SemaDecl.cpp revision ab27d6ea7b4ce2762a16905281de796db32bb6f2
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414    if (E.get() || E.isInvalid())
415      return E;
416
417    // Synthesize ivars lazily.
418    if (getLangOptions().ObjCDefaultSynthProperties &&
419        getLangOptions().ObjCNonFragileABI2) {
420      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
421        if (const ObjCPropertyDecl *Property =
422                                          canSynthesizeProvisionalIvar(Name)) {
423          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
424          Diag(Property->getLocation(), diag::note_property_declare);
425        }
426
427        // FIXME: This is strange. Shouldn't we just take the ivar returned
428        // from SynthesizeProvisionalIvar and continue with that?
429        E = LookupInObjCMethod(Result, S, Name, true);
430        if (E.get() || E.isInvalid())
431          return E;
432      }
433    }
434  }
435
436  bool SecondTry = false;
437  bool IsFilteredTemplateName = false;
438
439Corrected:
440  switch (Result.getResultKind()) {
441  case LookupResult::NotFound:
442    // If an unqualified-id is followed by a '(', then we have a function
443    // call.
444    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
445      // In C++, this is an ADL-only call.
446      // FIXME: Reference?
447      if (getLangOptions().CPlusPlus)
448        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
449
450      // C90 6.3.2.2:
451      //   If the expression that precedes the parenthesized argument list in a
452      //   function call consists solely of an identifier, and if no
453      //   declaration is visible for this identifier, the identifier is
454      //   implicitly declared exactly as if, in the innermost block containing
455      //   the function call, the declaration
456      //
457      //     extern int identifier ();
458      //
459      //   appeared.
460      //
461      // We also allow this in C99 as an extension.
462      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
463        Result.addDecl(D);
464        Result.resolveKind();
465        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
466      }
467    }
468
469    // In C, we first see whether there is a tag type by the same name, in
470    // which case it's likely that the user just forget to write "enum",
471    // "struct", or "union".
472    if (!getLangOptions().CPlusPlus && !SecondTry) {
473      Result.clear(LookupTagName);
474      LookupParsedName(Result, S, &SS);
475      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
476        const char *TagName = 0;
477        const char *FixItTagName = 0;
478        switch (Tag->getTagKind()) {
479          case TTK_Class:
480            TagName = "class";
481            FixItTagName = "class ";
482            break;
483
484          case TTK_Enum:
485            TagName = "enum";
486            FixItTagName = "enum ";
487            break;
488
489          case TTK_Struct:
490            TagName = "struct";
491            FixItTagName = "struct ";
492            break;
493
494          case TTK_Union:
495            TagName = "union";
496            FixItTagName = "union ";
497            break;
498        }
499
500        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
501          << Name << TagName << getLangOptions().CPlusPlus
502          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
503        break;
504      }
505
506      Result.clear(LookupOrdinaryName);
507    }
508
509    // Perform typo correction to determine if there is another name that is
510    // close to this name.
511    if (!SecondTry) {
512      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
513        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
514        unsigned QualifiedDiag = diag::err_no_member_suggest;
515
516        NamedDecl *FirstDecl = Result.empty()? 0 : *Result.begin();
517        NamedDecl *UnderlyingFirstDecl
518          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
519        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
520            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
521          UnqualifiedDiag = diag::err_no_template_suggest;
522          QualifiedDiag = diag::err_no_member_template_suggest;
523        } else if (UnderlyingFirstDecl &&
524                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
525                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
526                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
527           UnqualifiedDiag = diag::err_unknown_typename_suggest;
528           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
529         }
530
531        if (SS.isEmpty())
532          Diag(NameLoc, UnqualifiedDiag)
533            << Name << Corrected
534            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
535        else
536          Diag(NameLoc, QualifiedDiag)
537            << Name << computeDeclContext(SS, false) << Corrected
538            << SS.getRange()
539            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
540
541        // Update the name, so that the caller has the new name.
542        Name = Corrected.getAsIdentifierInfo();
543
544        // Typo correction corrected to a keyword.
545        if (Result.empty())
546          return Corrected.getAsIdentifierInfo();
547
548        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549          << FirstDecl->getDeclName();
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  // ObjCMethodDecls are parsed (for some reason) outside the context
724  // of the class.
725  if (isa<ObjCMethodDecl>(DC))
726    return DC->getLexicalParent()->getLexicalParent();
727
728  return DC->getLexicalParent();
729}
730
731void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
732  assert(getContainingDC(DC) == CurContext &&
733      "The next DeclContext should be lexically contained in the current one.");
734  CurContext = DC;
735  S->setEntity(DC);
736}
737
738void Sema::PopDeclContext() {
739  assert(CurContext && "DeclContext imbalance!");
740
741  CurContext = getContainingDC(CurContext);
742  assert(CurContext && "Popped translation unit!");
743}
744
745/// EnterDeclaratorContext - Used when we must lookup names in the context
746/// of a declarator's nested name specifier.
747///
748void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
749  // C++0x [basic.lookup.unqual]p13:
750  //   A name used in the definition of a static data member of class
751  //   X (after the qualified-id of the static member) is looked up as
752  //   if the name was used in a member function of X.
753  // C++0x [basic.lookup.unqual]p14:
754  //   If a variable member of a namespace is defined outside of the
755  //   scope of its namespace then any name used in the definition of
756  //   the variable member (after the declarator-id) is looked up as
757  //   if the definition of the variable member occurred in its
758  //   namespace.
759  // Both of these imply that we should push a scope whose context
760  // is the semantic context of the declaration.  We can't use
761  // PushDeclContext here because that context is not necessarily
762  // lexically contained in the current context.  Fortunately,
763  // the containing scope should have the appropriate information.
764
765  assert(!S->getEntity() && "scope already has entity");
766
767#ifndef NDEBUG
768  Scope *Ancestor = S->getParent();
769  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
770  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
771#endif
772
773  CurContext = DC;
774  S->setEntity(DC);
775}
776
777void Sema::ExitDeclaratorContext(Scope *S) {
778  assert(S->getEntity() == CurContext && "Context imbalance!");
779
780  // Switch back to the lexical context.  The safety of this is
781  // enforced by an assert in EnterDeclaratorContext.
782  Scope *Ancestor = S->getParent();
783  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
784  CurContext = (DeclContext*) Ancestor->getEntity();
785
786  // We don't need to do anything with the scope, which is going to
787  // disappear.
788}
789
790/// \brief Determine whether we allow overloading of the function
791/// PrevDecl with another declaration.
792///
793/// This routine determines whether overloading is possible, not
794/// whether some new function is actually an overload. It will return
795/// true in C++ (where we can always provide overloads) or, as an
796/// extension, in C when the previous function is already an
797/// overloaded function declaration or has the "overloadable"
798/// attribute.
799static bool AllowOverloadingOfFunction(LookupResult &Previous,
800                                       ASTContext &Context) {
801  if (Context.getLangOptions().CPlusPlus)
802    return true;
803
804  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
805    return true;
806
807  return (Previous.getResultKind() == LookupResult::Found
808          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
809}
810
811/// Add this decl to the scope shadowed decl chains.
812void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
813  // Move up the scope chain until we find the nearest enclosing
814  // non-transparent context. The declaration will be introduced into this
815  // scope.
816  while (S->getEntity() &&
817         ((DeclContext *)S->getEntity())->isTransparentContext())
818    S = S->getParent();
819
820  // Add scoped declarations into their context, so that they can be
821  // found later. Declarations without a context won't be inserted
822  // into any context.
823  if (AddToContext)
824    CurContext->addDecl(D);
825
826  // Out-of-line definitions shouldn't be pushed into scope in C++.
827  // Out-of-line variable and function definitions shouldn't even in C.
828  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
829      D->isOutOfLine())
830    return;
831
832  // Template instantiations should also not be pushed into scope.
833  if (isa<FunctionDecl>(D) &&
834      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
835    return;
836
837  // If this replaces anything in the current scope,
838  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
839                               IEnd = IdResolver.end();
840  for (; I != IEnd; ++I) {
841    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
842      S->RemoveDecl(*I);
843      IdResolver.RemoveDecl(*I);
844
845      // Should only need to replace one decl.
846      break;
847    }
848  }
849
850  S->AddDecl(D);
851
852  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
853    // Implicitly-generated labels may end up getting generated in an order that
854    // isn't strictly lexical, which breaks name lookup. Be careful to insert
855    // the label at the appropriate place in the identifier chain.
856    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
857      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
858      if (IDC == CurContext) {
859        if (!S->isDeclScope(*I))
860          continue;
861      } else if (IDC->Encloses(CurContext))
862        break;
863    }
864
865    IdResolver.InsertDeclAfter(I, D);
866  } else {
867    IdResolver.AddDecl(D);
868  }
869}
870
871bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
872                         bool ExplicitInstantiationOrSpecialization) {
873  return IdResolver.isDeclInScope(D, Ctx, Context, S,
874                                  ExplicitInstantiationOrSpecialization);
875}
876
877Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
878  DeclContext *TargetDC = DC->getPrimaryContext();
879  do {
880    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
881      if (ScopeDC->getPrimaryContext() == TargetDC)
882        return S;
883  } while ((S = S->getParent()));
884
885  return 0;
886}
887
888static bool isOutOfScopePreviousDeclaration(NamedDecl *,
889                                            DeclContext*,
890                                            ASTContext&);
891
892/// Filters out lookup results that don't fall within the given scope
893/// as determined by isDeclInScope.
894void Sema::FilterLookupForScope(LookupResult &R,
895                                DeclContext *Ctx, Scope *S,
896                                bool ConsiderLinkage,
897                                bool ExplicitInstantiationOrSpecialization) {
898  LookupResult::Filter F = R.makeFilter();
899  while (F.hasNext()) {
900    NamedDecl *D = F.next();
901
902    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
903      continue;
904
905    if (ConsiderLinkage &&
906        isOutOfScopePreviousDeclaration(D, Ctx, Context))
907      continue;
908
909    F.erase();
910  }
911
912  F.done();
913}
914
915static bool isUsingDecl(NamedDecl *D) {
916  return isa<UsingShadowDecl>(D) ||
917         isa<UnresolvedUsingTypenameDecl>(D) ||
918         isa<UnresolvedUsingValueDecl>(D);
919}
920
921/// Removes using shadow declarations from the lookup results.
922static void RemoveUsingDecls(LookupResult &R) {
923  LookupResult::Filter F = R.makeFilter();
924  while (F.hasNext())
925    if (isUsingDecl(F.next()))
926      F.erase();
927
928  F.done();
929}
930
931/// \brief Check for this common pattern:
932/// @code
933/// class S {
934///   S(const S&); // DO NOT IMPLEMENT
935///   void operator=(const S&); // DO NOT IMPLEMENT
936/// };
937/// @endcode
938static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
939  // FIXME: Should check for private access too but access is set after we get
940  // the decl here.
941  if (D->doesThisDeclarationHaveABody())
942    return false;
943
944  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
945    return CD->isCopyConstructor();
946  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
947    return Method->isCopyAssignmentOperator();
948  return false;
949}
950
951bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
952  assert(D);
953
954  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
955    return false;
956
957  // Ignore class templates.
958  if (D->getDeclContext()->isDependentContext() ||
959      D->getLexicalDeclContext()->isDependentContext())
960    return false;
961
962  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
963    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
964      return false;
965
966    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
967      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
968        return false;
969    } else {
970      // 'static inline' functions are used in headers; don't warn.
971      if (FD->getStorageClass() == SC_Static &&
972          FD->isInlineSpecified())
973        return false;
974    }
975
976    if (FD->doesThisDeclarationHaveABody() &&
977        Context.DeclMustBeEmitted(FD))
978      return false;
979  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
980    if (!VD->isFileVarDecl() ||
981        VD->getType().isConstant(Context) ||
982        Context.DeclMustBeEmitted(VD))
983      return false;
984
985    if (VD->isStaticDataMember() &&
986        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
987      return false;
988
989  } else {
990    return false;
991  }
992
993  // Only warn for unused decls internal to the translation unit.
994  if (D->getLinkage() == ExternalLinkage)
995    return false;
996
997  return true;
998}
999
1000void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1001  if (!D)
1002    return;
1003
1004  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1005    const FunctionDecl *First = FD->getFirstDeclaration();
1006    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1007      return; // First should already be in the vector.
1008  }
1009
1010  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1011    const VarDecl *First = VD->getFirstDeclaration();
1012    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1013      return; // First should already be in the vector.
1014  }
1015
1016   if (ShouldWarnIfUnusedFileScopedDecl(D))
1017     UnusedFileScopedDecls.push_back(D);
1018 }
1019
1020static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1021  if (D->isInvalidDecl())
1022    return false;
1023
1024  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1025    return false;
1026
1027  if (isa<LabelDecl>(D))
1028    return true;
1029
1030  // White-list anything that isn't a local variable.
1031  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1032      !D->getDeclContext()->isFunctionOrMethod())
1033    return false;
1034
1035  // Types of valid local variables should be complete, so this should succeed.
1036  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1037
1038    // White-list anything with an __attribute__((unused)) type.
1039    QualType Ty = VD->getType();
1040
1041    // Only look at the outermost level of typedef.
1042    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1043      if (TT->getDecl()->hasAttr<UnusedAttr>())
1044        return false;
1045    }
1046
1047    // If we failed to complete the type for some reason, or if the type is
1048    // dependent, don't diagnose the variable.
1049    if (Ty->isIncompleteType() || Ty->isDependentType())
1050      return false;
1051
1052    if (const TagType *TT = Ty->getAs<TagType>()) {
1053      const TagDecl *Tag = TT->getDecl();
1054      if (Tag->hasAttr<UnusedAttr>())
1055        return false;
1056
1057      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1058        // FIXME: Checking for the presence of a user-declared constructor
1059        // isn't completely accurate; we'd prefer to check that the initializer
1060        // has no side effects.
1061        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1062          return false;
1063      }
1064    }
1065
1066    // TODO: __attribute__((unused)) templates?
1067  }
1068
1069  return true;
1070}
1071
1072/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1073/// unless they are marked attr(unused).
1074void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1075  if (!ShouldDiagnoseUnusedDecl(D))
1076    return;
1077
1078  unsigned DiagID;
1079  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1080    DiagID = diag::warn_unused_exception_param;
1081  else if (isa<LabelDecl>(D))
1082    DiagID = diag::warn_unused_label;
1083  else
1084    DiagID = diag::warn_unused_variable;
1085
1086  Diag(D->getLocation(), DiagID) << D->getDeclName();
1087}
1088
1089static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1090  // Verify that we have no forward references left.  If so, there was a goto
1091  // or address of a label taken, but no definition of it.  Label fwd
1092  // definitions are indicated with a null substmt.
1093  if (L->getStmt() == 0)
1094    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1095}
1096
1097void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1098  if (S->decl_empty()) return;
1099  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1100         "Scope shouldn't contain decls!");
1101
1102  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1103       I != E; ++I) {
1104    Decl *TmpD = (*I);
1105    assert(TmpD && "This decl didn't get pushed??");
1106
1107    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1108    NamedDecl *D = cast<NamedDecl>(TmpD);
1109
1110    if (!D->getDeclName()) continue;
1111
1112    // Diagnose unused variables in this scope.
1113    if (!S->hasErrorOccurred())
1114      DiagnoseUnusedDecl(D);
1115
1116    // If this was a forward reference to a label, verify it was defined.
1117    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1118      CheckPoppedLabel(LD, *this);
1119
1120    // Remove this name from our lexical scope.
1121    IdResolver.RemoveDecl(D);
1122  }
1123}
1124
1125/// \brief Look for an Objective-C class in the translation unit.
1126///
1127/// \param Id The name of the Objective-C class we're looking for. If
1128/// typo-correction fixes this name, the Id will be updated
1129/// to the fixed name.
1130///
1131/// \param IdLoc The location of the name in the translation unit.
1132///
1133/// \param TypoCorrection If true, this routine will attempt typo correction
1134/// if there is no class with the given name.
1135///
1136/// \returns The declaration of the named Objective-C class, or NULL if the
1137/// class could not be found.
1138ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1139                                              SourceLocation IdLoc,
1140                                              bool TypoCorrection) {
1141  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1142  // creation from this context.
1143  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1144
1145  if (!IDecl && TypoCorrection) {
1146    // Perform typo correction at the given location, but only if we
1147    // find an Objective-C class name.
1148    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1149    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1150        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1151      Diag(IdLoc, diag::err_undef_interface_suggest)
1152        << Id << IDecl->getDeclName()
1153        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1154      Diag(IDecl->getLocation(), diag::note_previous_decl)
1155        << IDecl->getDeclName();
1156
1157      Id = IDecl->getIdentifier();
1158    }
1159  }
1160
1161  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1162}
1163
1164/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1165/// from S, where a non-field would be declared. This routine copes
1166/// with the difference between C and C++ scoping rules in structs and
1167/// unions. For example, the following code is well-formed in C but
1168/// ill-formed in C++:
1169/// @code
1170/// struct S6 {
1171///   enum { BAR } e;
1172/// };
1173///
1174/// void test_S6() {
1175///   struct S6 a;
1176///   a.e = BAR;
1177/// }
1178/// @endcode
1179/// For the declaration of BAR, this routine will return a different
1180/// scope. The scope S will be the scope of the unnamed enumeration
1181/// within S6. In C++, this routine will return the scope associated
1182/// with S6, because the enumeration's scope is a transparent
1183/// context but structures can contain non-field names. In C, this
1184/// routine will return the translation unit scope, since the
1185/// enumeration's scope is a transparent context and structures cannot
1186/// contain non-field names.
1187Scope *Sema::getNonFieldDeclScope(Scope *S) {
1188  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1189         (S->getEntity() &&
1190          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1191         (S->isClassScope() && !getLangOptions().CPlusPlus))
1192    S = S->getParent();
1193  return S;
1194}
1195
1196/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1197/// file scope.  lazily create a decl for it. ForRedeclaration is true
1198/// if we're creating this built-in in anticipation of redeclaring the
1199/// built-in.
1200NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1201                                     Scope *S, bool ForRedeclaration,
1202                                     SourceLocation Loc) {
1203  Builtin::ID BID = (Builtin::ID)bid;
1204
1205  ASTContext::GetBuiltinTypeError Error;
1206  QualType R = Context.GetBuiltinType(BID, Error);
1207  switch (Error) {
1208  case ASTContext::GE_None:
1209    // Okay
1210    break;
1211
1212  case ASTContext::GE_Missing_stdio:
1213    if (ForRedeclaration)
1214      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1215        << Context.BuiltinInfo.GetName(BID);
1216    return 0;
1217
1218  case ASTContext::GE_Missing_setjmp:
1219    if (ForRedeclaration)
1220      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1221        << Context.BuiltinInfo.GetName(BID);
1222    return 0;
1223  }
1224
1225  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1226    Diag(Loc, diag::ext_implicit_lib_function_decl)
1227      << Context.BuiltinInfo.GetName(BID)
1228      << R;
1229    if (Context.BuiltinInfo.getHeaderName(BID) &&
1230        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1231          != Diagnostic::Ignored)
1232      Diag(Loc, diag::note_please_include_header)
1233        << Context.BuiltinInfo.getHeaderName(BID)
1234        << Context.BuiltinInfo.GetName(BID);
1235  }
1236
1237  FunctionDecl *New = FunctionDecl::Create(Context,
1238                                           Context.getTranslationUnitDecl(),
1239                                           Loc, Loc, II, R, /*TInfo=*/0,
1240                                           SC_Extern,
1241                                           SC_None, false,
1242                                           /*hasPrototype=*/true);
1243  New->setImplicit();
1244
1245  // Create Decl objects for each parameter, adding them to the
1246  // FunctionDecl.
1247  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1248    llvm::SmallVector<ParmVarDecl*, 16> Params;
1249    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1250      ParmVarDecl *parm =
1251        ParmVarDecl::Create(Context, New, SourceLocation(),
1252                            SourceLocation(), 0,
1253                            FT->getArgType(i), /*TInfo=*/0,
1254                            SC_None, SC_None, 0);
1255      parm->setScopeInfo(0, i);
1256      Params.push_back(parm);
1257    }
1258    New->setParams(Params.data(), Params.size());
1259  }
1260
1261  AddKnownFunctionAttributes(New);
1262
1263  // TUScope is the translation-unit scope to insert this function into.
1264  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1265  // relate Scopes to DeclContexts, and probably eliminate CurContext
1266  // entirely, but we're not there yet.
1267  DeclContext *SavedContext = CurContext;
1268  CurContext = Context.getTranslationUnitDecl();
1269  PushOnScopeChains(New, TUScope);
1270  CurContext = SavedContext;
1271  return New;
1272}
1273
1274/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1275/// same name and scope as a previous declaration 'Old'.  Figure out
1276/// how to resolve this situation, merging decls or emitting
1277/// diagnostics as appropriate. If there was an error, set New to be invalid.
1278///
1279void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1280  // If the new decl is known invalid already, don't bother doing any
1281  // merging checks.
1282  if (New->isInvalidDecl()) return;
1283
1284  // Allow multiple definitions for ObjC built-in typedefs.
1285  // FIXME: Verify the underlying types are equivalent!
1286  if (getLangOptions().ObjC1) {
1287    const IdentifierInfo *TypeID = New->getIdentifier();
1288    switch (TypeID->getLength()) {
1289    default: break;
1290    case 2:
1291      if (!TypeID->isStr("id"))
1292        break;
1293      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1294      // Install the built-in type for 'id', ignoring the current definition.
1295      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1296      return;
1297    case 5:
1298      if (!TypeID->isStr("Class"))
1299        break;
1300      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1301      // Install the built-in type for 'Class', ignoring the current definition.
1302      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1303      return;
1304    case 3:
1305      if (!TypeID->isStr("SEL"))
1306        break;
1307      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1308      // Install the built-in type for 'SEL', ignoring the current definition.
1309      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1310      return;
1311    case 8:
1312      if (!TypeID->isStr("Protocol"))
1313        break;
1314      Context.setObjCProtoType(New->getUnderlyingType());
1315      return;
1316    }
1317    // Fall through - the typedef name was not a builtin type.
1318  }
1319
1320  // Verify the old decl was also a type.
1321  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1322  if (!Old) {
1323    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1324      << New->getDeclName();
1325
1326    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1327    if (OldD->getLocation().isValid())
1328      Diag(OldD->getLocation(), diag::note_previous_definition);
1329
1330    return New->setInvalidDecl();
1331  }
1332
1333  // If the old declaration is invalid, just give up here.
1334  if (Old->isInvalidDecl())
1335    return New->setInvalidDecl();
1336
1337  // Determine the "old" type we'll use for checking and diagnostics.
1338  QualType OldType;
1339  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1340    OldType = OldTypedef->getUnderlyingType();
1341  else
1342    OldType = Context.getTypeDeclType(Old);
1343
1344  // If the typedef types are not identical, reject them in all languages and
1345  // with any extensions enabled.
1346
1347  if (OldType != New->getUnderlyingType() &&
1348      Context.getCanonicalType(OldType) !=
1349      Context.getCanonicalType(New->getUnderlyingType())) {
1350    int Kind = 0;
1351    if (isa<TypeAliasDecl>(Old))
1352      Kind = 1;
1353    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1354      << Kind << New->getUnderlyingType() << OldType;
1355    if (Old->getLocation().isValid())
1356      Diag(Old->getLocation(), diag::note_previous_definition);
1357    return New->setInvalidDecl();
1358  }
1359
1360  // The types match.  Link up the redeclaration chain if the old
1361  // declaration was a typedef.
1362  // FIXME: this is a potential source of wierdness if the type
1363  // spellings don't match exactly.
1364  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1365    New->setPreviousDeclaration(Typedef);
1366
1367  if (getLangOptions().Microsoft)
1368    return;
1369
1370  if (getLangOptions().CPlusPlus) {
1371    // C++ [dcl.typedef]p2:
1372    //   In a given non-class scope, a typedef specifier can be used to
1373    //   redefine the name of any type declared in that scope to refer
1374    //   to the type to which it already refers.
1375    if (!isa<CXXRecordDecl>(CurContext))
1376      return;
1377
1378    // C++0x [dcl.typedef]p4:
1379    //   In a given class scope, a typedef specifier can be used to redefine
1380    //   any class-name declared in that scope that is not also a typedef-name
1381    //   to refer to the type to which it already refers.
1382    //
1383    // This wording came in via DR424, which was a correction to the
1384    // wording in DR56, which accidentally banned code like:
1385    //
1386    //   struct S {
1387    //     typedef struct A { } A;
1388    //   };
1389    //
1390    // in the C++03 standard. We implement the C++0x semantics, which
1391    // allow the above but disallow
1392    //
1393    //   struct S {
1394    //     typedef int I;
1395    //     typedef int I;
1396    //   };
1397    //
1398    // since that was the intent of DR56.
1399    if (!isa<TypedefNameDecl>(Old))
1400      return;
1401
1402    Diag(New->getLocation(), diag::err_redefinition)
1403      << New->getDeclName();
1404    Diag(Old->getLocation(), diag::note_previous_definition);
1405    return New->setInvalidDecl();
1406  }
1407
1408  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1409  // is normally mapped to an error, but can be controlled with
1410  // -Wtypedef-redefinition.  If either the original or the redefinition is
1411  // in a system header, don't emit this for compatibility with GCC.
1412  if (getDiagnostics().getSuppressSystemWarnings() &&
1413      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1414       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1415    return;
1416
1417  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1418    << New->getDeclName();
1419  Diag(Old->getLocation(), diag::note_previous_definition);
1420  return;
1421}
1422
1423/// DeclhasAttr - returns true if decl Declaration already has the target
1424/// attribute.
1425static bool
1426DeclHasAttr(const Decl *D, const Attr *A) {
1427  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1428  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1429    if ((*i)->getKind() == A->getKind()) {
1430      // FIXME: Don't hardcode this check
1431      if (OA && isa<OwnershipAttr>(*i))
1432        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1433      return true;
1434    }
1435
1436  return false;
1437}
1438
1439/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1440static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1441                                ASTContext &C) {
1442  if (!oldDecl->hasAttrs())
1443    return;
1444
1445  bool foundAny = newDecl->hasAttrs();
1446
1447  // Ensure that any moving of objects within the allocated map is done before
1448  // we process them.
1449  if (!foundAny) newDecl->setAttrs(AttrVec());
1450
1451  for (specific_attr_iterator<InheritableAttr>
1452       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1453       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1454    if (!DeclHasAttr(newDecl, *i)) {
1455      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1456      newAttr->setInherited(true);
1457      newDecl->addAttr(newAttr);
1458      foundAny = true;
1459    }
1460  }
1461
1462  if (!foundAny) newDecl->dropAttrs();
1463}
1464
1465/// mergeParamDeclAttributes - Copy attributes from the old parameter
1466/// to the new one.
1467static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1468                                     const ParmVarDecl *oldDecl,
1469                                     ASTContext &C) {
1470  if (!oldDecl->hasAttrs())
1471    return;
1472
1473  bool foundAny = newDecl->hasAttrs();
1474
1475  // Ensure that any moving of objects within the allocated map is
1476  // done before we process them.
1477  if (!foundAny) newDecl->setAttrs(AttrVec());
1478
1479  for (specific_attr_iterator<InheritableParamAttr>
1480       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1481       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1482    if (!DeclHasAttr(newDecl, *i)) {
1483      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1484      newAttr->setInherited(true);
1485      newDecl->addAttr(newAttr);
1486      foundAny = true;
1487    }
1488  }
1489
1490  if (!foundAny) newDecl->dropAttrs();
1491}
1492
1493namespace {
1494
1495/// Used in MergeFunctionDecl to keep track of function parameters in
1496/// C.
1497struct GNUCompatibleParamWarning {
1498  ParmVarDecl *OldParm;
1499  ParmVarDecl *NewParm;
1500  QualType PromotedType;
1501};
1502
1503}
1504
1505/// getSpecialMember - get the special member enum for a method.
1506Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1507  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1508    if (Ctor->isDefaultConstructor())
1509      return Sema::CXXDefaultConstructor;
1510
1511    if (Ctor->isCopyConstructor())
1512      return Sema::CXXCopyConstructor;
1513
1514    if (Ctor->isMoveConstructor())
1515      return Sema::CXXMoveConstructor;
1516  } else if (isa<CXXDestructorDecl>(MD)) {
1517    return Sema::CXXDestructor;
1518  } else if (MD->isCopyAssignmentOperator()) {
1519    return Sema::CXXCopyAssignment;
1520  }
1521
1522  return Sema::CXXInvalid;
1523}
1524
1525/// canRedefineFunction - checks if a function can be redefined. Currently,
1526/// only extern inline functions can be redefined, and even then only in
1527/// GNU89 mode.
1528static bool canRedefineFunction(const FunctionDecl *FD,
1529                                const LangOptions& LangOpts) {
1530  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1531          !LangOpts.CPlusPlus &&
1532          FD->isInlineSpecified() &&
1533          FD->getStorageClass() == SC_Extern);
1534}
1535
1536/// MergeFunctionDecl - We just parsed a function 'New' from
1537/// declarator D which has the same name and scope as a previous
1538/// declaration 'Old'.  Figure out how to resolve this situation,
1539/// merging decls or emitting diagnostics as appropriate.
1540///
1541/// In C++, New and Old must be declarations that are not
1542/// overloaded. Use IsOverload to determine whether New and Old are
1543/// overloaded, and to select the Old declaration that New should be
1544/// merged with.
1545///
1546/// Returns true if there was an error, false otherwise.
1547bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1548  // Verify the old decl was also a function.
1549  FunctionDecl *Old = 0;
1550  if (FunctionTemplateDecl *OldFunctionTemplate
1551        = dyn_cast<FunctionTemplateDecl>(OldD))
1552    Old = OldFunctionTemplate->getTemplatedDecl();
1553  else
1554    Old = dyn_cast<FunctionDecl>(OldD);
1555  if (!Old) {
1556    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1557      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1558      Diag(Shadow->getTargetDecl()->getLocation(),
1559           diag::note_using_decl_target);
1560      Diag(Shadow->getUsingDecl()->getLocation(),
1561           diag::note_using_decl) << 0;
1562      return true;
1563    }
1564
1565    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1566      << New->getDeclName();
1567    Diag(OldD->getLocation(), diag::note_previous_definition);
1568    return true;
1569  }
1570
1571  // Determine whether the previous declaration was a definition,
1572  // implicit declaration, or a declaration.
1573  diag::kind PrevDiag;
1574  if (Old->isThisDeclarationADefinition())
1575    PrevDiag = diag::note_previous_definition;
1576  else if (Old->isImplicit())
1577    PrevDiag = diag::note_previous_implicit_declaration;
1578  else
1579    PrevDiag = diag::note_previous_declaration;
1580
1581  QualType OldQType = Context.getCanonicalType(Old->getType());
1582  QualType NewQType = Context.getCanonicalType(New->getType());
1583
1584  // Don't complain about this if we're in GNU89 mode and the old function
1585  // is an extern inline function.
1586  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1587      New->getStorageClass() == SC_Static &&
1588      Old->getStorageClass() != SC_Static &&
1589      !canRedefineFunction(Old, getLangOptions())) {
1590    if (getLangOptions().Microsoft) {
1591      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1592      Diag(Old->getLocation(), PrevDiag);
1593    } else {
1594      Diag(New->getLocation(), diag::err_static_non_static) << New;
1595      Diag(Old->getLocation(), PrevDiag);
1596      return true;
1597    }
1598  }
1599
1600  // If a function is first declared with a calling convention, but is
1601  // later declared or defined without one, the second decl assumes the
1602  // calling convention of the first.
1603  //
1604  // For the new decl, we have to look at the NON-canonical type to tell the
1605  // difference between a function that really doesn't have a calling
1606  // convention and one that is declared cdecl. That's because in
1607  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1608  // because it is the default calling convention.
1609  //
1610  // Note also that we DO NOT return at this point, because we still have
1611  // other tests to run.
1612  const FunctionType *OldType = cast<FunctionType>(OldQType);
1613  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1614  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1615  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1616  bool RequiresAdjustment = false;
1617  if (OldTypeInfo.getCC() != CC_Default &&
1618      NewTypeInfo.getCC() == CC_Default) {
1619    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1620    RequiresAdjustment = true;
1621  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1622                                     NewTypeInfo.getCC())) {
1623    // Calling conventions really aren't compatible, so complain.
1624    Diag(New->getLocation(), diag::err_cconv_change)
1625      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1626      << (OldTypeInfo.getCC() == CC_Default)
1627      << (OldTypeInfo.getCC() == CC_Default ? "" :
1628          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1629    Diag(Old->getLocation(), diag::note_previous_declaration);
1630    return true;
1631  }
1632
1633  // FIXME: diagnose the other way around?
1634  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1635    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1636    RequiresAdjustment = true;
1637  }
1638
1639  // Merge regparm attribute.
1640  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1641      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1642    if (NewTypeInfo.getHasRegParm()) {
1643      Diag(New->getLocation(), diag::err_regparm_mismatch)
1644        << NewType->getRegParmType()
1645        << OldType->getRegParmType();
1646      Diag(Old->getLocation(), diag::note_previous_declaration);
1647      return true;
1648    }
1649
1650    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1651    RequiresAdjustment = true;
1652  }
1653
1654  if (RequiresAdjustment) {
1655    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1656    New->setType(QualType(NewType, 0));
1657    NewQType = Context.getCanonicalType(New->getType());
1658  }
1659
1660  if (getLangOptions().CPlusPlus) {
1661    // (C++98 13.1p2):
1662    //   Certain function declarations cannot be overloaded:
1663    //     -- Function declarations that differ only in the return type
1664    //        cannot be overloaded.
1665    QualType OldReturnType = OldType->getResultType();
1666    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1667    QualType ResQT;
1668    if (OldReturnType != NewReturnType) {
1669      if (NewReturnType->isObjCObjectPointerType()
1670          && OldReturnType->isObjCObjectPointerType())
1671        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1672      if (ResQT.isNull()) {
1673        if (New->isCXXClassMember() && New->isOutOfLine())
1674          Diag(New->getLocation(),
1675               diag::err_member_def_does_not_match_ret_type) << New;
1676        else
1677          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1678        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1679        return true;
1680      }
1681      else
1682        NewQType = ResQT;
1683    }
1684
1685    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1686    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1687    if (OldMethod && NewMethod) {
1688      // Preserve triviality.
1689      NewMethod->setTrivial(OldMethod->isTrivial());
1690
1691      bool isFriend = NewMethod->getFriendObjectKind();
1692
1693      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1694        //    -- Member function declarations with the same name and the
1695        //       same parameter types cannot be overloaded if any of them
1696        //       is a static member function declaration.
1697        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1698          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1699          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1700          return true;
1701        }
1702
1703        // C++ [class.mem]p1:
1704        //   [...] A member shall not be declared twice in the
1705        //   member-specification, except that a nested class or member
1706        //   class template can be declared and then later defined.
1707        unsigned NewDiag;
1708        if (isa<CXXConstructorDecl>(OldMethod))
1709          NewDiag = diag::err_constructor_redeclared;
1710        else if (isa<CXXDestructorDecl>(NewMethod))
1711          NewDiag = diag::err_destructor_redeclared;
1712        else if (isa<CXXConversionDecl>(NewMethod))
1713          NewDiag = diag::err_conv_function_redeclared;
1714        else
1715          NewDiag = diag::err_member_redeclared;
1716
1717        Diag(New->getLocation(), NewDiag);
1718        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1719
1720      // Complain if this is an explicit declaration of a special
1721      // member that was initially declared implicitly.
1722      //
1723      // As an exception, it's okay to befriend such methods in order
1724      // to permit the implicit constructor/destructor/operator calls.
1725      } else if (OldMethod->isImplicit()) {
1726        if (isFriend) {
1727          NewMethod->setImplicit();
1728        } else {
1729          Diag(NewMethod->getLocation(),
1730               diag::err_definition_of_implicitly_declared_member)
1731            << New << getSpecialMember(OldMethod);
1732          return true;
1733        }
1734      } else if (OldMethod->isExplicitlyDefaulted()) {
1735        Diag(NewMethod->getLocation(),
1736             diag::err_definition_of_explicitly_defaulted_member)
1737          << getSpecialMember(OldMethod);
1738        return true;
1739      }
1740    }
1741
1742    // (C++98 8.3.5p3):
1743    //   All declarations for a function shall agree exactly in both the
1744    //   return type and the parameter-type-list.
1745    // We also want to respect all the extended bits except noreturn.
1746
1747    // noreturn should now match unless the old type info didn't have it.
1748    QualType OldQTypeForComparison = OldQType;
1749    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1750      assert(OldQType == QualType(OldType, 0));
1751      const FunctionType *OldTypeForComparison
1752        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1753      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1754      assert(OldQTypeForComparison.isCanonical());
1755    }
1756
1757    if (OldQTypeForComparison == NewQType)
1758      return MergeCompatibleFunctionDecls(New, Old);
1759
1760    // Fall through for conflicting redeclarations and redefinitions.
1761  }
1762
1763  // C: Function types need to be compatible, not identical. This handles
1764  // duplicate function decls like "void f(int); void f(enum X);" properly.
1765  if (!getLangOptions().CPlusPlus &&
1766      Context.typesAreCompatible(OldQType, NewQType)) {
1767    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1768    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1769    const FunctionProtoType *OldProto = 0;
1770    if (isa<FunctionNoProtoType>(NewFuncType) &&
1771        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1772      // The old declaration provided a function prototype, but the
1773      // new declaration does not. Merge in the prototype.
1774      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1775      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1776                                                 OldProto->arg_type_end());
1777      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1778                                         ParamTypes.data(), ParamTypes.size(),
1779                                         OldProto->getExtProtoInfo());
1780      New->setType(NewQType);
1781      New->setHasInheritedPrototype();
1782
1783      // Synthesize a parameter for each argument type.
1784      llvm::SmallVector<ParmVarDecl*, 16> Params;
1785      for (FunctionProtoType::arg_type_iterator
1786             ParamType = OldProto->arg_type_begin(),
1787             ParamEnd = OldProto->arg_type_end();
1788           ParamType != ParamEnd; ++ParamType) {
1789        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1790                                                 SourceLocation(),
1791                                                 SourceLocation(), 0,
1792                                                 *ParamType, /*TInfo=*/0,
1793                                                 SC_None, SC_None,
1794                                                 0);
1795        Param->setScopeInfo(0, Params.size());
1796        Param->setImplicit();
1797        Params.push_back(Param);
1798      }
1799
1800      New->setParams(Params.data(), Params.size());
1801    }
1802
1803    return MergeCompatibleFunctionDecls(New, Old);
1804  }
1805
1806  // GNU C permits a K&R definition to follow a prototype declaration
1807  // if the declared types of the parameters in the K&R definition
1808  // match the types in the prototype declaration, even when the
1809  // promoted types of the parameters from the K&R definition differ
1810  // from the types in the prototype. GCC then keeps the types from
1811  // the prototype.
1812  //
1813  // If a variadic prototype is followed by a non-variadic K&R definition,
1814  // the K&R definition becomes variadic.  This is sort of an edge case, but
1815  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1816  // C99 6.9.1p8.
1817  if (!getLangOptions().CPlusPlus &&
1818      Old->hasPrototype() && !New->hasPrototype() &&
1819      New->getType()->getAs<FunctionProtoType>() &&
1820      Old->getNumParams() == New->getNumParams()) {
1821    llvm::SmallVector<QualType, 16> ArgTypes;
1822    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1823    const FunctionProtoType *OldProto
1824      = Old->getType()->getAs<FunctionProtoType>();
1825    const FunctionProtoType *NewProto
1826      = New->getType()->getAs<FunctionProtoType>();
1827
1828    // Determine whether this is the GNU C extension.
1829    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1830                                               NewProto->getResultType());
1831    bool LooseCompatible = !MergedReturn.isNull();
1832    for (unsigned Idx = 0, End = Old->getNumParams();
1833         LooseCompatible && Idx != End; ++Idx) {
1834      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1835      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1836      if (Context.typesAreCompatible(OldParm->getType(),
1837                                     NewProto->getArgType(Idx))) {
1838        ArgTypes.push_back(NewParm->getType());
1839      } else if (Context.typesAreCompatible(OldParm->getType(),
1840                                            NewParm->getType(),
1841                                            /*CompareUnqualified=*/true)) {
1842        GNUCompatibleParamWarning Warn
1843          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1844        Warnings.push_back(Warn);
1845        ArgTypes.push_back(NewParm->getType());
1846      } else
1847        LooseCompatible = false;
1848    }
1849
1850    if (LooseCompatible) {
1851      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1852        Diag(Warnings[Warn].NewParm->getLocation(),
1853             diag::ext_param_promoted_not_compatible_with_prototype)
1854          << Warnings[Warn].PromotedType
1855          << Warnings[Warn].OldParm->getType();
1856        if (Warnings[Warn].OldParm->getLocation().isValid())
1857          Diag(Warnings[Warn].OldParm->getLocation(),
1858               diag::note_previous_declaration);
1859      }
1860
1861      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1862                                           ArgTypes.size(),
1863                                           OldProto->getExtProtoInfo()));
1864      return MergeCompatibleFunctionDecls(New, Old);
1865    }
1866
1867    // Fall through to diagnose conflicting types.
1868  }
1869
1870  // A function that has already been declared has been redeclared or defined
1871  // with a different type- show appropriate diagnostic
1872  if (unsigned BuiltinID = Old->getBuiltinID()) {
1873    // The user has declared a builtin function with an incompatible
1874    // signature.
1875    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1876      // The function the user is redeclaring is a library-defined
1877      // function like 'malloc' or 'printf'. Warn about the
1878      // redeclaration, then pretend that we don't know about this
1879      // library built-in.
1880      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1881      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1882        << Old << Old->getType();
1883      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1884      Old->setInvalidDecl();
1885      return false;
1886    }
1887
1888    PrevDiag = diag::note_previous_builtin_declaration;
1889  }
1890
1891  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1892  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1893  return true;
1894}
1895
1896/// \brief Completes the merge of two function declarations that are
1897/// known to be compatible.
1898///
1899/// This routine handles the merging of attributes and other
1900/// properties of function declarations form the old declaration to
1901/// the new declaration, once we know that New is in fact a
1902/// redeclaration of Old.
1903///
1904/// \returns false
1905bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1906  // Merge the attributes
1907  mergeDeclAttributes(New, Old, Context);
1908
1909  // Merge the storage class.
1910  if (Old->getStorageClass() != SC_Extern &&
1911      Old->getStorageClass() != SC_None)
1912    New->setStorageClass(Old->getStorageClass());
1913
1914  // Merge "pure" flag.
1915  if (Old->isPure())
1916    New->setPure();
1917
1918  // Merge attributes from the parameters.  These can mismatch with K&R
1919  // declarations.
1920  if (New->getNumParams() == Old->getNumParams())
1921    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1922      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1923                               Context);
1924
1925  if (getLangOptions().CPlusPlus)
1926    return MergeCXXFunctionDecl(New, Old);
1927
1928  return false;
1929}
1930
1931
1932void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1933                                const ObjCMethodDecl *oldMethod) {
1934  // Merge the attributes.
1935  mergeDeclAttributes(newMethod, oldMethod, Context);
1936
1937  // Merge attributes from the parameters.
1938  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1939         ni = newMethod->param_begin(), ne = newMethod->param_end();
1940       ni != ne; ++ni, ++oi)
1941    mergeParamDeclAttributes(*ni, *oi, Context);
1942
1943  CheckObjCMethodOverride(newMethod, oldMethod, true);
1944}
1945
1946/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1947/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1948/// emitting diagnostics as appropriate.
1949///
1950/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1951/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1952/// check them before the initializer is attached.
1953///
1954void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1955  if (New->isInvalidDecl() || Old->isInvalidDecl())
1956    return;
1957
1958  QualType MergedT;
1959  if (getLangOptions().CPlusPlus) {
1960    AutoType *AT = New->getType()->getContainedAutoType();
1961    if (AT && !AT->isDeduced()) {
1962      // We don't know what the new type is until the initializer is attached.
1963      return;
1964    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1965      // These could still be something that needs exception specs checked.
1966      return MergeVarDeclExceptionSpecs(New, Old);
1967    }
1968    // C++ [basic.link]p10:
1969    //   [...] the types specified by all declarations referring to a given
1970    //   object or function shall be identical, except that declarations for an
1971    //   array object can specify array types that differ by the presence or
1972    //   absence of a major array bound (8.3.4).
1973    else if (Old->getType()->isIncompleteArrayType() &&
1974             New->getType()->isArrayType()) {
1975      CanQual<ArrayType> OldArray
1976        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1977      CanQual<ArrayType> NewArray
1978        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1979      if (OldArray->getElementType() == NewArray->getElementType())
1980        MergedT = New->getType();
1981    } else if (Old->getType()->isArrayType() &&
1982             New->getType()->isIncompleteArrayType()) {
1983      CanQual<ArrayType> OldArray
1984        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1985      CanQual<ArrayType> NewArray
1986        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1987      if (OldArray->getElementType() == NewArray->getElementType())
1988        MergedT = Old->getType();
1989    } else if (New->getType()->isObjCObjectPointerType()
1990               && Old->getType()->isObjCObjectPointerType()) {
1991        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1992                                                        Old->getType());
1993    }
1994  } else {
1995    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1996  }
1997  if (MergedT.isNull()) {
1998    Diag(New->getLocation(), diag::err_redefinition_different_type)
1999      << New->getDeclName();
2000    Diag(Old->getLocation(), diag::note_previous_definition);
2001    return New->setInvalidDecl();
2002  }
2003  New->setType(MergedT);
2004}
2005
2006/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2007/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2008/// situation, merging decls or emitting diagnostics as appropriate.
2009///
2010/// Tentative definition rules (C99 6.9.2p2) are checked by
2011/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2012/// definitions here, since the initializer hasn't been attached.
2013///
2014void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2015  // If the new decl is already invalid, don't do any other checking.
2016  if (New->isInvalidDecl())
2017    return;
2018
2019  // Verify the old decl was also a variable.
2020  VarDecl *Old = 0;
2021  if (!Previous.isSingleResult() ||
2022      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2023    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2024      << New->getDeclName();
2025    Diag(Previous.getRepresentativeDecl()->getLocation(),
2026         diag::note_previous_definition);
2027    return New->setInvalidDecl();
2028  }
2029
2030  // C++ [class.mem]p1:
2031  //   A member shall not be declared twice in the member-specification [...]
2032  //
2033  // Here, we need only consider static data members.
2034  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2035    Diag(New->getLocation(), diag::err_duplicate_member)
2036      << New->getIdentifier();
2037    Diag(Old->getLocation(), diag::note_previous_declaration);
2038    New->setInvalidDecl();
2039  }
2040
2041  mergeDeclAttributes(New, Old, Context);
2042  // weak_import on current declaration is applied to previous
2043  // tentative definiton.
2044  if (New->getAttr<WeakImportAttr>() &&
2045      Old->getStorageClass() == SC_None &&
2046      !Old->getAttr<WeakImportAttr>())
2047    Old->addAttr(::new (Context) WeakImportAttr(SourceLocation(), Context));
2048
2049  // Merge the types.
2050  MergeVarDeclTypes(New, Old);
2051  if (New->isInvalidDecl())
2052    return;
2053
2054  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2055  if (New->getStorageClass() == SC_Static &&
2056      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2057    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2058    Diag(Old->getLocation(), diag::note_previous_definition);
2059    return New->setInvalidDecl();
2060  }
2061  // C99 6.2.2p4:
2062  //   For an identifier declared with the storage-class specifier
2063  //   extern in a scope in which a prior declaration of that
2064  //   identifier is visible,23) if the prior declaration specifies
2065  //   internal or external linkage, the linkage of the identifier at
2066  //   the later declaration is the same as the linkage specified at
2067  //   the prior declaration. If no prior declaration is visible, or
2068  //   if the prior declaration specifies no linkage, then the
2069  //   identifier has external linkage.
2070  if (New->hasExternalStorage() && Old->hasLinkage())
2071    /* Okay */;
2072  else if (New->getStorageClass() != SC_Static &&
2073           Old->getStorageClass() == SC_Static) {
2074    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2075    Diag(Old->getLocation(), diag::note_previous_definition);
2076    return New->setInvalidDecl();
2077  }
2078
2079  // Check if extern is followed by non-extern and vice-versa.
2080  if (New->hasExternalStorage() &&
2081      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2082    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2083    Diag(Old->getLocation(), diag::note_previous_definition);
2084    return New->setInvalidDecl();
2085  }
2086  if (Old->hasExternalStorage() &&
2087      !New->hasLinkage() && New->isLocalVarDecl()) {
2088    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2089    Diag(Old->getLocation(), diag::note_previous_definition);
2090    return New->setInvalidDecl();
2091  }
2092
2093  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2094
2095  // FIXME: The test for external storage here seems wrong? We still
2096  // need to check for mismatches.
2097  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2098      // Don't complain about out-of-line definitions of static members.
2099      !(Old->getLexicalDeclContext()->isRecord() &&
2100        !New->getLexicalDeclContext()->isRecord())) {
2101    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2102    Diag(Old->getLocation(), diag::note_previous_definition);
2103    return New->setInvalidDecl();
2104  }
2105
2106  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2107    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2108    Diag(Old->getLocation(), diag::note_previous_definition);
2109  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2110    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2111    Diag(Old->getLocation(), diag::note_previous_definition);
2112  }
2113
2114  // C++ doesn't have tentative definitions, so go right ahead and check here.
2115  const VarDecl *Def;
2116  if (getLangOptions().CPlusPlus &&
2117      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2118      (Def = Old->getDefinition())) {
2119    Diag(New->getLocation(), diag::err_redefinition)
2120      << New->getDeclName();
2121    Diag(Def->getLocation(), diag::note_previous_definition);
2122    New->setInvalidDecl();
2123    return;
2124  }
2125  // c99 6.2.2 P4.
2126  // For an identifier declared with the storage-class specifier extern in a
2127  // scope in which a prior declaration of that identifier is visible, if
2128  // the prior declaration specifies internal or external linkage, the linkage
2129  // of the identifier at the later declaration is the same as the linkage
2130  // specified at the prior declaration.
2131  // FIXME. revisit this code.
2132  if (New->hasExternalStorage() &&
2133      Old->getLinkage() == InternalLinkage &&
2134      New->getDeclContext() == Old->getDeclContext())
2135    New->setStorageClass(Old->getStorageClass());
2136
2137  // Keep a chain of previous declarations.
2138  New->setPreviousDeclaration(Old);
2139
2140  // Inherit access appropriately.
2141  New->setAccess(Old->getAccess());
2142}
2143
2144/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2145/// no declarator (e.g. "struct foo;") is parsed.
2146Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2147                                       DeclSpec &DS) {
2148  return ParsedFreeStandingDeclSpec(S, AS, DS,
2149                                    MultiTemplateParamsArg(*this, 0, 0));
2150}
2151
2152/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2153/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2154/// parameters to cope with template friend declarations.
2155Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2156                                       DeclSpec &DS,
2157                                       MultiTemplateParamsArg TemplateParams) {
2158  Decl *TagD = 0;
2159  TagDecl *Tag = 0;
2160  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2161      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2162      DS.getTypeSpecType() == DeclSpec::TST_union ||
2163      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2164    TagD = DS.getRepAsDecl();
2165
2166    if (!TagD) // We probably had an error
2167      return 0;
2168
2169    // Note that the above type specs guarantee that the
2170    // type rep is a Decl, whereas in many of the others
2171    // it's a Type.
2172    Tag = dyn_cast<TagDecl>(TagD);
2173  }
2174
2175  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2176    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2177    // or incomplete types shall not be restrict-qualified."
2178    if (TypeQuals & DeclSpec::TQ_restrict)
2179      Diag(DS.getRestrictSpecLoc(),
2180           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2181           << DS.getSourceRange();
2182  }
2183
2184  if (DS.isFriendSpecified()) {
2185    // If we're dealing with a decl but not a TagDecl, assume that
2186    // whatever routines created it handled the friendship aspect.
2187    if (TagD && !Tag)
2188      return 0;
2189    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2190  }
2191
2192  // Track whether we warned about the fact that there aren't any
2193  // declarators.
2194  bool emittedWarning = false;
2195
2196  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2197    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2198
2199    if (!Record->getDeclName() && Record->isDefinition() &&
2200        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2201      if (getLangOptions().CPlusPlus ||
2202          Record->getDeclContext()->isRecord())
2203        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2204
2205      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2206        << DS.getSourceRange();
2207      emittedWarning = true;
2208    }
2209  }
2210
2211  // Check for Microsoft C extension: anonymous struct.
2212  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2213      CurContext->isRecord() &&
2214      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2215    // Handle 2 kinds of anonymous struct:
2216    //   struct STRUCT;
2217    // and
2218    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2219    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2220    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2221        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2222         DS.getRepAsType().get()->isStructureType())) {
2223      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2224        << DS.getSourceRange();
2225      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2226    }
2227  }
2228
2229  if (getLangOptions().CPlusPlus &&
2230      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2231    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2232      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2233          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2234        Diag(Enum->getLocation(), diag::ext_no_declarators)
2235          << DS.getSourceRange();
2236        emittedWarning = true;
2237      }
2238
2239  // Skip all the checks below if we have a type error.
2240  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2241
2242  if (!DS.isMissingDeclaratorOk()) {
2243    // Warn about typedefs of enums without names, since this is an
2244    // extension in both Microsoft and GNU.
2245    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2246        Tag && isa<EnumDecl>(Tag)) {
2247      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2248        << DS.getSourceRange();
2249      return Tag;
2250    }
2251
2252    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2253      << DS.getSourceRange();
2254    emittedWarning = true;
2255  }
2256
2257  // We're going to complain about a bunch of spurious specifiers;
2258  // only do this if we're declaring a tag, because otherwise we
2259  // should be getting diag::ext_no_declarators.
2260  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2261    return TagD;
2262
2263  // Note that a linkage-specification sets a storage class, but
2264  // 'extern "C" struct foo;' is actually valid and not theoretically
2265  // useless.
2266  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2267    if (!DS.isExternInLinkageSpec())
2268      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2269        << DeclSpec::getSpecifierName(scs);
2270
2271  if (DS.isThreadSpecified())
2272    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2273  if (DS.getTypeQualifiers()) {
2274    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2275      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2276    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2277      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2278    // Restrict is covered above.
2279  }
2280  if (DS.isInlineSpecified())
2281    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2282  if (DS.isVirtualSpecified())
2283    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2284  if (DS.isExplicitSpecified())
2285    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2286
2287  // FIXME: Warn on useless attributes
2288
2289  return TagD;
2290}
2291
2292/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2293/// builds a statement for it and returns it so it is evaluated.
2294StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2295  StmtResult R;
2296  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2297    Expr *Exp = DS.getRepAsExpr();
2298    QualType Ty = Exp->getType();
2299    if (Ty->isPointerType()) {
2300      do
2301        Ty = Ty->getAs<PointerType>()->getPointeeType();
2302      while (Ty->isPointerType());
2303    }
2304    if (Ty->isVariableArrayType()) {
2305      R = ActOnExprStmt(MakeFullExpr(Exp));
2306    }
2307  }
2308  return R;
2309}
2310
2311/// We are trying to inject an anonymous member into the given scope;
2312/// check if there's an existing declaration that can't be overloaded.
2313///
2314/// \return true if this is a forbidden redeclaration
2315static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2316                                         Scope *S,
2317                                         DeclContext *Owner,
2318                                         DeclarationName Name,
2319                                         SourceLocation NameLoc,
2320                                         unsigned diagnostic) {
2321  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2322                 Sema::ForRedeclaration);
2323  if (!SemaRef.LookupName(R, S)) return false;
2324
2325  if (R.getAsSingle<TagDecl>())
2326    return false;
2327
2328  // Pick a representative declaration.
2329  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2330  assert(PrevDecl && "Expected a non-null Decl");
2331
2332  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2333    return false;
2334
2335  SemaRef.Diag(NameLoc, diagnostic) << Name;
2336  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2337
2338  return true;
2339}
2340
2341/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2342/// anonymous struct or union AnonRecord into the owning context Owner
2343/// and scope S. This routine will be invoked just after we realize
2344/// that an unnamed union or struct is actually an anonymous union or
2345/// struct, e.g.,
2346///
2347/// @code
2348/// union {
2349///   int i;
2350///   float f;
2351/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2352///    // f into the surrounding scope.x
2353/// @endcode
2354///
2355/// This routine is recursive, injecting the names of nested anonymous
2356/// structs/unions into the owning context and scope as well.
2357static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2358                                                DeclContext *Owner,
2359                                                RecordDecl *AnonRecord,
2360                                                AccessSpecifier AS,
2361                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2362                                                      bool MSAnonStruct) {
2363  unsigned diagKind
2364    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2365                            : diag::err_anonymous_struct_member_redecl;
2366
2367  bool Invalid = false;
2368
2369  // Look every FieldDecl and IndirectFieldDecl with a name.
2370  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2371                               DEnd = AnonRecord->decls_end();
2372       D != DEnd; ++D) {
2373    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2374        cast<NamedDecl>(*D)->getDeclName()) {
2375      ValueDecl *VD = cast<ValueDecl>(*D);
2376      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2377                                       VD->getLocation(), diagKind)) {
2378        // C++ [class.union]p2:
2379        //   The names of the members of an anonymous union shall be
2380        //   distinct from the names of any other entity in the
2381        //   scope in which the anonymous union is declared.
2382        Invalid = true;
2383      } else {
2384        // C++ [class.union]p2:
2385        //   For the purpose of name lookup, after the anonymous union
2386        //   definition, the members of the anonymous union are
2387        //   considered to have been defined in the scope in which the
2388        //   anonymous union is declared.
2389        unsigned OldChainingSize = Chaining.size();
2390        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2391          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2392               PE = IF->chain_end(); PI != PE; ++PI)
2393            Chaining.push_back(*PI);
2394        else
2395          Chaining.push_back(VD);
2396
2397        assert(Chaining.size() >= 2);
2398        NamedDecl **NamedChain =
2399          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2400        for (unsigned i = 0; i < Chaining.size(); i++)
2401          NamedChain[i] = Chaining[i];
2402
2403        IndirectFieldDecl* IndirectField =
2404          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2405                                    VD->getIdentifier(), VD->getType(),
2406                                    NamedChain, Chaining.size());
2407
2408        IndirectField->setAccess(AS);
2409        IndirectField->setImplicit();
2410        SemaRef.PushOnScopeChains(IndirectField, S);
2411
2412        // That includes picking up the appropriate access specifier.
2413        if (AS != AS_none) IndirectField->setAccess(AS);
2414
2415        Chaining.resize(OldChainingSize);
2416      }
2417    }
2418  }
2419
2420  return Invalid;
2421}
2422
2423/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2424/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2425/// illegal input values are mapped to SC_None.
2426static StorageClass
2427StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2428  switch (StorageClassSpec) {
2429  case DeclSpec::SCS_unspecified:    return SC_None;
2430  case DeclSpec::SCS_extern:         return SC_Extern;
2431  case DeclSpec::SCS_static:         return SC_Static;
2432  case DeclSpec::SCS_auto:           return SC_Auto;
2433  case DeclSpec::SCS_register:       return SC_Register;
2434  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2435    // Illegal SCSs map to None: error reporting is up to the caller.
2436  case DeclSpec::SCS_mutable:        // Fall through.
2437  case DeclSpec::SCS_typedef:        return SC_None;
2438  }
2439  llvm_unreachable("unknown storage class specifier");
2440}
2441
2442/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2443/// a StorageClass. Any error reporting is up to the caller:
2444/// illegal input values are mapped to SC_None.
2445static StorageClass
2446StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2447  switch (StorageClassSpec) {
2448  case DeclSpec::SCS_unspecified:    return SC_None;
2449  case DeclSpec::SCS_extern:         return SC_Extern;
2450  case DeclSpec::SCS_static:         return SC_Static;
2451  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2452    // Illegal SCSs map to None: error reporting is up to the caller.
2453  case DeclSpec::SCS_auto:           // Fall through.
2454  case DeclSpec::SCS_mutable:        // Fall through.
2455  case DeclSpec::SCS_register:       // Fall through.
2456  case DeclSpec::SCS_typedef:        return SC_None;
2457  }
2458  llvm_unreachable("unknown storage class specifier");
2459}
2460
2461/// BuildAnonymousStructOrUnion - Handle the declaration of an
2462/// anonymous structure or union. Anonymous unions are a C++ feature
2463/// (C++ [class.union]) and a GNU C extension; anonymous structures
2464/// are a GNU C and GNU C++ extension.
2465Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2466                                             AccessSpecifier AS,
2467                                             RecordDecl *Record) {
2468  DeclContext *Owner = Record->getDeclContext();
2469
2470  // Diagnose whether this anonymous struct/union is an extension.
2471  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2472    Diag(Record->getLocation(), diag::ext_anonymous_union);
2473  else if (!Record->isUnion())
2474    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2475
2476  // C and C++ require different kinds of checks for anonymous
2477  // structs/unions.
2478  bool Invalid = false;
2479  if (getLangOptions().CPlusPlus) {
2480    const char* PrevSpec = 0;
2481    unsigned DiagID;
2482    // C++ [class.union]p3:
2483    //   Anonymous unions declared in a named namespace or in the
2484    //   global namespace shall be declared static.
2485    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2486        (isa<TranslationUnitDecl>(Owner) ||
2487         (isa<NamespaceDecl>(Owner) &&
2488          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2489      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2490      Invalid = true;
2491
2492      // Recover by adding 'static'.
2493      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2494                             PrevSpec, DiagID, getLangOptions());
2495    }
2496    // C++ [class.union]p3:
2497    //   A storage class is not allowed in a declaration of an
2498    //   anonymous union in a class scope.
2499    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2500             isa<RecordDecl>(Owner)) {
2501      Diag(DS.getStorageClassSpecLoc(),
2502           diag::err_anonymous_union_with_storage_spec);
2503      Invalid = true;
2504
2505      // Recover by removing the storage specifier.
2506      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2507                             PrevSpec, DiagID, getLangOptions());
2508    }
2509
2510    // Ignore const/volatile/restrict qualifiers.
2511    if (DS.getTypeQualifiers()) {
2512      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2513        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2514          << Record->isUnion() << 0
2515          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2516      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2517        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2518          << Record->isUnion() << 1
2519          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2520      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2521        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2522          << Record->isUnion() << 2
2523          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2524
2525      DS.ClearTypeQualifiers();
2526    }
2527
2528    // C++ [class.union]p2:
2529    //   The member-specification of an anonymous union shall only
2530    //   define non-static data members. [Note: nested types and
2531    //   functions cannot be declared within an anonymous union. ]
2532    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2533                                 MemEnd = Record->decls_end();
2534         Mem != MemEnd; ++Mem) {
2535      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2536        // C++ [class.union]p3:
2537        //   An anonymous union shall not have private or protected
2538        //   members (clause 11).
2539        assert(FD->getAccess() != AS_none);
2540        if (FD->getAccess() != AS_public) {
2541          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2542            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2543          Invalid = true;
2544        }
2545
2546        // C++ [class.union]p1
2547        //   An object of a class with a non-trivial constructor, a non-trivial
2548        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2549        //   assignment operator cannot be a member of a union, nor can an
2550        //   array of such objects.
2551        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2552          Invalid = true;
2553      } else if ((*Mem)->isImplicit()) {
2554        // Any implicit members are fine.
2555      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2556        // This is a type that showed up in an
2557        // elaborated-type-specifier inside the anonymous struct or
2558        // union, but which actually declares a type outside of the
2559        // anonymous struct or union. It's okay.
2560      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2561        if (!MemRecord->isAnonymousStructOrUnion() &&
2562            MemRecord->getDeclName()) {
2563          // Visual C++ allows type definition in anonymous struct or union.
2564          if (getLangOptions().Microsoft)
2565            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2566              << (int)Record->isUnion();
2567          else {
2568            // This is a nested type declaration.
2569            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2570              << (int)Record->isUnion();
2571            Invalid = true;
2572          }
2573        }
2574      } else if (isa<AccessSpecDecl>(*Mem)) {
2575        // Any access specifier is fine.
2576      } else {
2577        // We have something that isn't a non-static data
2578        // member. Complain about it.
2579        unsigned DK = diag::err_anonymous_record_bad_member;
2580        if (isa<TypeDecl>(*Mem))
2581          DK = diag::err_anonymous_record_with_type;
2582        else if (isa<FunctionDecl>(*Mem))
2583          DK = diag::err_anonymous_record_with_function;
2584        else if (isa<VarDecl>(*Mem))
2585          DK = diag::err_anonymous_record_with_static;
2586
2587        // Visual C++ allows type definition in anonymous struct or union.
2588        if (getLangOptions().Microsoft &&
2589            DK == diag::err_anonymous_record_with_type)
2590          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2591            << (int)Record->isUnion();
2592        else {
2593          Diag((*Mem)->getLocation(), DK)
2594              << (int)Record->isUnion();
2595          Invalid = true;
2596        }
2597      }
2598    }
2599  }
2600
2601  if (!Record->isUnion() && !Owner->isRecord()) {
2602    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2603      << (int)getLangOptions().CPlusPlus;
2604    Invalid = true;
2605  }
2606
2607  // Mock up a declarator.
2608  Declarator Dc(DS, Declarator::TypeNameContext);
2609  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2610  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2611
2612  // Create a declaration for this anonymous struct/union.
2613  NamedDecl *Anon = 0;
2614  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2615    Anon = FieldDecl::Create(Context, OwningClass,
2616                             DS.getSourceRange().getBegin(),
2617                             Record->getLocation(),
2618                             /*IdentifierInfo=*/0,
2619                             Context.getTypeDeclType(Record),
2620                             TInfo,
2621                             /*BitWidth=*/0, /*Mutable=*/false,
2622                             /*HasInit=*/false);
2623    Anon->setAccess(AS);
2624    if (getLangOptions().CPlusPlus)
2625      FieldCollector->Add(cast<FieldDecl>(Anon));
2626  } else {
2627    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2628    assert(SCSpec != DeclSpec::SCS_typedef &&
2629           "Parser allowed 'typedef' as storage class VarDecl.");
2630    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2631    if (SCSpec == DeclSpec::SCS_mutable) {
2632      // mutable can only appear on non-static class members, so it's always
2633      // an error here
2634      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2635      Invalid = true;
2636      SC = SC_None;
2637    }
2638    SCSpec = DS.getStorageClassSpecAsWritten();
2639    VarDecl::StorageClass SCAsWritten
2640      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2641
2642    Anon = VarDecl::Create(Context, Owner,
2643                           DS.getSourceRange().getBegin(),
2644                           Record->getLocation(), /*IdentifierInfo=*/0,
2645                           Context.getTypeDeclType(Record),
2646                           TInfo, SC, SCAsWritten);
2647  }
2648  Anon->setImplicit();
2649
2650  // Add the anonymous struct/union object to the current
2651  // context. We'll be referencing this object when we refer to one of
2652  // its members.
2653  Owner->addDecl(Anon);
2654
2655  // Inject the members of the anonymous struct/union into the owning
2656  // context and into the identifier resolver chain for name lookup
2657  // purposes.
2658  llvm::SmallVector<NamedDecl*, 2> Chain;
2659  Chain.push_back(Anon);
2660
2661  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2662                                          Chain, false))
2663    Invalid = true;
2664
2665  // Mark this as an anonymous struct/union type. Note that we do not
2666  // do this until after we have already checked and injected the
2667  // members of this anonymous struct/union type, because otherwise
2668  // the members could be injected twice: once by DeclContext when it
2669  // builds its lookup table, and once by
2670  // InjectAnonymousStructOrUnionMembers.
2671  Record->setAnonymousStructOrUnion(true);
2672
2673  if (Invalid)
2674    Anon->setInvalidDecl();
2675
2676  return Anon;
2677}
2678
2679/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2680/// Microsoft C anonymous structure.
2681/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2682/// Example:
2683///
2684/// struct A { int a; };
2685/// struct B { struct A; int b; };
2686///
2687/// void foo() {
2688///   B var;
2689///   var.a = 3;
2690/// }
2691///
2692Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2693                                           RecordDecl *Record) {
2694
2695  // If there is no Record, get the record via the typedef.
2696  if (!Record)
2697    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2698
2699  // Mock up a declarator.
2700  Declarator Dc(DS, Declarator::TypeNameContext);
2701  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2702  assert(TInfo && "couldn't build declarator info for anonymous struct");
2703
2704  // Create a declaration for this anonymous struct.
2705  NamedDecl* Anon = FieldDecl::Create(Context,
2706                             cast<RecordDecl>(CurContext),
2707                             DS.getSourceRange().getBegin(),
2708                             DS.getSourceRange().getBegin(),
2709                             /*IdentifierInfo=*/0,
2710                             Context.getTypeDeclType(Record),
2711                             TInfo,
2712                             /*BitWidth=*/0, /*Mutable=*/false,
2713                             /*HasInit=*/false);
2714  Anon->setImplicit();
2715
2716  // Add the anonymous struct object to the current context.
2717  CurContext->addDecl(Anon);
2718
2719  // Inject the members of the anonymous struct into the current
2720  // context and into the identifier resolver chain for name lookup
2721  // purposes.
2722  llvm::SmallVector<NamedDecl*, 2> Chain;
2723  Chain.push_back(Anon);
2724
2725  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2726                                          Record->getDefinition(),
2727                                          AS_none, Chain, true))
2728    Anon->setInvalidDecl();
2729
2730  return Anon;
2731}
2732
2733/// GetNameForDeclarator - Determine the full declaration name for the
2734/// given Declarator.
2735DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2736  return GetNameFromUnqualifiedId(D.getName());
2737}
2738
2739/// \brief Retrieves the declaration name from a parsed unqualified-id.
2740DeclarationNameInfo
2741Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2742  DeclarationNameInfo NameInfo;
2743  NameInfo.setLoc(Name.StartLocation);
2744
2745  switch (Name.getKind()) {
2746
2747  case UnqualifiedId::IK_Identifier:
2748    NameInfo.setName(Name.Identifier);
2749    NameInfo.setLoc(Name.StartLocation);
2750    return NameInfo;
2751
2752  case UnqualifiedId::IK_OperatorFunctionId:
2753    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2754                                           Name.OperatorFunctionId.Operator));
2755    NameInfo.setLoc(Name.StartLocation);
2756    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2757      = Name.OperatorFunctionId.SymbolLocations[0];
2758    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2759      = Name.EndLocation.getRawEncoding();
2760    return NameInfo;
2761
2762  case UnqualifiedId::IK_LiteralOperatorId:
2763    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2764                                                           Name.Identifier));
2765    NameInfo.setLoc(Name.StartLocation);
2766    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2767    return NameInfo;
2768
2769  case UnqualifiedId::IK_ConversionFunctionId: {
2770    TypeSourceInfo *TInfo;
2771    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2772    if (Ty.isNull())
2773      return DeclarationNameInfo();
2774    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2775                                               Context.getCanonicalType(Ty)));
2776    NameInfo.setLoc(Name.StartLocation);
2777    NameInfo.setNamedTypeInfo(TInfo);
2778    return NameInfo;
2779  }
2780
2781  case UnqualifiedId::IK_ConstructorName: {
2782    TypeSourceInfo *TInfo;
2783    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2784    if (Ty.isNull())
2785      return DeclarationNameInfo();
2786    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2787                                              Context.getCanonicalType(Ty)));
2788    NameInfo.setLoc(Name.StartLocation);
2789    NameInfo.setNamedTypeInfo(TInfo);
2790    return NameInfo;
2791  }
2792
2793  case UnqualifiedId::IK_ConstructorTemplateId: {
2794    // In well-formed code, we can only have a constructor
2795    // template-id that refers to the current context, so go there
2796    // to find the actual type being constructed.
2797    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2798    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2799      return DeclarationNameInfo();
2800
2801    // Determine the type of the class being constructed.
2802    QualType CurClassType = Context.getTypeDeclType(CurClass);
2803
2804    // FIXME: Check two things: that the template-id names the same type as
2805    // CurClassType, and that the template-id does not occur when the name
2806    // was qualified.
2807
2808    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2809                                    Context.getCanonicalType(CurClassType)));
2810    NameInfo.setLoc(Name.StartLocation);
2811    // FIXME: should we retrieve TypeSourceInfo?
2812    NameInfo.setNamedTypeInfo(0);
2813    return NameInfo;
2814  }
2815
2816  case UnqualifiedId::IK_DestructorName: {
2817    TypeSourceInfo *TInfo;
2818    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2819    if (Ty.isNull())
2820      return DeclarationNameInfo();
2821    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2822                                              Context.getCanonicalType(Ty)));
2823    NameInfo.setLoc(Name.StartLocation);
2824    NameInfo.setNamedTypeInfo(TInfo);
2825    return NameInfo;
2826  }
2827
2828  case UnqualifiedId::IK_TemplateId: {
2829    TemplateName TName = Name.TemplateId->Template.get();
2830    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2831    return Context.getNameForTemplate(TName, TNameLoc);
2832  }
2833
2834  } // switch (Name.getKind())
2835
2836  assert(false && "Unknown name kind");
2837  return DeclarationNameInfo();
2838}
2839
2840/// isNearlyMatchingFunction - Determine whether the C++ functions
2841/// Declaration and Definition are "nearly" matching. This heuristic
2842/// is used to improve diagnostics in the case where an out-of-line
2843/// function definition doesn't match any declaration within
2844/// the class or namespace.
2845static bool isNearlyMatchingFunction(ASTContext &Context,
2846                                     FunctionDecl *Declaration,
2847                                     FunctionDecl *Definition) {
2848  if (Declaration->param_size() != Definition->param_size())
2849    return false;
2850  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2851    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2852    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2853
2854    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2855                                        DefParamTy.getNonReferenceType()))
2856      return false;
2857  }
2858
2859  return true;
2860}
2861
2862/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2863/// declarator needs to be rebuilt in the current instantiation.
2864/// Any bits of declarator which appear before the name are valid for
2865/// consideration here.  That's specifically the type in the decl spec
2866/// and the base type in any member-pointer chunks.
2867static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2868                                                    DeclarationName Name) {
2869  // The types we specifically need to rebuild are:
2870  //   - typenames, typeofs, and decltypes
2871  //   - types which will become injected class names
2872  // Of course, we also need to rebuild any type referencing such a
2873  // type.  It's safest to just say "dependent", but we call out a
2874  // few cases here.
2875
2876  DeclSpec &DS = D.getMutableDeclSpec();
2877  switch (DS.getTypeSpecType()) {
2878  case DeclSpec::TST_typename:
2879  case DeclSpec::TST_typeofType:
2880  case DeclSpec::TST_decltype:
2881  case DeclSpec::TST_underlyingType: {
2882    // Grab the type from the parser.
2883    TypeSourceInfo *TSI = 0;
2884    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2885    if (T.isNull() || !T->isDependentType()) break;
2886
2887    // Make sure there's a type source info.  This isn't really much
2888    // of a waste; most dependent types should have type source info
2889    // attached already.
2890    if (!TSI)
2891      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2892
2893    // Rebuild the type in the current instantiation.
2894    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2895    if (!TSI) return true;
2896
2897    // Store the new type back in the decl spec.
2898    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2899    DS.UpdateTypeRep(LocType);
2900    break;
2901  }
2902
2903  case DeclSpec::TST_typeofExpr: {
2904    Expr *E = DS.getRepAsExpr();
2905    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2906    if (Result.isInvalid()) return true;
2907    DS.UpdateExprRep(Result.get());
2908    break;
2909  }
2910
2911  default:
2912    // Nothing to do for these decl specs.
2913    break;
2914  }
2915
2916  // It doesn't matter what order we do this in.
2917  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2918    DeclaratorChunk &Chunk = D.getTypeObject(I);
2919
2920    // The only type information in the declarator which can come
2921    // before the declaration name is the base type of a member
2922    // pointer.
2923    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2924      continue;
2925
2926    // Rebuild the scope specifier in-place.
2927    CXXScopeSpec &SS = Chunk.Mem.Scope();
2928    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2929      return true;
2930  }
2931
2932  return false;
2933}
2934
2935Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D,
2936                            bool IsFunctionDefinition) {
2937  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
2938                          IsFunctionDefinition);
2939}
2940
2941/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2942///   If T is the name of a class, then each of the following shall have a
2943///   name different from T:
2944///     - every static data member of class T;
2945///     - every member function of class T
2946///     - every member of class T that is itself a type;
2947/// \returns true if the declaration name violates these rules.
2948bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2949                                   DeclarationNameInfo NameInfo) {
2950  DeclarationName Name = NameInfo.getName();
2951
2952  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2953    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2954      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2955      return true;
2956    }
2957
2958  return false;
2959}
2960
2961Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2962                             MultiTemplateParamsArg TemplateParamLists,
2963                             bool IsFunctionDefinition) {
2964  // TODO: consider using NameInfo for diagnostic.
2965  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2966  DeclarationName Name = NameInfo.getName();
2967
2968  // All of these full declarators require an identifier.  If it doesn't have
2969  // one, the ParsedFreeStandingDeclSpec action should be used.
2970  if (!Name) {
2971    if (!D.isInvalidType())  // Reject this if we think it is valid.
2972      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2973           diag::err_declarator_need_ident)
2974        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2975    return 0;
2976  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2977    return 0;
2978
2979  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2980  // we find one that is.
2981  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2982         (S->getFlags() & Scope::TemplateParamScope) != 0)
2983    S = S->getParent();
2984
2985  DeclContext *DC = CurContext;
2986  if (D.getCXXScopeSpec().isInvalid())
2987    D.setInvalidType();
2988  else if (D.getCXXScopeSpec().isSet()) {
2989    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2990                                        UPPC_DeclarationQualifier))
2991      return 0;
2992
2993    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2994    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2995    if (!DC) {
2996      // If we could not compute the declaration context, it's because the
2997      // declaration context is dependent but does not refer to a class,
2998      // class template, or class template partial specialization. Complain
2999      // and return early, to avoid the coming semantic disaster.
3000      Diag(D.getIdentifierLoc(),
3001           diag::err_template_qualified_declarator_no_match)
3002        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3003        << D.getCXXScopeSpec().getRange();
3004      return 0;
3005    }
3006    bool IsDependentContext = DC->isDependentContext();
3007
3008    if (!IsDependentContext &&
3009        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3010      return 0;
3011
3012    if (isa<CXXRecordDecl>(DC)) {
3013      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3014        Diag(D.getIdentifierLoc(),
3015             diag::err_member_def_undefined_record)
3016          << Name << DC << D.getCXXScopeSpec().getRange();
3017        D.setInvalidType();
3018      } else if (isa<CXXRecordDecl>(CurContext) &&
3019                 !D.getDeclSpec().isFriendSpecified()) {
3020        // The user provided a superfluous scope specifier inside a class
3021        // definition:
3022        //
3023        // class X {
3024        //   void X::f();
3025        // };
3026        if (CurContext->Equals(DC))
3027          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3028            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3029        else
3030          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3031            << Name << D.getCXXScopeSpec().getRange();
3032
3033        // Pretend that this qualifier was not here.
3034        D.getCXXScopeSpec().clear();
3035      }
3036    }
3037
3038    // Check whether we need to rebuild the type of the given
3039    // declaration in the current instantiation.
3040    if (EnteringContext && IsDependentContext &&
3041        TemplateParamLists.size() != 0) {
3042      ContextRAII SavedContext(*this, DC);
3043      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3044        D.setInvalidType();
3045    }
3046  }
3047
3048  if (DiagnoseClassNameShadow(DC, NameInfo))
3049    // If this is a typedef, we'll end up spewing multiple diagnostics.
3050    // Just return early; it's safer.
3051    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3052      return 0;
3053
3054  NamedDecl *New;
3055
3056  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3057  QualType R = TInfo->getType();
3058
3059  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3060                                      UPPC_DeclarationType))
3061    D.setInvalidType();
3062
3063  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3064                        ForRedeclaration);
3065
3066  // See if this is a redefinition of a variable in the same scope.
3067  if (!D.getCXXScopeSpec().isSet()) {
3068    bool IsLinkageLookup = false;
3069
3070    // If the declaration we're planning to build will be a function
3071    // or object with linkage, then look for another declaration with
3072    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3073    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3074      /* Do nothing*/;
3075    else if (R->isFunctionType()) {
3076      if (CurContext->isFunctionOrMethod() ||
3077          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3078        IsLinkageLookup = true;
3079    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3080      IsLinkageLookup = true;
3081    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3082             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3083      IsLinkageLookup = true;
3084
3085    if (IsLinkageLookup)
3086      Previous.clear(LookupRedeclarationWithLinkage);
3087
3088    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3089  } else { // Something like "int foo::x;"
3090    LookupQualifiedName(Previous, DC);
3091
3092    // Don't consider using declarations as previous declarations for
3093    // out-of-line members.
3094    RemoveUsingDecls(Previous);
3095
3096    // C++ 7.3.1.2p2:
3097    // Members (including explicit specializations of templates) of a named
3098    // namespace can also be defined outside that namespace by explicit
3099    // qualification of the name being defined, provided that the entity being
3100    // defined was already declared in the namespace and the definition appears
3101    // after the point of declaration in a namespace that encloses the
3102    // declarations namespace.
3103    //
3104    // Note that we only check the context at this point. We don't yet
3105    // have enough information to make sure that PrevDecl is actually
3106    // the declaration we want to match. For example, given:
3107    //
3108    //   class X {
3109    //     void f();
3110    //     void f(float);
3111    //   };
3112    //
3113    //   void X::f(int) { } // ill-formed
3114    //
3115    // In this case, PrevDecl will point to the overload set
3116    // containing the two f's declared in X, but neither of them
3117    // matches.
3118
3119    // First check whether we named the global scope.
3120    if (isa<TranslationUnitDecl>(DC)) {
3121      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3122        << Name << D.getCXXScopeSpec().getRange();
3123    } else {
3124      DeclContext *Cur = CurContext;
3125      while (isa<LinkageSpecDecl>(Cur))
3126        Cur = Cur->getParent();
3127      if (!Cur->Encloses(DC)) {
3128        // The qualifying scope doesn't enclose the original declaration.
3129        // Emit diagnostic based on current scope.
3130        SourceLocation L = D.getIdentifierLoc();
3131        SourceRange R = D.getCXXScopeSpec().getRange();
3132        if (isa<FunctionDecl>(Cur))
3133          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3134        else
3135          Diag(L, diag::err_invalid_declarator_scope)
3136            << Name << cast<NamedDecl>(DC) << R;
3137        D.setInvalidType();
3138      }
3139    }
3140  }
3141
3142  if (Previous.isSingleResult() &&
3143      Previous.getFoundDecl()->isTemplateParameter()) {
3144    // Maybe we will complain about the shadowed template parameter.
3145    if (!D.isInvalidType())
3146      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3147                                          Previous.getFoundDecl()))
3148        D.setInvalidType();
3149
3150    // Just pretend that we didn't see the previous declaration.
3151    Previous.clear();
3152  }
3153
3154  // In C++, the previous declaration we find might be a tag type
3155  // (class or enum). In this case, the new declaration will hide the
3156  // tag type. Note that this does does not apply if we're declaring a
3157  // typedef (C++ [dcl.typedef]p4).
3158  if (Previous.isSingleTagDecl() &&
3159      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3160    Previous.clear();
3161
3162  bool Redeclaration = false;
3163  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3164    if (TemplateParamLists.size()) {
3165      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3166      return 0;
3167    }
3168
3169    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3170  } else if (R->isFunctionType()) {
3171    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3172                                  move(TemplateParamLists),
3173                                  IsFunctionDefinition, Redeclaration);
3174  } else {
3175    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3176                                  move(TemplateParamLists),
3177                                  Redeclaration);
3178  }
3179
3180  if (New == 0)
3181    return 0;
3182
3183  // If this has an identifier and is not an invalid redeclaration or
3184  // function template specialization, add it to the scope stack.
3185  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3186    PushOnScopeChains(New, S);
3187
3188  return New;
3189}
3190
3191/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3192/// types into constant array types in certain situations which would otherwise
3193/// be errors (for GCC compatibility).
3194static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3195                                                    ASTContext &Context,
3196                                                    bool &SizeIsNegative,
3197                                                    llvm::APSInt &Oversized) {
3198  // This method tries to turn a variable array into a constant
3199  // array even when the size isn't an ICE.  This is necessary
3200  // for compatibility with code that depends on gcc's buggy
3201  // constant expression folding, like struct {char x[(int)(char*)2];}
3202  SizeIsNegative = false;
3203  Oversized = 0;
3204
3205  if (T->isDependentType())
3206    return QualType();
3207
3208  QualifierCollector Qs;
3209  const Type *Ty = Qs.strip(T);
3210
3211  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3212    QualType Pointee = PTy->getPointeeType();
3213    QualType FixedType =
3214        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3215                                            Oversized);
3216    if (FixedType.isNull()) return FixedType;
3217    FixedType = Context.getPointerType(FixedType);
3218    return Qs.apply(Context, FixedType);
3219  }
3220  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3221    QualType Inner = PTy->getInnerType();
3222    QualType FixedType =
3223        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3224                                            Oversized);
3225    if (FixedType.isNull()) return FixedType;
3226    FixedType = Context.getParenType(FixedType);
3227    return Qs.apply(Context, FixedType);
3228  }
3229
3230  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3231  if (!VLATy)
3232    return QualType();
3233  // FIXME: We should probably handle this case
3234  if (VLATy->getElementType()->isVariablyModifiedType())
3235    return QualType();
3236
3237  Expr::EvalResult EvalResult;
3238  if (!VLATy->getSizeExpr() ||
3239      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3240      !EvalResult.Val.isInt())
3241    return QualType();
3242
3243  // Check whether the array size is negative.
3244  llvm::APSInt &Res = EvalResult.Val.getInt();
3245  if (Res.isSigned() && Res.isNegative()) {
3246    SizeIsNegative = true;
3247    return QualType();
3248  }
3249
3250  // Check whether the array is too large to be addressed.
3251  unsigned ActiveSizeBits
3252    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3253                                              Res);
3254  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3255    Oversized = Res;
3256    return QualType();
3257  }
3258
3259  return Context.getConstantArrayType(VLATy->getElementType(),
3260                                      Res, ArrayType::Normal, 0);
3261}
3262
3263/// \brief Register the given locally-scoped external C declaration so
3264/// that it can be found later for redeclarations
3265void
3266Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3267                                       const LookupResult &Previous,
3268                                       Scope *S) {
3269  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3270         "Decl is not a locally-scoped decl!");
3271  // Note that we have a locally-scoped external with this name.
3272  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3273
3274  if (!Previous.isSingleResult())
3275    return;
3276
3277  NamedDecl *PrevDecl = Previous.getFoundDecl();
3278
3279  // If there was a previous declaration of this variable, it may be
3280  // in our identifier chain. Update the identifier chain with the new
3281  // declaration.
3282  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3283    // The previous declaration was found on the identifer resolver
3284    // chain, so remove it from its scope.
3285    while (S && !S->isDeclScope(PrevDecl))
3286      S = S->getParent();
3287
3288    if (S)
3289      S->RemoveDecl(PrevDecl);
3290  }
3291}
3292
3293/// \brief Diagnose function specifiers on a declaration of an identifier that
3294/// does not identify a function.
3295void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3296  // FIXME: We should probably indicate the identifier in question to avoid
3297  // confusion for constructs like "inline int a(), b;"
3298  if (D.getDeclSpec().isInlineSpecified())
3299    Diag(D.getDeclSpec().getInlineSpecLoc(),
3300         diag::err_inline_non_function);
3301
3302  if (D.getDeclSpec().isVirtualSpecified())
3303    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3304         diag::err_virtual_non_function);
3305
3306  if (D.getDeclSpec().isExplicitSpecified())
3307    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3308         diag::err_explicit_non_function);
3309}
3310
3311NamedDecl*
3312Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3313                             QualType R,  TypeSourceInfo *TInfo,
3314                             LookupResult &Previous, bool &Redeclaration) {
3315  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3316  if (D.getCXXScopeSpec().isSet()) {
3317    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3318      << D.getCXXScopeSpec().getRange();
3319    D.setInvalidType();
3320    // Pretend we didn't see the scope specifier.
3321    DC = CurContext;
3322    Previous.clear();
3323  }
3324
3325  if (getLangOptions().CPlusPlus) {
3326    // Check that there are no default arguments (C++ only).
3327    CheckExtraCXXDefaultArguments(D);
3328  }
3329
3330  DiagnoseFunctionSpecifiers(D);
3331
3332  if (D.getDeclSpec().isThreadSpecified())
3333    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3334
3335  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3336    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3337      << D.getName().getSourceRange();
3338    return 0;
3339  }
3340
3341  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3342  if (!NewTD) return 0;
3343
3344  // Handle attributes prior to checking for duplicates in MergeVarDecl
3345  ProcessDeclAttributes(S, NewTD, D);
3346
3347  CheckTypedefForVariablyModifiedType(S, NewTD);
3348
3349  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3350}
3351
3352void
3353Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3354  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3355  // then it shall have block scope.
3356  // Note that variably modified types must be fixed before merging the decl so
3357  // that redeclarations will match.
3358  QualType T = NewTD->getUnderlyingType();
3359  if (T->isVariablyModifiedType()) {
3360    getCurFunction()->setHasBranchProtectedScope();
3361
3362    if (S->getFnParent() == 0) {
3363      bool SizeIsNegative;
3364      llvm::APSInt Oversized;
3365      QualType FixedTy =
3366          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3367                                              Oversized);
3368      if (!FixedTy.isNull()) {
3369        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3370        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3371      } else {
3372        if (SizeIsNegative)
3373          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3374        else if (T->isVariableArrayType())
3375          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3376        else if (Oversized.getBoolValue())
3377          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3378        else
3379          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3380        NewTD->setInvalidDecl();
3381      }
3382    }
3383  }
3384}
3385
3386
3387/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3388/// declares a typedef-name, either using the 'typedef' type specifier or via
3389/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3390NamedDecl*
3391Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3392                           LookupResult &Previous, bool &Redeclaration) {
3393  // Merge the decl with the existing one if appropriate. If the decl is
3394  // in an outer scope, it isn't the same thing.
3395  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3396                       /*ExplicitInstantiationOrSpecialization=*/false);
3397  if (!Previous.empty()) {
3398    Redeclaration = true;
3399    MergeTypedefNameDecl(NewTD, Previous);
3400  }
3401
3402  // If this is the C FILE type, notify the AST context.
3403  if (IdentifierInfo *II = NewTD->getIdentifier())
3404    if (!NewTD->isInvalidDecl() &&
3405        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3406      if (II->isStr("FILE"))
3407        Context.setFILEDecl(NewTD);
3408      else if (II->isStr("jmp_buf"))
3409        Context.setjmp_bufDecl(NewTD);
3410      else if (II->isStr("sigjmp_buf"))
3411        Context.setsigjmp_bufDecl(NewTD);
3412      else if (II->isStr("__builtin_va_list"))
3413        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3414    }
3415
3416  return NewTD;
3417}
3418
3419/// \brief Determines whether the given declaration is an out-of-scope
3420/// previous declaration.
3421///
3422/// This routine should be invoked when name lookup has found a
3423/// previous declaration (PrevDecl) that is not in the scope where a
3424/// new declaration by the same name is being introduced. If the new
3425/// declaration occurs in a local scope, previous declarations with
3426/// linkage may still be considered previous declarations (C99
3427/// 6.2.2p4-5, C++ [basic.link]p6).
3428///
3429/// \param PrevDecl the previous declaration found by name
3430/// lookup
3431///
3432/// \param DC the context in which the new declaration is being
3433/// declared.
3434///
3435/// \returns true if PrevDecl is an out-of-scope previous declaration
3436/// for a new delcaration with the same name.
3437static bool
3438isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3439                                ASTContext &Context) {
3440  if (!PrevDecl)
3441    return false;
3442
3443  if (!PrevDecl->hasLinkage())
3444    return false;
3445
3446  if (Context.getLangOptions().CPlusPlus) {
3447    // C++ [basic.link]p6:
3448    //   If there is a visible declaration of an entity with linkage
3449    //   having the same name and type, ignoring entities declared
3450    //   outside the innermost enclosing namespace scope, the block
3451    //   scope declaration declares that same entity and receives the
3452    //   linkage of the previous declaration.
3453    DeclContext *OuterContext = DC->getRedeclContext();
3454    if (!OuterContext->isFunctionOrMethod())
3455      // This rule only applies to block-scope declarations.
3456      return false;
3457
3458    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3459    if (PrevOuterContext->isRecord())
3460      // We found a member function: ignore it.
3461      return false;
3462
3463    // Find the innermost enclosing namespace for the new and
3464    // previous declarations.
3465    OuterContext = OuterContext->getEnclosingNamespaceContext();
3466    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3467
3468    // The previous declaration is in a different namespace, so it
3469    // isn't the same function.
3470    if (!OuterContext->Equals(PrevOuterContext))
3471      return false;
3472  }
3473
3474  return true;
3475}
3476
3477static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3478  CXXScopeSpec &SS = D.getCXXScopeSpec();
3479  if (!SS.isSet()) return;
3480  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3481}
3482
3483bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3484  QualType type = decl->getType();
3485  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3486  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3487    // Various kinds of declaration aren't allowed to be __autoreleasing.
3488    unsigned kind = -1U;
3489    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3490      if (var->hasAttr<BlocksAttr>())
3491        kind = 0; // __block
3492      else if (!var->hasLocalStorage())
3493        kind = 1; // global
3494    } else if (isa<ObjCIvarDecl>(decl)) {
3495      kind = 3; // ivar
3496    } else if (isa<FieldDecl>(decl)) {
3497      kind = 2; // field
3498    }
3499
3500    if (kind != -1U) {
3501      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3502        << kind;
3503    }
3504  } else if (lifetime == Qualifiers::OCL_None) {
3505    // Try to infer lifetime.
3506    if (!type->isObjCLifetimeType())
3507      return false;
3508
3509    lifetime = type->getObjCARCImplicitLifetime();
3510    type = Context.getLifetimeQualifiedType(type, lifetime);
3511    decl->setType(type);
3512  }
3513
3514  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3515    // Thread-local variables cannot have lifetime.
3516    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3517        var->isThreadSpecified()) {
3518      Diag(var->getLocation(), diag::err_arc_thread_lifetime)
3519        << var->getType();
3520      return true;
3521    }
3522  }
3523
3524  return false;
3525}
3526
3527NamedDecl*
3528Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3529                              QualType R, TypeSourceInfo *TInfo,
3530                              LookupResult &Previous,
3531                              MultiTemplateParamsArg TemplateParamLists,
3532                              bool &Redeclaration) {
3533  DeclarationName Name = GetNameForDeclarator(D).getName();
3534
3535  // Check that there are no default arguments (C++ only).
3536  if (getLangOptions().CPlusPlus)
3537    CheckExtraCXXDefaultArguments(D);
3538
3539  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3540  assert(SCSpec != DeclSpec::SCS_typedef &&
3541         "Parser allowed 'typedef' as storage class VarDecl.");
3542  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3543  if (SCSpec == DeclSpec::SCS_mutable) {
3544    // mutable can only appear on non-static class members, so it's always
3545    // an error here
3546    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3547    D.setInvalidType();
3548    SC = SC_None;
3549  }
3550  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3551  VarDecl::StorageClass SCAsWritten
3552    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3553
3554  IdentifierInfo *II = Name.getAsIdentifierInfo();
3555  if (!II) {
3556    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3557      << Name.getAsString();
3558    return 0;
3559  }
3560
3561  DiagnoseFunctionSpecifiers(D);
3562
3563  if (!DC->isRecord() && S->getFnParent() == 0) {
3564    // C99 6.9p2: The storage-class specifiers auto and register shall not
3565    // appear in the declaration specifiers in an external declaration.
3566    if (SC == SC_Auto || SC == SC_Register) {
3567
3568      // If this is a register variable with an asm label specified, then this
3569      // is a GNU extension.
3570      if (SC == SC_Register && D.getAsmLabel())
3571        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3572      else
3573        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3574      D.setInvalidType();
3575    }
3576  }
3577
3578  bool isExplicitSpecialization = false;
3579  VarDecl *NewVD;
3580  if (!getLangOptions().CPlusPlus) {
3581    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3582                            D.getIdentifierLoc(), II,
3583                            R, TInfo, SC, SCAsWritten);
3584
3585    if (D.isInvalidType())
3586      NewVD->setInvalidDecl();
3587  } else {
3588    if (DC->isRecord() && !CurContext->isRecord()) {
3589      // This is an out-of-line definition of a static data member.
3590      if (SC == SC_Static) {
3591        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3592             diag::err_static_out_of_line)
3593          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3594      } else if (SC == SC_None)
3595        SC = SC_Static;
3596    }
3597    if (SC == SC_Static) {
3598      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3599        if (RD->isLocalClass())
3600          Diag(D.getIdentifierLoc(),
3601               diag::err_static_data_member_not_allowed_in_local_class)
3602            << Name << RD->getDeclName();
3603
3604        // C++ [class.union]p1: If a union contains a static data member,
3605        // the program is ill-formed.
3606        //
3607        // We also disallow static data members in anonymous structs.
3608        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3609          Diag(D.getIdentifierLoc(),
3610               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3611            << Name << RD->isUnion();
3612      }
3613    }
3614
3615    // Match up the template parameter lists with the scope specifier, then
3616    // determine whether we have a template or a template specialization.
3617    isExplicitSpecialization = false;
3618    bool Invalid = false;
3619    if (TemplateParameterList *TemplateParams
3620        = MatchTemplateParametersToScopeSpecifier(
3621                                  D.getDeclSpec().getSourceRange().getBegin(),
3622                                                  D.getIdentifierLoc(),
3623                                                  D.getCXXScopeSpec(),
3624                                                  TemplateParamLists.get(),
3625                                                  TemplateParamLists.size(),
3626                                                  /*never a friend*/ false,
3627                                                  isExplicitSpecialization,
3628                                                  Invalid)) {
3629      if (TemplateParams->size() > 0) {
3630        // There is no such thing as a variable template.
3631        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3632          << II
3633          << SourceRange(TemplateParams->getTemplateLoc(),
3634                         TemplateParams->getRAngleLoc());
3635        return 0;
3636      } else {
3637        // There is an extraneous 'template<>' for this variable. Complain
3638        // about it, but allow the declaration of the variable.
3639        Diag(TemplateParams->getTemplateLoc(),
3640             diag::err_template_variable_noparams)
3641          << II
3642          << SourceRange(TemplateParams->getTemplateLoc(),
3643                         TemplateParams->getRAngleLoc());
3644      }
3645    }
3646
3647    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3648                            D.getIdentifierLoc(), II,
3649                            R, TInfo, SC, SCAsWritten);
3650
3651    // If this decl has an auto type in need of deduction, make a note of the
3652    // Decl so we can diagnose uses of it in its own initializer.
3653    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3654        R->getContainedAutoType())
3655      ParsingInitForAutoVars.insert(NewVD);
3656
3657    if (D.isInvalidType() || Invalid)
3658      NewVD->setInvalidDecl();
3659
3660    SetNestedNameSpecifier(NewVD, D);
3661
3662    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3663      NewVD->setTemplateParameterListsInfo(Context,
3664                                           TemplateParamLists.size(),
3665                                           TemplateParamLists.release());
3666    }
3667  }
3668
3669  if (D.getDeclSpec().isThreadSpecified()) {
3670    if (NewVD->hasLocalStorage())
3671      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3672    else if (!Context.Target.isTLSSupported())
3673      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3674    else
3675      NewVD->setThreadSpecified(true);
3676  }
3677
3678  // Set the lexical context. If the declarator has a C++ scope specifier, the
3679  // lexical context will be different from the semantic context.
3680  NewVD->setLexicalDeclContext(CurContext);
3681
3682  // Handle attributes prior to checking for duplicates in MergeVarDecl
3683  ProcessDeclAttributes(S, NewVD, D);
3684
3685  // In auto-retain/release, infer strong retension for variables of
3686  // retainable type.
3687  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3688    NewVD->setInvalidDecl();
3689
3690  // Handle GNU asm-label extension (encoded as an attribute).
3691  if (Expr *E = (Expr*)D.getAsmLabel()) {
3692    // The parser guarantees this is a string.
3693    StringLiteral *SE = cast<StringLiteral>(E);
3694    llvm::StringRef Label = SE->getString();
3695    if (S->getFnParent() != 0) {
3696      switch (SC) {
3697      case SC_None:
3698      case SC_Auto:
3699        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3700        break;
3701      case SC_Register:
3702        if (!Context.Target.isValidGCCRegisterName(Label))
3703          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3704        break;
3705      case SC_Static:
3706      case SC_Extern:
3707      case SC_PrivateExtern:
3708        break;
3709      }
3710    }
3711
3712    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3713                                                Context, Label));
3714  }
3715
3716  // Diagnose shadowed variables before filtering for scope.
3717  if (!D.getCXXScopeSpec().isSet())
3718    CheckShadow(S, NewVD, Previous);
3719
3720  // Don't consider existing declarations that are in a different
3721  // scope and are out-of-semantic-context declarations (if the new
3722  // declaration has linkage).
3723  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3724                       isExplicitSpecialization);
3725
3726  if (!getLangOptions().CPlusPlus)
3727    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3728  else {
3729    // Merge the decl with the existing one if appropriate.
3730    if (!Previous.empty()) {
3731      if (Previous.isSingleResult() &&
3732          isa<FieldDecl>(Previous.getFoundDecl()) &&
3733          D.getCXXScopeSpec().isSet()) {
3734        // The user tried to define a non-static data member
3735        // out-of-line (C++ [dcl.meaning]p1).
3736        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3737          << D.getCXXScopeSpec().getRange();
3738        Previous.clear();
3739        NewVD->setInvalidDecl();
3740      }
3741    } else if (D.getCXXScopeSpec().isSet()) {
3742      // No previous declaration in the qualifying scope.
3743      Diag(D.getIdentifierLoc(), diag::err_no_member)
3744        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3745        << D.getCXXScopeSpec().getRange();
3746      NewVD->setInvalidDecl();
3747    }
3748
3749    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3750
3751    // This is an explicit specialization of a static data member. Check it.
3752    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3753        CheckMemberSpecialization(NewVD, Previous))
3754      NewVD->setInvalidDecl();
3755  }
3756
3757  // attributes declared post-definition are currently ignored
3758  // FIXME: This should be handled in attribute merging, not
3759  // here.
3760  if (Previous.isSingleResult()) {
3761    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3762    if (Def && (Def = Def->getDefinition()) &&
3763        Def != NewVD && D.hasAttributes()) {
3764      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3765      Diag(Def->getLocation(), diag::note_previous_definition);
3766    }
3767  }
3768
3769  // If this is a locally-scoped extern C variable, update the map of
3770  // such variables.
3771  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3772      !NewVD->isInvalidDecl())
3773    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3774
3775  // If there's a #pragma GCC visibility in scope, and this isn't a class
3776  // member, set the visibility of this variable.
3777  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3778    AddPushedVisibilityAttribute(NewVD);
3779
3780  MarkUnusedFileScopedDecl(NewVD);
3781
3782  return NewVD;
3783}
3784
3785/// \brief Diagnose variable or built-in function shadowing.  Implements
3786/// -Wshadow.
3787///
3788/// This method is called whenever a VarDecl is added to a "useful"
3789/// scope.
3790///
3791/// \param S the scope in which the shadowing name is being declared
3792/// \param R the lookup of the name
3793///
3794void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3795  // Return if warning is ignored.
3796  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3797        Diagnostic::Ignored)
3798    return;
3799
3800  // Don't diagnose declarations at file scope.
3801  if (D->hasGlobalStorage())
3802    return;
3803
3804  DeclContext *NewDC = D->getDeclContext();
3805
3806  // Only diagnose if we're shadowing an unambiguous field or variable.
3807  if (R.getResultKind() != LookupResult::Found)
3808    return;
3809
3810  NamedDecl* ShadowedDecl = R.getFoundDecl();
3811  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3812    return;
3813
3814  // Fields are not shadowed by variables in C++ static methods.
3815  if (isa<FieldDecl>(ShadowedDecl))
3816    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3817      if (MD->isStatic())
3818        return;
3819
3820  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3821    if (shadowedVar->isExternC()) {
3822      // For shadowing external vars, make sure that we point to the global
3823      // declaration, not a locally scoped extern declaration.
3824      for (VarDecl::redecl_iterator
3825             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3826           I != E; ++I)
3827        if (I->isFileVarDecl()) {
3828          ShadowedDecl = *I;
3829          break;
3830        }
3831    }
3832
3833  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3834
3835  // Only warn about certain kinds of shadowing for class members.
3836  if (NewDC && NewDC->isRecord()) {
3837    // In particular, don't warn about shadowing non-class members.
3838    if (!OldDC->isRecord())
3839      return;
3840
3841    // TODO: should we warn about static data members shadowing
3842    // static data members from base classes?
3843
3844    // TODO: don't diagnose for inaccessible shadowed members.
3845    // This is hard to do perfectly because we might friend the
3846    // shadowing context, but that's just a false negative.
3847  }
3848
3849  // Determine what kind of declaration we're shadowing.
3850  unsigned Kind;
3851  if (isa<RecordDecl>(OldDC)) {
3852    if (isa<FieldDecl>(ShadowedDecl))
3853      Kind = 3; // field
3854    else
3855      Kind = 2; // static data member
3856  } else if (OldDC->isFileContext())
3857    Kind = 1; // global
3858  else
3859    Kind = 0; // local
3860
3861  DeclarationName Name = R.getLookupName();
3862
3863  // Emit warning and note.
3864  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3865  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3866}
3867
3868/// \brief Check -Wshadow without the advantage of a previous lookup.
3869void Sema::CheckShadow(Scope *S, VarDecl *D) {
3870  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3871        Diagnostic::Ignored)
3872    return;
3873
3874  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3875                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3876  LookupName(R, S);
3877  CheckShadow(S, D, R);
3878}
3879
3880/// \brief Perform semantic checking on a newly-created variable
3881/// declaration.
3882///
3883/// This routine performs all of the type-checking required for a
3884/// variable declaration once it has been built. It is used both to
3885/// check variables after they have been parsed and their declarators
3886/// have been translated into a declaration, and to check variables
3887/// that have been instantiated from a template.
3888///
3889/// Sets NewVD->isInvalidDecl() if an error was encountered.
3890void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3891                                    LookupResult &Previous,
3892                                    bool &Redeclaration) {
3893  // If the decl is already known invalid, don't check it.
3894  if (NewVD->isInvalidDecl())
3895    return;
3896
3897  QualType T = NewVD->getType();
3898
3899  if (T->isObjCObjectType()) {
3900    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3901    return NewVD->setInvalidDecl();
3902  }
3903
3904  // Emit an error if an address space was applied to decl with local storage.
3905  // This includes arrays of objects with address space qualifiers, but not
3906  // automatic variables that point to other address spaces.
3907  // ISO/IEC TR 18037 S5.1.2
3908  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3909    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3910    return NewVD->setInvalidDecl();
3911  }
3912
3913  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3914      && !NewVD->hasAttr<BlocksAttr>()) {
3915    if (getLangOptions().getGCMode() != LangOptions::NonGC)
3916      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
3917    else
3918      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3919  }
3920
3921  bool isVM = T->isVariablyModifiedType();
3922  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3923      NewVD->hasAttr<BlocksAttr>())
3924    getCurFunction()->setHasBranchProtectedScope();
3925
3926  if ((isVM && NewVD->hasLinkage()) ||
3927      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3928    bool SizeIsNegative;
3929    llvm::APSInt Oversized;
3930    QualType FixedTy =
3931        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3932                                            Oversized);
3933
3934    if (FixedTy.isNull() && T->isVariableArrayType()) {
3935      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3936      // FIXME: This won't give the correct result for
3937      // int a[10][n];
3938      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3939
3940      if (NewVD->isFileVarDecl())
3941        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3942        << SizeRange;
3943      else if (NewVD->getStorageClass() == SC_Static)
3944        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3945        << SizeRange;
3946      else
3947        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3948        << SizeRange;
3949      return NewVD->setInvalidDecl();
3950    }
3951
3952    if (FixedTy.isNull()) {
3953      if (NewVD->isFileVarDecl())
3954        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3955      else
3956        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3957      return NewVD->setInvalidDecl();
3958    }
3959
3960    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3961    NewVD->setType(FixedTy);
3962  }
3963
3964  if (Previous.empty() && NewVD->isExternC()) {
3965    // Since we did not find anything by this name and we're declaring
3966    // an extern "C" variable, look for a non-visible extern "C"
3967    // declaration with the same name.
3968    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3969      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3970    if (Pos != LocallyScopedExternalDecls.end())
3971      Previous.addDecl(Pos->second);
3972  }
3973
3974  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3975    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3976      << T;
3977    return NewVD->setInvalidDecl();
3978  }
3979
3980  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3981    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3982    return NewVD->setInvalidDecl();
3983  }
3984
3985  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3986    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3987    return NewVD->setInvalidDecl();
3988  }
3989
3990  // Function pointers and references cannot have qualified function type, only
3991  // function pointer-to-members can do that.
3992  QualType Pointee;
3993  unsigned PtrOrRef = 0;
3994  if (const PointerType *Ptr = T->getAs<PointerType>())
3995    Pointee = Ptr->getPointeeType();
3996  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3997    Pointee = Ref->getPointeeType();
3998    PtrOrRef = 1;
3999  }
4000  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4001      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4002    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4003        << PtrOrRef;
4004    return NewVD->setInvalidDecl();
4005  }
4006
4007  if (!Previous.empty()) {
4008    Redeclaration = true;
4009    MergeVarDecl(NewVD, Previous);
4010  }
4011}
4012
4013/// \brief Data used with FindOverriddenMethod
4014struct FindOverriddenMethodData {
4015  Sema *S;
4016  CXXMethodDecl *Method;
4017};
4018
4019/// \brief Member lookup function that determines whether a given C++
4020/// method overrides a method in a base class, to be used with
4021/// CXXRecordDecl::lookupInBases().
4022static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4023                                 CXXBasePath &Path,
4024                                 void *UserData) {
4025  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4026
4027  FindOverriddenMethodData *Data
4028    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4029
4030  DeclarationName Name = Data->Method->getDeclName();
4031
4032  // FIXME: Do we care about other names here too?
4033  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4034    // We really want to find the base class destructor here.
4035    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4036    CanQualType CT = Data->S->Context.getCanonicalType(T);
4037
4038    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4039  }
4040
4041  for (Path.Decls = BaseRecord->lookup(Name);
4042       Path.Decls.first != Path.Decls.second;
4043       ++Path.Decls.first) {
4044    NamedDecl *D = *Path.Decls.first;
4045    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4046      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4047        return true;
4048    }
4049  }
4050
4051  return false;
4052}
4053
4054/// AddOverriddenMethods - See if a method overrides any in the base classes,
4055/// and if so, check that it's a valid override and remember it.
4056bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4057  // Look for virtual methods in base classes that this method might override.
4058  CXXBasePaths Paths;
4059  FindOverriddenMethodData Data;
4060  Data.Method = MD;
4061  Data.S = this;
4062  bool AddedAny = false;
4063  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4064    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4065         E = Paths.found_decls_end(); I != E; ++I) {
4066      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4067        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4068            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4069            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4070          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4071          AddedAny = true;
4072        }
4073      }
4074    }
4075  }
4076
4077  return AddedAny;
4078}
4079
4080static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
4081  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
4082                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4083  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
4084  assert(!Prev.isAmbiguous() &&
4085         "Cannot have an ambiguity in previous-declaration lookup");
4086  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4087       Func != FuncEnd; ++Func) {
4088    if (isa<FunctionDecl>(*Func) &&
4089        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
4090      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
4091  }
4092}
4093
4094NamedDecl*
4095Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4096                              QualType R, TypeSourceInfo *TInfo,
4097                              LookupResult &Previous,
4098                              MultiTemplateParamsArg TemplateParamLists,
4099                              bool IsFunctionDefinition, bool &Redeclaration) {
4100  assert(R.getTypePtr()->isFunctionType());
4101
4102  // TODO: consider using NameInfo for diagnostic.
4103  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4104  DeclarationName Name = NameInfo.getName();
4105  FunctionDecl::StorageClass SC = SC_None;
4106  switch (D.getDeclSpec().getStorageClassSpec()) {
4107  default: assert(0 && "Unknown storage class!");
4108  case DeclSpec::SCS_auto:
4109  case DeclSpec::SCS_register:
4110  case DeclSpec::SCS_mutable:
4111    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4112         diag::err_typecheck_sclass_func);
4113    D.setInvalidType();
4114    break;
4115  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4116  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4117  case DeclSpec::SCS_static: {
4118    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4119      // C99 6.7.1p5:
4120      //   The declaration of an identifier for a function that has
4121      //   block scope shall have no explicit storage-class specifier
4122      //   other than extern
4123      // See also (C++ [dcl.stc]p4).
4124      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4125           diag::err_static_block_func);
4126      SC = SC_None;
4127    } else
4128      SC = SC_Static;
4129    break;
4130  }
4131  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4132  }
4133
4134  if (D.getDeclSpec().isThreadSpecified())
4135    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4136
4137  // Do not allow returning a objc interface by-value.
4138  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4139    Diag(D.getIdentifierLoc(),
4140         diag::err_object_cannot_be_passed_returned_by_value) << 0
4141    << R->getAs<FunctionType>()->getResultType();
4142    D.setInvalidType();
4143  }
4144
4145  FunctionDecl *NewFD;
4146  bool isInline = D.getDeclSpec().isInlineSpecified();
4147  bool isFriend = false;
4148  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4149  FunctionDecl::StorageClass SCAsWritten
4150    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4151  FunctionTemplateDecl *FunctionTemplate = 0;
4152  bool isExplicitSpecialization = false;
4153  bool isFunctionTemplateSpecialization = false;
4154
4155  if (!getLangOptions().CPlusPlus) {
4156    // Determine whether the function was written with a
4157    // prototype. This true when:
4158    //   - there is a prototype in the declarator, or
4159    //   - the type R of the function is some kind of typedef or other reference
4160    //     to a type name (which eventually refers to a function type).
4161    bool HasPrototype =
4162    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4163    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4164
4165    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4166                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4167                                 HasPrototype);
4168    if (D.isInvalidType())
4169      NewFD->setInvalidDecl();
4170
4171    // Set the lexical context.
4172    NewFD->setLexicalDeclContext(CurContext);
4173    // Filter out previous declarations that don't match the scope.
4174    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4175                         /*ExplicitInstantiationOrSpecialization=*/false);
4176  } else {
4177    isFriend = D.getDeclSpec().isFriendSpecified();
4178    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4179    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4180    bool isVirtualOkay = false;
4181
4182    // Check that the return type is not an abstract class type.
4183    // For record types, this is done by the AbstractClassUsageDiagnoser once
4184    // the class has been completely parsed.
4185    if (!DC->isRecord() &&
4186      RequireNonAbstractType(D.getIdentifierLoc(),
4187                             R->getAs<FunctionType>()->getResultType(),
4188                             diag::err_abstract_type_in_decl,
4189                             AbstractReturnType))
4190      D.setInvalidType();
4191
4192    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4193      // This is a C++ constructor declaration.
4194      assert(DC->isRecord() &&
4195             "Constructors can only be declared in a member context");
4196
4197      R = CheckConstructorDeclarator(D, R, SC);
4198
4199      // Create the new declaration
4200      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4201                                         Context,
4202                                         cast<CXXRecordDecl>(DC),
4203                                         D.getSourceRange().getBegin(),
4204                                         NameInfo, R, TInfo,
4205                                         isExplicit, isInline,
4206                                         /*isImplicitlyDeclared=*/false);
4207
4208      NewFD = NewCD;
4209    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4210      // This is a C++ destructor declaration.
4211      if (DC->isRecord()) {
4212        R = CheckDestructorDeclarator(D, R, SC);
4213        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4214
4215        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4216                                          D.getSourceRange().getBegin(),
4217                                          NameInfo, R, TInfo,
4218                                          isInline,
4219                                          /*isImplicitlyDeclared=*/false);
4220        NewFD = NewDD;
4221        isVirtualOkay = true;
4222
4223        // If the class is complete, then we now create the implicit exception
4224        // specification. If the class is incomplete or dependent, we can't do
4225        // it yet.
4226        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4227            Record->getDefinition() && !Record->isBeingDefined() &&
4228            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4229          AdjustDestructorExceptionSpec(Record, NewDD);
4230        }
4231
4232      } else {
4233        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4234
4235        // Create a FunctionDecl to satisfy the function definition parsing
4236        // code path.
4237        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4238                                     D.getIdentifierLoc(), Name, R, TInfo,
4239                                     SC, SCAsWritten, isInline,
4240                                     /*hasPrototype=*/true);
4241        D.setInvalidType();
4242      }
4243    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4244      if (!DC->isRecord()) {
4245        Diag(D.getIdentifierLoc(),
4246             diag::err_conv_function_not_member);
4247        return 0;
4248      }
4249
4250      CheckConversionDeclarator(D, R, SC);
4251      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4252                                        D.getSourceRange().getBegin(),
4253                                        NameInfo, R, TInfo,
4254                                        isInline, isExplicit,
4255                                        SourceLocation());
4256
4257      isVirtualOkay = true;
4258    } else if (DC->isRecord()) {
4259      // If the of the function is the same as the name of the record, then this
4260      // must be an invalid constructor that has a return type.
4261      // (The parser checks for a return type and makes the declarator a
4262      // constructor if it has no return type).
4263      // must have an invalid constructor that has a return type
4264      if (Name.getAsIdentifierInfo() &&
4265          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4266        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4267          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4268          << SourceRange(D.getIdentifierLoc());
4269        return 0;
4270      }
4271
4272      bool isStatic = SC == SC_Static;
4273
4274      // [class.free]p1:
4275      // Any allocation function for a class T is a static member
4276      // (even if not explicitly declared static).
4277      if (Name.getCXXOverloadedOperator() == OO_New ||
4278          Name.getCXXOverloadedOperator() == OO_Array_New)
4279        isStatic = true;
4280
4281      // [class.free]p6 Any deallocation function for a class X is a static member
4282      // (even if not explicitly declared static).
4283      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4284          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4285        isStatic = true;
4286
4287      // This is a C++ method declaration.
4288      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4289                                               Context, cast<CXXRecordDecl>(DC),
4290                                               D.getSourceRange().getBegin(),
4291                                               NameInfo, R, TInfo,
4292                                               isStatic, SCAsWritten, isInline,
4293                                               SourceLocation());
4294      NewFD = NewMD;
4295
4296      isVirtualOkay = !isStatic;
4297    } else {
4298      // Determine whether the function was written with a
4299      // prototype. This true when:
4300      //   - we're in C++ (where every function has a prototype),
4301      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4302                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4303                                   true/*HasPrototype*/);
4304    }
4305
4306    if (isFriend && !isInline && IsFunctionDefinition) {
4307      // C++ [class.friend]p5
4308      //   A function can be defined in a friend declaration of a
4309      //   class . . . . Such a function is implicitly inline.
4310      NewFD->setImplicitlyInline();
4311    }
4312
4313    SetNestedNameSpecifier(NewFD, D);
4314    isExplicitSpecialization = false;
4315    isFunctionTemplateSpecialization = false;
4316    if (D.isInvalidType())
4317      NewFD->setInvalidDecl();
4318
4319    // Set the lexical context. If the declarator has a C++
4320    // scope specifier, or is the object of a friend declaration, the
4321    // lexical context will be different from the semantic context.
4322    NewFD->setLexicalDeclContext(CurContext);
4323
4324    // Match up the template parameter lists with the scope specifier, then
4325    // determine whether we have a template or a template specialization.
4326    bool Invalid = false;
4327    if (TemplateParameterList *TemplateParams
4328          = MatchTemplateParametersToScopeSpecifier(
4329                                  D.getDeclSpec().getSourceRange().getBegin(),
4330                                  D.getIdentifierLoc(),
4331                                  D.getCXXScopeSpec(),
4332                                  TemplateParamLists.get(),
4333                                  TemplateParamLists.size(),
4334                                  isFriend,
4335                                  isExplicitSpecialization,
4336                                  Invalid)) {
4337      if (TemplateParams->size() > 0) {
4338        // This is a function template
4339
4340        // Check that we can declare a template here.
4341        if (CheckTemplateDeclScope(S, TemplateParams))
4342          return 0;
4343
4344        // A destructor cannot be a template.
4345        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4346          Diag(NewFD->getLocation(), diag::err_destructor_template);
4347          return 0;
4348        }
4349
4350        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4351                                                        NewFD->getLocation(),
4352                                                        Name, TemplateParams,
4353                                                        NewFD);
4354        FunctionTemplate->setLexicalDeclContext(CurContext);
4355        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4356
4357        // For source fidelity, store the other template param lists.
4358        if (TemplateParamLists.size() > 1) {
4359          NewFD->setTemplateParameterListsInfo(Context,
4360                                               TemplateParamLists.size() - 1,
4361                                               TemplateParamLists.release());
4362        }
4363      } else {
4364        // This is a function template specialization.
4365        isFunctionTemplateSpecialization = true;
4366        // For source fidelity, store all the template param lists.
4367        NewFD->setTemplateParameterListsInfo(Context,
4368                                             TemplateParamLists.size(),
4369                                             TemplateParamLists.release());
4370
4371        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4372        if (isFriend) {
4373          // We want to remove the "template<>", found here.
4374          SourceRange RemoveRange = TemplateParams->getSourceRange();
4375
4376          // If we remove the template<> and the name is not a
4377          // template-id, we're actually silently creating a problem:
4378          // the friend declaration will refer to an untemplated decl,
4379          // and clearly the user wants a template specialization.  So
4380          // we need to insert '<>' after the name.
4381          SourceLocation InsertLoc;
4382          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4383            InsertLoc = D.getName().getSourceRange().getEnd();
4384            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4385          }
4386
4387          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4388            << Name << RemoveRange
4389            << FixItHint::CreateRemoval(RemoveRange)
4390            << FixItHint::CreateInsertion(InsertLoc, "<>");
4391        }
4392      }
4393    }
4394    else {
4395      // All template param lists were matched against the scope specifier:
4396      // this is NOT (an explicit specialization of) a template.
4397      if (TemplateParamLists.size() > 0)
4398        // For source fidelity, store all the template param lists.
4399        NewFD->setTemplateParameterListsInfo(Context,
4400                                             TemplateParamLists.size(),
4401                                             TemplateParamLists.release());
4402    }
4403
4404    if (Invalid) {
4405      NewFD->setInvalidDecl();
4406      if (FunctionTemplate)
4407        FunctionTemplate->setInvalidDecl();
4408    }
4409
4410    // C++ [dcl.fct.spec]p5:
4411    //   The virtual specifier shall only be used in declarations of
4412    //   nonstatic class member functions that appear within a
4413    //   member-specification of a class declaration; see 10.3.
4414    //
4415    if (isVirtual && !NewFD->isInvalidDecl()) {
4416      if (!isVirtualOkay) {
4417        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4418             diag::err_virtual_non_function);
4419      } else if (!CurContext->isRecord()) {
4420        // 'virtual' was specified outside of the class.
4421        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4422             diag::err_virtual_out_of_class)
4423          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4424      } else if (NewFD->getDescribedFunctionTemplate()) {
4425        // C++ [temp.mem]p3:
4426        //  A member function template shall not be virtual.
4427        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4428             diag::err_virtual_member_function_template)
4429          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4430      } else {
4431        // Okay: Add virtual to the method.
4432        NewFD->setVirtualAsWritten(true);
4433      }
4434    }
4435
4436    // C++ [dcl.fct.spec]p3:
4437    //  The inline specifier shall not appear on a block scope function declaration.
4438    if (isInline && !NewFD->isInvalidDecl()) {
4439      if (CurContext->isFunctionOrMethod()) {
4440        // 'inline' is not allowed on block scope function declaration.
4441        Diag(D.getDeclSpec().getInlineSpecLoc(),
4442             diag::err_inline_declaration_block_scope) << Name
4443          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4444      }
4445    }
4446
4447    // C++ [dcl.fct.spec]p6:
4448    //  The explicit specifier shall be used only in the declaration of a
4449    //  constructor or conversion function within its class definition; see 12.3.1
4450    //  and 12.3.2.
4451    if (isExplicit && !NewFD->isInvalidDecl()) {
4452      if (!CurContext->isRecord()) {
4453        // 'explicit' was specified outside of the class.
4454        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4455             diag::err_explicit_out_of_class)
4456          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4457      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4458                 !isa<CXXConversionDecl>(NewFD)) {
4459        // 'explicit' was specified on a function that wasn't a constructor
4460        // or conversion function.
4461        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4462             diag::err_explicit_non_ctor_or_conv_function)
4463          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4464      }
4465    }
4466
4467    // Filter out previous declarations that don't match the scope.
4468    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4469                         isExplicitSpecialization ||
4470                         isFunctionTemplateSpecialization);
4471
4472    if (isFriend) {
4473      // For now, claim that the objects have no previous declaration.
4474      if (FunctionTemplate) {
4475        FunctionTemplate->setObjectOfFriendDecl(false);
4476        FunctionTemplate->setAccess(AS_public);
4477      }
4478      NewFD->setObjectOfFriendDecl(false);
4479      NewFD->setAccess(AS_public);
4480    }
4481
4482    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4483      // A method is implicitly inline if it's defined in its class
4484      // definition.
4485      NewFD->setImplicitlyInline();
4486    }
4487
4488    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4489        !CurContext->isRecord()) {
4490      // C++ [class.static]p1:
4491      //   A data or function member of a class may be declared static
4492      //   in a class definition, in which case it is a static member of
4493      //   the class.
4494
4495      // Complain about the 'static' specifier if it's on an out-of-line
4496      // member function definition.
4497      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4498           diag::err_static_out_of_line)
4499        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4500    }
4501  }
4502
4503  // Handle GNU asm-label extension (encoded as an attribute).
4504  if (Expr *E = (Expr*) D.getAsmLabel()) {
4505    // The parser guarantees this is a string.
4506    StringLiteral *SE = cast<StringLiteral>(E);
4507    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4508                                                SE->getString()));
4509  }
4510
4511  // Copy the parameter declarations from the declarator D to the function
4512  // declaration NewFD, if they are available.  First scavenge them into Params.
4513  llvm::SmallVector<ParmVarDecl*, 16> Params;
4514  if (D.isFunctionDeclarator()) {
4515    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4516
4517    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4518    // function that takes no arguments, not a function that takes a
4519    // single void argument.
4520    // We let through "const void" here because Sema::GetTypeForDeclarator
4521    // already checks for that case.
4522    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4523        FTI.ArgInfo[0].Param &&
4524        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4525      // Empty arg list, don't push any params.
4526      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4527
4528      // In C++, the empty parameter-type-list must be spelled "void"; a
4529      // typedef of void is not permitted.
4530      if (getLangOptions().CPlusPlus &&
4531          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4532        bool IsTypeAlias = false;
4533        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4534          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4535        else if (const TemplateSpecializationType *TST =
4536                   Param->getType()->getAs<TemplateSpecializationType>())
4537          IsTypeAlias = TST->isTypeAlias();
4538        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4539          << IsTypeAlias;
4540      }
4541    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4542      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4543        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4544        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4545        Param->setDeclContext(NewFD);
4546        Params.push_back(Param);
4547
4548        if (Param->isInvalidDecl())
4549          NewFD->setInvalidDecl();
4550      }
4551    }
4552
4553  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4554    // When we're declaring a function with a typedef, typeof, etc as in the
4555    // following example, we'll need to synthesize (unnamed)
4556    // parameters for use in the declaration.
4557    //
4558    // @code
4559    // typedef void fn(int);
4560    // fn f;
4561    // @endcode
4562
4563    // Synthesize a parameter for each argument type.
4564    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4565         AE = FT->arg_type_end(); AI != AE; ++AI) {
4566      ParmVarDecl *Param =
4567        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4568      Param->setScopeInfo(0, Params.size());
4569      Params.push_back(Param);
4570    }
4571  } else {
4572    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4573           "Should not need args for typedef of non-prototype fn");
4574  }
4575  // Finally, we know we have the right number of parameters, install them.
4576  NewFD->setParams(Params.data(), Params.size());
4577
4578  // Process the non-inheritable attributes on this declaration.
4579  ProcessDeclAttributes(S, NewFD, D,
4580                        /*NonInheritable=*/true, /*Inheritable=*/false);
4581
4582  if (!getLangOptions().CPlusPlus) {
4583    // Perform semantic checking on the function declaration.
4584    bool isExplicitSpecialization=false;
4585    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4586                             Redeclaration);
4587    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4588            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4589           "previous declaration set still overloaded");
4590  } else {
4591    // If the declarator is a template-id, translate the parser's template
4592    // argument list into our AST format.
4593    bool HasExplicitTemplateArgs = false;
4594    TemplateArgumentListInfo TemplateArgs;
4595    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4596      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4597      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4598      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4599      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4600                                         TemplateId->getTemplateArgs(),
4601                                         TemplateId->NumArgs);
4602      translateTemplateArguments(TemplateArgsPtr,
4603                                 TemplateArgs);
4604      TemplateArgsPtr.release();
4605
4606      HasExplicitTemplateArgs = true;
4607
4608      if (NewFD->isInvalidDecl()) {
4609        HasExplicitTemplateArgs = false;
4610      } else if (FunctionTemplate) {
4611        // Function template with explicit template arguments.
4612        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4613          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4614
4615        HasExplicitTemplateArgs = false;
4616      } else if (!isFunctionTemplateSpecialization &&
4617                 !D.getDeclSpec().isFriendSpecified()) {
4618        // We have encountered something that the user meant to be a
4619        // specialization (because it has explicitly-specified template
4620        // arguments) but that was not introduced with a "template<>" (or had
4621        // too few of them).
4622        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4623          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4624          << FixItHint::CreateInsertion(
4625                                        D.getDeclSpec().getSourceRange().getBegin(),
4626                                                  "template<> ");
4627        isFunctionTemplateSpecialization = true;
4628      } else {
4629        // "friend void foo<>(int);" is an implicit specialization decl.
4630        isFunctionTemplateSpecialization = true;
4631      }
4632    } else if (isFriend && isFunctionTemplateSpecialization) {
4633      // This combination is only possible in a recovery case;  the user
4634      // wrote something like:
4635      //   template <> friend void foo(int);
4636      // which we're recovering from as if the user had written:
4637      //   friend void foo<>(int);
4638      // Go ahead and fake up a template id.
4639      HasExplicitTemplateArgs = true;
4640        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4641      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4642    }
4643
4644    // If it's a friend (and only if it's a friend), it's possible
4645    // that either the specialized function type or the specialized
4646    // template is dependent, and therefore matching will fail.  In
4647    // this case, don't check the specialization yet.
4648    if (isFunctionTemplateSpecialization && isFriend &&
4649        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4650      assert(HasExplicitTemplateArgs &&
4651             "friend function specialization without template args");
4652      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4653                                                       Previous))
4654        NewFD->setInvalidDecl();
4655    } else if (isFunctionTemplateSpecialization) {
4656      if (CurContext->isDependentContext() && CurContext->isRecord()
4657          && !isFriend) {
4658        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4659          << NewFD->getDeclName();
4660        NewFD->setInvalidDecl();
4661        return 0;
4662      } else if (CheckFunctionTemplateSpecialization(NewFD,
4663                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4664                                                     Previous))
4665        NewFD->setInvalidDecl();
4666
4667      // C++ [dcl.stc]p1:
4668      //   A storage-class-specifier shall not be specified in an explicit
4669      //   specialization (14.7.3)
4670      if (SC != SC_None) {
4671        if (SC != NewFD->getStorageClass())
4672          Diag(NewFD->getLocation(),
4673               diag::err_explicit_specialization_inconsistent_storage_class)
4674            << SC
4675            << FixItHint::CreateRemoval(
4676                                      D.getDeclSpec().getStorageClassSpecLoc());
4677
4678        else
4679          Diag(NewFD->getLocation(),
4680               diag::ext_explicit_specialization_storage_class)
4681            << FixItHint::CreateRemoval(
4682                                      D.getDeclSpec().getStorageClassSpecLoc());
4683      }
4684
4685    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4686      if (CheckMemberSpecialization(NewFD, Previous))
4687          NewFD->setInvalidDecl();
4688    }
4689
4690    // Perform semantic checking on the function declaration.
4691    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4692                             Redeclaration);
4693
4694    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4695            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4696           "previous declaration set still overloaded");
4697
4698    NamedDecl *PrincipalDecl = (FunctionTemplate
4699                                ? cast<NamedDecl>(FunctionTemplate)
4700                                : NewFD);
4701
4702    if (isFriend && Redeclaration) {
4703      AccessSpecifier Access = AS_public;
4704      if (!NewFD->isInvalidDecl())
4705        Access = NewFD->getPreviousDeclaration()->getAccess();
4706
4707      NewFD->setAccess(Access);
4708      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4709
4710      PrincipalDecl->setObjectOfFriendDecl(true);
4711    }
4712
4713    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4714        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4715      PrincipalDecl->setNonMemberOperator();
4716
4717    // If we have a function template, check the template parameter
4718    // list. This will check and merge default template arguments.
4719    if (FunctionTemplate) {
4720      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4721      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4722                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4723                            D.getDeclSpec().isFriendSpecified()
4724                              ? (IsFunctionDefinition
4725                                   ? TPC_FriendFunctionTemplateDefinition
4726                                   : TPC_FriendFunctionTemplate)
4727                              : (D.getCXXScopeSpec().isSet() &&
4728                                 DC && DC->isRecord() &&
4729                                 DC->isDependentContext())
4730                                  ? TPC_ClassTemplateMember
4731                                  : TPC_FunctionTemplate);
4732    }
4733
4734    if (NewFD->isInvalidDecl()) {
4735      // Ignore all the rest of this.
4736    } else if (!Redeclaration) {
4737      // Fake up an access specifier if it's supposed to be a class member.
4738      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4739        NewFD->setAccess(AS_public);
4740
4741      // Qualified decls generally require a previous declaration.
4742      if (D.getCXXScopeSpec().isSet()) {
4743        // ...with the major exception of templated-scope or
4744        // dependent-scope friend declarations.
4745
4746        // TODO: we currently also suppress this check in dependent
4747        // contexts because (1) the parameter depth will be off when
4748        // matching friend templates and (2) we might actually be
4749        // selecting a friend based on a dependent factor.  But there
4750        // are situations where these conditions don't apply and we
4751        // can actually do this check immediately.
4752        if (isFriend &&
4753            (TemplateParamLists.size() ||
4754             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4755             CurContext->isDependentContext())) {
4756              // ignore these
4757            } else {
4758              // The user tried to provide an out-of-line definition for a
4759              // function that is a member of a class or namespace, but there
4760              // was no such member function declared (C++ [class.mfct]p2,
4761              // C++ [namespace.memdef]p2). For example:
4762              //
4763              // class X {
4764              //   void f() const;
4765              // };
4766              //
4767              // void X::f() { } // ill-formed
4768              //
4769              // Complain about this problem, and attempt to suggest close
4770              // matches (e.g., those that differ only in cv-qualifiers and
4771              // whether the parameter types are references).
4772              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4773              << Name << DC << D.getCXXScopeSpec().getRange();
4774              NewFD->setInvalidDecl();
4775
4776              DiagnoseInvalidRedeclaration(*this, NewFD);
4777            }
4778
4779        // Unqualified local friend declarations are required to resolve
4780        // to something.
4781        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4782          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4783          NewFD->setInvalidDecl();
4784          DiagnoseInvalidRedeclaration(*this, NewFD);
4785        }
4786
4787    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4788               !isFriend && !isFunctionTemplateSpecialization &&
4789               !isExplicitSpecialization) {
4790      // An out-of-line member function declaration must also be a
4791      // definition (C++ [dcl.meaning]p1).
4792      // Note that this is not the case for explicit specializations of
4793      // function templates or member functions of class templates, per
4794      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4795      // for compatibility with old SWIG code which likes to generate them.
4796      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4797        << D.getCXXScopeSpec().getRange();
4798    }
4799  }
4800
4801
4802  // Handle attributes. We need to have merged decls when handling attributes
4803  // (for example to check for conflicts, etc).
4804  // FIXME: This needs to happen before we merge declarations. Then,
4805  // let attribute merging cope with attribute conflicts.
4806  ProcessDeclAttributes(S, NewFD, D,
4807                        /*NonInheritable=*/false, /*Inheritable=*/true);
4808
4809  // attributes declared post-definition are currently ignored
4810  // FIXME: This should happen during attribute merging
4811  if (Redeclaration && Previous.isSingleResult()) {
4812    const FunctionDecl *Def;
4813    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4814    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
4815      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4816      Diag(Def->getLocation(), diag::note_previous_definition);
4817    }
4818  }
4819
4820  AddKnownFunctionAttributes(NewFD);
4821
4822  if (NewFD->hasAttr<OverloadableAttr>() &&
4823      !NewFD->getType()->getAs<FunctionProtoType>()) {
4824    Diag(NewFD->getLocation(),
4825         diag::err_attribute_overloadable_no_prototype)
4826      << NewFD;
4827
4828    // Turn this into a variadic function with no parameters.
4829    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4830    FunctionProtoType::ExtProtoInfo EPI;
4831    EPI.Variadic = true;
4832    EPI.ExtInfo = FT->getExtInfo();
4833
4834    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4835    NewFD->setType(R);
4836  }
4837
4838  // If there's a #pragma GCC visibility in scope, and this isn't a class
4839  // member, set the visibility of this function.
4840  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4841    AddPushedVisibilityAttribute(NewFD);
4842
4843  // If this is a locally-scoped extern C function, update the
4844  // map of such names.
4845  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4846      && !NewFD->isInvalidDecl())
4847    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4848
4849  // Set this FunctionDecl's range up to the right paren.
4850  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4851
4852  if (getLangOptions().CPlusPlus) {
4853    if (FunctionTemplate) {
4854      if (NewFD->isInvalidDecl())
4855        FunctionTemplate->setInvalidDecl();
4856      return FunctionTemplate;
4857    }
4858  }
4859
4860  MarkUnusedFileScopedDecl(NewFD);
4861
4862  if (getLangOptions().CUDA)
4863    if (IdentifierInfo *II = NewFD->getIdentifier())
4864      if (!NewFD->isInvalidDecl() &&
4865          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4866        if (II->isStr("cudaConfigureCall")) {
4867          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4868            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4869
4870          Context.setcudaConfigureCallDecl(NewFD);
4871        }
4872      }
4873
4874  return NewFD;
4875}
4876
4877/// \brief Perform semantic checking of a new function declaration.
4878///
4879/// Performs semantic analysis of the new function declaration
4880/// NewFD. This routine performs all semantic checking that does not
4881/// require the actual declarator involved in the declaration, and is
4882/// used both for the declaration of functions as they are parsed
4883/// (called via ActOnDeclarator) and for the declaration of functions
4884/// that have been instantiated via C++ template instantiation (called
4885/// via InstantiateDecl).
4886///
4887/// \param IsExplicitSpecialiation whether this new function declaration is
4888/// an explicit specialization of the previous declaration.
4889///
4890/// This sets NewFD->isInvalidDecl() to true if there was an error.
4891void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4892                                    LookupResult &Previous,
4893                                    bool IsExplicitSpecialization,
4894                                    bool &Redeclaration) {
4895  // If NewFD is already known erroneous, don't do any of this checking.
4896  if (NewFD->isInvalidDecl()) {
4897    // If this is a class member, mark the class invalid immediately.
4898    // This avoids some consistency errors later.
4899    if (isa<CXXMethodDecl>(NewFD))
4900      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4901
4902    return;
4903  }
4904
4905  if (NewFD->getResultType()->isVariablyModifiedType()) {
4906    // Functions returning a variably modified type violate C99 6.7.5.2p2
4907    // because all functions have linkage.
4908    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4909    return NewFD->setInvalidDecl();
4910  }
4911
4912  if (NewFD->isMain())
4913    CheckMain(NewFD);
4914
4915  // Check for a previous declaration of this name.
4916  if (Previous.empty() && NewFD->isExternC()) {
4917    // Since we did not find anything by this name and we're declaring
4918    // an extern "C" function, look for a non-visible extern "C"
4919    // declaration with the same name.
4920    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4921      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4922    if (Pos != LocallyScopedExternalDecls.end())
4923      Previous.addDecl(Pos->second);
4924  }
4925
4926  // Merge or overload the declaration with an existing declaration of
4927  // the same name, if appropriate.
4928  if (!Previous.empty()) {
4929    // Determine whether NewFD is an overload of PrevDecl or
4930    // a declaration that requires merging. If it's an overload,
4931    // there's no more work to do here; we'll just add the new
4932    // function to the scope.
4933
4934    NamedDecl *OldDecl = 0;
4935    if (!AllowOverloadingOfFunction(Previous, Context)) {
4936      Redeclaration = true;
4937      OldDecl = Previous.getFoundDecl();
4938    } else {
4939      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4940                            /*NewIsUsingDecl*/ false)) {
4941      case Ovl_Match:
4942        Redeclaration = true;
4943        break;
4944
4945      case Ovl_NonFunction:
4946        Redeclaration = true;
4947        break;
4948
4949      case Ovl_Overload:
4950        Redeclaration = false;
4951        break;
4952      }
4953
4954      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4955        // If a function name is overloadable in C, then every function
4956        // with that name must be marked "overloadable".
4957        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4958          << Redeclaration << NewFD;
4959        NamedDecl *OverloadedDecl = 0;
4960        if (Redeclaration)
4961          OverloadedDecl = OldDecl;
4962        else if (!Previous.empty())
4963          OverloadedDecl = Previous.getRepresentativeDecl();
4964        if (OverloadedDecl)
4965          Diag(OverloadedDecl->getLocation(),
4966               diag::note_attribute_overloadable_prev_overload);
4967        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4968                                                        Context));
4969      }
4970    }
4971
4972    if (Redeclaration) {
4973      // NewFD and OldDecl represent declarations that need to be
4974      // merged.
4975      if (MergeFunctionDecl(NewFD, OldDecl))
4976        return NewFD->setInvalidDecl();
4977
4978      Previous.clear();
4979      Previous.addDecl(OldDecl);
4980
4981      if (FunctionTemplateDecl *OldTemplateDecl
4982                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4983        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4984        FunctionTemplateDecl *NewTemplateDecl
4985          = NewFD->getDescribedFunctionTemplate();
4986        assert(NewTemplateDecl && "Template/non-template mismatch");
4987        if (CXXMethodDecl *Method
4988              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4989          Method->setAccess(OldTemplateDecl->getAccess());
4990          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4991        }
4992
4993        // If this is an explicit specialization of a member that is a function
4994        // template, mark it as a member specialization.
4995        if (IsExplicitSpecialization &&
4996            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4997          NewTemplateDecl->setMemberSpecialization();
4998          assert(OldTemplateDecl->isMemberSpecialization());
4999        }
5000      } else {
5001        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5002          NewFD->setAccess(OldDecl->getAccess());
5003        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5004      }
5005    }
5006  }
5007
5008  // Semantic checking for this function declaration (in isolation).
5009  if (getLangOptions().CPlusPlus) {
5010    // C++-specific checks.
5011    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5012      CheckConstructor(Constructor);
5013    } else if (CXXDestructorDecl *Destructor =
5014                dyn_cast<CXXDestructorDecl>(NewFD)) {
5015      CXXRecordDecl *Record = Destructor->getParent();
5016      QualType ClassType = Context.getTypeDeclType(Record);
5017
5018      // FIXME: Shouldn't we be able to perform this check even when the class
5019      // type is dependent? Both gcc and edg can handle that.
5020      if (!ClassType->isDependentType()) {
5021        DeclarationName Name
5022          = Context.DeclarationNames.getCXXDestructorName(
5023                                        Context.getCanonicalType(ClassType));
5024        if (NewFD->getDeclName() != Name) {
5025          Diag(NewFD->getLocation(), diag::err_destructor_name);
5026          return NewFD->setInvalidDecl();
5027        }
5028      }
5029    } else if (CXXConversionDecl *Conversion
5030               = dyn_cast<CXXConversionDecl>(NewFD)) {
5031      ActOnConversionDeclarator(Conversion);
5032    }
5033
5034    // Find any virtual functions that this function overrides.
5035    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5036      if (!Method->isFunctionTemplateSpecialization() &&
5037          !Method->getDescribedFunctionTemplate()) {
5038        if (AddOverriddenMethods(Method->getParent(), Method)) {
5039          // If the function was marked as "static", we have a problem.
5040          if (NewFD->getStorageClass() == SC_Static) {
5041            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5042              << NewFD->getDeclName();
5043            for (CXXMethodDecl::method_iterator
5044                      Overridden = Method->begin_overridden_methods(),
5045                   OverriddenEnd = Method->end_overridden_methods();
5046                 Overridden != OverriddenEnd;
5047                 ++Overridden) {
5048              Diag((*Overridden)->getLocation(),
5049                   diag::note_overridden_virtual_function);
5050            }
5051          }
5052        }
5053      }
5054    }
5055
5056    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5057    if (NewFD->isOverloadedOperator() &&
5058        CheckOverloadedOperatorDeclaration(NewFD))
5059      return NewFD->setInvalidDecl();
5060
5061    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5062    if (NewFD->getLiteralIdentifier() &&
5063        CheckLiteralOperatorDeclaration(NewFD))
5064      return NewFD->setInvalidDecl();
5065
5066    // In C++, check default arguments now that we have merged decls. Unless
5067    // the lexical context is the class, because in this case this is done
5068    // during delayed parsing anyway.
5069    if (!CurContext->isRecord())
5070      CheckCXXDefaultArguments(NewFD);
5071
5072    // If this function declares a builtin function, check the type of this
5073    // declaration against the expected type for the builtin.
5074    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5075      ASTContext::GetBuiltinTypeError Error;
5076      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5077      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5078        // The type of this function differs from the type of the builtin,
5079        // so forget about the builtin entirely.
5080        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5081      }
5082    }
5083  }
5084}
5085
5086void Sema::CheckMain(FunctionDecl* FD) {
5087  // C++ [basic.start.main]p3:  A program that declares main to be inline
5088  //   or static is ill-formed.
5089  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5090  //   shall not appear in a declaration of main.
5091  // static main is not an error under C99, but we should warn about it.
5092  bool isInline = FD->isInlineSpecified();
5093  bool isStatic = FD->getStorageClass() == SC_Static;
5094  if (isInline || isStatic) {
5095    unsigned diagID = diag::warn_unusual_main_decl;
5096    if (isInline || getLangOptions().CPlusPlus)
5097      diagID = diag::err_unusual_main_decl;
5098
5099    int which = isStatic + (isInline << 1) - 1;
5100    Diag(FD->getLocation(), diagID) << which;
5101  }
5102
5103  QualType T = FD->getType();
5104  assert(T->isFunctionType() && "function decl is not of function type");
5105  const FunctionType* FT = T->getAs<FunctionType>();
5106
5107  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5108    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5109    FD->setInvalidDecl(true);
5110  }
5111
5112  // Treat protoless main() as nullary.
5113  if (isa<FunctionNoProtoType>(FT)) return;
5114
5115  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5116  unsigned nparams = FTP->getNumArgs();
5117  assert(FD->getNumParams() == nparams);
5118
5119  bool HasExtraParameters = (nparams > 3);
5120
5121  // Darwin passes an undocumented fourth argument of type char**.  If
5122  // other platforms start sprouting these, the logic below will start
5123  // getting shifty.
5124  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5125    HasExtraParameters = false;
5126
5127  if (HasExtraParameters) {
5128    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5129    FD->setInvalidDecl(true);
5130    nparams = 3;
5131  }
5132
5133  // FIXME: a lot of the following diagnostics would be improved
5134  // if we had some location information about types.
5135
5136  QualType CharPP =
5137    Context.getPointerType(Context.getPointerType(Context.CharTy));
5138  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5139
5140  for (unsigned i = 0; i < nparams; ++i) {
5141    QualType AT = FTP->getArgType(i);
5142
5143    bool mismatch = true;
5144
5145    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5146      mismatch = false;
5147    else if (Expected[i] == CharPP) {
5148      // As an extension, the following forms are okay:
5149      //   char const **
5150      //   char const * const *
5151      //   char * const *
5152
5153      QualifierCollector qs;
5154      const PointerType* PT;
5155      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5156          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5157          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5158        qs.removeConst();
5159        mismatch = !qs.empty();
5160      }
5161    }
5162
5163    if (mismatch) {
5164      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5165      // TODO: suggest replacing given type with expected type
5166      FD->setInvalidDecl(true);
5167    }
5168  }
5169
5170  if (nparams == 1 && !FD->isInvalidDecl()) {
5171    Diag(FD->getLocation(), diag::warn_main_one_arg);
5172  }
5173
5174  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5175    Diag(FD->getLocation(), diag::err_main_template_decl);
5176    FD->setInvalidDecl();
5177  }
5178}
5179
5180bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5181  // FIXME: Need strict checking.  In C89, we need to check for
5182  // any assignment, increment, decrement, function-calls, or
5183  // commas outside of a sizeof.  In C99, it's the same list,
5184  // except that the aforementioned are allowed in unevaluated
5185  // expressions.  Everything else falls under the
5186  // "may accept other forms of constant expressions" exception.
5187  // (We never end up here for C++, so the constant expression
5188  // rules there don't matter.)
5189  if (Init->isConstantInitializer(Context, false))
5190    return false;
5191  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5192    << Init->getSourceRange();
5193  return true;
5194}
5195
5196namespace {
5197  // Visits an initialization expression to see if OrigDecl is evaluated in
5198  // its own initialization and throws a warning if it does.
5199  class SelfReferenceChecker
5200      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5201    Sema &S;
5202    Decl *OrigDecl;
5203
5204  public:
5205    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5206
5207    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5208                                                    S(S), OrigDecl(OrigDecl) { }
5209
5210    void VisitExpr(Expr *E) {
5211      if (isa<ObjCMessageExpr>(*E)) return;
5212      Inherited::VisitExpr(E);
5213    }
5214
5215    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5216      CheckForSelfReference(E);
5217      Inherited::VisitImplicitCastExpr(E);
5218    }
5219
5220    void CheckForSelfReference(ImplicitCastExpr *E) {
5221      if (E->getCastKind() != CK_LValueToRValue) return;
5222      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5223      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5224      if (!DRE) return;
5225      Decl* ReferenceDecl = DRE->getDecl();
5226      if (OrigDecl != ReferenceDecl) return;
5227      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5228                          Sema::NotForRedeclaration);
5229      S.DiagRuntimeBehavior(SubExpr->getLocStart(), SubExpr,
5230                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5231                              << Result.getLookupName()
5232                              << OrigDecl->getLocation()
5233                              << SubExpr->getSourceRange());
5234    }
5235  };
5236}
5237
5238/// AddInitializerToDecl - Adds the initializer Init to the
5239/// declaration dcl. If DirectInit is true, this is C++ direct
5240/// initialization rather than copy initialization.
5241void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5242                                bool DirectInit, bool TypeMayContainAuto) {
5243  // If there is no declaration, there was an error parsing it.  Just ignore
5244  // the initializer.
5245  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5246    return;
5247
5248  // Check for self-references within variable initializers.
5249  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5250    // Variables declared within a function/method body are handled
5251    // by a dataflow analysis.
5252    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5253      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5254  }
5255  else {
5256    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5257  }
5258
5259  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5260    // With declarators parsed the way they are, the parser cannot
5261    // distinguish between a normal initializer and a pure-specifier.
5262    // Thus this grotesque test.
5263    IntegerLiteral *IL;
5264    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5265        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5266      CheckPureMethod(Method, Init->getSourceRange());
5267    else {
5268      Diag(Method->getLocation(), diag::err_member_function_initialization)
5269        << Method->getDeclName() << Init->getSourceRange();
5270      Method->setInvalidDecl();
5271    }
5272    return;
5273  }
5274
5275  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5276  if (!VDecl) {
5277    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5278    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5279    RealDecl->setInvalidDecl();
5280    return;
5281  }
5282
5283  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5284  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5285    TypeSourceInfo *DeducedType = 0;
5286    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5287      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5288        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5289        << Init->getSourceRange();
5290    if (!DeducedType) {
5291      RealDecl->setInvalidDecl();
5292      return;
5293    }
5294    VDecl->setTypeSourceInfo(DeducedType);
5295    VDecl->setType(DeducedType->getType());
5296
5297    // In ARC, infer lifetime.
5298    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5299      VDecl->setInvalidDecl();
5300
5301    // If this is a redeclaration, check that the type we just deduced matches
5302    // the previously declared type.
5303    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5304      MergeVarDeclTypes(VDecl, Old);
5305  }
5306
5307
5308  // A definition must end up with a complete type, which means it must be
5309  // complete with the restriction that an array type might be completed by the
5310  // initializer; note that later code assumes this restriction.
5311  QualType BaseDeclType = VDecl->getType();
5312  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5313    BaseDeclType = Array->getElementType();
5314  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5315                          diag::err_typecheck_decl_incomplete_type)) {
5316    RealDecl->setInvalidDecl();
5317    return;
5318  }
5319
5320  // The variable can not have an abstract class type.
5321  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5322                             diag::err_abstract_type_in_decl,
5323                             AbstractVariableType))
5324    VDecl->setInvalidDecl();
5325
5326  const VarDecl *Def;
5327  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5328    Diag(VDecl->getLocation(), diag::err_redefinition)
5329      << VDecl->getDeclName();
5330    Diag(Def->getLocation(), diag::note_previous_definition);
5331    VDecl->setInvalidDecl();
5332    return;
5333  }
5334
5335  const VarDecl* PrevInit = 0;
5336  if (getLangOptions().CPlusPlus) {
5337    // C++ [class.static.data]p4
5338    //   If a static data member is of const integral or const
5339    //   enumeration type, its declaration in the class definition can
5340    //   specify a constant-initializer which shall be an integral
5341    //   constant expression (5.19). In that case, the member can appear
5342    //   in integral constant expressions. The member shall still be
5343    //   defined in a namespace scope if it is used in the program and the
5344    //   namespace scope definition shall not contain an initializer.
5345    //
5346    // We already performed a redefinition check above, but for static
5347    // data members we also need to check whether there was an in-class
5348    // declaration with an initializer.
5349    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5350      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5351      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5352      return;
5353    }
5354
5355    if (VDecl->hasLocalStorage())
5356      getCurFunction()->setHasBranchProtectedScope();
5357
5358    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5359      VDecl->setInvalidDecl();
5360      return;
5361    }
5362  }
5363
5364  // Capture the variable that is being initialized and the style of
5365  // initialization.
5366  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5367
5368  // FIXME: Poor source location information.
5369  InitializationKind Kind
5370    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5371                                                   Init->getLocStart(),
5372                                                   Init->getLocEnd())
5373                : InitializationKind::CreateCopy(VDecl->getLocation(),
5374                                                 Init->getLocStart());
5375
5376  // Get the decls type and save a reference for later, since
5377  // CheckInitializerTypes may change it.
5378  QualType DclT = VDecl->getType(), SavT = DclT;
5379  if (VDecl->isLocalVarDecl()) {
5380    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5381      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5382      VDecl->setInvalidDecl();
5383    } else if (!VDecl->isInvalidDecl()) {
5384      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5385      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5386                                                MultiExprArg(*this, &Init, 1),
5387                                                &DclT);
5388      if (Result.isInvalid()) {
5389        VDecl->setInvalidDecl();
5390        return;
5391      }
5392
5393      Init = Result.takeAs<Expr>();
5394
5395      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5396      // Don't check invalid declarations to avoid emitting useless diagnostics.
5397      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5398        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5399          CheckForConstantInitializer(Init, DclT);
5400      }
5401    }
5402  } else if (VDecl->isStaticDataMember() &&
5403             VDecl->getLexicalDeclContext()->isRecord()) {
5404    // This is an in-class initialization for a static data member, e.g.,
5405    //
5406    // struct S {
5407    //   static const int value = 17;
5408    // };
5409
5410    // Try to perform the initialization regardless.
5411    if (!VDecl->isInvalidDecl()) {
5412      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5413      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5414                                          MultiExprArg(*this, &Init, 1),
5415                                          &DclT);
5416      if (Result.isInvalid()) {
5417        VDecl->setInvalidDecl();
5418        return;
5419      }
5420
5421      Init = Result.takeAs<Expr>();
5422    }
5423
5424    // C++ [class.mem]p4:
5425    //   A member-declarator can contain a constant-initializer only
5426    //   if it declares a static member (9.4) of const integral or
5427    //   const enumeration type, see 9.4.2.
5428    QualType T = VDecl->getType();
5429
5430    // Do nothing on dependent types.
5431    if (T->isDependentType()) {
5432
5433    // Require constness.
5434    } else if (!T.isConstQualified()) {
5435      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5436        << Init->getSourceRange();
5437      VDecl->setInvalidDecl();
5438
5439    // We allow integer constant expressions in all cases.
5440    } else if (T->isIntegralOrEnumerationType()) {
5441      // Check whether the expression is a constant expression.
5442      SourceLocation Loc;
5443      if (Init->isValueDependent())
5444        ; // Nothing to check.
5445      else if (Init->isIntegerConstantExpr(Context, &Loc))
5446        ; // Ok, it's an ICE!
5447      else if (Init->isEvaluatable(Context)) {
5448        // If we can constant fold the initializer through heroics, accept it,
5449        // but report this as a use of an extension for -pedantic.
5450        Diag(Loc, diag::ext_in_class_initializer_non_constant)
5451          << Init->getSourceRange();
5452      } else {
5453        // Otherwise, this is some crazy unknown case.  Report the issue at the
5454        // location provided by the isIntegerConstantExpr failed check.
5455        Diag(Loc, diag::err_in_class_initializer_non_constant)
5456          << Init->getSourceRange();
5457        VDecl->setInvalidDecl();
5458      }
5459
5460    // We allow floating-point constants as an extension in C++03, and
5461    // C++0x has far more complicated rules that we don't really
5462    // implement fully.
5463    } else {
5464      bool Allowed = false;
5465      if (getLangOptions().CPlusPlus0x) {
5466        Allowed = T->isLiteralType();
5467      } else if (T->isFloatingType()) { // also permits complex, which is ok
5468        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5469          << T << Init->getSourceRange();
5470        Allowed = true;
5471      }
5472
5473      if (!Allowed) {
5474        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5475          << T << Init->getSourceRange();
5476        VDecl->setInvalidDecl();
5477
5478      // TODO: there are probably expressions that pass here that shouldn't.
5479      } else if (!Init->isValueDependent() &&
5480                 !Init->isConstantInitializer(Context, false)) {
5481        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5482          << Init->getSourceRange();
5483        VDecl->setInvalidDecl();
5484      }
5485    }
5486  } else if (VDecl->isFileVarDecl()) {
5487    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5488        (!getLangOptions().CPlusPlus ||
5489         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5490      Diag(VDecl->getLocation(), diag::warn_extern_init);
5491    if (!VDecl->isInvalidDecl()) {
5492      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5493      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5494                                                MultiExprArg(*this, &Init, 1),
5495                                                &DclT);
5496      if (Result.isInvalid()) {
5497        VDecl->setInvalidDecl();
5498        return;
5499      }
5500
5501      Init = Result.takeAs<Expr>();
5502    }
5503
5504    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5505    // Don't check invalid declarations to avoid emitting useless diagnostics.
5506    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5507      // C99 6.7.8p4. All file scoped initializers need to be constant.
5508      CheckForConstantInitializer(Init, DclT);
5509    }
5510  }
5511  // If the type changed, it means we had an incomplete type that was
5512  // completed by the initializer. For example:
5513  //   int ary[] = { 1, 3, 5 };
5514  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5515  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5516    VDecl->setType(DclT);
5517    Init->setType(DclT);
5518  }
5519
5520
5521  // If this variable is a local declaration with record type, make sure it
5522  // doesn't have a flexible member initialization.  We only support this as a
5523  // global/static definition.
5524  if (VDecl->hasLocalStorage())
5525    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5526      if (RT->getDecl()->hasFlexibleArrayMember()) {
5527        // Check whether the initializer tries to initialize the flexible
5528        // array member itself to anything other than an empty initializer list.
5529        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5530          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5531                                         RT->getDecl()->field_end()) - 1;
5532          if (Index < ILE->getNumInits() &&
5533              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5534                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5535            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5536            VDecl->setInvalidDecl();
5537          }
5538        }
5539      }
5540
5541  // Check any implicit conversions within the expression.
5542  CheckImplicitConversions(Init, VDecl->getLocation());
5543
5544  if (!VDecl->isInvalidDecl())
5545    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
5546
5547  Init = MaybeCreateExprWithCleanups(Init);
5548  // Attach the initializer to the decl.
5549  VDecl->setInit(Init);
5550
5551  CheckCompleteVariableDeclaration(VDecl);
5552}
5553
5554/// ActOnInitializerError - Given that there was an error parsing an
5555/// initializer for the given declaration, try to return to some form
5556/// of sanity.
5557void Sema::ActOnInitializerError(Decl *D) {
5558  // Our main concern here is re-establishing invariants like "a
5559  // variable's type is either dependent or complete".
5560  if (!D || D->isInvalidDecl()) return;
5561
5562  VarDecl *VD = dyn_cast<VarDecl>(D);
5563  if (!VD) return;
5564
5565  // Auto types are meaningless if we can't make sense of the initializer.
5566  if (ParsingInitForAutoVars.count(D)) {
5567    D->setInvalidDecl();
5568    return;
5569  }
5570
5571  QualType Ty = VD->getType();
5572  if (Ty->isDependentType()) return;
5573
5574  // Require a complete type.
5575  if (RequireCompleteType(VD->getLocation(),
5576                          Context.getBaseElementType(Ty),
5577                          diag::err_typecheck_decl_incomplete_type)) {
5578    VD->setInvalidDecl();
5579    return;
5580  }
5581
5582  // Require an abstract type.
5583  if (RequireNonAbstractType(VD->getLocation(), Ty,
5584                             diag::err_abstract_type_in_decl,
5585                             AbstractVariableType)) {
5586    VD->setInvalidDecl();
5587    return;
5588  }
5589
5590  // Don't bother complaining about constructors or destructors,
5591  // though.
5592}
5593
5594void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5595                                  bool TypeMayContainAuto) {
5596  // If there is no declaration, there was an error parsing it. Just ignore it.
5597  if (RealDecl == 0)
5598    return;
5599
5600  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5601    QualType Type = Var->getType();
5602
5603    // C++0x [dcl.spec.auto]p3
5604    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5605      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5606        << Var->getDeclName() << Type;
5607      Var->setInvalidDecl();
5608      return;
5609    }
5610
5611    switch (Var->isThisDeclarationADefinition()) {
5612    case VarDecl::Definition:
5613      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5614        break;
5615
5616      // We have an out-of-line definition of a static data member
5617      // that has an in-class initializer, so we type-check this like
5618      // a declaration.
5619      //
5620      // Fall through
5621
5622    case VarDecl::DeclarationOnly:
5623      // It's only a declaration.
5624
5625      // Block scope. C99 6.7p7: If an identifier for an object is
5626      // declared with no linkage (C99 6.2.2p6), the type for the
5627      // object shall be complete.
5628      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5629          !Var->getLinkage() && !Var->isInvalidDecl() &&
5630          RequireCompleteType(Var->getLocation(), Type,
5631                              diag::err_typecheck_decl_incomplete_type))
5632        Var->setInvalidDecl();
5633
5634      // Make sure that the type is not abstract.
5635      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5636          RequireNonAbstractType(Var->getLocation(), Type,
5637                                 diag::err_abstract_type_in_decl,
5638                                 AbstractVariableType))
5639        Var->setInvalidDecl();
5640      return;
5641
5642    case VarDecl::TentativeDefinition:
5643      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5644      // object that has file scope without an initializer, and without a
5645      // storage-class specifier or with the storage-class specifier "static",
5646      // constitutes a tentative definition. Note: A tentative definition with
5647      // external linkage is valid (C99 6.2.2p5).
5648      if (!Var->isInvalidDecl()) {
5649        if (const IncompleteArrayType *ArrayT
5650                                    = Context.getAsIncompleteArrayType(Type)) {
5651          if (RequireCompleteType(Var->getLocation(),
5652                                  ArrayT->getElementType(),
5653                                  diag::err_illegal_decl_array_incomplete_type))
5654            Var->setInvalidDecl();
5655        } else if (Var->getStorageClass() == SC_Static) {
5656          // C99 6.9.2p3: If the declaration of an identifier for an object is
5657          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5658          // declared type shall not be an incomplete type.
5659          // NOTE: code such as the following
5660          //     static struct s;
5661          //     struct s { int a; };
5662          // is accepted by gcc. Hence here we issue a warning instead of
5663          // an error and we do not invalidate the static declaration.
5664          // NOTE: to avoid multiple warnings, only check the first declaration.
5665          if (Var->getPreviousDeclaration() == 0)
5666            RequireCompleteType(Var->getLocation(), Type,
5667                                diag::ext_typecheck_decl_incomplete_type);
5668        }
5669      }
5670
5671      // Record the tentative definition; we're done.
5672      if (!Var->isInvalidDecl())
5673        TentativeDefinitions.push_back(Var);
5674      return;
5675    }
5676
5677    // Provide a specific diagnostic for uninitialized variable
5678    // definitions with incomplete array type.
5679    if (Type->isIncompleteArrayType()) {
5680      Diag(Var->getLocation(),
5681           diag::err_typecheck_incomplete_array_needs_initializer);
5682      Var->setInvalidDecl();
5683      return;
5684    }
5685
5686    // Provide a specific diagnostic for uninitialized variable
5687    // definitions with reference type.
5688    if (Type->isReferenceType()) {
5689      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5690        << Var->getDeclName()
5691        << SourceRange(Var->getLocation(), Var->getLocation());
5692      Var->setInvalidDecl();
5693      return;
5694    }
5695
5696    // Do not attempt to type-check the default initializer for a
5697    // variable with dependent type.
5698    if (Type->isDependentType())
5699      return;
5700
5701    if (Var->isInvalidDecl())
5702      return;
5703
5704    if (RequireCompleteType(Var->getLocation(),
5705                            Context.getBaseElementType(Type),
5706                            diag::err_typecheck_decl_incomplete_type)) {
5707      Var->setInvalidDecl();
5708      return;
5709    }
5710
5711    // The variable can not have an abstract class type.
5712    if (RequireNonAbstractType(Var->getLocation(), Type,
5713                               diag::err_abstract_type_in_decl,
5714                               AbstractVariableType)) {
5715      Var->setInvalidDecl();
5716      return;
5717    }
5718
5719    // Check for jumps past the implicit initializer.  C++0x
5720    // clarifies that this applies to a "variable with automatic
5721    // storage duration", not a "local variable".
5722    // C++0x [stmt.dcl]p3
5723    //   A program that jumps from a point where a variable with automatic
5724    //   storage duration is not in scope to a point where it is in scope is
5725    //   ill-formed unless the variable has scalar type, class type with a
5726    //   trivial default constructor and a trivial destructor, a cv-qualified
5727    //   version of one of these types, or an array of one of the preceding
5728    //   types and is declared without an initializer.
5729    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
5730      if (const RecordType *Record
5731            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
5732        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
5733        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
5734            (getLangOptions().CPlusPlus0x &&
5735             (!CXXRecord->hasTrivialDefaultConstructor() ||
5736              !CXXRecord->hasTrivialDestructor())))
5737          getCurFunction()->setHasBranchProtectedScope();
5738      }
5739    }
5740
5741    // C++03 [dcl.init]p9:
5742    //   If no initializer is specified for an object, and the
5743    //   object is of (possibly cv-qualified) non-POD class type (or
5744    //   array thereof), the object shall be default-initialized; if
5745    //   the object is of const-qualified type, the underlying class
5746    //   type shall have a user-declared default
5747    //   constructor. Otherwise, if no initializer is specified for
5748    //   a non- static object, the object and its subobjects, if
5749    //   any, have an indeterminate initial value); if the object
5750    //   or any of its subobjects are of const-qualified type, the
5751    //   program is ill-formed.
5752    // C++0x [dcl.init]p11:
5753    //   If no initializer is specified for an object, the object is
5754    //   default-initialized; [...].
5755    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5756    InitializationKind Kind
5757      = InitializationKind::CreateDefault(Var->getLocation());
5758
5759    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5760    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5761                                      MultiExprArg(*this, 0, 0));
5762    if (Init.isInvalid())
5763      Var->setInvalidDecl();
5764    else if (Init.get())
5765      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5766
5767    CheckCompleteVariableDeclaration(Var);
5768  }
5769}
5770
5771void Sema::ActOnCXXForRangeDecl(Decl *D) {
5772  VarDecl *VD = dyn_cast<VarDecl>(D);
5773  if (!VD) {
5774    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5775    D->setInvalidDecl();
5776    return;
5777  }
5778
5779  VD->setCXXForRangeDecl(true);
5780
5781  // for-range-declaration cannot be given a storage class specifier.
5782  int Error = -1;
5783  switch (VD->getStorageClassAsWritten()) {
5784  case SC_None:
5785    break;
5786  case SC_Extern:
5787    Error = 0;
5788    break;
5789  case SC_Static:
5790    Error = 1;
5791    break;
5792  case SC_PrivateExtern:
5793    Error = 2;
5794    break;
5795  case SC_Auto:
5796    Error = 3;
5797    break;
5798  case SC_Register:
5799    Error = 4;
5800    break;
5801  }
5802  // FIXME: constexpr isn't allowed here.
5803  //if (DS.isConstexprSpecified())
5804  //  Error = 5;
5805  if (Error != -1) {
5806    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5807      << VD->getDeclName() << Error;
5808    D->setInvalidDecl();
5809  }
5810}
5811
5812void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5813  if (var->isInvalidDecl()) return;
5814
5815  // In ARC, don't allow jumps past the implicit initialization of a
5816  // local retaining variable.
5817  if (getLangOptions().ObjCAutoRefCount &&
5818      var->hasLocalStorage()) {
5819    switch (var->getType().getObjCLifetime()) {
5820    case Qualifiers::OCL_None:
5821    case Qualifiers::OCL_ExplicitNone:
5822    case Qualifiers::OCL_Autoreleasing:
5823      break;
5824
5825    case Qualifiers::OCL_Weak:
5826    case Qualifiers::OCL_Strong:
5827      getCurFunction()->setHasBranchProtectedScope();
5828      break;
5829    }
5830  }
5831
5832  // All the following checks are C++ only.
5833  if (!getLangOptions().CPlusPlus) return;
5834
5835  QualType baseType = Context.getBaseElementType(var->getType());
5836  if (baseType->isDependentType()) return;
5837
5838  // __block variables might require us to capture a copy-initializer.
5839  if (var->hasAttr<BlocksAttr>()) {
5840    // It's currently invalid to ever have a __block variable with an
5841    // array type; should we diagnose that here?
5842
5843    // Regardless, we don't want to ignore array nesting when
5844    // constructing this copy.
5845    QualType type = var->getType();
5846
5847    if (type->isStructureOrClassType()) {
5848      SourceLocation poi = var->getLocation();
5849      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5850      ExprResult result =
5851        PerformCopyInitialization(
5852                        InitializedEntity::InitializeBlock(poi, type, false),
5853                                  poi, Owned(varRef));
5854      if (!result.isInvalid()) {
5855        result = MaybeCreateExprWithCleanups(result);
5856        Expr *init = result.takeAs<Expr>();
5857        Context.setBlockVarCopyInits(var, init);
5858      }
5859    }
5860  }
5861
5862  // Check for global constructors.
5863  if (!var->getDeclContext()->isDependentContext() &&
5864      var->hasGlobalStorage() &&
5865      !var->isStaticLocal() &&
5866      var->getInit() &&
5867      !var->getInit()->isConstantInitializer(Context,
5868                                             baseType->isReferenceType()))
5869    Diag(var->getLocation(), diag::warn_global_constructor)
5870      << var->getInit()->getSourceRange();
5871
5872  // Require the destructor.
5873  if (const RecordType *recordType = baseType->getAs<RecordType>())
5874    FinalizeVarWithDestructor(var, recordType);
5875}
5876
5877/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5878/// any semantic actions necessary after any initializer has been attached.
5879void
5880Sema::FinalizeDeclaration(Decl *ThisDecl) {
5881  // Note that we are no longer parsing the initializer for this declaration.
5882  ParsingInitForAutoVars.erase(ThisDecl);
5883}
5884
5885Sema::DeclGroupPtrTy
5886Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5887                              Decl **Group, unsigned NumDecls) {
5888  llvm::SmallVector<Decl*, 8> Decls;
5889
5890  if (DS.isTypeSpecOwned())
5891    Decls.push_back(DS.getRepAsDecl());
5892
5893  for (unsigned i = 0; i != NumDecls; ++i)
5894    if (Decl *D = Group[i])
5895      Decls.push_back(D);
5896
5897  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5898                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5899}
5900
5901/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5902/// group, performing any necessary semantic checking.
5903Sema::DeclGroupPtrTy
5904Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5905                           bool TypeMayContainAuto) {
5906  // C++0x [dcl.spec.auto]p7:
5907  //   If the type deduced for the template parameter U is not the same in each
5908  //   deduction, the program is ill-formed.
5909  // FIXME: When initializer-list support is added, a distinction is needed
5910  // between the deduced type U and the deduced type which 'auto' stands for.
5911  //   auto a = 0, b = { 1, 2, 3 };
5912  // is legal because the deduced type U is 'int' in both cases.
5913  if (TypeMayContainAuto && NumDecls > 1) {
5914    QualType Deduced;
5915    CanQualType DeducedCanon;
5916    VarDecl *DeducedDecl = 0;
5917    for (unsigned i = 0; i != NumDecls; ++i) {
5918      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5919        AutoType *AT = D->getType()->getContainedAutoType();
5920        // Don't reissue diagnostics when instantiating a template.
5921        if (AT && D->isInvalidDecl())
5922          break;
5923        if (AT && AT->isDeduced()) {
5924          QualType U = AT->getDeducedType();
5925          CanQualType UCanon = Context.getCanonicalType(U);
5926          if (Deduced.isNull()) {
5927            Deduced = U;
5928            DeducedCanon = UCanon;
5929            DeducedDecl = D;
5930          } else if (DeducedCanon != UCanon) {
5931            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5932                 diag::err_auto_different_deductions)
5933              << Deduced << DeducedDecl->getDeclName()
5934              << U << D->getDeclName()
5935              << DeducedDecl->getInit()->getSourceRange()
5936              << D->getInit()->getSourceRange();
5937            D->setInvalidDecl();
5938            break;
5939          }
5940        }
5941      }
5942    }
5943  }
5944
5945  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5946}
5947
5948
5949/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5950/// to introduce parameters into function prototype scope.
5951Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5952  const DeclSpec &DS = D.getDeclSpec();
5953
5954  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5955  VarDecl::StorageClass StorageClass = SC_None;
5956  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5957  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5958    StorageClass = SC_Register;
5959    StorageClassAsWritten = SC_Register;
5960  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5961    Diag(DS.getStorageClassSpecLoc(),
5962         diag::err_invalid_storage_class_in_func_decl);
5963    D.getMutableDeclSpec().ClearStorageClassSpecs();
5964  }
5965
5966  if (D.getDeclSpec().isThreadSpecified())
5967    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5968
5969  DiagnoseFunctionSpecifiers(D);
5970
5971  TagDecl *OwnedDecl = 0;
5972  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5973  QualType parmDeclType = TInfo->getType();
5974
5975  if (getLangOptions().CPlusPlus) {
5976    // Check that there are no default arguments inside the type of this
5977    // parameter.
5978    CheckExtraCXXDefaultArguments(D);
5979
5980    if (OwnedDecl && OwnedDecl->isDefinition()) {
5981      // C++ [dcl.fct]p6:
5982      //   Types shall not be defined in return or parameter types.
5983      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5984        << Context.getTypeDeclType(OwnedDecl);
5985    }
5986
5987    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5988    if (D.getCXXScopeSpec().isSet()) {
5989      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5990        << D.getCXXScopeSpec().getRange();
5991      D.getCXXScopeSpec().clear();
5992    }
5993  }
5994
5995  // Ensure we have a valid name
5996  IdentifierInfo *II = 0;
5997  if (D.hasName()) {
5998    II = D.getIdentifier();
5999    if (!II) {
6000      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6001        << GetNameForDeclarator(D).getName().getAsString();
6002      D.setInvalidType(true);
6003    }
6004  }
6005
6006  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6007  if (II) {
6008    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6009                   ForRedeclaration);
6010    LookupName(R, S);
6011    if (R.isSingleResult()) {
6012      NamedDecl *PrevDecl = R.getFoundDecl();
6013      if (PrevDecl->isTemplateParameter()) {
6014        // Maybe we will complain about the shadowed template parameter.
6015        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6016        // Just pretend that we didn't see the previous declaration.
6017        PrevDecl = 0;
6018      } else if (S->isDeclScope(PrevDecl)) {
6019        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6020        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6021
6022        // Recover by removing the name
6023        II = 0;
6024        D.SetIdentifier(0, D.getIdentifierLoc());
6025        D.setInvalidType(true);
6026      }
6027    }
6028  }
6029
6030  // Temporarily put parameter variables in the translation unit, not
6031  // the enclosing context.  This prevents them from accidentally
6032  // looking like class members in C++.
6033  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6034                                    D.getSourceRange().getBegin(),
6035                                    D.getIdentifierLoc(), II,
6036                                    parmDeclType, TInfo,
6037                                    StorageClass, StorageClassAsWritten);
6038
6039  if (D.isInvalidType())
6040    New->setInvalidDecl();
6041
6042  assert(S->isFunctionPrototypeScope());
6043  assert(S->getFunctionPrototypeDepth() >= 1);
6044  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6045                    S->getNextFunctionPrototypeIndex());
6046
6047  // Add the parameter declaration into this scope.
6048  S->AddDecl(New);
6049  if (II)
6050    IdResolver.AddDecl(New);
6051
6052  ProcessDeclAttributes(S, New, D);
6053
6054  if (New->hasAttr<BlocksAttr>()) {
6055    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6056  }
6057  return New;
6058}
6059
6060/// \brief Synthesizes a variable for a parameter arising from a
6061/// typedef.
6062ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6063                                              SourceLocation Loc,
6064                                              QualType T) {
6065  /* FIXME: setting StartLoc == Loc.
6066     Would it be worth to modify callers so as to provide proper source
6067     location for the unnamed parameters, embedding the parameter's type? */
6068  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6069                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6070                                           SC_None, SC_None, 0);
6071  Param->setImplicit();
6072  return Param;
6073}
6074
6075void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6076                                    ParmVarDecl * const *ParamEnd) {
6077  // Don't diagnose unused-parameter errors in template instantiations; we
6078  // will already have done so in the template itself.
6079  if (!ActiveTemplateInstantiations.empty())
6080    return;
6081
6082  for (; Param != ParamEnd; ++Param) {
6083    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6084        !(*Param)->hasAttr<UnusedAttr>()) {
6085      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6086        << (*Param)->getDeclName();
6087    }
6088  }
6089}
6090
6091void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6092                                                  ParmVarDecl * const *ParamEnd,
6093                                                  QualType ReturnTy,
6094                                                  NamedDecl *D) {
6095  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6096    return;
6097
6098  // Warn if the return value is pass-by-value and larger than the specified
6099  // threshold.
6100  if (ReturnTy.isPODType(Context)) {
6101    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6102    if (Size > LangOpts.NumLargeByValueCopy)
6103      Diag(D->getLocation(), diag::warn_return_value_size)
6104          << D->getDeclName() << Size;
6105  }
6106
6107  // Warn if any parameter is pass-by-value and larger than the specified
6108  // threshold.
6109  for (; Param != ParamEnd; ++Param) {
6110    QualType T = (*Param)->getType();
6111    if (!T.isPODType(Context))
6112      continue;
6113    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6114    if (Size > LangOpts.NumLargeByValueCopy)
6115      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6116          << (*Param)->getDeclName() << Size;
6117  }
6118}
6119
6120ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6121                                  SourceLocation NameLoc, IdentifierInfo *Name,
6122                                  QualType T, TypeSourceInfo *TSInfo,
6123                                  VarDecl::StorageClass StorageClass,
6124                                  VarDecl::StorageClass StorageClassAsWritten) {
6125  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6126  if (getLangOptions().ObjCAutoRefCount &&
6127      T.getObjCLifetime() == Qualifiers::OCL_None &&
6128      T->isObjCLifetimeType()) {
6129
6130    Qualifiers::ObjCLifetime lifetime;
6131
6132    // Special cases for arrays:
6133    //   - if it's const, use __unsafe_unretained
6134    //   - otherwise, it's an error
6135    if (T->isArrayType()) {
6136      if (!T.isConstQualified()) {
6137        Diag(NameLoc, diag::err_arc_array_param_no_lifetime)
6138          << TSInfo->getTypeLoc().getSourceRange();
6139      }
6140      lifetime = Qualifiers::OCL_ExplicitNone;
6141    } else {
6142      lifetime = T->getObjCARCImplicitLifetime();
6143    }
6144    T = Context.getLifetimeQualifiedType(T, lifetime);
6145  }
6146
6147  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6148                                         adjustParameterType(T), TSInfo,
6149                                         StorageClass, StorageClassAsWritten,
6150                                         0);
6151
6152  // Parameters can not be abstract class types.
6153  // For record types, this is done by the AbstractClassUsageDiagnoser once
6154  // the class has been completely parsed.
6155  if (!CurContext->isRecord() &&
6156      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6157                             AbstractParamType))
6158    New->setInvalidDecl();
6159
6160  // Parameter declarators cannot be interface types. All ObjC objects are
6161  // passed by reference.
6162  if (T->isObjCObjectType()) {
6163    Diag(NameLoc,
6164         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
6165    New->setInvalidDecl();
6166  }
6167
6168  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6169  // duration shall not be qualified by an address-space qualifier."
6170  // Since all parameters have automatic store duration, they can not have
6171  // an address space.
6172  if (T.getAddressSpace() != 0) {
6173    Diag(NameLoc, diag::err_arg_with_address_space);
6174    New->setInvalidDecl();
6175  }
6176
6177  return New;
6178}
6179
6180void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6181                                           SourceLocation LocAfterDecls) {
6182  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6183
6184  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6185  // for a K&R function.
6186  if (!FTI.hasPrototype) {
6187    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6188      --i;
6189      if (FTI.ArgInfo[i].Param == 0) {
6190        llvm::SmallString<256> Code;
6191        llvm::raw_svector_ostream(Code) << "  int "
6192                                        << FTI.ArgInfo[i].Ident->getName()
6193                                        << ";\n";
6194        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6195          << FTI.ArgInfo[i].Ident
6196          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6197
6198        // Implicitly declare the argument as type 'int' for lack of a better
6199        // type.
6200        AttributeFactory attrs;
6201        DeclSpec DS(attrs);
6202        const char* PrevSpec; // unused
6203        unsigned DiagID; // unused
6204        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6205                           PrevSpec, DiagID);
6206        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6207        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6208        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6209      }
6210    }
6211  }
6212}
6213
6214Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6215                                         Declarator &D) {
6216  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6217  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6218  Scope *ParentScope = FnBodyScope->getParent();
6219
6220  Decl *DP = HandleDeclarator(ParentScope, D,
6221                              MultiTemplateParamsArg(*this),
6222                              /*IsFunctionDefinition=*/true);
6223  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6224}
6225
6226static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6227  // Don't warn about invalid declarations.
6228  if (FD->isInvalidDecl())
6229    return false;
6230
6231  // Or declarations that aren't global.
6232  if (!FD->isGlobal())
6233    return false;
6234
6235  // Don't warn about C++ member functions.
6236  if (isa<CXXMethodDecl>(FD))
6237    return false;
6238
6239  // Don't warn about 'main'.
6240  if (FD->isMain())
6241    return false;
6242
6243  // Don't warn about inline functions.
6244  if (FD->isInlined())
6245    return false;
6246
6247  // Don't warn about function templates.
6248  if (FD->getDescribedFunctionTemplate())
6249    return false;
6250
6251  // Don't warn about function template specializations.
6252  if (FD->isFunctionTemplateSpecialization())
6253    return false;
6254
6255  bool MissingPrototype = true;
6256  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6257       Prev; Prev = Prev->getPreviousDeclaration()) {
6258    // Ignore any declarations that occur in function or method
6259    // scope, because they aren't visible from the header.
6260    if (Prev->getDeclContext()->isFunctionOrMethod())
6261      continue;
6262
6263    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6264    break;
6265  }
6266
6267  return MissingPrototype;
6268}
6269
6270void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6271  // Don't complain if we're in GNU89 mode and the previous definition
6272  // was an extern inline function.
6273  const FunctionDecl *Definition;
6274  if (FD->isDefined(Definition) &&
6275      !canRedefineFunction(Definition, getLangOptions())) {
6276    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6277        Definition->getStorageClass() == SC_Extern)
6278      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6279        << FD->getDeclName() << getLangOptions().CPlusPlus;
6280    else
6281      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6282    Diag(Definition->getLocation(), diag::note_previous_definition);
6283  }
6284}
6285
6286Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6287  // Clear the last template instantiation error context.
6288  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6289
6290  if (!D)
6291    return D;
6292  FunctionDecl *FD = 0;
6293
6294  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6295    FD = FunTmpl->getTemplatedDecl();
6296  else
6297    FD = cast<FunctionDecl>(D);
6298
6299  // Enter a new function scope
6300  PushFunctionScope();
6301
6302  // See if this is a redefinition.
6303  if (!FD->isLateTemplateParsed())
6304    CheckForFunctionRedefinition(FD);
6305
6306  // Builtin functions cannot be defined.
6307  if (unsigned BuiltinID = FD->getBuiltinID()) {
6308    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6309      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6310      FD->setInvalidDecl();
6311    }
6312  }
6313
6314  // The return type of a function definition must be complete
6315  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6316  QualType ResultType = FD->getResultType();
6317  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6318      !FD->isInvalidDecl() &&
6319      RequireCompleteType(FD->getLocation(), ResultType,
6320                          diag::err_func_def_incomplete_result))
6321    FD->setInvalidDecl();
6322
6323  // GNU warning -Wmissing-prototypes:
6324  //   Warn if a global function is defined without a previous
6325  //   prototype declaration. This warning is issued even if the
6326  //   definition itself provides a prototype. The aim is to detect
6327  //   global functions that fail to be declared in header files.
6328  if (ShouldWarnAboutMissingPrototype(FD))
6329    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6330
6331  if (FnBodyScope)
6332    PushDeclContext(FnBodyScope, FD);
6333
6334  // Check the validity of our function parameters
6335  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6336                           /*CheckParameterNames=*/true);
6337
6338  // Introduce our parameters into the function scope
6339  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6340    ParmVarDecl *Param = FD->getParamDecl(p);
6341    Param->setOwningFunction(FD);
6342
6343    // If this has an identifier, add it to the scope stack.
6344    if (Param->getIdentifier() && FnBodyScope) {
6345      CheckShadow(FnBodyScope, Param);
6346
6347      PushOnScopeChains(Param, FnBodyScope);
6348    }
6349  }
6350
6351  // Checking attributes of current function definition
6352  // dllimport attribute.
6353  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6354  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6355    // dllimport attribute cannot be directly applied to definition.
6356    // Microsoft accepts dllimport for functions defined within class scope.
6357    if (!DA->isInherited() &&
6358        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6359      Diag(FD->getLocation(),
6360           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6361        << "dllimport";
6362      FD->setInvalidDecl();
6363      return FD;
6364    }
6365
6366    // Visual C++ appears to not think this is an issue, so only issue
6367    // a warning when Microsoft extensions are disabled.
6368    if (!LangOpts.Microsoft) {
6369      // If a symbol previously declared dllimport is later defined, the
6370      // attribute is ignored in subsequent references, and a warning is
6371      // emitted.
6372      Diag(FD->getLocation(),
6373           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6374        << FD->getName() << "dllimport";
6375    }
6376  }
6377  return FD;
6378}
6379
6380/// \brief Given the set of return statements within a function body,
6381/// compute the variables that are subject to the named return value
6382/// optimization.
6383///
6384/// Each of the variables that is subject to the named return value
6385/// optimization will be marked as NRVO variables in the AST, and any
6386/// return statement that has a marked NRVO variable as its NRVO candidate can
6387/// use the named return value optimization.
6388///
6389/// This function applies a very simplistic algorithm for NRVO: if every return
6390/// statement in the function has the same NRVO candidate, that candidate is
6391/// the NRVO variable.
6392///
6393/// FIXME: Employ a smarter algorithm that accounts for multiple return
6394/// statements and the lifetimes of the NRVO candidates. We should be able to
6395/// find a maximal set of NRVO variables.
6396static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6397  ReturnStmt **Returns = Scope->Returns.data();
6398
6399  const VarDecl *NRVOCandidate = 0;
6400  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6401    if (!Returns[I]->getNRVOCandidate())
6402      return;
6403
6404    if (!NRVOCandidate)
6405      NRVOCandidate = Returns[I]->getNRVOCandidate();
6406    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6407      return;
6408  }
6409
6410  if (NRVOCandidate)
6411    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6412}
6413
6414Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6415  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6416}
6417
6418Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6419                                    bool IsInstantiation) {
6420  FunctionDecl *FD = 0;
6421  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6422  if (FunTmpl)
6423    FD = FunTmpl->getTemplatedDecl();
6424  else
6425    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6426
6427  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6428  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6429
6430  if (FD) {
6431    FD->setBody(Body);
6432    if (FD->isMain()) {
6433      // C and C++ allow for main to automagically return 0.
6434      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6435      FD->setHasImplicitReturnZero(true);
6436      WP.disableCheckFallThrough();
6437    }
6438
6439    // MSVC permits the use of pure specifier (=0) on function definition,
6440    // defined at class scope, warn about this non standard construct.
6441    if (getLangOptions().Microsoft && FD->isPure())
6442      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6443
6444    if (!FD->isInvalidDecl()) {
6445      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6446      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6447                                             FD->getResultType(), FD);
6448
6449      // If this is a constructor, we need a vtable.
6450      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6451        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6452
6453      ComputeNRVO(Body, getCurFunction());
6454    }
6455
6456    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6457  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6458    assert(MD == getCurMethodDecl() && "Method parsing confused");
6459    MD->setBody(Body);
6460    if (Body)
6461      MD->setEndLoc(Body->getLocEnd());
6462    if (!MD->isInvalidDecl()) {
6463      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6464      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6465                                             MD->getResultType(), MD);
6466    }
6467  } else {
6468    return 0;
6469  }
6470
6471  // Verify and clean out per-function state.
6472  if (Body) {
6473    // C++ constructors that have function-try-blocks can't have return
6474    // statements in the handlers of that block. (C++ [except.handle]p14)
6475    // Verify this.
6476    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6477      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6478
6479    // Verify that that gotos and switch cases don't jump into scopes illegally.
6480    // Verify that that gotos and switch cases don't jump into scopes illegally.
6481    if (getCurFunction()->NeedsScopeChecking() &&
6482        !dcl->isInvalidDecl() &&
6483        !hasAnyUnrecoverableErrorsInThisFunction())
6484      DiagnoseInvalidJumps(Body);
6485
6486    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6487      if (!Destructor->getParent()->isDependentType())
6488        CheckDestructor(Destructor);
6489
6490      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6491                                             Destructor->getParent());
6492    }
6493
6494    // If any errors have occurred, clear out any temporaries that may have
6495    // been leftover. This ensures that these temporaries won't be picked up for
6496    // deletion in some later function.
6497    if (PP.getDiagnostics().hasErrorOccurred() ||
6498        PP.getDiagnostics().getSuppressAllDiagnostics()) {
6499      ExprTemporaries.clear();
6500      ExprNeedsCleanups = false;
6501    } else if (!isa<FunctionTemplateDecl>(dcl)) {
6502      // Since the body is valid, issue any analysis-based warnings that are
6503      // enabled.
6504      ActivePolicy = &WP;
6505    }
6506
6507    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6508    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
6509  }
6510
6511  if (!IsInstantiation)
6512    PopDeclContext();
6513
6514  PopFunctionOrBlockScope(ActivePolicy, dcl);
6515
6516  // If any errors have occurred, clear out any temporaries that may have
6517  // been leftover. This ensures that these temporaries won't be picked up for
6518  // deletion in some later function.
6519  if (getDiagnostics().hasErrorOccurred()) {
6520    ExprTemporaries.clear();
6521    ExprNeedsCleanups = false;
6522  }
6523
6524  return dcl;
6525}
6526
6527/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6528/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6529NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6530                                          IdentifierInfo &II, Scope *S) {
6531  // Before we produce a declaration for an implicitly defined
6532  // function, see whether there was a locally-scoped declaration of
6533  // this name as a function or variable. If so, use that
6534  // (non-visible) declaration, and complain about it.
6535  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6536    = LocallyScopedExternalDecls.find(&II);
6537  if (Pos != LocallyScopedExternalDecls.end()) {
6538    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6539    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6540    return Pos->second;
6541  }
6542
6543  // Extension in C99.  Legal in C90, but warn about it.
6544  if (II.getName().startswith("__builtin_"))
6545    Diag(Loc, diag::warn_builtin_unknown) << &II;
6546  else if (getLangOptions().C99)
6547    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6548  else
6549    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6550
6551  // Set a Declarator for the implicit definition: int foo();
6552  const char *Dummy;
6553  AttributeFactory attrFactory;
6554  DeclSpec DS(attrFactory);
6555  unsigned DiagID;
6556  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6557  (void)Error; // Silence warning.
6558  assert(!Error && "Error setting up implicit decl!");
6559  Declarator D(DS, Declarator::BlockContext);
6560  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6561                                             0, 0, true, SourceLocation(),
6562                                             EST_None, SourceLocation(),
6563                                             0, 0, 0, 0, Loc, Loc, D),
6564                DS.getAttributes(),
6565                SourceLocation());
6566  D.SetIdentifier(&II, Loc);
6567
6568  // Insert this function into translation-unit scope.
6569
6570  DeclContext *PrevDC = CurContext;
6571  CurContext = Context.getTranslationUnitDecl();
6572
6573  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6574  FD->setImplicit();
6575
6576  CurContext = PrevDC;
6577
6578  AddKnownFunctionAttributes(FD);
6579
6580  return FD;
6581}
6582
6583/// \brief Adds any function attributes that we know a priori based on
6584/// the declaration of this function.
6585///
6586/// These attributes can apply both to implicitly-declared builtins
6587/// (like __builtin___printf_chk) or to library-declared functions
6588/// like NSLog or printf.
6589///
6590/// We need to check for duplicate attributes both here and where user-written
6591/// attributes are applied to declarations.
6592void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6593  if (FD->isInvalidDecl())
6594    return;
6595
6596  // If this is a built-in function, map its builtin attributes to
6597  // actual attributes.
6598  if (unsigned BuiltinID = FD->getBuiltinID()) {
6599    // Handle printf-formatting attributes.
6600    unsigned FormatIdx;
6601    bool HasVAListArg;
6602    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6603      if (!FD->getAttr<FormatAttr>())
6604        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6605                                                "printf", FormatIdx+1,
6606                                               HasVAListArg ? 0 : FormatIdx+2));
6607    }
6608    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6609                                             HasVAListArg)) {
6610     if (!FD->getAttr<FormatAttr>())
6611       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6612                                              "scanf", FormatIdx+1,
6613                                              HasVAListArg ? 0 : FormatIdx+2));
6614    }
6615
6616    // Mark const if we don't care about errno and that is the only
6617    // thing preventing the function from being const. This allows
6618    // IRgen to use LLVM intrinsics for such functions.
6619    if (!getLangOptions().MathErrno &&
6620        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6621      if (!FD->getAttr<ConstAttr>())
6622        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6623    }
6624
6625    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
6626      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6627    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
6628      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6629  }
6630
6631  IdentifierInfo *Name = FD->getIdentifier();
6632  if (!Name)
6633    return;
6634  if ((!getLangOptions().CPlusPlus &&
6635       FD->getDeclContext()->isTranslationUnit()) ||
6636      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6637       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6638       LinkageSpecDecl::lang_c)) {
6639    // Okay: this could be a libc/libm/Objective-C function we know
6640    // about.
6641  } else
6642    return;
6643
6644  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6645    // FIXME: NSLog and NSLogv should be target specific
6646    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6647      // FIXME: We known better than our headers.
6648      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6649    } else
6650      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6651                                             "printf", 1,
6652                                             Name->isStr("NSLogv") ? 0 : 2));
6653  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6654    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6655    // target-specific builtins, perhaps?
6656    if (!FD->getAttr<FormatAttr>())
6657      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6658                                             "printf", 2,
6659                                             Name->isStr("vasprintf") ? 0 : 3));
6660  }
6661}
6662
6663TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6664                                    TypeSourceInfo *TInfo) {
6665  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6666  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6667
6668  if (!TInfo) {
6669    assert(D.isInvalidType() && "no declarator info for valid type");
6670    TInfo = Context.getTrivialTypeSourceInfo(T);
6671  }
6672
6673  // Scope manipulation handled by caller.
6674  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6675                                           D.getSourceRange().getBegin(),
6676                                           D.getIdentifierLoc(),
6677                                           D.getIdentifier(),
6678                                           TInfo);
6679
6680  // Bail out immediately if we have an invalid declaration.
6681  if (D.isInvalidType()) {
6682    NewTD->setInvalidDecl();
6683    return NewTD;
6684  }
6685
6686  // C++ [dcl.typedef]p8:
6687  //   If the typedef declaration defines an unnamed class (or
6688  //   enum), the first typedef-name declared by the declaration
6689  //   to be that class type (or enum type) is used to denote the
6690  //   class type (or enum type) for linkage purposes only.
6691  // We need to check whether the type was declared in the declaration.
6692  switch (D.getDeclSpec().getTypeSpecType()) {
6693  case TST_enum:
6694  case TST_struct:
6695  case TST_union:
6696  case TST_class: {
6697    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6698
6699    // Do nothing if the tag is not anonymous or already has an
6700    // associated typedef (from an earlier typedef in this decl group).
6701    if (tagFromDeclSpec->getIdentifier()) break;
6702    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6703
6704    // A well-formed anonymous tag must always be a TUK_Definition.
6705    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6706
6707    // The type must match the tag exactly;  no qualifiers allowed.
6708    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6709      break;
6710
6711    // Otherwise, set this is the anon-decl typedef for the tag.
6712    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6713    break;
6714  }
6715
6716  default:
6717    break;
6718  }
6719
6720  return NewTD;
6721}
6722
6723
6724/// \brief Determine whether a tag with a given kind is acceptable
6725/// as a redeclaration of the given tag declaration.
6726///
6727/// \returns true if the new tag kind is acceptable, false otherwise.
6728bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6729                                        TagTypeKind NewTag, bool isDefinition,
6730                                        SourceLocation NewTagLoc,
6731                                        const IdentifierInfo &Name) {
6732  // C++ [dcl.type.elab]p3:
6733  //   The class-key or enum keyword present in the
6734  //   elaborated-type-specifier shall agree in kind with the
6735  //   declaration to which the name in the elaborated-type-specifier
6736  //   refers. This rule also applies to the form of
6737  //   elaborated-type-specifier that declares a class-name or
6738  //   friend class since it can be construed as referring to the
6739  //   definition of the class. Thus, in any
6740  //   elaborated-type-specifier, the enum keyword shall be used to
6741  //   refer to an enumeration (7.2), the union class-key shall be
6742  //   used to refer to a union (clause 9), and either the class or
6743  //   struct class-key shall be used to refer to a class (clause 9)
6744  //   declared using the class or struct class-key.
6745  TagTypeKind OldTag = Previous->getTagKind();
6746  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
6747    if (OldTag == NewTag)
6748      return true;
6749
6750  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6751      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6752    // Warn about the struct/class tag mismatch.
6753    bool isTemplate = false;
6754    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6755      isTemplate = Record->getDescribedClassTemplate();
6756
6757    if (!ActiveTemplateInstantiations.empty()) {
6758      // In a template instantiation, do not offer fix-its for tag mismatches
6759      // since they usually mess up the template instead of fixing the problem.
6760      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6761        << (NewTag == TTK_Class) << isTemplate << &Name;
6762      return true;
6763    }
6764
6765    if (isDefinition) {
6766      // On definitions, check previous tags and issue a fix-it for each
6767      // one that doesn't match the current tag.
6768      if (Previous->getDefinition()) {
6769        // Don't suggest fix-its for redefinitions.
6770        return true;
6771      }
6772
6773      bool previousMismatch = false;
6774      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
6775           E(Previous->redecls_end()); I != E; ++I) {
6776        if (I->getTagKind() != NewTag) {
6777          if (!previousMismatch) {
6778            previousMismatch = true;
6779            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
6780              << (NewTag == TTK_Class) << isTemplate << &Name;
6781          }
6782          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
6783            << (NewTag == TTK_Class)
6784            << FixItHint::CreateReplacement(I->getInnerLocStart(),
6785                                            NewTag == TTK_Class?
6786                                            "class" : "struct");
6787        }
6788      }
6789      return true;
6790    }
6791
6792    // Check for a previous definition.  If current tag and definition
6793    // are same type, do nothing.  If no definition, but disagree with
6794    // with previous tag type, give a warning, but no fix-it.
6795    const TagDecl *Redecl = Previous->getDefinition() ?
6796                            Previous->getDefinition() : Previous;
6797    if (Redecl->getTagKind() == NewTag) {
6798      return true;
6799    }
6800
6801    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6802      << (NewTag == TTK_Class)
6803      << isTemplate << &Name;
6804    Diag(Redecl->getLocation(), diag::note_previous_use);
6805
6806    // If there is a previous defintion, suggest a fix-it.
6807    if (Previous->getDefinition()) {
6808        Diag(NewTagLoc, diag::note_struct_class_suggestion)
6809          << (Redecl->getTagKind() == TTK_Class)
6810          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6811                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
6812    }
6813
6814    return true;
6815  }
6816  return false;
6817}
6818
6819/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6820/// former case, Name will be non-null.  In the later case, Name will be null.
6821/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6822/// reference/declaration/definition of a tag.
6823Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6824                     SourceLocation KWLoc, CXXScopeSpec &SS,
6825                     IdentifierInfo *Name, SourceLocation NameLoc,
6826                     AttributeList *Attr, AccessSpecifier AS,
6827                     MultiTemplateParamsArg TemplateParameterLists,
6828                     bool &OwnedDecl, bool &IsDependent,
6829                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6830                     TypeResult UnderlyingType) {
6831  // If this is not a definition, it must have a name.
6832  assert((Name != 0 || TUK == TUK_Definition) &&
6833         "Nameless record must be a definition!");
6834  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6835
6836  OwnedDecl = false;
6837  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6838
6839  // FIXME: Check explicit specializations more carefully.
6840  bool isExplicitSpecialization = false;
6841  bool Invalid = false;
6842
6843  // We only need to do this matching if we have template parameters
6844  // or a scope specifier, which also conveniently avoids this work
6845  // for non-C++ cases.
6846  if (TemplateParameterLists.size() > 0 ||
6847      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6848    if (TemplateParameterList *TemplateParams
6849          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
6850                                                TemplateParameterLists.get(),
6851                                                TemplateParameterLists.size(),
6852                                                    TUK == TUK_Friend,
6853                                                    isExplicitSpecialization,
6854                                                    Invalid)) {
6855      if (TemplateParams->size() > 0) {
6856        // This is a declaration or definition of a class template (which may
6857        // be a member of another template).
6858
6859        if (Invalid)
6860          return 0;
6861
6862        OwnedDecl = false;
6863        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6864                                               SS, Name, NameLoc, Attr,
6865                                               TemplateParams, AS,
6866                                           TemplateParameterLists.size() - 1,
6867                 (TemplateParameterList**) TemplateParameterLists.release());
6868        return Result.get();
6869      } else {
6870        // The "template<>" header is extraneous.
6871        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6872          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6873        isExplicitSpecialization = true;
6874      }
6875    }
6876  }
6877
6878  // Figure out the underlying type if this a enum declaration. We need to do
6879  // this early, because it's needed to detect if this is an incompatible
6880  // redeclaration.
6881  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6882
6883  if (Kind == TTK_Enum) {
6884    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6885      // No underlying type explicitly specified, or we failed to parse the
6886      // type, default to int.
6887      EnumUnderlying = Context.IntTy.getTypePtr();
6888    else if (UnderlyingType.get()) {
6889      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6890      // integral type; any cv-qualification is ignored.
6891      TypeSourceInfo *TI = 0;
6892      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6893      EnumUnderlying = TI;
6894
6895      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6896
6897      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6898        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6899          << T;
6900        // Recover by falling back to int.
6901        EnumUnderlying = Context.IntTy.getTypePtr();
6902      }
6903
6904      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6905                                          UPPC_FixedUnderlyingType))
6906        EnumUnderlying = Context.IntTy.getTypePtr();
6907
6908    } else if (getLangOptions().Microsoft)
6909      // Microsoft enums are always of int type.
6910      EnumUnderlying = Context.IntTy.getTypePtr();
6911  }
6912
6913  DeclContext *SearchDC = CurContext;
6914  DeclContext *DC = CurContext;
6915  bool isStdBadAlloc = false;
6916
6917  RedeclarationKind Redecl = ForRedeclaration;
6918  if (TUK == TUK_Friend || TUK == TUK_Reference)
6919    Redecl = NotForRedeclaration;
6920
6921  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6922
6923  if (Name && SS.isNotEmpty()) {
6924    // We have a nested-name tag ('struct foo::bar').
6925
6926    // Check for invalid 'foo::'.
6927    if (SS.isInvalid()) {
6928      Name = 0;
6929      goto CreateNewDecl;
6930    }
6931
6932    // If this is a friend or a reference to a class in a dependent
6933    // context, don't try to make a decl for it.
6934    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6935      DC = computeDeclContext(SS, false);
6936      if (!DC) {
6937        IsDependent = true;
6938        return 0;
6939      }
6940    } else {
6941      DC = computeDeclContext(SS, true);
6942      if (!DC) {
6943        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6944          << SS.getRange();
6945        return 0;
6946      }
6947    }
6948
6949    if (RequireCompleteDeclContext(SS, DC))
6950      return 0;
6951
6952    SearchDC = DC;
6953    // Look-up name inside 'foo::'.
6954    LookupQualifiedName(Previous, DC);
6955
6956    if (Previous.isAmbiguous())
6957      return 0;
6958
6959    if (Previous.empty()) {
6960      // Name lookup did not find anything. However, if the
6961      // nested-name-specifier refers to the current instantiation,
6962      // and that current instantiation has any dependent base
6963      // classes, we might find something at instantiation time: treat
6964      // this as a dependent elaborated-type-specifier.
6965      // But this only makes any sense for reference-like lookups.
6966      if (Previous.wasNotFoundInCurrentInstantiation() &&
6967          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6968        IsDependent = true;
6969        return 0;
6970      }
6971
6972      // A tag 'foo::bar' must already exist.
6973      Diag(NameLoc, diag::err_not_tag_in_scope)
6974        << Kind << Name << DC << SS.getRange();
6975      Name = 0;
6976      Invalid = true;
6977      goto CreateNewDecl;
6978    }
6979  } else if (Name) {
6980    // If this is a named struct, check to see if there was a previous forward
6981    // declaration or definition.
6982    // FIXME: We're looking into outer scopes here, even when we
6983    // shouldn't be. Doing so can result in ambiguities that we
6984    // shouldn't be diagnosing.
6985    LookupName(Previous, S);
6986
6987    if (Previous.isAmbiguous() &&
6988        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
6989      LookupResult::Filter F = Previous.makeFilter();
6990      while (F.hasNext()) {
6991        NamedDecl *ND = F.next();
6992        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
6993          F.erase();
6994      }
6995      F.done();
6996    }
6997
6998    // Note:  there used to be some attempt at recovery here.
6999    if (Previous.isAmbiguous())
7000      return 0;
7001
7002    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7003      // FIXME: This makes sure that we ignore the contexts associated
7004      // with C structs, unions, and enums when looking for a matching
7005      // tag declaration or definition. See the similar lookup tweak
7006      // in Sema::LookupName; is there a better way to deal with this?
7007      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7008        SearchDC = SearchDC->getParent();
7009    }
7010  } else if (S->isFunctionPrototypeScope()) {
7011    // If this is an enum declaration in function prototype scope, set its
7012    // initial context to the translation unit.
7013    SearchDC = Context.getTranslationUnitDecl();
7014  }
7015
7016  if (Previous.isSingleResult() &&
7017      Previous.getFoundDecl()->isTemplateParameter()) {
7018    // Maybe we will complain about the shadowed template parameter.
7019    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7020    // Just pretend that we didn't see the previous declaration.
7021    Previous.clear();
7022  }
7023
7024  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7025      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7026    // This is a declaration of or a reference to "std::bad_alloc".
7027    isStdBadAlloc = true;
7028
7029    if (Previous.empty() && StdBadAlloc) {
7030      // std::bad_alloc has been implicitly declared (but made invisible to
7031      // name lookup). Fill in this implicit declaration as the previous
7032      // declaration, so that the declarations get chained appropriately.
7033      Previous.addDecl(getStdBadAlloc());
7034    }
7035  }
7036
7037  // If we didn't find a previous declaration, and this is a reference
7038  // (or friend reference), move to the correct scope.  In C++, we
7039  // also need to do a redeclaration lookup there, just in case
7040  // there's a shadow friend decl.
7041  if (Name && Previous.empty() &&
7042      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7043    if (Invalid) goto CreateNewDecl;
7044    assert(SS.isEmpty());
7045
7046    if (TUK == TUK_Reference) {
7047      // C++ [basic.scope.pdecl]p5:
7048      //   -- for an elaborated-type-specifier of the form
7049      //
7050      //          class-key identifier
7051      //
7052      //      if the elaborated-type-specifier is used in the
7053      //      decl-specifier-seq or parameter-declaration-clause of a
7054      //      function defined in namespace scope, the identifier is
7055      //      declared as a class-name in the namespace that contains
7056      //      the declaration; otherwise, except as a friend
7057      //      declaration, the identifier is declared in the smallest
7058      //      non-class, non-function-prototype scope that contains the
7059      //      declaration.
7060      //
7061      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7062      // C structs and unions.
7063      //
7064      // It is an error in C++ to declare (rather than define) an enum
7065      // type, including via an elaborated type specifier.  We'll
7066      // diagnose that later; for now, declare the enum in the same
7067      // scope as we would have picked for any other tag type.
7068      //
7069      // GNU C also supports this behavior as part of its incomplete
7070      // enum types extension, while GNU C++ does not.
7071      //
7072      // Find the context where we'll be declaring the tag.
7073      // FIXME: We would like to maintain the current DeclContext as the
7074      // lexical context,
7075      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7076        SearchDC = SearchDC->getParent();
7077
7078      // Find the scope where we'll be declaring the tag.
7079      while (S->isClassScope() ||
7080             (getLangOptions().CPlusPlus &&
7081              S->isFunctionPrototypeScope()) ||
7082             ((S->getFlags() & Scope::DeclScope) == 0) ||
7083             (S->getEntity() &&
7084              ((DeclContext *)S->getEntity())->isTransparentContext()))
7085        S = S->getParent();
7086    } else {
7087      assert(TUK == TUK_Friend);
7088      // C++ [namespace.memdef]p3:
7089      //   If a friend declaration in a non-local class first declares a
7090      //   class or function, the friend class or function is a member of
7091      //   the innermost enclosing namespace.
7092      SearchDC = SearchDC->getEnclosingNamespaceContext();
7093    }
7094
7095    // In C++, we need to do a redeclaration lookup to properly
7096    // diagnose some problems.
7097    if (getLangOptions().CPlusPlus) {
7098      Previous.setRedeclarationKind(ForRedeclaration);
7099      LookupQualifiedName(Previous, SearchDC);
7100    }
7101  }
7102
7103  if (!Previous.empty()) {
7104    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7105
7106    // It's okay to have a tag decl in the same scope as a typedef
7107    // which hides a tag decl in the same scope.  Finding this
7108    // insanity with a redeclaration lookup can only actually happen
7109    // in C++.
7110    //
7111    // This is also okay for elaborated-type-specifiers, which is
7112    // technically forbidden by the current standard but which is
7113    // okay according to the likely resolution of an open issue;
7114    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7115    if (getLangOptions().CPlusPlus) {
7116      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7117        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7118          TagDecl *Tag = TT->getDecl();
7119          if (Tag->getDeclName() == Name &&
7120              Tag->getDeclContext()->getRedeclContext()
7121                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7122            PrevDecl = Tag;
7123            Previous.clear();
7124            Previous.addDecl(Tag);
7125            Previous.resolveKind();
7126          }
7127        }
7128      }
7129    }
7130
7131    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7132      // If this is a use of a previous tag, or if the tag is already declared
7133      // in the same scope (so that the definition/declaration completes or
7134      // rementions the tag), reuse the decl.
7135      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7136          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7137        // Make sure that this wasn't declared as an enum and now used as a
7138        // struct or something similar.
7139        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7140                                          TUK == TUK_Definition, KWLoc,
7141                                          *Name)) {
7142          bool SafeToContinue
7143            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7144               Kind != TTK_Enum);
7145          if (SafeToContinue)
7146            Diag(KWLoc, diag::err_use_with_wrong_tag)
7147              << Name
7148              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7149                                              PrevTagDecl->getKindName());
7150          else
7151            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7152          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7153
7154          if (SafeToContinue)
7155            Kind = PrevTagDecl->getTagKind();
7156          else {
7157            // Recover by making this an anonymous redefinition.
7158            Name = 0;
7159            Previous.clear();
7160            Invalid = true;
7161          }
7162        }
7163
7164        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7165          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7166
7167          // All conflicts with previous declarations are recovered by
7168          // returning the previous declaration.
7169          if (ScopedEnum != PrevEnum->isScoped()) {
7170            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7171              << PrevEnum->isScoped();
7172            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7173            return PrevTagDecl;
7174          }
7175          else if (EnumUnderlying && PrevEnum->isFixed()) {
7176            QualType T;
7177            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7178                T = TI->getType();
7179            else
7180                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7181
7182            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7183              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7184                   diag::err_enum_redeclare_type_mismatch)
7185                << T
7186                << PrevEnum->getIntegerType();
7187              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7188              return PrevTagDecl;
7189            }
7190          }
7191          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7192            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7193              << PrevEnum->isFixed();
7194            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7195            return PrevTagDecl;
7196          }
7197        }
7198
7199        if (!Invalid) {
7200          // If this is a use, just return the declaration we found.
7201
7202          // FIXME: In the future, return a variant or some other clue
7203          // for the consumer of this Decl to know it doesn't own it.
7204          // For our current ASTs this shouldn't be a problem, but will
7205          // need to be changed with DeclGroups.
7206          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7207               getLangOptions().Microsoft)) || TUK == TUK_Friend)
7208            return PrevTagDecl;
7209
7210          // Diagnose attempts to redefine a tag.
7211          if (TUK == TUK_Definition) {
7212            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7213              // If we're defining a specialization and the previous definition
7214              // is from an implicit instantiation, don't emit an error
7215              // here; we'll catch this in the general case below.
7216              if (!isExplicitSpecialization ||
7217                  !isa<CXXRecordDecl>(Def) ||
7218                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7219                                               == TSK_ExplicitSpecialization) {
7220                Diag(NameLoc, diag::err_redefinition) << Name;
7221                Diag(Def->getLocation(), diag::note_previous_definition);
7222                // If this is a redefinition, recover by making this
7223                // struct be anonymous, which will make any later
7224                // references get the previous definition.
7225                Name = 0;
7226                Previous.clear();
7227                Invalid = true;
7228              }
7229            } else {
7230              // If the type is currently being defined, complain
7231              // about a nested redefinition.
7232              const TagType *Tag
7233                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7234              if (Tag->isBeingDefined()) {
7235                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7236                Diag(PrevTagDecl->getLocation(),
7237                     diag::note_previous_definition);
7238                Name = 0;
7239                Previous.clear();
7240                Invalid = true;
7241              }
7242            }
7243
7244            // Okay, this is definition of a previously declared or referenced
7245            // tag PrevDecl. We're going to create a new Decl for it.
7246          }
7247        }
7248        // If we get here we have (another) forward declaration or we
7249        // have a definition.  Just create a new decl.
7250
7251      } else {
7252        // If we get here, this is a definition of a new tag type in a nested
7253        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7254        // new decl/type.  We set PrevDecl to NULL so that the entities
7255        // have distinct types.
7256        Previous.clear();
7257      }
7258      // If we get here, we're going to create a new Decl. If PrevDecl
7259      // is non-NULL, it's a definition of the tag declared by
7260      // PrevDecl. If it's NULL, we have a new definition.
7261
7262
7263    // Otherwise, PrevDecl is not a tag, but was found with tag
7264    // lookup.  This is only actually possible in C++, where a few
7265    // things like templates still live in the tag namespace.
7266    } else {
7267      assert(getLangOptions().CPlusPlus);
7268
7269      // Use a better diagnostic if an elaborated-type-specifier
7270      // found the wrong kind of type on the first
7271      // (non-redeclaration) lookup.
7272      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7273          !Previous.isForRedeclaration()) {
7274        unsigned Kind = 0;
7275        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7276        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7277        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7278        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7279        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7280        Invalid = true;
7281
7282      // Otherwise, only diagnose if the declaration is in scope.
7283      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7284                                isExplicitSpecialization)) {
7285        // do nothing
7286
7287      // Diagnose implicit declarations introduced by elaborated types.
7288      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7289        unsigned Kind = 0;
7290        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7291        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7292        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7293        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7294        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7295        Invalid = true;
7296
7297      // Otherwise it's a declaration.  Call out a particularly common
7298      // case here.
7299      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7300        unsigned Kind = 0;
7301        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7302        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7303          << Name << Kind << TND->getUnderlyingType();
7304        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7305        Invalid = true;
7306
7307      // Otherwise, diagnose.
7308      } else {
7309        // The tag name clashes with something else in the target scope,
7310        // issue an error and recover by making this tag be anonymous.
7311        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7312        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7313        Name = 0;
7314        Invalid = true;
7315      }
7316
7317      // The existing declaration isn't relevant to us; we're in a
7318      // new scope, so clear out the previous declaration.
7319      Previous.clear();
7320    }
7321  }
7322
7323CreateNewDecl:
7324
7325  TagDecl *PrevDecl = 0;
7326  if (Previous.isSingleResult())
7327    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7328
7329  // If there is an identifier, use the location of the identifier as the
7330  // location of the decl, otherwise use the location of the struct/union
7331  // keyword.
7332  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7333
7334  // Otherwise, create a new declaration. If there is a previous
7335  // declaration of the same entity, the two will be linked via
7336  // PrevDecl.
7337  TagDecl *New;
7338
7339  bool IsForwardReference = false;
7340  if (Kind == TTK_Enum) {
7341    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7342    // enum X { A, B, C } D;    D should chain to X.
7343    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7344                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7345                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7346    // If this is an undefined enum, warn.
7347    if (TUK != TUK_Definition && !Invalid) {
7348      TagDecl *Def;
7349      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7350        // C++0x: 7.2p2: opaque-enum-declaration.
7351        // Conflicts are diagnosed above. Do nothing.
7352      }
7353      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7354        Diag(Loc, diag::ext_forward_ref_enum_def)
7355          << New;
7356        Diag(Def->getLocation(), diag::note_previous_definition);
7357      } else {
7358        unsigned DiagID = diag::ext_forward_ref_enum;
7359        if (getLangOptions().Microsoft)
7360          DiagID = diag::ext_ms_forward_ref_enum;
7361        else if (getLangOptions().CPlusPlus)
7362          DiagID = diag::err_forward_ref_enum;
7363        Diag(Loc, DiagID);
7364
7365        // If this is a forward-declared reference to an enumeration, make a
7366        // note of it; we won't actually be introducing the declaration into
7367        // the declaration context.
7368        if (TUK == TUK_Reference)
7369          IsForwardReference = true;
7370      }
7371    }
7372
7373    if (EnumUnderlying) {
7374      EnumDecl *ED = cast<EnumDecl>(New);
7375      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7376        ED->setIntegerTypeSourceInfo(TI);
7377      else
7378        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7379      ED->setPromotionType(ED->getIntegerType());
7380    }
7381
7382  } else {
7383    // struct/union/class
7384
7385    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7386    // struct X { int A; } D;    D should chain to X.
7387    if (getLangOptions().CPlusPlus) {
7388      // FIXME: Look for a way to use RecordDecl for simple structs.
7389      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7390                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7391
7392      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7393        StdBadAlloc = cast<CXXRecordDecl>(New);
7394    } else
7395      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7396                               cast_or_null<RecordDecl>(PrevDecl));
7397  }
7398
7399  // Maybe add qualifier info.
7400  if (SS.isNotEmpty()) {
7401    if (SS.isSet()) {
7402      New->setQualifierInfo(SS.getWithLocInContext(Context));
7403      if (TemplateParameterLists.size() > 0) {
7404        New->setTemplateParameterListsInfo(Context,
7405                                           TemplateParameterLists.size(),
7406                    (TemplateParameterList**) TemplateParameterLists.release());
7407      }
7408    }
7409    else
7410      Invalid = true;
7411  }
7412
7413  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7414    // Add alignment attributes if necessary; these attributes are checked when
7415    // the ASTContext lays out the structure.
7416    //
7417    // It is important for implementing the correct semantics that this
7418    // happen here (in act on tag decl). The #pragma pack stack is
7419    // maintained as a result of parser callbacks which can occur at
7420    // many points during the parsing of a struct declaration (because
7421    // the #pragma tokens are effectively skipped over during the
7422    // parsing of the struct).
7423    AddAlignmentAttributesForRecord(RD);
7424
7425    AddMsStructLayoutForRecord(RD);
7426  }
7427
7428  // If this is a specialization of a member class (of a class template),
7429  // check the specialization.
7430  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7431    Invalid = true;
7432
7433  if (Invalid)
7434    New->setInvalidDecl();
7435
7436  if (Attr)
7437    ProcessDeclAttributeList(S, New, Attr);
7438
7439  // If we're declaring or defining a tag in function prototype scope
7440  // in C, note that this type can only be used within the function.
7441  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7442    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7443
7444  // Set the lexical context. If the tag has a C++ scope specifier, the
7445  // lexical context will be different from the semantic context.
7446  New->setLexicalDeclContext(CurContext);
7447
7448  // Mark this as a friend decl if applicable.
7449  // In Microsoft mode, a friend declaration also acts as a forward
7450  // declaration so we always pass true to setObjectOfFriendDecl to make
7451  // the tag name visible.
7452  if (TUK == TUK_Friend)
7453    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7454                               getLangOptions().Microsoft);
7455
7456  // Set the access specifier.
7457  if (!Invalid && SearchDC->isRecord())
7458    SetMemberAccessSpecifier(New, PrevDecl, AS);
7459
7460  if (TUK == TUK_Definition)
7461    New->startDefinition();
7462
7463  // If this has an identifier, add it to the scope stack.
7464  if (TUK == TUK_Friend) {
7465    // We might be replacing an existing declaration in the lookup tables;
7466    // if so, borrow its access specifier.
7467    if (PrevDecl)
7468      New->setAccess(PrevDecl->getAccess());
7469
7470    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7471    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7472    if (Name) // can be null along some error paths
7473      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7474        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7475  } else if (Name) {
7476    S = getNonFieldDeclScope(S);
7477    PushOnScopeChains(New, S, !IsForwardReference);
7478    if (IsForwardReference)
7479      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7480
7481  } else {
7482    CurContext->addDecl(New);
7483  }
7484
7485  // If this is the C FILE type, notify the AST context.
7486  if (IdentifierInfo *II = New->getIdentifier())
7487    if (!New->isInvalidDecl() &&
7488        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7489        II->isStr("FILE"))
7490      Context.setFILEDecl(New);
7491
7492  OwnedDecl = true;
7493  return New;
7494}
7495
7496void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7497  AdjustDeclIfTemplate(TagD);
7498  TagDecl *Tag = cast<TagDecl>(TagD);
7499
7500  // Enter the tag context.
7501  PushDeclContext(S, Tag);
7502}
7503
7504void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7505                                           SourceLocation FinalLoc,
7506                                           SourceLocation LBraceLoc) {
7507  AdjustDeclIfTemplate(TagD);
7508  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7509
7510  FieldCollector->StartClass();
7511
7512  if (!Record->getIdentifier())
7513    return;
7514
7515  if (FinalLoc.isValid())
7516    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7517
7518  // C++ [class]p2:
7519  //   [...] The class-name is also inserted into the scope of the
7520  //   class itself; this is known as the injected-class-name. For
7521  //   purposes of access checking, the injected-class-name is treated
7522  //   as if it were a public member name.
7523  CXXRecordDecl *InjectedClassName
7524    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7525                            Record->getLocStart(), Record->getLocation(),
7526                            Record->getIdentifier(),
7527                            /*PrevDecl=*/0,
7528                            /*DelayTypeCreation=*/true);
7529  Context.getTypeDeclType(InjectedClassName, Record);
7530  InjectedClassName->setImplicit();
7531  InjectedClassName->setAccess(AS_public);
7532  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7533      InjectedClassName->setDescribedClassTemplate(Template);
7534  PushOnScopeChains(InjectedClassName, S);
7535  assert(InjectedClassName->isInjectedClassName() &&
7536         "Broken injected-class-name");
7537}
7538
7539void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7540                                    SourceLocation RBraceLoc) {
7541  AdjustDeclIfTemplate(TagD);
7542  TagDecl *Tag = cast<TagDecl>(TagD);
7543  Tag->setRBraceLoc(RBraceLoc);
7544
7545  if (isa<CXXRecordDecl>(Tag))
7546    FieldCollector->FinishClass();
7547
7548  // Exit this scope of this tag's definition.
7549  PopDeclContext();
7550
7551  // Notify the consumer that we've defined a tag.
7552  Consumer.HandleTagDeclDefinition(Tag);
7553}
7554
7555void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7556  AdjustDeclIfTemplate(TagD);
7557  TagDecl *Tag = cast<TagDecl>(TagD);
7558  Tag->setInvalidDecl();
7559
7560  // We're undoing ActOnTagStartDefinition here, not
7561  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7562  // the FieldCollector.
7563
7564  PopDeclContext();
7565}
7566
7567// Note that FieldName may be null for anonymous bitfields.
7568bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7569                          QualType FieldTy, const Expr *BitWidth,
7570                          bool *ZeroWidth) {
7571  // Default to true; that shouldn't confuse checks for emptiness
7572  if (ZeroWidth)
7573    *ZeroWidth = true;
7574
7575  // C99 6.7.2.1p4 - verify the field type.
7576  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7577  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7578    // Handle incomplete types with specific error.
7579    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7580      return true;
7581    if (FieldName)
7582      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7583        << FieldName << FieldTy << BitWidth->getSourceRange();
7584    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7585      << FieldTy << BitWidth->getSourceRange();
7586  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7587                                             UPPC_BitFieldWidth))
7588    return true;
7589
7590  // If the bit-width is type- or value-dependent, don't try to check
7591  // it now.
7592  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7593    return false;
7594
7595  llvm::APSInt Value;
7596  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7597    return true;
7598
7599  if (Value != 0 && ZeroWidth)
7600    *ZeroWidth = false;
7601
7602  // Zero-width bitfield is ok for anonymous field.
7603  if (Value == 0 && FieldName)
7604    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7605
7606  if (Value.isSigned() && Value.isNegative()) {
7607    if (FieldName)
7608      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7609               << FieldName << Value.toString(10);
7610    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7611      << Value.toString(10);
7612  }
7613
7614  if (!FieldTy->isDependentType()) {
7615    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7616    if (Value.getZExtValue() > TypeSize) {
7617      if (!getLangOptions().CPlusPlus) {
7618        if (FieldName)
7619          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7620            << FieldName << (unsigned)Value.getZExtValue()
7621            << (unsigned)TypeSize;
7622
7623        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7624          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7625      }
7626
7627      if (FieldName)
7628        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7629          << FieldName << (unsigned)Value.getZExtValue()
7630          << (unsigned)TypeSize;
7631      else
7632        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7633          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7634    }
7635  }
7636
7637  return false;
7638}
7639
7640/// ActOnField - Each field of a C struct/union is passed into this in order
7641/// to create a FieldDecl object for it.
7642Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
7643                       Declarator &D, ExprTy *BitfieldWidth) {
7644  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7645                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7646                               /*HasInit=*/false, AS_public);
7647  return Res;
7648}
7649
7650/// HandleField - Analyze a field of a C struct or a C++ data member.
7651///
7652FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7653                             SourceLocation DeclStart,
7654                             Declarator &D, Expr *BitWidth, bool HasInit,
7655                             AccessSpecifier AS) {
7656  IdentifierInfo *II = D.getIdentifier();
7657  SourceLocation Loc = DeclStart;
7658  if (II) Loc = D.getIdentifierLoc();
7659
7660  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7661  QualType T = TInfo->getType();
7662  if (getLangOptions().CPlusPlus) {
7663    CheckExtraCXXDefaultArguments(D);
7664
7665    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7666                                        UPPC_DataMemberType)) {
7667      D.setInvalidType();
7668      T = Context.IntTy;
7669      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7670    }
7671  }
7672
7673  DiagnoseFunctionSpecifiers(D);
7674
7675  if (D.getDeclSpec().isThreadSpecified())
7676    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7677
7678  // Check to see if this name was declared as a member previously
7679  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7680  LookupName(Previous, S);
7681  assert((Previous.empty() || Previous.isOverloadedResult() ||
7682          Previous.isSingleResult())
7683    && "Lookup of member name should be either overloaded, single or null");
7684
7685  // If the name is overloaded then get any declaration else get the single result
7686  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7687    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7688
7689  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7690    // Maybe we will complain about the shadowed template parameter.
7691    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7692    // Just pretend that we didn't see the previous declaration.
7693    PrevDecl = 0;
7694  }
7695
7696  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7697    PrevDecl = 0;
7698
7699  bool Mutable
7700    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7701  SourceLocation TSSL = D.getSourceRange().getBegin();
7702  FieldDecl *NewFD
7703    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
7704                     TSSL, AS, PrevDecl, &D);
7705
7706  if (NewFD->isInvalidDecl())
7707    Record->setInvalidDecl();
7708
7709  if (NewFD->isInvalidDecl() && PrevDecl) {
7710    // Don't introduce NewFD into scope; there's already something
7711    // with the same name in the same scope.
7712  } else if (II) {
7713    PushOnScopeChains(NewFD, S);
7714  } else
7715    Record->addDecl(NewFD);
7716
7717  return NewFD;
7718}
7719
7720/// \brief Build a new FieldDecl and check its well-formedness.
7721///
7722/// This routine builds a new FieldDecl given the fields name, type,
7723/// record, etc. \p PrevDecl should refer to any previous declaration
7724/// with the same name and in the same scope as the field to be
7725/// created.
7726///
7727/// \returns a new FieldDecl.
7728///
7729/// \todo The Declarator argument is a hack. It will be removed once
7730FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7731                                TypeSourceInfo *TInfo,
7732                                RecordDecl *Record, SourceLocation Loc,
7733                                bool Mutable, Expr *BitWidth, bool HasInit,
7734                                SourceLocation TSSL,
7735                                AccessSpecifier AS, NamedDecl *PrevDecl,
7736                                Declarator *D) {
7737  IdentifierInfo *II = Name.getAsIdentifierInfo();
7738  bool InvalidDecl = false;
7739  if (D) InvalidDecl = D->isInvalidType();
7740
7741  // If we receive a broken type, recover by assuming 'int' and
7742  // marking this declaration as invalid.
7743  if (T.isNull()) {
7744    InvalidDecl = true;
7745    T = Context.IntTy;
7746  }
7747
7748  QualType EltTy = Context.getBaseElementType(T);
7749  if (!EltTy->isDependentType() &&
7750      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7751    // Fields of incomplete type force their record to be invalid.
7752    Record->setInvalidDecl();
7753    InvalidDecl = true;
7754  }
7755
7756  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7757  // than a variably modified type.
7758  if (!InvalidDecl && T->isVariablyModifiedType()) {
7759    bool SizeIsNegative;
7760    llvm::APSInt Oversized;
7761    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7762                                                           SizeIsNegative,
7763                                                           Oversized);
7764    if (!FixedTy.isNull()) {
7765      Diag(Loc, diag::warn_illegal_constant_array_size);
7766      T = FixedTy;
7767    } else {
7768      if (SizeIsNegative)
7769        Diag(Loc, diag::err_typecheck_negative_array_size);
7770      else if (Oversized.getBoolValue())
7771        Diag(Loc, diag::err_array_too_large)
7772          << Oversized.toString(10);
7773      else
7774        Diag(Loc, diag::err_typecheck_field_variable_size);
7775      InvalidDecl = true;
7776    }
7777  }
7778
7779  // Fields can not have abstract class types
7780  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7781                                             diag::err_abstract_type_in_decl,
7782                                             AbstractFieldType))
7783    InvalidDecl = true;
7784
7785  bool ZeroWidth = false;
7786  // If this is declared as a bit-field, check the bit-field.
7787  if (!InvalidDecl && BitWidth &&
7788      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7789    InvalidDecl = true;
7790    BitWidth = 0;
7791    ZeroWidth = false;
7792  }
7793
7794  // Check that 'mutable' is consistent with the type of the declaration.
7795  if (!InvalidDecl && Mutable) {
7796    unsigned DiagID = 0;
7797    if (T->isReferenceType())
7798      DiagID = diag::err_mutable_reference;
7799    else if (T.isConstQualified())
7800      DiagID = diag::err_mutable_const;
7801
7802    if (DiagID) {
7803      SourceLocation ErrLoc = Loc;
7804      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7805        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7806      Diag(ErrLoc, DiagID);
7807      Mutable = false;
7808      InvalidDecl = true;
7809    }
7810  }
7811
7812  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7813                                       BitWidth, Mutable, HasInit);
7814  if (InvalidDecl)
7815    NewFD->setInvalidDecl();
7816
7817  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7818    Diag(Loc, diag::err_duplicate_member) << II;
7819    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7820    NewFD->setInvalidDecl();
7821  }
7822
7823  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7824    if (Record->isUnion()) {
7825      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7826        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7827        if (RDecl->getDefinition()) {
7828          // C++ [class.union]p1: An object of a class with a non-trivial
7829          // constructor, a non-trivial copy constructor, a non-trivial
7830          // destructor, or a non-trivial copy assignment operator
7831          // cannot be a member of a union, nor can an array of such
7832          // objects.
7833          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
7834            NewFD->setInvalidDecl();
7835        }
7836      }
7837
7838      // C++ [class.union]p1: If a union contains a member of reference type,
7839      // the program is ill-formed.
7840      if (EltTy->isReferenceType()) {
7841        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7842          << NewFD->getDeclName() << EltTy;
7843        NewFD->setInvalidDecl();
7844      }
7845    }
7846  }
7847
7848  // FIXME: We need to pass in the attributes given an AST
7849  // representation, not a parser representation.
7850  if (D)
7851    // FIXME: What to pass instead of TUScope?
7852    ProcessDeclAttributes(TUScope, NewFD, *D);
7853
7854  // In auto-retain/release, infer strong retension for fields of
7855  // retainable type.
7856  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
7857    NewFD->setInvalidDecl();
7858
7859  if (T.isObjCGCWeak())
7860    Diag(Loc, diag::warn_attribute_weak_on_field);
7861
7862  NewFD->setAccess(AS);
7863  return NewFD;
7864}
7865
7866bool Sema::CheckNontrivialField(FieldDecl *FD) {
7867  assert(FD);
7868  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7869
7870  if (FD->isInvalidDecl())
7871    return true;
7872
7873  QualType EltTy = Context.getBaseElementType(FD->getType());
7874  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7875    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7876    if (RDecl->getDefinition()) {
7877      // We check for copy constructors before constructors
7878      // because otherwise we'll never get complaints about
7879      // copy constructors.
7880
7881      CXXSpecialMember member = CXXInvalid;
7882      if (!RDecl->hasTrivialCopyConstructor())
7883        member = CXXCopyConstructor;
7884      else if (!RDecl->hasTrivialDefaultConstructor())
7885        member = CXXDefaultConstructor;
7886      else if (!RDecl->hasTrivialCopyAssignment())
7887        member = CXXCopyAssignment;
7888      else if (!RDecl->hasTrivialDestructor())
7889        member = CXXDestructor;
7890
7891      if (member != CXXInvalid) {
7892        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
7893          // Objective-C++ ARC: it is an error to have a non-trivial field of
7894          // a union. However, system headers in Objective-C programs
7895          // occasionally have Objective-C lifetime objects within unions,
7896          // and rather than cause the program to fail, we make those
7897          // members unavailable.
7898          SourceLocation Loc = FD->getLocation();
7899          if (getSourceManager().isInSystemHeader(Loc)) {
7900            if (!FD->hasAttr<UnavailableAttr>())
7901              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
7902                                  "this system field has retaining lifetime"));
7903            return false;
7904          }
7905        }
7906
7907        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7908              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7909        DiagnoseNontrivial(RT, member);
7910        return true;
7911      }
7912    }
7913  }
7914
7915  return false;
7916}
7917
7918/// DiagnoseNontrivial - Given that a class has a non-trivial
7919/// special member, figure out why.
7920void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7921  QualType QT(T, 0U);
7922  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7923
7924  // Check whether the member was user-declared.
7925  switch (member) {
7926  case CXXInvalid:
7927    break;
7928
7929  case CXXDefaultConstructor:
7930    if (RD->hasUserDeclaredConstructor()) {
7931      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7932      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7933        const FunctionDecl *body = 0;
7934        ci->hasBody(body);
7935        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7936          SourceLocation CtorLoc = ci->getLocation();
7937          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7938          return;
7939        }
7940      }
7941
7942      assert(0 && "found no user-declared constructors");
7943      return;
7944    }
7945    break;
7946
7947  case CXXCopyConstructor:
7948    if (RD->hasUserDeclaredCopyConstructor()) {
7949      SourceLocation CtorLoc =
7950        RD->getCopyConstructor(0)->getLocation();
7951      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7952      return;
7953    }
7954    break;
7955
7956  case CXXMoveConstructor:
7957    if (RD->hasUserDeclaredMoveConstructor()) {
7958      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
7959      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7960      return;
7961    }
7962    break;
7963
7964  case CXXCopyAssignment:
7965    if (RD->hasUserDeclaredCopyAssignment()) {
7966      // FIXME: this should use the location of the copy
7967      // assignment, not the type.
7968      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7969      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7970      return;
7971    }
7972    break;
7973
7974  case CXXMoveAssignment:
7975    if (RD->hasUserDeclaredMoveAssignment()) {
7976      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
7977      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
7978      return;
7979    }
7980    break;
7981
7982  case CXXDestructor:
7983    if (RD->hasUserDeclaredDestructor()) {
7984      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7985      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7986      return;
7987    }
7988    break;
7989  }
7990
7991  typedef CXXRecordDecl::base_class_iterator base_iter;
7992
7993  // Virtual bases and members inhibit trivial copying/construction,
7994  // but not trivial destruction.
7995  if (member != CXXDestructor) {
7996    // Check for virtual bases.  vbases includes indirect virtual bases,
7997    // so we just iterate through the direct bases.
7998    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7999      if (bi->isVirtual()) {
8000        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8001        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8002        return;
8003      }
8004
8005    // Check for virtual methods.
8006    typedef CXXRecordDecl::method_iterator meth_iter;
8007    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8008         ++mi) {
8009      if (mi->isVirtual()) {
8010        SourceLocation MLoc = mi->getSourceRange().getBegin();
8011        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8012        return;
8013      }
8014    }
8015  }
8016
8017  bool (CXXRecordDecl::*hasTrivial)() const;
8018  switch (member) {
8019  case CXXDefaultConstructor:
8020    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8021  case CXXCopyConstructor:
8022    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8023  case CXXCopyAssignment:
8024    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8025  case CXXDestructor:
8026    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8027  default:
8028    assert(0 && "unexpected special member"); return;
8029  }
8030
8031  // Check for nontrivial bases (and recurse).
8032  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8033    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8034    assert(BaseRT && "Don't know how to handle dependent bases");
8035    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8036    if (!(BaseRecTy->*hasTrivial)()) {
8037      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8038      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8039      DiagnoseNontrivial(BaseRT, member);
8040      return;
8041    }
8042  }
8043
8044  // Check for nontrivial members (and recurse).
8045  typedef RecordDecl::field_iterator field_iter;
8046  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8047       ++fi) {
8048    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8049    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8050      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8051
8052      if (!(EltRD->*hasTrivial)()) {
8053        SourceLocation FLoc = (*fi)->getLocation();
8054        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8055        DiagnoseNontrivial(EltRT, member);
8056        return;
8057      }
8058    }
8059
8060    if (EltTy->isObjCLifetimeType()) {
8061      switch (EltTy.getObjCLifetime()) {
8062      case Qualifiers::OCL_None:
8063      case Qualifiers::OCL_ExplicitNone:
8064        break;
8065
8066      case Qualifiers::OCL_Autoreleasing:
8067      case Qualifiers::OCL_Weak:
8068      case Qualifiers::OCL_Strong:
8069        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_lifetime)
8070          << QT << EltTy.getObjCLifetime();
8071        return;
8072      }
8073    }
8074  }
8075
8076  assert(0 && "found no explanation for non-trivial member");
8077}
8078
8079/// TranslateIvarVisibility - Translate visibility from a token ID to an
8080///  AST enum value.
8081static ObjCIvarDecl::AccessControl
8082TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8083  switch (ivarVisibility) {
8084  default: assert(0 && "Unknown visitibility kind");
8085  case tok::objc_private: return ObjCIvarDecl::Private;
8086  case tok::objc_public: return ObjCIvarDecl::Public;
8087  case tok::objc_protected: return ObjCIvarDecl::Protected;
8088  case tok::objc_package: return ObjCIvarDecl::Package;
8089  }
8090}
8091
8092/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8093/// in order to create an IvarDecl object for it.
8094Decl *Sema::ActOnIvar(Scope *S,
8095                                SourceLocation DeclStart,
8096                                Decl *IntfDecl,
8097                                Declarator &D, ExprTy *BitfieldWidth,
8098                                tok::ObjCKeywordKind Visibility) {
8099
8100  IdentifierInfo *II = D.getIdentifier();
8101  Expr *BitWidth = (Expr*)BitfieldWidth;
8102  SourceLocation Loc = DeclStart;
8103  if (II) Loc = D.getIdentifierLoc();
8104
8105  // FIXME: Unnamed fields can be handled in various different ways, for
8106  // example, unnamed unions inject all members into the struct namespace!
8107
8108  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8109  QualType T = TInfo->getType();
8110
8111  if (BitWidth) {
8112    // 6.7.2.1p3, 6.7.2.1p4
8113    if (VerifyBitField(Loc, II, T, BitWidth)) {
8114      D.setInvalidType();
8115      BitWidth = 0;
8116    }
8117  } else {
8118    // Not a bitfield.
8119
8120    // validate II.
8121
8122  }
8123  if (T->isReferenceType()) {
8124    Diag(Loc, diag::err_ivar_reference_type);
8125    D.setInvalidType();
8126  }
8127  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8128  // than a variably modified type.
8129  else if (T->isVariablyModifiedType()) {
8130    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8131    D.setInvalidType();
8132  }
8133
8134  // Get the visibility (access control) for this ivar.
8135  ObjCIvarDecl::AccessControl ac =
8136    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8137                                        : ObjCIvarDecl::None;
8138  // Must set ivar's DeclContext to its enclosing interface.
8139  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
8140  ObjCContainerDecl *EnclosingContext;
8141  if (ObjCImplementationDecl *IMPDecl =
8142      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8143    if (!LangOpts.ObjCNonFragileABI2) {
8144    // Case of ivar declared in an implementation. Context is that of its class.
8145      EnclosingContext = IMPDecl->getClassInterface();
8146      assert(EnclosingContext && "Implementation has no class interface!");
8147    }
8148    else
8149      EnclosingContext = EnclosingDecl;
8150  } else {
8151    if (ObjCCategoryDecl *CDecl =
8152        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8153      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8154        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8155        return 0;
8156      }
8157    }
8158    EnclosingContext = EnclosingDecl;
8159  }
8160
8161  // Construct the decl.
8162  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8163                                             DeclStart, Loc, II, T,
8164                                             TInfo, ac, (Expr *)BitfieldWidth);
8165
8166  if (II) {
8167    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8168                                           ForRedeclaration);
8169    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8170        && !isa<TagDecl>(PrevDecl)) {
8171      Diag(Loc, diag::err_duplicate_member) << II;
8172      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8173      NewID->setInvalidDecl();
8174    }
8175  }
8176
8177  // Process attributes attached to the ivar.
8178  ProcessDeclAttributes(S, NewID, D);
8179
8180  if (D.isInvalidType())
8181    NewID->setInvalidDecl();
8182
8183  // In ARC, infer 'retaining' for ivars of retainable type.
8184  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8185    NewID->setInvalidDecl();
8186
8187  if (II) {
8188    // FIXME: When interfaces are DeclContexts, we'll need to add
8189    // these to the interface.
8190    S->AddDecl(NewID);
8191    IdResolver.AddDecl(NewID);
8192  }
8193
8194  return NewID;
8195}
8196
8197/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8198/// class and class extensions. For every class @interface and class
8199/// extension @interface, if the last ivar is a bitfield of any type,
8200/// then add an implicit `char :0` ivar to the end of that interface.
8201void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
8202                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
8203  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8204    return;
8205
8206  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8207  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8208
8209  if (!Ivar->isBitField())
8210    return;
8211  uint64_t BitFieldSize =
8212    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8213  if (BitFieldSize == 0)
8214    return;
8215  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
8216  if (!ID) {
8217    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8218      if (!CD->IsClassExtension())
8219        return;
8220    }
8221    // No need to add this to end of @implementation.
8222    else
8223      return;
8224  }
8225  // All conditions are met. Add a new bitfield to the tail end of ivars.
8226  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
8227  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
8228
8229  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
8230                              DeclLoc, DeclLoc, 0,
8231                              Context.CharTy,
8232                              Context.CreateTypeSourceInfo(Context.CharTy),
8233                              ObjCIvarDecl::Private, BW,
8234                              true);
8235  AllIvarDecls.push_back(Ivar);
8236}
8237
8238void Sema::ActOnFields(Scope* S,
8239                       SourceLocation RecLoc, Decl *EnclosingDecl,
8240                       Decl **Fields, unsigned NumFields,
8241                       SourceLocation LBrac, SourceLocation RBrac,
8242                       AttributeList *Attr) {
8243  assert(EnclosingDecl && "missing record or interface decl");
8244
8245  // If the decl this is being inserted into is invalid, then it may be a
8246  // redeclaration or some other bogus case.  Don't try to add fields to it.
8247  if (EnclosingDecl->isInvalidDecl()) {
8248    // FIXME: Deallocate fields?
8249    return;
8250  }
8251
8252
8253  // Verify that all the fields are okay.
8254  unsigned NumNamedMembers = 0;
8255  llvm::SmallVector<FieldDecl*, 32> RecFields;
8256
8257  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8258  bool ARCErrReported = false;
8259  for (unsigned i = 0; i != NumFields; ++i) {
8260    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8261
8262    // Get the type for the field.
8263    const Type *FDTy = FD->getType().getTypePtr();
8264
8265    if (!FD->isAnonymousStructOrUnion()) {
8266      // Remember all fields written by the user.
8267      RecFields.push_back(FD);
8268    }
8269
8270    // If the field is already invalid for some reason, don't emit more
8271    // diagnostics about it.
8272    if (FD->isInvalidDecl()) {
8273      EnclosingDecl->setInvalidDecl();
8274      continue;
8275    }
8276
8277    // C99 6.7.2.1p2:
8278    //   A structure or union shall not contain a member with
8279    //   incomplete or function type (hence, a structure shall not
8280    //   contain an instance of itself, but may contain a pointer to
8281    //   an instance of itself), except that the last member of a
8282    //   structure with more than one named member may have incomplete
8283    //   array type; such a structure (and any union containing,
8284    //   possibly recursively, a member that is such a structure)
8285    //   shall not be a member of a structure or an element of an
8286    //   array.
8287    if (FDTy->isFunctionType()) {
8288      // Field declared as a function.
8289      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8290        << FD->getDeclName();
8291      FD->setInvalidDecl();
8292      EnclosingDecl->setInvalidDecl();
8293      continue;
8294    } else if (FDTy->isIncompleteArrayType() && Record &&
8295               ((i == NumFields - 1 && !Record->isUnion()) ||
8296                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8297                 (i == NumFields - 1 || Record->isUnion())))) {
8298      // Flexible array member.
8299      // Microsoft and g++ is more permissive regarding flexible array.
8300      // It will accept flexible array in union and also
8301      // as the sole element of a struct/class.
8302      if (getLangOptions().Microsoft) {
8303        if (Record->isUnion())
8304          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8305            << FD->getDeclName();
8306        else if (NumFields == 1)
8307          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8308            << FD->getDeclName() << Record->getTagKind();
8309      } else if (getLangOptions().CPlusPlus) {
8310        if (Record->isUnion())
8311          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8312            << FD->getDeclName();
8313        else if (NumFields == 1)
8314          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8315            << FD->getDeclName() << Record->getTagKind();
8316      } else if (NumNamedMembers < 1) {
8317        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8318          << FD->getDeclName();
8319        FD->setInvalidDecl();
8320        EnclosingDecl->setInvalidDecl();
8321        continue;
8322      }
8323      if (!FD->getType()->isDependentType() &&
8324          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8325        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8326          << FD->getDeclName() << FD->getType();
8327        FD->setInvalidDecl();
8328        EnclosingDecl->setInvalidDecl();
8329        continue;
8330      }
8331      // Okay, we have a legal flexible array member at the end of the struct.
8332      if (Record)
8333        Record->setHasFlexibleArrayMember(true);
8334    } else if (!FDTy->isDependentType() &&
8335               RequireCompleteType(FD->getLocation(), FD->getType(),
8336                                   diag::err_field_incomplete)) {
8337      // Incomplete type
8338      FD->setInvalidDecl();
8339      EnclosingDecl->setInvalidDecl();
8340      continue;
8341    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8342      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8343        // If this is a member of a union, then entire union becomes "flexible".
8344        if (Record && Record->isUnion()) {
8345          Record->setHasFlexibleArrayMember(true);
8346        } else {
8347          // If this is a struct/class and this is not the last element, reject
8348          // it.  Note that GCC supports variable sized arrays in the middle of
8349          // structures.
8350          if (i != NumFields-1)
8351            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8352              << FD->getDeclName() << FD->getType();
8353          else {
8354            // We support flexible arrays at the end of structs in
8355            // other structs as an extension.
8356            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8357              << FD->getDeclName();
8358            if (Record)
8359              Record->setHasFlexibleArrayMember(true);
8360          }
8361        }
8362      }
8363      if (Record && FDTTy->getDecl()->hasObjectMember())
8364        Record->setHasObjectMember(true);
8365    } else if (FDTy->isObjCObjectType()) {
8366      /// A field cannot be an Objective-c object
8367      Diag(FD->getLocation(), diag::err_statically_allocated_object);
8368      FD->setInvalidDecl();
8369      EnclosingDecl->setInvalidDecl();
8370      continue;
8371    }
8372    else if (!getLangOptions().CPlusPlus) {
8373      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
8374        // It's an error in ARC if a field has lifetime.
8375        // We don't want to report this in a system header, though,
8376        // so we just make the field unavailable.
8377        // FIXME: that's really not sufficient; we need to make the type
8378        // itself invalid to, say, initialize or copy.
8379        QualType T = FD->getType();
8380        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
8381        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
8382          SourceLocation loc = FD->getLocation();
8383          if (getSourceManager().isInSystemHeader(loc)) {
8384            if (!FD->hasAttr<UnavailableAttr>()) {
8385              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
8386                                "this system field has retaining lifetime"));
8387            }
8388          } else {
8389            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
8390          }
8391          ARCErrReported = true;
8392        }
8393      }
8394      else if (getLangOptions().ObjC1 &&
8395               getLangOptions().getGCMode() != LangOptions::NonGC &&
8396               Record && !Record->hasObjectMember()) {
8397        if (FD->getType()->isObjCObjectPointerType() ||
8398            FD->getType().isObjCGCStrong())
8399          Record->setHasObjectMember(true);
8400        else if (Context.getAsArrayType(FD->getType())) {
8401          QualType BaseType = Context.getBaseElementType(FD->getType());
8402          if (BaseType->isRecordType() &&
8403              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8404            Record->setHasObjectMember(true);
8405          else if (BaseType->isObjCObjectPointerType() ||
8406                   BaseType.isObjCGCStrong())
8407                 Record->setHasObjectMember(true);
8408        }
8409      }
8410    }
8411    // Keep track of the number of named members.
8412    if (FD->getIdentifier())
8413      ++NumNamedMembers;
8414  }
8415
8416  // Okay, we successfully defined 'Record'.
8417  if (Record) {
8418    bool Completed = false;
8419    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8420      if (!CXXRecord->isInvalidDecl()) {
8421        // Set access bits correctly on the directly-declared conversions.
8422        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8423        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8424             I != E; ++I)
8425          Convs->setAccess(I, (*I)->getAccess());
8426
8427        if (!CXXRecord->isDependentType()) {
8428          // Objective-C Automatic Reference Counting:
8429          //   If a class has a non-static data member of Objective-C pointer
8430          //   type (or array thereof), it is a non-POD type and its
8431          //   default constructor (if any), copy constructor, copy assignment
8432          //   operator, and destructor are non-trivial.
8433          //
8434          // This rule is also handled by CXXRecordDecl::completeDefinition().
8435          // However, here we check whether this particular class is only
8436          // non-POD because of the presence of an Objective-C pointer member.
8437          // If so, objects of this type cannot be shared between code compiled
8438          // with instant objects and code compiled with manual retain/release.
8439          if (getLangOptions().ObjCAutoRefCount &&
8440              CXXRecord->hasObjectMember() &&
8441              CXXRecord->getLinkage() == ExternalLinkage) {
8442            if (CXXRecord->isPOD()) {
8443              Diag(CXXRecord->getLocation(),
8444                   diag::warn_arc_non_pod_class_with_object_member)
8445               << CXXRecord;
8446            } else {
8447              // FIXME: Fix-Its would be nice here, but finding a good location
8448              // for them is going to be tricky.
8449              if (CXXRecord->hasTrivialCopyConstructor())
8450                Diag(CXXRecord->getLocation(),
8451                     diag::warn_arc_trivial_member_function_with_object_member)
8452                  << CXXRecord << 0;
8453              if (CXXRecord->hasTrivialCopyAssignment())
8454                Diag(CXXRecord->getLocation(),
8455                     diag::warn_arc_trivial_member_function_with_object_member)
8456                << CXXRecord << 1;
8457              if (CXXRecord->hasTrivialDestructor())
8458                Diag(CXXRecord->getLocation(),
8459                     diag::warn_arc_trivial_member_function_with_object_member)
8460                << CXXRecord << 2;
8461            }
8462          }
8463
8464          // Adjust user-defined destructor exception spec.
8465          if (getLangOptions().CPlusPlus0x &&
8466              CXXRecord->hasUserDeclaredDestructor())
8467            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8468
8469          // Add any implicitly-declared members to this class.
8470          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8471
8472          // If we have virtual base classes, we may end up finding multiple
8473          // final overriders for a given virtual function. Check for this
8474          // problem now.
8475          if (CXXRecord->getNumVBases()) {
8476            CXXFinalOverriderMap FinalOverriders;
8477            CXXRecord->getFinalOverriders(FinalOverriders);
8478
8479            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8480                                             MEnd = FinalOverriders.end();
8481                 M != MEnd; ++M) {
8482              for (OverridingMethods::iterator SO = M->second.begin(),
8483                                            SOEnd = M->second.end();
8484                   SO != SOEnd; ++SO) {
8485                assert(SO->second.size() > 0 &&
8486                       "Virtual function without overridding functions?");
8487                if (SO->second.size() == 1)
8488                  continue;
8489
8490                // C++ [class.virtual]p2:
8491                //   In a derived class, if a virtual member function of a base
8492                //   class subobject has more than one final overrider the
8493                //   program is ill-formed.
8494                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8495                  << (NamedDecl *)M->first << Record;
8496                Diag(M->first->getLocation(),
8497                     diag::note_overridden_virtual_function);
8498                for (OverridingMethods::overriding_iterator
8499                          OM = SO->second.begin(),
8500                       OMEnd = SO->second.end();
8501                     OM != OMEnd; ++OM)
8502                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8503                    << (NamedDecl *)M->first << OM->Method->getParent();
8504
8505                Record->setInvalidDecl();
8506              }
8507            }
8508            CXXRecord->completeDefinition(&FinalOverriders);
8509            Completed = true;
8510          }
8511        }
8512      }
8513    }
8514
8515    if (!Completed)
8516      Record->completeDefinition();
8517
8518    // Now that the record is complete, do any delayed exception spec checks
8519    // we were missing.
8520    while (!DelayedDestructorExceptionSpecChecks.empty()) {
8521      const CXXDestructorDecl *Dtor =
8522              DelayedDestructorExceptionSpecChecks.back().first;
8523      if (Dtor->getParent() != Record)
8524        break;
8525
8526      assert(!Dtor->getParent()->isDependentType() &&
8527          "Should not ever add destructors of templates into the list.");
8528      CheckOverridingFunctionExceptionSpec(Dtor,
8529          DelayedDestructorExceptionSpecChecks.back().second);
8530      DelayedDestructorExceptionSpecChecks.pop_back();
8531    }
8532
8533  } else {
8534    ObjCIvarDecl **ClsFields =
8535      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8536    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8537      ID->setLocEnd(RBrac);
8538      // Add ivar's to class's DeclContext.
8539      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8540        ClsFields[i]->setLexicalDeclContext(ID);
8541        ID->addDecl(ClsFields[i]);
8542      }
8543      // Must enforce the rule that ivars in the base classes may not be
8544      // duplicates.
8545      if (ID->getSuperClass())
8546        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8547    } else if (ObjCImplementationDecl *IMPDecl =
8548                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8549      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8550      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8551        // Ivar declared in @implementation never belongs to the implementation.
8552        // Only it is in implementation's lexical context.
8553        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8554      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8555    } else if (ObjCCategoryDecl *CDecl =
8556                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8557      // case of ivars in class extension; all other cases have been
8558      // reported as errors elsewhere.
8559      // FIXME. Class extension does not have a LocEnd field.
8560      // CDecl->setLocEnd(RBrac);
8561      // Add ivar's to class extension's DeclContext.
8562      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8563        ClsFields[i]->setLexicalDeclContext(CDecl);
8564        CDecl->addDecl(ClsFields[i]);
8565      }
8566    }
8567  }
8568
8569  if (Attr)
8570    ProcessDeclAttributeList(S, Record, Attr);
8571
8572  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8573  // set the visibility of this record.
8574  if (Record && !Record->getDeclContext()->isRecord())
8575    AddPushedVisibilityAttribute(Record);
8576}
8577
8578/// \brief Determine whether the given integral value is representable within
8579/// the given type T.
8580static bool isRepresentableIntegerValue(ASTContext &Context,
8581                                        llvm::APSInt &Value,
8582                                        QualType T) {
8583  assert(T->isIntegralType(Context) && "Integral type required!");
8584  unsigned BitWidth = Context.getIntWidth(T);
8585
8586  if (Value.isUnsigned() || Value.isNonNegative()) {
8587    if (T->isSignedIntegerOrEnumerationType())
8588      --BitWidth;
8589    return Value.getActiveBits() <= BitWidth;
8590  }
8591  return Value.getMinSignedBits() <= BitWidth;
8592}
8593
8594// \brief Given an integral type, return the next larger integral type
8595// (or a NULL type of no such type exists).
8596static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8597  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8598  // enum checking below.
8599  assert(T->isIntegralType(Context) && "Integral type required!");
8600  const unsigned NumTypes = 4;
8601  QualType SignedIntegralTypes[NumTypes] = {
8602    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8603  };
8604  QualType UnsignedIntegralTypes[NumTypes] = {
8605    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8606    Context.UnsignedLongLongTy
8607  };
8608
8609  unsigned BitWidth = Context.getTypeSize(T);
8610  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
8611                                                        : UnsignedIntegralTypes;
8612  for (unsigned I = 0; I != NumTypes; ++I)
8613    if (Context.getTypeSize(Types[I]) > BitWidth)
8614      return Types[I];
8615
8616  return QualType();
8617}
8618
8619EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8620                                          EnumConstantDecl *LastEnumConst,
8621                                          SourceLocation IdLoc,
8622                                          IdentifierInfo *Id,
8623                                          Expr *Val) {
8624  unsigned IntWidth = Context.Target.getIntWidth();
8625  llvm::APSInt EnumVal(IntWidth);
8626  QualType EltTy;
8627
8628  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8629    Val = 0;
8630
8631  if (Val) {
8632    if (Enum->isDependentType() || Val->isTypeDependent())
8633      EltTy = Context.DependentTy;
8634    else {
8635      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8636      SourceLocation ExpLoc;
8637      if (!Val->isValueDependent() &&
8638          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8639        Val = 0;
8640      } else {
8641        if (!getLangOptions().CPlusPlus) {
8642          // C99 6.7.2.2p2:
8643          //   The expression that defines the value of an enumeration constant
8644          //   shall be an integer constant expression that has a value
8645          //   representable as an int.
8646
8647          // Complain if the value is not representable in an int.
8648          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8649            Diag(IdLoc, diag::ext_enum_value_not_int)
8650              << EnumVal.toString(10) << Val->getSourceRange()
8651              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8652          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8653            // Force the type of the expression to 'int'.
8654            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8655          }
8656        }
8657
8658        if (Enum->isFixed()) {
8659          EltTy = Enum->getIntegerType();
8660
8661          // C++0x [dcl.enum]p5:
8662          //   ... if the initializing value of an enumerator cannot be
8663          //   represented by the underlying type, the program is ill-formed.
8664          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8665            if (getLangOptions().Microsoft) {
8666              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8667              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8668            } else
8669              Diag(IdLoc, diag::err_enumerator_too_large)
8670                << EltTy;
8671          } else
8672            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8673        }
8674        else {
8675          // C++0x [dcl.enum]p5:
8676          //   If the underlying type is not fixed, the type of each enumerator
8677          //   is the type of its initializing value:
8678          //     - If an initializer is specified for an enumerator, the
8679          //       initializing value has the same type as the expression.
8680          EltTy = Val->getType();
8681        }
8682      }
8683    }
8684  }
8685
8686  if (!Val) {
8687    if (Enum->isDependentType())
8688      EltTy = Context.DependentTy;
8689    else if (!LastEnumConst) {
8690      // C++0x [dcl.enum]p5:
8691      //   If the underlying type is not fixed, the type of each enumerator
8692      //   is the type of its initializing value:
8693      //     - If no initializer is specified for the first enumerator, the
8694      //       initializing value has an unspecified integral type.
8695      //
8696      // GCC uses 'int' for its unspecified integral type, as does
8697      // C99 6.7.2.2p3.
8698      if (Enum->isFixed()) {
8699        EltTy = Enum->getIntegerType();
8700      }
8701      else {
8702        EltTy = Context.IntTy;
8703      }
8704    } else {
8705      // Assign the last value + 1.
8706      EnumVal = LastEnumConst->getInitVal();
8707      ++EnumVal;
8708      EltTy = LastEnumConst->getType();
8709
8710      // Check for overflow on increment.
8711      if (EnumVal < LastEnumConst->getInitVal()) {
8712        // C++0x [dcl.enum]p5:
8713        //   If the underlying type is not fixed, the type of each enumerator
8714        //   is the type of its initializing value:
8715        //
8716        //     - Otherwise the type of the initializing value is the same as
8717        //       the type of the initializing value of the preceding enumerator
8718        //       unless the incremented value is not representable in that type,
8719        //       in which case the type is an unspecified integral type
8720        //       sufficient to contain the incremented value. If no such type
8721        //       exists, the program is ill-formed.
8722        QualType T = getNextLargerIntegralType(Context, EltTy);
8723        if (T.isNull() || Enum->isFixed()) {
8724          // There is no integral type larger enough to represent this
8725          // value. Complain, then allow the value to wrap around.
8726          EnumVal = LastEnumConst->getInitVal();
8727          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8728          ++EnumVal;
8729          if (Enum->isFixed())
8730            // When the underlying type is fixed, this is ill-formed.
8731            Diag(IdLoc, diag::err_enumerator_wrapped)
8732              << EnumVal.toString(10)
8733              << EltTy;
8734          else
8735            Diag(IdLoc, diag::warn_enumerator_too_large)
8736              << EnumVal.toString(10);
8737        } else {
8738          EltTy = T;
8739        }
8740
8741        // Retrieve the last enumerator's value, extent that type to the
8742        // type that is supposed to be large enough to represent the incremented
8743        // value, then increment.
8744        EnumVal = LastEnumConst->getInitVal();
8745        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8746        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8747        ++EnumVal;
8748
8749        // If we're not in C++, diagnose the overflow of enumerator values,
8750        // which in C99 means that the enumerator value is not representable in
8751        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8752        // permits enumerator values that are representable in some larger
8753        // integral type.
8754        if (!getLangOptions().CPlusPlus && !T.isNull())
8755          Diag(IdLoc, diag::warn_enum_value_overflow);
8756      } else if (!getLangOptions().CPlusPlus &&
8757                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8758        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8759        Diag(IdLoc, diag::ext_enum_value_not_int)
8760          << EnumVal.toString(10) << 1;
8761      }
8762    }
8763  }
8764
8765  if (!EltTy->isDependentType()) {
8766    // Make the enumerator value match the signedness and size of the
8767    // enumerator's type.
8768    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8769    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8770  }
8771
8772  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8773                                  Val, EnumVal);
8774}
8775
8776
8777Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8778                              SourceLocation IdLoc, IdentifierInfo *Id,
8779                              AttributeList *Attr,
8780                              SourceLocation EqualLoc, ExprTy *val) {
8781  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8782  EnumConstantDecl *LastEnumConst =
8783    cast_or_null<EnumConstantDecl>(lastEnumConst);
8784  Expr *Val = static_cast<Expr*>(val);
8785
8786  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8787  // we find one that is.
8788  S = getNonFieldDeclScope(S);
8789
8790  // Verify that there isn't already something declared with this name in this
8791  // scope.
8792  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8793                                         ForRedeclaration);
8794  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8795    // Maybe we will complain about the shadowed template parameter.
8796    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8797    // Just pretend that we didn't see the previous declaration.
8798    PrevDecl = 0;
8799  }
8800
8801  if (PrevDecl) {
8802    // When in C++, we may get a TagDecl with the same name; in this case the
8803    // enum constant will 'hide' the tag.
8804    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8805           "Received TagDecl when not in C++!");
8806    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8807      if (isa<EnumConstantDecl>(PrevDecl))
8808        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8809      else
8810        Diag(IdLoc, diag::err_redefinition) << Id;
8811      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8812      return 0;
8813    }
8814  }
8815
8816  // C++ [class.mem]p13:
8817  //   If T is the name of a class, then each of the following shall have a
8818  //   name different from T:
8819  //     - every enumerator of every member of class T that is an enumerated
8820  //       type
8821  if (CXXRecordDecl *Record
8822                      = dyn_cast<CXXRecordDecl>(
8823                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8824    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8825      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8826
8827  EnumConstantDecl *New =
8828    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8829
8830  if (New) {
8831    // Process attributes.
8832    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8833
8834    // Register this decl in the current scope stack.
8835    New->setAccess(TheEnumDecl->getAccess());
8836    PushOnScopeChains(New, S);
8837  }
8838
8839  return New;
8840}
8841
8842void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8843                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8844                         Decl **Elements, unsigned NumElements,
8845                         Scope *S, AttributeList *Attr) {
8846  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8847  QualType EnumType = Context.getTypeDeclType(Enum);
8848
8849  if (Attr)
8850    ProcessDeclAttributeList(S, Enum, Attr);
8851
8852  if (Enum->isDependentType()) {
8853    for (unsigned i = 0; i != NumElements; ++i) {
8854      EnumConstantDecl *ECD =
8855        cast_or_null<EnumConstantDecl>(Elements[i]);
8856      if (!ECD) continue;
8857
8858      ECD->setType(EnumType);
8859    }
8860
8861    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8862    return;
8863  }
8864
8865  // TODO: If the result value doesn't fit in an int, it must be a long or long
8866  // long value.  ISO C does not support this, but GCC does as an extension,
8867  // emit a warning.
8868  unsigned IntWidth = Context.Target.getIntWidth();
8869  unsigned CharWidth = Context.Target.getCharWidth();
8870  unsigned ShortWidth = Context.Target.getShortWidth();
8871
8872  // Verify that all the values are okay, compute the size of the values, and
8873  // reverse the list.
8874  unsigned NumNegativeBits = 0;
8875  unsigned NumPositiveBits = 0;
8876
8877  // Keep track of whether all elements have type int.
8878  bool AllElementsInt = true;
8879
8880  for (unsigned i = 0; i != NumElements; ++i) {
8881    EnumConstantDecl *ECD =
8882      cast_or_null<EnumConstantDecl>(Elements[i]);
8883    if (!ECD) continue;  // Already issued a diagnostic.
8884
8885    const llvm::APSInt &InitVal = ECD->getInitVal();
8886
8887    // Keep track of the size of positive and negative values.
8888    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8889      NumPositiveBits = std::max(NumPositiveBits,
8890                                 (unsigned)InitVal.getActiveBits());
8891    else
8892      NumNegativeBits = std::max(NumNegativeBits,
8893                                 (unsigned)InitVal.getMinSignedBits());
8894
8895    // Keep track of whether every enum element has type int (very commmon).
8896    if (AllElementsInt)
8897      AllElementsInt = ECD->getType() == Context.IntTy;
8898  }
8899
8900  // Figure out the type that should be used for this enum.
8901  QualType BestType;
8902  unsigned BestWidth;
8903
8904  // C++0x N3000 [conv.prom]p3:
8905  //   An rvalue of an unscoped enumeration type whose underlying
8906  //   type is not fixed can be converted to an rvalue of the first
8907  //   of the following types that can represent all the values of
8908  //   the enumeration: int, unsigned int, long int, unsigned long
8909  //   int, long long int, or unsigned long long int.
8910  // C99 6.4.4.3p2:
8911  //   An identifier declared as an enumeration constant has type int.
8912  // The C99 rule is modified by a gcc extension
8913  QualType BestPromotionType;
8914
8915  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8916  // -fshort-enums is the equivalent to specifying the packed attribute on all
8917  // enum definitions.
8918  if (LangOpts.ShortEnums)
8919    Packed = true;
8920
8921  if (Enum->isFixed()) {
8922    BestType = BestPromotionType = Enum->getIntegerType();
8923    // We don't need to set BestWidth, because BestType is going to be the type
8924    // of the enumerators, but we do anyway because otherwise some compilers
8925    // warn that it might be used uninitialized.
8926    BestWidth = CharWidth;
8927  }
8928  else if (NumNegativeBits) {
8929    // If there is a negative value, figure out the smallest integer type (of
8930    // int/long/longlong) that fits.
8931    // If it's packed, check also if it fits a char or a short.
8932    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8933      BestType = Context.SignedCharTy;
8934      BestWidth = CharWidth;
8935    } else if (Packed && NumNegativeBits <= ShortWidth &&
8936               NumPositiveBits < ShortWidth) {
8937      BestType = Context.ShortTy;
8938      BestWidth = ShortWidth;
8939    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8940      BestType = Context.IntTy;
8941      BestWidth = IntWidth;
8942    } else {
8943      BestWidth = Context.Target.getLongWidth();
8944
8945      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8946        BestType = Context.LongTy;
8947      } else {
8948        BestWidth = Context.Target.getLongLongWidth();
8949
8950        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8951          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8952        BestType = Context.LongLongTy;
8953      }
8954    }
8955    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8956  } else {
8957    // If there is no negative value, figure out the smallest type that fits
8958    // all of the enumerator values.
8959    // If it's packed, check also if it fits a char or a short.
8960    if (Packed && NumPositiveBits <= CharWidth) {
8961      BestType = Context.UnsignedCharTy;
8962      BestPromotionType = Context.IntTy;
8963      BestWidth = CharWidth;
8964    } else if (Packed && NumPositiveBits <= ShortWidth) {
8965      BestType = Context.UnsignedShortTy;
8966      BestPromotionType = Context.IntTy;
8967      BestWidth = ShortWidth;
8968    } else if (NumPositiveBits <= IntWidth) {
8969      BestType = Context.UnsignedIntTy;
8970      BestWidth = IntWidth;
8971      BestPromotionType
8972        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8973                           ? Context.UnsignedIntTy : Context.IntTy;
8974    } else if (NumPositiveBits <=
8975               (BestWidth = Context.Target.getLongWidth())) {
8976      BestType = Context.UnsignedLongTy;
8977      BestPromotionType
8978        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8979                           ? Context.UnsignedLongTy : Context.LongTy;
8980    } else {
8981      BestWidth = Context.Target.getLongLongWidth();
8982      assert(NumPositiveBits <= BestWidth &&
8983             "How could an initializer get larger than ULL?");
8984      BestType = Context.UnsignedLongLongTy;
8985      BestPromotionType
8986        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8987                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8988    }
8989  }
8990
8991  // Loop over all of the enumerator constants, changing their types to match
8992  // the type of the enum if needed.
8993  for (unsigned i = 0; i != NumElements; ++i) {
8994    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8995    if (!ECD) continue;  // Already issued a diagnostic.
8996
8997    // Standard C says the enumerators have int type, but we allow, as an
8998    // extension, the enumerators to be larger than int size.  If each
8999    // enumerator value fits in an int, type it as an int, otherwise type it the
9000    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9001    // that X has type 'int', not 'unsigned'.
9002
9003    // Determine whether the value fits into an int.
9004    llvm::APSInt InitVal = ECD->getInitVal();
9005
9006    // If it fits into an integer type, force it.  Otherwise force it to match
9007    // the enum decl type.
9008    QualType NewTy;
9009    unsigned NewWidth;
9010    bool NewSign;
9011    if (!getLangOptions().CPlusPlus &&
9012        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9013      NewTy = Context.IntTy;
9014      NewWidth = IntWidth;
9015      NewSign = true;
9016    } else if (ECD->getType() == BestType) {
9017      // Already the right type!
9018      if (getLangOptions().CPlusPlus)
9019        // C++ [dcl.enum]p4: Following the closing brace of an
9020        // enum-specifier, each enumerator has the type of its
9021        // enumeration.
9022        ECD->setType(EnumType);
9023      continue;
9024    } else {
9025      NewTy = BestType;
9026      NewWidth = BestWidth;
9027      NewSign = BestType->isSignedIntegerOrEnumerationType();
9028    }
9029
9030    // Adjust the APSInt value.
9031    InitVal = InitVal.extOrTrunc(NewWidth);
9032    InitVal.setIsSigned(NewSign);
9033    ECD->setInitVal(InitVal);
9034
9035    // Adjust the Expr initializer and type.
9036    if (ECD->getInitExpr() &&
9037	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9038      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9039                                                CK_IntegralCast,
9040                                                ECD->getInitExpr(),
9041                                                /*base paths*/ 0,
9042                                                VK_RValue));
9043    if (getLangOptions().CPlusPlus)
9044      // C++ [dcl.enum]p4: Following the closing brace of an
9045      // enum-specifier, each enumerator has the type of its
9046      // enumeration.
9047      ECD->setType(EnumType);
9048    else
9049      ECD->setType(NewTy);
9050  }
9051
9052  Enum->completeDefinition(BestType, BestPromotionType,
9053                           NumPositiveBits, NumNegativeBits);
9054}
9055
9056Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9057                                  SourceLocation StartLoc,
9058                                  SourceLocation EndLoc) {
9059  StringLiteral *AsmString = cast<StringLiteral>(expr);
9060
9061  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9062                                                   AsmString, StartLoc,
9063                                                   EndLoc);
9064  CurContext->addDecl(New);
9065  return New;
9066}
9067
9068void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9069                             SourceLocation PragmaLoc,
9070                             SourceLocation NameLoc) {
9071  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9072
9073  if (PrevDecl) {
9074    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9075  } else {
9076    (void)WeakUndeclaredIdentifiers.insert(
9077      std::pair<IdentifierInfo*,WeakInfo>
9078        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9079  }
9080}
9081
9082void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9083                                IdentifierInfo* AliasName,
9084                                SourceLocation PragmaLoc,
9085                                SourceLocation NameLoc,
9086                                SourceLocation AliasNameLoc) {
9087  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9088                                    LookupOrdinaryName);
9089  WeakInfo W = WeakInfo(Name, NameLoc);
9090
9091  if (PrevDecl) {
9092    if (!PrevDecl->hasAttr<AliasAttr>())
9093      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9094        DeclApplyPragmaWeak(TUScope, ND, W);
9095  } else {
9096    (void)WeakUndeclaredIdentifiers.insert(
9097      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9098  }
9099}
9100