SemaDecl.cpp revision b4b9b15c597a923a03ad0a33cdc49b67e5cc4450
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        return CheckTypenameType(ETK_None,
93                                 (NestedNameSpecifier *)SS->getScopeRep(), II,
94                                 SourceLocation(), SS->getRange(), NameLoc
95                                 ).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() &&
102        RequireCompleteDeclContext(*SS, LookupCtx))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    if (T.isNull())
192      T = Context.getTypeDeclType(TD);
193
194    if (SS)
195      T = getElaboratedType(ETK_None, *SS, T);
196
197  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
198    T = Context.getObjCInterfaceType(IDecl);
199  } else {
200    // If it's not plausibly a type, suppress diagnostics.
201    Result.suppressDiagnostics();
202    return 0;
203  }
204
205  return T.getAsOpaquePtr();
206}
207
208/// isTagName() - This method is called *for error recovery purposes only*
209/// to determine if the specified name is a valid tag name ("struct foo").  If
210/// so, this returns the TST for the tag corresponding to it (TST_enum,
211/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
212/// where the user forgot to specify the tag.
213DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
214  // Do a tag name lookup in this scope.
215  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
216  LookupName(R, S, false);
217  R.suppressDiagnostics();
218  if (R.getResultKind() == LookupResult::Found)
219    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
220      switch (TD->getTagKind()) {
221      default:         return DeclSpec::TST_unspecified;
222      case TTK_Struct: return DeclSpec::TST_struct;
223      case TTK_Union:  return DeclSpec::TST_union;
224      case TTK_Class:  return DeclSpec::TST_class;
225      case TTK_Enum:   return DeclSpec::TST_enum;
226      }
227    }
228
229  return DeclSpec::TST_unspecified;
230}
231
232bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
233                                   SourceLocation IILoc,
234                                   Scope *S,
235                                   CXXScopeSpec *SS,
236                                   TypeTy *&SuggestedType) {
237  // We don't have anything to suggest (yet).
238  SuggestedType = 0;
239
240  // There may have been a typo in the name of the type. Look up typo
241  // results, in case we have something that we can suggest.
242  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
243                      NotForRedeclaration);
244
245  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
246    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
247      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
248          !Result->isInvalidDecl()) {
249        // We found a similarly-named type or interface; suggest that.
250        if (!SS || !SS->isSet())
251          Diag(IILoc, diag::err_unknown_typename_suggest)
252            << &II << Lookup.getLookupName()
253            << FixItHint::CreateReplacement(SourceRange(IILoc),
254                                            Result->getNameAsString());
255        else if (DeclContext *DC = computeDeclContext(*SS, false))
256          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
257            << &II << DC << Lookup.getLookupName() << SS->getRange()
258            << FixItHint::CreateReplacement(SourceRange(IILoc),
259                                            Result->getNameAsString());
260        else
261          llvm_unreachable("could not have corrected a typo here");
262
263        Diag(Result->getLocation(), diag::note_previous_decl)
264          << Result->getDeclName();
265
266        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
267        return true;
268      }
269    } else if (Lookup.empty()) {
270      // We corrected to a keyword.
271      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
272      Diag(IILoc, diag::err_unknown_typename_suggest)
273        << &II << Corrected;
274      return true;
275    }
276  }
277
278  if (getLangOptions().CPlusPlus) {
279    // See if II is a class template that the user forgot to pass arguments to.
280    UnqualifiedId Name;
281    Name.setIdentifier(&II, IILoc);
282    CXXScopeSpec EmptySS;
283    TemplateTy TemplateResult;
284    bool MemberOfUnknownSpecialization;
285    if (isTemplateName(S, SS ? *SS : EmptySS, Name, 0, true, TemplateResult,
286                       MemberOfUnknownSpecialization) == TNK_Type_template) {
287      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
288      Diag(IILoc, diag::err_template_missing_args) << TplName;
289      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
290        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
291          << TplDecl->getTemplateParameters()->getSourceRange();
292      }
293      return true;
294    }
295  }
296
297  // FIXME: Should we move the logic that tries to recover from a missing tag
298  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
299
300  if (!SS || (!SS->isSet() && !SS->isInvalid()))
301    Diag(IILoc, diag::err_unknown_typename) << &II;
302  else if (DeclContext *DC = computeDeclContext(*SS, false))
303    Diag(IILoc, diag::err_typename_nested_not_found)
304      << &II << DC << SS->getRange();
305  else if (isDependentScopeSpecifier(*SS)) {
306    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
307      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
308      << SourceRange(SS->getRange().getBegin(), IILoc)
309      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
310    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
311  } else {
312    assert(SS && SS->isInvalid() &&
313           "Invalid scope specifier has already been diagnosed");
314  }
315
316  return true;
317}
318
319// Determines the context to return to after temporarily entering a
320// context.  This depends in an unnecessarily complicated way on the
321// exact ordering of callbacks from the parser.
322DeclContext *Sema::getContainingDC(DeclContext *DC) {
323
324  // Functions defined inline within classes aren't parsed until we've
325  // finished parsing the top-level class, so the top-level class is
326  // the context we'll need to return to.
327  if (isa<FunctionDecl>(DC)) {
328    DC = DC->getLexicalParent();
329
330    // A function not defined within a class will always return to its
331    // lexical context.
332    if (!isa<CXXRecordDecl>(DC))
333      return DC;
334
335    // A C++ inline method/friend is parsed *after* the topmost class
336    // it was declared in is fully parsed ("complete");  the topmost
337    // class is the context we need to return to.
338    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
339      DC = RD;
340
341    // Return the declaration context of the topmost class the inline method is
342    // declared in.
343    return DC;
344  }
345
346  if (isa<ObjCMethodDecl>(DC))
347    return Context.getTranslationUnitDecl();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363  assert(CurContext && "Popped translation unit!");
364}
365
366/// EnterDeclaratorContext - Used when we must lookup names in the context
367/// of a declarator's nested name specifier.
368///
369void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
370  // C++0x [basic.lookup.unqual]p13:
371  //   A name used in the definition of a static data member of class
372  //   X (after the qualified-id of the static member) is looked up as
373  //   if the name was used in a member function of X.
374  // C++0x [basic.lookup.unqual]p14:
375  //   If a variable member of a namespace is defined outside of the
376  //   scope of its namespace then any name used in the definition of
377  //   the variable member (after the declarator-id) is looked up as
378  //   if the definition of the variable member occurred in its
379  //   namespace.
380  // Both of these imply that we should push a scope whose context
381  // is the semantic context of the declaration.  We can't use
382  // PushDeclContext here because that context is not necessarily
383  // lexically contained in the current context.  Fortunately,
384  // the containing scope should have the appropriate information.
385
386  assert(!S->getEntity() && "scope already has entity");
387
388#ifndef NDEBUG
389  Scope *Ancestor = S->getParent();
390  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
391  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
392#endif
393
394  CurContext = DC;
395  S->setEntity(DC);
396}
397
398void Sema::ExitDeclaratorContext(Scope *S) {
399  assert(S->getEntity() == CurContext && "Context imbalance!");
400
401  // Switch back to the lexical context.  The safety of this is
402  // enforced by an assert in EnterDeclaratorContext.
403  Scope *Ancestor = S->getParent();
404  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
405  CurContext = (DeclContext*) Ancestor->getEntity();
406
407  // We don't need to do anything with the scope, which is going to
408  // disappear.
409}
410
411/// \brief Determine whether we allow overloading of the function
412/// PrevDecl with another declaration.
413///
414/// This routine determines whether overloading is possible, not
415/// whether some new function is actually an overload. It will return
416/// true in C++ (where we can always provide overloads) or, as an
417/// extension, in C when the previous function is already an
418/// overloaded function declaration or has the "overloadable"
419/// attribute.
420static bool AllowOverloadingOfFunction(LookupResult &Previous,
421                                       ASTContext &Context) {
422  if (Context.getLangOptions().CPlusPlus)
423    return true;
424
425  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
426    return true;
427
428  return (Previous.getResultKind() == LookupResult::Found
429          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
430}
431
432/// Add this decl to the scope shadowed decl chains.
433void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
434  // Move up the scope chain until we find the nearest enclosing
435  // non-transparent context. The declaration will be introduced into this
436  // scope.
437  while (S->getEntity() &&
438         ((DeclContext *)S->getEntity())->isTransparentContext())
439    S = S->getParent();
440
441  // Add scoped declarations into their context, so that they can be
442  // found later. Declarations without a context won't be inserted
443  // into any context.
444  if (AddToContext)
445    CurContext->addDecl(D);
446
447  // Out-of-line definitions shouldn't be pushed into scope in C++.
448  // Out-of-line variable and function definitions shouldn't even in C.
449  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
450      D->isOutOfLine())
451    return;
452
453  // Template instantiations should also not be pushed into scope.
454  if (isa<FunctionDecl>(D) &&
455      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
456    return;
457
458  // If this replaces anything in the current scope,
459  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
460                               IEnd = IdResolver.end();
461  for (; I != IEnd; ++I) {
462    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
463      S->RemoveDecl(DeclPtrTy::make(*I));
464      IdResolver.RemoveDecl(*I);
465
466      // Should only need to replace one decl.
467      break;
468    }
469  }
470
471  S->AddDecl(DeclPtrTy::make(D));
472  IdResolver.AddDecl(D);
473}
474
475bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
476  return IdResolver.isDeclInScope(D, Ctx, Context, S);
477}
478
479static bool isOutOfScopePreviousDeclaration(NamedDecl *,
480                                            DeclContext*,
481                                            ASTContext&);
482
483/// Filters out lookup results that don't fall within the given scope
484/// as determined by isDeclInScope.
485static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
486                                 DeclContext *Ctx, Scope *S,
487                                 bool ConsiderLinkage) {
488  LookupResult::Filter F = R.makeFilter();
489  while (F.hasNext()) {
490    NamedDecl *D = F.next();
491
492    if (SemaRef.isDeclInScope(D, Ctx, S))
493      continue;
494
495    if (ConsiderLinkage &&
496        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
497      continue;
498
499    F.erase();
500  }
501
502  F.done();
503}
504
505static bool isUsingDecl(NamedDecl *D) {
506  return isa<UsingShadowDecl>(D) ||
507         isa<UnresolvedUsingTypenameDecl>(D) ||
508         isa<UnresolvedUsingValueDecl>(D);
509}
510
511/// Removes using shadow declarations from the lookup results.
512static void RemoveUsingDecls(LookupResult &R) {
513  LookupResult::Filter F = R.makeFilter();
514  while (F.hasNext())
515    if (isUsingDecl(F.next()))
516      F.erase();
517
518  F.done();
519}
520
521static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
522  if (D->isInvalidDecl())
523    return false;
524
525  if (D->isUsed() || D->hasAttr<UnusedAttr>())
526    return false;
527
528  // White-list anything that isn't a local variable.
529  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
530      !D->getDeclContext()->isFunctionOrMethod())
531    return false;
532
533  // Types of valid local variables should be complete, so this should succeed.
534  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
535
536    // White-list anything with an __attribute__((unused)) type.
537    QualType Ty = VD->getType();
538
539    // Only look at the outermost level of typedef.
540    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
541      if (TT->getDecl()->hasAttr<UnusedAttr>())
542        return false;
543    }
544
545    // If we failed to complete the type for some reason, or if the type is
546    // dependent, don't diagnose the variable.
547    if (Ty->isIncompleteType() || Ty->isDependentType())
548      return false;
549
550    if (const TagType *TT = Ty->getAs<TagType>()) {
551      const TagDecl *Tag = TT->getDecl();
552      if (Tag->hasAttr<UnusedAttr>())
553        return false;
554
555      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
556        // FIXME: Checking for the presence of a user-declared constructor
557        // isn't completely accurate; we'd prefer to check that the initializer
558        // has no side effects.
559        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
560          return false;
561      }
562    }
563
564    // TODO: __attribute__((unused)) templates?
565  }
566
567  return true;
568}
569
570void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
571  if (!ShouldDiagnoseUnusedDecl(D))
572    return;
573
574  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
575    Diag(D->getLocation(), diag::warn_unused_exception_param)
576    << D->getDeclName();
577  else
578    Diag(D->getLocation(), diag::warn_unused_variable)
579    << D->getDeclName();
580}
581
582void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
583  if (S->decl_empty()) return;
584  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
585         "Scope shouldn't contain decls!");
586
587  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
588       I != E; ++I) {
589    Decl *TmpD = (*I).getAs<Decl>();
590    assert(TmpD && "This decl didn't get pushed??");
591
592    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
593    NamedDecl *D = cast<NamedDecl>(TmpD);
594
595    if (!D->getDeclName()) continue;
596
597    // Diagnose unused variables in this scope.
598    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
599      DiagnoseUnusedDecl(D);
600
601    // Remove this name from our lexical scope.
602    IdResolver.RemoveDecl(D);
603  }
604}
605
606/// \brief Look for an Objective-C class in the translation unit.
607///
608/// \param Id The name of the Objective-C class we're looking for. If
609/// typo-correction fixes this name, the Id will be updated
610/// to the fixed name.
611///
612/// \param IdLoc The location of the name in the translation unit.
613///
614/// \param TypoCorrection If true, this routine will attempt typo correction
615/// if there is no class with the given name.
616///
617/// \returns The declaration of the named Objective-C class, or NULL if the
618/// class could not be found.
619ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
620                                              SourceLocation IdLoc,
621                                              bool TypoCorrection) {
622  // The third "scope" argument is 0 since we aren't enabling lazy built-in
623  // creation from this context.
624  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
625
626  if (!IDecl && TypoCorrection) {
627    // Perform typo correction at the given location, but only if we
628    // find an Objective-C class name.
629    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
630    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
631        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
632      Diag(IdLoc, diag::err_undef_interface_suggest)
633        << Id << IDecl->getDeclName()
634        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
635      Diag(IDecl->getLocation(), diag::note_previous_decl)
636        << IDecl->getDeclName();
637
638      Id = IDecl->getIdentifier();
639    }
640  }
641
642  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
643}
644
645/// getNonFieldDeclScope - Retrieves the innermost scope, starting
646/// from S, where a non-field would be declared. This routine copes
647/// with the difference between C and C++ scoping rules in structs and
648/// unions. For example, the following code is well-formed in C but
649/// ill-formed in C++:
650/// @code
651/// struct S6 {
652///   enum { BAR } e;
653/// };
654///
655/// void test_S6() {
656///   struct S6 a;
657///   a.e = BAR;
658/// }
659/// @endcode
660/// For the declaration of BAR, this routine will return a different
661/// scope. The scope S will be the scope of the unnamed enumeration
662/// within S6. In C++, this routine will return the scope associated
663/// with S6, because the enumeration's scope is a transparent
664/// context but structures can contain non-field names. In C, this
665/// routine will return the translation unit scope, since the
666/// enumeration's scope is a transparent context and structures cannot
667/// contain non-field names.
668Scope *Sema::getNonFieldDeclScope(Scope *S) {
669  while (((S->getFlags() & Scope::DeclScope) == 0) ||
670         (S->getEntity() &&
671          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
672         (S->isClassScope() && !getLangOptions().CPlusPlus))
673    S = S->getParent();
674  return S;
675}
676
677void Sema::InitBuiltinVaListType() {
678  if (!Context.getBuiltinVaListType().isNull())
679    return;
680
681  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
682  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
683                                       LookupOrdinaryName, ForRedeclaration);
684  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
685  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
686}
687
688/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
689/// file scope.  lazily create a decl for it. ForRedeclaration is true
690/// if we're creating this built-in in anticipation of redeclaring the
691/// built-in.
692NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
693                                     Scope *S, bool ForRedeclaration,
694                                     SourceLocation Loc) {
695  Builtin::ID BID = (Builtin::ID)bid;
696
697  if (Context.BuiltinInfo.hasVAListUse(BID))
698    InitBuiltinVaListType();
699
700  ASTContext::GetBuiltinTypeError Error;
701  QualType R = Context.GetBuiltinType(BID, Error);
702  switch (Error) {
703  case ASTContext::GE_None:
704    // Okay
705    break;
706
707  case ASTContext::GE_Missing_stdio:
708    if (ForRedeclaration)
709      Diag(Loc, diag::err_implicit_decl_requires_stdio)
710        << Context.BuiltinInfo.GetName(BID);
711    return 0;
712
713  case ASTContext::GE_Missing_setjmp:
714    if (ForRedeclaration)
715      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
716        << Context.BuiltinInfo.GetName(BID);
717    return 0;
718  }
719
720  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
721    Diag(Loc, diag::ext_implicit_lib_function_decl)
722      << Context.BuiltinInfo.GetName(BID)
723      << R;
724    if (Context.BuiltinInfo.getHeaderName(BID) &&
725        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
726          != Diagnostic::Ignored)
727      Diag(Loc, diag::note_please_include_header)
728        << Context.BuiltinInfo.getHeaderName(BID)
729        << Context.BuiltinInfo.GetName(BID);
730  }
731
732  FunctionDecl *New = FunctionDecl::Create(Context,
733                                           Context.getTranslationUnitDecl(),
734                                           Loc, II, R, /*TInfo=*/0,
735                                           FunctionDecl::Extern,
736                                           FunctionDecl::None, false,
737                                           /*hasPrototype=*/true);
738  New->setImplicit();
739
740  // Create Decl objects for each parameter, adding them to the
741  // FunctionDecl.
742  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
743    llvm::SmallVector<ParmVarDecl*, 16> Params;
744    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
745      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
746                                           FT->getArgType(i), /*TInfo=*/0,
747                                           VarDecl::None, VarDecl::None, 0));
748    New->setParams(Params.data(), Params.size());
749  }
750
751  AddKnownFunctionAttributes(New);
752
753  // TUScope is the translation-unit scope to insert this function into.
754  // FIXME: This is hideous. We need to teach PushOnScopeChains to
755  // relate Scopes to DeclContexts, and probably eliminate CurContext
756  // entirely, but we're not there yet.
757  DeclContext *SavedContext = CurContext;
758  CurContext = Context.getTranslationUnitDecl();
759  PushOnScopeChains(New, TUScope);
760  CurContext = SavedContext;
761  return New;
762}
763
764/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
765/// same name and scope as a previous declaration 'Old'.  Figure out
766/// how to resolve this situation, merging decls or emitting
767/// diagnostics as appropriate. If there was an error, set New to be invalid.
768///
769void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
770  // If the new decl is known invalid already, don't bother doing any
771  // merging checks.
772  if (New->isInvalidDecl()) return;
773
774  // Allow multiple definitions for ObjC built-in typedefs.
775  // FIXME: Verify the underlying types are equivalent!
776  if (getLangOptions().ObjC1) {
777    const IdentifierInfo *TypeID = New->getIdentifier();
778    switch (TypeID->getLength()) {
779    default: break;
780    case 2:
781      if (!TypeID->isStr("id"))
782        break;
783      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
784      // Install the built-in type for 'id', ignoring the current definition.
785      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
786      return;
787    case 5:
788      if (!TypeID->isStr("Class"))
789        break;
790      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
791      // Install the built-in type for 'Class', ignoring the current definition.
792      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
793      return;
794    case 3:
795      if (!TypeID->isStr("SEL"))
796        break;
797      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
798      // Install the built-in type for 'SEL', ignoring the current definition.
799      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
800      return;
801    case 8:
802      if (!TypeID->isStr("Protocol"))
803        break;
804      Context.setObjCProtoType(New->getUnderlyingType());
805      return;
806    }
807    // Fall through - the typedef name was not a builtin type.
808  }
809
810  // Verify the old decl was also a type.
811  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
812  if (!Old) {
813    Diag(New->getLocation(), diag::err_redefinition_different_kind)
814      << New->getDeclName();
815
816    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
817    if (OldD->getLocation().isValid())
818      Diag(OldD->getLocation(), diag::note_previous_definition);
819
820    return New->setInvalidDecl();
821  }
822
823  // If the old declaration is invalid, just give up here.
824  if (Old->isInvalidDecl())
825    return New->setInvalidDecl();
826
827  // Determine the "old" type we'll use for checking and diagnostics.
828  QualType OldType;
829  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
830    OldType = OldTypedef->getUnderlyingType();
831  else
832    OldType = Context.getTypeDeclType(Old);
833
834  // If the typedef types are not identical, reject them in all languages and
835  // with any extensions enabled.
836
837  if (OldType != New->getUnderlyingType() &&
838      Context.getCanonicalType(OldType) !=
839      Context.getCanonicalType(New->getUnderlyingType())) {
840    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
841      << New->getUnderlyingType() << OldType;
842    if (Old->getLocation().isValid())
843      Diag(Old->getLocation(), diag::note_previous_definition);
844    return New->setInvalidDecl();
845  }
846
847  // The types match.  Link up the redeclaration chain if the old
848  // declaration was a typedef.
849  // FIXME: this is a potential source of wierdness if the type
850  // spellings don't match exactly.
851  if (isa<TypedefDecl>(Old))
852    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
853
854  if (getLangOptions().Microsoft)
855    return;
856
857  if (getLangOptions().CPlusPlus) {
858    // C++ [dcl.typedef]p2:
859    //   In a given non-class scope, a typedef specifier can be used to
860    //   redefine the name of any type declared in that scope to refer
861    //   to the type to which it already refers.
862    if (!isa<CXXRecordDecl>(CurContext))
863      return;
864
865    // C++0x [dcl.typedef]p4:
866    //   In a given class scope, a typedef specifier can be used to redefine
867    //   any class-name declared in that scope that is not also a typedef-name
868    //   to refer to the type to which it already refers.
869    //
870    // This wording came in via DR424, which was a correction to the
871    // wording in DR56, which accidentally banned code like:
872    //
873    //   struct S {
874    //     typedef struct A { } A;
875    //   };
876    //
877    // in the C++03 standard. We implement the C++0x semantics, which
878    // allow the above but disallow
879    //
880    //   struct S {
881    //     typedef int I;
882    //     typedef int I;
883    //   };
884    //
885    // since that was the intent of DR56.
886    if (!isa<TypedefDecl >(Old))
887      return;
888
889    Diag(New->getLocation(), diag::err_redefinition)
890      << New->getDeclName();
891    Diag(Old->getLocation(), diag::note_previous_definition);
892    return New->setInvalidDecl();
893  }
894
895  // If we have a redefinition of a typedef in C, emit a warning.  This warning
896  // is normally mapped to an error, but can be controlled with
897  // -Wtypedef-redefinition.  If either the original or the redefinition is
898  // in a system header, don't emit this for compatibility with GCC.
899  if (getDiagnostics().getSuppressSystemWarnings() &&
900      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
901       Context.getSourceManager().isInSystemHeader(New->getLocation())))
902    return;
903
904  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
905    << New->getDeclName();
906  Diag(Old->getLocation(), diag::note_previous_definition);
907  return;
908}
909
910/// DeclhasAttr - returns true if decl Declaration already has the target
911/// attribute.
912static bool
913DeclHasAttr(const Decl *decl, const Attr *target) {
914  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
915    if (attr->getKind() == target->getKind())
916      return true;
917
918  return false;
919}
920
921/// MergeAttributes - append attributes from the Old decl to the New one.
922static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
923  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
924    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
925      Attr *NewAttr = attr->clone(C);
926      NewAttr->setInherited(true);
927      New->addAttr(NewAttr);
928    }
929  }
930}
931
932namespace {
933
934/// Used in MergeFunctionDecl to keep track of function parameters in
935/// C.
936struct GNUCompatibleParamWarning {
937  ParmVarDecl *OldParm;
938  ParmVarDecl *NewParm;
939  QualType PromotedType;
940};
941
942}
943
944/// getSpecialMember - get the special member enum for a method.
945Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
946  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
947    if (Ctor->isCopyConstructor())
948      return Sema::CXXCopyConstructor;
949
950    return Sema::CXXConstructor;
951  }
952
953  if (isa<CXXDestructorDecl>(MD))
954    return Sema::CXXDestructor;
955
956  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
957  return Sema::CXXCopyAssignment;
958}
959
960/// canRedefineFunction - checks if a function can be redefined. Currently,
961/// only extern inline functions can be redefined, and even then only in
962/// GNU89 mode.
963static bool canRedefineFunction(const FunctionDecl *FD,
964                                const LangOptions& LangOpts) {
965  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
966          FD->isInlineSpecified() &&
967          FD->getStorageClass() == FunctionDecl::Extern);
968}
969
970/// MergeFunctionDecl - We just parsed a function 'New' from
971/// declarator D which has the same name and scope as a previous
972/// declaration 'Old'.  Figure out how to resolve this situation,
973/// merging decls or emitting diagnostics as appropriate.
974///
975/// In C++, New and Old must be declarations that are not
976/// overloaded. Use IsOverload to determine whether New and Old are
977/// overloaded, and to select the Old declaration that New should be
978/// merged with.
979///
980/// Returns true if there was an error, false otherwise.
981bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
982  // Verify the old decl was also a function.
983  FunctionDecl *Old = 0;
984  if (FunctionTemplateDecl *OldFunctionTemplate
985        = dyn_cast<FunctionTemplateDecl>(OldD))
986    Old = OldFunctionTemplate->getTemplatedDecl();
987  else
988    Old = dyn_cast<FunctionDecl>(OldD);
989  if (!Old) {
990    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
991      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
992      Diag(Shadow->getTargetDecl()->getLocation(),
993           diag::note_using_decl_target);
994      Diag(Shadow->getUsingDecl()->getLocation(),
995           diag::note_using_decl) << 0;
996      return true;
997    }
998
999    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1000      << New->getDeclName();
1001    Diag(OldD->getLocation(), diag::note_previous_definition);
1002    return true;
1003  }
1004
1005  // Determine whether the previous declaration was a definition,
1006  // implicit declaration, or a declaration.
1007  diag::kind PrevDiag;
1008  if (Old->isThisDeclarationADefinition())
1009    PrevDiag = diag::note_previous_definition;
1010  else if (Old->isImplicit())
1011    PrevDiag = diag::note_previous_implicit_declaration;
1012  else
1013    PrevDiag = diag::note_previous_declaration;
1014
1015  QualType OldQType = Context.getCanonicalType(Old->getType());
1016  QualType NewQType = Context.getCanonicalType(New->getType());
1017
1018  // Don't complain about this if we're in GNU89 mode and the old function
1019  // is an extern inline function.
1020  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1021      New->getStorageClass() == FunctionDecl::Static &&
1022      Old->getStorageClass() != FunctionDecl::Static &&
1023      !canRedefineFunction(Old, getLangOptions())) {
1024    Diag(New->getLocation(), diag::err_static_non_static)
1025      << New;
1026    Diag(Old->getLocation(), PrevDiag);
1027    return true;
1028  }
1029
1030  // If a function is first declared with a calling convention, but is
1031  // later declared or defined without one, the second decl assumes the
1032  // calling convention of the first.
1033  //
1034  // For the new decl, we have to look at the NON-canonical type to tell the
1035  // difference between a function that really doesn't have a calling
1036  // convention and one that is declared cdecl. That's because in
1037  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1038  // because it is the default calling convention.
1039  //
1040  // Note also that we DO NOT return at this point, because we still have
1041  // other tests to run.
1042  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1043  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1044  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1045  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1046  if (OldTypeInfo.getCC() != CC_Default &&
1047      NewTypeInfo.getCC() == CC_Default) {
1048    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1049    New->setType(NewQType);
1050    NewQType = Context.getCanonicalType(NewQType);
1051  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1052                                     NewTypeInfo.getCC())) {
1053    // Calling conventions really aren't compatible, so complain.
1054    Diag(New->getLocation(), diag::err_cconv_change)
1055      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1056      << (OldTypeInfo.getCC() == CC_Default)
1057      << (OldTypeInfo.getCC() == CC_Default ? "" :
1058          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1059    Diag(Old->getLocation(), diag::note_previous_declaration);
1060    return true;
1061  }
1062
1063  // FIXME: diagnose the other way around?
1064  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1065    NewQType = Context.getNoReturnType(NewQType);
1066    New->setType(NewQType);
1067    assert(NewQType.isCanonical());
1068  }
1069
1070  // Merge regparm attribute.
1071  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1072    if (NewType->getRegParmType()) {
1073      Diag(New->getLocation(), diag::err_regparm_mismatch)
1074        << NewType->getRegParmType()
1075        << OldType->getRegParmType();
1076      Diag(Old->getLocation(), diag::note_previous_declaration);
1077      return true;
1078    }
1079
1080    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1081    New->setType(NewQType);
1082    assert(NewQType.isCanonical());
1083  }
1084
1085  if (getLangOptions().CPlusPlus) {
1086    // (C++98 13.1p2):
1087    //   Certain function declarations cannot be overloaded:
1088    //     -- Function declarations that differ only in the return type
1089    //        cannot be overloaded.
1090    QualType OldReturnType
1091      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1092    QualType NewReturnType
1093      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1094    QualType ResQT;
1095    if (OldReturnType != NewReturnType) {
1096      if (NewReturnType->isObjCObjectPointerType()
1097          && OldReturnType->isObjCObjectPointerType())
1098        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1099      if (ResQT.isNull()) {
1100        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1101        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1102        return true;
1103      }
1104      else
1105        NewQType = ResQT;
1106    }
1107
1108    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1109    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1110    if (OldMethod && NewMethod) {
1111      // Preserve triviality.
1112      NewMethod->setTrivial(OldMethod->isTrivial());
1113
1114      bool isFriend = NewMethod->getFriendObjectKind();
1115
1116      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1117        //    -- Member function declarations with the same name and the
1118        //       same parameter types cannot be overloaded if any of them
1119        //       is a static member function declaration.
1120        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1121          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1122          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1123          return true;
1124        }
1125
1126        // C++ [class.mem]p1:
1127        //   [...] A member shall not be declared twice in the
1128        //   member-specification, except that a nested class or member
1129        //   class template can be declared and then later defined.
1130        unsigned NewDiag;
1131        if (isa<CXXConstructorDecl>(OldMethod))
1132          NewDiag = diag::err_constructor_redeclared;
1133        else if (isa<CXXDestructorDecl>(NewMethod))
1134          NewDiag = diag::err_destructor_redeclared;
1135        else if (isa<CXXConversionDecl>(NewMethod))
1136          NewDiag = diag::err_conv_function_redeclared;
1137        else
1138          NewDiag = diag::err_member_redeclared;
1139
1140        Diag(New->getLocation(), NewDiag);
1141        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1142
1143      // Complain if this is an explicit declaration of a special
1144      // member that was initially declared implicitly.
1145      //
1146      // As an exception, it's okay to befriend such methods in order
1147      // to permit the implicit constructor/destructor/operator calls.
1148      } else if (OldMethod->isImplicit()) {
1149        if (isFriend) {
1150          NewMethod->setImplicit();
1151        } else {
1152          Diag(NewMethod->getLocation(),
1153               diag::err_definition_of_implicitly_declared_member)
1154            << New << getSpecialMember(OldMethod);
1155          return true;
1156        }
1157      }
1158    }
1159
1160    // (C++98 8.3.5p3):
1161    //   All declarations for a function shall agree exactly in both the
1162    //   return type and the parameter-type-list.
1163    // attributes should be ignored when comparing.
1164    if (Context.getNoReturnType(OldQType, false) ==
1165        Context.getNoReturnType(NewQType, false))
1166      return MergeCompatibleFunctionDecls(New, Old);
1167
1168    // Fall through for conflicting redeclarations and redefinitions.
1169  }
1170
1171  // C: Function types need to be compatible, not identical. This handles
1172  // duplicate function decls like "void f(int); void f(enum X);" properly.
1173  if (!getLangOptions().CPlusPlus &&
1174      Context.typesAreCompatible(OldQType, NewQType)) {
1175    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1176    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1177    const FunctionProtoType *OldProto = 0;
1178    if (isa<FunctionNoProtoType>(NewFuncType) &&
1179        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1180      // The old declaration provided a function prototype, but the
1181      // new declaration does not. Merge in the prototype.
1182      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1183      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1184                                                 OldProto->arg_type_end());
1185      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1186                                         ParamTypes.data(), ParamTypes.size(),
1187                                         OldProto->isVariadic(),
1188                                         OldProto->getTypeQuals(),
1189                                         false, false, 0, 0,
1190                                         OldProto->getExtInfo());
1191      New->setType(NewQType);
1192      New->setHasInheritedPrototype();
1193
1194      // Synthesize a parameter for each argument type.
1195      llvm::SmallVector<ParmVarDecl*, 16> Params;
1196      for (FunctionProtoType::arg_type_iterator
1197             ParamType = OldProto->arg_type_begin(),
1198             ParamEnd = OldProto->arg_type_end();
1199           ParamType != ParamEnd; ++ParamType) {
1200        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1201                                                 SourceLocation(), 0,
1202                                                 *ParamType, /*TInfo=*/0,
1203                                                 VarDecl::None, VarDecl::None,
1204                                                 0);
1205        Param->setImplicit();
1206        Params.push_back(Param);
1207      }
1208
1209      New->setParams(Params.data(), Params.size());
1210    }
1211
1212    return MergeCompatibleFunctionDecls(New, Old);
1213  }
1214
1215  // GNU C permits a K&R definition to follow a prototype declaration
1216  // if the declared types of the parameters in the K&R definition
1217  // match the types in the prototype declaration, even when the
1218  // promoted types of the parameters from the K&R definition differ
1219  // from the types in the prototype. GCC then keeps the types from
1220  // the prototype.
1221  //
1222  // If a variadic prototype is followed by a non-variadic K&R definition,
1223  // the K&R definition becomes variadic.  This is sort of an edge case, but
1224  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1225  // C99 6.9.1p8.
1226  if (!getLangOptions().CPlusPlus &&
1227      Old->hasPrototype() && !New->hasPrototype() &&
1228      New->getType()->getAs<FunctionProtoType>() &&
1229      Old->getNumParams() == New->getNumParams()) {
1230    llvm::SmallVector<QualType, 16> ArgTypes;
1231    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1232    const FunctionProtoType *OldProto
1233      = Old->getType()->getAs<FunctionProtoType>();
1234    const FunctionProtoType *NewProto
1235      = New->getType()->getAs<FunctionProtoType>();
1236
1237    // Determine whether this is the GNU C extension.
1238    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1239                                               NewProto->getResultType());
1240    bool LooseCompatible = !MergedReturn.isNull();
1241    for (unsigned Idx = 0, End = Old->getNumParams();
1242         LooseCompatible && Idx != End; ++Idx) {
1243      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1244      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1245      if (Context.typesAreCompatible(OldParm->getType(),
1246                                     NewProto->getArgType(Idx))) {
1247        ArgTypes.push_back(NewParm->getType());
1248      } else if (Context.typesAreCompatible(OldParm->getType(),
1249                                            NewParm->getType(),
1250                                            /*CompareUnqualified=*/true)) {
1251        GNUCompatibleParamWarning Warn
1252          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1253        Warnings.push_back(Warn);
1254        ArgTypes.push_back(NewParm->getType());
1255      } else
1256        LooseCompatible = false;
1257    }
1258
1259    if (LooseCompatible) {
1260      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1261        Diag(Warnings[Warn].NewParm->getLocation(),
1262             diag::ext_param_promoted_not_compatible_with_prototype)
1263          << Warnings[Warn].PromotedType
1264          << Warnings[Warn].OldParm->getType();
1265        if (Warnings[Warn].OldParm->getLocation().isValid())
1266          Diag(Warnings[Warn].OldParm->getLocation(),
1267               diag::note_previous_declaration);
1268      }
1269
1270      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1271                                           ArgTypes.size(),
1272                                           OldProto->isVariadic(), 0,
1273                                           false, false, 0, 0,
1274                                           OldProto->getExtInfo()));
1275      return MergeCompatibleFunctionDecls(New, Old);
1276    }
1277
1278    // Fall through to diagnose conflicting types.
1279  }
1280
1281  // A function that has already been declared has been redeclared or defined
1282  // with a different type- show appropriate diagnostic
1283  if (unsigned BuiltinID = Old->getBuiltinID()) {
1284    // The user has declared a builtin function with an incompatible
1285    // signature.
1286    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1287      // The function the user is redeclaring is a library-defined
1288      // function like 'malloc' or 'printf'. Warn about the
1289      // redeclaration, then pretend that we don't know about this
1290      // library built-in.
1291      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1292      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1293        << Old << Old->getType();
1294      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1295      Old->setInvalidDecl();
1296      return false;
1297    }
1298
1299    PrevDiag = diag::note_previous_builtin_declaration;
1300  }
1301
1302  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1303  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1304  return true;
1305}
1306
1307/// \brief Completes the merge of two function declarations that are
1308/// known to be compatible.
1309///
1310/// This routine handles the merging of attributes and other
1311/// properties of function declarations form the old declaration to
1312/// the new declaration, once we know that New is in fact a
1313/// redeclaration of Old.
1314///
1315/// \returns false
1316bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1317  // Merge the attributes
1318  MergeAttributes(New, Old, Context);
1319
1320  // Merge the storage class.
1321  if (Old->getStorageClass() != FunctionDecl::Extern &&
1322      Old->getStorageClass() != FunctionDecl::None)
1323    New->setStorageClass(Old->getStorageClass());
1324
1325  // Merge "pure" flag.
1326  if (Old->isPure())
1327    New->setPure();
1328
1329  // Merge the "deleted" flag.
1330  if (Old->isDeleted())
1331    New->setDeleted();
1332
1333  if (getLangOptions().CPlusPlus)
1334    return MergeCXXFunctionDecl(New, Old);
1335
1336  return false;
1337}
1338
1339/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1340/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1341/// situation, merging decls or emitting diagnostics as appropriate.
1342///
1343/// Tentative definition rules (C99 6.9.2p2) are checked by
1344/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1345/// definitions here, since the initializer hasn't been attached.
1346///
1347void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1348  // If the new decl is already invalid, don't do any other checking.
1349  if (New->isInvalidDecl())
1350    return;
1351
1352  // Verify the old decl was also a variable.
1353  VarDecl *Old = 0;
1354  if (!Previous.isSingleResult() ||
1355      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1356    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1357      << New->getDeclName();
1358    Diag(Previous.getRepresentativeDecl()->getLocation(),
1359         diag::note_previous_definition);
1360    return New->setInvalidDecl();
1361  }
1362
1363  MergeAttributes(New, Old, Context);
1364
1365  // Merge the types
1366  QualType MergedT;
1367  if (getLangOptions().CPlusPlus) {
1368    if (Context.hasSameType(New->getType(), Old->getType()))
1369      MergedT = New->getType();
1370    // C++ [basic.link]p10:
1371    //   [...] the types specified by all declarations referring to a given
1372    //   object or function shall be identical, except that declarations for an
1373    //   array object can specify array types that differ by the presence or
1374    //   absence of a major array bound (8.3.4).
1375    else if (Old->getType()->isIncompleteArrayType() &&
1376             New->getType()->isArrayType()) {
1377      CanQual<ArrayType> OldArray
1378        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1379      CanQual<ArrayType> NewArray
1380        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1381      if (OldArray->getElementType() == NewArray->getElementType())
1382        MergedT = New->getType();
1383    } else if (Old->getType()->isArrayType() &&
1384             New->getType()->isIncompleteArrayType()) {
1385      CanQual<ArrayType> OldArray
1386        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1387      CanQual<ArrayType> NewArray
1388        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1389      if (OldArray->getElementType() == NewArray->getElementType())
1390        MergedT = Old->getType();
1391    } else if (New->getType()->isObjCObjectPointerType()
1392               && Old->getType()->isObjCObjectPointerType()) {
1393        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1394    }
1395  } else {
1396    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1397  }
1398  if (MergedT.isNull()) {
1399    Diag(New->getLocation(), diag::err_redefinition_different_type)
1400      << New->getDeclName();
1401    Diag(Old->getLocation(), diag::note_previous_definition);
1402    return New->setInvalidDecl();
1403  }
1404  New->setType(MergedT);
1405
1406  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1407  if (New->getStorageClass() == VarDecl::Static &&
1408      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1409    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1410    Diag(Old->getLocation(), diag::note_previous_definition);
1411    return New->setInvalidDecl();
1412  }
1413  // C99 6.2.2p4:
1414  //   For an identifier declared with the storage-class specifier
1415  //   extern in a scope in which a prior declaration of that
1416  //   identifier is visible,23) if the prior declaration specifies
1417  //   internal or external linkage, the linkage of the identifier at
1418  //   the later declaration is the same as the linkage specified at
1419  //   the prior declaration. If no prior declaration is visible, or
1420  //   if the prior declaration specifies no linkage, then the
1421  //   identifier has external linkage.
1422  if (New->hasExternalStorage() && Old->hasLinkage())
1423    /* Okay */;
1424  else if (New->getStorageClass() != VarDecl::Static &&
1425           Old->getStorageClass() == VarDecl::Static) {
1426    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1427    Diag(Old->getLocation(), diag::note_previous_definition);
1428    return New->setInvalidDecl();
1429  }
1430
1431  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1432
1433  // FIXME: The test for external storage here seems wrong? We still
1434  // need to check for mismatches.
1435  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1436      // Don't complain about out-of-line definitions of static members.
1437      !(Old->getLexicalDeclContext()->isRecord() &&
1438        !New->getLexicalDeclContext()->isRecord())) {
1439    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1440    Diag(Old->getLocation(), diag::note_previous_definition);
1441    return New->setInvalidDecl();
1442  }
1443
1444  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1445    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1446    Diag(Old->getLocation(), diag::note_previous_definition);
1447  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1448    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1449    Diag(Old->getLocation(), diag::note_previous_definition);
1450  }
1451
1452  // C++ doesn't have tentative definitions, so go right ahead and check here.
1453  const VarDecl *Def;
1454  if (getLangOptions().CPlusPlus &&
1455      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1456      (Def = Old->getDefinition())) {
1457    Diag(New->getLocation(), diag::err_redefinition)
1458      << New->getDeclName();
1459    Diag(Def->getLocation(), diag::note_previous_definition);
1460    New->setInvalidDecl();
1461    return;
1462  }
1463  // c99 6.2.2 P4.
1464  // For an identifier declared with the storage-class specifier extern in a
1465  // scope in which a prior declaration of that identifier is visible, if
1466  // the prior declaration specifies internal or external linkage, the linkage
1467  // of the identifier at the later declaration is the same as the linkage
1468  // specified at the prior declaration.
1469  // FIXME. revisit this code.
1470  if (New->hasExternalStorage() &&
1471      Old->getLinkage() == InternalLinkage &&
1472      New->getDeclContext() == Old->getDeclContext())
1473    New->setStorageClass(Old->getStorageClass());
1474
1475  // Keep a chain of previous declarations.
1476  New->setPreviousDeclaration(Old);
1477
1478  // Inherit access appropriately.
1479  New->setAccess(Old->getAccess());
1480}
1481
1482/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1483/// no declarator (e.g. "struct foo;") is parsed.
1484Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1485                                                 DeclSpec &DS) {
1486  // FIXME: Error on auto/register at file scope
1487  // FIXME: Error on inline/virtual/explicit
1488  // FIXME: Warn on useless __thread
1489  // FIXME: Warn on useless const/volatile
1490  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1491  // FIXME: Warn on useless attributes
1492  Decl *TagD = 0;
1493  TagDecl *Tag = 0;
1494  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1495      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1496      DS.getTypeSpecType() == DeclSpec::TST_union ||
1497      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1498    TagD = static_cast<Decl *>(DS.getTypeRep());
1499
1500    if (!TagD) // We probably had an error
1501      return DeclPtrTy();
1502
1503    // Note that the above type specs guarantee that the
1504    // type rep is a Decl, whereas in many of the others
1505    // it's a Type.
1506    Tag = dyn_cast<TagDecl>(TagD);
1507  }
1508
1509  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1510    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1511    // or incomplete types shall not be restrict-qualified."
1512    if (TypeQuals & DeclSpec::TQ_restrict)
1513      Diag(DS.getRestrictSpecLoc(),
1514           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1515           << DS.getSourceRange();
1516  }
1517
1518  if (DS.isFriendSpecified()) {
1519    // If we're dealing with a class template decl, assume that the
1520    // template routines are handling it.
1521    if (TagD && isa<ClassTemplateDecl>(TagD))
1522      return DeclPtrTy();
1523    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1524  }
1525
1526  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1527    // If there are attributes in the DeclSpec, apply them to the record.
1528    if (const AttributeList *AL = DS.getAttributes())
1529      ProcessDeclAttributeList(S, Record, AL);
1530
1531    if (!Record->getDeclName() && Record->isDefinition() &&
1532        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1533      if (getLangOptions().CPlusPlus ||
1534          Record->getDeclContext()->isRecord())
1535        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1536
1537      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1538        << DS.getSourceRange();
1539    }
1540
1541    // Microsoft allows unnamed struct/union fields. Don't complain
1542    // about them.
1543    // FIXME: Should we support Microsoft's extensions in this area?
1544    if (Record->getDeclName() && getLangOptions().Microsoft)
1545      return DeclPtrTy::make(Tag);
1546  }
1547
1548  if (getLangOptions().CPlusPlus &&
1549      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1550    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1551      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1552          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1553        Diag(Enum->getLocation(), diag::ext_no_declarators)
1554          << DS.getSourceRange();
1555
1556  if (!DS.isMissingDeclaratorOk() &&
1557      DS.getTypeSpecType() != DeclSpec::TST_error) {
1558    // Warn about typedefs of enums without names, since this is an
1559    // extension in both Microsoft and GNU.
1560    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1561        Tag && isa<EnumDecl>(Tag)) {
1562      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1563        << DS.getSourceRange();
1564      return DeclPtrTy::make(Tag);
1565    }
1566
1567    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1568      << DS.getSourceRange();
1569  }
1570
1571  return DeclPtrTy::make(TagD);
1572}
1573
1574/// We are trying to inject an anonymous member into the given scope;
1575/// check if there's an existing declaration that can't be overloaded.
1576///
1577/// \return true if this is a forbidden redeclaration
1578static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1579                                         Scope *S,
1580                                         DeclContext *Owner,
1581                                         DeclarationName Name,
1582                                         SourceLocation NameLoc,
1583                                         unsigned diagnostic) {
1584  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1585                 Sema::ForRedeclaration);
1586  if (!SemaRef.LookupName(R, S)) return false;
1587
1588  if (R.getAsSingle<TagDecl>())
1589    return false;
1590
1591  // Pick a representative declaration.
1592  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1593  if (PrevDecl && Owner->isRecord()) {
1594    RecordDecl *Record = cast<RecordDecl>(Owner);
1595    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1596      return false;
1597  }
1598
1599  SemaRef.Diag(NameLoc, diagnostic) << Name;
1600  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1601
1602  return true;
1603}
1604
1605/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1606/// anonymous struct or union AnonRecord into the owning context Owner
1607/// and scope S. This routine will be invoked just after we realize
1608/// that an unnamed union or struct is actually an anonymous union or
1609/// struct, e.g.,
1610///
1611/// @code
1612/// union {
1613///   int i;
1614///   float f;
1615/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1616///    // f into the surrounding scope.x
1617/// @endcode
1618///
1619/// This routine is recursive, injecting the names of nested anonymous
1620/// structs/unions into the owning context and scope as well.
1621static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1622                                                DeclContext *Owner,
1623                                                RecordDecl *AnonRecord,
1624                                                AccessSpecifier AS) {
1625  unsigned diagKind
1626    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1627                            : diag::err_anonymous_struct_member_redecl;
1628
1629  bool Invalid = false;
1630  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1631                               FEnd = AnonRecord->field_end();
1632       F != FEnd; ++F) {
1633    if ((*F)->getDeclName()) {
1634      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1635                                       (*F)->getLocation(), diagKind)) {
1636        // C++ [class.union]p2:
1637        //   The names of the members of an anonymous union shall be
1638        //   distinct from the names of any other entity in the
1639        //   scope in which the anonymous union is declared.
1640        Invalid = true;
1641      } else {
1642        // C++ [class.union]p2:
1643        //   For the purpose of name lookup, after the anonymous union
1644        //   definition, the members of the anonymous union are
1645        //   considered to have been defined in the scope in which the
1646        //   anonymous union is declared.
1647        Owner->makeDeclVisibleInContext(*F);
1648        S->AddDecl(Sema::DeclPtrTy::make(*F));
1649        SemaRef.IdResolver.AddDecl(*F);
1650
1651        // That includes picking up the appropriate access specifier.
1652        if (AS != AS_none) (*F)->setAccess(AS);
1653      }
1654    } else if (const RecordType *InnerRecordType
1655                 = (*F)->getType()->getAs<RecordType>()) {
1656      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1657      if (InnerRecord->isAnonymousStructOrUnion())
1658        Invalid = Invalid ||
1659          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1660                                              InnerRecord, AS);
1661    }
1662  }
1663
1664  return Invalid;
1665}
1666
1667/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1668/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1669/// illegal input values are mapped to VarDecl::None.
1670static VarDecl::StorageClass
1671StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1672  switch (StorageClassSpec) {
1673  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1674  case DeclSpec::SCS_extern:         return VarDecl::Extern;
1675  case DeclSpec::SCS_static:         return VarDecl::Static;
1676  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1677  case DeclSpec::SCS_register:       return VarDecl::Register;
1678  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1679    // Illegal SCSs map to None: error reporting is up to the caller.
1680  case DeclSpec::SCS_mutable:        // Fall through.
1681  case DeclSpec::SCS_typedef:        return VarDecl::None;
1682  }
1683  llvm_unreachable("unknown storage class specifier");
1684}
1685
1686/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1687/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1688/// illegal input values are mapped to FunctionDecl::None.
1689static FunctionDecl::StorageClass
1690StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1691  switch (StorageClassSpec) {
1692  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1693  case DeclSpec::SCS_extern:         return FunctionDecl::Extern;
1694  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1695  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1696    // Illegal SCSs map to None: error reporting is up to the caller.
1697  case DeclSpec::SCS_auto:           // Fall through.
1698  case DeclSpec::SCS_mutable:        // Fall through.
1699  case DeclSpec::SCS_register:       // Fall through.
1700  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1701  }
1702  llvm_unreachable("unknown storage class specifier");
1703}
1704
1705/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1706/// anonymous structure or union. Anonymous unions are a C++ feature
1707/// (C++ [class.union]) and a GNU C extension; anonymous structures
1708/// are a GNU C and GNU C++ extension.
1709Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1710                                                  AccessSpecifier AS,
1711                                                  RecordDecl *Record) {
1712  DeclContext *Owner = Record->getDeclContext();
1713
1714  // Diagnose whether this anonymous struct/union is an extension.
1715  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1716    Diag(Record->getLocation(), diag::ext_anonymous_union);
1717  else if (!Record->isUnion())
1718    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1719
1720  // C and C++ require different kinds of checks for anonymous
1721  // structs/unions.
1722  bool Invalid = false;
1723  if (getLangOptions().CPlusPlus) {
1724    const char* PrevSpec = 0;
1725    unsigned DiagID;
1726    // C++ [class.union]p3:
1727    //   Anonymous unions declared in a named namespace or in the
1728    //   global namespace shall be declared static.
1729    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1730        (isa<TranslationUnitDecl>(Owner) ||
1731         (isa<NamespaceDecl>(Owner) &&
1732          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1733      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1734      Invalid = true;
1735
1736      // Recover by adding 'static'.
1737      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1738                             PrevSpec, DiagID);
1739    }
1740    // C++ [class.union]p3:
1741    //   A storage class is not allowed in a declaration of an
1742    //   anonymous union in a class scope.
1743    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1744             isa<RecordDecl>(Owner)) {
1745      Diag(DS.getStorageClassSpecLoc(),
1746           diag::err_anonymous_union_with_storage_spec);
1747      Invalid = true;
1748
1749      // Recover by removing the storage specifier.
1750      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1751                             PrevSpec, DiagID);
1752    }
1753
1754    // C++ [class.union]p2:
1755    //   The member-specification of an anonymous union shall only
1756    //   define non-static data members. [Note: nested types and
1757    //   functions cannot be declared within an anonymous union. ]
1758    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1759                                 MemEnd = Record->decls_end();
1760         Mem != MemEnd; ++Mem) {
1761      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1762        // C++ [class.union]p3:
1763        //   An anonymous union shall not have private or protected
1764        //   members (clause 11).
1765        assert(FD->getAccess() != AS_none);
1766        if (FD->getAccess() != AS_public) {
1767          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1768            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1769          Invalid = true;
1770        }
1771      } else if ((*Mem)->isImplicit()) {
1772        // Any implicit members are fine.
1773      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1774        // This is a type that showed up in an
1775        // elaborated-type-specifier inside the anonymous struct or
1776        // union, but which actually declares a type outside of the
1777        // anonymous struct or union. It's okay.
1778      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1779        if (!MemRecord->isAnonymousStructOrUnion() &&
1780            MemRecord->getDeclName()) {
1781          // This is a nested type declaration.
1782          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1783            << (int)Record->isUnion();
1784          Invalid = true;
1785        }
1786      } else if (isa<AccessSpecDecl>(*Mem)) {
1787        // Any access specifier is fine.
1788      } else {
1789        // We have something that isn't a non-static data
1790        // member. Complain about it.
1791        unsigned DK = diag::err_anonymous_record_bad_member;
1792        if (isa<TypeDecl>(*Mem))
1793          DK = diag::err_anonymous_record_with_type;
1794        else if (isa<FunctionDecl>(*Mem))
1795          DK = diag::err_anonymous_record_with_function;
1796        else if (isa<VarDecl>(*Mem))
1797          DK = diag::err_anonymous_record_with_static;
1798        Diag((*Mem)->getLocation(), DK)
1799            << (int)Record->isUnion();
1800          Invalid = true;
1801      }
1802    }
1803  }
1804
1805  if (!Record->isUnion() && !Owner->isRecord()) {
1806    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1807      << (int)getLangOptions().CPlusPlus;
1808    Invalid = true;
1809  }
1810
1811  // Mock up a declarator.
1812  Declarator Dc(DS, Declarator::TypeNameContext);
1813  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1814  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1815
1816  // Create a declaration for this anonymous struct/union.
1817  NamedDecl *Anon = 0;
1818  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1819    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1820                             /*IdentifierInfo=*/0,
1821                             Context.getTypeDeclType(Record),
1822                             TInfo,
1823                             /*BitWidth=*/0, /*Mutable=*/false);
1824    Anon->setAccess(AS);
1825    if (getLangOptions().CPlusPlus) {
1826      FieldCollector->Add(cast<FieldDecl>(Anon));
1827      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1828        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1829    }
1830  } else {
1831    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1832    assert(SCSpec != DeclSpec::SCS_typedef &&
1833           "Parser allowed 'typedef' as storage class VarDecl.");
1834    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1835    if (SCSpec == DeclSpec::SCS_mutable) {
1836      // mutable can only appear on non-static class members, so it's always
1837      // an error here
1838      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1839      Invalid = true;
1840      SC = VarDecl::None;
1841    }
1842    SCSpec = DS.getStorageClassSpecAsWritten();
1843    VarDecl::StorageClass SCAsWritten
1844      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1845
1846    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1847                           /*IdentifierInfo=*/0,
1848                           Context.getTypeDeclType(Record),
1849                           TInfo, SC, SCAsWritten);
1850  }
1851  Anon->setImplicit();
1852
1853  // Add the anonymous struct/union object to the current
1854  // context. We'll be referencing this object when we refer to one of
1855  // its members.
1856  Owner->addDecl(Anon);
1857
1858  // Inject the members of the anonymous struct/union into the owning
1859  // context and into the identifier resolver chain for name lookup
1860  // purposes.
1861  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1862    Invalid = true;
1863
1864  // Mark this as an anonymous struct/union type. Note that we do not
1865  // do this until after we have already checked and injected the
1866  // members of this anonymous struct/union type, because otherwise
1867  // the members could be injected twice: once by DeclContext when it
1868  // builds its lookup table, and once by
1869  // InjectAnonymousStructOrUnionMembers.
1870  Record->setAnonymousStructOrUnion(true);
1871
1872  if (Invalid)
1873    Anon->setInvalidDecl();
1874
1875  return DeclPtrTy::make(Anon);
1876}
1877
1878
1879/// GetNameForDeclarator - Determine the full declaration name for the
1880/// given Declarator.
1881DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1882  return GetNameFromUnqualifiedId(D.getName());
1883}
1884
1885/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1886DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1887  switch (Name.getKind()) {
1888    case UnqualifiedId::IK_Identifier:
1889      return DeclarationName(Name.Identifier);
1890
1891    case UnqualifiedId::IK_OperatorFunctionId:
1892      return Context.DeclarationNames.getCXXOperatorName(
1893                                              Name.OperatorFunctionId.Operator);
1894
1895    case UnqualifiedId::IK_LiteralOperatorId:
1896      return Context.DeclarationNames.getCXXLiteralOperatorName(
1897                                                               Name.Identifier);
1898
1899    case UnqualifiedId::IK_ConversionFunctionId: {
1900      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1901      if (Ty.isNull())
1902        return DeclarationName();
1903
1904      return Context.DeclarationNames.getCXXConversionFunctionName(
1905                                                  Context.getCanonicalType(Ty));
1906    }
1907
1908    case UnqualifiedId::IK_ConstructorName: {
1909      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1910      if (Ty.isNull())
1911        return DeclarationName();
1912
1913      return Context.DeclarationNames.getCXXConstructorName(
1914                                                  Context.getCanonicalType(Ty));
1915    }
1916
1917    case UnqualifiedId::IK_ConstructorTemplateId: {
1918      // In well-formed code, we can only have a constructor
1919      // template-id that refers to the current context, so go there
1920      // to find the actual type being constructed.
1921      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1922      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1923        return DeclarationName();
1924
1925      // Determine the type of the class being constructed.
1926      QualType CurClassType = Context.getTypeDeclType(CurClass);
1927
1928      // FIXME: Check two things: that the template-id names the same type as
1929      // CurClassType, and that the template-id does not occur when the name
1930      // was qualified.
1931
1932      return Context.DeclarationNames.getCXXConstructorName(
1933                                       Context.getCanonicalType(CurClassType));
1934    }
1935
1936    case UnqualifiedId::IK_DestructorName: {
1937      QualType Ty = GetTypeFromParser(Name.DestructorName);
1938      if (Ty.isNull())
1939        return DeclarationName();
1940
1941      return Context.DeclarationNames.getCXXDestructorName(
1942                                                           Context.getCanonicalType(Ty));
1943    }
1944
1945    case UnqualifiedId::IK_TemplateId: {
1946      TemplateName TName
1947        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1948      return Context.getNameForTemplate(TName);
1949    }
1950  }
1951
1952  assert(false && "Unknown name kind");
1953  return DeclarationName();
1954}
1955
1956/// isNearlyMatchingFunction - Determine whether the C++ functions
1957/// Declaration and Definition are "nearly" matching. This heuristic
1958/// is used to improve diagnostics in the case where an out-of-line
1959/// function definition doesn't match any declaration within
1960/// the class or namespace.
1961static bool isNearlyMatchingFunction(ASTContext &Context,
1962                                     FunctionDecl *Declaration,
1963                                     FunctionDecl *Definition) {
1964  if (Declaration->param_size() != Definition->param_size())
1965    return false;
1966  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1967    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1968    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1969
1970    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1971                                        DefParamTy.getNonReferenceType()))
1972      return false;
1973  }
1974
1975  return true;
1976}
1977
1978/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
1979/// declarator needs to be rebuilt in the current instantiation.
1980/// Any bits of declarator which appear before the name are valid for
1981/// consideration here.  That's specifically the type in the decl spec
1982/// and the base type in any member-pointer chunks.
1983static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
1984                                                    DeclarationName Name) {
1985  // The types we specifically need to rebuild are:
1986  //   - typenames, typeofs, and decltypes
1987  //   - types which will become injected class names
1988  // Of course, we also need to rebuild any type referencing such a
1989  // type.  It's safest to just say "dependent", but we call out a
1990  // few cases here.
1991
1992  DeclSpec &DS = D.getMutableDeclSpec();
1993  switch (DS.getTypeSpecType()) {
1994  case DeclSpec::TST_typename:
1995  case DeclSpec::TST_typeofType:
1996  case DeclSpec::TST_typeofExpr:
1997  case DeclSpec::TST_decltype: {
1998    // Grab the type from the parser.
1999    TypeSourceInfo *TSI = 0;
2000    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
2001    if (T.isNull() || !T->isDependentType()) break;
2002
2003    // Make sure there's a type source info.  This isn't really much
2004    // of a waste; most dependent types should have type source info
2005    // attached already.
2006    if (!TSI)
2007      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2008
2009    // Rebuild the type in the current instantiation.
2010    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2011    if (!TSI) return true;
2012
2013    // Store the new type back in the decl spec.
2014    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
2015    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
2016    break;
2017  }
2018
2019  default:
2020    // Nothing to do for these decl specs.
2021    break;
2022  }
2023
2024  // It doesn't matter what order we do this in.
2025  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2026    DeclaratorChunk &Chunk = D.getTypeObject(I);
2027
2028    // The only type information in the declarator which can come
2029    // before the declaration name is the base type of a member
2030    // pointer.
2031    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2032      continue;
2033
2034    // Rebuild the scope specifier in-place.
2035    CXXScopeSpec &SS = Chunk.Mem.Scope();
2036    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2037      return true;
2038  }
2039
2040  return false;
2041}
2042
2043Sema::DeclPtrTy
2044Sema::HandleDeclarator(Scope *S, Declarator &D,
2045                       MultiTemplateParamsArg TemplateParamLists,
2046                       bool IsFunctionDefinition) {
2047  DeclarationName Name = GetNameForDeclarator(D);
2048
2049  // All of these full declarators require an identifier.  If it doesn't have
2050  // one, the ParsedFreeStandingDeclSpec action should be used.
2051  if (!Name) {
2052    if (!D.isInvalidType())  // Reject this if we think it is valid.
2053      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2054           diag::err_declarator_need_ident)
2055        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2056    return DeclPtrTy();
2057  }
2058
2059  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2060  // we find one that is.
2061  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2062         (S->getFlags() & Scope::TemplateParamScope) != 0)
2063    S = S->getParent();
2064
2065  DeclContext *DC = CurContext;
2066  if (D.getCXXScopeSpec().isInvalid())
2067    D.setInvalidType();
2068  else if (D.getCXXScopeSpec().isSet()) {
2069    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2070    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2071    if (!DC) {
2072      // If we could not compute the declaration context, it's because the
2073      // declaration context is dependent but does not refer to a class,
2074      // class template, or class template partial specialization. Complain
2075      // and return early, to avoid the coming semantic disaster.
2076      Diag(D.getIdentifierLoc(),
2077           diag::err_template_qualified_declarator_no_match)
2078        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2079        << D.getCXXScopeSpec().getRange();
2080      return DeclPtrTy();
2081    }
2082
2083    bool IsDependentContext = DC->isDependentContext();
2084
2085    if (!IsDependentContext &&
2086        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2087      return DeclPtrTy();
2088
2089    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2090      Diag(D.getIdentifierLoc(),
2091           diag::err_member_def_undefined_record)
2092        << Name << DC << D.getCXXScopeSpec().getRange();
2093      D.setInvalidType();
2094    }
2095
2096    // Check whether we need to rebuild the type of the given
2097    // declaration in the current instantiation.
2098    if (EnteringContext && IsDependentContext &&
2099        TemplateParamLists.size() != 0) {
2100      ContextRAII SavedContext(*this, DC);
2101      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2102        D.setInvalidType();
2103    }
2104  }
2105
2106  NamedDecl *New;
2107
2108  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2109  QualType R = TInfo->getType();
2110
2111  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2112                        ForRedeclaration);
2113
2114  // See if this is a redefinition of a variable in the same scope.
2115  if (!D.getCXXScopeSpec().isSet()) {
2116    bool IsLinkageLookup = false;
2117
2118    // If the declaration we're planning to build will be a function
2119    // or object with linkage, then look for another declaration with
2120    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2121    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2122      /* Do nothing*/;
2123    else if (R->isFunctionType()) {
2124      if (CurContext->isFunctionOrMethod() ||
2125          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2126        IsLinkageLookup = true;
2127    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2128      IsLinkageLookup = true;
2129    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2130             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2131      IsLinkageLookup = true;
2132
2133    if (IsLinkageLookup)
2134      Previous.clear(LookupRedeclarationWithLinkage);
2135
2136    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2137  } else { // Something like "int foo::x;"
2138    LookupQualifiedName(Previous, DC);
2139
2140    // Don't consider using declarations as previous declarations for
2141    // out-of-line members.
2142    RemoveUsingDecls(Previous);
2143
2144    // C++ 7.3.1.2p2:
2145    // Members (including explicit specializations of templates) of a named
2146    // namespace can also be defined outside that namespace by explicit
2147    // qualification of the name being defined, provided that the entity being
2148    // defined was already declared in the namespace and the definition appears
2149    // after the point of declaration in a namespace that encloses the
2150    // declarations namespace.
2151    //
2152    // Note that we only check the context at this point. We don't yet
2153    // have enough information to make sure that PrevDecl is actually
2154    // the declaration we want to match. For example, given:
2155    //
2156    //   class X {
2157    //     void f();
2158    //     void f(float);
2159    //   };
2160    //
2161    //   void X::f(int) { } // ill-formed
2162    //
2163    // In this case, PrevDecl will point to the overload set
2164    // containing the two f's declared in X, but neither of them
2165    // matches.
2166
2167    // First check whether we named the global scope.
2168    if (isa<TranslationUnitDecl>(DC)) {
2169      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2170        << Name << D.getCXXScopeSpec().getRange();
2171    } else {
2172      DeclContext *Cur = CurContext;
2173      while (isa<LinkageSpecDecl>(Cur))
2174        Cur = Cur->getParent();
2175      if (!Cur->Encloses(DC)) {
2176        // The qualifying scope doesn't enclose the original declaration.
2177        // Emit diagnostic based on current scope.
2178        SourceLocation L = D.getIdentifierLoc();
2179        SourceRange R = D.getCXXScopeSpec().getRange();
2180        if (isa<FunctionDecl>(Cur))
2181          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2182        else
2183          Diag(L, diag::err_invalid_declarator_scope)
2184            << Name << cast<NamedDecl>(DC) << R;
2185        D.setInvalidType();
2186      }
2187    }
2188  }
2189
2190  if (Previous.isSingleResult() &&
2191      Previous.getFoundDecl()->isTemplateParameter()) {
2192    // Maybe we will complain about the shadowed template parameter.
2193    if (!D.isInvalidType())
2194      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2195                                          Previous.getFoundDecl()))
2196        D.setInvalidType();
2197
2198    // Just pretend that we didn't see the previous declaration.
2199    Previous.clear();
2200  }
2201
2202  // In C++, the previous declaration we find might be a tag type
2203  // (class or enum). In this case, the new declaration will hide the
2204  // tag type. Note that this does does not apply if we're declaring a
2205  // typedef (C++ [dcl.typedef]p4).
2206  if (Previous.isSingleTagDecl() &&
2207      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2208    Previous.clear();
2209
2210  bool Redeclaration = false;
2211  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2212    if (TemplateParamLists.size()) {
2213      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2214      return DeclPtrTy();
2215    }
2216
2217    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2218  } else if (R->isFunctionType()) {
2219    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2220                                  move(TemplateParamLists),
2221                                  IsFunctionDefinition, Redeclaration);
2222  } else {
2223    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2224                                  move(TemplateParamLists),
2225                                  Redeclaration);
2226  }
2227
2228  if (New == 0)
2229    return DeclPtrTy();
2230
2231  // If this has an identifier and is not an invalid redeclaration or
2232  // function template specialization, add it to the scope stack.
2233  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2234    PushOnScopeChains(New, S);
2235
2236  return DeclPtrTy::make(New);
2237}
2238
2239/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2240/// types into constant array types in certain situations which would otherwise
2241/// be errors (for GCC compatibility).
2242static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2243                                                    ASTContext &Context,
2244                                                    bool &SizeIsNegative) {
2245  // This method tries to turn a variable array into a constant
2246  // array even when the size isn't an ICE.  This is necessary
2247  // for compatibility with code that depends on gcc's buggy
2248  // constant expression folding, like struct {char x[(int)(char*)2];}
2249  SizeIsNegative = false;
2250
2251  QualifierCollector Qs;
2252  const Type *Ty = Qs.strip(T);
2253
2254  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2255    QualType Pointee = PTy->getPointeeType();
2256    QualType FixedType =
2257        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2258    if (FixedType.isNull()) return FixedType;
2259    FixedType = Context.getPointerType(FixedType);
2260    return Qs.apply(FixedType);
2261  }
2262
2263  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2264  if (!VLATy)
2265    return QualType();
2266  // FIXME: We should probably handle this case
2267  if (VLATy->getElementType()->isVariablyModifiedType())
2268    return QualType();
2269
2270  Expr::EvalResult EvalResult;
2271  if (!VLATy->getSizeExpr() ||
2272      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2273      !EvalResult.Val.isInt())
2274    return QualType();
2275
2276  llvm::APSInt &Res = EvalResult.Val.getInt();
2277  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2278    // TODO: preserve the size expression in declarator info
2279    return Context.getConstantArrayType(VLATy->getElementType(),
2280                                        Res, ArrayType::Normal, 0);
2281  }
2282
2283  SizeIsNegative = true;
2284  return QualType();
2285}
2286
2287/// \brief Register the given locally-scoped external C declaration so
2288/// that it can be found later for redeclarations
2289void
2290Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2291                                       const LookupResult &Previous,
2292                                       Scope *S) {
2293  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2294         "Decl is not a locally-scoped decl!");
2295  // Note that we have a locally-scoped external with this name.
2296  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2297
2298  if (!Previous.isSingleResult())
2299    return;
2300
2301  NamedDecl *PrevDecl = Previous.getFoundDecl();
2302
2303  // If there was a previous declaration of this variable, it may be
2304  // in our identifier chain. Update the identifier chain with the new
2305  // declaration.
2306  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2307    // The previous declaration was found on the identifer resolver
2308    // chain, so remove it from its scope.
2309    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2310      S = S->getParent();
2311
2312    if (S)
2313      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2314  }
2315}
2316
2317/// \brief Diagnose function specifiers on a declaration of an identifier that
2318/// does not identify a function.
2319void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2320  // FIXME: We should probably indicate the identifier in question to avoid
2321  // confusion for constructs like "inline int a(), b;"
2322  if (D.getDeclSpec().isInlineSpecified())
2323    Diag(D.getDeclSpec().getInlineSpecLoc(),
2324         diag::err_inline_non_function);
2325
2326  if (D.getDeclSpec().isVirtualSpecified())
2327    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2328         diag::err_virtual_non_function);
2329
2330  if (D.getDeclSpec().isExplicitSpecified())
2331    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2332         diag::err_explicit_non_function);
2333}
2334
2335NamedDecl*
2336Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2337                             QualType R,  TypeSourceInfo *TInfo,
2338                             LookupResult &Previous, bool &Redeclaration) {
2339  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2340  if (D.getCXXScopeSpec().isSet()) {
2341    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2342      << D.getCXXScopeSpec().getRange();
2343    D.setInvalidType();
2344    // Pretend we didn't see the scope specifier.
2345    DC = CurContext;
2346    Previous.clear();
2347  }
2348
2349  if (getLangOptions().CPlusPlus) {
2350    // Check that there are no default arguments (C++ only).
2351    CheckExtraCXXDefaultArguments(D);
2352  }
2353
2354  DiagnoseFunctionSpecifiers(D);
2355
2356  if (D.getDeclSpec().isThreadSpecified())
2357    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2358
2359  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2360    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2361      << D.getName().getSourceRange();
2362    return 0;
2363  }
2364
2365  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2366  if (!NewTD) return 0;
2367
2368  // Handle attributes prior to checking for duplicates in MergeVarDecl
2369  ProcessDeclAttributes(S, NewTD, D);
2370
2371  // Merge the decl with the existing one if appropriate. If the decl is
2372  // in an outer scope, it isn't the same thing.
2373  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2374  if (!Previous.empty()) {
2375    Redeclaration = true;
2376    MergeTypeDefDecl(NewTD, Previous);
2377  }
2378
2379  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2380  // then it shall have block scope.
2381  QualType T = NewTD->getUnderlyingType();
2382  if (T->isVariablyModifiedType()) {
2383    setFunctionHasBranchProtectedScope();
2384
2385    if (S->getFnParent() == 0) {
2386      bool SizeIsNegative;
2387      QualType FixedTy =
2388          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2389      if (!FixedTy.isNull()) {
2390        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2391        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2392      } else {
2393        if (SizeIsNegative)
2394          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2395        else if (T->isVariableArrayType())
2396          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2397        else
2398          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2399        NewTD->setInvalidDecl();
2400      }
2401    }
2402  }
2403
2404  // If this is the C FILE type, notify the AST context.
2405  if (IdentifierInfo *II = NewTD->getIdentifier())
2406    if (!NewTD->isInvalidDecl() &&
2407        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2408      if (II->isStr("FILE"))
2409        Context.setFILEDecl(NewTD);
2410      else if (II->isStr("jmp_buf"))
2411        Context.setjmp_bufDecl(NewTD);
2412      else if (II->isStr("sigjmp_buf"))
2413        Context.setsigjmp_bufDecl(NewTD);
2414    }
2415
2416  return NewTD;
2417}
2418
2419/// \brief Determines whether the given declaration is an out-of-scope
2420/// previous declaration.
2421///
2422/// This routine should be invoked when name lookup has found a
2423/// previous declaration (PrevDecl) that is not in the scope where a
2424/// new declaration by the same name is being introduced. If the new
2425/// declaration occurs in a local scope, previous declarations with
2426/// linkage may still be considered previous declarations (C99
2427/// 6.2.2p4-5, C++ [basic.link]p6).
2428///
2429/// \param PrevDecl the previous declaration found by name
2430/// lookup
2431///
2432/// \param DC the context in which the new declaration is being
2433/// declared.
2434///
2435/// \returns true if PrevDecl is an out-of-scope previous declaration
2436/// for a new delcaration with the same name.
2437static bool
2438isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2439                                ASTContext &Context) {
2440  if (!PrevDecl)
2441    return 0;
2442
2443  if (!PrevDecl->hasLinkage())
2444    return false;
2445
2446  if (Context.getLangOptions().CPlusPlus) {
2447    // C++ [basic.link]p6:
2448    //   If there is a visible declaration of an entity with linkage
2449    //   having the same name and type, ignoring entities declared
2450    //   outside the innermost enclosing namespace scope, the block
2451    //   scope declaration declares that same entity and receives the
2452    //   linkage of the previous declaration.
2453    DeclContext *OuterContext = DC->getLookupContext();
2454    if (!OuterContext->isFunctionOrMethod())
2455      // This rule only applies to block-scope declarations.
2456      return false;
2457    else {
2458      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2459      if (PrevOuterContext->isRecord())
2460        // We found a member function: ignore it.
2461        return false;
2462      else {
2463        // Find the innermost enclosing namespace for the new and
2464        // previous declarations.
2465        while (!OuterContext->isFileContext())
2466          OuterContext = OuterContext->getParent();
2467        while (!PrevOuterContext->isFileContext())
2468          PrevOuterContext = PrevOuterContext->getParent();
2469
2470        // The previous declaration is in a different namespace, so it
2471        // isn't the same function.
2472        if (OuterContext->getPrimaryContext() !=
2473            PrevOuterContext->getPrimaryContext())
2474          return false;
2475      }
2476    }
2477  }
2478
2479  return true;
2480}
2481
2482static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2483  CXXScopeSpec &SS = D.getCXXScopeSpec();
2484  if (!SS.isSet()) return;
2485  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2486                       SS.getRange());
2487}
2488
2489NamedDecl*
2490Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2491                              QualType R, TypeSourceInfo *TInfo,
2492                              LookupResult &Previous,
2493                              MultiTemplateParamsArg TemplateParamLists,
2494                              bool &Redeclaration) {
2495  DeclarationName Name = GetNameForDeclarator(D);
2496
2497  // Check that there are no default arguments (C++ only).
2498  if (getLangOptions().CPlusPlus)
2499    CheckExtraCXXDefaultArguments(D);
2500
2501  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2502  assert(SCSpec != DeclSpec::SCS_typedef &&
2503         "Parser allowed 'typedef' as storage class VarDecl.");
2504  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2505  if (SCSpec == DeclSpec::SCS_mutable) {
2506    // mutable can only appear on non-static class members, so it's always
2507    // an error here
2508    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2509    D.setInvalidType();
2510    SC = VarDecl::None;
2511  }
2512  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2513  VarDecl::StorageClass SCAsWritten
2514    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2515
2516  IdentifierInfo *II = Name.getAsIdentifierInfo();
2517  if (!II) {
2518    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2519      << Name.getAsString();
2520    return 0;
2521  }
2522
2523  DiagnoseFunctionSpecifiers(D);
2524
2525  if (!DC->isRecord() && S->getFnParent() == 0) {
2526    // C99 6.9p2: The storage-class specifiers auto and register shall not
2527    // appear in the declaration specifiers in an external declaration.
2528    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2529
2530      // If this is a register variable with an asm label specified, then this
2531      // is a GNU extension.
2532      if (SC == VarDecl::Register && D.getAsmLabel())
2533        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2534      else
2535        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2536      D.setInvalidType();
2537    }
2538  }
2539  if (DC->isRecord() && !CurContext->isRecord()) {
2540    // This is an out-of-line definition of a static data member.
2541    if (SC == VarDecl::Static) {
2542      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2543           diag::err_static_out_of_line)
2544        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2545    } else if (SC == VarDecl::None)
2546      SC = VarDecl::Static;
2547  }
2548  if (SC == VarDecl::Static) {
2549    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2550      if (RD->isLocalClass())
2551        Diag(D.getIdentifierLoc(),
2552             diag::err_static_data_member_not_allowed_in_local_class)
2553          << Name << RD->getDeclName();
2554    }
2555  }
2556
2557  // Match up the template parameter lists with the scope specifier, then
2558  // determine whether we have a template or a template specialization.
2559  bool isExplicitSpecialization = false;
2560  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2561  bool Invalid = false;
2562  if (TemplateParameterList *TemplateParams
2563        = MatchTemplateParametersToScopeSpecifier(
2564                                  D.getDeclSpec().getSourceRange().getBegin(),
2565                                                  D.getCXXScopeSpec(),
2566                        (TemplateParameterList**)TemplateParamLists.get(),
2567                                                   TemplateParamLists.size(),
2568                                                  /*never a friend*/ false,
2569                                                  isExplicitSpecialization,
2570                                                  Invalid)) {
2571    // All but one template parameter lists have been matching.
2572    --NumMatchedTemplateParamLists;
2573
2574    if (TemplateParams->size() > 0) {
2575      // There is no such thing as a variable template.
2576      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2577        << II
2578        << SourceRange(TemplateParams->getTemplateLoc(),
2579                       TemplateParams->getRAngleLoc());
2580      return 0;
2581    } else {
2582      // There is an extraneous 'template<>' for this variable. Complain
2583      // about it, but allow the declaration of the variable.
2584      Diag(TemplateParams->getTemplateLoc(),
2585           diag::err_template_variable_noparams)
2586        << II
2587        << SourceRange(TemplateParams->getTemplateLoc(),
2588                       TemplateParams->getRAngleLoc());
2589
2590      isExplicitSpecialization = true;
2591    }
2592  }
2593
2594  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2595                                   II, R, TInfo, SC, SCAsWritten);
2596
2597  if (D.isInvalidType() || Invalid)
2598    NewVD->setInvalidDecl();
2599
2600  SetNestedNameSpecifier(NewVD, D);
2601
2602  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2603    NewVD->setTemplateParameterListsInfo(Context,
2604                                         NumMatchedTemplateParamLists,
2605                        (TemplateParameterList**)TemplateParamLists.release());
2606  }
2607
2608  if (D.getDeclSpec().isThreadSpecified()) {
2609    if (NewVD->hasLocalStorage())
2610      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2611    else if (!Context.Target.isTLSSupported())
2612      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2613    else
2614      NewVD->setThreadSpecified(true);
2615  }
2616
2617  // Set the lexical context. If the declarator has a C++ scope specifier, the
2618  // lexical context will be different from the semantic context.
2619  NewVD->setLexicalDeclContext(CurContext);
2620
2621  // Handle attributes prior to checking for duplicates in MergeVarDecl
2622  ProcessDeclAttributes(S, NewVD, D);
2623
2624  // Handle GNU asm-label extension (encoded as an attribute).
2625  if (Expr *E = (Expr*) D.getAsmLabel()) {
2626    // The parser guarantees this is a string.
2627    StringLiteral *SE = cast<StringLiteral>(E);
2628    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2629  }
2630
2631  // Diagnose shadowed variables before filtering for scope.
2632  if (!D.getCXXScopeSpec().isSet())
2633    CheckShadow(S, NewVD, Previous);
2634
2635  // Don't consider existing declarations that are in a different
2636  // scope and are out-of-semantic-context declarations (if the new
2637  // declaration has linkage).
2638  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2639
2640  // Merge the decl with the existing one if appropriate.
2641  if (!Previous.empty()) {
2642    if (Previous.isSingleResult() &&
2643        isa<FieldDecl>(Previous.getFoundDecl()) &&
2644        D.getCXXScopeSpec().isSet()) {
2645      // The user tried to define a non-static data member
2646      // out-of-line (C++ [dcl.meaning]p1).
2647      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2648        << D.getCXXScopeSpec().getRange();
2649      Previous.clear();
2650      NewVD->setInvalidDecl();
2651    }
2652  } else if (D.getCXXScopeSpec().isSet()) {
2653    // No previous declaration in the qualifying scope.
2654    Diag(D.getIdentifierLoc(), diag::err_no_member)
2655      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2656      << D.getCXXScopeSpec().getRange();
2657    NewVD->setInvalidDecl();
2658  }
2659
2660  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2661
2662  // This is an explicit specialization of a static data member. Check it.
2663  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2664      CheckMemberSpecialization(NewVD, Previous))
2665    NewVD->setInvalidDecl();
2666
2667  // attributes declared post-definition are currently ignored
2668  if (Previous.isSingleResult()) {
2669    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2670    if (Def && (Def = Def->getDefinition()) &&
2671        Def != NewVD && D.hasAttributes()) {
2672      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2673      Diag(Def->getLocation(), diag::note_previous_definition);
2674    }
2675  }
2676
2677  // If this is a locally-scoped extern C variable, update the map of
2678  // such variables.
2679  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2680      !NewVD->isInvalidDecl())
2681    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2682
2683  return NewVD;
2684}
2685
2686/// \brief Diagnose variable or built-in function shadowing.  Implements
2687/// -Wshadow.
2688///
2689/// This method is called whenever a VarDecl is added to a "useful"
2690/// scope.
2691///
2692/// \param S the scope in which the shadowing name is being declared
2693/// \param R the lookup of the name
2694///
2695void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2696  // Return if warning is ignored.
2697  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2698    return;
2699
2700  // Don't diagnose declarations at file scope.  The scope might not
2701  // have a DeclContext if (e.g.) we're parsing a function prototype.
2702  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2703  if (NewDC && NewDC->isFileContext())
2704    return;
2705
2706  // Only diagnose if we're shadowing an unambiguous field or variable.
2707  if (R.getResultKind() != LookupResult::Found)
2708    return;
2709
2710  NamedDecl* ShadowedDecl = R.getFoundDecl();
2711  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2712    return;
2713
2714  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2715
2716  // Only warn about certain kinds of shadowing for class members.
2717  if (NewDC && NewDC->isRecord()) {
2718    // In particular, don't warn about shadowing non-class members.
2719    if (!OldDC->isRecord())
2720      return;
2721
2722    // TODO: should we warn about static data members shadowing
2723    // static data members from base classes?
2724
2725    // TODO: don't diagnose for inaccessible shadowed members.
2726    // This is hard to do perfectly because we might friend the
2727    // shadowing context, but that's just a false negative.
2728  }
2729
2730  // Determine what kind of declaration we're shadowing.
2731  unsigned Kind;
2732  if (isa<RecordDecl>(OldDC)) {
2733    if (isa<FieldDecl>(ShadowedDecl))
2734      Kind = 3; // field
2735    else
2736      Kind = 2; // static data member
2737  } else if (OldDC->isFileContext())
2738    Kind = 1; // global
2739  else
2740    Kind = 0; // local
2741
2742  DeclarationName Name = R.getLookupName();
2743
2744  // Emit warning and note.
2745  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2746  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2747}
2748
2749/// \brief Check -Wshadow without the advantage of a previous lookup.
2750void Sema::CheckShadow(Scope *S, VarDecl *D) {
2751  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2752                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2753  LookupName(R, S);
2754  CheckShadow(S, D, R);
2755}
2756
2757/// \brief Perform semantic checking on a newly-created variable
2758/// declaration.
2759///
2760/// This routine performs all of the type-checking required for a
2761/// variable declaration once it has been built. It is used both to
2762/// check variables after they have been parsed and their declarators
2763/// have been translated into a declaration, and to check variables
2764/// that have been instantiated from a template.
2765///
2766/// Sets NewVD->isInvalidDecl() if an error was encountered.
2767void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2768                                    LookupResult &Previous,
2769                                    bool &Redeclaration) {
2770  // If the decl is already known invalid, don't check it.
2771  if (NewVD->isInvalidDecl())
2772    return;
2773
2774  QualType T = NewVD->getType();
2775
2776  if (T->isObjCObjectType()) {
2777    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2778    return NewVD->setInvalidDecl();
2779  }
2780
2781  // Emit an error if an address space was applied to decl with local storage.
2782  // This includes arrays of objects with address space qualifiers, but not
2783  // automatic variables that point to other address spaces.
2784  // ISO/IEC TR 18037 S5.1.2
2785  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2786    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2787    return NewVD->setInvalidDecl();
2788  }
2789
2790  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2791      && !NewVD->hasAttr<BlocksAttr>())
2792    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2793
2794  bool isVM = T->isVariablyModifiedType();
2795  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2796      NewVD->hasAttr<BlocksAttr>())
2797    setFunctionHasBranchProtectedScope();
2798
2799  if ((isVM && NewVD->hasLinkage()) ||
2800      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2801    bool SizeIsNegative;
2802    QualType FixedTy =
2803        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2804
2805    if (FixedTy.isNull() && T->isVariableArrayType()) {
2806      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2807      // FIXME: This won't give the correct result for
2808      // int a[10][n];
2809      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2810
2811      if (NewVD->isFileVarDecl())
2812        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2813        << SizeRange;
2814      else if (NewVD->getStorageClass() == VarDecl::Static)
2815        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2816        << SizeRange;
2817      else
2818        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2819        << SizeRange;
2820      return NewVD->setInvalidDecl();
2821    }
2822
2823    if (FixedTy.isNull()) {
2824      if (NewVD->isFileVarDecl())
2825        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2826      else
2827        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2828      return NewVD->setInvalidDecl();
2829    }
2830
2831    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2832    NewVD->setType(FixedTy);
2833  }
2834
2835  if (Previous.empty() && NewVD->isExternC()) {
2836    // Since we did not find anything by this name and we're declaring
2837    // an extern "C" variable, look for a non-visible extern "C"
2838    // declaration with the same name.
2839    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2840      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2841    if (Pos != LocallyScopedExternalDecls.end())
2842      Previous.addDecl(Pos->second);
2843  }
2844
2845  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2846    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2847      << T;
2848    return NewVD->setInvalidDecl();
2849  }
2850
2851  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2852    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2853    return NewVD->setInvalidDecl();
2854  }
2855
2856  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2857    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2858    return NewVD->setInvalidDecl();
2859  }
2860
2861  // Function pointers and references cannot have qualified function type, only
2862  // function pointer-to-members can do that.
2863  QualType Pointee;
2864  unsigned PtrOrRef = 0;
2865  if (const PointerType *Ptr = T->getAs<PointerType>())
2866    Pointee = Ptr->getPointeeType();
2867  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
2868    Pointee = Ref->getPointeeType();
2869    PtrOrRef = 1;
2870  }
2871  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
2872      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
2873    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
2874        << PtrOrRef;
2875    return NewVD->setInvalidDecl();
2876  }
2877
2878  if (!Previous.empty()) {
2879    Redeclaration = true;
2880    MergeVarDecl(NewVD, Previous);
2881  }
2882}
2883
2884/// \brief Data used with FindOverriddenMethod
2885struct FindOverriddenMethodData {
2886  Sema *S;
2887  CXXMethodDecl *Method;
2888};
2889
2890/// \brief Member lookup function that determines whether a given C++
2891/// method overrides a method in a base class, to be used with
2892/// CXXRecordDecl::lookupInBases().
2893static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2894                                 CXXBasePath &Path,
2895                                 void *UserData) {
2896  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2897
2898  FindOverriddenMethodData *Data
2899    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2900
2901  DeclarationName Name = Data->Method->getDeclName();
2902
2903  // FIXME: Do we care about other names here too?
2904  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2905    // We really want to find the base class destructor here.
2906    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2907    CanQualType CT = Data->S->Context.getCanonicalType(T);
2908
2909    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2910  }
2911
2912  for (Path.Decls = BaseRecord->lookup(Name);
2913       Path.Decls.first != Path.Decls.second;
2914       ++Path.Decls.first) {
2915    NamedDecl *D = *Path.Decls.first;
2916    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2917      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
2918        return true;
2919    }
2920  }
2921
2922  return false;
2923}
2924
2925/// AddOverriddenMethods - See if a method overrides any in the base classes,
2926/// and if so, check that it's a valid override and remember it.
2927void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2928  // Look for virtual methods in base classes that this method might override.
2929  CXXBasePaths Paths;
2930  FindOverriddenMethodData Data;
2931  Data.Method = MD;
2932  Data.S = this;
2933  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2934    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2935         E = Paths.found_decls_end(); I != E; ++I) {
2936      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2937        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2938            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2939            !CheckOverridingFunctionAttributes(MD, OldMD))
2940          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2941      }
2942    }
2943  }
2944}
2945
2946NamedDecl*
2947Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2948                              QualType R, TypeSourceInfo *TInfo,
2949                              LookupResult &Previous,
2950                              MultiTemplateParamsArg TemplateParamLists,
2951                              bool IsFunctionDefinition, bool &Redeclaration) {
2952  assert(R.getTypePtr()->isFunctionType());
2953
2954  DeclarationName Name = GetNameForDeclarator(D);
2955  FunctionDecl::StorageClass SC = FunctionDecl::None;
2956  switch (D.getDeclSpec().getStorageClassSpec()) {
2957  default: assert(0 && "Unknown storage class!");
2958  case DeclSpec::SCS_auto:
2959  case DeclSpec::SCS_register:
2960  case DeclSpec::SCS_mutable:
2961    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2962         diag::err_typecheck_sclass_func);
2963    D.setInvalidType();
2964    break;
2965  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2966  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2967  case DeclSpec::SCS_static: {
2968    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2969      // C99 6.7.1p5:
2970      //   The declaration of an identifier for a function that has
2971      //   block scope shall have no explicit storage-class specifier
2972      //   other than extern
2973      // See also (C++ [dcl.stc]p4).
2974      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2975           diag::err_static_block_func);
2976      SC = FunctionDecl::None;
2977    } else
2978      SC = FunctionDecl::Static;
2979    break;
2980  }
2981  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2982  }
2983
2984  if (D.getDeclSpec().isThreadSpecified())
2985    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2986
2987  bool isFriend = D.getDeclSpec().isFriendSpecified();
2988  bool isInline = D.getDeclSpec().isInlineSpecified();
2989  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2990  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2991
2992  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2993  FunctionDecl::StorageClass SCAsWritten
2994    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
2995
2996  // Check that the return type is not an abstract class type.
2997  // For record types, this is done by the AbstractClassUsageDiagnoser once
2998  // the class has been completely parsed.
2999  if (!DC->isRecord() &&
3000      RequireNonAbstractType(D.getIdentifierLoc(),
3001                             R->getAs<FunctionType>()->getResultType(),
3002                             diag::err_abstract_type_in_decl,
3003                             AbstractReturnType))
3004    D.setInvalidType();
3005
3006  // Do not allow returning a objc interface by-value.
3007  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3008    Diag(D.getIdentifierLoc(),
3009         diag::err_object_cannot_be_passed_returned_by_value) << 0
3010      << R->getAs<FunctionType>()->getResultType();
3011    D.setInvalidType();
3012  }
3013
3014  bool isVirtualOkay = false;
3015  FunctionDecl *NewFD;
3016
3017  if (isFriend) {
3018    // C++ [class.friend]p5
3019    //   A function can be defined in a friend declaration of a
3020    //   class . . . . Such a function is implicitly inline.
3021    isInline |= IsFunctionDefinition;
3022  }
3023
3024  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3025    // This is a C++ constructor declaration.
3026    assert(DC->isRecord() &&
3027           "Constructors can only be declared in a member context");
3028
3029    R = CheckConstructorDeclarator(D, R, SC);
3030
3031    // Create the new declaration
3032    NewFD = CXXConstructorDecl::Create(Context,
3033                                       cast<CXXRecordDecl>(DC),
3034                                       D.getIdentifierLoc(), Name, R, TInfo,
3035                                       isExplicit, isInline,
3036                                       /*isImplicitlyDeclared=*/false);
3037  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3038    // This is a C++ destructor declaration.
3039    if (DC->isRecord()) {
3040      R = CheckDestructorDeclarator(D, R, SC);
3041
3042      NewFD = CXXDestructorDecl::Create(Context,
3043                                        cast<CXXRecordDecl>(DC),
3044                                        D.getIdentifierLoc(), Name, R,
3045                                        isInline,
3046                                        /*isImplicitlyDeclared=*/false);
3047      NewFD->setTypeSourceInfo(TInfo);
3048
3049      isVirtualOkay = true;
3050    } else {
3051      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3052
3053      // Create a FunctionDecl to satisfy the function definition parsing
3054      // code path.
3055      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3056                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3057                                   /*hasPrototype=*/true);
3058      D.setInvalidType();
3059    }
3060  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3061    if (!DC->isRecord()) {
3062      Diag(D.getIdentifierLoc(),
3063           diag::err_conv_function_not_member);
3064      return 0;
3065    }
3066
3067    CheckConversionDeclarator(D, R, SC);
3068    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3069                                      D.getIdentifierLoc(), Name, R, TInfo,
3070                                      isInline, isExplicit);
3071
3072    isVirtualOkay = true;
3073  } else if (DC->isRecord()) {
3074    // If the of the function is the same as the name of the record, then this
3075    // must be an invalid constructor that has a return type.
3076    // (The parser checks for a return type and makes the declarator a
3077    // constructor if it has no return type).
3078    // must have an invalid constructor that has a return type
3079    if (Name.getAsIdentifierInfo() &&
3080        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3081      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3082        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3083        << SourceRange(D.getIdentifierLoc());
3084      return 0;
3085    }
3086
3087    bool isStatic = SC == FunctionDecl::Static;
3088
3089    // [class.free]p1:
3090    // Any allocation function for a class T is a static member
3091    // (even if not explicitly declared static).
3092    if (Name.getCXXOverloadedOperator() == OO_New ||
3093        Name.getCXXOverloadedOperator() == OO_Array_New)
3094      isStatic = true;
3095
3096    // [class.free]p6 Any deallocation function for a class X is a static member
3097    // (even if not explicitly declared static).
3098    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3099        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3100      isStatic = true;
3101
3102    // This is a C++ method declaration.
3103    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3104                                  D.getIdentifierLoc(), Name, R, TInfo,
3105                                  isStatic, SCAsWritten, isInline);
3106
3107    isVirtualOkay = !isStatic;
3108  } else {
3109    // Determine whether the function was written with a
3110    // prototype. This true when:
3111    //   - we're in C++ (where every function has a prototype),
3112    //   - there is a prototype in the declarator, or
3113    //   - the type R of the function is some kind of typedef or other reference
3114    //     to a type name (which eventually refers to a function type).
3115    bool HasPrototype =
3116       getLangOptions().CPlusPlus ||
3117       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3118       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3119
3120    NewFD = FunctionDecl::Create(Context, DC,
3121                                 D.getIdentifierLoc(),
3122                                 Name, R, TInfo, SC, SCAsWritten, isInline,
3123                                 HasPrototype);
3124  }
3125
3126  if (D.isInvalidType())
3127    NewFD->setInvalidDecl();
3128
3129  SetNestedNameSpecifier(NewFD, D);
3130
3131  // Set the lexical context. If the declarator has a C++
3132  // scope specifier, or is the object of a friend declaration, the
3133  // lexical context will be different from the semantic context.
3134  NewFD->setLexicalDeclContext(CurContext);
3135
3136  // Match up the template parameter lists with the scope specifier, then
3137  // determine whether we have a template or a template specialization.
3138  FunctionTemplateDecl *FunctionTemplate = 0;
3139  bool isExplicitSpecialization = false;
3140  bool isFunctionTemplateSpecialization = false;
3141  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3142  bool Invalid = false;
3143  if (TemplateParameterList *TemplateParams
3144        = MatchTemplateParametersToScopeSpecifier(
3145                                  D.getDeclSpec().getSourceRange().getBegin(),
3146                                  D.getCXXScopeSpec(),
3147                           (TemplateParameterList**)TemplateParamLists.get(),
3148                                                  TemplateParamLists.size(),
3149                                                  isFriend,
3150                                                  isExplicitSpecialization,
3151                                                  Invalid)) {
3152    // All but one template parameter lists have been matching.
3153    --NumMatchedTemplateParamLists;
3154
3155    if (TemplateParams->size() > 0) {
3156      // This is a function template
3157
3158      // Check that we can declare a template here.
3159      if (CheckTemplateDeclScope(S, TemplateParams))
3160        return 0;
3161
3162      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3163                                                      NewFD->getLocation(),
3164                                                      Name, TemplateParams,
3165                                                      NewFD);
3166      FunctionTemplate->setLexicalDeclContext(CurContext);
3167      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3168    } else {
3169      // This is a function template specialization.
3170      isFunctionTemplateSpecialization = true;
3171
3172      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3173      if (isFriend && isFunctionTemplateSpecialization) {
3174        // We want to remove the "template<>", found here.
3175        SourceRange RemoveRange = TemplateParams->getSourceRange();
3176
3177        // If we remove the template<> and the name is not a
3178        // template-id, we're actually silently creating a problem:
3179        // the friend declaration will refer to an untemplated decl,
3180        // and clearly the user wants a template specialization.  So
3181        // we need to insert '<>' after the name.
3182        SourceLocation InsertLoc;
3183        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3184          InsertLoc = D.getName().getSourceRange().getEnd();
3185          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3186        }
3187
3188        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3189          << Name << RemoveRange
3190          << FixItHint::CreateRemoval(RemoveRange)
3191          << FixItHint::CreateInsertion(InsertLoc, "<>");
3192      }
3193    }
3194  }
3195
3196  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3197    NewFD->setTemplateParameterListsInfo(Context,
3198                                         NumMatchedTemplateParamLists,
3199                        (TemplateParameterList**)TemplateParamLists.release());
3200  }
3201
3202  if (Invalid) {
3203    NewFD->setInvalidDecl();
3204    if (FunctionTemplate)
3205      FunctionTemplate->setInvalidDecl();
3206  }
3207
3208  // C++ [dcl.fct.spec]p5:
3209  //   The virtual specifier shall only be used in declarations of
3210  //   nonstatic class member functions that appear within a
3211  //   member-specification of a class declaration; see 10.3.
3212  //
3213  if (isVirtual && !NewFD->isInvalidDecl()) {
3214    if (!isVirtualOkay) {
3215       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3216           diag::err_virtual_non_function);
3217    } else if (!CurContext->isRecord()) {
3218      // 'virtual' was specified outside of the class.
3219      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3220        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3221    } else {
3222      // Okay: Add virtual to the method.
3223      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3224      CurClass->setMethodAsVirtual(NewFD);
3225    }
3226  }
3227
3228  // C++ [dcl.fct.spec]p6:
3229  //  The explicit specifier shall be used only in the declaration of a
3230  //  constructor or conversion function within its class definition; see 12.3.1
3231  //  and 12.3.2.
3232  if (isExplicit && !NewFD->isInvalidDecl()) {
3233    if (!CurContext->isRecord()) {
3234      // 'explicit' was specified outside of the class.
3235      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3236           diag::err_explicit_out_of_class)
3237        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3238    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3239               !isa<CXXConversionDecl>(NewFD)) {
3240      // 'explicit' was specified on a function that wasn't a constructor
3241      // or conversion function.
3242      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3243           diag::err_explicit_non_ctor_or_conv_function)
3244        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3245    }
3246  }
3247
3248  // Filter out previous declarations that don't match the scope.
3249  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3250
3251  if (isFriend) {
3252    // DC is the namespace in which the function is being declared.
3253    assert((DC->isFileContext() || !Previous.empty()) &&
3254           "previously-undeclared friend function being created "
3255           "in a non-namespace context");
3256
3257    // For now, claim that the objects have no previous declaration.
3258    if (FunctionTemplate) {
3259      FunctionTemplate->setObjectOfFriendDecl(false);
3260      FunctionTemplate->setAccess(AS_public);
3261    }
3262    NewFD->setObjectOfFriendDecl(false);
3263    NewFD->setAccess(AS_public);
3264  }
3265
3266  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3267      !CurContext->isRecord()) {
3268    // C++ [class.static]p1:
3269    //   A data or function member of a class may be declared static
3270    //   in a class definition, in which case it is a static member of
3271    //   the class.
3272
3273    // Complain about the 'static' specifier if it's on an out-of-line
3274    // member function definition.
3275    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3276         diag::err_static_out_of_line)
3277      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3278  }
3279
3280  // Handle GNU asm-label extension (encoded as an attribute).
3281  if (Expr *E = (Expr*) D.getAsmLabel()) {
3282    // The parser guarantees this is a string.
3283    StringLiteral *SE = cast<StringLiteral>(E);
3284    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3285  }
3286
3287  // Copy the parameter declarations from the declarator D to the function
3288  // declaration NewFD, if they are available.  First scavenge them into Params.
3289  llvm::SmallVector<ParmVarDecl*, 16> Params;
3290  if (D.getNumTypeObjects() > 0) {
3291    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3292
3293    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3294    // function that takes no arguments, not a function that takes a
3295    // single void argument.
3296    // We let through "const void" here because Sema::GetTypeForDeclarator
3297    // already checks for that case.
3298    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3299        FTI.ArgInfo[0].Param &&
3300        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3301      // Empty arg list, don't push any params.
3302      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3303
3304      // In C++, the empty parameter-type-list must be spelled "void"; a
3305      // typedef of void is not permitted.
3306      if (getLangOptions().CPlusPlus &&
3307          Param->getType().getUnqualifiedType() != Context.VoidTy)
3308        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3309      // FIXME: Leaks decl?
3310    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3311      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3312        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3313        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3314        Param->setDeclContext(NewFD);
3315        Params.push_back(Param);
3316
3317        if (Param->isInvalidDecl())
3318          NewFD->setInvalidDecl();
3319      }
3320    }
3321
3322  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3323    // When we're declaring a function with a typedef, typeof, etc as in the
3324    // following example, we'll need to synthesize (unnamed)
3325    // parameters for use in the declaration.
3326    //
3327    // @code
3328    // typedef void fn(int);
3329    // fn f;
3330    // @endcode
3331
3332    // Synthesize a parameter for each argument type.
3333    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3334         AE = FT->arg_type_end(); AI != AE; ++AI) {
3335      ParmVarDecl *Param =
3336        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3337      Params.push_back(Param);
3338    }
3339  } else {
3340    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3341           "Should not need args for typedef of non-prototype fn");
3342  }
3343  // Finally, we know we have the right number of parameters, install them.
3344  NewFD->setParams(Params.data(), Params.size());
3345
3346  // If the declarator is a template-id, translate the parser's template
3347  // argument list into our AST format.
3348  bool HasExplicitTemplateArgs = false;
3349  TemplateArgumentListInfo TemplateArgs;
3350  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3351    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3352    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3353    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3354    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3355                                       TemplateId->getTemplateArgs(),
3356                                       TemplateId->NumArgs);
3357    translateTemplateArguments(TemplateArgsPtr,
3358                               TemplateArgs);
3359    TemplateArgsPtr.release();
3360
3361    HasExplicitTemplateArgs = true;
3362
3363    if (FunctionTemplate) {
3364      // FIXME: Diagnose function template with explicit template
3365      // arguments.
3366      HasExplicitTemplateArgs = false;
3367    } else if (!isFunctionTemplateSpecialization &&
3368               !D.getDeclSpec().isFriendSpecified()) {
3369      // We have encountered something that the user meant to be a
3370      // specialization (because it has explicitly-specified template
3371      // arguments) but that was not introduced with a "template<>" (or had
3372      // too few of them).
3373      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3374        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3375        << FixItHint::CreateInsertion(
3376                                   D.getDeclSpec().getSourceRange().getBegin(),
3377                                                 "template<> ");
3378      isFunctionTemplateSpecialization = true;
3379    } else {
3380      // "friend void foo<>(int);" is an implicit specialization decl.
3381      isFunctionTemplateSpecialization = true;
3382    }
3383  } else if (isFriend && isFunctionTemplateSpecialization) {
3384    // This combination is only possible in a recovery case;  the user
3385    // wrote something like:
3386    //   template <> friend void foo(int);
3387    // which we're recovering from as if the user had written:
3388    //   friend void foo<>(int);
3389    // Go ahead and fake up a template id.
3390    HasExplicitTemplateArgs = true;
3391    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3392    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3393  }
3394
3395  // If it's a friend (and only if it's a friend), it's possible
3396  // that either the specialized function type or the specialized
3397  // template is dependent, and therefore matching will fail.  In
3398  // this case, don't check the specialization yet.
3399  if (isFunctionTemplateSpecialization && isFriend &&
3400      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3401    assert(HasExplicitTemplateArgs &&
3402           "friend function specialization without template args");
3403    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3404                                                     Previous))
3405      NewFD->setInvalidDecl();
3406  } else if (isFunctionTemplateSpecialization) {
3407    if (CheckFunctionTemplateSpecialization(NewFD,
3408                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3409                                            Previous))
3410      NewFD->setInvalidDecl();
3411  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3412    if (CheckMemberSpecialization(NewFD, Previous))
3413      NewFD->setInvalidDecl();
3414  }
3415
3416  // Perform semantic checking on the function declaration.
3417  bool OverloadableAttrRequired = false; // FIXME: HACK!
3418  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3419                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3420
3421  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3422          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3423         "previous declaration set still overloaded");
3424
3425  NamedDecl *PrincipalDecl = (FunctionTemplate
3426                              ? cast<NamedDecl>(FunctionTemplate)
3427                              : NewFD);
3428
3429  if (isFriend && Redeclaration) {
3430    AccessSpecifier Access = AS_public;
3431    if (!NewFD->isInvalidDecl())
3432      Access = NewFD->getPreviousDeclaration()->getAccess();
3433
3434    NewFD->setAccess(Access);
3435    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3436
3437    PrincipalDecl->setObjectOfFriendDecl(true);
3438  }
3439
3440  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3441      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3442    PrincipalDecl->setNonMemberOperator();
3443
3444  // If we have a function template, check the template parameter
3445  // list. This will check and merge default template arguments.
3446  if (FunctionTemplate) {
3447    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3448    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3449                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3450             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3451                                                : TPC_FunctionTemplate);
3452  }
3453
3454  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3455    // Fake up an access specifier if it's supposed to be a class member.
3456    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3457      NewFD->setAccess(AS_public);
3458
3459    // An out-of-line member function declaration must also be a
3460    // definition (C++ [dcl.meaning]p1).
3461    // Note that this is not the case for explicit specializations of
3462    // function templates or member functions of class templates, per
3463    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3464    // for compatibility with old SWIG code which likes to generate them.
3465    if (!IsFunctionDefinition && !isFriend &&
3466        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3467      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3468        << D.getCXXScopeSpec().getRange();
3469    }
3470    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3471      // The user tried to provide an out-of-line definition for a
3472      // function that is a member of a class or namespace, but there
3473      // was no such member function declared (C++ [class.mfct]p2,
3474      // C++ [namespace.memdef]p2). For example:
3475      //
3476      // class X {
3477      //   void f() const;
3478      // };
3479      //
3480      // void X::f() { } // ill-formed
3481      //
3482      // Complain about this problem, and attempt to suggest close
3483      // matches (e.g., those that differ only in cv-qualifiers and
3484      // whether the parameter types are references).
3485      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3486        << Name << DC << D.getCXXScopeSpec().getRange();
3487      NewFD->setInvalidDecl();
3488
3489      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3490                        ForRedeclaration);
3491      LookupQualifiedName(Prev, DC);
3492      assert(!Prev.isAmbiguous() &&
3493             "Cannot have an ambiguity in previous-declaration lookup");
3494      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3495           Func != FuncEnd; ++Func) {
3496        if (isa<FunctionDecl>(*Func) &&
3497            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3498          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3499      }
3500    }
3501  }
3502
3503  // Handle attributes. We need to have merged decls when handling attributes
3504  // (for example to check for conflicts, etc).
3505  // FIXME: This needs to happen before we merge declarations. Then,
3506  // let attribute merging cope with attribute conflicts.
3507  ProcessDeclAttributes(S, NewFD, D);
3508
3509  // attributes declared post-definition are currently ignored
3510  if (Redeclaration && Previous.isSingleResult()) {
3511    const FunctionDecl *Def;
3512    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3513    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3514      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3515      Diag(Def->getLocation(), diag::note_previous_definition);
3516    }
3517  }
3518
3519  AddKnownFunctionAttributes(NewFD);
3520
3521  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3522    // If a function name is overloadable in C, then every function
3523    // with that name must be marked "overloadable".
3524    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3525      << Redeclaration << NewFD;
3526    if (!Previous.empty())
3527      Diag(Previous.getRepresentativeDecl()->getLocation(),
3528           diag::note_attribute_overloadable_prev_overload);
3529    NewFD->addAttr(::new (Context) OverloadableAttr());
3530  }
3531
3532  // If this is a locally-scoped extern C function, update the
3533  // map of such names.
3534  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3535      && !NewFD->isInvalidDecl())
3536    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3537
3538  // Set this FunctionDecl's range up to the right paren.
3539  NewFD->setLocEnd(D.getSourceRange().getEnd());
3540
3541  if (FunctionTemplate && NewFD->isInvalidDecl())
3542    FunctionTemplate->setInvalidDecl();
3543
3544  if (FunctionTemplate)
3545    return FunctionTemplate;
3546
3547
3548  // Keep track of static, non-inlined function definitions that
3549  // have not been used. We will warn later.
3550  // FIXME: Also include static functions declared but not defined.
3551  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3552      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3553      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>()
3554      && !NewFD->hasAttr<ConstructorAttr>()
3555      && !NewFD->hasAttr<DestructorAttr>())
3556    UnusedStaticFuncs.push_back(NewFD);
3557
3558  return NewFD;
3559}
3560
3561/// \brief Perform semantic checking of a new function declaration.
3562///
3563/// Performs semantic analysis of the new function declaration
3564/// NewFD. This routine performs all semantic checking that does not
3565/// require the actual declarator involved in the declaration, and is
3566/// used both for the declaration of functions as they are parsed
3567/// (called via ActOnDeclarator) and for the declaration of functions
3568/// that have been instantiated via C++ template instantiation (called
3569/// via InstantiateDecl).
3570///
3571/// \param IsExplicitSpecialiation whether this new function declaration is
3572/// an explicit specialization of the previous declaration.
3573///
3574/// This sets NewFD->isInvalidDecl() to true if there was an error.
3575void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3576                                    LookupResult &Previous,
3577                                    bool IsExplicitSpecialization,
3578                                    bool &Redeclaration,
3579                                    bool &OverloadableAttrRequired) {
3580  // If NewFD is already known erroneous, don't do any of this checking.
3581  if (NewFD->isInvalidDecl())
3582    return;
3583
3584  if (NewFD->getResultType()->isVariablyModifiedType()) {
3585    // Functions returning a variably modified type violate C99 6.7.5.2p2
3586    // because all functions have linkage.
3587    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3588    return NewFD->setInvalidDecl();
3589  }
3590
3591  if (NewFD->isMain())
3592    CheckMain(NewFD);
3593
3594  // Check for a previous declaration of this name.
3595  if (Previous.empty() && NewFD->isExternC()) {
3596    // Since we did not find anything by this name and we're declaring
3597    // an extern "C" function, look for a non-visible extern "C"
3598    // declaration with the same name.
3599    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3600      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3601    if (Pos != LocallyScopedExternalDecls.end())
3602      Previous.addDecl(Pos->second);
3603  }
3604
3605  // Merge or overload the declaration with an existing declaration of
3606  // the same name, if appropriate.
3607  if (!Previous.empty()) {
3608    // Determine whether NewFD is an overload of PrevDecl or
3609    // a declaration that requires merging. If it's an overload,
3610    // there's no more work to do here; we'll just add the new
3611    // function to the scope.
3612
3613    NamedDecl *OldDecl = 0;
3614    if (!AllowOverloadingOfFunction(Previous, Context)) {
3615      Redeclaration = true;
3616      OldDecl = Previous.getFoundDecl();
3617    } else {
3618      if (!getLangOptions().CPlusPlus) {
3619        OverloadableAttrRequired = true;
3620
3621        // Functions marked "overloadable" must have a prototype (that
3622        // we can't get through declaration merging).
3623        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3624          Diag(NewFD->getLocation(),
3625               diag::err_attribute_overloadable_no_prototype)
3626            << NewFD;
3627          Redeclaration = true;
3628
3629          // Turn this into a variadic function with no parameters.
3630          QualType R = Context.getFunctionType(
3631                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3632                     0, 0, true, 0, false, false, 0, 0,
3633                     FunctionType::ExtInfo());
3634          NewFD->setType(R);
3635          return NewFD->setInvalidDecl();
3636        }
3637      }
3638
3639      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3640                            /*NewIsUsingDecl*/ false)) {
3641      case Ovl_Match:
3642        Redeclaration = true;
3643        break;
3644
3645      case Ovl_NonFunction:
3646        Redeclaration = true;
3647        break;
3648
3649      case Ovl_Overload:
3650        Redeclaration = false;
3651        break;
3652      }
3653    }
3654
3655    if (Redeclaration) {
3656      // NewFD and OldDecl represent declarations that need to be
3657      // merged.
3658      if (MergeFunctionDecl(NewFD, OldDecl))
3659        return NewFD->setInvalidDecl();
3660
3661      Previous.clear();
3662      Previous.addDecl(OldDecl);
3663
3664      if (FunctionTemplateDecl *OldTemplateDecl
3665                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3666        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3667        FunctionTemplateDecl *NewTemplateDecl
3668          = NewFD->getDescribedFunctionTemplate();
3669        assert(NewTemplateDecl && "Template/non-template mismatch");
3670        if (CXXMethodDecl *Method
3671              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3672          Method->setAccess(OldTemplateDecl->getAccess());
3673          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3674        }
3675
3676        // If this is an explicit specialization of a member that is a function
3677        // template, mark it as a member specialization.
3678        if (IsExplicitSpecialization &&
3679            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3680          NewTemplateDecl->setMemberSpecialization();
3681          assert(OldTemplateDecl->isMemberSpecialization());
3682        }
3683      } else {
3684        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3685          NewFD->setAccess(OldDecl->getAccess());
3686        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3687      }
3688    }
3689  }
3690
3691  // Semantic checking for this function declaration (in isolation).
3692  if (getLangOptions().CPlusPlus) {
3693    // C++-specific checks.
3694    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3695      CheckConstructor(Constructor);
3696    } else if (CXXDestructorDecl *Destructor =
3697                dyn_cast<CXXDestructorDecl>(NewFD)) {
3698      CXXRecordDecl *Record = Destructor->getParent();
3699      QualType ClassType = Context.getTypeDeclType(Record);
3700
3701      // FIXME: Shouldn't we be able to perform this check even when the class
3702      // type is dependent? Both gcc and edg can handle that.
3703      if (!ClassType->isDependentType()) {
3704        DeclarationName Name
3705          = Context.DeclarationNames.getCXXDestructorName(
3706                                        Context.getCanonicalType(ClassType));
3707        if (NewFD->getDeclName() != Name) {
3708          Diag(NewFD->getLocation(), diag::err_destructor_name);
3709          return NewFD->setInvalidDecl();
3710        }
3711      }
3712
3713      Record->setUserDeclaredDestructor(true);
3714      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3715      // user-defined destructor.
3716      Record->setPOD(false);
3717
3718      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3719      // declared destructor.
3720      // FIXME: C++0x: don't do this for "= default" destructors
3721      Record->setHasTrivialDestructor(false);
3722    } else if (CXXConversionDecl *Conversion
3723               = dyn_cast<CXXConversionDecl>(NewFD)) {
3724      ActOnConversionDeclarator(Conversion);
3725    }
3726
3727    // Find any virtual functions that this function overrides.
3728    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3729      if (!Method->isFunctionTemplateSpecialization() &&
3730          !Method->getDescribedFunctionTemplate())
3731        AddOverriddenMethods(Method->getParent(), Method);
3732    }
3733
3734    // Additional checks for the destructor; make sure we do this after we
3735    // figure out whether the destructor is virtual.
3736    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3737      if (!Destructor->getParent()->isDependentType())
3738        CheckDestructor(Destructor);
3739
3740    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3741    if (NewFD->isOverloadedOperator() &&
3742        CheckOverloadedOperatorDeclaration(NewFD))
3743      return NewFD->setInvalidDecl();
3744
3745    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3746    if (NewFD->getLiteralIdentifier() &&
3747        CheckLiteralOperatorDeclaration(NewFD))
3748      return NewFD->setInvalidDecl();
3749
3750    // In C++, check default arguments now that we have merged decls. Unless
3751    // the lexical context is the class, because in this case this is done
3752    // during delayed parsing anyway.
3753    if (!CurContext->isRecord())
3754      CheckCXXDefaultArguments(NewFD);
3755  }
3756}
3757
3758void Sema::CheckMain(FunctionDecl* FD) {
3759  // C++ [basic.start.main]p3:  A program that declares main to be inline
3760  //   or static is ill-formed.
3761  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3762  //   shall not appear in a declaration of main.
3763  // static main is not an error under C99, but we should warn about it.
3764  bool isInline = FD->isInlineSpecified();
3765  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3766  if (isInline || isStatic) {
3767    unsigned diagID = diag::warn_unusual_main_decl;
3768    if (isInline || getLangOptions().CPlusPlus)
3769      diagID = diag::err_unusual_main_decl;
3770
3771    int which = isStatic + (isInline << 1) - 1;
3772    Diag(FD->getLocation(), diagID) << which;
3773  }
3774
3775  QualType T = FD->getType();
3776  assert(T->isFunctionType() && "function decl is not of function type");
3777  const FunctionType* FT = T->getAs<FunctionType>();
3778
3779  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3780    // TODO: add a replacement fixit to turn the return type into 'int'.
3781    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3782    FD->setInvalidDecl(true);
3783  }
3784
3785  // Treat protoless main() as nullary.
3786  if (isa<FunctionNoProtoType>(FT)) return;
3787
3788  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3789  unsigned nparams = FTP->getNumArgs();
3790  assert(FD->getNumParams() == nparams);
3791
3792  bool HasExtraParameters = (nparams > 3);
3793
3794  // Darwin passes an undocumented fourth argument of type char**.  If
3795  // other platforms start sprouting these, the logic below will start
3796  // getting shifty.
3797  if (nparams == 4 &&
3798      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3799    HasExtraParameters = false;
3800
3801  if (HasExtraParameters) {
3802    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3803    FD->setInvalidDecl(true);
3804    nparams = 3;
3805  }
3806
3807  // FIXME: a lot of the following diagnostics would be improved
3808  // if we had some location information about types.
3809
3810  QualType CharPP =
3811    Context.getPointerType(Context.getPointerType(Context.CharTy));
3812  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3813
3814  for (unsigned i = 0; i < nparams; ++i) {
3815    QualType AT = FTP->getArgType(i);
3816
3817    bool mismatch = true;
3818
3819    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3820      mismatch = false;
3821    else if (Expected[i] == CharPP) {
3822      // As an extension, the following forms are okay:
3823      //   char const **
3824      //   char const * const *
3825      //   char * const *
3826
3827      QualifierCollector qs;
3828      const PointerType* PT;
3829      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3830          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3831          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3832        qs.removeConst();
3833        mismatch = !qs.empty();
3834      }
3835    }
3836
3837    if (mismatch) {
3838      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3839      // TODO: suggest replacing given type with expected type
3840      FD->setInvalidDecl(true);
3841    }
3842  }
3843
3844  if (nparams == 1 && !FD->isInvalidDecl()) {
3845    Diag(FD->getLocation(), diag::warn_main_one_arg);
3846  }
3847}
3848
3849bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3850  // FIXME: Need strict checking.  In C89, we need to check for
3851  // any assignment, increment, decrement, function-calls, or
3852  // commas outside of a sizeof.  In C99, it's the same list,
3853  // except that the aforementioned are allowed in unevaluated
3854  // expressions.  Everything else falls under the
3855  // "may accept other forms of constant expressions" exception.
3856  // (We never end up here for C++, so the constant expression
3857  // rules there don't matter.)
3858  if (Init->isConstantInitializer(Context))
3859    return false;
3860  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3861    << Init->getSourceRange();
3862  return true;
3863}
3864
3865void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3866  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3867}
3868
3869/// AddInitializerToDecl - Adds the initializer Init to the
3870/// declaration dcl. If DirectInit is true, this is C++ direct
3871/// initialization rather than copy initialization.
3872void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3873  Decl *RealDecl = dcl.getAs<Decl>();
3874  // If there is no declaration, there was an error parsing it.  Just ignore
3875  // the initializer.
3876  if (RealDecl == 0)
3877    return;
3878
3879  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3880    // With declarators parsed the way they are, the parser cannot
3881    // distinguish between a normal initializer and a pure-specifier.
3882    // Thus this grotesque test.
3883    IntegerLiteral *IL;
3884    Expr *Init = static_cast<Expr *>(init.get());
3885    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3886        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3887      CheckPureMethod(Method, Init->getSourceRange());
3888    else {
3889      Diag(Method->getLocation(), diag::err_member_function_initialization)
3890        << Method->getDeclName() << Init->getSourceRange();
3891      Method->setInvalidDecl();
3892    }
3893    return;
3894  }
3895
3896  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3897  if (!VDecl) {
3898    if (getLangOptions().CPlusPlus &&
3899        RealDecl->getLexicalDeclContext()->isRecord() &&
3900        isa<NamedDecl>(RealDecl))
3901      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3902        << cast<NamedDecl>(RealDecl)->getDeclName();
3903    else
3904      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3905    RealDecl->setInvalidDecl();
3906    return;
3907  }
3908
3909  // A definition must end up with a complete type, which means it must be
3910  // complete with the restriction that an array type might be completed by the
3911  // initializer; note that later code assumes this restriction.
3912  QualType BaseDeclType = VDecl->getType();
3913  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3914    BaseDeclType = Array->getElementType();
3915  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3916                          diag::err_typecheck_decl_incomplete_type)) {
3917    RealDecl->setInvalidDecl();
3918    return;
3919  }
3920
3921  // The variable can not have an abstract class type.
3922  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3923                             diag::err_abstract_type_in_decl,
3924                             AbstractVariableType))
3925    VDecl->setInvalidDecl();
3926
3927  const VarDecl *Def;
3928  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3929    Diag(VDecl->getLocation(), diag::err_redefinition)
3930      << VDecl->getDeclName();
3931    Diag(Def->getLocation(), diag::note_previous_definition);
3932    VDecl->setInvalidDecl();
3933    return;
3934  }
3935
3936  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
3937    setFunctionHasBranchProtectedScope();
3938
3939  // Take ownership of the expression, now that we're sure we have somewhere
3940  // to put it.
3941  Expr *Init = init.takeAs<Expr>();
3942  assert(Init && "missing initializer");
3943
3944  // Capture the variable that is being initialized and the style of
3945  // initialization.
3946  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3947
3948  // FIXME: Poor source location information.
3949  InitializationKind Kind
3950    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3951                                                   Init->getLocStart(),
3952                                                   Init->getLocEnd())
3953                : InitializationKind::CreateCopy(VDecl->getLocation(),
3954                                                 Init->getLocStart());
3955
3956  // Get the decls type and save a reference for later, since
3957  // CheckInitializerTypes may change it.
3958  QualType DclT = VDecl->getType(), SavT = DclT;
3959  if (VDecl->isBlockVarDecl()) {
3960    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3961      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3962      VDecl->setInvalidDecl();
3963    } else if (!VDecl->isInvalidDecl()) {
3964      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3965      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3966                                          MultiExprArg(*this, (void**)&Init, 1),
3967                                                &DclT);
3968      if (Result.isInvalid()) {
3969        VDecl->setInvalidDecl();
3970        return;
3971      }
3972
3973      Init = Result.takeAs<Expr>();
3974
3975      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3976      // Don't check invalid declarations to avoid emitting useless diagnostics.
3977      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3978        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3979          CheckForConstantInitializer(Init, DclT);
3980      }
3981    }
3982  } else if (VDecl->isStaticDataMember() &&
3983             VDecl->getLexicalDeclContext()->isRecord()) {
3984    // This is an in-class initialization for a static data member, e.g.,
3985    //
3986    // struct S {
3987    //   static const int value = 17;
3988    // };
3989
3990    // Attach the initializer
3991    VDecl->setInit(Init);
3992
3993    // C++ [class.mem]p4:
3994    //   A member-declarator can contain a constant-initializer only
3995    //   if it declares a static member (9.4) of const integral or
3996    //   const enumeration type, see 9.4.2.
3997    QualType T = VDecl->getType();
3998    if (!T->isDependentType() &&
3999        (!Context.getCanonicalType(T).isConstQualified() ||
4000         !T->isIntegralOrEnumerationType())) {
4001      Diag(VDecl->getLocation(), diag::err_member_initialization)
4002        << VDecl->getDeclName() << Init->getSourceRange();
4003      VDecl->setInvalidDecl();
4004    } else {
4005      // C++ [class.static.data]p4:
4006      //   If a static data member is of const integral or const
4007      //   enumeration type, its declaration in the class definition
4008      //   can specify a constant-initializer which shall be an
4009      //   integral constant expression (5.19).
4010      if (!Init->isTypeDependent() &&
4011          !Init->getType()->isIntegralOrEnumerationType()) {
4012        // We have a non-dependent, non-integral or enumeration type.
4013        Diag(Init->getSourceRange().getBegin(),
4014             diag::err_in_class_initializer_non_integral_type)
4015          << Init->getType() << Init->getSourceRange();
4016        VDecl->setInvalidDecl();
4017      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
4018        // Check whether the expression is a constant expression.
4019        llvm::APSInt Value;
4020        SourceLocation Loc;
4021        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4022          Diag(Loc, diag::err_in_class_initializer_non_constant)
4023            << Init->getSourceRange();
4024          VDecl->setInvalidDecl();
4025        } else if (!VDecl->getType()->isDependentType())
4026          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
4027      }
4028    }
4029  } else if (VDecl->isFileVarDecl()) {
4030    if (VDecl->getStorageClass() == VarDecl::Extern &&
4031        (!getLangOptions().CPlusPlus ||
4032         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4033      Diag(VDecl->getLocation(), diag::warn_extern_init);
4034    if (!VDecl->isInvalidDecl()) {
4035      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4036      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4037                                          MultiExprArg(*this, (void**)&Init, 1),
4038                                                &DclT);
4039      if (Result.isInvalid()) {
4040        VDecl->setInvalidDecl();
4041        return;
4042      }
4043
4044      Init = Result.takeAs<Expr>();
4045    }
4046
4047    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4048    // Don't check invalid declarations to avoid emitting useless diagnostics.
4049    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4050      // C99 6.7.8p4. All file scoped initializers need to be constant.
4051      CheckForConstantInitializer(Init, DclT);
4052    }
4053  }
4054  // If the type changed, it means we had an incomplete type that was
4055  // completed by the initializer. For example:
4056  //   int ary[] = { 1, 3, 5 };
4057  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4058  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4059    VDecl->setType(DclT);
4060    Init->setType(DclT);
4061  }
4062
4063  Init = MaybeCreateCXXExprWithTemporaries(Init);
4064  // Attach the initializer to the decl.
4065  VDecl->setInit(Init);
4066
4067  if (getLangOptions().CPlusPlus) {
4068    if (!VDecl->isInvalidDecl() &&
4069        !VDecl->getDeclContext()->isDependentContext() &&
4070        VDecl->hasGlobalStorage() && !Init->isConstantInitializer(Context))
4071      Diag(VDecl->getLocation(), diag::warn_global_constructor);
4072
4073    // Make sure we mark the destructor as used if necessary.
4074    QualType InitType = VDecl->getType();
4075    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4076      InitType = Context.getBaseElementType(Array);
4077    if (const RecordType *Record = InitType->getAs<RecordType>())
4078      FinalizeVarWithDestructor(VDecl, Record);
4079  }
4080
4081  return;
4082}
4083
4084/// ActOnInitializerError - Given that there was an error parsing an
4085/// initializer for the given declaration, try to return to some form
4086/// of sanity.
4087void Sema::ActOnInitializerError(DeclPtrTy dcl) {
4088  // Our main concern here is re-establishing invariants like "a
4089  // variable's type is either dependent or complete".
4090  Decl *D = dcl.getAs<Decl>();
4091  if (!D || D->isInvalidDecl()) return;
4092
4093  VarDecl *VD = dyn_cast<VarDecl>(D);
4094  if (!VD) return;
4095
4096  QualType Ty = VD->getType();
4097  if (Ty->isDependentType()) return;
4098
4099  // Require a complete type.
4100  if (RequireCompleteType(VD->getLocation(),
4101                          Context.getBaseElementType(Ty),
4102                          diag::err_typecheck_decl_incomplete_type)) {
4103    VD->setInvalidDecl();
4104    return;
4105  }
4106
4107  // Require an abstract type.
4108  if (RequireNonAbstractType(VD->getLocation(), Ty,
4109                             diag::err_abstract_type_in_decl,
4110                             AbstractVariableType)) {
4111    VD->setInvalidDecl();
4112    return;
4113  }
4114
4115  // Don't bother complaining about constructors or destructors,
4116  // though.
4117}
4118
4119void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
4120                                  bool TypeContainsUndeducedAuto) {
4121  Decl *RealDecl = dcl.getAs<Decl>();
4122
4123  // If there is no declaration, there was an error parsing it. Just ignore it.
4124  if (RealDecl == 0)
4125    return;
4126
4127  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4128    QualType Type = Var->getType();
4129
4130    // C++0x [dcl.spec.auto]p3
4131    if (TypeContainsUndeducedAuto) {
4132      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4133        << Var->getDeclName() << Type;
4134      Var->setInvalidDecl();
4135      return;
4136    }
4137
4138    switch (Var->isThisDeclarationADefinition()) {
4139    case VarDecl::Definition:
4140      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4141        break;
4142
4143      // We have an out-of-line definition of a static data member
4144      // that has an in-class initializer, so we type-check this like
4145      // a declaration.
4146      //
4147      // Fall through
4148
4149    case VarDecl::DeclarationOnly:
4150      // It's only a declaration.
4151
4152      // Block scope. C99 6.7p7: If an identifier for an object is
4153      // declared with no linkage (C99 6.2.2p6), the type for the
4154      // object shall be complete.
4155      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4156          !Var->getLinkage() && !Var->isInvalidDecl() &&
4157          RequireCompleteType(Var->getLocation(), Type,
4158                              diag::err_typecheck_decl_incomplete_type))
4159        Var->setInvalidDecl();
4160
4161      // Make sure that the type is not abstract.
4162      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4163          RequireNonAbstractType(Var->getLocation(), Type,
4164                                 diag::err_abstract_type_in_decl,
4165                                 AbstractVariableType))
4166        Var->setInvalidDecl();
4167      return;
4168
4169    case VarDecl::TentativeDefinition:
4170      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4171      // object that has file scope without an initializer, and without a
4172      // storage-class specifier or with the storage-class specifier "static",
4173      // constitutes a tentative definition. Note: A tentative definition with
4174      // external linkage is valid (C99 6.2.2p5).
4175      if (!Var->isInvalidDecl()) {
4176        if (const IncompleteArrayType *ArrayT
4177                                    = Context.getAsIncompleteArrayType(Type)) {
4178          if (RequireCompleteType(Var->getLocation(),
4179                                  ArrayT->getElementType(),
4180                                  diag::err_illegal_decl_array_incomplete_type))
4181            Var->setInvalidDecl();
4182        } else if (Var->getStorageClass() == VarDecl::Static) {
4183          // C99 6.9.2p3: If the declaration of an identifier for an object is
4184          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4185          // declared type shall not be an incomplete type.
4186          // NOTE: code such as the following
4187          //     static struct s;
4188          //     struct s { int a; };
4189          // is accepted by gcc. Hence here we issue a warning instead of
4190          // an error and we do not invalidate the static declaration.
4191          // NOTE: to avoid multiple warnings, only check the first declaration.
4192          if (Var->getPreviousDeclaration() == 0)
4193            RequireCompleteType(Var->getLocation(), Type,
4194                                diag::ext_typecheck_decl_incomplete_type);
4195        }
4196      }
4197
4198      // Record the tentative definition; we're done.
4199      if (!Var->isInvalidDecl())
4200        TentativeDefinitions.push_back(Var);
4201      return;
4202    }
4203
4204    // Provide a specific diagnostic for uninitialized variable
4205    // definitions with incomplete array type.
4206    if (Type->isIncompleteArrayType()) {
4207      Diag(Var->getLocation(),
4208           diag::err_typecheck_incomplete_array_needs_initializer);
4209      Var->setInvalidDecl();
4210      return;
4211    }
4212
4213    // Provide a specific diagnostic for uninitialized variable
4214    // definitions with reference type.
4215    if (Type->isReferenceType()) {
4216      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4217        << Var->getDeclName()
4218        << SourceRange(Var->getLocation(), Var->getLocation());
4219      Var->setInvalidDecl();
4220      return;
4221    }
4222
4223    // Do not attempt to type-check the default initializer for a
4224    // variable with dependent type.
4225    if (Type->isDependentType())
4226      return;
4227
4228    if (Var->isInvalidDecl())
4229      return;
4230
4231    if (RequireCompleteType(Var->getLocation(),
4232                            Context.getBaseElementType(Type),
4233                            diag::err_typecheck_decl_incomplete_type)) {
4234      Var->setInvalidDecl();
4235      return;
4236    }
4237
4238    // The variable can not have an abstract class type.
4239    if (RequireNonAbstractType(Var->getLocation(), Type,
4240                               diag::err_abstract_type_in_decl,
4241                               AbstractVariableType)) {
4242      Var->setInvalidDecl();
4243      return;
4244    }
4245
4246    const RecordType *Record
4247      = Context.getBaseElementType(Type)->getAs<RecordType>();
4248    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4249        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4250      // C++03 [dcl.init]p9:
4251      //   If no initializer is specified for an object, and the
4252      //   object is of (possibly cv-qualified) non-POD class type (or
4253      //   array thereof), the object shall be default-initialized; if
4254      //   the object is of const-qualified type, the underlying class
4255      //   type shall have a user-declared default
4256      //   constructor. Otherwise, if no initializer is specified for
4257      //   a non- static object, the object and its subobjects, if
4258      //   any, have an indeterminate initial value); if the object
4259      //   or any of its subobjects are of const-qualified type, the
4260      //   program is ill-formed.
4261      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4262    } else {
4263      // Check for jumps past the implicit initializer.  C++0x
4264      // clarifies that this applies to a "variable with automatic
4265      // storage duration", not a "local variable".
4266      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4267        setFunctionHasBranchProtectedScope();
4268
4269      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4270      InitializationKind Kind
4271        = InitializationKind::CreateDefault(Var->getLocation());
4272
4273      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4274      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4275                                              MultiExprArg(*this, 0, 0));
4276      if (Init.isInvalid())
4277        Var->setInvalidDecl();
4278      else if (Init.get()) {
4279        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4280
4281        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4282            Var->hasGlobalStorage() &&
4283            !Var->getDeclContext()->isDependentContext() &&
4284            !Var->getInit()->isConstantInitializer(Context))
4285          Diag(Var->getLocation(), diag::warn_global_constructor);
4286      }
4287    }
4288
4289    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4290      FinalizeVarWithDestructor(Var, Record);
4291  }
4292}
4293
4294Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4295                                                   DeclPtrTy *Group,
4296                                                   unsigned NumDecls) {
4297  llvm::SmallVector<Decl*, 8> Decls;
4298
4299  if (DS.isTypeSpecOwned())
4300    Decls.push_back((Decl*)DS.getTypeRep());
4301
4302  for (unsigned i = 0; i != NumDecls; ++i)
4303    if (Decl *D = Group[i].getAs<Decl>())
4304      Decls.push_back(D);
4305
4306  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4307                                                   Decls.data(), Decls.size()));
4308}
4309
4310
4311/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4312/// to introduce parameters into function prototype scope.
4313Sema::DeclPtrTy
4314Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4315  const DeclSpec &DS = D.getDeclSpec();
4316
4317  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4318  VarDecl::StorageClass StorageClass = VarDecl::None;
4319  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4320  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4321    StorageClass = VarDecl::Register;
4322    StorageClassAsWritten = VarDecl::Register;
4323  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4324    Diag(DS.getStorageClassSpecLoc(),
4325         diag::err_invalid_storage_class_in_func_decl);
4326    D.getMutableDeclSpec().ClearStorageClassSpecs();
4327  }
4328
4329  if (D.getDeclSpec().isThreadSpecified())
4330    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4331
4332  DiagnoseFunctionSpecifiers(D);
4333
4334  // Check that there are no default arguments inside the type of this
4335  // parameter (C++ only).
4336  if (getLangOptions().CPlusPlus)
4337    CheckExtraCXXDefaultArguments(D);
4338
4339  TagDecl *OwnedDecl = 0;
4340  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4341  QualType parmDeclType = TInfo->getType();
4342
4343  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4344    // C++ [dcl.fct]p6:
4345    //   Types shall not be defined in return or parameter types.
4346    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4347      << Context.getTypeDeclType(OwnedDecl);
4348  }
4349
4350  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4351  IdentifierInfo *II = D.getIdentifier();
4352  if (II) {
4353    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4354                   ForRedeclaration);
4355    LookupName(R, S);
4356    if (R.isSingleResult()) {
4357      NamedDecl *PrevDecl = R.getFoundDecl();
4358      if (PrevDecl->isTemplateParameter()) {
4359        // Maybe we will complain about the shadowed template parameter.
4360        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4361        // Just pretend that we didn't see the previous declaration.
4362        PrevDecl = 0;
4363      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4364        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4365        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4366
4367        // Recover by removing the name
4368        II = 0;
4369        D.SetIdentifier(0, D.getIdentifierLoc());
4370        D.setInvalidType(true);
4371      }
4372    }
4373  }
4374
4375  // Temporarily put parameter variables in the translation unit, not
4376  // the enclosing context.  This prevents them from accidentally
4377  // looking like class members in C++.
4378  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4379                                    TInfo, parmDeclType, II,
4380                                    D.getIdentifierLoc(),
4381                                    StorageClass, StorageClassAsWritten);
4382
4383  if (D.isInvalidType())
4384    New->setInvalidDecl();
4385
4386  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4387  if (D.getCXXScopeSpec().isSet()) {
4388    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4389      << D.getCXXScopeSpec().getRange();
4390    New->setInvalidDecl();
4391  }
4392
4393  // Add the parameter declaration into this scope.
4394  S->AddDecl(DeclPtrTy::make(New));
4395  if (II)
4396    IdResolver.AddDecl(New);
4397
4398  ProcessDeclAttributes(S, New, D);
4399
4400  if (New->hasAttr<BlocksAttr>()) {
4401    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4402  }
4403  return DeclPtrTy::make(New);
4404}
4405
4406/// \brief Synthesizes a variable for a parameter arising from a
4407/// typedef.
4408ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4409                                              SourceLocation Loc,
4410                                              QualType T) {
4411  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4412                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4413                                           VarDecl::None, VarDecl::None, 0);
4414  Param->setImplicit();
4415  return Param;
4416}
4417
4418ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4419                                  TypeSourceInfo *TSInfo, QualType T,
4420                                  IdentifierInfo *Name,
4421                                  SourceLocation NameLoc,
4422                                  VarDecl::StorageClass StorageClass,
4423                                  VarDecl::StorageClass StorageClassAsWritten) {
4424  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4425                                         adjustParameterType(T), TSInfo,
4426                                         StorageClass, StorageClassAsWritten,
4427                                         0);
4428
4429  // Parameters can not be abstract class types.
4430  // For record types, this is done by the AbstractClassUsageDiagnoser once
4431  // the class has been completely parsed.
4432  if (!CurContext->isRecord() &&
4433      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4434                             AbstractParamType))
4435    New->setInvalidDecl();
4436
4437  // Parameter declarators cannot be interface types. All ObjC objects are
4438  // passed by reference.
4439  if (T->isObjCObjectType()) {
4440    Diag(NameLoc,
4441         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4442    New->setInvalidDecl();
4443  }
4444
4445  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4446  // duration shall not be qualified by an address-space qualifier."
4447  // Since all parameters have automatic store duration, they can not have
4448  // an address space.
4449  if (T.getAddressSpace() != 0) {
4450    Diag(NameLoc, diag::err_arg_with_address_space);
4451    New->setInvalidDecl();
4452  }
4453
4454  return New;
4455}
4456
4457void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4458                                           SourceLocation LocAfterDecls) {
4459  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4460         "Not a function declarator!");
4461  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4462
4463  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4464  // for a K&R function.
4465  if (!FTI.hasPrototype) {
4466    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4467      --i;
4468      if (FTI.ArgInfo[i].Param == 0) {
4469        llvm::SmallString<256> Code;
4470        llvm::raw_svector_ostream(Code) << "  int "
4471                                        << FTI.ArgInfo[i].Ident->getName()
4472                                        << ";\n";
4473        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4474          << FTI.ArgInfo[i].Ident
4475          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4476
4477        // Implicitly declare the argument as type 'int' for lack of a better
4478        // type.
4479        DeclSpec DS;
4480        const char* PrevSpec; // unused
4481        unsigned DiagID; // unused
4482        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4483                           PrevSpec, DiagID);
4484        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4485        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4486        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4487      }
4488    }
4489  }
4490}
4491
4492Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4493                                              Declarator &D) {
4494  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4495  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4496         "Not a function declarator!");
4497  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4498
4499  if (FTI.hasPrototype) {
4500    // FIXME: Diagnose arguments without names in C.
4501  }
4502
4503  Scope *ParentScope = FnBodyScope->getParent();
4504
4505  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4506                                  MultiTemplateParamsArg(*this),
4507                                  /*IsFunctionDefinition=*/true);
4508  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4509}
4510
4511static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4512  // Don't warn about invalid declarations.
4513  if (FD->isInvalidDecl())
4514    return false;
4515
4516  // Or declarations that aren't global.
4517  if (!FD->isGlobal())
4518    return false;
4519
4520  // Don't warn about C++ member functions.
4521  if (isa<CXXMethodDecl>(FD))
4522    return false;
4523
4524  // Don't warn about 'main'.
4525  if (FD->isMain())
4526    return false;
4527
4528  // Don't warn about inline functions.
4529  if (FD->isInlineSpecified())
4530    return false;
4531
4532  // Don't warn about function templates.
4533  if (FD->getDescribedFunctionTemplate())
4534    return false;
4535
4536  // Don't warn about function template specializations.
4537  if (FD->isFunctionTemplateSpecialization())
4538    return false;
4539
4540  bool MissingPrototype = true;
4541  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4542       Prev; Prev = Prev->getPreviousDeclaration()) {
4543    // Ignore any declarations that occur in function or method
4544    // scope, because they aren't visible from the header.
4545    if (Prev->getDeclContext()->isFunctionOrMethod())
4546      continue;
4547
4548    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4549    break;
4550  }
4551
4552  return MissingPrototype;
4553}
4554
4555Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4556  // Clear the last template instantiation error context.
4557  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4558
4559  if (!D)
4560    return D;
4561  FunctionDecl *FD = 0;
4562
4563  if (FunctionTemplateDecl *FunTmpl
4564        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4565    FD = FunTmpl->getTemplatedDecl();
4566  else
4567    FD = cast<FunctionDecl>(D.getAs<Decl>());
4568
4569  // Enter a new function scope
4570  PushFunctionScope();
4571
4572  // See if this is a redefinition.
4573  // But don't complain if we're in GNU89 mode and the previous definition
4574  // was an extern inline function.
4575  const FunctionDecl *Definition;
4576  if (FD->hasBody(Definition) &&
4577      !canRedefineFunction(Definition, getLangOptions())) {
4578    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4579    Diag(Definition->getLocation(), diag::note_previous_definition);
4580  }
4581
4582  // Builtin functions cannot be defined.
4583  if (unsigned BuiltinID = FD->getBuiltinID()) {
4584    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4585      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4586      FD->setInvalidDecl();
4587    }
4588  }
4589
4590  // The return type of a function definition must be complete
4591  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4592  QualType ResultType = FD->getResultType();
4593  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4594      !FD->isInvalidDecl() &&
4595      RequireCompleteType(FD->getLocation(), ResultType,
4596                          diag::err_func_def_incomplete_result))
4597    FD->setInvalidDecl();
4598
4599  // GNU warning -Wmissing-prototypes:
4600  //   Warn if a global function is defined without a previous
4601  //   prototype declaration. This warning is issued even if the
4602  //   definition itself provides a prototype. The aim is to detect
4603  //   global functions that fail to be declared in header files.
4604  if (ShouldWarnAboutMissingPrototype(FD))
4605    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4606
4607  if (FnBodyScope)
4608    PushDeclContext(FnBodyScope, FD);
4609
4610  // Check the validity of our function parameters
4611  CheckParmsForFunctionDef(FD);
4612
4613  bool ShouldCheckShadow =
4614    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4615
4616  // Introduce our parameters into the function scope
4617  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4618    ParmVarDecl *Param = FD->getParamDecl(p);
4619    Param->setOwningFunction(FD);
4620
4621    // If this has an identifier, add it to the scope stack.
4622    if (Param->getIdentifier() && FnBodyScope) {
4623      if (ShouldCheckShadow)
4624        CheckShadow(FnBodyScope, Param);
4625
4626      PushOnScopeChains(Param, FnBodyScope);
4627    }
4628  }
4629
4630  // Checking attributes of current function definition
4631  // dllimport attribute.
4632  if (FD->getAttr<DLLImportAttr>() &&
4633      (!FD->getAttr<DLLExportAttr>())) {
4634    // dllimport attribute cannot be applied to definition.
4635    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4636      Diag(FD->getLocation(),
4637           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4638        << "dllimport";
4639      FD->setInvalidDecl();
4640      return DeclPtrTy::make(FD);
4641    }
4642
4643    // Visual C++ appears to not think this is an issue, so only issue
4644    // a warning when Microsoft extensions are disabled.
4645    if (!LangOpts.Microsoft) {
4646      // If a symbol previously declared dllimport is later defined, the
4647      // attribute is ignored in subsequent references, and a warning is
4648      // emitted.
4649      Diag(FD->getLocation(),
4650           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4651        << FD->getNameAsCString() << "dllimport";
4652    }
4653  }
4654  return DeclPtrTy::make(FD);
4655}
4656
4657/// \brief Given the set of return statements within a function body,
4658/// compute the variables that are subject to the named return value
4659/// optimization.
4660///
4661/// Each of the variables that is subject to the named return value
4662/// optimization will be marked as NRVO variables in the AST, and any
4663/// return statement that has a marked NRVO variable as its NRVO candidate can
4664/// use the named return value optimization.
4665///
4666/// This function applies a very simplistic algorithm for NRVO: if every return
4667/// statement in the function has the same NRVO candidate, that candidate is
4668/// the NRVO variable.
4669///
4670/// FIXME: Employ a smarter algorithm that accounts for multiple return
4671/// statements and the lifetimes of the NRVO candidates. We should be able to
4672/// find a maximal set of NRVO variables.
4673static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4674  const VarDecl *NRVOCandidate = 0;
4675  for (unsigned I = 0; I != NumReturns; ++I) {
4676    if (!Returns[I]->getNRVOCandidate())
4677      return;
4678
4679    if (!NRVOCandidate)
4680      NRVOCandidate = Returns[I]->getNRVOCandidate();
4681    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4682      return;
4683  }
4684
4685  if (NRVOCandidate)
4686    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4687}
4688
4689Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4690  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4691}
4692
4693Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4694                                              bool IsInstantiation) {
4695  Decl *dcl = D.getAs<Decl>();
4696  Stmt *Body = BodyArg.takeAs<Stmt>();
4697
4698  FunctionDecl *FD = 0;
4699  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4700  if (FunTmpl)
4701    FD = FunTmpl->getTemplatedDecl();
4702  else
4703    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4704
4705  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4706
4707  if (FD) {
4708    FD->setBody(Body);
4709    if (FD->isMain()) {
4710      // C and C++ allow for main to automagically return 0.
4711      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4712      FD->setHasImplicitReturnZero(true);
4713      WP.disableCheckFallThrough();
4714    }
4715
4716    if (!FD->isInvalidDecl()) {
4717      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4718
4719      // If this is a constructor, we need a vtable.
4720      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4721        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4722
4723      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4724                  FunctionScopes.back()->Returns.size());
4725    }
4726
4727    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4728  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4729    assert(MD == getCurMethodDecl() && "Method parsing confused");
4730    MD->setBody(Body);
4731    MD->setEndLoc(Body->getLocEnd());
4732    if (!MD->isInvalidDecl())
4733      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4734  } else {
4735    return DeclPtrTy();
4736  }
4737
4738  // Verify and clean out per-function state.
4739
4740  // Check goto/label use.
4741  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4742       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4743    LabelStmt *L = I->second;
4744
4745    // Verify that we have no forward references left.  If so, there was a goto
4746    // or address of a label taken, but no definition of it.  Label fwd
4747    // definitions are indicated with a null substmt.
4748    if (L->getSubStmt() != 0)
4749      continue;
4750
4751    // Emit error.
4752    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4753
4754    // At this point, we have gotos that use the bogus label.  Stitch it into
4755    // the function body so that they aren't leaked and that the AST is well
4756    // formed.
4757    if (Body == 0) {
4758      // The whole function wasn't parsed correctly.
4759      continue;
4760    }
4761
4762    // Otherwise, the body is valid: we want to stitch the label decl into the
4763    // function somewhere so that it is properly owned and so that the goto
4764    // has a valid target.  Do this by creating a new compound stmt with the
4765    // label in it.
4766
4767    // Give the label a sub-statement.
4768    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4769
4770    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4771                               cast<CXXTryStmt>(Body)->getTryBlock() :
4772                               cast<CompoundStmt>(Body);
4773    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4774                                          Compound->body_end());
4775    Elements.push_back(L);
4776    Compound->setStmts(Context, Elements.data(), Elements.size());
4777  }
4778
4779  if (Body) {
4780    // C++ constructors that have function-try-blocks can't have return
4781    // statements in the handlers of that block. (C++ [except.handle]p14)
4782    // Verify this.
4783    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4784      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4785
4786    // Verify that that gotos and switch cases don't jump into scopes illegally.
4787    // Verify that that gotos and switch cases don't jump into scopes illegally.
4788    if (FunctionNeedsScopeChecking() &&
4789        !dcl->isInvalidDecl() &&
4790        !hasAnyErrorsInThisFunction())
4791      DiagnoseInvalidJumps(Body);
4792
4793    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4794      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4795                                             Destructor->getParent());
4796
4797    // If any errors have occurred, clear out any temporaries that may have
4798    // been leftover. This ensures that these temporaries won't be picked up for
4799    // deletion in some later function.
4800    if (PP.getDiagnostics().hasErrorOccurred())
4801      ExprTemporaries.clear();
4802    else if (!isa<FunctionTemplateDecl>(dcl)) {
4803      // Since the body is valid, issue any analysis-based warnings that are
4804      // enabled.
4805      QualType ResultType;
4806      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4807        ResultType = FD->getResultType();
4808      }
4809      else {
4810        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4811        ResultType = MD->getResultType();
4812      }
4813      AnalysisWarnings.IssueWarnings(WP, dcl);
4814    }
4815
4816    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4817  }
4818
4819  if (!IsInstantiation)
4820    PopDeclContext();
4821
4822  PopFunctionOrBlockScope();
4823
4824  // If any errors have occurred, clear out any temporaries that may have
4825  // been leftover. This ensures that these temporaries won't be picked up for
4826  // deletion in some later function.
4827  if (getDiagnostics().hasErrorOccurred())
4828    ExprTemporaries.clear();
4829
4830  return D;
4831}
4832
4833/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4834/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4835NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4836                                          IdentifierInfo &II, Scope *S) {
4837  // Before we produce a declaration for an implicitly defined
4838  // function, see whether there was a locally-scoped declaration of
4839  // this name as a function or variable. If so, use that
4840  // (non-visible) declaration, and complain about it.
4841  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4842    = LocallyScopedExternalDecls.find(&II);
4843  if (Pos != LocallyScopedExternalDecls.end()) {
4844    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4845    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4846    return Pos->second;
4847  }
4848
4849  // Extension in C99.  Legal in C90, but warn about it.
4850  if (II.getName().startswith("__builtin_"))
4851    Diag(Loc, diag::warn_builtin_unknown) << &II;
4852  else if (getLangOptions().C99)
4853    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4854  else
4855    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4856
4857  // Set a Declarator for the implicit definition: int foo();
4858  const char *Dummy;
4859  DeclSpec DS;
4860  unsigned DiagID;
4861  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4862  Error = Error; // Silence warning.
4863  assert(!Error && "Error setting up implicit decl!");
4864  Declarator D(DS, Declarator::BlockContext);
4865  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4866                                             0, 0, false, SourceLocation(),
4867                                             false, 0,0,0, Loc, Loc, D),
4868                SourceLocation());
4869  D.SetIdentifier(&II, Loc);
4870
4871  // Insert this function into translation-unit scope.
4872
4873  DeclContext *PrevDC = CurContext;
4874  CurContext = Context.getTranslationUnitDecl();
4875
4876  FunctionDecl *FD =
4877 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4878  FD->setImplicit();
4879
4880  CurContext = PrevDC;
4881
4882  AddKnownFunctionAttributes(FD);
4883
4884  return FD;
4885}
4886
4887/// \brief Adds any function attributes that we know a priori based on
4888/// the declaration of this function.
4889///
4890/// These attributes can apply both to implicitly-declared builtins
4891/// (like __builtin___printf_chk) or to library-declared functions
4892/// like NSLog or printf.
4893void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4894  if (FD->isInvalidDecl())
4895    return;
4896
4897  // If this is a built-in function, map its builtin attributes to
4898  // actual attributes.
4899  if (unsigned BuiltinID = FD->getBuiltinID()) {
4900    // Handle printf-formatting attributes.
4901    unsigned FormatIdx;
4902    bool HasVAListArg;
4903    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4904      if (!FD->getAttr<FormatAttr>())
4905        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4906                                               HasVAListArg ? 0 : FormatIdx+2));
4907    }
4908    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
4909                                             HasVAListArg)) {
4910     if (!FD->getAttr<FormatAttr>())
4911       FD->addAttr(::new (Context) FormatAttr(Context, "scanf", FormatIdx+1,
4912                                              HasVAListArg ? 0 : FormatIdx+2));
4913    }
4914
4915    // Mark const if we don't care about errno and that is the only
4916    // thing preventing the function from being const. This allows
4917    // IRgen to use LLVM intrinsics for such functions.
4918    if (!getLangOptions().MathErrno &&
4919        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4920      if (!FD->getAttr<ConstAttr>())
4921        FD->addAttr(::new (Context) ConstAttr());
4922    }
4923
4924    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4925      FD->setType(Context.getNoReturnType(FD->getType()));
4926    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4927      FD->addAttr(::new (Context) NoThrowAttr());
4928    if (Context.BuiltinInfo.isConst(BuiltinID))
4929      FD->addAttr(::new (Context) ConstAttr());
4930  }
4931
4932  IdentifierInfo *Name = FD->getIdentifier();
4933  if (!Name)
4934    return;
4935  if ((!getLangOptions().CPlusPlus &&
4936       FD->getDeclContext()->isTranslationUnit()) ||
4937      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4938       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4939       LinkageSpecDecl::lang_c)) {
4940    // Okay: this could be a libc/libm/Objective-C function we know
4941    // about.
4942  } else
4943    return;
4944
4945  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4946    // FIXME: NSLog and NSLogv should be target specific
4947    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4948      // FIXME: We known better than our headers.
4949      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4950    } else
4951      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4952                                             Name->isStr("NSLogv") ? 0 : 2));
4953  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4954    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4955    // target-specific builtins, perhaps?
4956    if (!FD->getAttr<FormatAttr>())
4957      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4958                                             Name->isStr("vasprintf") ? 0 : 3));
4959  }
4960}
4961
4962TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4963                                    TypeSourceInfo *TInfo) {
4964  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4965  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4966
4967  if (!TInfo) {
4968    assert(D.isInvalidType() && "no declarator info for valid type");
4969    TInfo = Context.getTrivialTypeSourceInfo(T);
4970  }
4971
4972  // Scope manipulation handled by caller.
4973  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4974                                           D.getIdentifierLoc(),
4975                                           D.getIdentifier(),
4976                                           TInfo);
4977
4978  if (const TagType *TT = T->getAs<TagType>()) {
4979    TagDecl *TD = TT->getDecl();
4980
4981    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4982    // keep track of the TypedefDecl.
4983    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4984      TD->setTypedefForAnonDecl(NewTD);
4985  }
4986
4987  if (D.isInvalidType())
4988    NewTD->setInvalidDecl();
4989  return NewTD;
4990}
4991
4992
4993/// \brief Determine whether a tag with a given kind is acceptable
4994/// as a redeclaration of the given tag declaration.
4995///
4996/// \returns true if the new tag kind is acceptable, false otherwise.
4997bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4998                                        TagTypeKind NewTag,
4999                                        SourceLocation NewTagLoc,
5000                                        const IdentifierInfo &Name) {
5001  // C++ [dcl.type.elab]p3:
5002  //   The class-key or enum keyword present in the
5003  //   elaborated-type-specifier shall agree in kind with the
5004  //   declaration to which the name in the elaborated-type-specifier
5005  //   refers. This rule also applies to the form of
5006  //   elaborated-type-specifier that declares a class-name or
5007  //   friend class since it can be construed as referring to the
5008  //   definition of the class. Thus, in any
5009  //   elaborated-type-specifier, the enum keyword shall be used to
5010  //   refer to an enumeration (7.2), the union class-key shall be
5011  //   used to refer to a union (clause 9), and either the class or
5012  //   struct class-key shall be used to refer to a class (clause 9)
5013  //   declared using the class or struct class-key.
5014  TagTypeKind OldTag = Previous->getTagKind();
5015  if (OldTag == NewTag)
5016    return true;
5017
5018  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5019      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5020    // Warn about the struct/class tag mismatch.
5021    bool isTemplate = false;
5022    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5023      isTemplate = Record->getDescribedClassTemplate();
5024
5025    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5026      << (NewTag == TTK_Class)
5027      << isTemplate << &Name
5028      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5029                              OldTag == TTK_Class? "class" : "struct");
5030    Diag(Previous->getLocation(), diag::note_previous_use);
5031    return true;
5032  }
5033  return false;
5034}
5035
5036/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5037/// former case, Name will be non-null.  In the later case, Name will be null.
5038/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5039/// reference/declaration/definition of a tag.
5040Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5041                               SourceLocation KWLoc, CXXScopeSpec &SS,
5042                               IdentifierInfo *Name, SourceLocation NameLoc,
5043                               AttributeList *Attr, AccessSpecifier AS,
5044                               MultiTemplateParamsArg TemplateParameterLists,
5045                               bool &OwnedDecl, bool &IsDependent) {
5046  // If this is not a definition, it must have a name.
5047  assert((Name != 0 || TUK == TUK_Definition) &&
5048         "Nameless record must be a definition!");
5049
5050  OwnedDecl = false;
5051  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5052
5053  // FIXME: Check explicit specializations more carefully.
5054  bool isExplicitSpecialization = false;
5055  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5056  bool Invalid = false;
5057  if (TUK != TUK_Reference) {
5058    if (TemplateParameterList *TemplateParams
5059          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5060                        (TemplateParameterList**)TemplateParameterLists.get(),
5061                                              TemplateParameterLists.size(),
5062                                                    TUK == TUK_Friend,
5063                                                    isExplicitSpecialization,
5064                                                    Invalid)) {
5065      // All but one template parameter lists have been matching.
5066      --NumMatchedTemplateParamLists;
5067
5068      if (TemplateParams->size() > 0) {
5069        // This is a declaration or definition of a class template (which may
5070        // be a member of another template).
5071        if (Invalid)
5072          return DeclPtrTy();
5073
5074        OwnedDecl = false;
5075        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5076                                               SS, Name, NameLoc, Attr,
5077                                               TemplateParams,
5078                                               AS);
5079        TemplateParameterLists.release();
5080        return Result.get();
5081      } else {
5082        // The "template<>" header is extraneous.
5083        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5084          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5085        isExplicitSpecialization = true;
5086      }
5087    }
5088  }
5089
5090  DeclContext *SearchDC = CurContext;
5091  DeclContext *DC = CurContext;
5092  bool isStdBadAlloc = false;
5093
5094  RedeclarationKind Redecl = ForRedeclaration;
5095  if (TUK == TUK_Friend || TUK == TUK_Reference)
5096    Redecl = NotForRedeclaration;
5097
5098  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5099
5100  if (Name && SS.isNotEmpty()) {
5101    // We have a nested-name tag ('struct foo::bar').
5102
5103    // Check for invalid 'foo::'.
5104    if (SS.isInvalid()) {
5105      Name = 0;
5106      goto CreateNewDecl;
5107    }
5108
5109    // If this is a friend or a reference to a class in a dependent
5110    // context, don't try to make a decl for it.
5111    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5112      DC = computeDeclContext(SS, false);
5113      if (!DC) {
5114        IsDependent = true;
5115        return DeclPtrTy();
5116      }
5117    } else {
5118      DC = computeDeclContext(SS, true);
5119      if (!DC) {
5120        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5121          << SS.getRange();
5122        return DeclPtrTy();
5123      }
5124    }
5125
5126    if (RequireCompleteDeclContext(SS, DC))
5127      return DeclPtrTy::make((Decl *)0);
5128
5129    SearchDC = DC;
5130    // Look-up name inside 'foo::'.
5131    LookupQualifiedName(Previous, DC);
5132
5133    if (Previous.isAmbiguous())
5134      return DeclPtrTy();
5135
5136    if (Previous.empty()) {
5137      // Name lookup did not find anything. However, if the
5138      // nested-name-specifier refers to the current instantiation,
5139      // and that current instantiation has any dependent base
5140      // classes, we might find something at instantiation time: treat
5141      // this as a dependent elaborated-type-specifier.
5142      if (Previous.wasNotFoundInCurrentInstantiation()) {
5143        IsDependent = true;
5144        return DeclPtrTy();
5145      }
5146
5147      // A tag 'foo::bar' must already exist.
5148      Diag(NameLoc, diag::err_not_tag_in_scope)
5149        << Kind << Name << DC << SS.getRange();
5150      Name = 0;
5151      Invalid = true;
5152      goto CreateNewDecl;
5153    }
5154  } else if (Name) {
5155    // If this is a named struct, check to see if there was a previous forward
5156    // declaration or definition.
5157    // FIXME: We're looking into outer scopes here, even when we
5158    // shouldn't be. Doing so can result in ambiguities that we
5159    // shouldn't be diagnosing.
5160    LookupName(Previous, S);
5161
5162    // Note:  there used to be some attempt at recovery here.
5163    if (Previous.isAmbiguous())
5164      return DeclPtrTy();
5165
5166    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5167      // FIXME: This makes sure that we ignore the contexts associated
5168      // with C structs, unions, and enums when looking for a matching
5169      // tag declaration or definition. See the similar lookup tweak
5170      // in Sema::LookupName; is there a better way to deal with this?
5171      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5172        SearchDC = SearchDC->getParent();
5173    }
5174  }
5175
5176  if (Previous.isSingleResult() &&
5177      Previous.getFoundDecl()->isTemplateParameter()) {
5178    // Maybe we will complain about the shadowed template parameter.
5179    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5180    // Just pretend that we didn't see the previous declaration.
5181    Previous.clear();
5182  }
5183
5184  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5185      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
5186    // This is a declaration of or a reference to "std::bad_alloc".
5187    isStdBadAlloc = true;
5188
5189    if (Previous.empty() && StdBadAlloc) {
5190      // std::bad_alloc has been implicitly declared (but made invisible to
5191      // name lookup). Fill in this implicit declaration as the previous
5192      // declaration, so that the declarations get chained appropriately.
5193      Previous.addDecl(StdBadAlloc);
5194    }
5195  }
5196
5197  // If we didn't find a previous declaration, and this is a reference
5198  // (or friend reference), move to the correct scope.  In C++, we
5199  // also need to do a redeclaration lookup there, just in case
5200  // there's a shadow friend decl.
5201  if (Name && Previous.empty() &&
5202      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5203    if (Invalid) goto CreateNewDecl;
5204    assert(SS.isEmpty());
5205
5206    if (TUK == TUK_Reference) {
5207      // C++ [basic.scope.pdecl]p5:
5208      //   -- for an elaborated-type-specifier of the form
5209      //
5210      //          class-key identifier
5211      //
5212      //      if the elaborated-type-specifier is used in the
5213      //      decl-specifier-seq or parameter-declaration-clause of a
5214      //      function defined in namespace scope, the identifier is
5215      //      declared as a class-name in the namespace that contains
5216      //      the declaration; otherwise, except as a friend
5217      //      declaration, the identifier is declared in the smallest
5218      //      non-class, non-function-prototype scope that contains the
5219      //      declaration.
5220      //
5221      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5222      // C structs and unions.
5223      //
5224      // It is an error in C++ to declare (rather than define) an enum
5225      // type, including via an elaborated type specifier.  We'll
5226      // diagnose that later; for now, declare the enum in the same
5227      // scope as we would have picked for any other tag type.
5228      //
5229      // GNU C also supports this behavior as part of its incomplete
5230      // enum types extension, while GNU C++ does not.
5231      //
5232      // Find the context where we'll be declaring the tag.
5233      // FIXME: We would like to maintain the current DeclContext as the
5234      // lexical context,
5235      while (SearchDC->isRecord())
5236        SearchDC = SearchDC->getParent();
5237
5238      // Find the scope where we'll be declaring the tag.
5239      while (S->isClassScope() ||
5240             (getLangOptions().CPlusPlus &&
5241              S->isFunctionPrototypeScope()) ||
5242             ((S->getFlags() & Scope::DeclScope) == 0) ||
5243             (S->getEntity() &&
5244              ((DeclContext *)S->getEntity())->isTransparentContext()))
5245        S = S->getParent();
5246    } else {
5247      assert(TUK == TUK_Friend);
5248      // C++ [namespace.memdef]p3:
5249      //   If a friend declaration in a non-local class first declares a
5250      //   class or function, the friend class or function is a member of
5251      //   the innermost enclosing namespace.
5252      SearchDC = SearchDC->getEnclosingNamespaceContext();
5253    }
5254
5255    // In C++, we need to do a redeclaration lookup to properly
5256    // diagnose some problems.
5257    if (getLangOptions().CPlusPlus) {
5258      Previous.setRedeclarationKind(ForRedeclaration);
5259      LookupQualifiedName(Previous, SearchDC);
5260    }
5261  }
5262
5263  if (!Previous.empty()) {
5264    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5265
5266    // It's okay to have a tag decl in the same scope as a typedef
5267    // which hides a tag decl in the same scope.  Finding this
5268    // insanity with a redeclaration lookup can only actually happen
5269    // in C++.
5270    //
5271    // This is also okay for elaborated-type-specifiers, which is
5272    // technically forbidden by the current standard but which is
5273    // okay according to the likely resolution of an open issue;
5274    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5275    if (getLangOptions().CPlusPlus) {
5276      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5277        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5278          TagDecl *Tag = TT->getDecl();
5279          if (Tag->getDeclName() == Name &&
5280              Tag->getDeclContext()->getLookupContext()
5281                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5282            PrevDecl = Tag;
5283            Previous.clear();
5284            Previous.addDecl(Tag);
5285          }
5286        }
5287      }
5288    }
5289
5290    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5291      // If this is a use of a previous tag, or if the tag is already declared
5292      // in the same scope (so that the definition/declaration completes or
5293      // rementions the tag), reuse the decl.
5294      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5295          isDeclInScope(PrevDecl, SearchDC, S)) {
5296        // Make sure that this wasn't declared as an enum and now used as a
5297        // struct or something similar.
5298        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5299          bool SafeToContinue
5300            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5301               Kind != TTK_Enum);
5302          if (SafeToContinue)
5303            Diag(KWLoc, diag::err_use_with_wrong_tag)
5304              << Name
5305              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5306                                              PrevTagDecl->getKindName());
5307          else
5308            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5309          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5310
5311          if (SafeToContinue)
5312            Kind = PrevTagDecl->getTagKind();
5313          else {
5314            // Recover by making this an anonymous redefinition.
5315            Name = 0;
5316            Previous.clear();
5317            Invalid = true;
5318          }
5319        }
5320
5321        if (!Invalid) {
5322          // If this is a use, just return the declaration we found.
5323
5324          // FIXME: In the future, return a variant or some other clue
5325          // for the consumer of this Decl to know it doesn't own it.
5326          // For our current ASTs this shouldn't be a problem, but will
5327          // need to be changed with DeclGroups.
5328          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5329              TUK == TUK_Friend)
5330            return DeclPtrTy::make(PrevTagDecl);
5331
5332          // Diagnose attempts to redefine a tag.
5333          if (TUK == TUK_Definition) {
5334            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5335              // If we're defining a specialization and the previous definition
5336              // is from an implicit instantiation, don't emit an error
5337              // here; we'll catch this in the general case below.
5338              if (!isExplicitSpecialization ||
5339                  !isa<CXXRecordDecl>(Def) ||
5340                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5341                                               == TSK_ExplicitSpecialization) {
5342                Diag(NameLoc, diag::err_redefinition) << Name;
5343                Diag(Def->getLocation(), diag::note_previous_definition);
5344                // If this is a redefinition, recover by making this
5345                // struct be anonymous, which will make any later
5346                // references get the previous definition.
5347                Name = 0;
5348                Previous.clear();
5349                Invalid = true;
5350              }
5351            } else {
5352              // If the type is currently being defined, complain
5353              // about a nested redefinition.
5354              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5355              if (Tag->isBeingDefined()) {
5356                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5357                Diag(PrevTagDecl->getLocation(),
5358                     diag::note_previous_definition);
5359                Name = 0;
5360                Previous.clear();
5361                Invalid = true;
5362              }
5363            }
5364
5365            // Okay, this is definition of a previously declared or referenced
5366            // tag PrevDecl. We're going to create a new Decl for it.
5367          }
5368        }
5369        // If we get here we have (another) forward declaration or we
5370        // have a definition.  Just create a new decl.
5371
5372      } else {
5373        // If we get here, this is a definition of a new tag type in a nested
5374        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5375        // new decl/type.  We set PrevDecl to NULL so that the entities
5376        // have distinct types.
5377        Previous.clear();
5378      }
5379      // If we get here, we're going to create a new Decl. If PrevDecl
5380      // is non-NULL, it's a definition of the tag declared by
5381      // PrevDecl. If it's NULL, we have a new definition.
5382
5383
5384    // Otherwise, PrevDecl is not a tag, but was found with tag
5385    // lookup.  This is only actually possible in C++, where a few
5386    // things like templates still live in the tag namespace.
5387    } else {
5388      assert(getLangOptions().CPlusPlus);
5389
5390      // Use a better diagnostic if an elaborated-type-specifier
5391      // found the wrong kind of type on the first
5392      // (non-redeclaration) lookup.
5393      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5394          !Previous.isForRedeclaration()) {
5395        unsigned Kind = 0;
5396        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5397        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5398        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5399        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5400        Invalid = true;
5401
5402      // Otherwise, only diagnose if the declaration is in scope.
5403      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5404        // do nothing
5405
5406      // Diagnose implicit declarations introduced by elaborated types.
5407      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5408        unsigned Kind = 0;
5409        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5410        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5411        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5412        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5413        Invalid = true;
5414
5415      // Otherwise it's a declaration.  Call out a particularly common
5416      // case here.
5417      } else if (isa<TypedefDecl>(PrevDecl)) {
5418        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5419          << Name
5420          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5421        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5422        Invalid = true;
5423
5424      // Otherwise, diagnose.
5425      } else {
5426        // The tag name clashes with something else in the target scope,
5427        // issue an error and recover by making this tag be anonymous.
5428        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5429        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5430        Name = 0;
5431        Invalid = true;
5432      }
5433
5434      // The existing declaration isn't relevant to us; we're in a
5435      // new scope, so clear out the previous declaration.
5436      Previous.clear();
5437    }
5438  }
5439
5440CreateNewDecl:
5441
5442  TagDecl *PrevDecl = 0;
5443  if (Previous.isSingleResult())
5444    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5445
5446  // If there is an identifier, use the location of the identifier as the
5447  // location of the decl, otherwise use the location of the struct/union
5448  // keyword.
5449  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5450
5451  // Otherwise, create a new declaration. If there is a previous
5452  // declaration of the same entity, the two will be linked via
5453  // PrevDecl.
5454  TagDecl *New;
5455
5456  if (Kind == TTK_Enum) {
5457    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5458    // enum X { A, B, C } D;    D should chain to X.
5459    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5460                           cast_or_null<EnumDecl>(PrevDecl));
5461    // If this is an undefined enum, warn.
5462    if (TUK != TUK_Definition && !Invalid) {
5463      TagDecl *Def;
5464      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5465        Diag(Loc, diag::ext_forward_ref_enum_def)
5466          << New;
5467        Diag(Def->getLocation(), diag::note_previous_definition);
5468      } else {
5469        Diag(Loc,
5470             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5471                                       : diag::ext_forward_ref_enum);
5472      }
5473    }
5474  } else {
5475    // struct/union/class
5476
5477    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5478    // struct X { int A; } D;    D should chain to X.
5479    if (getLangOptions().CPlusPlus) {
5480      // FIXME: Look for a way to use RecordDecl for simple structs.
5481      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5482                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5483
5484      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5485        StdBadAlloc = cast<CXXRecordDecl>(New);
5486    } else
5487      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5488                               cast_or_null<RecordDecl>(PrevDecl));
5489  }
5490
5491  // Maybe add qualifier info.
5492  if (SS.isNotEmpty()) {
5493    if (SS.isSet()) {
5494      NestedNameSpecifier *NNS
5495        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5496      New->setQualifierInfo(NNS, SS.getRange());
5497      if (NumMatchedTemplateParamLists > 0) {
5498        New->setTemplateParameterListsInfo(Context,
5499                                           NumMatchedTemplateParamLists,
5500                    (TemplateParameterList**) TemplateParameterLists.release());
5501      }
5502    }
5503    else
5504      Invalid = true;
5505  }
5506
5507  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5508    // Add alignment attributes if necessary; these attributes are checked when
5509    // the ASTContext lays out the structure.
5510    //
5511    // It is important for implementing the correct semantics that this
5512    // happen here (in act on tag decl). The #pragma pack stack is
5513    // maintained as a result of parser callbacks which can occur at
5514    // many points during the parsing of a struct declaration (because
5515    // the #pragma tokens are effectively skipped over during the
5516    // parsing of the struct).
5517    AddAlignmentAttributesForRecord(RD);
5518  }
5519
5520  // If this is a specialization of a member class (of a class template),
5521  // check the specialization.
5522  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5523    Invalid = true;
5524
5525  if (Invalid)
5526    New->setInvalidDecl();
5527
5528  if (Attr)
5529    ProcessDeclAttributeList(S, New, Attr);
5530
5531  // If we're declaring or defining a tag in function prototype scope
5532  // in C, note that this type can only be used within the function.
5533  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5534    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5535
5536  // Set the lexical context. If the tag has a C++ scope specifier, the
5537  // lexical context will be different from the semantic context.
5538  New->setLexicalDeclContext(CurContext);
5539
5540  // Mark this as a friend decl if applicable.
5541  if (TUK == TUK_Friend)
5542    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5543
5544  // Set the access specifier.
5545  if (!Invalid && SearchDC->isRecord())
5546    SetMemberAccessSpecifier(New, PrevDecl, AS);
5547
5548  if (TUK == TUK_Definition)
5549    New->startDefinition();
5550
5551  // If this has an identifier, add it to the scope stack.
5552  if (TUK == TUK_Friend) {
5553    // We might be replacing an existing declaration in the lookup tables;
5554    // if so, borrow its access specifier.
5555    if (PrevDecl)
5556      New->setAccess(PrevDecl->getAccess());
5557
5558    DeclContext *DC = New->getDeclContext()->getLookupContext();
5559    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5560    if (Name) // can be null along some error paths
5561      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5562        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5563  } else if (Name) {
5564    S = getNonFieldDeclScope(S);
5565    PushOnScopeChains(New, S);
5566  } else {
5567    CurContext->addDecl(New);
5568  }
5569
5570  // If this is the C FILE type, notify the AST context.
5571  if (IdentifierInfo *II = New->getIdentifier())
5572    if (!New->isInvalidDecl() &&
5573        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5574        II->isStr("FILE"))
5575      Context.setFILEDecl(New);
5576
5577  OwnedDecl = true;
5578  return DeclPtrTy::make(New);
5579}
5580
5581void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5582  AdjustDeclIfTemplate(TagD);
5583  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5584
5585  // Enter the tag context.
5586  PushDeclContext(S, Tag);
5587}
5588
5589void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5590                                           SourceLocation LBraceLoc) {
5591  AdjustDeclIfTemplate(TagD);
5592  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5593
5594  FieldCollector->StartClass();
5595
5596  if (!Record->getIdentifier())
5597    return;
5598
5599  // C++ [class]p2:
5600  //   [...] The class-name is also inserted into the scope of the
5601  //   class itself; this is known as the injected-class-name. For
5602  //   purposes of access checking, the injected-class-name is treated
5603  //   as if it were a public member name.
5604  CXXRecordDecl *InjectedClassName
5605    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5606                            CurContext, Record->getLocation(),
5607                            Record->getIdentifier(),
5608                            Record->getTagKeywordLoc(),
5609                            Record);
5610  InjectedClassName->setImplicit();
5611  InjectedClassName->setAccess(AS_public);
5612  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5613      InjectedClassName->setDescribedClassTemplate(Template);
5614  PushOnScopeChains(InjectedClassName, S);
5615  assert(InjectedClassName->isInjectedClassName() &&
5616         "Broken injected-class-name");
5617}
5618
5619void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5620                                    SourceLocation RBraceLoc) {
5621  AdjustDeclIfTemplate(TagD);
5622  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5623  Tag->setRBraceLoc(RBraceLoc);
5624
5625  if (isa<CXXRecordDecl>(Tag))
5626    FieldCollector->FinishClass();
5627
5628  // Exit this scope of this tag's definition.
5629  PopDeclContext();
5630
5631  // Notify the consumer that we've defined a tag.
5632  Consumer.HandleTagDeclDefinition(Tag);
5633}
5634
5635void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5636  AdjustDeclIfTemplate(TagD);
5637  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5638  Tag->setInvalidDecl();
5639
5640  // We're undoing ActOnTagStartDefinition here, not
5641  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5642  // the FieldCollector.
5643
5644  PopDeclContext();
5645}
5646
5647// Note that FieldName may be null for anonymous bitfields.
5648bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5649                          QualType FieldTy, const Expr *BitWidth,
5650                          bool *ZeroWidth) {
5651  // Default to true; that shouldn't confuse checks for emptiness
5652  if (ZeroWidth)
5653    *ZeroWidth = true;
5654
5655  // C99 6.7.2.1p4 - verify the field type.
5656  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5657  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5658    // Handle incomplete types with specific error.
5659    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5660      return true;
5661    if (FieldName)
5662      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5663        << FieldName << FieldTy << BitWidth->getSourceRange();
5664    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5665      << FieldTy << BitWidth->getSourceRange();
5666  }
5667
5668  // If the bit-width is type- or value-dependent, don't try to check
5669  // it now.
5670  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5671    return false;
5672
5673  llvm::APSInt Value;
5674  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5675    return true;
5676
5677  if (Value != 0 && ZeroWidth)
5678    *ZeroWidth = false;
5679
5680  // Zero-width bitfield is ok for anonymous field.
5681  if (Value == 0 && FieldName)
5682    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5683
5684  if (Value.isSigned() && Value.isNegative()) {
5685    if (FieldName)
5686      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5687               << FieldName << Value.toString(10);
5688    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5689      << Value.toString(10);
5690  }
5691
5692  if (!FieldTy->isDependentType()) {
5693    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5694    if (Value.getZExtValue() > TypeSize) {
5695      if (!getLangOptions().CPlusPlus) {
5696        if (FieldName)
5697          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5698            << FieldName << (unsigned)Value.getZExtValue()
5699            << (unsigned)TypeSize;
5700
5701        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5702          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5703      }
5704
5705      if (FieldName)
5706        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5707          << FieldName << (unsigned)Value.getZExtValue()
5708          << (unsigned)TypeSize;
5709      else
5710        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5711          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5712    }
5713  }
5714
5715  return false;
5716}
5717
5718/// ActOnField - Each field of a struct/union/class is passed into this in order
5719/// to create a FieldDecl object for it.
5720Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5721                                 SourceLocation DeclStart,
5722                                 Declarator &D, ExprTy *BitfieldWidth) {
5723  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5724                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5725                               AS_public);
5726  return DeclPtrTy::make(Res);
5727}
5728
5729/// HandleField - Analyze a field of a C struct or a C++ data member.
5730///
5731FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5732                             SourceLocation DeclStart,
5733                             Declarator &D, Expr *BitWidth,
5734                             AccessSpecifier AS) {
5735  IdentifierInfo *II = D.getIdentifier();
5736  SourceLocation Loc = DeclStart;
5737  if (II) Loc = D.getIdentifierLoc();
5738
5739  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5740  QualType T = TInfo->getType();
5741  if (getLangOptions().CPlusPlus)
5742    CheckExtraCXXDefaultArguments(D);
5743
5744  DiagnoseFunctionSpecifiers(D);
5745
5746  if (D.getDeclSpec().isThreadSpecified())
5747    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5748
5749  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5750                                         ForRedeclaration);
5751
5752  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5753    // Maybe we will complain about the shadowed template parameter.
5754    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5755    // Just pretend that we didn't see the previous declaration.
5756    PrevDecl = 0;
5757  }
5758
5759  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5760    PrevDecl = 0;
5761
5762  bool Mutable
5763    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5764  SourceLocation TSSL = D.getSourceRange().getBegin();
5765  FieldDecl *NewFD
5766    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5767                     AS, PrevDecl, &D);
5768
5769  if (NewFD->isInvalidDecl())
5770    Record->setInvalidDecl();
5771
5772  if (NewFD->isInvalidDecl() && PrevDecl) {
5773    // Don't introduce NewFD into scope; there's already something
5774    // with the same name in the same scope.
5775  } else if (II) {
5776    PushOnScopeChains(NewFD, S);
5777  } else
5778    Record->addDecl(NewFD);
5779
5780  return NewFD;
5781}
5782
5783/// \brief Build a new FieldDecl and check its well-formedness.
5784///
5785/// This routine builds a new FieldDecl given the fields name, type,
5786/// record, etc. \p PrevDecl should refer to any previous declaration
5787/// with the same name and in the same scope as the field to be
5788/// created.
5789///
5790/// \returns a new FieldDecl.
5791///
5792/// \todo The Declarator argument is a hack. It will be removed once
5793FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5794                                TypeSourceInfo *TInfo,
5795                                RecordDecl *Record, SourceLocation Loc,
5796                                bool Mutable, Expr *BitWidth,
5797                                SourceLocation TSSL,
5798                                AccessSpecifier AS, NamedDecl *PrevDecl,
5799                                Declarator *D) {
5800  IdentifierInfo *II = Name.getAsIdentifierInfo();
5801  bool InvalidDecl = false;
5802  if (D) InvalidDecl = D->isInvalidType();
5803
5804  // If we receive a broken type, recover by assuming 'int' and
5805  // marking this declaration as invalid.
5806  if (T.isNull()) {
5807    InvalidDecl = true;
5808    T = Context.IntTy;
5809  }
5810
5811  QualType EltTy = Context.getBaseElementType(T);
5812  if (!EltTy->isDependentType() &&
5813      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5814    InvalidDecl = true;
5815
5816  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5817  // than a variably modified type.
5818  if (!InvalidDecl && T->isVariablyModifiedType()) {
5819    bool SizeIsNegative;
5820    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5821                                                           SizeIsNegative);
5822    if (!FixedTy.isNull()) {
5823      Diag(Loc, diag::warn_illegal_constant_array_size);
5824      T = FixedTy;
5825    } else {
5826      if (SizeIsNegative)
5827        Diag(Loc, diag::err_typecheck_negative_array_size);
5828      else
5829        Diag(Loc, diag::err_typecheck_field_variable_size);
5830      InvalidDecl = true;
5831    }
5832  }
5833
5834  // Fields can not have abstract class types
5835  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5836                                             diag::err_abstract_type_in_decl,
5837                                             AbstractFieldType))
5838    InvalidDecl = true;
5839
5840  bool ZeroWidth = false;
5841  // If this is declared as a bit-field, check the bit-field.
5842  if (!InvalidDecl && BitWidth &&
5843      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5844    InvalidDecl = true;
5845    DeleteExpr(BitWidth);
5846    BitWidth = 0;
5847    ZeroWidth = false;
5848  }
5849
5850  // Check that 'mutable' is consistent with the type of the declaration.
5851  if (!InvalidDecl && Mutable) {
5852    unsigned DiagID = 0;
5853    if (T->isReferenceType())
5854      DiagID = diag::err_mutable_reference;
5855    else if (T.isConstQualified())
5856      DiagID = diag::err_mutable_const;
5857
5858    if (DiagID) {
5859      SourceLocation ErrLoc = Loc;
5860      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
5861        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
5862      Diag(ErrLoc, DiagID);
5863      Mutable = false;
5864      InvalidDecl = true;
5865    }
5866  }
5867
5868  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5869                                       BitWidth, Mutable);
5870  if (InvalidDecl)
5871    NewFD->setInvalidDecl();
5872
5873  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5874    Diag(Loc, diag::err_duplicate_member) << II;
5875    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5876    NewFD->setInvalidDecl();
5877  }
5878
5879  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5880    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5881
5882    if (!T->isPODType())
5883      CXXRecord->setPOD(false);
5884    if (!ZeroWidth)
5885      CXXRecord->setEmpty(false);
5886
5887    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5888      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5889      if (RDecl->getDefinition()) {
5890        if (!RDecl->hasTrivialConstructor())
5891          CXXRecord->setHasTrivialConstructor(false);
5892        if (!RDecl->hasTrivialCopyConstructor())
5893          CXXRecord->setHasTrivialCopyConstructor(false);
5894        if (!RDecl->hasTrivialCopyAssignment())
5895          CXXRecord->setHasTrivialCopyAssignment(false);
5896        if (!RDecl->hasTrivialDestructor())
5897          CXXRecord->setHasTrivialDestructor(false);
5898
5899        // C++ 9.5p1: An object of a class with a non-trivial
5900        // constructor, a non-trivial copy constructor, a non-trivial
5901        // destructor, or a non-trivial copy assignment operator
5902        // cannot be a member of a union, nor can an array of such
5903        // objects.
5904        // TODO: C++0x alters this restriction significantly.
5905        if (Record->isUnion()) {
5906          // We check for copy constructors before constructors
5907          // because otherwise we'll never get complaints about
5908          // copy constructors.
5909
5910          CXXSpecialMember member = CXXInvalid;
5911          if (!RDecl->hasTrivialCopyConstructor())
5912            member = CXXCopyConstructor;
5913          else if (!RDecl->hasTrivialConstructor())
5914            member = CXXConstructor;
5915          else if (!RDecl->hasTrivialCopyAssignment())
5916            member = CXXCopyAssignment;
5917          else if (!RDecl->hasTrivialDestructor())
5918            member = CXXDestructor;
5919
5920          if (member != CXXInvalid) {
5921            Diag(Loc, diag::err_illegal_union_member) << Name << member;
5922            DiagnoseNontrivial(RT, member);
5923            NewFD->setInvalidDecl();
5924          }
5925        }
5926      }
5927    }
5928  }
5929
5930  // FIXME: We need to pass in the attributes given an AST
5931  // representation, not a parser representation.
5932  if (D)
5933    // FIXME: What to pass instead of TUScope?
5934    ProcessDeclAttributes(TUScope, NewFD, *D);
5935
5936  if (T.isObjCGCWeak())
5937    Diag(Loc, diag::warn_attribute_weak_on_field);
5938
5939  NewFD->setAccess(AS);
5940
5941  // C++ [dcl.init.aggr]p1:
5942  //   An aggregate is an array or a class (clause 9) with [...] no
5943  //   private or protected non-static data members (clause 11).
5944  // A POD must be an aggregate.
5945  if (getLangOptions().CPlusPlus &&
5946      (AS == AS_private || AS == AS_protected)) {
5947    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5948    CXXRecord->setAggregate(false);
5949    CXXRecord->setPOD(false);
5950  }
5951
5952  return NewFD;
5953}
5954
5955/// DiagnoseNontrivial - Given that a class has a non-trivial
5956/// special member, figure out why.
5957void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5958  QualType QT(T, 0U);
5959  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5960
5961  // Check whether the member was user-declared.
5962  switch (member) {
5963  case CXXInvalid:
5964    break;
5965
5966  case CXXConstructor:
5967    if (RD->hasUserDeclaredConstructor()) {
5968      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5969      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5970        const FunctionDecl *body = 0;
5971        ci->hasBody(body);
5972        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
5973          SourceLocation CtorLoc = ci->getLocation();
5974          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5975          return;
5976        }
5977      }
5978
5979      assert(0 && "found no user-declared constructors");
5980      return;
5981    }
5982    break;
5983
5984  case CXXCopyConstructor:
5985    if (RD->hasUserDeclaredCopyConstructor()) {
5986      SourceLocation CtorLoc =
5987        RD->getCopyConstructor(Context, 0)->getLocation();
5988      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5989      return;
5990    }
5991    break;
5992
5993  case CXXCopyAssignment:
5994    if (RD->hasUserDeclaredCopyAssignment()) {
5995      // FIXME: this should use the location of the copy
5996      // assignment, not the type.
5997      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5998      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5999      return;
6000    }
6001    break;
6002
6003  case CXXDestructor:
6004    if (RD->hasUserDeclaredDestructor()) {
6005      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6006      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6007      return;
6008    }
6009    break;
6010  }
6011
6012  typedef CXXRecordDecl::base_class_iterator base_iter;
6013
6014  // Virtual bases and members inhibit trivial copying/construction,
6015  // but not trivial destruction.
6016  if (member != CXXDestructor) {
6017    // Check for virtual bases.  vbases includes indirect virtual bases,
6018    // so we just iterate through the direct bases.
6019    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6020      if (bi->isVirtual()) {
6021        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6022        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6023        return;
6024      }
6025
6026    // Check for virtual methods.
6027    typedef CXXRecordDecl::method_iterator meth_iter;
6028    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6029         ++mi) {
6030      if (mi->isVirtual()) {
6031        SourceLocation MLoc = mi->getSourceRange().getBegin();
6032        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6033        return;
6034      }
6035    }
6036  }
6037
6038  bool (CXXRecordDecl::*hasTrivial)() const;
6039  switch (member) {
6040  case CXXConstructor:
6041    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6042  case CXXCopyConstructor:
6043    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6044  case CXXCopyAssignment:
6045    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6046  case CXXDestructor:
6047    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6048  default:
6049    assert(0 && "unexpected special member"); return;
6050  }
6051
6052  // Check for nontrivial bases (and recurse).
6053  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6054    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6055    assert(BaseRT && "Don't know how to handle dependent bases");
6056    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6057    if (!(BaseRecTy->*hasTrivial)()) {
6058      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6059      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6060      DiagnoseNontrivial(BaseRT, member);
6061      return;
6062    }
6063  }
6064
6065  // Check for nontrivial members (and recurse).
6066  typedef RecordDecl::field_iterator field_iter;
6067  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6068       ++fi) {
6069    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6070    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6071      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6072
6073      if (!(EltRD->*hasTrivial)()) {
6074        SourceLocation FLoc = (*fi)->getLocation();
6075        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6076        DiagnoseNontrivial(EltRT, member);
6077        return;
6078      }
6079    }
6080  }
6081
6082  assert(0 && "found no explanation for non-trivial member");
6083}
6084
6085/// TranslateIvarVisibility - Translate visibility from a token ID to an
6086///  AST enum value.
6087static ObjCIvarDecl::AccessControl
6088TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6089  switch (ivarVisibility) {
6090  default: assert(0 && "Unknown visitibility kind");
6091  case tok::objc_private: return ObjCIvarDecl::Private;
6092  case tok::objc_public: return ObjCIvarDecl::Public;
6093  case tok::objc_protected: return ObjCIvarDecl::Protected;
6094  case tok::objc_package: return ObjCIvarDecl::Package;
6095  }
6096}
6097
6098/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6099/// in order to create an IvarDecl object for it.
6100Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
6101                                SourceLocation DeclStart,
6102                                DeclPtrTy IntfDecl,
6103                                Declarator &D, ExprTy *BitfieldWidth,
6104                                tok::ObjCKeywordKind Visibility) {
6105
6106  IdentifierInfo *II = D.getIdentifier();
6107  Expr *BitWidth = (Expr*)BitfieldWidth;
6108  SourceLocation Loc = DeclStart;
6109  if (II) Loc = D.getIdentifierLoc();
6110
6111  // FIXME: Unnamed fields can be handled in various different ways, for
6112  // example, unnamed unions inject all members into the struct namespace!
6113
6114  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6115  QualType T = TInfo->getType();
6116
6117  if (BitWidth) {
6118    // 6.7.2.1p3, 6.7.2.1p4
6119    if (VerifyBitField(Loc, II, T, BitWidth)) {
6120      D.setInvalidType();
6121      DeleteExpr(BitWidth);
6122      BitWidth = 0;
6123    }
6124  } else {
6125    // Not a bitfield.
6126
6127    // validate II.
6128
6129  }
6130  if (T->isReferenceType()) {
6131    Diag(Loc, diag::err_ivar_reference_type);
6132    D.setInvalidType();
6133  }
6134  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6135  // than a variably modified type.
6136  else if (T->isVariablyModifiedType()) {
6137    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6138    D.setInvalidType();
6139  }
6140
6141  // Get the visibility (access control) for this ivar.
6142  ObjCIvarDecl::AccessControl ac =
6143    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6144                                        : ObjCIvarDecl::None;
6145  // Must set ivar's DeclContext to its enclosing interface.
6146  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
6147  ObjCContainerDecl *EnclosingContext;
6148  if (ObjCImplementationDecl *IMPDecl =
6149      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6150    // Case of ivar declared in an implementation. Context is that of its class.
6151    EnclosingContext = IMPDecl->getClassInterface();
6152    assert(EnclosingContext && "Implementation has no class interface!");
6153  } else {
6154    if (ObjCCategoryDecl *CDecl =
6155        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6156      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6157        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6158        return DeclPtrTy();
6159      }
6160    }
6161    EnclosingContext = EnclosingDecl;
6162  }
6163
6164  // Construct the decl.
6165  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6166                                             EnclosingContext, Loc, II, T,
6167                                             TInfo, ac, (Expr *)BitfieldWidth);
6168
6169  if (II) {
6170    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6171                                           ForRedeclaration);
6172    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6173        && !isa<TagDecl>(PrevDecl)) {
6174      Diag(Loc, diag::err_duplicate_member) << II;
6175      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6176      NewID->setInvalidDecl();
6177    }
6178  }
6179
6180  // Process attributes attached to the ivar.
6181  ProcessDeclAttributes(S, NewID, D);
6182
6183  if (D.isInvalidType())
6184    NewID->setInvalidDecl();
6185
6186  if (II) {
6187    // FIXME: When interfaces are DeclContexts, we'll need to add
6188    // these to the interface.
6189    S->AddDecl(DeclPtrTy::make(NewID));
6190    IdResolver.AddDecl(NewID);
6191  }
6192
6193  return DeclPtrTy::make(NewID);
6194}
6195
6196void Sema::ActOnFields(Scope* S,
6197                       SourceLocation RecLoc, DeclPtrTy RecDecl,
6198                       DeclPtrTy *Fields, unsigned NumFields,
6199                       SourceLocation LBrac, SourceLocation RBrac,
6200                       AttributeList *Attr) {
6201  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
6202  assert(EnclosingDecl && "missing record or interface decl");
6203
6204  // If the decl this is being inserted into is invalid, then it may be a
6205  // redeclaration or some other bogus case.  Don't try to add fields to it.
6206  if (EnclosingDecl->isInvalidDecl()) {
6207    // FIXME: Deallocate fields?
6208    return;
6209  }
6210
6211
6212  // Verify that all the fields are okay.
6213  unsigned NumNamedMembers = 0;
6214  llvm::SmallVector<FieldDecl*, 32> RecFields;
6215
6216  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6217  for (unsigned i = 0; i != NumFields; ++i) {
6218    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
6219
6220    // Get the type for the field.
6221    Type *FDTy = FD->getType().getTypePtr();
6222
6223    if (!FD->isAnonymousStructOrUnion()) {
6224      // Remember all fields written by the user.
6225      RecFields.push_back(FD);
6226    }
6227
6228    // If the field is already invalid for some reason, don't emit more
6229    // diagnostics about it.
6230    if (FD->isInvalidDecl()) {
6231      EnclosingDecl->setInvalidDecl();
6232      continue;
6233    }
6234
6235    // C99 6.7.2.1p2:
6236    //   A structure or union shall not contain a member with
6237    //   incomplete or function type (hence, a structure shall not
6238    //   contain an instance of itself, but may contain a pointer to
6239    //   an instance of itself), except that the last member of a
6240    //   structure with more than one named member may have incomplete
6241    //   array type; such a structure (and any union containing,
6242    //   possibly recursively, a member that is such a structure)
6243    //   shall not be a member of a structure or an element of an
6244    //   array.
6245    if (FDTy->isFunctionType()) {
6246      // Field declared as a function.
6247      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6248        << FD->getDeclName();
6249      FD->setInvalidDecl();
6250      EnclosingDecl->setInvalidDecl();
6251      continue;
6252    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6253               Record && Record->isStruct()) {
6254      // Flexible array member.
6255      if (NumNamedMembers < 1) {
6256        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6257          << FD->getDeclName();
6258        FD->setInvalidDecl();
6259        EnclosingDecl->setInvalidDecl();
6260        continue;
6261      }
6262      if (!FD->getType()->isDependentType() &&
6263          !Context.getBaseElementType(FD->getType())->isPODType()) {
6264        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6265          << FD->getDeclName() << FD->getType();
6266        FD->setInvalidDecl();
6267        EnclosingDecl->setInvalidDecl();
6268        continue;
6269      }
6270
6271      // Okay, we have a legal flexible array member at the end of the struct.
6272      if (Record)
6273        Record->setHasFlexibleArrayMember(true);
6274    } else if (!FDTy->isDependentType() &&
6275               RequireCompleteType(FD->getLocation(), FD->getType(),
6276                                   diag::err_field_incomplete)) {
6277      // Incomplete type
6278      FD->setInvalidDecl();
6279      EnclosingDecl->setInvalidDecl();
6280      continue;
6281    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6282      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6283        // If this is a member of a union, then entire union becomes "flexible".
6284        if (Record && Record->isUnion()) {
6285          Record->setHasFlexibleArrayMember(true);
6286        } else {
6287          // If this is a struct/class and this is not the last element, reject
6288          // it.  Note that GCC supports variable sized arrays in the middle of
6289          // structures.
6290          if (i != NumFields-1)
6291            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6292              << FD->getDeclName() << FD->getType();
6293          else {
6294            // We support flexible arrays at the end of structs in
6295            // other structs as an extension.
6296            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6297              << FD->getDeclName();
6298            if (Record)
6299              Record->setHasFlexibleArrayMember(true);
6300          }
6301        }
6302      }
6303      if (Record && FDTTy->getDecl()->hasObjectMember())
6304        Record->setHasObjectMember(true);
6305    } else if (FDTy->isObjCObjectType()) {
6306      /// A field cannot be an Objective-c object
6307      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6308      FD->setInvalidDecl();
6309      EnclosingDecl->setInvalidDecl();
6310      continue;
6311    } else if (getLangOptions().ObjC1 &&
6312               getLangOptions().getGCMode() != LangOptions::NonGC &&
6313               Record &&
6314               (FD->getType()->isObjCObjectPointerType() ||
6315                FD->getType().isObjCGCStrong()))
6316      Record->setHasObjectMember(true);
6317    else if (Context.getAsArrayType(FD->getType())) {
6318      QualType BaseType = Context.getBaseElementType(FD->getType());
6319      if (Record && BaseType->isRecordType() &&
6320          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6321        Record->setHasObjectMember(true);
6322    }
6323    // Keep track of the number of named members.
6324    if (FD->getIdentifier())
6325      ++NumNamedMembers;
6326  }
6327
6328  // Okay, we successfully defined 'Record'.
6329  if (Record) {
6330    Record->completeDefinition();
6331  } else {
6332    ObjCIvarDecl **ClsFields =
6333      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6334    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6335      ID->setLocEnd(RBrac);
6336      // Add ivar's to class's DeclContext.
6337      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6338        ClsFields[i]->setLexicalDeclContext(ID);
6339        ID->addDecl(ClsFields[i]);
6340      }
6341      // Must enforce the rule that ivars in the base classes may not be
6342      // duplicates.
6343      if (ID->getSuperClass())
6344        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6345    } else if (ObjCImplementationDecl *IMPDecl =
6346                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6347      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6348      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6349        // Ivar declared in @implementation never belongs to the implementation.
6350        // Only it is in implementation's lexical context.
6351        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6352      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6353    } else if (ObjCCategoryDecl *CDecl =
6354                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6355      // case of ivars in class extension; all other cases have been
6356      // reported as errors elsewhere.
6357      // FIXME. Class extension does not have a LocEnd field.
6358      // CDecl->setLocEnd(RBrac);
6359      // Add ivar's to class extension's DeclContext.
6360      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6361        ClsFields[i]->setLexicalDeclContext(CDecl);
6362        CDecl->addDecl(ClsFields[i]);
6363      }
6364    }
6365  }
6366
6367  if (Attr)
6368    ProcessDeclAttributeList(S, Record, Attr);
6369}
6370
6371/// \brief Determine whether the given integral value is representable within
6372/// the given type T.
6373static bool isRepresentableIntegerValue(ASTContext &Context,
6374                                        llvm::APSInt &Value,
6375                                        QualType T) {
6376  assert(T->isIntegralType(Context) && "Integral type required!");
6377  unsigned BitWidth = Context.getIntWidth(T);
6378
6379  if (Value.isUnsigned() || Value.isNonNegative())
6380    return Value.getActiveBits() < BitWidth;
6381
6382  return Value.getMinSignedBits() <= BitWidth;
6383}
6384
6385// \brief Given an integral type, return the next larger integral type
6386// (or a NULL type of no such type exists).
6387static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6388  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6389  // enum checking below.
6390  assert(T->isIntegralType(Context) && "Integral type required!");
6391  const unsigned NumTypes = 4;
6392  QualType SignedIntegralTypes[NumTypes] = {
6393    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6394  };
6395  QualType UnsignedIntegralTypes[NumTypes] = {
6396    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6397    Context.UnsignedLongLongTy
6398  };
6399
6400  unsigned BitWidth = Context.getTypeSize(T);
6401  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6402                                            : UnsignedIntegralTypes;
6403  for (unsigned I = 0; I != NumTypes; ++I)
6404    if (Context.getTypeSize(Types[I]) > BitWidth)
6405      return Types[I];
6406
6407  return QualType();
6408}
6409
6410EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6411                                          EnumConstantDecl *LastEnumConst,
6412                                          SourceLocation IdLoc,
6413                                          IdentifierInfo *Id,
6414                                          ExprArg val) {
6415  Expr *Val = (Expr *)val.get();
6416
6417  unsigned IntWidth = Context.Target.getIntWidth();
6418  llvm::APSInt EnumVal(IntWidth);
6419  QualType EltTy;
6420  if (Val) {
6421    if (Enum->isDependentType() || Val->isTypeDependent())
6422      EltTy = Context.DependentTy;
6423    else {
6424      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6425      SourceLocation ExpLoc;
6426      if (!Val->isValueDependent() &&
6427          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6428        Val = 0;
6429      } else {
6430        if (!getLangOptions().CPlusPlus) {
6431          // C99 6.7.2.2p2:
6432          //   The expression that defines the value of an enumeration constant
6433          //   shall be an integer constant expression that has a value
6434          //   representable as an int.
6435
6436          // Complain if the value is not representable in an int.
6437          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6438            Diag(IdLoc, diag::ext_enum_value_not_int)
6439              << EnumVal.toString(10) << Val->getSourceRange()
6440              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6441          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6442            // Force the type of the expression to 'int'.
6443            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6444
6445            if (Val != val.get()) {
6446              val.release();
6447              val = Val;
6448            }
6449          }
6450        }
6451
6452        // C++0x [dcl.enum]p5:
6453        //   If the underlying type is not fixed, the type of each enumerator
6454        //   is the type of its initializing value:
6455        //     - If an initializer is specified for an enumerator, the
6456        //       initializing value has the same type as the expression.
6457        EltTy = Val->getType();
6458      }
6459    }
6460  }
6461
6462  if (!Val) {
6463    if (Enum->isDependentType())
6464      EltTy = Context.DependentTy;
6465    else if (!LastEnumConst) {
6466      // C++0x [dcl.enum]p5:
6467      //   If the underlying type is not fixed, the type of each enumerator
6468      //   is the type of its initializing value:
6469      //     - If no initializer is specified for the first enumerator, the
6470      //       initializing value has an unspecified integral type.
6471      //
6472      // GCC uses 'int' for its unspecified integral type, as does
6473      // C99 6.7.2.2p3.
6474      EltTy = Context.IntTy;
6475    } else {
6476      // Assign the last value + 1.
6477      EnumVal = LastEnumConst->getInitVal();
6478      ++EnumVal;
6479      EltTy = LastEnumConst->getType();
6480
6481      // Check for overflow on increment.
6482      if (EnumVal < LastEnumConst->getInitVal()) {
6483        // C++0x [dcl.enum]p5:
6484        //   If the underlying type is not fixed, the type of each enumerator
6485        //   is the type of its initializing value:
6486        //
6487        //     - Otherwise the type of the initializing value is the same as
6488        //       the type of the initializing value of the preceding enumerator
6489        //       unless the incremented value is not representable in that type,
6490        //       in which case the type is an unspecified integral type
6491        //       sufficient to contain the incremented value. If no such type
6492        //       exists, the program is ill-formed.
6493        QualType T = getNextLargerIntegralType(Context, EltTy);
6494        if (T.isNull()) {
6495          // There is no integral type larger enough to represent this
6496          // value. Complain, then allow the value to wrap around.
6497          EnumVal = LastEnumConst->getInitVal();
6498          EnumVal.zext(EnumVal.getBitWidth() * 2);
6499          Diag(IdLoc, diag::warn_enumerator_too_large)
6500            << EnumVal.toString(10);
6501        } else {
6502          EltTy = T;
6503        }
6504
6505        // Retrieve the last enumerator's value, extent that type to the
6506        // type that is supposed to be large enough to represent the incremented
6507        // value, then increment.
6508        EnumVal = LastEnumConst->getInitVal();
6509        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6510        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6511        ++EnumVal;
6512
6513        // If we're not in C++, diagnose the overflow of enumerator values,
6514        // which in C99 means that the enumerator value is not representable in
6515        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6516        // permits enumerator values that are representable in some larger
6517        // integral type.
6518        if (!getLangOptions().CPlusPlus && !T.isNull())
6519          Diag(IdLoc, diag::warn_enum_value_overflow);
6520      } else if (!getLangOptions().CPlusPlus &&
6521                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6522        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6523        Diag(IdLoc, diag::ext_enum_value_not_int)
6524          << EnumVal.toString(10) << 1;
6525      }
6526    }
6527  }
6528
6529  if (!EltTy->isDependentType()) {
6530    // Make the enumerator value match the signedness and size of the
6531    // enumerator's type.
6532    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6533    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6534  }
6535
6536  val.release();
6537  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6538                                  Val, EnumVal);
6539}
6540
6541
6542Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6543                                        DeclPtrTy lastEnumConst,
6544                                        SourceLocation IdLoc,
6545                                        IdentifierInfo *Id,
6546                                        SourceLocation EqualLoc, ExprTy *val) {
6547  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6548  EnumConstantDecl *LastEnumConst =
6549    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6550  Expr *Val = static_cast<Expr*>(val);
6551
6552  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6553  // we find one that is.
6554  S = getNonFieldDeclScope(S);
6555
6556  // Verify that there isn't already something declared with this name in this
6557  // scope.
6558  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6559                                         ForRedeclaration);
6560  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6561    // Maybe we will complain about the shadowed template parameter.
6562    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6563    // Just pretend that we didn't see the previous declaration.
6564    PrevDecl = 0;
6565  }
6566
6567  if (PrevDecl) {
6568    // When in C++, we may get a TagDecl with the same name; in this case the
6569    // enum constant will 'hide' the tag.
6570    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6571           "Received TagDecl when not in C++!");
6572    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6573      if (isa<EnumConstantDecl>(PrevDecl))
6574        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6575      else
6576        Diag(IdLoc, diag::err_redefinition) << Id;
6577      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6578      return DeclPtrTy();
6579    }
6580  }
6581
6582  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6583                                            IdLoc, Id, Owned(Val));
6584
6585  // Register this decl in the current scope stack.
6586  if (New) {
6587    New->setAccess(TheEnumDecl->getAccess());
6588    PushOnScopeChains(New, S);
6589  }
6590
6591  return DeclPtrTy::make(New);
6592}
6593
6594void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6595                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6596                         DeclPtrTy *Elements, unsigned NumElements,
6597                         Scope *S, AttributeList *Attr) {
6598  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6599  QualType EnumType = Context.getTypeDeclType(Enum);
6600
6601  if (Attr)
6602    ProcessDeclAttributeList(S, Enum, Attr);
6603
6604  if (Enum->isDependentType()) {
6605    for (unsigned i = 0; i != NumElements; ++i) {
6606      EnumConstantDecl *ECD =
6607        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6608      if (!ECD) continue;
6609
6610      ECD->setType(EnumType);
6611    }
6612
6613    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6614    return;
6615  }
6616
6617  // TODO: If the result value doesn't fit in an int, it must be a long or long
6618  // long value.  ISO C does not support this, but GCC does as an extension,
6619  // emit a warning.
6620  unsigned IntWidth = Context.Target.getIntWidth();
6621  unsigned CharWidth = Context.Target.getCharWidth();
6622  unsigned ShortWidth = Context.Target.getShortWidth();
6623
6624  // Verify that all the values are okay, compute the size of the values, and
6625  // reverse the list.
6626  unsigned NumNegativeBits = 0;
6627  unsigned NumPositiveBits = 0;
6628
6629  // Keep track of whether all elements have type int.
6630  bool AllElementsInt = true;
6631
6632  for (unsigned i = 0; i != NumElements; ++i) {
6633    EnumConstantDecl *ECD =
6634      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6635    if (!ECD) continue;  // Already issued a diagnostic.
6636
6637    const llvm::APSInt &InitVal = ECD->getInitVal();
6638
6639    // Keep track of the size of positive and negative values.
6640    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6641      NumPositiveBits = std::max(NumPositiveBits,
6642                                 (unsigned)InitVal.getActiveBits());
6643    else
6644      NumNegativeBits = std::max(NumNegativeBits,
6645                                 (unsigned)InitVal.getMinSignedBits());
6646
6647    // Keep track of whether every enum element has type int (very commmon).
6648    if (AllElementsInt)
6649      AllElementsInt = ECD->getType() == Context.IntTy;
6650  }
6651
6652  // Figure out the type that should be used for this enum.
6653  // FIXME: Support -fshort-enums.
6654  QualType BestType;
6655  unsigned BestWidth;
6656
6657  // C++0x N3000 [conv.prom]p3:
6658  //   An rvalue of an unscoped enumeration type whose underlying
6659  //   type is not fixed can be converted to an rvalue of the first
6660  //   of the following types that can represent all the values of
6661  //   the enumeration: int, unsigned int, long int, unsigned long
6662  //   int, long long int, or unsigned long long int.
6663  // C99 6.4.4.3p2:
6664  //   An identifier declared as an enumeration constant has type int.
6665  // The C99 rule is modified by a gcc extension
6666  QualType BestPromotionType;
6667
6668  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6669
6670  if (NumNegativeBits) {
6671    // If there is a negative value, figure out the smallest integer type (of
6672    // int/long/longlong) that fits.
6673    // If it's packed, check also if it fits a char or a short.
6674    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6675      BestType = Context.SignedCharTy;
6676      BestWidth = CharWidth;
6677    } else if (Packed && NumNegativeBits <= ShortWidth &&
6678               NumPositiveBits < ShortWidth) {
6679      BestType = Context.ShortTy;
6680      BestWidth = ShortWidth;
6681    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6682      BestType = Context.IntTy;
6683      BestWidth = IntWidth;
6684    } else {
6685      BestWidth = Context.Target.getLongWidth();
6686
6687      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6688        BestType = Context.LongTy;
6689      } else {
6690        BestWidth = Context.Target.getLongLongWidth();
6691
6692        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6693          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6694        BestType = Context.LongLongTy;
6695      }
6696    }
6697    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6698  } else {
6699    // If there is no negative value, figure out the smallest type that fits
6700    // all of the enumerator values.
6701    // If it's packed, check also if it fits a char or a short.
6702    if (Packed && NumPositiveBits <= CharWidth) {
6703      BestType = Context.UnsignedCharTy;
6704      BestPromotionType = Context.IntTy;
6705      BestWidth = CharWidth;
6706    } else if (Packed && NumPositiveBits <= ShortWidth) {
6707      BestType = Context.UnsignedShortTy;
6708      BestPromotionType = Context.IntTy;
6709      BestWidth = ShortWidth;
6710    } else if (NumPositiveBits <= IntWidth) {
6711      BestType = Context.UnsignedIntTy;
6712      BestWidth = IntWidth;
6713      BestPromotionType
6714        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6715                           ? Context.UnsignedIntTy : Context.IntTy;
6716    } else if (NumPositiveBits <=
6717               (BestWidth = Context.Target.getLongWidth())) {
6718      BestType = Context.UnsignedLongTy;
6719      BestPromotionType
6720        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6721                           ? Context.UnsignedLongTy : Context.LongTy;
6722    } else {
6723      BestWidth = Context.Target.getLongLongWidth();
6724      assert(NumPositiveBits <= BestWidth &&
6725             "How could an initializer get larger than ULL?");
6726      BestType = Context.UnsignedLongLongTy;
6727      BestPromotionType
6728        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6729                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6730    }
6731  }
6732
6733  // Loop over all of the enumerator constants, changing their types to match
6734  // the type of the enum if needed.
6735  for (unsigned i = 0; i != NumElements; ++i) {
6736    EnumConstantDecl *ECD =
6737      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6738    if (!ECD) continue;  // Already issued a diagnostic.
6739
6740    // Standard C says the enumerators have int type, but we allow, as an
6741    // extension, the enumerators to be larger than int size.  If each
6742    // enumerator value fits in an int, type it as an int, otherwise type it the
6743    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6744    // that X has type 'int', not 'unsigned'.
6745
6746    // Determine whether the value fits into an int.
6747    llvm::APSInt InitVal = ECD->getInitVal();
6748
6749    // If it fits into an integer type, force it.  Otherwise force it to match
6750    // the enum decl type.
6751    QualType NewTy;
6752    unsigned NewWidth;
6753    bool NewSign;
6754    if (!getLangOptions().CPlusPlus &&
6755        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6756      NewTy = Context.IntTy;
6757      NewWidth = IntWidth;
6758      NewSign = true;
6759    } else if (ECD->getType() == BestType) {
6760      // Already the right type!
6761      if (getLangOptions().CPlusPlus)
6762        // C++ [dcl.enum]p4: Following the closing brace of an
6763        // enum-specifier, each enumerator has the type of its
6764        // enumeration.
6765        ECD->setType(EnumType);
6766      continue;
6767    } else {
6768      NewTy = BestType;
6769      NewWidth = BestWidth;
6770      NewSign = BestType->isSignedIntegerType();
6771    }
6772
6773    // Adjust the APSInt value.
6774    InitVal.extOrTrunc(NewWidth);
6775    InitVal.setIsSigned(NewSign);
6776    ECD->setInitVal(InitVal);
6777
6778    // Adjust the Expr initializer and type.
6779    if (ECD->getInitExpr())
6780      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6781                                                      CastExpr::CK_IntegralCast,
6782                                                      ECD->getInitExpr(),
6783                                                      CXXBaseSpecifierArray(),
6784                                                     ImplicitCastExpr::RValue));
6785    if (getLangOptions().CPlusPlus)
6786      // C++ [dcl.enum]p4: Following the closing brace of an
6787      // enum-specifier, each enumerator has the type of its
6788      // enumeration.
6789      ECD->setType(EnumType);
6790    else
6791      ECD->setType(NewTy);
6792  }
6793
6794  Enum->completeDefinition(BestType, BestPromotionType,
6795                           NumPositiveBits, NumNegativeBits);
6796}
6797
6798Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6799                                            ExprArg expr) {
6800  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6801
6802  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6803                                                   Loc, AsmString);
6804  CurContext->addDecl(New);
6805  return DeclPtrTy::make(New);
6806}
6807
6808void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6809                             SourceLocation PragmaLoc,
6810                             SourceLocation NameLoc) {
6811  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
6812
6813  if (PrevDecl) {
6814    PrevDecl->addAttr(::new (Context) WeakAttr());
6815  } else {
6816    (void)WeakUndeclaredIdentifiers.insert(
6817      std::pair<IdentifierInfo*,WeakInfo>
6818        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6819  }
6820}
6821
6822void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6823                                IdentifierInfo* AliasName,
6824                                SourceLocation PragmaLoc,
6825                                SourceLocation NameLoc,
6826                                SourceLocation AliasNameLoc) {
6827  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
6828                                    LookupOrdinaryName);
6829  WeakInfo W = WeakInfo(Name, NameLoc);
6830
6831  if (PrevDecl) {
6832    if (!PrevDecl->hasAttr<AliasAttr>())
6833      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6834        DeclApplyPragmaWeak(TUScope, ND, W);
6835  } else {
6836    (void)WeakUndeclaredIdentifiers.insert(
6837      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6838  }
6839}
6840