function, map its builtin attributes to
5190  // actual attributes.
5191  if (unsigned BuiltinID = FD->getBuiltinID()) {
5192    // Handle printf-formatting attributes.
5193    unsigned FormatIdx;
5194    bool HasVAListArg;
5195    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5196      if (!FD->getAttr<FormatAttr>())
5197        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5198                                                "printf", FormatIdx+1,
5199                                               HasVAListArg ? 0 : FormatIdx+2));
5200    }
5201    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5202                                             HasVAListArg)) {
5203     if (!FD->getAttr<FormatAttr>())
5204       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5205                                              "scanf", FormatIdx+1,
5206                                              HasVAListArg ? 0 : FormatIdx+2));
5207    }
5208
5209    // Mark const if we don't care about errno and that is the only
5210    // thing preventing the function from being const. This allows
5211    // IRgen to use LLVM intrinsics for such functions.
5212    if (!getLangOptions().MathErrno &&
5213        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5214      if (!FD->getAttr<ConstAttr>())
5215        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5216    }
5217
5218    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5219      FD->setType(Context.getNoReturnType(FD->getType()));
5220    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5221      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5222    if (Context.BuiltinInfo.isConst(BuiltinID))
5223      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5224  }
5225
5226  IdentifierInfo *Name = FD->getIdentifier();
5227  if (!Name)
5228    return;
5229  if ((!getLangOptions().CPlusPlus &&
5230       FD->getDeclContext()->isTranslationUnit()) ||
5231      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5232       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5233       LinkageSpecDecl::lang_c)) {
5234    // Okay: this could be a libc/libm/Objective-C function we know
5235    // about.
5236  } else
5237    return;
5238
5239  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5240    // FIXME: NSLog and NSLogv should be target specific
5241    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5242      // FIXME: We known better than our headers.
5243      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5244    } else
5245      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5246                                             "printf", 1,
5247                                             Name->isStr("NSLogv") ? 0 : 2));
5248  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5249    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5250    // target-specific builtins, perhaps?
5251    if (!FD->getAttr<FormatAttr>())
5252      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5253                                             "printf", 2,
5254                                             Name->isStr("vasprintf") ? 0 : 3));
5255  }
5256}
5257
5258TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5259                                    TypeSourceInfo *TInfo) {
5260  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5261  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5262
5263  if (!TInfo) {
5264    assert(D.isInvalidType() && "no declarator info for valid type");
5265    TInfo = Context.getTrivialTypeSourceInfo(T);
5266  }
5267
5268  // Scope manipulation handled by caller.
5269  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5270                                           D.getIdentifierLoc(),
5271                                           D.getIdentifier(),
5272                                           TInfo);
5273
5274  if (const TagType *TT = T->getAs<TagType>()) {
5275    TagDecl *TD = TT->getDecl();
5276
5277    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5278    // keep track of the TypedefDecl.
5279    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5280      TD->setTypedefForAnonDecl(NewTD);
5281  }
5282
5283  if (D.isInvalidType())
5284    NewTD->setInvalidDecl();
5285  return NewTD;
5286}
5287
5288
5289/// \brief Determine whether a tag with a given kind is acceptable
5290/// as a redeclaration of the given tag declaration.
5291///
5292/// \returns true if the new tag kind is acceptable, false otherwise.
5293bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5294                                        TagTypeKind NewTag,
5295                                        SourceLocation NewTagLoc,
5296                                        const IdentifierInfo &Name) {
5297  // C++ [dcl.type.elab]p3:
5298  //   The class-key or enum keyword present in the
5299  //   elaborated-type-specifier shall agree in kind with the
5300  //   declaration to which the name in the elaborated-type-specifier
5301  //   refers. This rule also applies to the form of
5302  //   elaborated-type-specifier that declares a class-name or
5303  //   friend class since it can be construed as referring to the
5304  //   definition of the class. Thus, in any
5305  //   elaborated-type-specifier, the enum keyword shall be used to
5306  //   refer to an enumeration (7.2), the union class-key shall be
5307  //   used to refer to a union (clause 9), and either the class or
5308  //   struct class-key shall be used to refer to a class (clause 9)
5309  //   declared using the class or struct class-key.
5310  TagTypeKind OldTag = Previous->getTagKind();
5311  if (OldTag == NewTag)
5312    return true;
5313
5314  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5315      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5316    // Warn about the struct/class tag mismatch.
5317    bool isTemplate = false;
5318    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5319      isTemplate = Record->getDescribedClassTemplate();
5320
5321    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5322      << (NewTag == TTK_Class)
5323      << isTemplate << &Name
5324      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5325                              OldTag == TTK_Class? "class" : "struct");
5326    Diag(Previous->getLocation(), diag::note_previous_use);
5327    return true;
5328  }
5329  return false;
5330}
5331
5332/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5333/// former case, Name will be non-null.  In the later case, Name will be null.
5334/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5335/// reference/declaration/definition of a tag.
5336Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5337                     SourceLocation KWLoc, CXXScopeSpec &SS,
5338                     IdentifierInfo *Name, SourceLocation NameLoc,
5339                     AttributeList *Attr, AccessSpecifier AS,
5340                     MultiTemplateParamsArg TemplateParameterLists,
5341                     bool &OwnedDecl, bool &IsDependent) {
5342  // If this is not a definition, it must have a name.
5343  assert((Name != 0 || TUK == TUK_Definition) &&
5344         "Nameless record must be a definition!");
5345
5346  OwnedDecl = false;
5347  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5348
5349  // FIXME: Check explicit specializations more carefully.
5350  bool isExplicitSpecialization = false;
5351  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5352  bool Invalid = false;
5353  if (TUK != TUK_Reference) {
5354    if (TemplateParameterList *TemplateParams
5355          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5356                        (TemplateParameterList**)TemplateParameterLists.get(),
5357                                              TemplateParameterLists.size(),
5358                                                    TUK == TUK_Friend,
5359                                                    isExplicitSpecialization,
5360                                                    Invalid)) {
5361      // All but one template parameter lists have been matching.
5362      --NumMatchedTemplateParamLists;
5363
5364      if (TemplateParams->size() > 0) {
5365        // This is a declaration or definition of a class template (which may
5366        // be a member of another template).
5367        if (Invalid)
5368          return 0;
5369
5370        OwnedDecl = false;
5371        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5372                                               SS, Name, NameLoc, Attr,
5373                                               TemplateParams,
5374                                               AS);
5375        TemplateParameterLists.release();
5376        return Result.get();
5377      } else {
5378        // The "template<>" header is extraneous.
5379        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5380          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5381        isExplicitSpecialization = true;
5382      }
5383    }
5384  }
5385
5386  DeclContext *SearchDC = CurContext;
5387  DeclContext *DC = CurContext;
5388  bool isStdBadAlloc = false;
5389
5390  RedeclarationKind Redecl = ForRedeclaration;
5391  if (TUK == TUK_Friend || TUK == TUK_Reference)
5392    Redecl = NotForRedeclaration;
5393
5394  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5395
5396  if (Name && SS.isNotEmpty()) {
5397    // We have a nested-name tag ('struct foo::bar').
5398
5399    // Check for invalid 'foo::'.
5400    if (SS.isInvalid()) {
5401      Name = 0;
5402      goto CreateNewDecl;
5403    }
5404
5405    // If this is a friend or a reference to a class in a dependent
5406    // context, don't try to make a decl for it.
5407    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5408      DC = computeDeclContext(SS, false);
5409      if (!DC) {
5410        IsDependent = true;
5411        return 0;
5412      }
5413    } else {
5414      DC = computeDeclContext(SS, true);
5415      if (!DC) {
5416        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5417          << SS.getRange();
5418        return 0;
5419      }
5420    }
5421
5422    if (RequireCompleteDeclContext(SS, DC))
5423      return 0;
5424
5425    SearchDC = DC;
5426    // Look-up name inside 'foo::'.
5427    LookupQualifiedName(Previous, DC);
5428
5429    if (Previous.isAmbiguous())
5430      return 0;
5431
5432    if (Previous.empty()) {
5433      // Name lookup did not find anything. However, if the
5434      // nested-name-specifier refers to the current instantiation,
5435      // and that current instantiation has any dependent base
5436      // classes, we might find something at instantiation time: treat
5437      // this as a dependent elaborated-type-specifier.
5438      if (Previous.wasNotFoundInCurrentInstantiation()) {
5439        IsDependent = true;
5440        return 0;
5441      }
5442
5443      // A tag 'foo::bar' must already exist.
5444      Diag(NameLoc, diag::err_not_tag_in_scope)
5445        << Kind << Name << DC << SS.getRange();
5446      Name = 0;
5447      Invalid = true;
5448      goto CreateNewDecl;
5449    }
5450  } else if (Name) {
5451    // If this is a named struct, check to see if there was a previous forward
5452    // declaration or definition.
5453    // FIXME: We're looking into outer scopes here, even when we
5454    // shouldn't be. Doing so can result in ambiguities that we
5455    // shouldn't be diagnosing.
5456    LookupName(Previous, S);
5457
5458    // Note:  there used to be some attempt at recovery here.
5459    if (Previous.isAmbiguous())
5460      return 0;
5461
5462    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5463      // FIXME: This makes sure that we ignore the contexts associated
5464      // with C structs, unions, and enums when looking for a matching
5465      // tag declaration or definition. See the similar lookup tweak
5466      // in Sema::LookupName; is there a better way to deal with this?
5467      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5468        SearchDC = SearchDC->getParent();
5469    }
5470  } else if (S->isFunctionPrototypeScope()) {
5471    // If this is an enum declaration in function prototype scope, set its
5472    // initial context to the translation unit.
5473    SearchDC = Context.getTranslationUnitDecl();
5474  }
5475
5476  if (Previous.isSingleResult() &&
5477      Previous.getFoundDecl()->isTemplateParameter()) {
5478    // Maybe we will complain about the shadowed template parameter.
5479    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5480    // Just pretend that we didn't see the previous declaration.
5481    Previous.clear();
5482  }
5483
5484  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5485      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5486    // This is a declaration of or a reference to "std::bad_alloc".
5487    isStdBadAlloc = true;
5488
5489    if (Previous.empty() && StdBadAlloc) {
5490      // std::bad_alloc has been implicitly declared (but made invisible to
5491      // name lookup). Fill in this implicit declaration as the previous
5492      // declaration, so that the declarations get chained appropriately.
5493      Previous.addDecl(getStdBadAlloc());
5494    }
5495  }
5496
5497  // If we didn't find a previous declaration, and this is a reference
5498  // (or friend reference), move to the correct scope.  In C++, we
5499  // also need to do a redeclaration lookup there, just in case
5500  // there's a shadow friend decl.
5501  if (Name && Previous.empty() &&
5502      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5503    if (Invalid) goto CreateNewDecl;
5504    assert(SS.isEmpty());
5505
5506    if (TUK == TUK_Reference) {
5507      // C++ [basic.scope.pdecl]p5:
5508      //   -- for an elaborated-type-specifier of the form
5509      //
5510      //          class-key identifier
5511      //
5512      //      if the elaborated-type-specifier is used in the
5513      //      decl-specifier-seq or parameter-declaration-clause of a
5514      //      function defined in namespace scope, the identifier is
5515      //      declared as a class-name in the namespace that contains
5516      //      the declaration; otherwise, except as a friend
5517      //      declaration, the identifier is declared in the smallest
5518      //      non-class, non-function-prototype scope that contains the
5519      //      declaration.
5520      //
5521      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5522      // C structs and unions.
5523      //
5524      // It is an error in C++ to declare (rather than define) an enum
5525      // type, including via an elaborated type specifier.  We'll
5526      // diagnose that later; for now, declare the enum in the same
5527      // scope as we would have picked for any other tag type.
5528      //
5529      // GNU C also supports this behavior as part of its incomplete
5530      // enum types extension, while GNU C++ does not.
5531      //
5532      // Find the context where we'll be declaring the tag.
5533      // FIXME: We would like to maintain the current DeclContext as the
5534      // lexical context,
5535      while (SearchDC->isRecord())
5536        SearchDC = SearchDC->getParent();
5537
5538      // Find the scope where we'll be declaring the tag.
5539      while (S->isClassScope() ||
5540             (getLangOptions().CPlusPlus &&
5541              S->isFunctionPrototypeScope()) ||
5542             ((S->getFlags() & Scope::DeclScope) == 0) ||
5543             (S->getEntity() &&
5544              ((DeclContext *)S->getEntity())->isTransparentContext()))
5545        S = S->getParent();
5546    } else {
5547      assert(TUK == TUK_Friend);
5548      // C++ [namespace.memdef]p3:
5549      //   If a friend declaration in a non-local class first declares a
5550      //   class or function, the friend class or function is a member of
5551      //   the innermost enclosing namespace.
5552      SearchDC = SearchDC->getEnclosingNamespaceContext();
5553    }
5554
5555    // In C++, we need to do a redeclaration lookup to properly
5556    // diagnose some problems.
5557    if (getLangOptions().CPlusPlus) {
5558      Previous.setRedeclarationKind(ForRedeclaration);
5559      LookupQualifiedName(Previous, SearchDC);
5560    }
5561  }
5562
5563  if (!Previous.empty()) {
5564    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5565
5566    // It's okay to have a tag decl in the same scope as a typedef
5567    // which hides a tag decl in the same scope.  Finding this
5568    // insanity with a redeclaration lookup can only actually happen
5569    // in C++.
5570    //
5571    // This is also okay for elaborated-type-specifiers, which is
5572    // technically forbidden by the current standard but which is
5573    // okay according to the likely resolution of an open issue;
5574    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5575    if (getLangOptions().CPlusPlus) {
5576      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5577        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5578          TagDecl *Tag = TT->getDecl();
5579          if (Tag->getDeclName() == Name &&
5580              Tag->getDeclContext()->getRedeclContext()
5581                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
5582            PrevDecl = Tag;
5583            Previous.clear();
5584            Previous.addDecl(Tag);
5585            Previous.resolveKind();
5586          }
5587        }
5588      }
5589    }
5590
5591    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5592      // If this is a use of a previous tag, or if the tag is already declared
5593      // in the same scope (so that the definition/declaration completes or
5594      // rementions the tag), reuse the decl.
5595      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5596          isDeclInScope(PrevDecl, SearchDC, S)) {
5597        // Make sure that this wasn't declared as an enum and now used as a
5598        // struct or something similar.
5599        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5600          bool SafeToContinue
5601            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5602               Kind != TTK_Enum);
5603          if (SafeToContinue)
5604            Diag(KWLoc, diag::err_use_with_wrong_tag)
5605              << Name
5606              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5607                                              PrevTagDecl->getKindName());
5608          else
5609            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5610          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5611
5612          if (SafeToContinue)
5613            Kind = PrevTagDecl->getTagKind();
5614          else {
5615            // Recover by making this an anonymous redefinition.
5616            Name = 0;
5617            Previous.clear();
5618            Invalid = true;
5619          }
5620        }
5621
5622        if (!Invalid) {
5623          // If this is a use, just return the declaration we found.
5624
5625          // FIXME: In the future, return a variant or some other clue
5626          // for the consumer of this Decl to know it doesn't own it.
5627          // For our current ASTs this shouldn't be a problem, but will
5628          // need to be changed with DeclGroups.
5629          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5630              TUK == TUK_Friend)
5631            return PrevTagDecl;
5632
5633          // Diagnose attempts to redefine a tag.
5634          if (TUK == TUK_Definition) {
5635            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5636              // If we're defining a specialization and the previous definition
5637              // is from an implicit instantiation, don't emit an error
5638              // here; we'll catch this in the general case below.
5639              if (!isExplicitSpecialization ||
5640                  !isa<CXXRecordDecl>(Def) ||
5641                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5642                                               == TSK_ExplicitSpecialization) {
5643                Diag(NameLoc, diag::err_redefinition) << Name;
5644                Diag(Def->getLocation(), diag::note_previous_definition);
5645                // If this is a redefinition, recover by making this
5646                // struct be anonymous, which will make any later
5647                // references get the previous definition.
5648                Name = 0;
5649                Previous.clear();
5650                Invalid = true;
5651              }
5652            } else {
5653              // If the type is currently being defined, complain
5654              // about a nested redefinition.
5655              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5656              if (Tag->isBeingDefined()) {
5657                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5658                Diag(PrevTagDecl->getLocation(),
5659                     diag::note_previous_definition);
5660                Name = 0;
5661                Previous.clear();
5662                Invalid = true;
5663              }
5664            }
5665
5666            // Okay, this is definition of a previously declared or referenced
5667            // tag PrevDecl. We're going to create a new Decl for it.
5668          }
5669        }
5670        // If we get here we have (another) forward declaration or we
5671        // have a definition.  Just create a new decl.
5672
5673      } else {
5674        // If we get here, this is a definition of a new tag type in a nested
5675        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5676        // new decl/type.  We set PrevDecl to NULL so that the entities
5677        // have distinct types.
5678        Previous.clear();
5679      }
5680      // If we get here, we're going to create a new Decl. If PrevDecl
5681      // is non-NULL, it's a definition of the tag declared by
5682      // PrevDecl. If it's NULL, we have a new definition.
5683
5684
5685    // Otherwise, PrevDecl is not a tag, but was found with tag
5686    // lookup.  This is only actually possible in C++, where a few
5687    // things like templates still live in the tag namespace.
5688    } else {
5689      assert(getLangOptions().CPlusPlus);
5690
5691      // Use a better diagnostic if an elaborated-type-specifier
5692      // found the wrong kind of type on the first
5693      // (non-redeclaration) lookup.
5694      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5695          !Previous.isForRedeclaration()) {
5696        unsigned Kind = 0;
5697        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5698        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5699        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5700        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5701        Invalid = true;
5702
5703      // Otherwise, only diagnose if the declaration is in scope.
5704      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5705        // do nothing
5706
5707      // Diagnose implicit declarations introduced by elaborated types.
5708      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5709        unsigned Kind = 0;
5710        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5711        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5712        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5713        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5714        Invalid = true;
5715
5716      // Otherwise it's a declaration.  Call out a particularly common
5717      // case here.
5718      } else if (isa<TypedefDecl>(PrevDecl)) {
5719        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5720          << Name
5721          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5722        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5723        Invalid = true;
5724
5725      // Otherwise, diagnose.
5726      } else {
5727        // The tag name clashes with something else in the target scope,
5728        // issue an error and recover by making this tag be anonymous.
5729        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5730        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5731        Name = 0;
5732        Invalid = true;
5733      }
5734
5735      // The existing declaration isn't relevant to us; we're in a
5736      // new scope, so clear out the previous declaration.
5737      Previous.clear();
5738    }
5739  }
5740
5741CreateNewDecl:
5742
5743  TagDecl *PrevDecl = 0;
5744  if (Previous.isSingleResult())
5745    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5746
5747  // If there is an identifier, use the location of the identifier as the
5748  // location of the decl, otherwise use the location of the struct/union
5749  // keyword.
5750  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5751
5752  // Otherwise, create a new declaration. If there is a previous
5753  // declaration of the same entity, the two will be linked via
5754  // PrevDecl.
5755  TagDecl *New;
5756
5757  if (Kind == TTK_Enum) {
5758    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5759    // enum X { A, B, C } D;    D should chain to X.
5760    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5761                           cast_or_null<EnumDecl>(PrevDecl));
5762    // If this is an undefined enum, warn.
5763    if (TUK != TUK_Definition && !Invalid) {
5764      TagDecl *Def;
5765      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5766        Diag(Loc, diag::ext_forward_ref_enum_def)
5767          << New;
5768        Diag(Def->getLocation(), diag::note_previous_definition);
5769      } else {
5770        unsigned DiagID = diag::ext_forward_ref_enum;
5771        if (getLangOptions().Microsoft)
5772          DiagID = diag::ext_ms_forward_ref_enum;
5773        else if (getLangOptions().CPlusPlus)
5774          DiagID = diag::err_forward_ref_enum;
5775        Diag(Loc, DiagID);
5776      }
5777    }
5778  } else {
5779    // struct/union/class
5780
5781    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5782    // struct X { int A; } D;    D should chain to X.
5783    if (getLangOptions().CPlusPlus) {
5784      // FIXME: Look for a way to use RecordDecl for simple structs.
5785      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5786                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5787
5788      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5789        StdBadAlloc = cast<CXXRecordDecl>(New);
5790    } else
5791      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5792                               cast_or_null<RecordDecl>(PrevDecl));
5793  }
5794
5795  // Maybe add qualifier info.
5796  if (SS.isNotEmpty()) {
5797    if (SS.isSet()) {
5798      NestedNameSpecifier *NNS
5799        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5800      New->setQualifierInfo(NNS, SS.getRange());
5801      if (NumMatchedTemplateParamLists > 0) {
5802        New->setTemplateParameterListsInfo(Context,
5803                                           NumMatchedTemplateParamLists,
5804                    (TemplateParameterList**) TemplateParameterLists.release());
5805      }
5806    }
5807    else
5808      Invalid = true;
5809  }
5810
5811  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5812    // Add alignment attributes if necessary; these attributes are checked when
5813    // the ASTContext lays out the structure.
5814    //
5815    // It is important for implementing the correct semantics that this
5816    // happen here (in act on tag decl). The #pragma pack stack is
5817    // maintained as a result of parser callbacks which can occur at
5818    // many points during the parsing of a struct declaration (because
5819    // the #pragma tokens are effectively skipped over during the
5820    // parsing of the struct).
5821    AddAlignmentAttributesForRecord(RD);
5822  }
5823
5824  // If this is a specialization of a member class (of a class template),
5825  // check the specialization.
5826  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5827    Invalid = true;
5828
5829  if (Invalid)
5830    New->setInvalidDecl();
5831
5832  if (Attr)
5833    ProcessDeclAttributeList(S, New, Attr);
5834
5835  // If we're declaring or defining a tag in function prototype scope
5836  // in C, note that this type can only be used within the function.
5837  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5838    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5839
5840  // Set the lexical context. If the tag has a C++ scope specifier, the
5841  // lexical context will be different from the semantic context.
5842  New->setLexicalDeclContext(CurContext);
5843
5844  // Mark this as a friend decl if applicable.
5845  if (TUK == TUK_Friend)
5846    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5847
5848  // Set the access specifier.
5849  if (!Invalid && SearchDC->isRecord())
5850    SetMemberAccessSpecifier(New, PrevDecl, AS);
5851
5852  if (TUK == TUK_Definition)
5853    New->startDefinition();
5854
5855  // If this has an identifier, add it to the scope stack.
5856  if (TUK == TUK_Friend) {
5857    // We might be replacing an existing declaration in the lookup tables;
5858    // if so, borrow its access specifier.
5859    if (PrevDecl)
5860      New->setAccess(PrevDecl->getAccess());
5861
5862    DeclContext *DC = New->getDeclContext()->getRedeclContext();
5863    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5864    if (Name) // can be null along some error paths
5865      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5866        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5867  } else if (Name) {
5868    S = getNonFieldDeclScope(S);
5869    PushOnScopeChains(New, S);
5870  } else {
5871    CurContext->addDecl(New);
5872  }
5873
5874  // If this is the C FILE type, notify the AST context.
5875  if (IdentifierInfo *II = New->getIdentifier())
5876    if (!New->isInvalidDecl() &&
5877        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
5878        II->isStr("FILE"))
5879      Context.setFILEDecl(New);
5880
5881  OwnedDecl = true;
5882  return New;
5883}
5884
5885void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
5886  AdjustDeclIfTemplate(TagD);
5887  TagDecl *Tag = cast<TagDecl>(TagD);
5888
5889  // Enter the tag context.
5890  PushDeclContext(S, Tag);
5891}
5892
5893void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
5894                                           SourceLocation LBraceLoc) {
5895  AdjustDeclIfTemplate(TagD);
5896  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
5897
5898  FieldCollector->StartClass();
5899
5900  if (!Record->getIdentifier())
5901    return;
5902
5903  // C++ [class]p2:
5904  //   [...] The class-name is also inserted into the scope of the
5905  //   class itself; this is known as the injected-class-name. For
5906  //   purposes of access checking, the injected-class-name is treated
5907  //   as if it were a public member name.
5908  CXXRecordDecl *InjectedClassName
5909    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5910                            CurContext, Record->getLocation(),
5911                            Record->getIdentifier(),
5912                            Record->getTagKeywordLoc(),
5913                            Record);
5914  InjectedClassName->setImplicit();
5915  InjectedClassName->setAccess(AS_public);
5916  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5917      InjectedClassName->setDescribedClassTemplate(Template);
5918  PushOnScopeChains(InjectedClassName, S);
5919  assert(InjectedClassName->isInjectedClassName() &&
5920         "Broken injected-class-name");
5921}
5922
5923void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
5924                                    SourceLocation RBraceLoc) {
5925  AdjustDeclIfTemplate(TagD);
5926  TagDecl *Tag = cast<TagDecl>(TagD);
5927  Tag->setRBraceLoc(RBraceLoc);
5928
5929  if (isa<CXXRecordDecl>(Tag))
5930    FieldCollector->FinishClass();
5931
5932  // Exit this scope of this tag's definition.
5933  PopDeclContext();
5934
5935  // Notify the consumer that we've defined a tag.
5936  Consumer.HandleTagDeclDefinition(Tag);
5937}
5938
5939void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
5940  AdjustDeclIfTemplate(TagD);
5941  TagDecl *Tag = cast<TagDecl>(TagD);
5942  Tag->setInvalidDecl();
5943
5944  // We're undoing ActOnTagStartDefinition here, not
5945  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5946  // the FieldCollector.
5947
5948  PopDeclContext();
5949}
5950
5951// Note that FieldName may be null for anonymous bitfields.
5952bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5953                          QualType FieldTy, const Expr *BitWidth,
5954                          bool *ZeroWidth) {
5955  // Default to true; that shouldn't confuse checks for emptiness
5956  if (ZeroWidth)
5957    *ZeroWidth = true;
5958
5959  // C99 6.7.2.1p4 - verify the field type.
5960  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5961  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5962    // Handle incomplete types with specific error.
5963    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5964      return true;
5965    if (FieldName)
5966      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5967        << FieldName << FieldTy << BitWidth->getSourceRange();
5968    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5969      << FieldTy << BitWidth->getSourceRange();
5970  }
5971
5972  // If the bit-width is type- or value-dependent, don't try to check
5973  // it now.
5974  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5975    return false;
5976
5977  llvm::APSInt Value;
5978  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5979    return true;
5980
5981  if (Value != 0 && ZeroWidth)
5982    *ZeroWidth = false;
5983
5984  // Zero-width bitfield is ok for anonymous field.
5985  if (Value == 0 && FieldName)
5986    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5987
5988  if (Value.isSigned() && Value.isNegative()) {
5989    if (FieldName)
5990      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5991               << FieldName << Value.toString(10);
5992    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5993      << Value.toString(10);
5994  }
5995
5996  if (!FieldTy->isDependentType()) {
5997    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5998    if (Value.getZExtValue() > TypeSize) {
5999      if (!getLangOptions().CPlusPlus) {
6000        if (FieldName)
6001          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6002            << FieldName << (unsigned)Value.getZExtValue()
6003            << (unsigned)TypeSize;
6004
6005        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6006          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6007      }
6008
6009      if (FieldName)
6010        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6011          << FieldName << (unsigned)Value.getZExtValue()
6012          << (unsigned)TypeSize;
6013      else
6014        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6015          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6016    }
6017  }
6018
6019  return false;
6020}
6021
6022/// ActOnField - Each field of a struct/union/class is passed into this in order
6023/// to create a FieldDecl object for it.
6024Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6025                                 SourceLocation DeclStart,
6026                                 Declarator &D, ExprTy *BitfieldWidth) {
6027  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6028                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6029                               AS_public);
6030  return Res;
6031}
6032
6033/// HandleField - Analyze a field of a C struct or a C++ data member.
6034///
6035FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6036                             SourceLocation DeclStart,
6037                             Declarator &D, Expr *BitWidth,
6038                             AccessSpecifier AS) {
6039  IdentifierInfo *II = D.getIdentifier();
6040  SourceLocation Loc = DeclStart;
6041  if (II) Loc = D.getIdentifierLoc();
6042
6043  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6044  QualType T = TInfo->getType();
6045  if (getLangOptions().CPlusPlus)
6046    CheckExtraCXXDefaultArguments(D);
6047
6048  DiagnoseFunctionSpecifiers(D);
6049
6050  if (D.getDeclSpec().isThreadSpecified())
6051    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6052
6053  // Check to see if this name was declared as a member previously
6054  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6055  LookupName(Previous, S);
6056  assert((Previous.empty() || Previous.isOverloadedResult() ||
6057          Previous.isSingleResult())
6058    && "Lookup of member name should be either overloaded, single or null");
6059
6060  // If the name is overloaded then get any declaration else get the single result
6061  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6062    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6063
6064  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6065    // Maybe we will complain about the shadowed template parameter.
6066    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6067    // Just pretend that we didn't see the previous declaration.
6068    PrevDecl = 0;
6069  }
6070
6071  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6072    PrevDecl = 0;
6073
6074  bool Mutable
6075    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6076  SourceLocation TSSL = D.getSourceRange().getBegin();
6077  FieldDecl *NewFD
6078    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6079                     AS, PrevDecl, &D);
6080
6081  if (NewFD->isInvalidDecl())
6082    Record->setInvalidDecl();
6083
6084  if (NewFD->isInvalidDecl() && PrevDecl) {
6085    // Don't introduce NewFD into scope; there's already something
6086    // with the same name in the same scope.
6087  } else if (II) {
6088    PushOnScopeChains(NewFD, S);
6089  } else
6090    Record->addDecl(NewFD);
6091
6092  return NewFD;
6093}
6094
6095/// \brief Build a new FieldDecl and check its well-formedness.
6096///
6097/// This routine builds a new FieldDecl given the fields name, type,
6098/// record, etc. \p PrevDecl should refer to any previous declaration
6099/// with the same name and in the same scope as the field to be
6100/// created.
6101///
6102/// \returns a new FieldDecl.
6103///
6104/// \todo The Declarator argument is a hack. It will be removed once
6105FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6106                                TypeSourceInfo *TInfo,
6107                                RecordDecl *Record, SourceLocation Loc,
6108                                bool Mutable, Expr *BitWidth,
6109                                SourceLocation TSSL,
6110                                AccessSpecifier AS, NamedDecl *PrevDecl,
6111                                Declarator *D) {
6112  IdentifierInfo *II = Name.getAsIdentifierInfo();
6113  bool InvalidDecl = false;
6114  if (D) InvalidDecl = D->isInvalidType();
6115
6116  // If we receive a broken type, recover by assuming 'int' and
6117  // marking this declaration as invalid.
6118  if (T.isNull()) {
6119    InvalidDecl = true;
6120    T = Context.IntTy;
6121  }
6122
6123  QualType EltTy = Context.getBaseElementType(T);
6124  if (!EltTy->isDependentType() &&
6125      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6126    // Fields of incomplete type force their record to be invalid.
6127    Record->setInvalidDecl();
6128    InvalidDecl = true;
6129  }
6130
6131  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6132  // than a variably modified type.
6133  if (!InvalidDecl && T->isVariablyModifiedType()) {
6134    bool SizeIsNegative;
6135    llvm::APSInt Oversized;
6136    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6137                                                           SizeIsNegative,
6138                                                           Oversized);
6139    if (!FixedTy.isNull()) {
6140      Diag(Loc, diag::warn_illegal_constant_array_size);
6141      T = FixedTy;
6142    } else {
6143      if (SizeIsNegative)
6144        Diag(Loc, diag::err_typecheck_negative_array_size);
6145      else if (Oversized.getBoolValue())
6146        Diag(Loc, diag::err_array_too_large)
6147          << Oversized.toString(10);
6148      else
6149        Diag(Loc, diag::err_typecheck_field_variable_size);
6150      InvalidDecl = true;
6151    }
6152  }
6153
6154  // Fields can not have abstract class types
6155  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6156                                             diag::err_abstract_type_in_decl,
6157                                             AbstractFieldType))
6158    InvalidDecl = true;
6159
6160  bool ZeroWidth = false;
6161  // If this is declared as a bit-field, check the bit-field.
6162  if (!InvalidDecl && BitWidth &&
6163      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6164    InvalidDecl = true;
6165    BitWidth = 0;
6166    ZeroWidth = false;
6167  }
6168
6169  // Check that 'mutable' is consistent with the type of the declaration.
6170  if (!InvalidDecl && Mutable) {
6171    unsigned DiagID = 0;
6172    if (T->isReferenceType())
6173      DiagID = diag::err_mutable_reference;
6174    else if (T.isConstQualified())
6175      DiagID = diag::err_mutable_const;
6176
6177    if (DiagID) {
6178      SourceLocation ErrLoc = Loc;
6179      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6180        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6181      Diag(ErrLoc, DiagID);
6182      Mutable = false;
6183      InvalidDecl = true;
6184    }
6185  }
6186
6187  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6188                                       BitWidth, Mutable);
6189  if (InvalidDecl)
6190    NewFD->setInvalidDecl();
6191
6192  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6193    Diag(Loc, diag::err_duplicate_member) << II;
6194    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6195    NewFD->setInvalidDecl();
6196  }
6197
6198  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6199    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6200      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6201      if (RDecl->getDefinition()) {
6202        // C++ 9.5p1: An object of a class with a non-trivial
6203        // constructor, a non-trivial copy constructor, a non-trivial
6204        // destructor, or a non-trivial copy assignment operator
6205        // cannot be a member of a union, nor can an array of such
6206        // objects.
6207        // TODO: C++0x alters this restriction significantly.
6208        if (Record->isUnion() && CheckNontrivialField(NewFD))
6209          NewFD->setInvalidDecl();
6210      }
6211    }
6212  }
6213
6214  // FIXME: We need to pass in the attributes given an AST
6215  // representation, not a parser representation.
6216  if (D)
6217    // FIXME: What to pass instead of TUScope?
6218    ProcessDeclAttributes(TUScope, NewFD, *D);
6219
6220  if (T.isObjCGCWeak())
6221    Diag(Loc, diag::warn_attribute_weak_on_field);
6222
6223  NewFD->setAccess(AS);
6224  return NewFD;
6225}
6226
6227bool Sema::CheckNontrivialField(FieldDecl *FD) {
6228  assert(FD);
6229  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6230
6231  if (FD->isInvalidDecl())
6232    return true;
6233
6234  QualType EltTy = Context.getBaseElementType(FD->getType());
6235  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6236    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6237    if (RDecl->getDefinition()) {
6238      // We check for copy constructors before constructors
6239      // because otherwise we'll never get complaints about
6240      // copy constructors.
6241
6242      CXXSpecialMember member = CXXInvalid;
6243      if (!RDecl->hasTrivialCopyConstructor())
6244        member = CXXCopyConstructor;
6245      else if (!RDecl->hasTrivialConstructor())
6246        member = CXXConstructor;
6247      else if (!RDecl->hasTrivialCopyAssignment())
6248        member = CXXCopyAssignment;
6249      else if (!RDecl->hasTrivialDestructor())
6250        member = CXXDestructor;
6251
6252      if (member != CXXInvalid) {
6253        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6254              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6255        DiagnoseNontrivial(RT, member);
6256        return true;
6257      }
6258    }
6259  }
6260
6261  return false;
6262}
6263
6264/// DiagnoseNontrivial - Given that a class has a non-trivial
6265/// special member, figure out why.
6266void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6267  QualType QT(T, 0U);
6268  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6269
6270  // Check whether the member was user-declared.
6271  switch (member) {
6272  case CXXInvalid:
6273    break;
6274
6275  case CXXConstructor:
6276    if (RD->hasUserDeclaredConstructor()) {
6277      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6278      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6279        const FunctionDecl *body = 0;
6280        ci->hasBody(body);
6281        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6282          SourceLocation CtorLoc = ci->getLocation();
6283          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6284          return;
6285        }
6286      }
6287
6288      assert(0 && "found no user-declared constructors");
6289      return;
6290    }
6291    break;
6292
6293  case CXXCopyConstructor:
6294    if (RD->hasUserDeclaredCopyConstructor()) {
6295      SourceLocation CtorLoc =
6296        RD->getCopyConstructor(Context, 0)->getLocation();
6297      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6298      return;
6299    }
6300    break;
6301
6302  case CXXCopyAssignment:
6303    if (RD->hasUserDeclaredCopyAssignment()) {
6304      // FIXME: this should use the location of the copy
6305      // assignment, not the type.
6306      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6307      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6308      return;
6309    }
6310    break;
6311
6312  case CXXDestructor:
6313    if (RD->hasUserDeclaredDestructor()) {
6314      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6315      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6316      return;
6317    }
6318    break;
6319  }
6320
6321  typedef CXXRecordDecl::base_class_iterator base_iter;
6322
6323  // Virtual bases and members inhibit trivial copying/construction,
6324  // but not trivial destruction.
6325  if (member != CXXDestructor) {
6326    // Check for virtual bases.  vbases includes indirect virtual bases,
6327    // so we just iterate through the direct bases.
6328    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6329      if (bi->isVirtual()) {
6330        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6331        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6332        return;
6333      }
6334
6335    // Check for virtual methods.
6336    typedef CXXRecordDecl::method_iterator meth_iter;
6337    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6338         ++mi) {
6339      if (mi->isVirtual()) {
6340        SourceLocation MLoc = mi->getSourceRange().getBegin();
6341        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6342        return;
6343      }
6344    }
6345  }
6346
6347  bool (CXXRecordDecl::*hasTrivial)() const;
6348  switch (member) {
6349  case CXXConstructor:
6350    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6351  case CXXCopyConstructor:
6352    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6353  case CXXCopyAssignment:
6354    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6355  case CXXDestructor:
6356    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6357  default:
6358    assert(0 && "unexpected special member"); return;
6359  }
6360
6361  // Check for nontrivial bases (and recurse).
6362  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6363    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6364    assert(BaseRT && "Don't know how to handle dependent bases");
6365    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6366    if (!(BaseRecTy->*hasTrivial)()) {
6367      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6368      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6369      DiagnoseNontrivial(BaseRT, member);
6370      return;
6371    }
6372  }
6373
6374  // Check for nontrivial members (and recurse).
6375  typedef RecordDecl::field_iterator field_iter;
6376  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6377       ++fi) {
6378    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6379    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6380      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6381
6382      if (!(EltRD->*hasTrivial)()) {
6383        SourceLocation FLoc = (*fi)->getLocation();
6384        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6385        DiagnoseNontrivial(EltRT, member);
6386        return;
6387      }
6388    }
6389  }
6390
6391  assert(0 && "found no explanation for non-trivial member");
6392}
6393
6394/// TranslateIvarVisibility - Translate visibility from a token ID to an
6395///  AST enum value.
6396static ObjCIvarDecl::AccessControl
6397TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6398  switch (ivarVisibility) {
6399  default: assert(0 && "Unknown visitibility kind");
6400  case tok::objc_private: return ObjCIvarDecl::Private;
6401  case tok::objc_public: return ObjCIvarDecl::Public;
6402  case tok::objc_protected: return ObjCIvarDecl::Protected;
6403  case tok::objc_package: return ObjCIvarDecl::Package;
6404  }
6405}
6406
6407/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6408/// in order to create an IvarDecl object for it.
6409Decl *Sema::ActOnIvar(Scope *S,
6410                                SourceLocation DeclStart,
6411                                Decl *IntfDecl,
6412                                Declarator &D, ExprTy *BitfieldWidth,
6413                                tok::ObjCKeywordKind Visibility) {
6414
6415  IdentifierInfo *II = D.getIdentifier();
6416  Expr *BitWidth = (Expr*)BitfieldWidth;
6417  SourceLocation Loc = DeclStart;
6418  if (II) Loc = D.getIdentifierLoc();
6419
6420  // FIXME: Unnamed fields can be handled in various different ways, for
6421  // example, unnamed unions inject all members into the struct namespace!
6422
6423  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6424  QualType T = TInfo->getType();
6425
6426  if (BitWidth) {
6427    // 6.7.2.1p3, 6.7.2.1p4
6428    if (VerifyBitField(Loc, II, T, BitWidth)) {
6429      D.setInvalidType();
6430      BitWidth = 0;
6431    }
6432  } else {
6433    // Not a bitfield.
6434
6435    // validate II.
6436
6437  }
6438  if (T->isReferenceType()) {
6439    Diag(Loc, diag::err_ivar_reference_type);
6440    D.setInvalidType();
6441  }
6442  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6443  // than a variably modified type.
6444  else if (T->isVariablyModifiedType()) {
6445    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6446    D.setInvalidType();
6447  }
6448
6449  // Get the visibility (access control) for this ivar.
6450  ObjCIvarDecl::AccessControl ac =
6451    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6452                                        : ObjCIvarDecl::None;
6453  // Must set ivar's DeclContext to its enclosing interface.
6454  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6455  ObjCContainerDecl *EnclosingContext;
6456  if (ObjCImplementationDecl *IMPDecl =
6457      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6458    if (!LangOpts.ObjCNonFragileABI2) {
6459    // Case of ivar declared in an implementation. Context is that of its class.
6460      EnclosingContext = IMPDecl->getClassInterface();
6461      assert(EnclosingContext && "Implementation has no class interface!");
6462    }
6463    else
6464      EnclosingContext = EnclosingDecl;
6465  } else {
6466    if (ObjCCategoryDecl *CDecl =
6467        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6468      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6469        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6470        return 0;
6471      }
6472    }
6473    EnclosingContext = EnclosingDecl;
6474  }
6475
6476  // Construct the decl.
6477  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6478                                             EnclosingContext, Loc, II, T,
6479                                             TInfo, ac, (Expr *)BitfieldWidth);
6480
6481  if (II) {
6482    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6483                                           ForRedeclaration);
6484    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6485        && !isa<TagDecl>(PrevDecl)) {
6486      Diag(Loc, diag::err_duplicate_member) << II;
6487      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6488      NewID->setInvalidDecl();
6489    }
6490  }
6491
6492  // Process attributes attached to the ivar.
6493  ProcessDeclAttributes(S, NewID, D);
6494
6495  if (D.isInvalidType())
6496    NewID->setInvalidDecl();
6497
6498  if (II) {
6499    // FIXME: When interfaces are DeclContexts, we'll need to add
6500    // these to the interface.
6501    S->AddDecl(NewID);
6502    IdResolver.AddDecl(NewID);
6503  }
6504
6505  return NewID;
6506}
6507
6508/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6509/// class and class extensions. For every class @interface and class
6510/// extension @interface, if the last ivar is a bitfield of any type,
6511/// then add an implicit `char :0` ivar to the end of that interface.
6512void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6513                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6514  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6515    return;
6516
6517  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6518  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6519
6520  if (!Ivar->isBitField())
6521    return;
6522  uint64_t BitFieldSize =
6523    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6524  if (BitFieldSize == 0)
6525    return;
6526  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6527  if (!ID) {
6528    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6529      if (!CD->IsClassExtension())
6530        return;
6531    }
6532    // No need to add this to end of @implementation.
6533    else
6534      return;
6535  }
6536  // All conditions are met. Add a new bitfield to the tail end of ivars.
6537  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6538  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
6539
6540  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6541                              DeclLoc, 0,
6542                              Context.CharTy,
6543                              Context.CreateTypeSourceInfo(Context.CharTy),
6544                              ObjCIvarDecl::Private, BW,
6545                              true);
6546  AllIvarDecls.push_back(Ivar);
6547}
6548
6549void Sema::ActOnFields(Scope* S,
6550                       SourceLocation RecLoc, Decl *EnclosingDecl,
6551                       Decl **Fields, unsigned NumFields,
6552                       SourceLocation LBrac, SourceLocation RBrac,
6553                       AttributeList *Attr) {
6554  assert(EnclosingDecl && "missing record or interface decl");
6555
6556  // If the decl this is being inserted into is invalid, then it may be a
6557  // redeclaration or some other bogus case.  Don't try to add fields to it.
6558  if (EnclosingDecl->isInvalidDecl()) {
6559    // FIXME: Deallocate fields?
6560    return;
6561  }
6562
6563
6564  // Verify that all the fields are okay.
6565  unsigned NumNamedMembers = 0;
6566  llvm::SmallVector<FieldDecl*, 32> RecFields;
6567
6568  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6569  for (unsigned i = 0; i != NumFields; ++i) {
6570    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6571
6572    // Get the type for the field.
6573    Type *FDTy = FD->getType().getTypePtr();
6574
6575    if (!FD->isAnonymousStructOrUnion()) {
6576      // Remember all fields written by the user.
6577      RecFields.push_back(FD);
6578    }
6579
6580    // If the field is already invalid for some reason, don't emit more
6581    // diagnostics about it.
6582    if (FD->isInvalidDecl()) {
6583      EnclosingDecl->setInvalidDecl();
6584      continue;
6585    }
6586
6587    // C99 6.7.2.1p2:
6588    //   A structure or union shall not contain a member with
6589    //   incomplete or function type (hence, a structure shall not
6590    //   contain an instance of itself, but may contain a pointer to
6591    //   an instance of itself), except that the last member of a
6592    //   structure with more than one named member may have incomplete
6593    //   array type; such a structure (and any union containing,
6594    //   possibly recursively, a member that is such a structure)
6595    //   shall not be a member of a structure or an element of an
6596    //   array.
6597    if (FDTy->isFunctionType()) {
6598      // Field declared as a function.
6599      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6600        << FD->getDeclName();
6601      FD->setInvalidDecl();
6602      EnclosingDecl->setInvalidDecl();
6603      continue;
6604    } else if (FDTy->isIncompleteArrayType() && Record &&
6605               ((i == NumFields - 1 && !Record->isUnion()) ||
6606                (getLangOptions().Microsoft &&
6607                 (i == NumFields - 1 || Record->isUnion())))) {
6608      // Flexible array member.
6609      // Microsoft is more permissive regarding flexible array.
6610      // It will accept flexible array in union and also
6611	    // as the sole element of a struct/class.
6612      if (getLangOptions().Microsoft) {
6613        if (Record->isUnion())
6614          Diag(FD->getLocation(), diag::ext_flexible_array_union)
6615            << FD->getDeclName();
6616        else if (NumFields == 1)
6617          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
6618            << FD->getDeclName() << Record->getTagKind();
6619      } else  if (NumNamedMembers < 1) {
6620        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6621          << FD->getDeclName();
6622        FD->setInvalidDecl();
6623        EnclosingDecl->setInvalidDecl();
6624        continue;
6625      }
6626      if (!FD->getType()->isDependentType() &&
6627          !Context.getBaseElementType(FD->getType())->isPODType()) {
6628        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6629          << FD->getDeclName() << FD->getType();
6630        FD->setInvalidDecl();
6631        EnclosingDecl->setInvalidDecl();
6632        continue;
6633      }
6634      // Okay, we have a legal flexible array member at the end of the struct.
6635      if (Record)
6636        Record->setHasFlexibleArrayMember(true);
6637    } else if (!FDTy->isDependentType() &&
6638               RequireCompleteType(FD->getLocation(), FD->getType(),
6639                                   diag::err_field_incomplete)) {
6640      // Incomplete type
6641      FD->setInvalidDecl();
6642      EnclosingDecl->setInvalidDecl();
6643      continue;
6644    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6645      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6646        // If this is a member of a union, then entire union becomes "flexible".
6647        if (Record && Record->isUnion()) {
6648          Record->setHasFlexibleArrayMember(true);
6649        } else {
6650          // If this is a struct/class and this is not the last element, reject
6651          // it.  Note that GCC supports variable sized arrays in the middle of
6652          // structures.
6653          if (i != NumFields-1)
6654            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6655              << FD->getDeclName() << FD->getType();
6656          else {
6657            // We support flexible arrays at the end of structs in
6658            // other structs as an extension.
6659            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6660              << FD->getDeclName();
6661            if (Record)
6662              Record->setHasFlexibleArrayMember(true);
6663          }
6664        }
6665      }
6666      if (Record && FDTTy->getDecl()->hasObjectMember())
6667        Record->setHasObjectMember(true);
6668    } else if (FDTy->isObjCObjectType()) {
6669      /// A field cannot be an Objective-c object
6670      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6671      FD->setInvalidDecl();
6672      EnclosingDecl->setInvalidDecl();
6673      continue;
6674    } else if (getLangOptions().ObjC1 &&
6675               getLangOptions().getGCMode() != LangOptions::NonGC &&
6676               Record &&
6677               (FD->getType()->isObjCObjectPointerType() ||
6678                FD->getType().isObjCGCStrong()))
6679      Record->setHasObjectMember(true);
6680    else if (Context.getAsArrayType(FD->getType())) {
6681      QualType BaseType = Context.getBaseElementType(FD->getType());
6682      if (Record && BaseType->isRecordType() &&
6683          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6684        Record->setHasObjectMember(true);
6685    }
6686    // Keep track of the number of named members.
6687    if (FD->getIdentifier())
6688      ++NumNamedMembers;
6689  }
6690
6691  // Okay, we successfully defined 'Record'.
6692  if (Record) {
6693    bool Completed = false;
6694    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
6695      if (!CXXRecord->isInvalidDecl()) {
6696        // Set access bits correctly on the directly-declared conversions.
6697        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
6698        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
6699             I != E; ++I)
6700          Convs->setAccess(I, (*I)->getAccess());
6701
6702        if (!CXXRecord->isDependentType()) {
6703          // Add any implicitly-declared members to this class.
6704          AddImplicitlyDeclaredMembersToClass(CXXRecord);
6705
6706          // If we have virtual base classes, we may end up finding multiple
6707          // final overriders for a given virtual function. Check for this
6708          // problem now.
6709          if (CXXRecord->getNumVBases()) {
6710            CXXFinalOverriderMap FinalOverriders;
6711            CXXRecord->getFinalOverriders(FinalOverriders);
6712
6713            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
6714                                             MEnd = FinalOverriders.end();
6715                 M != MEnd; ++M) {
6716              for (OverridingMethods::iterator SO = M->second.begin(),
6717                                            SOEnd = M->second.end();
6718                   SO != SOEnd; ++SO) {
6719                assert(SO->second.size() > 0 &&
6720                       "Virtual function without overridding functions?");
6721                if (SO->second.size() == 1)
6722                  continue;
6723
6724                // C++ [class.virtual]p2:
6725                //   In a derived class, if a virtual member function of a base
6726                //   class subobject has more than one final overrider the
6727                //   program is ill-formed.
6728                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
6729                  << (NamedDecl *)M->first << Record;
6730                Diag(M->first->getLocation(),
6731                     diag::note_overridden_virtual_function);
6732                for (OverridingMethods::overriding_iterator
6733                          OM = SO->second.begin(),
6734                       OMEnd = SO->second.end();
6735                     OM != OMEnd; ++OM)
6736                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
6737                    << (NamedDecl *)M->first << OM->Method->getParent();
6738
6739                Record->setInvalidDecl();
6740              }
6741            }
6742            CXXRecord->completeDefinition(&FinalOverriders);
6743            Completed = true;
6744          }
6745        }
6746      }
6747    }
6748
6749    if (!Completed)
6750      Record->completeDefinition();
6751  } else {
6752    ObjCIvarDecl **ClsFields =
6753      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6754    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6755      ID->setLocEnd(RBrac);
6756      // Add ivar's to class's DeclContext.
6757      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6758        ClsFields[i]->setLexicalDeclContext(ID);
6759        ID->addDecl(ClsFields[i]);
6760      }
6761      // Must enforce the rule that ivars in the base classes may not be
6762      // duplicates.
6763      if (ID->getSuperClass())
6764        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6765    } else if (ObjCImplementationDecl *IMPDecl =
6766                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6767      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6768      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6769        // Ivar declared in @implementation never belongs to the implementation.
6770        // Only it is in implementation's lexical context.
6771        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6772      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6773    } else if (ObjCCategoryDecl *CDecl =
6774                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6775      // case of ivars in class extension; all other cases have been
6776      // reported as errors elsewhere.
6777      // FIXME. Class extension does not have a LocEnd field.
6778      // CDecl->setLocEnd(RBrac);
6779      // Add ivar's to class extension's DeclContext.
6780      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6781        ClsFields[i]->setLexicalDeclContext(CDecl);
6782        CDecl->addDecl(ClsFields[i]);
6783      }
6784    }
6785  }
6786
6787  if (Attr)
6788    ProcessDeclAttributeList(S, Record, Attr);
6789
6790  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6791  // set the visibility of this record.
6792  if (Record && !Record->getDeclContext()->isRecord())
6793    AddPushedVisibilityAttribute(Record);
6794}
6795
6796/// \brief Determine whether the given integral value is representable within
6797/// the given type T.
6798static bool isRepresentableIntegerValue(ASTContext &Context,
6799                                        llvm::APSInt &Value,
6800                                        QualType T) {
6801  assert(T->isIntegralType(Context) && "Integral type required!");
6802  unsigned BitWidth = Context.getIntWidth(T);
6803
6804  if (Value.isUnsigned() || Value.isNonNegative())
6805    return Value.getActiveBits() < BitWidth;
6806
6807  return Value.getMinSignedBits() <= BitWidth;
6808}
6809
6810// \brief Given an integral type, return the next larger integral type
6811// (or a NULL type of no such type exists).
6812static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6813  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6814  // enum checking below.
6815  assert(T->isIntegralType(Context) && "Integral type required!");
6816  const unsigned NumTypes = 4;
6817  QualType SignedIntegralTypes[NumTypes] = {
6818    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6819  };
6820  QualType UnsignedIntegralTypes[NumTypes] = {
6821    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6822    Context.UnsignedLongLongTy
6823  };
6824
6825  unsigned BitWidth = Context.getTypeSize(T);
6826  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6827                                            : UnsignedIntegralTypes;
6828  for (unsigned I = 0; I != NumTypes; ++I)
6829    if (Context.getTypeSize(Types[I]) > BitWidth)
6830      return Types[I];
6831
6832  return QualType();
6833}
6834
6835EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6836                                          EnumConstantDecl *LastEnumConst,
6837                                          SourceLocation IdLoc,
6838                                          IdentifierInfo *Id,
6839                                          Expr *Val) {
6840  unsigned IntWidth = Context.Target.getIntWidth();
6841  llvm::APSInt EnumVal(IntWidth);
6842  QualType EltTy;
6843  if (Val) {
6844    if (Enum->isDependentType() || Val->isTypeDependent())
6845      EltTy = Context.DependentTy;
6846    else {
6847      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6848      SourceLocation ExpLoc;
6849      if (!Val->isValueDependent() &&
6850          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6851        Val = 0;
6852      } else {
6853        if (!getLangOptions().CPlusPlus) {
6854          // C99 6.7.2.2p2:
6855          //   The expression that defines the value of an enumeration constant
6856          //   shall be an integer constant expression that has a value
6857          //   representable as an int.
6858
6859          // Complain if the value is not representable in an int.
6860          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6861            Diag(IdLoc, diag::ext_enum_value_not_int)
6862              << EnumVal.toString(10) << Val->getSourceRange()
6863              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6864          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6865            // Force the type of the expression to 'int'.
6866            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
6867          }
6868        }
6869
6870        // C++0x [dcl.enum]p5:
6871        //   If the underlying type is not fixed, the type of each enumerator
6872        //   is the type of its initializing value:
6873        //     - If an initializer is specified for an enumerator, the
6874        //       initializing value has the same type as the expression.
6875        EltTy = Val->getType();
6876      }
6877    }
6878  }
6879
6880  if (!Val) {
6881    if (Enum->isDependentType())
6882      EltTy = Context.DependentTy;
6883    else if (!LastEnumConst) {
6884      // C++0x [dcl.enum]p5:
6885      //   If the underlying type is not fixed, the type of each enumerator
6886      //   is the type of its initializing value:
6887      //     - If no initializer is specified for the first enumerator, the
6888      //       initializing value has an unspecified integral type.
6889      //
6890      // GCC uses 'int' for its unspecified integral type, as does
6891      // C99 6.7.2.2p3.
6892      EltTy = Context.IntTy;
6893    } else {
6894      // Assign the last value + 1.
6895      EnumVal = LastEnumConst->getInitVal();
6896      ++EnumVal;
6897      EltTy = LastEnumConst->getType();
6898
6899      // Check for overflow on increment.
6900      if (EnumVal < LastEnumConst->getInitVal()) {
6901        // C++0x [dcl.enum]p5:
6902        //   If the underlying type is not fixed, the type of each enumerator
6903        //   is the type of its initializing value:
6904        //
6905        //     - Otherwise the type of the initializing value is the same as
6906        //       the type of the initializing value of the preceding enumerator
6907        //       unless the incremented value is not representable in that type,
6908        //       in which case the type is an unspecified integral type
6909        //       sufficient to contain the incremented value. If no such type
6910        //       exists, the program is ill-formed.
6911        QualType T = getNextLargerIntegralType(Context, EltTy);
6912        if (T.isNull()) {
6913          // There is no integral type larger enough to represent this
6914          // value. Complain, then allow the value to wrap around.
6915          EnumVal = LastEnumConst->getInitVal();
6916          EnumVal.zext(EnumVal.getBitWidth() * 2);
6917          Diag(IdLoc, diag::warn_enumerator_too_large)
6918            << EnumVal.toString(10);
6919        } else {
6920          EltTy = T;
6921        }
6922
6923        // Retrieve the last enumerator's value, extent that type to the
6924        // type that is supposed to be large enough to represent the incremented
6925        // value, then increment.
6926        EnumVal = LastEnumConst->getInitVal();
6927        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6928        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6929        ++EnumVal;
6930
6931        // If we're not in C++, diagnose the overflow of enumerator values,
6932        // which in C99 means that the enumerator value is not representable in
6933        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6934        // permits enumerator values that are representable in some larger
6935        // integral type.
6936        if (!getLangOptions().CPlusPlus && !T.isNull())
6937          Diag(IdLoc, diag::warn_enum_value_overflow);
6938      } else if (!getLangOptions().CPlusPlus &&
6939                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6940        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6941        Diag(IdLoc, diag::ext_enum_value_not_int)
6942          << EnumVal.toString(10) << 1;
6943      }
6944    }
6945  }
6946
6947  if (!EltTy->isDependentType()) {
6948    // Make the enumerator value match the signedness and size of the
6949    // enumerator's type.
6950    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6951    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6952  }
6953
6954  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6955                                  Val, EnumVal);
6956}
6957
6958
6959Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl,
6960                                        Decl *lastEnumConst,
6961                                        SourceLocation IdLoc,
6962                                        IdentifierInfo *Id,
6963                                        SourceLocation EqualLoc, ExprTy *val) {
6964  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
6965  EnumConstantDecl *LastEnumConst =
6966    cast_or_null<EnumConstantDecl>(lastEnumConst);
6967  Expr *Val = static_cast<Expr*>(val);
6968
6969  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6970  // we find one that is.
6971  S = getNonFieldDeclScope(S);
6972
6973  // Verify that there isn't already something declared with this name in this
6974  // scope.
6975  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6976                                         ForRedeclaration);
6977  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6978    // Maybe we will complain about the shadowed template parameter.
6979    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6980    // Just pretend that we didn't see the previous declaration.
6981    PrevDecl = 0;
6982  }
6983
6984  if (PrevDecl) {
6985    // When in C++, we may get a TagDecl with the same name; in this case the
6986    // enum constant will 'hide' the tag.
6987    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6988           "Received TagDecl when not in C++!");
6989    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6990      if (isa<EnumConstantDecl>(PrevDecl))
6991        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6992      else
6993        Diag(IdLoc, diag::err_redefinition) << Id;
6994      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6995      return 0;
6996    }
6997  }
6998
6999  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
7000                                            IdLoc, Id, Val);
7001
7002  // Register this decl in the current scope stack.
7003  if (New) {
7004    New->setAccess(TheEnumDecl->getAccess());
7005    PushOnScopeChains(New, S);
7006  }
7007
7008  return New;
7009}
7010
7011void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7012                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7013                         Decl **Elements, unsigned NumElements,
7014                         Scope *S, AttributeList *Attr) {
7015  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7016  QualType EnumType = Context.getTypeDeclType(Enum);
7017
7018  if (Attr)
7019    ProcessDeclAttributeList(S, Enum, Attr);
7020
7021  if (Enum->isDependentType()) {
7022    for (unsigned i = 0; i != NumElements; ++i) {
7023      EnumConstantDecl *ECD =
7024        cast_or_null<EnumConstantDecl>(Elements[i]);
7025      if (!ECD) continue;
7026
7027      ECD->setType(EnumType);
7028    }
7029
7030    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7031    return;
7032  }
7033
7034  // TODO: If the result value doesn't fit in an int, it must be a long or long
7035  // long value.  ISO C does not support this, but GCC does as an extension,
7036  // emit a warning.
7037  unsigned IntWidth = Context.Target.getIntWidth();
7038  unsigned CharWidth = Context.Target.getCharWidth();
7039  unsigned ShortWidth = Context.Target.getShortWidth();
7040
7041  // Verify that all the values are okay, compute the size of the values, and
7042  // reverse the list.
7043  unsigned NumNegativeBits = 0;
7044  unsigned NumPositiveBits = 0;
7045
7046  // Keep track of whether all elements have type int.
7047  bool AllElementsInt = true;
7048
7049  for (unsigned i = 0; i != NumElements; ++i) {
7050    EnumConstantDecl *ECD =
7051      cast_or_null<EnumConstantDecl>(Elements[i]);
7052    if (!ECD) continue;  // Already issued a diagnostic.
7053
7054    const llvm::APSInt &InitVal = ECD->getInitVal();
7055
7056    // Keep track of the size of positive and negative values.
7057    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7058      NumPositiveBits = std::max(NumPositiveBits,
7059                                 (unsigned)InitVal.getActiveBits());
7060    else
7061      NumNegativeBits = std::max(NumNegativeBits,
7062                                 (unsigned)InitVal.getMinSignedBits());
7063
7064    // Keep track of whether every enum element has type int (very commmon).
7065    if (AllElementsInt)
7066      AllElementsInt = ECD->getType() == Context.IntTy;
7067  }
7068
7069  // Figure out the type that should be used for this enum.
7070  // FIXME: Support -fshort-enums.
7071  QualType BestType;
7072  unsigned BestWidth;
7073
7074  // C++0x N3000 [conv.prom]p3:
7075  //   An rvalue of an unscoped enumeration type whose underlying
7076  //   type is not fixed can be converted to an rvalue of the first
7077  //   of the following types that can represent all the values of
7078  //   the enumeration: int, unsigned int, long int, unsigned long
7079  //   int, long long int, or unsigned long long int.
7080  // C99 6.4.4.3p2:
7081  //   An identifier declared as an enumeration constant has type int.
7082  // The C99 rule is modified by a gcc extension
7083  QualType BestPromotionType;
7084
7085  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7086  // -fshort-enums is the equivalent to specifying the packed attribute on all
7087  // enum definitions.
7088  if (LangOpts.ShortEnums)
7089    Packed = true;
7090
7091  if (NumNegativeBits) {
7092    // If there is a negative value, figure out the smallest integer type (of
7093    // int/long/longlong) that fits.
7094    // If it's packed, check also if it fits a char or a short.
7095    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7096      BestType = Context.SignedCharTy;
7097      BestWidth = CharWidth;
7098    } else if (Packed && NumNegativeBits <= ShortWidth &&
7099               NumPositiveBits < ShortWidth) {
7100      BestType = Context.ShortTy;
7101      BestWidth = ShortWidth;
7102    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7103      BestType = Context.IntTy;
7104      BestWidth = IntWidth;
7105    } else {
7106      BestWidth = Context.Target.getLongWidth();
7107
7108      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7109        BestType = Context.LongTy;
7110      } else {
7111        BestWidth = Context.Target.getLongLongWidth();
7112
7113        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7114          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7115        BestType = Context.LongLongTy;
7116      }
7117    }
7118    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7119  } else {
7120    // If there is no negative value, figure out the smallest type that fits
7121    // all of the enumerator values.
7122    // If it's packed, check also if it fits a char or a short.
7123    if (Packed && NumPositiveBits <= CharWidth) {
7124      BestType = Context.UnsignedCharTy;
7125      BestPromotionType = Context.IntTy;
7126      BestWidth = CharWidth;
7127    } else if (Packed && NumPositiveBits <= ShortWidth) {
7128      BestType = Context.UnsignedShortTy;
7129      BestPromotionType = Context.IntTy;
7130      BestWidth = ShortWidth;
7131    } else if (NumPositiveBits <= IntWidth) {
7132      BestType = Context.UnsignedIntTy;
7133      BestWidth = IntWidth;
7134      BestPromotionType
7135        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7136                           ? Context.UnsignedIntTy : Context.IntTy;
7137    } else if (NumPositiveBits <=
7138               (BestWidth = Context.Target.getLongWidth())) {
7139      BestType = Context.UnsignedLongTy;
7140      BestPromotionType
7141        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7142                           ? Context.UnsignedLongTy : Context.LongTy;
7143    } else {
7144      BestWidth = Context.Target.getLongLongWidth();
7145      assert(NumPositiveBits <= BestWidth &&
7146             "How could an initializer get larger than ULL?");
7147      BestType = Context.UnsignedLongLongTy;
7148      BestPromotionType
7149        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7150                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7151    }
7152  }
7153
7154  // Loop over all of the enumerator constants, changing their types to match
7155  // the type of the enum if needed.
7156  for (unsigned i = 0; i != NumElements; ++i) {
7157    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7158    if (!ECD) continue;  // Already issued a diagnostic.
7159
7160    // Standard C says the enumerators have int type, but we allow, as an
7161    // extension, the enumerators to be larger than int size.  If each
7162    // enumerator value fits in an int, type it as an int, otherwise type it the
7163    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7164    // that X has type 'int', not 'unsigned'.
7165
7166    // Determine whether the value fits into an int.
7167    llvm::APSInt InitVal = ECD->getInitVal();
7168
7169    // If it fits into an integer type, force it.  Otherwise force it to match
7170    // the enum decl type.
7171    QualType NewTy;
7172    unsigned NewWidth;
7173    bool NewSign;
7174    if (!getLangOptions().CPlusPlus &&
7175        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7176      NewTy = Context.IntTy;
7177      NewWidth = IntWidth;
7178      NewSign = true;
7179    } else if (ECD->getType() == BestType) {
7180      // Already the right type!
7181      if (getLangOptions().CPlusPlus)
7182        // C++ [dcl.enum]p4: Following the closing brace of an
7183        // enum-specifier, each enumerator has the type of its
7184        // enumeration.
7185        ECD->setType(EnumType);
7186      continue;
7187    } else {
7188      NewTy = BestType;
7189      NewWidth = BestWidth;
7190      NewSign = BestType->isSignedIntegerType();
7191    }
7192
7193    // Adjust the APSInt value.
7194    InitVal.extOrTrunc(NewWidth);
7195    InitVal.setIsSigned(NewSign);
7196    ECD->setInitVal(InitVal);
7197
7198    // Adjust the Expr initializer and type.
7199    if (ECD->getInitExpr())
7200      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7201                                                CK_IntegralCast,
7202                                                ECD->getInitExpr(),
7203                                                /*base paths*/ 0,
7204                                                VK_RValue));
7205    if (getLangOptions().CPlusPlus)
7206      // C++ [dcl.enum]p4: Following the closing brace of an
7207      // enum-specifier, each enumerator has the type of its
7208      // enumeration.
7209      ECD->setType(EnumType);
7210    else
7211      ECD->setType(NewTy);
7212  }
7213
7214  Enum->completeDefinition(BestType, BestPromotionType,
7215                           NumPositiveBits, NumNegativeBits);
7216}
7217
7218Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7219  StringLiteral *AsmString = cast<StringLiteral>(expr);
7220
7221  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7222                                                   Loc, AsmString);
7223  CurContext->addDecl(New);
7224  return New;
7225}
7226
7227void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7228                             SourceLocation PragmaLoc,
7229                             SourceLocation NameLoc) {
7230  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7231
7232  if (PrevDecl) {
7233    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7234  } else {
7235    (void)WeakUndeclaredIdentifiers.insert(
7236      std::pair<IdentifierInfo*,WeakInfo>
7237        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7238  }
7239}
7240
7241void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7242                                IdentifierInfo* AliasName,
7243                                SourceLocation PragmaLoc,
7244                                SourceLocation NameLoc,
7245                                SourceLocation AliasNameLoc) {
7246  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7247                                    LookupOrdinaryName);
7248  WeakInfo W = WeakInfo(Name, NameLoc);
7249
7250  if (PrevDecl) {
7251    if (!PrevDecl->hasAttr<AliasAttr>())
7252      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7253        DeclApplyPragmaWeak(TUScope, ND, W);
7254  } else {
7255    (void)WeakUndeclaredIdentifiers.insert(
7256      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7257  }
7258}
7259