SemaDecl.cpp revision aaba5e346dffdbad5d1c42765a89e4a7afb0da67
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31
32using namespace clang;
33
34Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
35                                Scope *S, const CXXScopeSpec *SS) {
36  Decl *IIDecl = 0;
37  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName, false);
38  switch (Result.getKind()) {
39    case LookupResult::NotFound:
40    case LookupResult::FoundOverloaded:
41      return 0;
42
43    case LookupResult::AmbiguousBaseSubobjectTypes:
44    case LookupResult::AmbiguousBaseSubobjects:
45    case LookupResult::AmbiguousReference:
46      DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
47      return 0;
48
49    case LookupResult::Found:
50      IIDecl = Result.getAsDecl();
51      break;
52  }
53
54  if (IIDecl) {
55    if (isa<TypedefDecl>(IIDecl) ||
56        isa<ObjCInterfaceDecl>(IIDecl) ||
57        isa<TagDecl>(IIDecl) ||
58        isa<TemplateTypeParmDecl>(IIDecl))
59      return IIDecl;
60  }
61  return 0;
62}
63
64DeclContext *Sema::getContainingDC(DeclContext *DC) {
65  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
66    // A C++ out-of-line method will return to the file declaration context.
67    if (MD->isOutOfLineDefinition())
68      return MD->getLexicalDeclContext();
69
70    // A C++ inline method is parsed *after* the topmost class it was declared in
71    // is fully parsed (it's "complete").
72    // The parsing of a C++ inline method happens at the declaration context of
73    // the topmost (non-nested) class it is lexically declared in.
74    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
75    DC = MD->getParent();
76    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
77      DC = RD;
78
79    // Return the declaration context of the topmost class the inline method is
80    // declared in.
81    return DC;
82  }
83
84  if (isa<ObjCMethodDecl>(DC))
85    return Context.getTranslationUnitDecl();
86
87  if (Decl *D = dyn_cast<Decl>(DC))
88    return D->getLexicalDeclContext();
89
90  return DC->getLexicalParent();
91}
92
93void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
94  assert(getContainingDC(DC) == CurContext &&
95      "The next DeclContext should be lexically contained in the current one.");
96  CurContext = DC;
97  S->setEntity(DC);
98}
99
100void Sema::PopDeclContext() {
101  assert(CurContext && "DeclContext imbalance!");
102
103  CurContext = getContainingDC(CurContext);
104}
105
106/// Add this decl to the scope shadowed decl chains.
107void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
108  // Move up the scope chain until we find the nearest enclosing
109  // non-transparent context. The declaration will be introduced into this
110  // scope.
111  while (S->getEntity() &&
112         ((DeclContext *)S->getEntity())->isTransparentContext())
113    S = S->getParent();
114
115  S->AddDecl(D);
116
117  // Add scoped declarations into their context, so that they can be
118  // found later. Declarations without a context won't be inserted
119  // into any context.
120  CurContext->addDecl(D);
121
122  // C++ [basic.scope]p4:
123  //   -- exactly one declaration shall declare a class name or
124  //   enumeration name that is not a typedef name and the other
125  //   declarations shall all refer to the same object or
126  //   enumerator, or all refer to functions and function templates;
127  //   in this case the class name or enumeration name is hidden.
128  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
129    // We are pushing the name of a tag (enum or class).
130    if (CurContext->getLookupContext()
131          == TD->getDeclContext()->getLookupContext()) {
132      // We're pushing the tag into the current context, which might
133      // require some reshuffling in the identifier resolver.
134      IdentifierResolver::iterator
135        I = IdResolver.begin(TD->getDeclName()),
136        IEnd = IdResolver.end();
137      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
138        NamedDecl *PrevDecl = *I;
139        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
140             PrevDecl = *I, ++I) {
141          if (TD->declarationReplaces(*I)) {
142            // This is a redeclaration. Remove it from the chain and
143            // break out, so that we'll add in the shadowed
144            // declaration.
145            S->RemoveDecl(*I);
146            if (PrevDecl == *I) {
147              IdResolver.RemoveDecl(*I);
148              IdResolver.AddDecl(TD);
149              return;
150            } else {
151              IdResolver.RemoveDecl(*I);
152              break;
153            }
154          }
155        }
156
157        // There is already a declaration with the same name in the same
158        // scope, which is not a tag declaration. It must be found
159        // before we find the new declaration, so insert the new
160        // declaration at the end of the chain.
161        IdResolver.AddShadowedDecl(TD, PrevDecl);
162
163        return;
164      }
165    }
166  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
167    // We are pushing the name of a function, which might be an
168    // overloaded name.
169    FunctionDecl *FD = cast<FunctionDecl>(D);
170    IdentifierResolver::iterator Redecl
171      = std::find_if(IdResolver.begin(FD->getDeclName()),
172                     IdResolver.end(),
173                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
174                                  FD));
175    if (Redecl != IdResolver.end()) {
176      // There is already a declaration of a function on our
177      // IdResolver chain. Replace it with this declaration.
178      S->RemoveDecl(*Redecl);
179      IdResolver.RemoveDecl(*Redecl);
180    }
181  }
182
183  IdResolver.AddDecl(D);
184}
185
186void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
187  if (S->decl_empty()) return;
188  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
189	 "Scope shouldn't contain decls!");
190
191  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
192       I != E; ++I) {
193    Decl *TmpD = static_cast<Decl*>(*I);
194    assert(TmpD && "This decl didn't get pushed??");
195
196    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
197    NamedDecl *D = cast<NamedDecl>(TmpD);
198
199    if (!D->getDeclName()) continue;
200
201    // Remove this name from our lexical scope.
202    IdResolver.RemoveDecl(D);
203  }
204}
205
206/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
207/// return 0 if one not found.
208ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
209  // The third "scope" argument is 0 since we aren't enabling lazy built-in
210  // creation from this context.
211  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
212
213  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
214}
215
216/// getNonFieldDeclScope - Retrieves the innermost scope, starting
217/// from S, where a non-field would be declared. This routine copes
218/// with the difference between C and C++ scoping rules in structs and
219/// unions. For example, the following code is well-formed in C but
220/// ill-formed in C++:
221/// @code
222/// struct S6 {
223///   enum { BAR } e;
224/// };
225///
226/// void test_S6() {
227///   struct S6 a;
228///   a.e = BAR;
229/// }
230/// @endcode
231/// For the declaration of BAR, this routine will return a different
232/// scope. The scope S will be the scope of the unnamed enumeration
233/// within S6. In C++, this routine will return the scope associated
234/// with S6, because the enumeration's scope is a transparent
235/// context but structures can contain non-field names. In C, this
236/// routine will return the translation unit scope, since the
237/// enumeration's scope is a transparent context and structures cannot
238/// contain non-field names.
239Scope *Sema::getNonFieldDeclScope(Scope *S) {
240  while (((S->getFlags() & Scope::DeclScope) == 0) ||
241         (S->getEntity() &&
242          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
243         (S->isClassScope() && !getLangOptions().CPlusPlus))
244    S = S->getParent();
245  return S;
246}
247
248void Sema::InitBuiltinVaListType() {
249  if (!Context.getBuiltinVaListType().isNull())
250    return;
251
252  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
253  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
254  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
255  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
256}
257
258/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
259/// lazily create a decl for it.
260NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
261                                     Scope *S) {
262  Builtin::ID BID = (Builtin::ID)bid;
263
264  if (Context.BuiltinInfo.hasVAListUse(BID))
265    InitBuiltinVaListType();
266
267  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
268  FunctionDecl *New = FunctionDecl::Create(Context,
269                                           Context.getTranslationUnitDecl(),
270                                           SourceLocation(), II, R,
271                                           FunctionDecl::Extern, false);
272
273  // Create Decl objects for each parameter, adding them to the
274  // FunctionDecl.
275  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
276    llvm::SmallVector<ParmVarDecl*, 16> Params;
277    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
278      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
279                                           FT->getArgType(i), VarDecl::None, 0));
280    New->setParams(Context, &Params[0], Params.size());
281  }
282
283
284
285  // TUScope is the translation-unit scope to insert this function into.
286  // FIXME: This is hideous. We need to teach PushOnScopeChains to
287  // relate Scopes to DeclContexts, and probably eliminate CurContext
288  // entirely, but we're not there yet.
289  DeclContext *SavedContext = CurContext;
290  CurContext = Context.getTranslationUnitDecl();
291  PushOnScopeChains(New, TUScope);
292  CurContext = SavedContext;
293  return New;
294}
295
296/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
297/// everything from the standard library is defined.
298NamespaceDecl *Sema::GetStdNamespace() {
299  if (!StdNamespace) {
300    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
301    DeclContext *Global = Context.getTranslationUnitDecl();
302    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
303    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
304  }
305  return StdNamespace;
306}
307
308/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
309/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
310/// situation, merging decls or emitting diagnostics as appropriate.
311///
312TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
313  bool objc_types = false;
314  // Allow multiple definitions for ObjC built-in typedefs.
315  // FIXME: Verify the underlying types are equivalent!
316  if (getLangOptions().ObjC1) {
317    const IdentifierInfo *TypeID = New->getIdentifier();
318    switch (TypeID->getLength()) {
319    default: break;
320    case 2:
321      if (!TypeID->isStr("id"))
322        break;
323      Context.setObjCIdType(New);
324      objc_types = true;
325      break;
326    case 5:
327      if (!TypeID->isStr("Class"))
328        break;
329      Context.setObjCClassType(New);
330      objc_types = true;
331      return New;
332    case 3:
333      if (!TypeID->isStr("SEL"))
334        break;
335      Context.setObjCSelType(New);
336      objc_types = true;
337      return New;
338    case 8:
339      if (!TypeID->isStr("Protocol"))
340        break;
341      Context.setObjCProtoType(New->getUnderlyingType());
342      objc_types = true;
343      return New;
344    }
345    // Fall through - the typedef name was not a builtin type.
346  }
347  // Verify the old decl was also a type.
348  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
349  if (!Old) {
350    Diag(New->getLocation(), diag::err_redefinition_different_kind)
351      << New->getDeclName();
352    if (!objc_types)
353      Diag(OldD->getLocation(), diag::note_previous_definition);
354    return New;
355  }
356
357  // Determine the "old" type we'll use for checking and diagnostics.
358  QualType OldType;
359  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
360    OldType = OldTypedef->getUnderlyingType();
361  else
362    OldType = Context.getTypeDeclType(Old);
363
364  // If the typedef types are not identical, reject them in all languages and
365  // with any extensions enabled.
366
367  if (OldType != New->getUnderlyingType() &&
368      Context.getCanonicalType(OldType) !=
369      Context.getCanonicalType(New->getUnderlyingType())) {
370    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
371      << New->getUnderlyingType() << OldType;
372    if (!objc_types)
373      Diag(Old->getLocation(), diag::note_previous_definition);
374    return New;
375  }
376  if (objc_types) return New;
377  if (getLangOptions().Microsoft) return New;
378
379  // C++ [dcl.typedef]p2:
380  //   In a given non-class scope, a typedef specifier can be used to
381  //   redefine the name of any type declared in that scope to refer
382  //   to the type to which it already refers.
383  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
384    return New;
385
386  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
387  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
388  // *either* declaration is in a system header. The code below implements
389  // this adhoc compatibility rule. FIXME: The following code will not
390  // work properly when compiling ".i" files (containing preprocessed output).
391  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
392    SourceManager &SrcMgr = Context.getSourceManager();
393    if (SrcMgr.isInSystemHeader(Old->getLocation()))
394      return New;
395    if (SrcMgr.isInSystemHeader(New->getLocation()))
396      return New;
397  }
398
399  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
400  Diag(Old->getLocation(), diag::note_previous_definition);
401  return New;
402}
403
404/// DeclhasAttr - returns true if decl Declaration already has the target
405/// attribute.
406static bool DeclHasAttr(const Decl *decl, const Attr *target) {
407  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
408    if (attr->getKind() == target->getKind())
409      return true;
410
411  return false;
412}
413
414/// MergeAttributes - append attributes from the Old decl to the New one.
415static void MergeAttributes(Decl *New, Decl *Old) {
416  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
417
418  while (attr) {
419     tmp = attr;
420     attr = attr->getNext();
421
422    if (!DeclHasAttr(New, tmp)) {
423       tmp->setInherited(true);
424       New->addAttr(tmp);
425    } else {
426       tmp->setNext(0);
427       delete(tmp);
428    }
429  }
430
431  Old->invalidateAttrs();
432}
433
434/// MergeFunctionDecl - We just parsed a function 'New' from
435/// declarator D which has the same name and scope as a previous
436/// declaration 'Old'.  Figure out how to resolve this situation,
437/// merging decls or emitting diagnostics as appropriate.
438/// Redeclaration will be set true if this New is a redeclaration OldD.
439///
440/// In C++, New and Old must be declarations that are not
441/// overloaded. Use IsOverload to determine whether New and Old are
442/// overloaded, and to select the Old declaration that New should be
443/// merged with.
444FunctionDecl *
445Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
446  assert(!isa<OverloadedFunctionDecl>(OldD) &&
447         "Cannot merge with an overloaded function declaration");
448
449  Redeclaration = false;
450  // Verify the old decl was also a function.
451  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
452  if (!Old) {
453    Diag(New->getLocation(), diag::err_redefinition_different_kind)
454      << New->getDeclName();
455    Diag(OldD->getLocation(), diag::note_previous_definition);
456    return New;
457  }
458
459  // Determine whether the previous declaration was a definition,
460  // implicit declaration, or a declaration.
461  diag::kind PrevDiag;
462  if (Old->isThisDeclarationADefinition())
463    PrevDiag = diag::note_previous_definition;
464  else if (Old->isImplicit())
465    PrevDiag = diag::note_previous_implicit_declaration;
466  else
467    PrevDiag = diag::note_previous_declaration;
468
469  QualType OldQType = Context.getCanonicalType(Old->getType());
470  QualType NewQType = Context.getCanonicalType(New->getType());
471
472  if (getLangOptions().CPlusPlus) {
473    // (C++98 13.1p2):
474    //   Certain function declarations cannot be overloaded:
475    //     -- Function declarations that differ only in the return type
476    //        cannot be overloaded.
477    QualType OldReturnType
478      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
479    QualType NewReturnType
480      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
481    if (OldReturnType != NewReturnType) {
482      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
483      Diag(Old->getLocation(), PrevDiag);
484      Redeclaration = true;
485      return New;
486    }
487
488    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
489    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
490    if (OldMethod && NewMethod) {
491      //    -- Member function declarations with the same name and the
492      //       same parameter types cannot be overloaded if any of them
493      //       is a static member function declaration.
494      if (OldMethod->isStatic() || NewMethod->isStatic()) {
495        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
496        Diag(Old->getLocation(), PrevDiag);
497        return New;
498      }
499
500      // C++ [class.mem]p1:
501      //   [...] A member shall not be declared twice in the
502      //   member-specification, except that a nested class or member
503      //   class template can be declared and then later defined.
504      if (OldMethod->getLexicalDeclContext() ==
505            NewMethod->getLexicalDeclContext()) {
506        unsigned NewDiag;
507        if (isa<CXXConstructorDecl>(OldMethod))
508          NewDiag = diag::err_constructor_redeclared;
509        else if (isa<CXXDestructorDecl>(NewMethod))
510          NewDiag = diag::err_destructor_redeclared;
511        else if (isa<CXXConversionDecl>(NewMethod))
512          NewDiag = diag::err_conv_function_redeclared;
513        else
514          NewDiag = diag::err_member_redeclared;
515
516        Diag(New->getLocation(), NewDiag);
517        Diag(Old->getLocation(), PrevDiag);
518      }
519    }
520
521    // (C++98 8.3.5p3):
522    //   All declarations for a function shall agree exactly in both the
523    //   return type and the parameter-type-list.
524    if (OldQType == NewQType) {
525      // We have a redeclaration.
526      MergeAttributes(New, Old);
527      Redeclaration = true;
528      return MergeCXXFunctionDecl(New, Old);
529    }
530
531    // Fall through for conflicting redeclarations and redefinitions.
532  }
533
534  // C: Function types need to be compatible, not identical. This handles
535  // duplicate function decls like "void f(int); void f(enum X);" properly.
536  if (!getLangOptions().CPlusPlus &&
537      Context.typesAreCompatible(OldQType, NewQType)) {
538    MergeAttributes(New, Old);
539    Redeclaration = true;
540    return New;
541  }
542
543  // A function that has already been declared has been redeclared or defined
544  // with a different type- show appropriate diagnostic
545
546  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
547  // TODO: This is totally simplistic.  It should handle merging functions
548  // together etc, merging extern int X; int X; ...
549  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
550  Diag(Old->getLocation(), PrevDiag);
551  return New;
552}
553
554/// Predicate for C "tentative" external object definitions (C99 6.9.2).
555static bool isTentativeDefinition(VarDecl *VD) {
556  if (VD->isFileVarDecl())
557    return (!VD->getInit() &&
558            (VD->getStorageClass() == VarDecl::None ||
559             VD->getStorageClass() == VarDecl::Static));
560  return false;
561}
562
563/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
564/// when dealing with C "tentative" external object definitions (C99 6.9.2).
565void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
566  bool VDIsTentative = isTentativeDefinition(VD);
567  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
568
569  // FIXME: I don't think this will actually see all of the
570  // redefinitions. Can't we check this property on-the-fly?
571  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
572                                    E = IdResolver.end();
573       I != E; ++I) {
574    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
575      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
576
577      // Handle the following case:
578      //   int a[10];
579      //   int a[];   - the code below makes sure we set the correct type.
580      //   int a[11]; - this is an error, size isn't 10.
581      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
582          OldDecl->getType()->isConstantArrayType())
583        VD->setType(OldDecl->getType());
584
585      // Check for "tentative" definitions. We can't accomplish this in
586      // MergeVarDecl since the initializer hasn't been attached.
587      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
588        continue;
589
590      // Handle __private_extern__ just like extern.
591      if (OldDecl->getStorageClass() != VarDecl::Extern &&
592          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
593          VD->getStorageClass() != VarDecl::Extern &&
594          VD->getStorageClass() != VarDecl::PrivateExtern) {
595        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
596        Diag(OldDecl->getLocation(), diag::note_previous_definition);
597      }
598    }
599  }
600}
601
602/// MergeVarDecl - We just parsed a variable 'New' which has the same name
603/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
604/// situation, merging decls or emitting diagnostics as appropriate.
605///
606/// Tentative definition rules (C99 6.9.2p2) are checked by
607/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
608/// definitions here, since the initializer hasn't been attached.
609///
610VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
611  // Verify the old decl was also a variable.
612  VarDecl *Old = dyn_cast<VarDecl>(OldD);
613  if (!Old) {
614    Diag(New->getLocation(), diag::err_redefinition_different_kind)
615      << New->getDeclName();
616    Diag(OldD->getLocation(), diag::note_previous_definition);
617    return New;
618  }
619
620  MergeAttributes(New, Old);
621
622  // Merge the types
623  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
624  if (MergedT.isNull()) {
625    Diag(New->getLocation(), diag::err_redefinition_different_type)
626      << New->getDeclName();
627    Diag(Old->getLocation(), diag::note_previous_definition);
628    return New;
629  }
630  New->setType(MergedT);
631  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
632  if (New->getStorageClass() == VarDecl::Static &&
633      (Old->getStorageClass() == VarDecl::None ||
634       Old->getStorageClass() == VarDecl::Extern)) {
635    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
636    Diag(Old->getLocation(), diag::note_previous_definition);
637    return New;
638  }
639  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
640  if (New->getStorageClass() != VarDecl::Static &&
641      Old->getStorageClass() == VarDecl::Static) {
642    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
643    Diag(Old->getLocation(), diag::note_previous_definition);
644    return New;
645  }
646  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
647  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
648    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
649    Diag(Old->getLocation(), diag::note_previous_definition);
650  }
651  return New;
652}
653
654/// CheckParmsForFunctionDef - Check that the parameters of the given
655/// function are appropriate for the definition of a function. This
656/// takes care of any checks that cannot be performed on the
657/// declaration itself, e.g., that the types of each of the function
658/// parameters are complete.
659bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
660  bool HasInvalidParm = false;
661  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
662    ParmVarDecl *Param = FD->getParamDecl(p);
663
664    // C99 6.7.5.3p4: the parameters in a parameter type list in a
665    // function declarator that is part of a function definition of
666    // that function shall not have incomplete type.
667    if (!Param->isInvalidDecl() &&
668        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
669                               diag::err_typecheck_decl_incomplete_type)) {
670      Param->setInvalidDecl();
671      HasInvalidParm = true;
672    }
673
674    // C99 6.9.1p5: If the declarator includes a parameter type list, the
675    // declaration of each parameter shall include an identifier.
676    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
677      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
678  }
679
680  return HasInvalidParm;
681}
682
683/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
684/// no declarator (e.g. "struct foo;") is parsed.
685Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
686  TagDecl *Tag
687    = dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
688  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
689    if (!Record->getDeclName() && Record->isDefinition() &&
690        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
691      return BuildAnonymousStructOrUnion(S, DS, Record);
692
693    // Microsoft allows unnamed struct/union fields. Don't complain
694    // about them.
695    // FIXME: Should we support Microsoft's extensions in this area?
696    if (Record->getDeclName() && getLangOptions().Microsoft)
697      return Tag;
698  }
699
700  if (!DS.isMissingDeclaratorOk()) {
701    // Warn about typedefs of enums without names, since this is an
702    // extension in both Microsoft an GNU.
703    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
704        Tag && isa<EnumDecl>(Tag)) {
705      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
706        << DS.getSourceRange();
707      return Tag;
708    }
709
710    // FIXME: This diagnostic is emitted even when various previous
711    // errors occurred (see e.g. test/Sema/decl-invalid.c). However,
712    // DeclSpec has no means of communicating this information, and the
713    // responsible parser functions are quite far apart.
714    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
715      << DS.getSourceRange();
716    return 0;
717  }
718
719  return Tag;
720}
721
722/// InjectAnonymousStructOrUnionMembers - Inject the members of the
723/// anonymous struct or union AnonRecord into the owning context Owner
724/// and scope S. This routine will be invoked just after we realize
725/// that an unnamed union or struct is actually an anonymous union or
726/// struct, e.g.,
727///
728/// @code
729/// union {
730///   int i;
731///   float f;
732/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
733///    // f into the surrounding scope.x
734/// @endcode
735///
736/// This routine is recursive, injecting the names of nested anonymous
737/// structs/unions into the owning context and scope as well.
738bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
739                                               RecordDecl *AnonRecord) {
740  bool Invalid = false;
741  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
742                               FEnd = AnonRecord->field_end();
743       F != FEnd; ++F) {
744    if ((*F)->getDeclName()) {
745      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
746                                                LookupOrdinaryName, true);
747      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
748        // C++ [class.union]p2:
749        //   The names of the members of an anonymous union shall be
750        //   distinct from the names of any other entity in the
751        //   scope in which the anonymous union is declared.
752        unsigned diagKind
753          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
754                                 : diag::err_anonymous_struct_member_redecl;
755        Diag((*F)->getLocation(), diagKind)
756          << (*F)->getDeclName();
757        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
758        Invalid = true;
759      } else {
760        // C++ [class.union]p2:
761        //   For the purpose of name lookup, after the anonymous union
762        //   definition, the members of the anonymous union are
763        //   considered to have been defined in the scope in which the
764        //   anonymous union is declared.
765        Owner->makeDeclVisibleInContext(*F);
766        S->AddDecl(*F);
767        IdResolver.AddDecl(*F);
768      }
769    } else if (const RecordType *InnerRecordType
770                 = (*F)->getType()->getAsRecordType()) {
771      RecordDecl *InnerRecord = InnerRecordType->getDecl();
772      if (InnerRecord->isAnonymousStructOrUnion())
773        Invalid = Invalid ||
774          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
775    }
776  }
777
778  return Invalid;
779}
780
781/// ActOnAnonymousStructOrUnion - Handle the declaration of an
782/// anonymous structure or union. Anonymous unions are a C++ feature
783/// (C++ [class.union]) and a GNU C extension; anonymous structures
784/// are a GNU C and GNU C++ extension.
785Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
786                                                RecordDecl *Record) {
787  DeclContext *Owner = Record->getDeclContext();
788
789  // Diagnose whether this anonymous struct/union is an extension.
790  if (Record->isUnion() && !getLangOptions().CPlusPlus)
791    Diag(Record->getLocation(), diag::ext_anonymous_union);
792  else if (!Record->isUnion())
793    Diag(Record->getLocation(), diag::ext_anonymous_struct);
794
795  // C and C++ require different kinds of checks for anonymous
796  // structs/unions.
797  bool Invalid = false;
798  if (getLangOptions().CPlusPlus) {
799    const char* PrevSpec = 0;
800    // C++ [class.union]p3:
801    //   Anonymous unions declared in a named namespace or in the
802    //   global namespace shall be declared static.
803    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
804        (isa<TranslationUnitDecl>(Owner) ||
805         (isa<NamespaceDecl>(Owner) &&
806          cast<NamespaceDecl>(Owner)->getDeclName()))) {
807      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
808      Invalid = true;
809
810      // Recover by adding 'static'.
811      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
812    }
813    // C++ [class.union]p3:
814    //   A storage class is not allowed in a declaration of an
815    //   anonymous union in a class scope.
816    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
817             isa<RecordDecl>(Owner)) {
818      Diag(DS.getStorageClassSpecLoc(),
819           diag::err_anonymous_union_with_storage_spec);
820      Invalid = true;
821
822      // Recover by removing the storage specifier.
823      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
824                             PrevSpec);
825    }
826
827    // C++ [class.union]p2:
828    //   The member-specification of an anonymous union shall only
829    //   define non-static data members. [Note: nested types and
830    //   functions cannot be declared within an anonymous union. ]
831    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
832                                 MemEnd = Record->decls_end();
833         Mem != MemEnd; ++Mem) {
834      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
835        // C++ [class.union]p3:
836        //   An anonymous union shall not have private or protected
837        //   members (clause 11).
838        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
839          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
840            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
841          Invalid = true;
842        }
843      } else if ((*Mem)->isImplicit()) {
844        // Any implicit members are fine.
845      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
846        // This is a type that showed up in an
847        // elaborated-type-specifier inside the anonymous struct or
848        // union, but which actually declares a type outside of the
849        // anonymous struct or union. It's okay.
850      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
851        if (!MemRecord->isAnonymousStructOrUnion() &&
852            MemRecord->getDeclName()) {
853          // This is a nested type declaration.
854          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
855            << (int)Record->isUnion();
856          Invalid = true;
857        }
858      } else {
859        // We have something that isn't a non-static data
860        // member. Complain about it.
861        unsigned DK = diag::err_anonymous_record_bad_member;
862        if (isa<TypeDecl>(*Mem))
863          DK = diag::err_anonymous_record_with_type;
864        else if (isa<FunctionDecl>(*Mem))
865          DK = diag::err_anonymous_record_with_function;
866        else if (isa<VarDecl>(*Mem))
867          DK = diag::err_anonymous_record_with_static;
868        Diag((*Mem)->getLocation(), DK)
869            << (int)Record->isUnion();
870          Invalid = true;
871      }
872    }
873  } else {
874    // FIXME: Check GNU C semantics
875    if (Record->isUnion() && !Owner->isRecord()) {
876      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
877        << (int)getLangOptions().CPlusPlus;
878      Invalid = true;
879    }
880  }
881
882  if (!Record->isUnion() && !Owner->isRecord()) {
883    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
884      << (int)getLangOptions().CPlusPlus;
885    Invalid = true;
886  }
887
888  // Create a declaration for this anonymous struct/union.
889  NamedDecl *Anon = 0;
890  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
891    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
892                             /*IdentifierInfo=*/0,
893                             Context.getTypeDeclType(Record),
894                             /*BitWidth=*/0, /*Mutable=*/false);
895    Anon->setAccess(AS_public);
896    if (getLangOptions().CPlusPlus)
897      FieldCollector->Add(cast<FieldDecl>(Anon));
898  } else {
899    VarDecl::StorageClass SC;
900    switch (DS.getStorageClassSpec()) {
901    default: assert(0 && "Unknown storage class!");
902    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
903    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
904    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
905    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
906    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
907    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
908    case DeclSpec::SCS_mutable:
909      // mutable can only appear on non-static class members, so it's always
910      // an error here
911      Diag(Record->getLocation(), diag::err_mutable_nonmember);
912      Invalid = true;
913      SC = VarDecl::None;
914      break;
915    }
916
917    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
918                           /*IdentifierInfo=*/0,
919                           Context.getTypeDeclType(Record),
920                           SC, DS.getSourceRange().getBegin());
921  }
922  Anon->setImplicit();
923
924  // Add the anonymous struct/union object to the current
925  // context. We'll be referencing this object when we refer to one of
926  // its members.
927  Owner->addDecl(Anon);
928
929  // Inject the members of the anonymous struct/union into the owning
930  // context and into the identifier resolver chain for name lookup
931  // purposes.
932  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
933    Invalid = true;
934
935  // Mark this as an anonymous struct/union type. Note that we do not
936  // do this until after we have already checked and injected the
937  // members of this anonymous struct/union type, because otherwise
938  // the members could be injected twice: once by DeclContext when it
939  // builds its lookup table, and once by
940  // InjectAnonymousStructOrUnionMembers.
941  Record->setAnonymousStructOrUnion(true);
942
943  if (Invalid)
944    Anon->setInvalidDecl();
945
946  return Anon;
947}
948
949bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
950                                  bool DirectInit) {
951  // Get the type before calling CheckSingleAssignmentConstraints(), since
952  // it can promote the expression.
953  QualType InitType = Init->getType();
954
955  if (getLangOptions().CPlusPlus) {
956    // FIXME: I dislike this error message. A lot.
957    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
958      return Diag(Init->getSourceRange().getBegin(),
959                  diag::err_typecheck_convert_incompatible)
960        << DeclType << Init->getType() << "initializing"
961        << Init->getSourceRange();
962
963    return false;
964  }
965
966  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
967  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
968                                  InitType, Init, "initializing");
969}
970
971bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
972  const ArrayType *AT = Context.getAsArrayType(DeclT);
973
974  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
975    // C99 6.7.8p14. We have an array of character type with unknown size
976    // being initialized to a string literal.
977    llvm::APSInt ConstVal(32);
978    ConstVal = strLiteral->getByteLength() + 1;
979    // Return a new array type (C99 6.7.8p22).
980    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
981                                         ArrayType::Normal, 0);
982  } else {
983    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
984    // C99 6.7.8p14. We have an array of character type with known size.
985    // FIXME: Avoid truncation for 64-bit length strings.
986    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
987      Diag(strLiteral->getSourceRange().getBegin(),
988           diag::warn_initializer_string_for_char_array_too_long)
989        << strLiteral->getSourceRange();
990  }
991  // Set type from "char *" to "constant array of char".
992  strLiteral->setType(DeclT);
993  // For now, we always return false (meaning success).
994  return false;
995}
996
997StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
998  const ArrayType *AT = Context.getAsArrayType(DeclType);
999  if (AT && AT->getElementType()->isCharType()) {
1000    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1001  }
1002  return 0;
1003}
1004
1005bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1006                                 SourceLocation InitLoc,
1007                                 DeclarationName InitEntity,
1008                                 bool DirectInit) {
1009  if (DeclType->isDependentType() || Init->isTypeDependent())
1010    return false;
1011
1012  // C++ [dcl.init.ref]p1:
1013  //   A variable declared to be a T&, that is "reference to type T"
1014  //   (8.3.2), shall be initialized by an object, or function, of
1015  //   type T or by an object that can be converted into a T.
1016  if (DeclType->isReferenceType())
1017    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1018
1019  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1020  // of unknown size ("[]") or an object type that is not a variable array type.
1021  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1022    return Diag(InitLoc,  diag::err_variable_object_no_init)
1023      << VAT->getSizeExpr()->getSourceRange();
1024
1025  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1026  if (!InitList) {
1027    // FIXME: Handle wide strings
1028    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1029      return CheckStringLiteralInit(strLiteral, DeclType);
1030
1031    // C++ [dcl.init]p14:
1032    //   -- If the destination type is a (possibly cv-qualified) class
1033    //      type:
1034    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1035      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1036      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1037
1038      //   -- If the initialization is direct-initialization, or if it is
1039      //      copy-initialization where the cv-unqualified version of the
1040      //      source type is the same class as, or a derived class of, the
1041      //      class of the destination, constructors are considered.
1042      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1043          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1044        CXXConstructorDecl *Constructor
1045          = PerformInitializationByConstructor(DeclType, &Init, 1,
1046                                               InitLoc, Init->getSourceRange(),
1047                                               InitEntity,
1048                                               DirectInit? IK_Direct : IK_Copy);
1049        return Constructor == 0;
1050      }
1051
1052      //   -- Otherwise (i.e., for the remaining copy-initialization
1053      //      cases), user-defined conversion sequences that can
1054      //      convert from the source type to the destination type or
1055      //      (when a conversion function is used) to a derived class
1056      //      thereof are enumerated as described in 13.3.1.4, and the
1057      //      best one is chosen through overload resolution
1058      //      (13.3). If the conversion cannot be done or is
1059      //      ambiguous, the initialization is ill-formed. The
1060      //      function selected is called with the initializer
1061      //      expression as its argument; if the function is a
1062      //      constructor, the call initializes a temporary of the
1063      //      destination type.
1064      // FIXME: We're pretending to do copy elision here; return to
1065      // this when we have ASTs for such things.
1066      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1067        return false;
1068
1069      if (InitEntity)
1070        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1071          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1072          << Init->getType() << Init->getSourceRange();
1073      else
1074        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1075          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1076          << Init->getType() << Init->getSourceRange();
1077    }
1078
1079    // C99 6.7.8p16.
1080    if (DeclType->isArrayType())
1081      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1082        << Init->getSourceRange();
1083
1084    return CheckSingleInitializer(Init, DeclType, DirectInit);
1085  }
1086
1087  bool hadError = CheckInitList(InitList, DeclType);
1088  Init = InitList;
1089  return hadError;
1090}
1091
1092/// GetNameForDeclarator - Determine the full declaration name for the
1093/// given Declarator.
1094DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1095  switch (D.getKind()) {
1096  case Declarator::DK_Abstract:
1097    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1098    return DeclarationName();
1099
1100  case Declarator::DK_Normal:
1101    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1102    return DeclarationName(D.getIdentifier());
1103
1104  case Declarator::DK_Constructor: {
1105    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1106    Ty = Context.getCanonicalType(Ty);
1107    return Context.DeclarationNames.getCXXConstructorName(Ty);
1108  }
1109
1110  case Declarator::DK_Destructor: {
1111    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1112    Ty = Context.getCanonicalType(Ty);
1113    return Context.DeclarationNames.getCXXDestructorName(Ty);
1114  }
1115
1116  case Declarator::DK_Conversion: {
1117    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1118    Ty = Context.getCanonicalType(Ty);
1119    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1120  }
1121
1122  case Declarator::DK_Operator:
1123    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1124    return Context.DeclarationNames.getCXXOperatorName(
1125                                                D.getOverloadedOperator());
1126  }
1127
1128  assert(false && "Unknown name kind");
1129  return DeclarationName();
1130}
1131
1132/// isNearlyMatchingMemberFunction - Determine whether the C++ member
1133/// functions Declaration and Definition are "nearly" matching. This
1134/// heuristic is used to improve diagnostics in the case where an
1135/// out-of-line member function definition doesn't match any
1136/// declaration within the class.
1137static bool isNearlyMatchingMemberFunction(ASTContext &Context,
1138                                           FunctionDecl *Declaration,
1139                                           FunctionDecl *Definition) {
1140  if (Declaration->param_size() != Definition->param_size())
1141    return false;
1142  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1143    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1144    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1145
1146    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1147    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1148    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1149      return false;
1150  }
1151
1152  return true;
1153}
1154
1155Sema::DeclTy *
1156Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1157                      bool IsFunctionDefinition) {
1158  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1159  DeclarationName Name = GetNameForDeclarator(D);
1160
1161  // All of these full declarators require an identifier.  If it doesn't have
1162  // one, the ParsedFreeStandingDeclSpec action should be used.
1163  if (!Name) {
1164    if (!D.getInvalidType())  // Reject this if we think it is valid.
1165      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1166           diag::err_declarator_need_ident)
1167        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1168    return 0;
1169  }
1170
1171  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1172  // we find one that is.
1173  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1174         (S->getFlags() & Scope::TemplateParamScope) != 0)
1175    S = S->getParent();
1176
1177  DeclContext *DC;
1178  NamedDecl *PrevDecl;
1179  NamedDecl *New;
1180  bool InvalidDecl = false;
1181
1182  // See if this is a redefinition of a variable in the same scope.
1183  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1184    DC = CurContext;
1185    PrevDecl = LookupName(S, Name, LookupOrdinaryName);
1186  } else { // Something like "int foo::x;"
1187    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1188    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName);
1189
1190    // C++ 7.3.1.2p2:
1191    // Members (including explicit specializations of templates) of a named
1192    // namespace can also be defined outside that namespace by explicit
1193    // qualification of the name being defined, provided that the entity being
1194    // defined was already declared in the namespace and the definition appears
1195    // after the point of declaration in a namespace that encloses the
1196    // declarations namespace.
1197    //
1198    // Note that we only check the context at this point. We don't yet
1199    // have enough information to make sure that PrevDecl is actually
1200    // the declaration we want to match. For example, given:
1201    //
1202    //   class X {
1203    //     void f();
1204    //     void f(float);
1205    //   };
1206    //
1207    //   void X::f(int) { } // ill-formed
1208    //
1209    // In this case, PrevDecl will point to the overload set
1210    // containing the two f's declared in X, but neither of them
1211    // matches.
1212    if (!CurContext->Encloses(DC)) {
1213      // The qualifying scope doesn't enclose the original declaration.
1214      // Emit diagnostic based on current scope.
1215      SourceLocation L = D.getIdentifierLoc();
1216      SourceRange R = D.getCXXScopeSpec().getRange();
1217      if (isa<FunctionDecl>(CurContext)) {
1218        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1219      } else {
1220        Diag(L, diag::err_invalid_declarator_scope)
1221          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
1222      }
1223      InvalidDecl = true;
1224    }
1225  }
1226
1227  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1228    // Maybe we will complain about the shadowed template parameter.
1229    InvalidDecl = InvalidDecl
1230      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1231    // Just pretend that we didn't see the previous declaration.
1232    PrevDecl = 0;
1233  }
1234
1235  // In C++, the previous declaration we find might be a tag type
1236  // (class or enum). In this case, the new declaration will hide the
1237  // tag type. Note that this does does not apply if we're declaring a
1238  // typedef (C++ [dcl.typedef]p4).
1239  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1240      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1241    PrevDecl = 0;
1242
1243  QualType R = GetTypeForDeclarator(D, S);
1244  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1245
1246  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1247    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1248                                 InvalidDecl);
1249  } else if (R.getTypePtr()->isFunctionType()) {
1250    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1251                                  IsFunctionDefinition, InvalidDecl);
1252  } else {
1253    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1254                                  InvalidDecl);
1255  }
1256
1257  if (New == 0)
1258    return 0;
1259
1260  // Set the lexical context. If the declarator has a C++ scope specifier, the
1261  // lexical context will be different from the semantic context.
1262  New->setLexicalDeclContext(CurContext);
1263
1264  // If this has an identifier, add it to the scope stack.
1265  if (Name)
1266    PushOnScopeChains(New, S);
1267  // If any semantic error occurred, mark the decl as invalid.
1268  if (D.getInvalidType() || InvalidDecl)
1269    New->setInvalidDecl();
1270
1271  return New;
1272}
1273
1274NamedDecl*
1275Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1276                             QualType R, Decl* LastDeclarator,
1277                             Decl* PrevDecl, bool& InvalidDecl) {
1278  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1279  if (D.getCXXScopeSpec().isSet()) {
1280    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1281      << D.getCXXScopeSpec().getRange();
1282    InvalidDecl = true;
1283    // Pretend we didn't see the scope specifier.
1284    DC = 0;
1285  }
1286
1287  // Check that there are no default arguments (C++ only).
1288  if (getLangOptions().CPlusPlus)
1289    CheckExtraCXXDefaultArguments(D);
1290
1291  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1292  if (!NewTD) return 0;
1293
1294  // Handle attributes prior to checking for duplicates in MergeVarDecl
1295  ProcessDeclAttributes(NewTD, D);
1296  // Merge the decl with the existing one if appropriate. If the decl is
1297  // in an outer scope, it isn't the same thing.
1298  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1299    NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1300    if (NewTD == 0) return 0;
1301  }
1302
1303  if (S->getFnParent() == 0) {
1304    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1305    // then it shall have block scope.
1306    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1307      if (NewTD->getUnderlyingType()->isVariableArrayType())
1308        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1309      else
1310        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1311
1312      InvalidDecl = true;
1313    }
1314  }
1315  return NewTD;
1316}
1317
1318NamedDecl*
1319Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1320                              QualType R, Decl* LastDeclarator,
1321                              Decl* PrevDecl, bool& InvalidDecl) {
1322  DeclarationName Name = GetNameForDeclarator(D);
1323
1324  // Check that there are no default arguments (C++ only).
1325  if (getLangOptions().CPlusPlus)
1326    CheckExtraCXXDefaultArguments(D);
1327
1328  if (R.getTypePtr()->isObjCInterfaceType()) {
1329    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1330      << D.getIdentifier();
1331    InvalidDecl = true;
1332  }
1333
1334  VarDecl *NewVD;
1335  VarDecl::StorageClass SC;
1336  switch (D.getDeclSpec().getStorageClassSpec()) {
1337  default: assert(0 && "Unknown storage class!");
1338  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1339  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1340  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1341  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1342  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1343  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1344  case DeclSpec::SCS_mutable:
1345    // mutable can only appear on non-static class members, so it's always
1346    // an error here
1347    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1348    InvalidDecl = true;
1349    SC = VarDecl::None;
1350    break;
1351  }
1352
1353  IdentifierInfo *II = Name.getAsIdentifierInfo();
1354  if (!II) {
1355    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1356      << Name.getAsString();
1357    return 0;
1358  }
1359
1360  if (DC->isRecord()) {
1361    // This is a static data member for a C++ class.
1362    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1363                                    D.getIdentifierLoc(), II,
1364                                    R);
1365  } else {
1366    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1367    if (S->getFnParent() == 0) {
1368      // C99 6.9p2: The storage-class specifiers auto and register shall not
1369      // appear in the declaration specifiers in an external declaration.
1370      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1371        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1372        InvalidDecl = true;
1373      }
1374    }
1375    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1376                            II, R, SC,
1377                            // FIXME: Move to DeclGroup...
1378                            D.getDeclSpec().getSourceRange().getBegin());
1379    NewVD->setThreadSpecified(ThreadSpecified);
1380  }
1381  NewVD->setNextDeclarator(LastDeclarator);
1382
1383  // Handle attributes prior to checking for duplicates in MergeVarDecl
1384  ProcessDeclAttributes(NewVD, D);
1385
1386  // Handle GNU asm-label extension (encoded as an attribute).
1387  if (Expr *E = (Expr*) D.getAsmLabel()) {
1388    // The parser guarantees this is a string.
1389    StringLiteral *SE = cast<StringLiteral>(E);
1390    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1391                                                SE->getByteLength())));
1392  }
1393
1394  // Emit an error if an address space was applied to decl with local storage.
1395  // This includes arrays of objects with address space qualifiers, but not
1396  // automatic variables that point to other address spaces.
1397  // ISO/IEC TR 18037 S5.1.2
1398  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1399    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1400    InvalidDecl = true;
1401  }
1402  // Merge the decl with the existing one if appropriate. If the decl is
1403  // in an outer scope, it isn't the same thing.
1404  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1405    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1406      // The user tried to define a non-static data member
1407      // out-of-line (C++ [dcl.meaning]p1).
1408      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1409        << D.getCXXScopeSpec().getRange();
1410      NewVD->Destroy(Context);
1411      return 0;
1412    }
1413
1414    NewVD = MergeVarDecl(NewVD, PrevDecl);
1415    if (NewVD == 0) return 0;
1416
1417    if (D.getCXXScopeSpec().isSet()) {
1418      // No previous declaration in the qualifying scope.
1419      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1420        << Name << D.getCXXScopeSpec().getRange();
1421      InvalidDecl = true;
1422    }
1423  }
1424  return NewVD;
1425}
1426
1427NamedDecl*
1428Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1429                              QualType R, Decl *LastDeclarator,
1430                              Decl* PrevDecl, bool IsFunctionDefinition,
1431                              bool& InvalidDecl) {
1432  assert(R.getTypePtr()->isFunctionType());
1433
1434  DeclarationName Name = GetNameForDeclarator(D);
1435  FunctionDecl::StorageClass SC = FunctionDecl::None;
1436  switch (D.getDeclSpec().getStorageClassSpec()) {
1437  default: assert(0 && "Unknown storage class!");
1438  case DeclSpec::SCS_auto:
1439  case DeclSpec::SCS_register:
1440  case DeclSpec::SCS_mutable:
1441    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1442    InvalidDecl = true;
1443    break;
1444  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1445  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1446  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1447  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1448  }
1449
1450  bool isInline = D.getDeclSpec().isInlineSpecified();
1451  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1452  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1453
1454  FunctionDecl *NewFD;
1455  if (D.getKind() == Declarator::DK_Constructor) {
1456    // This is a C++ constructor declaration.
1457    assert(DC->isRecord() &&
1458           "Constructors can only be declared in a member context");
1459
1460    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1461
1462    // Create the new declaration
1463    NewFD = CXXConstructorDecl::Create(Context,
1464                                       cast<CXXRecordDecl>(DC),
1465                                       D.getIdentifierLoc(), Name, R,
1466                                       isExplicit, isInline,
1467                                       /*isImplicitlyDeclared=*/false);
1468
1469    if (InvalidDecl)
1470      NewFD->setInvalidDecl();
1471  } else if (D.getKind() == Declarator::DK_Destructor) {
1472    // This is a C++ destructor declaration.
1473    if (DC->isRecord()) {
1474      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1475
1476      NewFD = CXXDestructorDecl::Create(Context,
1477                                        cast<CXXRecordDecl>(DC),
1478                                        D.getIdentifierLoc(), Name, R,
1479                                        isInline,
1480                                        /*isImplicitlyDeclared=*/false);
1481
1482      if (InvalidDecl)
1483        NewFD->setInvalidDecl();
1484    } else {
1485      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1486
1487      // Create a FunctionDecl to satisfy the function definition parsing
1488      // code path.
1489      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1490                                   Name, R, SC, isInline,
1491                                   // FIXME: Move to DeclGroup...
1492                                   D.getDeclSpec().getSourceRange().getBegin());
1493      InvalidDecl = true;
1494      NewFD->setInvalidDecl();
1495    }
1496  } else if (D.getKind() == Declarator::DK_Conversion) {
1497    if (!DC->isRecord()) {
1498      Diag(D.getIdentifierLoc(),
1499           diag::err_conv_function_not_member);
1500      return 0;
1501    } else {
1502      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1503
1504      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1505                                        D.getIdentifierLoc(), Name, R,
1506                                        isInline, isExplicit);
1507
1508      if (InvalidDecl)
1509        NewFD->setInvalidDecl();
1510    }
1511  } else if (DC->isRecord()) {
1512    // This is a C++ method declaration.
1513    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1514                                  D.getIdentifierLoc(), Name, R,
1515                                  (SC == FunctionDecl::Static), isInline);
1516  } else {
1517    NewFD = FunctionDecl::Create(Context, DC,
1518                                 D.getIdentifierLoc(),
1519                                 Name, R, SC, isInline,
1520                                 // FIXME: Move to DeclGroup...
1521                                 D.getDeclSpec().getSourceRange().getBegin());
1522  }
1523  NewFD->setNextDeclarator(LastDeclarator);
1524
1525  // Set the lexical context. If the declarator has a C++
1526  // scope specifier, the lexical context will be different
1527  // from the semantic context.
1528  NewFD->setLexicalDeclContext(CurContext);
1529
1530  // Handle GNU asm-label extension (encoded as an attribute).
1531  if (Expr *E = (Expr*) D.getAsmLabel()) {
1532    // The parser guarantees this is a string.
1533    StringLiteral *SE = cast<StringLiteral>(E);
1534    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1535                                                SE->getByteLength())));
1536  }
1537
1538  // Copy the parameter declarations from the declarator D to
1539  // the function declaration NewFD, if they are available.
1540  if (D.getNumTypeObjects() > 0) {
1541    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1542
1543    // Create Decl objects for each parameter, adding them to the
1544    // FunctionDecl.
1545    llvm::SmallVector<ParmVarDecl*, 16> Params;
1546
1547    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1548    // function that takes no arguments, not a function that takes a
1549    // single void argument.
1550    // We let through "const void" here because Sema::GetTypeForDeclarator
1551    // already checks for that case.
1552    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1553        FTI.ArgInfo[0].Param &&
1554        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1555      // empty arg list, don't push any params.
1556      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1557
1558      // In C++, the empty parameter-type-list must be spelled "void"; a
1559      // typedef of void is not permitted.
1560      if (getLangOptions().CPlusPlus &&
1561          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1562        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1563      }
1564    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1565      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1566        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1567    }
1568
1569    NewFD->setParams(Context, &Params[0], Params.size());
1570  } else if (R->getAsTypedefType()) {
1571    // When we're declaring a function with a typedef, as in the
1572    // following example, we'll need to synthesize (unnamed)
1573    // parameters for use in the declaration.
1574    //
1575    // @code
1576    // typedef void fn(int);
1577    // fn f;
1578    // @endcode
1579    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1580    if (!FT) {
1581      // This is a typedef of a function with no prototype, so we
1582      // don't need to do anything.
1583    } else if ((FT->getNumArgs() == 0) ||
1584               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1585                FT->getArgType(0)->isVoidType())) {
1586      // This is a zero-argument function. We don't need to do anything.
1587    } else {
1588      // Synthesize a parameter for each argument type.
1589      llvm::SmallVector<ParmVarDecl*, 16> Params;
1590      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1591           ArgType != FT->arg_type_end(); ++ArgType) {
1592        Params.push_back(ParmVarDecl::Create(Context, DC,
1593                                             SourceLocation(), 0,
1594                                             *ArgType, VarDecl::None,
1595                                             0));
1596      }
1597
1598      NewFD->setParams(Context, &Params[0], Params.size());
1599    }
1600  }
1601
1602  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1603    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1604  else if (isa<CXXDestructorDecl>(NewFD)) {
1605    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1606    Record->setUserDeclaredDestructor(true);
1607    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1608    // user-defined destructor.
1609    Record->setPOD(false);
1610  } else if (CXXConversionDecl *Conversion =
1611             dyn_cast<CXXConversionDecl>(NewFD))
1612    ActOnConversionDeclarator(Conversion);
1613
1614  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1615  if (NewFD->isOverloadedOperator() &&
1616      CheckOverloadedOperatorDeclaration(NewFD))
1617    NewFD->setInvalidDecl();
1618
1619  // Merge the decl with the existing one if appropriate. Since C functions
1620  // are in a flat namespace, make sure we consider decls in outer scopes.
1621  if (PrevDecl &&
1622      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1623    bool Redeclaration = false;
1624
1625    // If C++, determine whether NewFD is an overload of PrevDecl or
1626    // a declaration that requires merging. If it's an overload,
1627    // there's no more work to do here; we'll just add the new
1628    // function to the scope.
1629    OverloadedFunctionDecl::function_iterator MatchedDecl;
1630    if (!getLangOptions().CPlusPlus ||
1631        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1632      Decl *OldDecl = PrevDecl;
1633
1634      // If PrevDecl was an overloaded function, extract the
1635      // FunctionDecl that matched.
1636      if (isa<OverloadedFunctionDecl>(PrevDecl))
1637        OldDecl = *MatchedDecl;
1638
1639      // NewFD and PrevDecl represent declarations that need to be
1640      // merged.
1641      NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1642
1643      if (NewFD == 0) return 0;
1644      if (Redeclaration) {
1645        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1646
1647        // An out-of-line member function declaration must also be a
1648        // definition (C++ [dcl.meaning]p1).
1649        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1650            !InvalidDecl) {
1651          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1652            << D.getCXXScopeSpec().getRange();
1653          NewFD->setInvalidDecl();
1654        }
1655      }
1656    }
1657
1658    if (!Redeclaration && D.getCXXScopeSpec().isSet()) {
1659      // The user tried to provide an out-of-line definition for a
1660      // member function, but there was no such member function
1661      // declared (C++ [class.mfct]p2). For example:
1662      //
1663      // class X {
1664      //   void f() const;
1665      // };
1666      //
1667      // void X::f() { } // ill-formed
1668      //
1669      // Complain about this problem, and attempt to suggest close
1670      // matches (e.g., those that differ only in cv-qualifiers and
1671      // whether the parameter types are references).
1672      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1673        << cast<CXXRecordDecl>(DC)->getDeclName()
1674        << D.getCXXScopeSpec().getRange();
1675      InvalidDecl = true;
1676
1677      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1678                                              true);
1679      assert(!Prev.isAmbiguous() &&
1680             "Cannot have an ambiguity in previous-declaration lookup");
1681      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1682           Func != FuncEnd; ++Func) {
1683        if (isa<CXXMethodDecl>(*Func) &&
1684            isNearlyMatchingMemberFunction(Context, cast<FunctionDecl>(*Func),
1685                                           NewFD))
1686          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1687      }
1688
1689      PrevDecl = 0;
1690    }
1691  }
1692
1693  // Handle attributes. We need to have merged decls when handling attributes
1694  // (for example to check for conflicts, etc).
1695  ProcessDeclAttributes(NewFD, D);
1696
1697  if (getLangOptions().CPlusPlus) {
1698    // In C++, check default arguments now that we have merged decls.
1699    CheckCXXDefaultArguments(NewFD);
1700
1701    // An out-of-line member function declaration must also be a
1702    // definition (C++ [dcl.meaning]p1).
1703    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1704      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1705        << D.getCXXScopeSpec().getRange();
1706      InvalidDecl = true;
1707    }
1708  }
1709  return NewFD;
1710}
1711
1712void Sema::InitializerElementNotConstant(const Expr *Init) {
1713  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1714    << Init->getSourceRange();
1715}
1716
1717bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1718  switch (Init->getStmtClass()) {
1719  default:
1720    InitializerElementNotConstant(Init);
1721    return true;
1722  case Expr::ParenExprClass: {
1723    const ParenExpr* PE = cast<ParenExpr>(Init);
1724    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1725  }
1726  case Expr::CompoundLiteralExprClass:
1727    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1728  case Expr::DeclRefExprClass:
1729  case Expr::QualifiedDeclRefExprClass: {
1730    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1731    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1732      if (VD->hasGlobalStorage())
1733        return false;
1734      InitializerElementNotConstant(Init);
1735      return true;
1736    }
1737    if (isa<FunctionDecl>(D))
1738      return false;
1739    InitializerElementNotConstant(Init);
1740    return true;
1741  }
1742  case Expr::MemberExprClass: {
1743    const MemberExpr *M = cast<MemberExpr>(Init);
1744    if (M->isArrow())
1745      return CheckAddressConstantExpression(M->getBase());
1746    return CheckAddressConstantExpressionLValue(M->getBase());
1747  }
1748  case Expr::ArraySubscriptExprClass: {
1749    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1750    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1751    return CheckAddressConstantExpression(ASE->getBase()) ||
1752           CheckArithmeticConstantExpression(ASE->getIdx());
1753  }
1754  case Expr::StringLiteralClass:
1755  case Expr::PredefinedExprClass:
1756    return false;
1757  case Expr::UnaryOperatorClass: {
1758    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1759
1760    // C99 6.6p9
1761    if (Exp->getOpcode() == UnaryOperator::Deref)
1762      return CheckAddressConstantExpression(Exp->getSubExpr());
1763
1764    InitializerElementNotConstant(Init);
1765    return true;
1766  }
1767  }
1768}
1769
1770bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1771  switch (Init->getStmtClass()) {
1772  default:
1773    InitializerElementNotConstant(Init);
1774    return true;
1775  case Expr::ParenExprClass:
1776    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1777  case Expr::StringLiteralClass:
1778  case Expr::ObjCStringLiteralClass:
1779    return false;
1780  case Expr::CallExprClass:
1781  case Expr::CXXOperatorCallExprClass:
1782    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1783    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1784           Builtin::BI__builtin___CFStringMakeConstantString)
1785      return false;
1786
1787    InitializerElementNotConstant(Init);
1788    return true;
1789
1790  case Expr::UnaryOperatorClass: {
1791    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1792
1793    // C99 6.6p9
1794    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1795      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1796
1797    if (Exp->getOpcode() == UnaryOperator::Extension)
1798      return CheckAddressConstantExpression(Exp->getSubExpr());
1799
1800    InitializerElementNotConstant(Init);
1801    return true;
1802  }
1803  case Expr::BinaryOperatorClass: {
1804    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1805    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1806
1807    Expr *PExp = Exp->getLHS();
1808    Expr *IExp = Exp->getRHS();
1809    if (IExp->getType()->isPointerType())
1810      std::swap(PExp, IExp);
1811
1812    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1813    return CheckAddressConstantExpression(PExp) ||
1814           CheckArithmeticConstantExpression(IExp);
1815  }
1816  case Expr::ImplicitCastExprClass:
1817  case Expr::CStyleCastExprClass: {
1818    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1819    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1820      // Check for implicit promotion
1821      if (SubExpr->getType()->isFunctionType() ||
1822          SubExpr->getType()->isArrayType())
1823        return CheckAddressConstantExpressionLValue(SubExpr);
1824    }
1825
1826    // Check for pointer->pointer cast
1827    if (SubExpr->getType()->isPointerType())
1828      return CheckAddressConstantExpression(SubExpr);
1829
1830    if (SubExpr->getType()->isIntegralType()) {
1831      // Check for the special-case of a pointer->int->pointer cast;
1832      // this isn't standard, but some code requires it. See
1833      // PR2720 for an example.
1834      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1835        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1836          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1837          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1838          if (IntWidth >= PointerWidth) {
1839            return CheckAddressConstantExpression(SubCast->getSubExpr());
1840          }
1841        }
1842      }
1843    }
1844    if (SubExpr->getType()->isArithmeticType()) {
1845      return CheckArithmeticConstantExpression(SubExpr);
1846    }
1847
1848    InitializerElementNotConstant(Init);
1849    return true;
1850  }
1851  case Expr::ConditionalOperatorClass: {
1852    // FIXME: Should we pedwarn here?
1853    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1854    if (!Exp->getCond()->getType()->isArithmeticType()) {
1855      InitializerElementNotConstant(Init);
1856      return true;
1857    }
1858    if (CheckArithmeticConstantExpression(Exp->getCond()))
1859      return true;
1860    if (Exp->getLHS() &&
1861        CheckAddressConstantExpression(Exp->getLHS()))
1862      return true;
1863    return CheckAddressConstantExpression(Exp->getRHS());
1864  }
1865  case Expr::AddrLabelExprClass:
1866    return false;
1867  }
1868}
1869
1870static const Expr* FindExpressionBaseAddress(const Expr* E);
1871
1872static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1873  switch (E->getStmtClass()) {
1874  default:
1875    return E;
1876  case Expr::ParenExprClass: {
1877    const ParenExpr* PE = cast<ParenExpr>(E);
1878    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1879  }
1880  case Expr::MemberExprClass: {
1881    const MemberExpr *M = cast<MemberExpr>(E);
1882    if (M->isArrow())
1883      return FindExpressionBaseAddress(M->getBase());
1884    return FindExpressionBaseAddressLValue(M->getBase());
1885  }
1886  case Expr::ArraySubscriptExprClass: {
1887    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1888    return FindExpressionBaseAddress(ASE->getBase());
1889  }
1890  case Expr::UnaryOperatorClass: {
1891    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1892
1893    if (Exp->getOpcode() == UnaryOperator::Deref)
1894      return FindExpressionBaseAddress(Exp->getSubExpr());
1895
1896    return E;
1897  }
1898  }
1899}
1900
1901static const Expr* FindExpressionBaseAddress(const Expr* E) {
1902  switch (E->getStmtClass()) {
1903  default:
1904    return E;
1905  case Expr::ParenExprClass: {
1906    const ParenExpr* PE = cast<ParenExpr>(E);
1907    return FindExpressionBaseAddress(PE->getSubExpr());
1908  }
1909  case Expr::UnaryOperatorClass: {
1910    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1911
1912    // C99 6.6p9
1913    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1914      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1915
1916    if (Exp->getOpcode() == UnaryOperator::Extension)
1917      return FindExpressionBaseAddress(Exp->getSubExpr());
1918
1919    return E;
1920  }
1921  case Expr::BinaryOperatorClass: {
1922    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1923
1924    Expr *PExp = Exp->getLHS();
1925    Expr *IExp = Exp->getRHS();
1926    if (IExp->getType()->isPointerType())
1927      std::swap(PExp, IExp);
1928
1929    return FindExpressionBaseAddress(PExp);
1930  }
1931  case Expr::ImplicitCastExprClass: {
1932    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1933
1934    // Check for implicit promotion
1935    if (SubExpr->getType()->isFunctionType() ||
1936        SubExpr->getType()->isArrayType())
1937      return FindExpressionBaseAddressLValue(SubExpr);
1938
1939    // Check for pointer->pointer cast
1940    if (SubExpr->getType()->isPointerType())
1941      return FindExpressionBaseAddress(SubExpr);
1942
1943    // We assume that we have an arithmetic expression here;
1944    // if we don't, we'll figure it out later
1945    return 0;
1946  }
1947  case Expr::CStyleCastExprClass: {
1948    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1949
1950    // Check for pointer->pointer cast
1951    if (SubExpr->getType()->isPointerType())
1952      return FindExpressionBaseAddress(SubExpr);
1953
1954    // We assume that we have an arithmetic expression here;
1955    // if we don't, we'll figure it out later
1956    return 0;
1957  }
1958  }
1959}
1960
1961bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1962  switch (Init->getStmtClass()) {
1963  default:
1964    InitializerElementNotConstant(Init);
1965    return true;
1966  case Expr::ParenExprClass: {
1967    const ParenExpr* PE = cast<ParenExpr>(Init);
1968    return CheckArithmeticConstantExpression(PE->getSubExpr());
1969  }
1970  case Expr::FloatingLiteralClass:
1971  case Expr::IntegerLiteralClass:
1972  case Expr::CharacterLiteralClass:
1973  case Expr::ImaginaryLiteralClass:
1974  case Expr::TypesCompatibleExprClass:
1975  case Expr::CXXBoolLiteralExprClass:
1976    return false;
1977  case Expr::CallExprClass:
1978  case Expr::CXXOperatorCallExprClass: {
1979    const CallExpr *CE = cast<CallExpr>(Init);
1980
1981    // Allow any constant foldable calls to builtins.
1982    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1983      return false;
1984
1985    InitializerElementNotConstant(Init);
1986    return true;
1987  }
1988  case Expr::DeclRefExprClass:
1989  case Expr::QualifiedDeclRefExprClass: {
1990    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1991    if (isa<EnumConstantDecl>(D))
1992      return false;
1993    InitializerElementNotConstant(Init);
1994    return true;
1995  }
1996  case Expr::CompoundLiteralExprClass:
1997    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1998    // but vectors are allowed to be magic.
1999    if (Init->getType()->isVectorType())
2000      return false;
2001    InitializerElementNotConstant(Init);
2002    return true;
2003  case Expr::UnaryOperatorClass: {
2004    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2005
2006    switch (Exp->getOpcode()) {
2007    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2008    // See C99 6.6p3.
2009    default:
2010      InitializerElementNotConstant(Init);
2011      return true;
2012    case UnaryOperator::OffsetOf:
2013      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2014        return false;
2015      InitializerElementNotConstant(Init);
2016      return true;
2017    case UnaryOperator::Extension:
2018    case UnaryOperator::LNot:
2019    case UnaryOperator::Plus:
2020    case UnaryOperator::Minus:
2021    case UnaryOperator::Not:
2022      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2023    }
2024  }
2025  case Expr::SizeOfAlignOfExprClass: {
2026    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2027    // Special check for void types, which are allowed as an extension
2028    if (Exp->getTypeOfArgument()->isVoidType())
2029      return false;
2030    // alignof always evaluates to a constant.
2031    // FIXME: is sizeof(int[3.0]) a constant expression?
2032    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2033      InitializerElementNotConstant(Init);
2034      return true;
2035    }
2036    return false;
2037  }
2038  case Expr::BinaryOperatorClass: {
2039    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2040
2041    if (Exp->getLHS()->getType()->isArithmeticType() &&
2042        Exp->getRHS()->getType()->isArithmeticType()) {
2043      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2044             CheckArithmeticConstantExpression(Exp->getRHS());
2045    }
2046
2047    if (Exp->getLHS()->getType()->isPointerType() &&
2048        Exp->getRHS()->getType()->isPointerType()) {
2049      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2050      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2051
2052      // Only allow a null (constant integer) base; we could
2053      // allow some additional cases if necessary, but this
2054      // is sufficient to cover offsetof-like constructs.
2055      if (!LHSBase && !RHSBase) {
2056        return CheckAddressConstantExpression(Exp->getLHS()) ||
2057               CheckAddressConstantExpression(Exp->getRHS());
2058      }
2059    }
2060
2061    InitializerElementNotConstant(Init);
2062    return true;
2063  }
2064  case Expr::ImplicitCastExprClass:
2065  case Expr::CStyleCastExprClass: {
2066    const CastExpr *CE = cast<CastExpr>(Init);
2067    const Expr *SubExpr = CE->getSubExpr();
2068
2069    if (SubExpr->getType()->isArithmeticType())
2070      return CheckArithmeticConstantExpression(SubExpr);
2071
2072    if (SubExpr->getType()->isPointerType()) {
2073      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2074      if (Base) {
2075        // the cast is only valid if done to a wide enough type
2076        if (Context.getTypeSize(CE->getType()) >=
2077            Context.getTypeSize(SubExpr->getType()))
2078          return false;
2079      } else {
2080        // If the pointer has a null base, this is an offsetof-like construct
2081        return CheckAddressConstantExpression(SubExpr);
2082      }
2083    }
2084
2085    InitializerElementNotConstant(Init);
2086    return true;
2087  }
2088  case Expr::ConditionalOperatorClass: {
2089    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2090
2091    // If GNU extensions are disabled, we require all operands to be arithmetic
2092    // constant expressions.
2093    if (getLangOptions().NoExtensions) {
2094      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2095          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2096             CheckArithmeticConstantExpression(Exp->getRHS());
2097    }
2098
2099    // Otherwise, we have to emulate some of the behavior of fold here.
2100    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2101    // because it can constant fold things away.  To retain compatibility with
2102    // GCC code, we see if we can fold the condition to a constant (which we
2103    // should always be able to do in theory).  If so, we only require the
2104    // specified arm of the conditional to be a constant.  This is a horrible
2105    // hack, but is require by real world code that uses __builtin_constant_p.
2106    Expr::EvalResult EvalResult;
2107    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2108        EvalResult.HasSideEffects) {
2109      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2110      // won't be able to either.  Use it to emit the diagnostic though.
2111      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2112      assert(Res && "Evaluate couldn't evaluate this constant?");
2113      return Res;
2114    }
2115
2116    // Verify that the side following the condition is also a constant.
2117    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2118    if (EvalResult.Val.getInt() == 0)
2119      std::swap(TrueSide, FalseSide);
2120
2121    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2122      return true;
2123
2124    // Okay, the evaluated side evaluates to a constant, so we accept this.
2125    // Check to see if the other side is obviously not a constant.  If so,
2126    // emit a warning that this is a GNU extension.
2127    if (FalseSide && !FalseSide->isEvaluatable(Context))
2128      Diag(Init->getExprLoc(),
2129           diag::ext_typecheck_expression_not_constant_but_accepted)
2130        << FalseSide->getSourceRange();
2131    return false;
2132  }
2133  }
2134}
2135
2136bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2137  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2138    Init = DIE->getInit();
2139
2140  Init = Init->IgnoreParens();
2141
2142  if (Init->isEvaluatable(Context))
2143    return false;
2144
2145  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2146  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2147    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2148
2149  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2150    return CheckForConstantInitializer(e->getInitializer(), DclT);
2151
2152  if (isa<ImplicitValueInitExpr>(Init)) {
2153    // FIXME: In C++, check for non-POD types.
2154    return false;
2155  }
2156
2157  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2158    unsigned numInits = Exp->getNumInits();
2159    for (unsigned i = 0; i < numInits; i++) {
2160      // FIXME: Need to get the type of the declaration for C++,
2161      // because it could be a reference?
2162
2163      if (CheckForConstantInitializer(Exp->getInit(i),
2164                                      Exp->getInit(i)->getType()))
2165        return true;
2166    }
2167    return false;
2168  }
2169
2170  // FIXME: We can probably remove some of this code below, now that
2171  // Expr::Evaluate is doing the heavy lifting for scalars.
2172
2173  if (Init->isNullPointerConstant(Context))
2174    return false;
2175  if (Init->getType()->isArithmeticType()) {
2176    QualType InitTy = Context.getCanonicalType(Init->getType())
2177                             .getUnqualifiedType();
2178    if (InitTy == Context.BoolTy) {
2179      // Special handling for pointers implicitly cast to bool;
2180      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2181      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2182        Expr* SubE = ICE->getSubExpr();
2183        if (SubE->getType()->isPointerType() ||
2184            SubE->getType()->isArrayType() ||
2185            SubE->getType()->isFunctionType()) {
2186          return CheckAddressConstantExpression(Init);
2187        }
2188      }
2189    } else if (InitTy->isIntegralType()) {
2190      Expr* SubE = 0;
2191      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2192        SubE = CE->getSubExpr();
2193      // Special check for pointer cast to int; we allow as an extension
2194      // an address constant cast to an integer if the integer
2195      // is of an appropriate width (this sort of code is apparently used
2196      // in some places).
2197      // FIXME: Add pedwarn?
2198      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2199      if (SubE && (SubE->getType()->isPointerType() ||
2200                   SubE->getType()->isArrayType() ||
2201                   SubE->getType()->isFunctionType())) {
2202        unsigned IntWidth = Context.getTypeSize(Init->getType());
2203        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2204        if (IntWidth >= PointerWidth)
2205          return CheckAddressConstantExpression(Init);
2206      }
2207    }
2208
2209    return CheckArithmeticConstantExpression(Init);
2210  }
2211
2212  if (Init->getType()->isPointerType())
2213    return CheckAddressConstantExpression(Init);
2214
2215  // An array type at the top level that isn't an init-list must
2216  // be a string literal
2217  if (Init->getType()->isArrayType())
2218    return false;
2219
2220  if (Init->getType()->isFunctionType())
2221    return false;
2222
2223  // Allow block exprs at top level.
2224  if (Init->getType()->isBlockPointerType())
2225    return false;
2226
2227  // GCC cast to union extension
2228  // note: the validity of the cast expr is checked by CheckCastTypes()
2229  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2230    QualType T = C->getType();
2231    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2232  }
2233
2234  InitializerElementNotConstant(Init);
2235  return true;
2236}
2237
2238void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2239  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2240}
2241
2242/// AddInitializerToDecl - Adds the initializer Init to the
2243/// declaration dcl. If DirectInit is true, this is C++ direct
2244/// initialization rather than copy initialization.
2245void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2246  Decl *RealDecl = static_cast<Decl *>(dcl);
2247  Expr *Init = static_cast<Expr *>(init.release());
2248  assert(Init && "missing initializer");
2249
2250  // If there is no declaration, there was an error parsing it.  Just ignore
2251  // the initializer.
2252  if (RealDecl == 0) {
2253    delete Init;
2254    return;
2255  }
2256
2257  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2258  if (!VDecl) {
2259    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2260    RealDecl->setInvalidDecl();
2261    return;
2262  }
2263  // Get the decls type and save a reference for later, since
2264  // CheckInitializerTypes may change it.
2265  QualType DclT = VDecl->getType(), SavT = DclT;
2266  if (VDecl->isBlockVarDecl()) {
2267    VarDecl::StorageClass SC = VDecl->getStorageClass();
2268    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2269      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2270      VDecl->setInvalidDecl();
2271    } else if (!VDecl->isInvalidDecl()) {
2272      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2273                                VDecl->getDeclName(), DirectInit))
2274        VDecl->setInvalidDecl();
2275
2276      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2277      if (!getLangOptions().CPlusPlus) {
2278        if (SC == VarDecl::Static) // C99 6.7.8p4.
2279          CheckForConstantInitializer(Init, DclT);
2280      }
2281    }
2282  } else if (VDecl->isFileVarDecl()) {
2283    if (VDecl->getStorageClass() == VarDecl::Extern)
2284      Diag(VDecl->getLocation(), diag::warn_extern_init);
2285    if (!VDecl->isInvalidDecl())
2286      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2287                                VDecl->getDeclName(), DirectInit))
2288        VDecl->setInvalidDecl();
2289
2290    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2291    if (!getLangOptions().CPlusPlus) {
2292      // C99 6.7.8p4. All file scoped initializers need to be constant.
2293      CheckForConstantInitializer(Init, DclT);
2294    }
2295  }
2296  // If the type changed, it means we had an incomplete type that was
2297  // completed by the initializer. For example:
2298  //   int ary[] = { 1, 3, 5 };
2299  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2300  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2301    VDecl->setType(DclT);
2302    Init->setType(DclT);
2303  }
2304
2305  // Attach the initializer to the decl.
2306  VDecl->setInit(Init);
2307  return;
2308}
2309
2310void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2311  Decl *RealDecl = static_cast<Decl *>(dcl);
2312
2313  // If there is no declaration, there was an error parsing it. Just ignore it.
2314  if (RealDecl == 0)
2315    return;
2316
2317  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2318    QualType Type = Var->getType();
2319    // C++ [dcl.init.ref]p3:
2320    //   The initializer can be omitted for a reference only in a
2321    //   parameter declaration (8.3.5), in the declaration of a
2322    //   function return type, in the declaration of a class member
2323    //   within its class declaration (9.2), and where the extern
2324    //   specifier is explicitly used.
2325    if (Type->isReferenceType() &&
2326        Var->getStorageClass() != VarDecl::Extern &&
2327        Var->getStorageClass() != VarDecl::PrivateExtern) {
2328      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2329        << Var->getDeclName()
2330        << SourceRange(Var->getLocation(), Var->getLocation());
2331      Var->setInvalidDecl();
2332      return;
2333    }
2334
2335    // C++ [dcl.init]p9:
2336    //
2337    //   If no initializer is specified for an object, and the object
2338    //   is of (possibly cv-qualified) non-POD class type (or array
2339    //   thereof), the object shall be default-initialized; if the
2340    //   object is of const-qualified type, the underlying class type
2341    //   shall have a user-declared default constructor.
2342    if (getLangOptions().CPlusPlus) {
2343      QualType InitType = Type;
2344      if (const ArrayType *Array = Context.getAsArrayType(Type))
2345        InitType = Array->getElementType();
2346      if (Var->getStorageClass() != VarDecl::Extern &&
2347          Var->getStorageClass() != VarDecl::PrivateExtern &&
2348          InitType->isRecordType()) {
2349        const CXXConstructorDecl *Constructor
2350          = PerformInitializationByConstructor(InitType, 0, 0,
2351                                               Var->getLocation(),
2352                                               SourceRange(Var->getLocation(),
2353                                                           Var->getLocation()),
2354                                               Var->getDeclName(),
2355                                               IK_Default);
2356        if (!Constructor)
2357          Var->setInvalidDecl();
2358      }
2359    }
2360
2361#if 0
2362    // FIXME: Temporarily disabled because we are not properly parsing
2363    // linkage specifications on declarations, e.g.,
2364    //
2365    //   extern "C" const CGPoint CGPointerZero;
2366    //
2367    // C++ [dcl.init]p9:
2368    //
2369    //     If no initializer is specified for an object, and the
2370    //     object is of (possibly cv-qualified) non-POD class type (or
2371    //     array thereof), the object shall be default-initialized; if
2372    //     the object is of const-qualified type, the underlying class
2373    //     type shall have a user-declared default
2374    //     constructor. Otherwise, if no initializer is specified for
2375    //     an object, the object and its subobjects, if any, have an
2376    //     indeterminate initial value; if the object or any of its
2377    //     subobjects are of const-qualified type, the program is
2378    //     ill-formed.
2379    //
2380    // This isn't technically an error in C, so we don't diagnose it.
2381    //
2382    // FIXME: Actually perform the POD/user-defined default
2383    // constructor check.
2384    if (getLangOptions().CPlusPlus &&
2385        Context.getCanonicalType(Type).isConstQualified() &&
2386        Var->getStorageClass() != VarDecl::Extern)
2387      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2388        << Var->getName()
2389        << SourceRange(Var->getLocation(), Var->getLocation());
2390#endif
2391  }
2392}
2393
2394/// The declarators are chained together backwards, reverse the list.
2395Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2396  // Often we have single declarators, handle them quickly.
2397  Decl *GroupDecl = static_cast<Decl*>(group);
2398  if (GroupDecl == 0)
2399    return 0;
2400
2401  Decl *Group = dyn_cast<Decl>(GroupDecl);
2402  Decl *NewGroup = 0;
2403  if (Group->getNextDeclarator() == 0)
2404    NewGroup = Group;
2405  else { // reverse the list.
2406    while (Group) {
2407      Decl *Next = Group->getNextDeclarator();
2408      Group->setNextDeclarator(NewGroup);
2409      NewGroup = Group;
2410      Group = Next;
2411    }
2412  }
2413  // Perform semantic analysis that depends on having fully processed both
2414  // the declarator and initializer.
2415  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2416    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2417    if (!IDecl)
2418      continue;
2419    QualType T = IDecl->getType();
2420
2421    if (T->isVariableArrayType()) {
2422      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2423
2424      // FIXME: This won't give the correct result for
2425      // int a[10][n];
2426      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2427      if (IDecl->isFileVarDecl()) {
2428        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2429          SizeRange;
2430
2431        IDecl->setInvalidDecl();
2432      } else {
2433        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2434        // static storage duration, it shall not have a variable length array.
2435        if (IDecl->getStorageClass() == VarDecl::Static) {
2436          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2437            << SizeRange;
2438          IDecl->setInvalidDecl();
2439        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2440          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2441            << SizeRange;
2442          IDecl->setInvalidDecl();
2443        }
2444      }
2445    } else if (T->isVariablyModifiedType()) {
2446      if (IDecl->isFileVarDecl()) {
2447        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2448        IDecl->setInvalidDecl();
2449      } else {
2450        if (IDecl->getStorageClass() == VarDecl::Extern) {
2451          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2452          IDecl->setInvalidDecl();
2453        }
2454      }
2455    }
2456
2457    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2458    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2459    if (IDecl->isBlockVarDecl() &&
2460        IDecl->getStorageClass() != VarDecl::Extern) {
2461      if (!IDecl->isInvalidDecl() &&
2462          DiagnoseIncompleteType(IDecl->getLocation(), T,
2463                                 diag::err_typecheck_decl_incomplete_type))
2464        IDecl->setInvalidDecl();
2465    }
2466    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2467    // object that has file scope without an initializer, and without a
2468    // storage-class specifier or with the storage-class specifier "static",
2469    // constitutes a tentative definition. Note: A tentative definition with
2470    // external linkage is valid (C99 6.2.2p5).
2471    if (isTentativeDefinition(IDecl)) {
2472      if (T->isIncompleteArrayType()) {
2473        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2474        // array to be completed. Don't issue a diagnostic.
2475      } else if (!IDecl->isInvalidDecl() &&
2476                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2477                                        diag::err_typecheck_decl_incomplete_type))
2478        // C99 6.9.2p3: If the declaration of an identifier for an object is
2479        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2480        // declared type shall not be an incomplete type.
2481        IDecl->setInvalidDecl();
2482    }
2483    if (IDecl->isFileVarDecl())
2484      CheckForFileScopedRedefinitions(S, IDecl);
2485  }
2486  return NewGroup;
2487}
2488
2489/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2490/// to introduce parameters into function prototype scope.
2491Sema::DeclTy *
2492Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2493  const DeclSpec &DS = D.getDeclSpec();
2494
2495  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2496  VarDecl::StorageClass StorageClass = VarDecl::None;
2497  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2498    StorageClass = VarDecl::Register;
2499  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2500    Diag(DS.getStorageClassSpecLoc(),
2501         diag::err_invalid_storage_class_in_func_decl);
2502    D.getMutableDeclSpec().ClearStorageClassSpecs();
2503  }
2504  if (DS.isThreadSpecified()) {
2505    Diag(DS.getThreadSpecLoc(),
2506         diag::err_invalid_storage_class_in_func_decl);
2507    D.getMutableDeclSpec().ClearStorageClassSpecs();
2508  }
2509
2510  // Check that there are no default arguments inside the type of this
2511  // parameter (C++ only).
2512  if (getLangOptions().CPlusPlus)
2513    CheckExtraCXXDefaultArguments(D);
2514
2515  // In this context, we *do not* check D.getInvalidType(). If the declarator
2516  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2517  // though it will not reflect the user specified type.
2518  QualType parmDeclType = GetTypeForDeclarator(D, S);
2519
2520  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2521
2522  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2523  // Can this happen for params?  We already checked that they don't conflict
2524  // among each other.  Here they can only shadow globals, which is ok.
2525  IdentifierInfo *II = D.getIdentifier();
2526  if (II) {
2527    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2528      if (PrevDecl->isTemplateParameter()) {
2529        // Maybe we will complain about the shadowed template parameter.
2530        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2531        // Just pretend that we didn't see the previous declaration.
2532        PrevDecl = 0;
2533      } else if (S->isDeclScope(PrevDecl)) {
2534        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2535
2536        // Recover by removing the name
2537        II = 0;
2538        D.SetIdentifier(0, D.getIdentifierLoc());
2539      }
2540    }
2541  }
2542
2543  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2544  // Doing the promotion here has a win and a loss. The win is the type for
2545  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2546  // code generator). The loss is the orginal type isn't preserved. For example:
2547  //
2548  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2549  //    int blockvardecl[5];
2550  //    sizeof(parmvardecl);  // size == 4
2551  //    sizeof(blockvardecl); // size == 20
2552  // }
2553  //
2554  // For expressions, all implicit conversions are captured using the
2555  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2556  //
2557  // FIXME: If a source translation tool needs to see the original type, then
2558  // we need to consider storing both types (in ParmVarDecl)...
2559  //
2560  if (parmDeclType->isArrayType()) {
2561    // int x[restrict 4] ->  int *restrict
2562    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2563  } else if (parmDeclType->isFunctionType())
2564    parmDeclType = Context.getPointerType(parmDeclType);
2565
2566  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2567                                         D.getIdentifierLoc(), II,
2568                                         parmDeclType, StorageClass,
2569                                         0);
2570
2571  if (D.getInvalidType())
2572    New->setInvalidDecl();
2573
2574  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2575  if (D.getCXXScopeSpec().isSet()) {
2576    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2577      << D.getCXXScopeSpec().getRange();
2578    New->setInvalidDecl();
2579  }
2580
2581  // Add the parameter declaration into this scope.
2582  S->AddDecl(New);
2583  if (II)
2584    IdResolver.AddDecl(New);
2585
2586  ProcessDeclAttributes(New, D);
2587  return New;
2588
2589}
2590
2591void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2592  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2593         "Not a function declarator!");
2594  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2595
2596  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2597  // for a K&R function.
2598  if (!FTI.hasPrototype) {
2599    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2600      if (FTI.ArgInfo[i].Param == 0) {
2601        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2602          << FTI.ArgInfo[i].Ident;
2603        // Implicitly declare the argument as type 'int' for lack of a better
2604        // type.
2605        DeclSpec DS;
2606        const char* PrevSpec; // unused
2607        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2608                           PrevSpec);
2609        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2610        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2611        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2612      }
2613    }
2614  }
2615}
2616
2617Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2618  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2619  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2620         "Not a function declarator!");
2621  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2622
2623  if (FTI.hasPrototype) {
2624    // FIXME: Diagnose arguments without names in C.
2625  }
2626
2627  Scope *ParentScope = FnBodyScope->getParent();
2628
2629  return ActOnStartOfFunctionDef(FnBodyScope,
2630                                 ActOnDeclarator(ParentScope, D, 0,
2631                                                 /*IsFunctionDefinition=*/true));
2632}
2633
2634Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2635  Decl *decl = static_cast<Decl*>(D);
2636  FunctionDecl *FD = cast<FunctionDecl>(decl);
2637
2638  // See if this is a redefinition.
2639  const FunctionDecl *Definition;
2640  if (FD->getBody(Definition)) {
2641    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2642    Diag(Definition->getLocation(), diag::note_previous_definition);
2643  }
2644
2645  PushDeclContext(FnBodyScope, FD);
2646
2647  // Check the validity of our function parameters
2648  CheckParmsForFunctionDef(FD);
2649
2650  // Introduce our parameters into the function scope
2651  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2652    ParmVarDecl *Param = FD->getParamDecl(p);
2653    Param->setOwningFunction(FD);
2654
2655    // If this has an identifier, add it to the scope stack.
2656    if (Param->getIdentifier())
2657      PushOnScopeChains(Param, FnBodyScope);
2658  }
2659
2660  // Checking attributes of current function definition
2661  // dllimport attribute.
2662  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2663    // dllimport attribute cannot be applied to definition.
2664    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2665      Diag(FD->getLocation(),
2666           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2667        << "dllimport";
2668      FD->setInvalidDecl();
2669      return FD;
2670    } else {
2671      // If a symbol previously declared dllimport is later defined, the
2672      // attribute is ignored in subsequent references, and a warning is
2673      // emitted.
2674      Diag(FD->getLocation(),
2675           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2676        << FD->getNameAsCString() << "dllimport";
2677    }
2678  }
2679  return FD;
2680}
2681
2682Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2683  Decl *dcl = static_cast<Decl *>(D);
2684  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2685  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2686    FD->setBody(Body);
2687    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2688  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2689    MD->setBody((Stmt*)Body);
2690  } else
2691    return 0;
2692  PopDeclContext();
2693  // Verify and clean out per-function state.
2694
2695  // Check goto/label use.
2696  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2697       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2698    // Verify that we have no forward references left.  If so, there was a goto
2699    // or address of a label taken, but no definition of it.  Label fwd
2700    // definitions are indicated with a null substmt.
2701    if (I->second->getSubStmt() == 0) {
2702      LabelStmt *L = I->second;
2703      // Emit error.
2704      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2705
2706      // At this point, we have gotos that use the bogus label.  Stitch it into
2707      // the function body so that they aren't leaked and that the AST is well
2708      // formed.
2709      if (Body) {
2710        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2711        cast<CompoundStmt>(Body)->push_back(L);
2712      } else {
2713        // The whole function wasn't parsed correctly, just delete this.
2714        delete L;
2715      }
2716    }
2717  }
2718  LabelMap.clear();
2719
2720  return D;
2721}
2722
2723/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2724/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2725NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2726                                          IdentifierInfo &II, Scope *S) {
2727  // Extension in C99.  Legal in C90, but warn about it.
2728  if (getLangOptions().C99)
2729    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2730  else
2731    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2732
2733  // FIXME: handle stuff like:
2734  // void foo() { extern float X(); }
2735  // void bar() { X(); }  <-- implicit decl for X in another scope.
2736
2737  // Set a Declarator for the implicit definition: int foo();
2738  const char *Dummy;
2739  DeclSpec DS;
2740  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2741  Error = Error; // Silence warning.
2742  assert(!Error && "Error setting up implicit decl!");
2743  Declarator D(DS, Declarator::BlockContext);
2744  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D));
2745  D.SetIdentifier(&II, Loc);
2746
2747  // Insert this function into translation-unit scope.
2748
2749  DeclContext *PrevDC = CurContext;
2750  CurContext = Context.getTranslationUnitDecl();
2751
2752  FunctionDecl *FD =
2753    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2754  FD->setImplicit();
2755
2756  CurContext = PrevDC;
2757
2758  return FD;
2759}
2760
2761
2762TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2763                                    Decl *LastDeclarator) {
2764  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2765  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2766
2767  // Scope manipulation handled by caller.
2768  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2769                                           D.getIdentifierLoc(),
2770                                           D.getIdentifier(),
2771                                           T);
2772  NewTD->setNextDeclarator(LastDeclarator);
2773  if (D.getInvalidType())
2774    NewTD->setInvalidDecl();
2775  return NewTD;
2776}
2777
2778/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2779/// former case, Name will be non-null.  In the later case, Name will be null.
2780/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2781/// reference/declaration/definition of a tag.
2782///
2783/// This creates and returns template declarations if any template parameter
2784/// lists are given.
2785Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2786                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2787                             IdentifierInfo *Name, SourceLocation NameLoc,
2788                             AttributeList *Attr,
2789                             MultiTemplateParamsArg TemplateParameterLists) {
2790  // If this is not a definition, it must have a name.
2791  assert((Name != 0 || TK == TK_Definition) &&
2792         "Nameless record must be a definition!");
2793  assert((TemplateParameterLists.size() == 0 || TK != TK_Reference) &&
2794         "Can't have a reference to a template");
2795  assert((TemplateParameterLists.size() == 0 ||
2796          TagSpec != DeclSpec::TST_enum) &&
2797         "No such thing as an enum template");
2798
2799  TagDecl::TagKind Kind;
2800  switch (TagSpec) {
2801  default: assert(0 && "Unknown tag type!");
2802  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2803  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2804  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2805  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2806  }
2807
2808  DeclContext *SearchDC = CurContext;
2809  DeclContext *DC = CurContext;
2810  NamedDecl *PrevDecl = 0;
2811  TemplateDecl *PrevTemplate = 0;
2812
2813  bool Invalid = false;
2814
2815  if (Name && SS.isNotEmpty()) {
2816    // We have a nested-name tag ('struct foo::bar').
2817
2818    // Check for invalid 'foo::'.
2819    if (SS.isInvalid()) {
2820      Name = 0;
2821      goto CreateNewDecl;
2822    }
2823
2824    DC = static_cast<DeclContext*>(SS.getScopeRep());
2825    SearchDC = DC;
2826    // Look-up name inside 'foo::'.
2827    PrevDecl = dyn_cast_or_null<TagDecl>(
2828                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
2829
2830    // A tag 'foo::bar' must already exist.
2831    if (PrevDecl == 0) {
2832      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2833      Name = 0;
2834      goto CreateNewDecl;
2835    }
2836  } else if (Name) {
2837    // If this is a named struct, check to see if there was a previous forward
2838    // declaration or definition.
2839    // FIXME: We're looking into outer scopes here, even when we
2840    // shouldn't be. Doing so can result in ambiguities that we
2841    // shouldn't be diagnosing.
2842    LookupResult R = LookupName(S, Name, LookupTagName,
2843                                /*RedeclarationOnly=*/(TK != TK_Reference));
2844    if (R.isAmbiguous()) {
2845      DiagnoseAmbiguousLookup(R, Name, NameLoc);
2846      // FIXME: This is not best way to recover from case like:
2847      //
2848      // struct S s;
2849      //
2850      // causes needless err_ovl_no_viable_function_in_init latter.
2851      Name = 0;
2852      PrevDecl = 0;
2853      Invalid = true;
2854    }
2855    else
2856      PrevDecl = R;
2857
2858    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2859      // FIXME: This makes sure that we ignore the contexts associated
2860      // with C structs, unions, and enums when looking for a matching
2861      // tag declaration or definition. See the similar lookup tweak
2862      // in Sema::LookupName; is there a better way to deal with this?
2863      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2864        SearchDC = SearchDC->getParent();
2865    }
2866  }
2867
2868  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2869    // Maybe we will complain about the shadowed template parameter.
2870    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2871    // Just pretend that we didn't see the previous declaration.
2872    PrevDecl = 0;
2873  }
2874
2875  if (PrevDecl) {
2876    // If we found a template, keep track of the template and its
2877    // underlying declaration.
2878    if ((PrevTemplate = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl)))
2879      PrevDecl = PrevTemplate->getTemplatedDecl();
2880
2881    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2882      // If this is a use of a previous tag, or if the tag is already declared
2883      // in the same scope (so that the definition/declaration completes or
2884      // rementions the tag), reuse the decl.
2885      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2886        // Make sure that this wasn't declared as an enum and now used as a
2887        // struct or something similar.
2888        if (PrevTagDecl->getTagKind() != Kind) {
2889          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2890          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2891          // Recover by making this an anonymous redefinition.
2892          Name = 0;
2893          PrevDecl = 0;
2894          Invalid = true;
2895          // FIXME: Add template/non-template redecl check
2896        } else {
2897          // If this is a use, just return the declaration we found.
2898
2899          // FIXME: In the future, return a variant or some other clue
2900          // for the consumer of this Decl to know it doesn't own it.
2901          // For our current ASTs this shouldn't be a problem, but will
2902          // need to be changed with DeclGroups.
2903          if (TK == TK_Reference)
2904            return PrevDecl;
2905
2906          // Diagnose attempts to redefine a tag.
2907          if (TK == TK_Definition) {
2908            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2909              Diag(NameLoc, diag::err_redefinition) << Name;
2910              Diag(Def->getLocation(), diag::note_previous_definition);
2911              // If this is a redefinition, recover by making this
2912              // struct be anonymous, which will make any later
2913              // references get the previous definition.
2914              Name = 0;
2915              PrevDecl = 0;
2916              Invalid = true;
2917            } else {
2918              // If the type is currently being defined, complain
2919              // about a nested redefinition.
2920              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2921              if (Tag->isBeingDefined()) {
2922                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2923                Diag(PrevTagDecl->getLocation(),
2924                     diag::note_previous_definition);
2925                Name = 0;
2926                PrevDecl = 0;
2927                Invalid = true;
2928              }
2929            }
2930
2931            // Okay, this is definition of a previously declared or referenced
2932            // tag PrevDecl. We're going to create a new Decl for it.
2933          }
2934        }
2935        // If we get here we have (another) forward declaration or we
2936        // have a definition.  Just create a new decl.
2937      } else {
2938        // If we get here, this is a definition of a new tag type in a nested
2939        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2940        // new decl/type.  We set PrevDecl to NULL so that the entities
2941        // have distinct types.
2942        PrevDecl = 0;
2943      }
2944      // If we get here, we're going to create a new Decl. If PrevDecl
2945      // is non-NULL, it's a definition of the tag declared by
2946      // PrevDecl. If it's NULL, we have a new definition.
2947    } else {
2948      // PrevDecl is a namespace, template, or anything else
2949      // that lives in the IDNS_Tag identifier namespace.
2950      if (isDeclInScope(PrevDecl, SearchDC, S)) {
2951        // The tag name clashes with a namespace name, issue an error and
2952        // recover by making this tag be anonymous.
2953        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2954        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2955        Name = 0;
2956        PrevDecl = 0;
2957        Invalid = true;
2958      } else {
2959        // The existing declaration isn't relevant to us; we're in a
2960        // new scope, so clear out the previous declaration.
2961        PrevDecl = 0;
2962      }
2963    }
2964  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
2965             (Kind != TagDecl::TK_enum))  {
2966    // C++ [basic.scope.pdecl]p5:
2967    //   -- for an elaborated-type-specifier of the form
2968    //
2969    //          class-key identifier
2970    //
2971    //      if the elaborated-type-specifier is used in the
2972    //      decl-specifier-seq or parameter-declaration-clause of a
2973    //      function defined in namespace scope, the identifier is
2974    //      declared as a class-name in the namespace that contains
2975    //      the declaration; otherwise, except as a friend
2976    //      declaration, the identifier is declared in the smallest
2977    //      non-class, non-function-prototype scope that contains the
2978    //      declaration.
2979    //
2980    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
2981    // C structs and unions.
2982
2983    // Find the context where we'll be declaring the tag.
2984    // FIXME: We would like to maintain the current DeclContext as the
2985    // lexical context,
2986    while (SearchDC->isRecord())
2987      SearchDC = SearchDC->getParent();
2988
2989    // Find the scope where we'll be declaring the tag.
2990    while (S->isClassScope() ||
2991           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
2992           ((S->getFlags() & Scope::DeclScope) == 0) ||
2993           (S->getEntity() &&
2994            ((DeclContext *)S->getEntity())->isTransparentContext()))
2995      S = S->getParent();
2996  }
2997
2998CreateNewDecl:
2999
3000  // If there is an identifier, use the location of the identifier as the
3001  // location of the decl, otherwise use the location of the struct/union
3002  // keyword.
3003  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3004
3005  // Otherwise, create a new declaration. If there is a previous
3006  // declaration of the same entity, the two will be linked via
3007  // PrevDecl.
3008  TagDecl *New;
3009  ClassTemplateDecl *NewTemplate = 0;
3010
3011  if (Kind == TagDecl::TK_enum) {
3012    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3013    // enum X { A, B, C } D;    D should chain to X.
3014    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3015                           cast_or_null<EnumDecl>(PrevDecl));
3016    // If this is an undefined enum, warn.
3017    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3018  } else {
3019    // struct/union/class
3020
3021    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3022    // struct X { int A; } D;    D should chain to X.
3023    if (getLangOptions().CPlusPlus) {
3024      // FIXME: Look for a way to use RecordDecl for simple structs.
3025      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3026                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3027
3028      // If there's are template parameters, then this must be a class
3029      // template. Create the template decl node also.
3030      // FIXME: Do we always create template decls? We may not for forward
3031      // declarations.
3032      // FIXME: What are we actually going to do with the template decl?
3033      if (TemplateParameterLists.size() > 0) {
3034        // FIXME: The allocation of the parameters is probably incorrect.
3035        // FIXME: Does the TemplateDecl have the same name as the class?
3036        TemplateParameterList *Params =
3037          TemplateParameterList::Create(Context,
3038                                        (Decl **)TemplateParameterLists.get(),
3039                                        TemplateParameterLists.size());
3040        NewTemplate = ClassTemplateDecl::Create(Context, DC, Loc,
3041                                                DeclarationName(Name), Params,
3042                                                New);
3043      }
3044    } else
3045      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3046                               cast_or_null<RecordDecl>(PrevDecl));
3047  }
3048
3049  if (Kind != TagDecl::TK_enum) {
3050    // Handle #pragma pack: if the #pragma pack stack has non-default
3051    // alignment, make up a packed attribute for this decl. These
3052    // attributes are checked when the ASTContext lays out the
3053    // structure.
3054    //
3055    // It is important for implementing the correct semantics that this
3056    // happen here (in act on tag decl). The #pragma pack stack is
3057    // maintained as a result of parser callbacks which can occur at
3058    // many points during the parsing of a struct declaration (because
3059    // the #pragma tokens are effectively skipped over during the
3060    // parsing of the struct).
3061    if (unsigned Alignment = PackContext.getAlignment())
3062      New->addAttr(new PackedAttr(Alignment * 8));
3063  }
3064
3065  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3066    // C++ [dcl.typedef]p3:
3067    //   [...] Similarly, in a given scope, a class or enumeration
3068    //   shall not be declared with the same name as a typedef-name
3069    //   that is declared in that scope and refers to a type other
3070    //   than the class or enumeration itself.
3071    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3072    TypedefDecl *PrevTypedef = 0;
3073    if (Lookup.getKind() == LookupResult::Found)
3074      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3075
3076    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3077        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3078          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3079      Diag(Loc, diag::err_tag_definition_of_typedef)
3080        << Context.getTypeDeclType(New)
3081        << PrevTypedef->getUnderlyingType();
3082      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3083      Invalid = true;
3084    }
3085  }
3086
3087  if (Invalid)
3088    New->setInvalidDecl();
3089
3090  if (Attr)
3091    ProcessDeclAttributeList(New, Attr);
3092
3093  // If we're declaring or defining a tag in function prototype scope
3094  // in C, note that this type can only be used within the function.
3095  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3096    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3097
3098  // Set the lexical context. If the tag has a C++ scope specifier, the
3099  // lexical context will be different from the semantic context.
3100  New->setLexicalDeclContext(CurContext);
3101
3102  if (TK == TK_Definition)
3103    New->startDefinition();
3104
3105  // If this has an identifier, add it to the scope stack.
3106  if (Name) {
3107    S = getNonFieldDeclScope(S);
3108    PushOnScopeChains(New, S);
3109  } else {
3110    CurContext->addDecl(New);
3111  }
3112
3113  return New;
3114}
3115
3116void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3117  AdjustDeclIfTemplate(TagD);
3118  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3119
3120  // Enter the tag context.
3121  PushDeclContext(S, Tag);
3122
3123  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3124    FieldCollector->StartClass();
3125
3126    if (Record->getIdentifier()) {
3127      // C++ [class]p2:
3128      //   [...] The class-name is also inserted into the scope of the
3129      //   class itself; this is known as the injected-class-name. For
3130      //   purposes of access checking, the injected-class-name is treated
3131      //   as if it were a public member name.
3132      RecordDecl *InjectedClassName
3133        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3134                                CurContext, Record->getLocation(),
3135                                Record->getIdentifier(), Record);
3136      InjectedClassName->setImplicit();
3137      PushOnScopeChains(InjectedClassName, S);
3138    }
3139  }
3140}
3141
3142void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3143  AdjustDeclIfTemplate(TagD);
3144  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3145
3146  if (isa<CXXRecordDecl>(Tag))
3147    FieldCollector->FinishClass();
3148
3149  // Exit this scope of this tag's definition.
3150  PopDeclContext();
3151
3152  // Notify the consumer that we've defined a tag.
3153  Consumer.HandleTagDeclDefinition(Tag);
3154}
3155
3156/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3157/// types into constant array types in certain situations which would otherwise
3158/// be errors (for GCC compatibility).
3159static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3160                                                    ASTContext &Context) {
3161  // This method tries to turn a variable array into a constant
3162  // array even when the size isn't an ICE.  This is necessary
3163  // for compatibility with code that depends on gcc's buggy
3164  // constant expression folding, like struct {char x[(int)(char*)2];}
3165  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3166  if (!VLATy) return QualType();
3167
3168  Expr::EvalResult EvalResult;
3169  if (!VLATy->getSizeExpr() ||
3170      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3171    return QualType();
3172
3173  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3174  llvm::APSInt &Res = EvalResult.Val.getInt();
3175  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3176    return Context.getConstantArrayType(VLATy->getElementType(),
3177                                        Res, ArrayType::Normal, 0);
3178  return QualType();
3179}
3180
3181bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3182                          QualType FieldTy, const Expr *BitWidth) {
3183  // FIXME: 6.7.2.1p4 - verify the field type.
3184
3185  llvm::APSInt Value;
3186  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3187    return true;
3188
3189  // Zero-width bitfield is ok for anonymous field.
3190  if (Value == 0 && FieldName)
3191    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3192
3193  if (Value.isNegative())
3194    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3195
3196  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3197  // FIXME: We won't need the 0 size once we check that the field type is valid.
3198  if (TypeSize && Value.getZExtValue() > TypeSize)
3199    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3200       << FieldName << (unsigned)TypeSize;
3201
3202  return false;
3203}
3204
3205/// ActOnField - Each field of a struct/union/class is passed into this in order
3206/// to create a FieldDecl object for it.
3207Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3208                               SourceLocation DeclStart,
3209                               Declarator &D, ExprTy *BitfieldWidth) {
3210  IdentifierInfo *II = D.getIdentifier();
3211  Expr *BitWidth = (Expr*)BitfieldWidth;
3212  SourceLocation Loc = DeclStart;
3213  RecordDecl *Record = (RecordDecl *)TagD;
3214  if (II) Loc = D.getIdentifierLoc();
3215
3216  // FIXME: Unnamed fields can be handled in various different ways, for
3217  // example, unnamed unions inject all members into the struct namespace!
3218
3219  QualType T = GetTypeForDeclarator(D, S);
3220  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3221  bool InvalidDecl = false;
3222
3223  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3224  // than a variably modified type.
3225  if (T->isVariablyModifiedType()) {
3226    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3227    if (!FixedTy.isNull()) {
3228      Diag(Loc, diag::warn_illegal_constant_array_size);
3229      T = FixedTy;
3230    } else {
3231      Diag(Loc, diag::err_typecheck_field_variable_size);
3232      T = Context.IntTy;
3233      InvalidDecl = true;
3234    }
3235  }
3236
3237  if (BitWidth) {
3238    if (VerifyBitField(Loc, II, T, BitWidth))
3239      InvalidDecl = true;
3240  } else {
3241    // Not a bitfield.
3242
3243    // validate II.
3244
3245  }
3246
3247  // FIXME: Chain fielddecls together.
3248  FieldDecl *NewFD;
3249
3250  NewFD = FieldDecl::Create(Context, Record,
3251                            Loc, II, T, BitWidth,
3252                            D.getDeclSpec().getStorageClassSpec() ==
3253                              DeclSpec::SCS_mutable);
3254
3255  if (II) {
3256    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3257    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3258        && !isa<TagDecl>(PrevDecl)) {
3259      Diag(Loc, diag::err_duplicate_member) << II;
3260      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3261      NewFD->setInvalidDecl();
3262      Record->setInvalidDecl();
3263    }
3264  }
3265
3266  if (getLangOptions().CPlusPlus) {
3267    CheckExtraCXXDefaultArguments(D);
3268    if (!T->isPODType())
3269      cast<CXXRecordDecl>(Record)->setPOD(false);
3270  }
3271
3272  ProcessDeclAttributes(NewFD, D);
3273
3274  if (D.getInvalidType() || InvalidDecl)
3275    NewFD->setInvalidDecl();
3276
3277  if (II) {
3278    PushOnScopeChains(NewFD, S);
3279  } else
3280    Record->addDecl(NewFD);
3281
3282  return NewFD;
3283}
3284
3285/// TranslateIvarVisibility - Translate visibility from a token ID to an
3286///  AST enum value.
3287static ObjCIvarDecl::AccessControl
3288TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3289  switch (ivarVisibility) {
3290  default: assert(0 && "Unknown visitibility kind");
3291  case tok::objc_private: return ObjCIvarDecl::Private;
3292  case tok::objc_public: return ObjCIvarDecl::Public;
3293  case tok::objc_protected: return ObjCIvarDecl::Protected;
3294  case tok::objc_package: return ObjCIvarDecl::Package;
3295  }
3296}
3297
3298/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3299/// in order to create an IvarDecl object for it.
3300Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3301                              SourceLocation DeclStart,
3302                              Declarator &D, ExprTy *BitfieldWidth,
3303                              tok::ObjCKeywordKind Visibility) {
3304
3305  IdentifierInfo *II = D.getIdentifier();
3306  Expr *BitWidth = (Expr*)BitfieldWidth;
3307  SourceLocation Loc = DeclStart;
3308  if (II) Loc = D.getIdentifierLoc();
3309
3310  // FIXME: Unnamed fields can be handled in various different ways, for
3311  // example, unnamed unions inject all members into the struct namespace!
3312
3313  QualType T = GetTypeForDeclarator(D, S);
3314  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3315  bool InvalidDecl = false;
3316
3317  if (BitWidth) {
3318    // TODO: Validate.
3319    //printf("WARNING: BITFIELDS IGNORED!\n");
3320
3321    // 6.7.2.1p3
3322    // 6.7.2.1p4
3323
3324  } else {
3325    // Not a bitfield.
3326
3327    // validate II.
3328
3329  }
3330
3331  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3332  // than a variably modified type.
3333  if (T->isVariablyModifiedType()) {
3334    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3335    InvalidDecl = true;
3336  }
3337
3338  // Get the visibility (access control) for this ivar.
3339  ObjCIvarDecl::AccessControl ac =
3340    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3341                                        : ObjCIvarDecl::None;
3342
3343  // Construct the decl.
3344  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3345                                             (Expr *)BitfieldWidth);
3346
3347  if (II) {
3348    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3349    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3350        && !isa<TagDecl>(PrevDecl)) {
3351      Diag(Loc, diag::err_duplicate_member) << II;
3352      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3353      NewID->setInvalidDecl();
3354    }
3355  }
3356
3357  // Process attributes attached to the ivar.
3358  ProcessDeclAttributes(NewID, D);
3359
3360  if (D.getInvalidType() || InvalidDecl)
3361    NewID->setInvalidDecl();
3362
3363  if (II) {
3364    // FIXME: When interfaces are DeclContexts, we'll need to add
3365    // these to the interface.
3366    S->AddDecl(NewID);
3367    IdResolver.AddDecl(NewID);
3368  }
3369
3370  return NewID;
3371}
3372
3373void Sema::ActOnFields(Scope* S,
3374                       SourceLocation RecLoc, DeclTy *RecDecl,
3375                       DeclTy **Fields, unsigned NumFields,
3376                       SourceLocation LBrac, SourceLocation RBrac,
3377                       AttributeList *Attr) {
3378  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3379  assert(EnclosingDecl && "missing record or interface decl");
3380  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3381
3382  // Verify that all the fields are okay.
3383  unsigned NumNamedMembers = 0;
3384  llvm::SmallVector<FieldDecl*, 32> RecFields;
3385
3386  for (unsigned i = 0; i != NumFields; ++i) {
3387    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3388    assert(FD && "missing field decl");
3389
3390    // Get the type for the field.
3391    Type *FDTy = FD->getType().getTypePtr();
3392
3393    if (!FD->isAnonymousStructOrUnion()) {
3394      // Remember all fields written by the user.
3395      RecFields.push_back(FD);
3396    }
3397
3398    // C99 6.7.2.1p2 - A field may not be a function type.
3399    if (FDTy->isFunctionType()) {
3400      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3401        << FD->getDeclName();
3402      FD->setInvalidDecl();
3403      EnclosingDecl->setInvalidDecl();
3404      continue;
3405    }
3406    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3407    if (FDTy->isIncompleteType()) {
3408      if (!Record) {  // Incomplete ivar type is always an error.
3409        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3410                               diag::err_field_incomplete);
3411        FD->setInvalidDecl();
3412        EnclosingDecl->setInvalidDecl();
3413        continue;
3414      }
3415      if (i != NumFields-1 ||                   // ... that the last member ...
3416          !Record->isStruct() ||  // ... of a structure ...
3417          !FDTy->isArrayType()) {         //... may have incomplete array type.
3418        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3419                               diag::err_field_incomplete);
3420        FD->setInvalidDecl();
3421        EnclosingDecl->setInvalidDecl();
3422        continue;
3423      }
3424      if (NumNamedMembers < 1) {  //... must have more than named member ...
3425        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3426          << FD->getDeclName();
3427        FD->setInvalidDecl();
3428        EnclosingDecl->setInvalidDecl();
3429        continue;
3430      }
3431      // Okay, we have a legal flexible array member at the end of the struct.
3432      if (Record)
3433        Record->setHasFlexibleArrayMember(true);
3434    }
3435    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3436    /// field of another structure or the element of an array.
3437    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3438      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3439        // If this is a member of a union, then entire union becomes "flexible".
3440        if (Record && Record->isUnion()) {
3441          Record->setHasFlexibleArrayMember(true);
3442        } else {
3443          // If this is a struct/class and this is not the last element, reject
3444          // it.  Note that GCC supports variable sized arrays in the middle of
3445          // structures.
3446          if (i != NumFields-1) {
3447            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3448              << FD->getDeclName();
3449            FD->setInvalidDecl();
3450            EnclosingDecl->setInvalidDecl();
3451            continue;
3452          }
3453          // We support flexible arrays at the end of structs in other structs
3454          // as an extension.
3455          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3456            << FD->getDeclName();
3457          if (Record)
3458            Record->setHasFlexibleArrayMember(true);
3459        }
3460      }
3461    }
3462    /// A field cannot be an Objective-c object
3463    if (FDTy->isObjCInterfaceType()) {
3464      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3465        << FD->getDeclName();
3466      FD->setInvalidDecl();
3467      EnclosingDecl->setInvalidDecl();
3468      continue;
3469    }
3470    // Keep track of the number of named members.
3471    if (FD->getIdentifier())
3472      ++NumNamedMembers;
3473  }
3474
3475  // Okay, we successfully defined 'Record'.
3476  if (Record) {
3477    Record->completeDefinition(Context);
3478  } else {
3479    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3480    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3481      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3482      // Must enforce the rule that ivars in the base classes may not be
3483      // duplicates.
3484      if (ID->getSuperClass()) {
3485        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3486             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3487          ObjCIvarDecl* Ivar = (*IVI);
3488          IdentifierInfo *II = Ivar->getIdentifier();
3489          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3490          if (prevIvar) {
3491            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3492            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3493          }
3494        }
3495      }
3496    }
3497    else if (ObjCImplementationDecl *IMPDecl =
3498               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3499      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3500      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3501      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3502    }
3503  }
3504
3505  if (Attr)
3506    ProcessDeclAttributeList(Record, Attr);
3507}
3508
3509Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3510                                      DeclTy *lastEnumConst,
3511                                      SourceLocation IdLoc, IdentifierInfo *Id,
3512                                      SourceLocation EqualLoc, ExprTy *val) {
3513  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3514  EnumConstantDecl *LastEnumConst =
3515    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3516  Expr *Val = static_cast<Expr*>(val);
3517
3518  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3519  // we find one that is.
3520  S = getNonFieldDeclScope(S);
3521
3522  // Verify that there isn't already something declared with this name in this
3523  // scope.
3524  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3525  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3526    // Maybe we will complain about the shadowed template parameter.
3527    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3528    // Just pretend that we didn't see the previous declaration.
3529    PrevDecl = 0;
3530  }
3531
3532  if (PrevDecl) {
3533    // When in C++, we may get a TagDecl with the same name; in this case the
3534    // enum constant will 'hide' the tag.
3535    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3536           "Received TagDecl when not in C++!");
3537    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3538      if (isa<EnumConstantDecl>(PrevDecl))
3539        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3540      else
3541        Diag(IdLoc, diag::err_redefinition) << Id;
3542      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3543      delete Val;
3544      return 0;
3545    }
3546  }
3547
3548  llvm::APSInt EnumVal(32);
3549  QualType EltTy;
3550  if (Val) {
3551    // Make sure to promote the operand type to int.
3552    UsualUnaryConversions(Val);
3553
3554    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3555    SourceLocation ExpLoc;
3556    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3557      delete Val;
3558      Val = 0;  // Just forget about it.
3559    } else {
3560      EltTy = Val->getType();
3561    }
3562  }
3563
3564  if (!Val) {
3565    if (LastEnumConst) {
3566      // Assign the last value + 1.
3567      EnumVal = LastEnumConst->getInitVal();
3568      ++EnumVal;
3569
3570      // Check for overflow on increment.
3571      if (EnumVal < LastEnumConst->getInitVal())
3572        Diag(IdLoc, diag::warn_enum_value_overflow);
3573
3574      EltTy = LastEnumConst->getType();
3575    } else {
3576      // First value, set to zero.
3577      EltTy = Context.IntTy;
3578      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3579    }
3580  }
3581
3582  EnumConstantDecl *New =
3583    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3584                             Val, EnumVal);
3585
3586  // Register this decl in the current scope stack.
3587  PushOnScopeChains(New, S);
3588
3589  return New;
3590}
3591
3592// FIXME: For consistency with ActOnFields(), we should have the parser
3593// pass in the source location for the left/right braces.
3594void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3595                         DeclTy **Elements, unsigned NumElements) {
3596  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3597  QualType EnumType = Context.getTypeDeclType(Enum);
3598
3599  // TODO: If the result value doesn't fit in an int, it must be a long or long
3600  // long value.  ISO C does not support this, but GCC does as an extension,
3601  // emit a warning.
3602  unsigned IntWidth = Context.Target.getIntWidth();
3603
3604  // Verify that all the values are okay, compute the size of the values, and
3605  // reverse the list.
3606  unsigned NumNegativeBits = 0;
3607  unsigned NumPositiveBits = 0;
3608
3609  // Keep track of whether all elements have type int.
3610  bool AllElementsInt = true;
3611
3612  for (unsigned i = 0; i != NumElements; ++i) {
3613    EnumConstantDecl *ECD =
3614      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3615    if (!ECD) continue;  // Already issued a diagnostic.
3616
3617    // If the enum value doesn't fit in an int, emit an extension warning.
3618    const llvm::APSInt &InitVal = ECD->getInitVal();
3619    assert(InitVal.getBitWidth() >= IntWidth &&
3620           "Should have promoted value to int");
3621    if (InitVal.getBitWidth() > IntWidth) {
3622      llvm::APSInt V(InitVal);
3623      V.trunc(IntWidth);
3624      V.extend(InitVal.getBitWidth());
3625      if (V != InitVal)
3626        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3627          << InitVal.toString(10);
3628    }
3629
3630    // Keep track of the size of positive and negative values.
3631    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3632      NumPositiveBits = std::max(NumPositiveBits,
3633                                 (unsigned)InitVal.getActiveBits());
3634    else
3635      NumNegativeBits = std::max(NumNegativeBits,
3636                                 (unsigned)InitVal.getMinSignedBits());
3637
3638    // Keep track of whether every enum element has type int (very commmon).
3639    if (AllElementsInt)
3640      AllElementsInt = ECD->getType() == Context.IntTy;
3641  }
3642
3643  // Figure out the type that should be used for this enum.
3644  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3645  QualType BestType;
3646  unsigned BestWidth;
3647
3648  if (NumNegativeBits) {
3649    // If there is a negative value, figure out the smallest integer type (of
3650    // int/long/longlong) that fits.
3651    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3652      BestType = Context.IntTy;
3653      BestWidth = IntWidth;
3654    } else {
3655      BestWidth = Context.Target.getLongWidth();
3656
3657      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3658        BestType = Context.LongTy;
3659      else {
3660        BestWidth = Context.Target.getLongLongWidth();
3661
3662        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3663          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3664        BestType = Context.LongLongTy;
3665      }
3666    }
3667  } else {
3668    // If there is no negative value, figure out which of uint, ulong, ulonglong
3669    // fits.
3670    if (NumPositiveBits <= IntWidth) {
3671      BestType = Context.UnsignedIntTy;
3672      BestWidth = IntWidth;
3673    } else if (NumPositiveBits <=
3674               (BestWidth = Context.Target.getLongWidth())) {
3675      BestType = Context.UnsignedLongTy;
3676    } else {
3677      BestWidth = Context.Target.getLongLongWidth();
3678      assert(NumPositiveBits <= BestWidth &&
3679             "How could an initializer get larger than ULL?");
3680      BestType = Context.UnsignedLongLongTy;
3681    }
3682  }
3683
3684  // Loop over all of the enumerator constants, changing their types to match
3685  // the type of the enum if needed.
3686  for (unsigned i = 0; i != NumElements; ++i) {
3687    EnumConstantDecl *ECD =
3688      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3689    if (!ECD) continue;  // Already issued a diagnostic.
3690
3691    // Standard C says the enumerators have int type, but we allow, as an
3692    // extension, the enumerators to be larger than int size.  If each
3693    // enumerator value fits in an int, type it as an int, otherwise type it the
3694    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3695    // that X has type 'int', not 'unsigned'.
3696    if (ECD->getType() == Context.IntTy) {
3697      // Make sure the init value is signed.
3698      llvm::APSInt IV = ECD->getInitVal();
3699      IV.setIsSigned(true);
3700      ECD->setInitVal(IV);
3701
3702      if (getLangOptions().CPlusPlus)
3703        // C++ [dcl.enum]p4: Following the closing brace of an
3704        // enum-specifier, each enumerator has the type of its
3705        // enumeration.
3706        ECD->setType(EnumType);
3707      continue;  // Already int type.
3708    }
3709
3710    // Determine whether the value fits into an int.
3711    llvm::APSInt InitVal = ECD->getInitVal();
3712    bool FitsInInt;
3713    if (InitVal.isUnsigned() || !InitVal.isNegative())
3714      FitsInInt = InitVal.getActiveBits() < IntWidth;
3715    else
3716      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3717
3718    // If it fits into an integer type, force it.  Otherwise force it to match
3719    // the enum decl type.
3720    QualType NewTy;
3721    unsigned NewWidth;
3722    bool NewSign;
3723    if (FitsInInt) {
3724      NewTy = Context.IntTy;
3725      NewWidth = IntWidth;
3726      NewSign = true;
3727    } else if (ECD->getType() == BestType) {
3728      // Already the right type!
3729      if (getLangOptions().CPlusPlus)
3730        // C++ [dcl.enum]p4: Following the closing brace of an
3731        // enum-specifier, each enumerator has the type of its
3732        // enumeration.
3733        ECD->setType(EnumType);
3734      continue;
3735    } else {
3736      NewTy = BestType;
3737      NewWidth = BestWidth;
3738      NewSign = BestType->isSignedIntegerType();
3739    }
3740
3741    // Adjust the APSInt value.
3742    InitVal.extOrTrunc(NewWidth);
3743    InitVal.setIsSigned(NewSign);
3744    ECD->setInitVal(InitVal);
3745
3746    // Adjust the Expr initializer and type.
3747    if (ECD->getInitExpr())
3748      ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3749                                            /*isLvalue=*/false));
3750    if (getLangOptions().CPlusPlus)
3751      // C++ [dcl.enum]p4: Following the closing brace of an
3752      // enum-specifier, each enumerator has the type of its
3753      // enumeration.
3754      ECD->setType(EnumType);
3755    else
3756      ECD->setType(NewTy);
3757  }
3758
3759  Enum->completeDefinition(Context, BestType);
3760}
3761
3762Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3763                                          ExprArg expr) {
3764  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3765
3766  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3767}
3768
3769
3770void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3771                           ExprTy *alignment, SourceLocation PragmaLoc,
3772                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3773  Expr *Alignment = static_cast<Expr *>(alignment);
3774
3775  // If specified then alignment must be a "small" power of two.
3776  unsigned AlignmentVal = 0;
3777  if (Alignment) {
3778    llvm::APSInt Val;
3779    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3780        !Val.isPowerOf2() ||
3781        Val.getZExtValue() > 16) {
3782      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3783      delete Alignment;
3784      return; // Ignore
3785    }
3786
3787    AlignmentVal = (unsigned) Val.getZExtValue();
3788  }
3789
3790  switch (Kind) {
3791  case Action::PPK_Default: // pack([n])
3792    PackContext.setAlignment(AlignmentVal);
3793    break;
3794
3795  case Action::PPK_Show: // pack(show)
3796    // Show the current alignment, making sure to show the right value
3797    // for the default.
3798    AlignmentVal = PackContext.getAlignment();
3799    // FIXME: This should come from the target.
3800    if (AlignmentVal == 0)
3801      AlignmentVal = 8;
3802    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3803    break;
3804
3805  case Action::PPK_Push: // pack(push [, id] [, [n])
3806    PackContext.push(Name);
3807    // Set the new alignment if specified.
3808    if (Alignment)
3809      PackContext.setAlignment(AlignmentVal);
3810    break;
3811
3812  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3813    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3814    // "#pragma pack(pop, identifier, n) is undefined"
3815    if (Alignment && Name)
3816      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3817
3818    // Do the pop.
3819    if (!PackContext.pop(Name)) {
3820      // If a name was specified then failure indicates the name
3821      // wasn't found. Otherwise failure indicates the stack was
3822      // empty.
3823      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3824        << (Name ? "no record matching name" : "stack empty");
3825
3826      // FIXME: Warn about popping named records as MSVC does.
3827    } else {
3828      // Pop succeeded, set the new alignment if specified.
3829      if (Alignment)
3830        PackContext.setAlignment(AlignmentVal);
3831    }
3832    break;
3833
3834  default:
3835    assert(0 && "Invalid #pragma pack kind.");
3836  }
3837}
3838
3839bool PragmaPackStack::pop(IdentifierInfo *Name) {
3840  if (Stack.empty())
3841    return false;
3842
3843  // If name is empty just pop top.
3844  if (!Name) {
3845    Alignment = Stack.back().first;
3846    Stack.pop_back();
3847    return true;
3848  }
3849
3850  // Otherwise, find the named record.
3851  for (unsigned i = Stack.size(); i != 0; ) {
3852    --i;
3853    if (Stack[i].second == Name) {
3854      // Found it, pop up to and including this record.
3855      Alignment = Stack[i].first;
3856      Stack.erase(Stack.begin() + i, Stack.end());
3857      return true;
3858    }
3859  }
3860
3861  return false;
3862}
3863