SemaDecl.cpp revision b6bbcc9995186799a60ce17d0c1acff31601653a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Parse/ParseDiagnostic.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Lex/HeaderSearch.h"
38#include "llvm/ADT/Triple.h"
39#include <algorithm>
40#include <cstring>
41#include <functional>
42using namespace clang;
43using namespace sema;
44
45Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
46  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
47}
48
49/// \brief If the identifier refers to a type name within this scope,
50/// return the declaration of that type.
51///
52/// This routine performs ordinary name lookup of the identifier II
53/// within the given scope, with optional C++ scope specifier SS, to
54/// determine whether the name refers to a type. If so, returns an
55/// opaque pointer (actually a QualType) corresponding to that
56/// type. Otherwise, returns NULL.
57///
58/// If name lookup results in an ambiguity, this routine will complain
59/// and then return NULL.
60ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
61                             Scope *S, CXXScopeSpec *SS,
62                             bool isClassName,
63                             ParsedType ObjectTypePtr) {
64  // Determine where we will perform name lookup.
65  DeclContext *LookupCtx = 0;
66  if (ObjectTypePtr) {
67    QualType ObjectType = ObjectTypePtr.get();
68    if (ObjectType->isRecordType())
69      LookupCtx = computeDeclContext(ObjectType);
70  } else if (SS && SS->isNotEmpty()) {
71    LookupCtx = computeDeclContext(*SS, false);
72
73    if (!LookupCtx) {
74      if (isDependentScopeSpecifier(*SS)) {
75        // C++ [temp.res]p3:
76        //   A qualified-id that refers to a type and in which the
77        //   nested-name-specifier depends on a template-parameter (14.6.2)
78        //   shall be prefixed by the keyword typename to indicate that the
79        //   qualified-id denotes a type, forming an
80        //   elaborated-type-specifier (7.1.5.3).
81        //
82        // We therefore do not perform any name lookup if the result would
83        // refer to a member of an unknown specialization.
84        if (!isClassName)
85          return ParsedType();
86
87        // We know from the grammar that this name refers to a type,
88        // so build a dependent node to describe the type.
89        QualType T =
90          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
91                            SourceLocation(), SS->getRange(), NameLoc);
92        return ParsedType::make(T);
93      }
94
95      return ParsedType();
96    }
97
98    if (!LookupCtx->isDependentContext() &&
99        RequireCompleteDeclContext(*SS, LookupCtx))
100      return ParsedType();
101  }
102
103  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
104  // lookup for class-names.
105  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
106                                      LookupOrdinaryName;
107  LookupResult Result(*this, &II, NameLoc, Kind);
108  if (LookupCtx) {
109    // Perform "qualified" name lookup into the declaration context we
110    // computed, which is either the type of the base of a member access
111    // expression or the declaration context associated with a prior
112    // nested-name-specifier.
113    LookupQualifiedName(Result, LookupCtx);
114
115    if (ObjectTypePtr && Result.empty()) {
116      // C++ [basic.lookup.classref]p3:
117      //   If the unqualified-id is ~type-name, the type-name is looked up
118      //   in the context of the entire postfix-expression. If the type T of
119      //   the object expression is of a class type C, the type-name is also
120      //   looked up in the scope of class C. At least one of the lookups shall
121      //   find a name that refers to (possibly cv-qualified) T.
122      LookupName(Result, S);
123    }
124  } else {
125    // Perform unqualified name lookup.
126    LookupName(Result, S);
127  }
128
129  NamedDecl *IIDecl = 0;
130  switch (Result.getResultKind()) {
131  case LookupResult::NotFound:
132  case LookupResult::NotFoundInCurrentInstantiation:
133  case LookupResult::FoundOverloaded:
134  case LookupResult::FoundUnresolvedValue:
135    Result.suppressDiagnostics();
136    return ParsedType();
137
138  case LookupResult::Ambiguous:
139    // Recover from type-hiding ambiguities by hiding the type.  We'll
140    // do the lookup again when looking for an object, and we can
141    // diagnose the error then.  If we don't do this, then the error
142    // about hiding the type will be immediately followed by an error
143    // that only makes sense if the identifier was treated like a type.
144    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
145      Result.suppressDiagnostics();
146      return ParsedType();
147    }
148
149    // Look to see if we have a type anywhere in the list of results.
150    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
151         Res != ResEnd; ++Res) {
152      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
153        if (!IIDecl ||
154            (*Res)->getLocation().getRawEncoding() <
155              IIDecl->getLocation().getRawEncoding())
156          IIDecl = *Res;
157      }
158    }
159
160    if (!IIDecl) {
161      // None of the entities we found is a type, so there is no way
162      // to even assume that the result is a type. In this case, don't
163      // complain about the ambiguity. The parser will either try to
164      // perform this lookup again (e.g., as an object name), which
165      // will produce the ambiguity, or will complain that it expected
166      // a type name.
167      Result.suppressDiagnostics();
168      return ParsedType();
169    }
170
171    // We found a type within the ambiguous lookup; diagnose the
172    // ambiguity and then return that type. This might be the right
173    // answer, or it might not be, but it suppresses any attempt to
174    // perform the name lookup again.
175    break;
176
177  case LookupResult::Found:
178    IIDecl = Result.getFoundDecl();
179    break;
180  }
181
182  assert(IIDecl && "Didn't find decl");
183
184  QualType T;
185  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
186    DiagnoseUseOfDecl(IIDecl, NameLoc);
187
188    if (T.isNull())
189      T = Context.getTypeDeclType(TD);
190
191    if (SS)
192      T = getElaboratedType(ETK_None, *SS, T);
193
194  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
195    T = Context.getObjCInterfaceType(IDecl);
196  } else {
197    // If it's not plausibly a type, suppress diagnostics.
198    Result.suppressDiagnostics();
199    return ParsedType();
200  }
201
202  return ParsedType::make(T);
203}
204
205/// isTagName() - This method is called *for error recovery purposes only*
206/// to determine if the specified name is a valid tag name ("struct foo").  If
207/// so, this returns the TST for the tag corresponding to it (TST_enum,
208/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
209/// where the user forgot to specify the tag.
210DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
211  // Do a tag name lookup in this scope.
212  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
213  LookupName(R, S, false);
214  R.suppressDiagnostics();
215  if (R.getResultKind() == LookupResult::Found)
216    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
217      switch (TD->getTagKind()) {
218      default:         return DeclSpec::TST_unspecified;
219      case TTK_Struct: return DeclSpec::TST_struct;
220      case TTK_Union:  return DeclSpec::TST_union;
221      case TTK_Class:  return DeclSpec::TST_class;
222      case TTK_Enum:   return DeclSpec::TST_enum;
223      }
224    }
225
226  return DeclSpec::TST_unspecified;
227}
228
229bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
230                                   SourceLocation IILoc,
231                                   Scope *S,
232                                   CXXScopeSpec *SS,
233                                   ParsedType &SuggestedType) {
234  // We don't have anything to suggest (yet).
235  SuggestedType = ParsedType();
236
237  // There may have been a typo in the name of the type. Look up typo
238  // results, in case we have something that we can suggest.
239  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
240                      NotForRedeclaration);
241
242  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
243    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
244      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
245          !Result->isInvalidDecl()) {
246        // We found a similarly-named type or interface; suggest that.
247        if (!SS || !SS->isSet())
248          Diag(IILoc, diag::err_unknown_typename_suggest)
249            << &II << Lookup.getLookupName()
250            << FixItHint::CreateReplacement(SourceRange(IILoc),
251                                            Result->getNameAsString());
252        else if (DeclContext *DC = computeDeclContext(*SS, false))
253          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
254            << &II << DC << Lookup.getLookupName() << SS->getRange()
255            << FixItHint::CreateReplacement(SourceRange(IILoc),
256                                            Result->getNameAsString());
257        else
258          llvm_unreachable("could not have corrected a typo here");
259
260        Diag(Result->getLocation(), diag::note_previous_decl)
261          << Result->getDeclName();
262
263        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
264        return true;
265      }
266    } else if (Lookup.empty()) {
267      // We corrected to a keyword.
268      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
269      Diag(IILoc, diag::err_unknown_typename_suggest)
270        << &II << Corrected;
271      return true;
272    }
273  }
274
275  if (getLangOptions().CPlusPlus) {
276    // See if II is a class template that the user forgot to pass arguments to.
277    UnqualifiedId Name;
278    Name.setIdentifier(&II, IILoc);
279    CXXScopeSpec EmptySS;
280    TemplateTy TemplateResult;
281    bool MemberOfUnknownSpecialization;
282    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
283                       Name, ParsedType(), true, TemplateResult,
284                       MemberOfUnknownSpecialization) == TNK_Type_template) {
285      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
286      Diag(IILoc, diag::err_template_missing_args) << TplName;
287      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
288        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
289          << TplDecl->getTemplateParameters()->getSourceRange();
290      }
291      return true;
292    }
293  }
294
295  // FIXME: Should we move the logic that tries to recover from a missing tag
296  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
297
298  if (!SS || (!SS->isSet() && !SS->isInvalid()))
299    Diag(IILoc, diag::err_unknown_typename) << &II;
300  else if (DeclContext *DC = computeDeclContext(*SS, false))
301    Diag(IILoc, diag::err_typename_nested_not_found)
302      << &II << DC << SS->getRange();
303  else if (isDependentScopeSpecifier(*SS)) {
304    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
305      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
306      << SourceRange(SS->getRange().getBegin(), IILoc)
307      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
308    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
309  } else {
310    assert(SS && SS->isInvalid() &&
311           "Invalid scope specifier has already been diagnosed");
312  }
313
314  return true;
315}
316
317// Determines the context to return to after temporarily entering a
318// context.  This depends in an unnecessarily complicated way on the
319// exact ordering of callbacks from the parser.
320DeclContext *Sema::getContainingDC(DeclContext *DC) {
321
322  // Functions defined inline within classes aren't parsed until we've
323  // finished parsing the top-level class, so the top-level class is
324  // the context we'll need to return to.
325  if (isa<FunctionDecl>(DC)) {
326    DC = DC->getLexicalParent();
327
328    // A function not defined within a class will always return to its
329    // lexical context.
330    if (!isa<CXXRecordDecl>(DC))
331      return DC;
332
333    // A C++ inline method/friend is parsed *after* the topmost class
334    // it was declared in is fully parsed ("complete");  the topmost
335    // class is the context we need to return to.
336    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
337      DC = RD;
338
339    // Return the declaration context of the topmost class the inline method is
340    // declared in.
341    return DC;
342  }
343
344  // ObjCMethodDecls are parsed (for some reason) outside the context
345  // of the class.
346  if (isa<ObjCMethodDecl>(DC))
347    return DC->getLexicalParent()->getLexicalParent();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363  assert(CurContext && "Popped translation unit!");
364}
365
366/// EnterDeclaratorContext - Used when we must lookup names in the context
367/// of a declarator's nested name specifier.
368///
369void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
370  // C++0x [basic.lookup.unqual]p13:
371  //   A name used in the definition of a static data member of class
372  //   X (after the qualified-id of the static member) is looked up as
373  //   if the name was used in a member function of X.
374  // C++0x [basic.lookup.unqual]p14:
375  //   If a variable member of a namespace is defined outside of the
376  //   scope of its namespace then any name used in the definition of
377  //   the variable member (after the declarator-id) is looked up as
378  //   if the definition of the variable member occurred in its
379  //   namespace.
380  // Both of these imply that we should push a scope whose context
381  // is the semantic context of the declaration.  We can't use
382  // PushDeclContext here because that context is not necessarily
383  // lexically contained in the current context.  Fortunately,
384  // the containing scope should have the appropriate information.
385
386  assert(!S->getEntity() && "scope already has entity");
387
388#ifndef NDEBUG
389  Scope *Ancestor = S->getParent();
390  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
391  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
392#endif
393
394  CurContext = DC;
395  S->setEntity(DC);
396}
397
398void Sema::ExitDeclaratorContext(Scope *S) {
399  assert(S->getEntity() == CurContext && "Context imbalance!");
400
401  // Switch back to the lexical context.  The safety of this is
402  // enforced by an assert in EnterDeclaratorContext.
403  Scope *Ancestor = S->getParent();
404  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
405  CurContext = (DeclContext*) Ancestor->getEntity();
406
407  // We don't need to do anything with the scope, which is going to
408  // disappear.
409}
410
411/// \brief Determine whether we allow overloading of the function
412/// PrevDecl with another declaration.
413///
414/// This routine determines whether overloading is possible, not
415/// whether some new function is actually an overload. It will return
416/// true in C++ (where we can always provide overloads) or, as an
417/// extension, in C when the previous function is already an
418/// overloaded function declaration or has the "overloadable"
419/// attribute.
420static bool AllowOverloadingOfFunction(LookupResult &Previous,
421                                       ASTContext &Context) {
422  if (Context.getLangOptions().CPlusPlus)
423    return true;
424
425  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
426    return true;
427
428  return (Previous.getResultKind() == LookupResult::Found
429          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
430}
431
432/// Add this decl to the scope shadowed decl chains.
433void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
434  // Move up the scope chain until we find the nearest enclosing
435  // non-transparent context. The declaration will be introduced into this
436  // scope.
437  while (S->getEntity() &&
438         ((DeclContext *)S->getEntity())->isTransparentContext())
439    S = S->getParent();
440
441  // Add scoped declarations into their context, so that they can be
442  // found later. Declarations without a context won't be inserted
443  // into any context.
444  if (AddToContext)
445    CurContext->addDecl(D);
446
447  // Out-of-line definitions shouldn't be pushed into scope in C++.
448  // Out-of-line variable and function definitions shouldn't even in C.
449  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
450      D->isOutOfLine())
451    return;
452
453  // Template instantiations should also not be pushed into scope.
454  if (isa<FunctionDecl>(D) &&
455      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
456    return;
457
458  // If this replaces anything in the current scope,
459  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
460                               IEnd = IdResolver.end();
461  for (; I != IEnd; ++I) {
462    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
463      S->RemoveDecl(*I);
464      IdResolver.RemoveDecl(*I);
465
466      // Should only need to replace one decl.
467      break;
468    }
469  }
470
471  S->AddDecl(D);
472  IdResolver.AddDecl(D);
473}
474
475bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
476  return IdResolver.isDeclInScope(D, Ctx, Context, S);
477}
478
479Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
480  DeclContext *TargetDC = DC->getPrimaryContext();
481  do {
482    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
483      if (ScopeDC->getPrimaryContext() == TargetDC)
484        return S;
485  } while ((S = S->getParent()));
486
487  return 0;
488}
489
490static bool isOutOfScopePreviousDeclaration(NamedDecl *,
491                                            DeclContext*,
492                                            ASTContext&);
493
494/// Filters out lookup results that don't fall within the given scope
495/// as determined by isDeclInScope.
496static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
497                                 DeclContext *Ctx, Scope *S,
498                                 bool ConsiderLinkage) {
499  LookupResult::Filter F = R.makeFilter();
500  while (F.hasNext()) {
501    NamedDecl *D = F.next();
502
503    if (SemaRef.isDeclInScope(D, Ctx, S))
504      continue;
505
506    if (ConsiderLinkage &&
507        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
508      continue;
509
510    F.erase();
511  }
512
513  F.done();
514}
515
516static bool isUsingDecl(NamedDecl *D) {
517  return isa<UsingShadowDecl>(D) ||
518         isa<UnresolvedUsingTypenameDecl>(D) ||
519         isa<UnresolvedUsingValueDecl>(D);
520}
521
522/// Removes using shadow declarations from the lookup results.
523static void RemoveUsingDecls(LookupResult &R) {
524  LookupResult::Filter F = R.makeFilter();
525  while (F.hasNext())
526    if (isUsingDecl(F.next()))
527      F.erase();
528
529  F.done();
530}
531
532/// \brief Check for this common pattern:
533/// @code
534/// class S {
535///   S(const S&); // DO NOT IMPLEMENT
536///   void operator=(const S&); // DO NOT IMPLEMENT
537/// };
538/// @endcode
539static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
540  // FIXME: Should check for private access too but access is set after we get
541  // the decl here.
542  if (D->isThisDeclarationADefinition())
543    return false;
544
545  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
546    return CD->isCopyConstructor();
547  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
548    return Method->isCopyAssignmentOperator();
549  return false;
550}
551
552bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
553  assert(D);
554
555  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
556    return false;
557
558  // Ignore class templates.
559  if (D->getDeclContext()->isDependentContext())
560    return false;
561
562  // We warn for unused decls internal to the translation unit.
563  if (D->getLinkage() == ExternalLinkage)
564    return false;
565
566  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
567    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
568      return false;
569
570    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
571      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
572        return false;
573    } else {
574      // 'static inline' functions are used in headers; don't warn.
575      if (FD->getStorageClass() == SC_Static &&
576          FD->isInlineSpecified())
577        return false;
578    }
579
580    if (FD->isThisDeclarationADefinition())
581      return !Context.DeclMustBeEmitted(FD);
582    return true;
583  }
584
585  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
586    if (VD->isStaticDataMember() &&
587        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
588      return false;
589
590    if ( VD->isFileVarDecl() &&
591        !VD->getType().isConstant(Context))
592      return !Context.DeclMustBeEmitted(VD);
593  }
594
595   return false;
596 }
597
598 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
599  if (!D)
600    return;
601
602  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
603    const FunctionDecl *First = FD->getFirstDeclaration();
604    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
605      return; // First should already be in the vector.
606  }
607
608  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
609    const VarDecl *First = VD->getFirstDeclaration();
610    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
611      return; // First should already be in the vector.
612  }
613
614   if (ShouldWarnIfUnusedFileScopedDecl(D))
615     UnusedFileScopedDecls.push_back(D);
616 }
617
618static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
619  if (D->isInvalidDecl())
620    return false;
621
622  if (D->isUsed() || D->hasAttr<UnusedAttr>())
623    return false;
624
625  // White-list anything that isn't a local variable.
626  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
627      !D->getDeclContext()->isFunctionOrMethod())
628    return false;
629
630  // Types of valid local variables should be complete, so this should succeed.
631  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
632
633    // White-list anything with an __attribute__((unused)) type.
634    QualType Ty = VD->getType();
635
636    // Only look at the outermost level of typedef.
637    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
638      if (TT->getDecl()->hasAttr<UnusedAttr>())
639        return false;
640    }
641
642    // If we failed to complete the type for some reason, or if the type is
643    // dependent, don't diagnose the variable.
644    if (Ty->isIncompleteType() || Ty->isDependentType())
645      return false;
646
647    if (const TagType *TT = Ty->getAs<TagType>()) {
648      const TagDecl *Tag = TT->getDecl();
649      if (Tag->hasAttr<UnusedAttr>())
650        return false;
651
652      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
653        // FIXME: Checking for the presence of a user-declared constructor
654        // isn't completely accurate; we'd prefer to check that the initializer
655        // has no side effects.
656        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
657          return false;
658      }
659    }
660
661    // TODO: __attribute__((unused)) templates?
662  }
663
664  return true;
665}
666
667void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
668  if (!ShouldDiagnoseUnusedDecl(D))
669    return;
670
671  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
672    Diag(D->getLocation(), diag::warn_unused_exception_param)
673    << D->getDeclName();
674  else
675    Diag(D->getLocation(), diag::warn_unused_variable)
676    << D->getDeclName();
677}
678
679void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
680  if (S->decl_empty()) return;
681  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
682         "Scope shouldn't contain decls!");
683
684  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
685       I != E; ++I) {
686    Decl *TmpD = (*I);
687    assert(TmpD && "This decl didn't get pushed??");
688
689    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
690    NamedDecl *D = cast<NamedDecl>(TmpD);
691
692    if (!D->getDeclName()) continue;
693
694    // Diagnose unused variables in this scope.
695    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
696      DiagnoseUnusedDecl(D);
697
698    // Remove this name from our lexical scope.
699    IdResolver.RemoveDecl(D);
700  }
701}
702
703/// \brief Look for an Objective-C class in the translation unit.
704///
705/// \param Id The name of the Objective-C class we're looking for. If
706/// typo-correction fixes this name, the Id will be updated
707/// to the fixed name.
708///
709/// \param IdLoc The location of the name in the translation unit.
710///
711/// \param TypoCorrection If true, this routine will attempt typo correction
712/// if there is no class with the given name.
713///
714/// \returns The declaration of the named Objective-C class, or NULL if the
715/// class could not be found.
716ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
717                                              SourceLocation IdLoc,
718                                              bool TypoCorrection) {
719  // The third "scope" argument is 0 since we aren't enabling lazy built-in
720  // creation from this context.
721  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
722
723  if (!IDecl && TypoCorrection) {
724    // Perform typo correction at the given location, but only if we
725    // find an Objective-C class name.
726    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
727    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
728        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
729      Diag(IdLoc, diag::err_undef_interface_suggest)
730        << Id << IDecl->getDeclName()
731        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
732      Diag(IDecl->getLocation(), diag::note_previous_decl)
733        << IDecl->getDeclName();
734
735      Id = IDecl->getIdentifier();
736    }
737  }
738
739  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
740}
741
742/// getNonFieldDeclScope - Retrieves the innermost scope, starting
743/// from S, where a non-field would be declared. This routine copes
744/// with the difference between C and C++ scoping rules in structs and
745/// unions. For example, the following code is well-formed in C but
746/// ill-formed in C++:
747/// @code
748/// struct S6 {
749///   enum { BAR } e;
750/// };
751///
752/// void test_S6() {
753///   struct S6 a;
754///   a.e = BAR;
755/// }
756/// @endcode
757/// For the declaration of BAR, this routine will return a different
758/// scope. The scope S will be the scope of the unnamed enumeration
759/// within S6. In C++, this routine will return the scope associated
760/// with S6, because the enumeration's scope is a transparent
761/// context but structures can contain non-field names. In C, this
762/// routine will return the translation unit scope, since the
763/// enumeration's scope is a transparent context and structures cannot
764/// contain non-field names.
765Scope *Sema::getNonFieldDeclScope(Scope *S) {
766  while (((S->getFlags() & Scope::DeclScope) == 0) ||
767         (S->getEntity() &&
768          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
769         (S->isClassScope() && !getLangOptions().CPlusPlus))
770    S = S->getParent();
771  return S;
772}
773
774/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
775/// file scope.  lazily create a decl for it. ForRedeclaration is true
776/// if we're creating this built-in in anticipation of redeclaring the
777/// built-in.
778NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
779                                     Scope *S, bool ForRedeclaration,
780                                     SourceLocation Loc) {
781  Builtin::ID BID = (Builtin::ID)bid;
782
783  ASTContext::GetBuiltinTypeError Error;
784  QualType R = Context.GetBuiltinType(BID, Error);
785  switch (Error) {
786  case ASTContext::GE_None:
787    // Okay
788    break;
789
790  case ASTContext::GE_Missing_stdio:
791    if (ForRedeclaration)
792      Diag(Loc, diag::err_implicit_decl_requires_stdio)
793        << Context.BuiltinInfo.GetName(BID);
794    return 0;
795
796  case ASTContext::GE_Missing_setjmp:
797    if (ForRedeclaration)
798      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
799        << Context.BuiltinInfo.GetName(BID);
800    return 0;
801  }
802
803  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
804    Diag(Loc, diag::ext_implicit_lib_function_decl)
805      << Context.BuiltinInfo.GetName(BID)
806      << R;
807    if (Context.BuiltinInfo.getHeaderName(BID) &&
808        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
809          != Diagnostic::Ignored)
810      Diag(Loc, diag::note_please_include_header)
811        << Context.BuiltinInfo.getHeaderName(BID)
812        << Context.BuiltinInfo.GetName(BID);
813  }
814
815  FunctionDecl *New = FunctionDecl::Create(Context,
816                                           Context.getTranslationUnitDecl(),
817                                           Loc, II, R, /*TInfo=*/0,
818                                           SC_Extern,
819                                           SC_None, false,
820                                           /*hasPrototype=*/true);
821  New->setImplicit();
822
823  // Create Decl objects for each parameter, adding them to the
824  // FunctionDecl.
825  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
826    llvm::SmallVector<ParmVarDecl*, 16> Params;
827    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
828      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
829                                           FT->getArgType(i), /*TInfo=*/0,
830                                           SC_None, SC_None, 0));
831    New->setParams(Params.data(), Params.size());
832  }
833
834  AddKnownFunctionAttributes(New);
835
836  // TUScope is the translation-unit scope to insert this function into.
837  // FIXME: This is hideous. We need to teach PushOnScopeChains to
838  // relate Scopes to DeclContexts, and probably eliminate CurContext
839  // entirely, but we're not there yet.
840  DeclContext *SavedContext = CurContext;
841  CurContext = Context.getTranslationUnitDecl();
842  PushOnScopeChains(New, TUScope);
843  CurContext = SavedContext;
844  return New;
845}
846
847/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
848/// same name and scope as a previous declaration 'Old'.  Figure out
849/// how to resolve this situation, merging decls or emitting
850/// diagnostics as appropriate. If there was an error, set New to be invalid.
851///
852void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
853  // If the new decl is known invalid already, don't bother doing any
854  // merging checks.
855  if (New->isInvalidDecl()) return;
856
857  // Allow multiple definitions for ObjC built-in typedefs.
858  // FIXME: Verify the underlying types are equivalent!
859  if (getLangOptions().ObjC1) {
860    const IdentifierInfo *TypeID = New->getIdentifier();
861    switch (TypeID->getLength()) {
862    default: break;
863    case 2:
864      if (!TypeID->isStr("id"))
865        break;
866      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
867      // Install the built-in type for 'id', ignoring the current definition.
868      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
869      return;
870    case 5:
871      if (!TypeID->isStr("Class"))
872        break;
873      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
874      // Install the built-in type for 'Class', ignoring the current definition.
875      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
876      return;
877    case 3:
878      if (!TypeID->isStr("SEL"))
879        break;
880      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
881      // Install the built-in type for 'SEL', ignoring the current definition.
882      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
883      return;
884    case 8:
885      if (!TypeID->isStr("Protocol"))
886        break;
887      Context.setObjCProtoType(New->getUnderlyingType());
888      return;
889    }
890    // Fall through - the typedef name was not a builtin type.
891  }
892
893  // Verify the old decl was also a type.
894  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
895  if (!Old) {
896    Diag(New->getLocation(), diag::err_redefinition_different_kind)
897      << New->getDeclName();
898
899    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
900    if (OldD->getLocation().isValid())
901      Diag(OldD->getLocation(), diag::note_previous_definition);
902
903    return New->setInvalidDecl();
904  }
905
906  // If the old declaration is invalid, just give up here.
907  if (Old->isInvalidDecl())
908    return New->setInvalidDecl();
909
910  // Determine the "old" type we'll use for checking and diagnostics.
911  QualType OldType;
912  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
913    OldType = OldTypedef->getUnderlyingType();
914  else
915    OldType = Context.getTypeDeclType(Old);
916
917  // If the typedef types are not identical, reject them in all languages and
918  // with any extensions enabled.
919
920  if (OldType != New->getUnderlyingType() &&
921      Context.getCanonicalType(OldType) !=
922      Context.getCanonicalType(New->getUnderlyingType())) {
923    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
924      << New->getUnderlyingType() << OldType;
925    if (Old->getLocation().isValid())
926      Diag(Old->getLocation(), diag::note_previous_definition);
927    return New->setInvalidDecl();
928  }
929
930  // The types match.  Link up the redeclaration chain if the old
931  // declaration was a typedef.
932  // FIXME: this is a potential source of wierdness if the type
933  // spellings don't match exactly.
934  if (isa<TypedefDecl>(Old))
935    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
936
937  if (getLangOptions().Microsoft)
938    return;
939
940  if (getLangOptions().CPlusPlus) {
941    // C++ [dcl.typedef]p2:
942    //   In a given non-class scope, a typedef specifier can be used to
943    //   redefine the name of any type declared in that scope to refer
944    //   to the type to which it already refers.
945    if (!isa<CXXRecordDecl>(CurContext))
946      return;
947
948    // C++0x [dcl.typedef]p4:
949    //   In a given class scope, a typedef specifier can be used to redefine
950    //   any class-name declared in that scope that is not also a typedef-name
951    //   to refer to the type to which it already refers.
952    //
953    // This wording came in via DR424, which was a correction to the
954    // wording in DR56, which accidentally banned code like:
955    //
956    //   struct S {
957    //     typedef struct A { } A;
958    //   };
959    //
960    // in the C++03 standard. We implement the C++0x semantics, which
961    // allow the above but disallow
962    //
963    //   struct S {
964    //     typedef int I;
965    //     typedef int I;
966    //   };
967    //
968    // since that was the intent of DR56.
969    if (!isa<TypedefDecl >(Old))
970      return;
971
972    Diag(New->getLocation(), diag::err_redefinition)
973      << New->getDeclName();
974    Diag(Old->getLocation(), diag::note_previous_definition);
975    return New->setInvalidDecl();
976  }
977
978  // If we have a redefinition of a typedef in C, emit a warning.  This warning
979  // is normally mapped to an error, but can be controlled with
980  // -Wtypedef-redefinition.  If either the original or the redefinition is
981  // in a system header, don't emit this for compatibility with GCC.
982  if (getDiagnostics().getSuppressSystemWarnings() &&
983      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
984       Context.getSourceManager().isInSystemHeader(New->getLocation())))
985    return;
986
987  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
988    << New->getDeclName();
989  Diag(Old->getLocation(), diag::note_previous_definition);
990  return;
991}
992
993/// DeclhasAttr - returns true if decl Declaration already has the target
994/// attribute.
995static bool
996DeclHasAttr(const Decl *D, const Attr *A) {
997  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
998  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
999    if ((*i)->getKind() == A->getKind()) {
1000      // FIXME: Don't hardcode this check
1001      if (OA && isa<OwnershipAttr>(*i))
1002        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1003      return true;
1004    }
1005
1006  return false;
1007}
1008
1009/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1010static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1011  if (!Old->hasAttrs())
1012    return;
1013  // Ensure that any moving of objects within the allocated map is done before
1014  // we process them.
1015  if (!New->hasAttrs())
1016    New->setAttrs(AttrVec());
1017  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1018       ++i) {
1019    // FIXME: Make this more general than just checking for Overloadable.
1020    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1021      Attr *NewAttr = (*i)->clone(C);
1022      NewAttr->setInherited(true);
1023      New->addAttr(NewAttr);
1024    }
1025  }
1026}
1027
1028namespace {
1029
1030/// Used in MergeFunctionDecl to keep track of function parameters in
1031/// C.
1032struct GNUCompatibleParamWarning {
1033  ParmVarDecl *OldParm;
1034  ParmVarDecl *NewParm;
1035  QualType PromotedType;
1036};
1037
1038}
1039
1040/// getSpecialMember - get the special member enum for a method.
1041Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1042  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1043    if (Ctor->isCopyConstructor())
1044      return Sema::CXXCopyConstructor;
1045
1046    return Sema::CXXConstructor;
1047  }
1048
1049  if (isa<CXXDestructorDecl>(MD))
1050    return Sema::CXXDestructor;
1051
1052  assert(MD->isCopyAssignmentOperator() &&
1053         "Must have copy assignment operator");
1054  return Sema::CXXCopyAssignment;
1055}
1056
1057/// canRedefineFunction - checks if a function can be redefined. Currently,
1058/// only extern inline functions can be redefined, and even then only in
1059/// GNU89 mode.
1060static bool canRedefineFunction(const FunctionDecl *FD,
1061                                const LangOptions& LangOpts) {
1062  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1063          FD->isInlineSpecified() &&
1064          FD->getStorageClass() == SC_Extern);
1065}
1066
1067/// MergeFunctionDecl - We just parsed a function 'New' from
1068/// declarator D which has the same name and scope as a previous
1069/// declaration 'Old'.  Figure out how to resolve this situation,
1070/// merging decls or emitting diagnostics as appropriate.
1071///
1072/// In C++, New and Old must be declarations that are not
1073/// overloaded. Use IsOverload to determine whether New and Old are
1074/// overloaded, and to select the Old declaration that New should be
1075/// merged with.
1076///
1077/// Returns true if there was an error, false otherwise.
1078bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1079  // Verify the old decl was also a function.
1080  FunctionDecl *Old = 0;
1081  if (FunctionTemplateDecl *OldFunctionTemplate
1082        = dyn_cast<FunctionTemplateDecl>(OldD))
1083    Old = OldFunctionTemplate->getTemplatedDecl();
1084  else
1085    Old = dyn_cast<FunctionDecl>(OldD);
1086  if (!Old) {
1087    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1088      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1089      Diag(Shadow->getTargetDecl()->getLocation(),
1090           diag::note_using_decl_target);
1091      Diag(Shadow->getUsingDecl()->getLocation(),
1092           diag::note_using_decl) << 0;
1093      return true;
1094    }
1095
1096    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1097      << New->getDeclName();
1098    Diag(OldD->getLocation(), diag::note_previous_definition);
1099    return true;
1100  }
1101
1102  // Determine whether the previous declaration was a definition,
1103  // implicit declaration, or a declaration.
1104  diag::kind PrevDiag;
1105  if (Old->isThisDeclarationADefinition())
1106    PrevDiag = diag::note_previous_definition;
1107  else if (Old->isImplicit())
1108    PrevDiag = diag::note_previous_implicit_declaration;
1109  else
1110    PrevDiag = diag::note_previous_declaration;
1111
1112  QualType OldQType = Context.getCanonicalType(Old->getType());
1113  QualType NewQType = Context.getCanonicalType(New->getType());
1114
1115  // Don't complain about this if we're in GNU89 mode and the old function
1116  // is an extern inline function.
1117  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1118      New->getStorageClass() == SC_Static &&
1119      Old->getStorageClass() != SC_Static &&
1120      !canRedefineFunction(Old, getLangOptions())) {
1121    Diag(New->getLocation(), diag::err_static_non_static)
1122      << New;
1123    Diag(Old->getLocation(), PrevDiag);
1124    return true;
1125  }
1126
1127  // If a function is first declared with a calling convention, but is
1128  // later declared or defined without one, the second decl assumes the
1129  // calling convention of the first.
1130  //
1131  // For the new decl, we have to look at the NON-canonical type to tell the
1132  // difference between a function that really doesn't have a calling
1133  // convention and one that is declared cdecl. That's because in
1134  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1135  // because it is the default calling convention.
1136  //
1137  // Note also that we DO NOT return at this point, because we still have
1138  // other tests to run.
1139  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1140  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1141  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1142  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1143  if (OldTypeInfo.getCC() != CC_Default &&
1144      NewTypeInfo.getCC() == CC_Default) {
1145    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1146    New->setType(NewQType);
1147    NewQType = Context.getCanonicalType(NewQType);
1148  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1149                                     NewTypeInfo.getCC())) {
1150    // Calling conventions really aren't compatible, so complain.
1151    Diag(New->getLocation(), diag::err_cconv_change)
1152      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1153      << (OldTypeInfo.getCC() == CC_Default)
1154      << (OldTypeInfo.getCC() == CC_Default ? "" :
1155          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1156    Diag(Old->getLocation(), diag::note_previous_declaration);
1157    return true;
1158  }
1159
1160  // FIXME: diagnose the other way around?
1161  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1162    NewQType = Context.getNoReturnType(NewQType);
1163    New->setType(NewQType);
1164    assert(NewQType.isCanonical());
1165  }
1166
1167  // Merge regparm attribute.
1168  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1169    if (NewType->getRegParmType()) {
1170      Diag(New->getLocation(), diag::err_regparm_mismatch)
1171        << NewType->getRegParmType()
1172        << OldType->getRegParmType();
1173      Diag(Old->getLocation(), diag::note_previous_declaration);
1174      return true;
1175    }
1176
1177    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1178    New->setType(NewQType);
1179    assert(NewQType.isCanonical());
1180  }
1181
1182  if (getLangOptions().CPlusPlus) {
1183    // (C++98 13.1p2):
1184    //   Certain function declarations cannot be overloaded:
1185    //     -- Function declarations that differ only in the return type
1186    //        cannot be overloaded.
1187    QualType OldReturnType
1188      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1189    QualType NewReturnType
1190      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1191    QualType ResQT;
1192    if (OldReturnType != NewReturnType) {
1193      if (NewReturnType->isObjCObjectPointerType()
1194          && OldReturnType->isObjCObjectPointerType())
1195        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1196      if (ResQT.isNull()) {
1197        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1198        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1199        return true;
1200      }
1201      else
1202        NewQType = ResQT;
1203    }
1204
1205    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1206    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1207    if (OldMethod && NewMethod) {
1208      // Preserve triviality.
1209      NewMethod->setTrivial(OldMethod->isTrivial());
1210
1211      bool isFriend = NewMethod->getFriendObjectKind();
1212
1213      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1214        //    -- Member function declarations with the same name and the
1215        //       same parameter types cannot be overloaded if any of them
1216        //       is a static member function declaration.
1217        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1218          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1219          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1220          return true;
1221        }
1222
1223        // C++ [class.mem]p1:
1224        //   [...] A member shall not be declared twice in the
1225        //   member-specification, except that a nested class or member
1226        //   class template can be declared and then later defined.
1227        unsigned NewDiag;
1228        if (isa<CXXConstructorDecl>(OldMethod))
1229          NewDiag = diag::err_constructor_redeclared;
1230        else if (isa<CXXDestructorDecl>(NewMethod))
1231          NewDiag = diag::err_destructor_redeclared;
1232        else if (isa<CXXConversionDecl>(NewMethod))
1233          NewDiag = diag::err_conv_function_redeclared;
1234        else
1235          NewDiag = diag::err_member_redeclared;
1236
1237        Diag(New->getLocation(), NewDiag);
1238        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1239
1240      // Complain if this is an explicit declaration of a special
1241      // member that was initially declared implicitly.
1242      //
1243      // As an exception, it's okay to befriend such methods in order
1244      // to permit the implicit constructor/destructor/operator calls.
1245      } else if (OldMethod->isImplicit()) {
1246        if (isFriend) {
1247          NewMethod->setImplicit();
1248        } else {
1249          Diag(NewMethod->getLocation(),
1250               diag::err_definition_of_implicitly_declared_member)
1251            << New << getSpecialMember(OldMethod);
1252          return true;
1253        }
1254      }
1255    }
1256
1257    // (C++98 8.3.5p3):
1258    //   All declarations for a function shall agree exactly in both the
1259    //   return type and the parameter-type-list.
1260    // attributes should be ignored when comparing.
1261    if (Context.getNoReturnType(OldQType, false) ==
1262        Context.getNoReturnType(NewQType, false))
1263      return MergeCompatibleFunctionDecls(New, Old);
1264
1265    // Fall through for conflicting redeclarations and redefinitions.
1266  }
1267
1268  // C: Function types need to be compatible, not identical. This handles
1269  // duplicate function decls like "void f(int); void f(enum X);" properly.
1270  if (!getLangOptions().CPlusPlus &&
1271      Context.typesAreCompatible(OldQType, NewQType)) {
1272    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1273    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1274    const FunctionProtoType *OldProto = 0;
1275    if (isa<FunctionNoProtoType>(NewFuncType) &&
1276        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1277      // The old declaration provided a function prototype, but the
1278      // new declaration does not. Merge in the prototype.
1279      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1280      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1281                                                 OldProto->arg_type_end());
1282      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1283                                         ParamTypes.data(), ParamTypes.size(),
1284                                         OldProto->isVariadic(),
1285                                         OldProto->getTypeQuals(),
1286                                         false, false, 0, 0,
1287                                         OldProto->getExtInfo());
1288      New->setType(NewQType);
1289      New->setHasInheritedPrototype();
1290
1291      // Synthesize a parameter for each argument type.
1292      llvm::SmallVector<ParmVarDecl*, 16> Params;
1293      for (FunctionProtoType::arg_type_iterator
1294             ParamType = OldProto->arg_type_begin(),
1295             ParamEnd = OldProto->arg_type_end();
1296           ParamType != ParamEnd; ++ParamType) {
1297        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1298                                                 SourceLocation(), 0,
1299                                                 *ParamType, /*TInfo=*/0,
1300                                                 SC_None, SC_None,
1301                                                 0);
1302        Param->setImplicit();
1303        Params.push_back(Param);
1304      }
1305
1306      New->setParams(Params.data(), Params.size());
1307    }
1308
1309    return MergeCompatibleFunctionDecls(New, Old);
1310  }
1311
1312  // GNU C permits a K&R definition to follow a prototype declaration
1313  // if the declared types of the parameters in the K&R definition
1314  // match the types in the prototype declaration, even when the
1315  // promoted types of the parameters from the K&R definition differ
1316  // from the types in the prototype. GCC then keeps the types from
1317  // the prototype.
1318  //
1319  // If a variadic prototype is followed by a non-variadic K&R definition,
1320  // the K&R definition becomes variadic.  This is sort of an edge case, but
1321  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1322  // C99 6.9.1p8.
1323  if (!getLangOptions().CPlusPlus &&
1324      Old->hasPrototype() && !New->hasPrototype() &&
1325      New->getType()->getAs<FunctionProtoType>() &&
1326      Old->getNumParams() == New->getNumParams()) {
1327    llvm::SmallVector<QualType, 16> ArgTypes;
1328    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1329    const FunctionProtoType *OldProto
1330      = Old->getType()->getAs<FunctionProtoType>();
1331    const FunctionProtoType *NewProto
1332      = New->getType()->getAs<FunctionProtoType>();
1333
1334    // Determine whether this is the GNU C extension.
1335    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1336                                               NewProto->getResultType());
1337    bool LooseCompatible = !MergedReturn.isNull();
1338    for (unsigned Idx = 0, End = Old->getNumParams();
1339         LooseCompatible && Idx != End; ++Idx) {
1340      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1341      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1342      if (Context.typesAreCompatible(OldParm->getType(),
1343                                     NewProto->getArgType(Idx))) {
1344        ArgTypes.push_back(NewParm->getType());
1345      } else if (Context.typesAreCompatible(OldParm->getType(),
1346                                            NewParm->getType(),
1347                                            /*CompareUnqualified=*/true)) {
1348        GNUCompatibleParamWarning Warn
1349          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1350        Warnings.push_back(Warn);
1351        ArgTypes.push_back(NewParm->getType());
1352      } else
1353        LooseCompatible = false;
1354    }
1355
1356    if (LooseCompatible) {
1357      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1358        Diag(Warnings[Warn].NewParm->getLocation(),
1359             diag::ext_param_promoted_not_compatible_with_prototype)
1360          << Warnings[Warn].PromotedType
1361          << Warnings[Warn].OldParm->getType();
1362        if (Warnings[Warn].OldParm->getLocation().isValid())
1363          Diag(Warnings[Warn].OldParm->getLocation(),
1364               diag::note_previous_declaration);
1365      }
1366
1367      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1368                                           ArgTypes.size(),
1369                                           OldProto->isVariadic(), 0,
1370                                           false, false, 0, 0,
1371                                           OldProto->getExtInfo()));
1372      return MergeCompatibleFunctionDecls(New, Old);
1373    }
1374
1375    // Fall through to diagnose conflicting types.
1376  }
1377
1378  // A function that has already been declared has been redeclared or defined
1379  // with a different type- show appropriate diagnostic
1380  if (unsigned BuiltinID = Old->getBuiltinID()) {
1381    // The user has declared a builtin function with an incompatible
1382    // signature.
1383    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1384      // The function the user is redeclaring is a library-defined
1385      // function like 'malloc' or 'printf'. Warn about the
1386      // redeclaration, then pretend that we don't know about this
1387      // library built-in.
1388      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1389      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1390        << Old << Old->getType();
1391      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1392      Old->setInvalidDecl();
1393      return false;
1394    }
1395
1396    PrevDiag = diag::note_previous_builtin_declaration;
1397  }
1398
1399  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1400  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1401  return true;
1402}
1403
1404/// \brief Completes the merge of two function declarations that are
1405/// known to be compatible.
1406///
1407/// This routine handles the merging of attributes and other
1408/// properties of function declarations form the old declaration to
1409/// the new declaration, once we know that New is in fact a
1410/// redeclaration of Old.
1411///
1412/// \returns false
1413bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1414  // Merge the attributes
1415  MergeDeclAttributes(New, Old, Context);
1416
1417  // Merge the storage class.
1418  if (Old->getStorageClass() != SC_Extern &&
1419      Old->getStorageClass() != SC_None)
1420    New->setStorageClass(Old->getStorageClass());
1421
1422  // Merge "pure" flag.
1423  if (Old->isPure())
1424    New->setPure();
1425
1426  // Merge the "deleted" flag.
1427  if (Old->isDeleted())
1428    New->setDeleted();
1429
1430  if (getLangOptions().CPlusPlus)
1431    return MergeCXXFunctionDecl(New, Old);
1432
1433  return false;
1434}
1435
1436/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1437/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1438/// situation, merging decls or emitting diagnostics as appropriate.
1439///
1440/// Tentative definition rules (C99 6.9.2p2) are checked by
1441/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1442/// definitions here, since the initializer hasn't been attached.
1443///
1444void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1445  // If the new decl is already invalid, don't do any other checking.
1446  if (New->isInvalidDecl())
1447    return;
1448
1449  // Verify the old decl was also a variable.
1450  VarDecl *Old = 0;
1451  if (!Previous.isSingleResult() ||
1452      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1453    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1454      << New->getDeclName();
1455    Diag(Previous.getRepresentativeDecl()->getLocation(),
1456         diag::note_previous_definition);
1457    return New->setInvalidDecl();
1458  }
1459
1460  // C++ [class.mem]p1:
1461  //   A member shall not be declared twice in the member-specification [...]
1462  //
1463  // Here, we need only consider static data members.
1464  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1465    Diag(New->getLocation(), diag::err_duplicate_member)
1466      << New->getIdentifier();
1467    Diag(Old->getLocation(), diag::note_previous_declaration);
1468    New->setInvalidDecl();
1469  }
1470
1471  MergeDeclAttributes(New, Old, Context);
1472
1473  // Merge the types
1474  QualType MergedT;
1475  if (getLangOptions().CPlusPlus) {
1476    if (Context.hasSameType(New->getType(), Old->getType()))
1477      MergedT = New->getType();
1478    // C++ [basic.link]p10:
1479    //   [...] the types specified by all declarations referring to a given
1480    //   object or function shall be identical, except that declarations for an
1481    //   array object can specify array types that differ by the presence or
1482    //   absence of a major array bound (8.3.4).
1483    else if (Old->getType()->isIncompleteArrayType() &&
1484             New->getType()->isArrayType()) {
1485      CanQual<ArrayType> OldArray
1486        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1487      CanQual<ArrayType> NewArray
1488        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1489      if (OldArray->getElementType() == NewArray->getElementType())
1490        MergedT = New->getType();
1491    } else if (Old->getType()->isArrayType() &&
1492             New->getType()->isIncompleteArrayType()) {
1493      CanQual<ArrayType> OldArray
1494        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1495      CanQual<ArrayType> NewArray
1496        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1497      if (OldArray->getElementType() == NewArray->getElementType())
1498        MergedT = Old->getType();
1499    } else if (New->getType()->isObjCObjectPointerType()
1500               && Old->getType()->isObjCObjectPointerType()) {
1501        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1502    }
1503  } else {
1504    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1505  }
1506  if (MergedT.isNull()) {
1507    Diag(New->getLocation(), diag::err_redefinition_different_type)
1508      << New->getDeclName();
1509    Diag(Old->getLocation(), diag::note_previous_definition);
1510    return New->setInvalidDecl();
1511  }
1512  New->setType(MergedT);
1513
1514  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1515  if (New->getStorageClass() == SC_Static &&
1516      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1517    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1518    Diag(Old->getLocation(), diag::note_previous_definition);
1519    return New->setInvalidDecl();
1520  }
1521  // C99 6.2.2p4:
1522  //   For an identifier declared with the storage-class specifier
1523  //   extern in a scope in which a prior declaration of that
1524  //   identifier is visible,23) if the prior declaration specifies
1525  //   internal or external linkage, the linkage of the identifier at
1526  //   the later declaration is the same as the linkage specified at
1527  //   the prior declaration. If no prior declaration is visible, or
1528  //   if the prior declaration specifies no linkage, then the
1529  //   identifier has external linkage.
1530  if (New->hasExternalStorage() && Old->hasLinkage())
1531    /* Okay */;
1532  else if (New->getStorageClass() != SC_Static &&
1533           Old->getStorageClass() == SC_Static) {
1534    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1535    Diag(Old->getLocation(), diag::note_previous_definition);
1536    return New->setInvalidDecl();
1537  }
1538
1539  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1540
1541  // FIXME: The test for external storage here seems wrong? We still
1542  // need to check for mismatches.
1543  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1544      // Don't complain about out-of-line definitions of static members.
1545      !(Old->getLexicalDeclContext()->isRecord() &&
1546        !New->getLexicalDeclContext()->isRecord())) {
1547    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1548    Diag(Old->getLocation(), diag::note_previous_definition);
1549    return New->setInvalidDecl();
1550  }
1551
1552  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1553    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1554    Diag(Old->getLocation(), diag::note_previous_definition);
1555  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1556    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1557    Diag(Old->getLocation(), diag::note_previous_definition);
1558  }
1559
1560  // C++ doesn't have tentative definitions, so go right ahead and check here.
1561  const VarDecl *Def;
1562  if (getLangOptions().CPlusPlus &&
1563      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1564      (Def = Old->getDefinition())) {
1565    Diag(New->getLocation(), diag::err_redefinition)
1566      << New->getDeclName();
1567    Diag(Def->getLocation(), diag::note_previous_definition);
1568    New->setInvalidDecl();
1569    return;
1570  }
1571  // c99 6.2.2 P4.
1572  // For an identifier declared with the storage-class specifier extern in a
1573  // scope in which a prior declaration of that identifier is visible, if
1574  // the prior declaration specifies internal or external linkage, the linkage
1575  // of the identifier at the later declaration is the same as the linkage
1576  // specified at the prior declaration.
1577  // FIXME. revisit this code.
1578  if (New->hasExternalStorage() &&
1579      Old->getLinkage() == InternalLinkage &&
1580      New->getDeclContext() == Old->getDeclContext())
1581    New->setStorageClass(Old->getStorageClass());
1582
1583  // Keep a chain of previous declarations.
1584  New->setPreviousDeclaration(Old);
1585
1586  // Inherit access appropriately.
1587  New->setAccess(Old->getAccess());
1588}
1589
1590/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1591/// no declarator (e.g. "struct foo;") is parsed.
1592Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1593                                            DeclSpec &DS) {
1594  // FIXME: Error on inline/virtual/explicit
1595  // FIXME: Warn on useless __thread
1596  // FIXME: Warn on useless const/volatile
1597  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1598  // FIXME: Warn on useless attributes
1599  Decl *TagD = 0;
1600  TagDecl *Tag = 0;
1601  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1602      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1603      DS.getTypeSpecType() == DeclSpec::TST_union ||
1604      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1605    TagD = DS.getRepAsDecl();
1606
1607    if (!TagD) // We probably had an error
1608      return 0;
1609
1610    // Note that the above type specs guarantee that the
1611    // type rep is a Decl, whereas in many of the others
1612    // it's a Type.
1613    Tag = dyn_cast<TagDecl>(TagD);
1614  }
1615
1616  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1617    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1618    // or incomplete types shall not be restrict-qualified."
1619    if (TypeQuals & DeclSpec::TQ_restrict)
1620      Diag(DS.getRestrictSpecLoc(),
1621           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1622           << DS.getSourceRange();
1623  }
1624
1625  if (DS.isFriendSpecified()) {
1626    // If we're dealing with a class template decl, assume that the
1627    // template routines are handling it.
1628    if (TagD && isa<ClassTemplateDecl>(TagD))
1629      return 0;
1630    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1631  }
1632
1633  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1634    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1635
1636    if (!Record->getDeclName() && Record->isDefinition() &&
1637        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1638      if (getLangOptions().CPlusPlus ||
1639          Record->getDeclContext()->isRecord())
1640        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1641
1642      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1643        << DS.getSourceRange();
1644    }
1645
1646    // Microsoft allows unnamed struct/union fields. Don't complain
1647    // about them.
1648    // FIXME: Should we support Microsoft's extensions in this area?
1649    if (Record->getDeclName() && getLangOptions().Microsoft)
1650      return Tag;
1651  }
1652
1653  if (getLangOptions().CPlusPlus &&
1654      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1655    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1656      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1657          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1658        Diag(Enum->getLocation(), diag::ext_no_declarators)
1659          << DS.getSourceRange();
1660
1661  if (!DS.isMissingDeclaratorOk() &&
1662      DS.getTypeSpecType() != DeclSpec::TST_error) {
1663    // Warn about typedefs of enums without names, since this is an
1664    // extension in both Microsoft and GNU.
1665    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1666        Tag && isa<EnumDecl>(Tag)) {
1667      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1668        << DS.getSourceRange();
1669      return Tag;
1670    }
1671
1672    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1673      << DS.getSourceRange();
1674  }
1675
1676  return TagD;
1677}
1678
1679/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1680/// builds a statement for it and returns it so it is evaluated.
1681StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1682  StmtResult R;
1683  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1684    Expr *Exp = DS.getRepAsExpr();
1685    QualType Ty = Exp->getType();
1686    if (Ty->isPointerType()) {
1687      do
1688        Ty = Ty->getAs<PointerType>()->getPointeeType();
1689      while (Ty->isPointerType());
1690    }
1691    if (Ty->isVariableArrayType()) {
1692      R = ActOnExprStmt(MakeFullExpr(Exp));
1693    }
1694  }
1695  return R;
1696}
1697
1698/// We are trying to inject an anonymous member into the given scope;
1699/// check if there's an existing declaration that can't be overloaded.
1700///
1701/// \return true if this is a forbidden redeclaration
1702static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1703                                         Scope *S,
1704                                         DeclContext *Owner,
1705                                         DeclarationName Name,
1706                                         SourceLocation NameLoc,
1707                                         unsigned diagnostic) {
1708  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1709                 Sema::ForRedeclaration);
1710  if (!SemaRef.LookupName(R, S)) return false;
1711
1712  if (R.getAsSingle<TagDecl>())
1713    return false;
1714
1715  // Pick a representative declaration.
1716  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1717  assert(PrevDecl && "Expected a non-null Decl");
1718
1719  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1720    return false;
1721
1722  SemaRef.Diag(NameLoc, diagnostic) << Name;
1723  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1724
1725  return true;
1726}
1727
1728/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1729/// anonymous struct or union AnonRecord into the owning context Owner
1730/// and scope S. This routine will be invoked just after we realize
1731/// that an unnamed union or struct is actually an anonymous union or
1732/// struct, e.g.,
1733///
1734/// @code
1735/// union {
1736///   int i;
1737///   float f;
1738/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1739///    // f into the surrounding scope.x
1740/// @endcode
1741///
1742/// This routine is recursive, injecting the names of nested anonymous
1743/// structs/unions into the owning context and scope as well.
1744static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1745                                                DeclContext *Owner,
1746                                                RecordDecl *AnonRecord,
1747                                                AccessSpecifier AS) {
1748  unsigned diagKind
1749    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1750                            : diag::err_anonymous_struct_member_redecl;
1751
1752  bool Invalid = false;
1753  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1754                               FEnd = AnonRecord->field_end();
1755       F != FEnd; ++F) {
1756    if ((*F)->getDeclName()) {
1757      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1758                                       (*F)->getLocation(), diagKind)) {
1759        // C++ [class.union]p2:
1760        //   The names of the members of an anonymous union shall be
1761        //   distinct from the names of any other entity in the
1762        //   scope in which the anonymous union is declared.
1763        Invalid = true;
1764      } else {
1765        // C++ [class.union]p2:
1766        //   For the purpose of name lookup, after the anonymous union
1767        //   definition, the members of the anonymous union are
1768        //   considered to have been defined in the scope in which the
1769        //   anonymous union is declared.
1770        Owner->makeDeclVisibleInContext(*F);
1771        S->AddDecl(*F);
1772        SemaRef.IdResolver.AddDecl(*F);
1773
1774        // That includes picking up the appropriate access specifier.
1775        if (AS != AS_none) (*F)->setAccess(AS);
1776      }
1777    } else if (const RecordType *InnerRecordType
1778                 = (*F)->getType()->getAs<RecordType>()) {
1779      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1780      if (InnerRecord->isAnonymousStructOrUnion())
1781        Invalid = Invalid ||
1782          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1783                                              InnerRecord, AS);
1784    }
1785  }
1786
1787  return Invalid;
1788}
1789
1790/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1791/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1792/// illegal input values are mapped to SC_None.
1793static StorageClass
1794StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1795  switch (StorageClassSpec) {
1796  case DeclSpec::SCS_unspecified:    return SC_None;
1797  case DeclSpec::SCS_extern:         return SC_Extern;
1798  case DeclSpec::SCS_static:         return SC_Static;
1799  case DeclSpec::SCS_auto:           return SC_Auto;
1800  case DeclSpec::SCS_register:       return SC_Register;
1801  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1802    // Illegal SCSs map to None: error reporting is up to the caller.
1803  case DeclSpec::SCS_mutable:        // Fall through.
1804  case DeclSpec::SCS_typedef:        return SC_None;
1805  }
1806  llvm_unreachable("unknown storage class specifier");
1807}
1808
1809/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1810/// a StorageClass. Any error reporting is up to the caller:
1811/// illegal input values are mapped to SC_None.
1812static StorageClass
1813StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1814  switch (StorageClassSpec) {
1815  case DeclSpec::SCS_unspecified:    return SC_None;
1816  case DeclSpec::SCS_extern:         return SC_Extern;
1817  case DeclSpec::SCS_static:         return SC_Static;
1818  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1819    // Illegal SCSs map to None: error reporting is up to the caller.
1820  case DeclSpec::SCS_auto:           // Fall through.
1821  case DeclSpec::SCS_mutable:        // Fall through.
1822  case DeclSpec::SCS_register:       // Fall through.
1823  case DeclSpec::SCS_typedef:        return SC_None;
1824  }
1825  llvm_unreachable("unknown storage class specifier");
1826}
1827
1828/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1829/// anonymous structure or union. Anonymous unions are a C++ feature
1830/// (C++ [class.union]) and a GNU C extension; anonymous structures
1831/// are a GNU C and GNU C++ extension.
1832Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1833                                             AccessSpecifier AS,
1834                                             RecordDecl *Record) {
1835  DeclContext *Owner = Record->getDeclContext();
1836
1837  // Diagnose whether this anonymous struct/union is an extension.
1838  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1839    Diag(Record->getLocation(), diag::ext_anonymous_union);
1840  else if (!Record->isUnion())
1841    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1842
1843  // C and C++ require different kinds of checks for anonymous
1844  // structs/unions.
1845  bool Invalid = false;
1846  if (getLangOptions().CPlusPlus) {
1847    const char* PrevSpec = 0;
1848    unsigned DiagID;
1849    // C++ [class.union]p3:
1850    //   Anonymous unions declared in a named namespace or in the
1851    //   global namespace shall be declared static.
1852    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1853        (isa<TranslationUnitDecl>(Owner) ||
1854         (isa<NamespaceDecl>(Owner) &&
1855          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1856      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1857      Invalid = true;
1858
1859      // Recover by adding 'static'.
1860      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1861                             PrevSpec, DiagID);
1862    }
1863    // C++ [class.union]p3:
1864    //   A storage class is not allowed in a declaration of an
1865    //   anonymous union in a class scope.
1866    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1867             isa<RecordDecl>(Owner)) {
1868      Diag(DS.getStorageClassSpecLoc(),
1869           diag::err_anonymous_union_with_storage_spec);
1870      Invalid = true;
1871
1872      // Recover by removing the storage specifier.
1873      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1874                             PrevSpec, DiagID);
1875    }
1876
1877    // C++ [class.union]p2:
1878    //   The member-specification of an anonymous union shall only
1879    //   define non-static data members. [Note: nested types and
1880    //   functions cannot be declared within an anonymous union. ]
1881    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1882                                 MemEnd = Record->decls_end();
1883         Mem != MemEnd; ++Mem) {
1884      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1885        // C++ [class.union]p3:
1886        //   An anonymous union shall not have private or protected
1887        //   members (clause 11).
1888        assert(FD->getAccess() != AS_none);
1889        if (FD->getAccess() != AS_public) {
1890          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1891            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1892          Invalid = true;
1893        }
1894
1895        if (CheckNontrivialField(FD))
1896          Invalid = true;
1897      } else if ((*Mem)->isImplicit()) {
1898        // Any implicit members are fine.
1899      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1900        // This is a type that showed up in an
1901        // elaborated-type-specifier inside the anonymous struct or
1902        // union, but which actually declares a type outside of the
1903        // anonymous struct or union. It's okay.
1904      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1905        if (!MemRecord->isAnonymousStructOrUnion() &&
1906            MemRecord->getDeclName()) {
1907          // Visual C++ allows type definition in anonymous struct or union.
1908          if (getLangOptions().Microsoft)
1909            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1910              << (int)Record->isUnion();
1911          else {
1912            // This is a nested type declaration.
1913            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1914              << (int)Record->isUnion();
1915            Invalid = true;
1916          }
1917        }
1918      } else if (isa<AccessSpecDecl>(*Mem)) {
1919        // Any access specifier is fine.
1920      } else {
1921        // We have something that isn't a non-static data
1922        // member. Complain about it.
1923        unsigned DK = diag::err_anonymous_record_bad_member;
1924        if (isa<TypeDecl>(*Mem))
1925          DK = diag::err_anonymous_record_with_type;
1926        else if (isa<FunctionDecl>(*Mem))
1927          DK = diag::err_anonymous_record_with_function;
1928        else if (isa<VarDecl>(*Mem))
1929          DK = diag::err_anonymous_record_with_static;
1930
1931        // Visual C++ allows type definition in anonymous struct or union.
1932        if (getLangOptions().Microsoft &&
1933            DK == diag::err_anonymous_record_with_type)
1934          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1935            << (int)Record->isUnion();
1936        else {
1937          Diag((*Mem)->getLocation(), DK)
1938              << (int)Record->isUnion();
1939          Invalid = true;
1940        }
1941      }
1942    }
1943  }
1944
1945  if (!Record->isUnion() && !Owner->isRecord()) {
1946    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1947      << (int)getLangOptions().CPlusPlus;
1948    Invalid = true;
1949  }
1950
1951  // Mock up a declarator.
1952  Declarator Dc(DS, Declarator::TypeNameContext);
1953  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1954  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1955
1956  // Create a declaration for this anonymous struct/union.
1957  NamedDecl *Anon = 0;
1958  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1959    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1960                             /*IdentifierInfo=*/0,
1961                             Context.getTypeDeclType(Record),
1962                             TInfo,
1963                             /*BitWidth=*/0, /*Mutable=*/false);
1964    Anon->setAccess(AS);
1965    if (getLangOptions().CPlusPlus)
1966      FieldCollector->Add(cast<FieldDecl>(Anon));
1967  } else {
1968    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1969    assert(SCSpec != DeclSpec::SCS_typedef &&
1970           "Parser allowed 'typedef' as storage class VarDecl.");
1971    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1972    if (SCSpec == DeclSpec::SCS_mutable) {
1973      // mutable can only appear on non-static class members, so it's always
1974      // an error here
1975      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1976      Invalid = true;
1977      SC = SC_None;
1978    }
1979    SCSpec = DS.getStorageClassSpecAsWritten();
1980    VarDecl::StorageClass SCAsWritten
1981      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1982
1983    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1984                           /*IdentifierInfo=*/0,
1985                           Context.getTypeDeclType(Record),
1986                           TInfo, SC, SCAsWritten);
1987  }
1988  Anon->setImplicit();
1989
1990  // Add the anonymous struct/union object to the current
1991  // context. We'll be referencing this object when we refer to one of
1992  // its members.
1993  Owner->addDecl(Anon);
1994
1995  // Inject the members of the anonymous struct/union into the owning
1996  // context and into the identifier resolver chain for name lookup
1997  // purposes.
1998  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1999    Invalid = true;
2000
2001  // Mark this as an anonymous struct/union type. Note that we do not
2002  // do this until after we have already checked and injected the
2003  // members of this anonymous struct/union type, because otherwise
2004  // the members could be injected twice: once by DeclContext when it
2005  // builds its lookup table, and once by
2006  // InjectAnonymousStructOrUnionMembers.
2007  Record->setAnonymousStructOrUnion(true);
2008
2009  if (Invalid)
2010    Anon->setInvalidDecl();
2011
2012  return Anon;
2013}
2014
2015
2016/// GetNameForDeclarator - Determine the full declaration name for the
2017/// given Declarator.
2018DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2019  return GetNameFromUnqualifiedId(D.getName());
2020}
2021
2022/// \brief Retrieves the declaration name from a parsed unqualified-id.
2023DeclarationNameInfo
2024Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2025  DeclarationNameInfo NameInfo;
2026  NameInfo.setLoc(Name.StartLocation);
2027
2028  switch (Name.getKind()) {
2029
2030  case UnqualifiedId::IK_Identifier:
2031    NameInfo.setName(Name.Identifier);
2032    NameInfo.setLoc(Name.StartLocation);
2033    return NameInfo;
2034
2035  case UnqualifiedId::IK_OperatorFunctionId:
2036    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2037                                           Name.OperatorFunctionId.Operator));
2038    NameInfo.setLoc(Name.StartLocation);
2039    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2040      = Name.OperatorFunctionId.SymbolLocations[0];
2041    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2042      = Name.EndLocation.getRawEncoding();
2043    return NameInfo;
2044
2045  case UnqualifiedId::IK_LiteralOperatorId:
2046    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2047                                                           Name.Identifier));
2048    NameInfo.setLoc(Name.StartLocation);
2049    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2050    return NameInfo;
2051
2052  case UnqualifiedId::IK_ConversionFunctionId: {
2053    TypeSourceInfo *TInfo;
2054    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2055    if (Ty.isNull())
2056      return DeclarationNameInfo();
2057    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2058                                               Context.getCanonicalType(Ty)));
2059    NameInfo.setLoc(Name.StartLocation);
2060    NameInfo.setNamedTypeInfo(TInfo);
2061    return NameInfo;
2062  }
2063
2064  case UnqualifiedId::IK_ConstructorName: {
2065    TypeSourceInfo *TInfo;
2066    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2067    if (Ty.isNull())
2068      return DeclarationNameInfo();
2069    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2070                                              Context.getCanonicalType(Ty)));
2071    NameInfo.setLoc(Name.StartLocation);
2072    NameInfo.setNamedTypeInfo(TInfo);
2073    return NameInfo;
2074  }
2075
2076  case UnqualifiedId::IK_ConstructorTemplateId: {
2077    // In well-formed code, we can only have a constructor
2078    // template-id that refers to the current context, so go there
2079    // to find the actual type being constructed.
2080    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2081    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2082      return DeclarationNameInfo();
2083
2084    // Determine the type of the class being constructed.
2085    QualType CurClassType = Context.getTypeDeclType(CurClass);
2086
2087    // FIXME: Check two things: that the template-id names the same type as
2088    // CurClassType, and that the template-id does not occur when the name
2089    // was qualified.
2090
2091    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2092                                    Context.getCanonicalType(CurClassType)));
2093    NameInfo.setLoc(Name.StartLocation);
2094    // FIXME: should we retrieve TypeSourceInfo?
2095    NameInfo.setNamedTypeInfo(0);
2096    return NameInfo;
2097  }
2098
2099  case UnqualifiedId::IK_DestructorName: {
2100    TypeSourceInfo *TInfo;
2101    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2102    if (Ty.isNull())
2103      return DeclarationNameInfo();
2104    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2105                                              Context.getCanonicalType(Ty)));
2106    NameInfo.setLoc(Name.StartLocation);
2107    NameInfo.setNamedTypeInfo(TInfo);
2108    return NameInfo;
2109  }
2110
2111  case UnqualifiedId::IK_TemplateId: {
2112    TemplateName TName = Name.TemplateId->Template.get();
2113    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2114    return Context.getNameForTemplate(TName, TNameLoc);
2115  }
2116
2117  } // switch (Name.getKind())
2118
2119  assert(false && "Unknown name kind");
2120  return DeclarationNameInfo();
2121}
2122
2123/// isNearlyMatchingFunction - Determine whether the C++ functions
2124/// Declaration and Definition are "nearly" matching. This heuristic
2125/// is used to improve diagnostics in the case where an out-of-line
2126/// function definition doesn't match any declaration within
2127/// the class or namespace.
2128static bool isNearlyMatchingFunction(ASTContext &Context,
2129                                     FunctionDecl *Declaration,
2130                                     FunctionDecl *Definition) {
2131  if (Declaration->param_size() != Definition->param_size())
2132    return false;
2133  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2134    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2135    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2136
2137    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2138                                        DefParamTy.getNonReferenceType()))
2139      return false;
2140  }
2141
2142  return true;
2143}
2144
2145/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2146/// declarator needs to be rebuilt in the current instantiation.
2147/// Any bits of declarator which appear before the name are valid for
2148/// consideration here.  That's specifically the type in the decl spec
2149/// and the base type in any member-pointer chunks.
2150static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2151                                                    DeclarationName Name) {
2152  // The types we specifically need to rebuild are:
2153  //   - typenames, typeofs, and decltypes
2154  //   - types which will become injected class names
2155  // Of course, we also need to rebuild any type referencing such a
2156  // type.  It's safest to just say "dependent", but we call out a
2157  // few cases here.
2158
2159  DeclSpec &DS = D.getMutableDeclSpec();
2160  switch (DS.getTypeSpecType()) {
2161  case DeclSpec::TST_typename:
2162  case DeclSpec::TST_typeofType:
2163  case DeclSpec::TST_decltype: {
2164    // Grab the type from the parser.
2165    TypeSourceInfo *TSI = 0;
2166    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2167    if (T.isNull() || !T->isDependentType()) break;
2168
2169    // Make sure there's a type source info.  This isn't really much
2170    // of a waste; most dependent types should have type source info
2171    // attached already.
2172    if (!TSI)
2173      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2174
2175    // Rebuild the type in the current instantiation.
2176    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2177    if (!TSI) return true;
2178
2179    // Store the new type back in the decl spec.
2180    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2181    DS.UpdateTypeRep(LocType);
2182    break;
2183  }
2184
2185  case DeclSpec::TST_typeofExpr: {
2186    Expr *E = DS.getRepAsExpr();
2187    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2188    if (Result.isInvalid()) return true;
2189    DS.UpdateExprRep(Result.get());
2190    break;
2191  }
2192
2193  default:
2194    // Nothing to do for these decl specs.
2195    break;
2196  }
2197
2198  // It doesn't matter what order we do this in.
2199  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2200    DeclaratorChunk &Chunk = D.getTypeObject(I);
2201
2202    // The only type information in the declarator which can come
2203    // before the declaration name is the base type of a member
2204    // pointer.
2205    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2206      continue;
2207
2208    // Rebuild the scope specifier in-place.
2209    CXXScopeSpec &SS = Chunk.Mem.Scope();
2210    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2211      return true;
2212  }
2213
2214  return false;
2215}
2216
2217Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2218  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2219}
2220
2221Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2222                             MultiTemplateParamsArg TemplateParamLists,
2223                             bool IsFunctionDefinition) {
2224  // TODO: consider using NameInfo for diagnostic.
2225  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2226  DeclarationName Name = NameInfo.getName();
2227
2228  // All of these full declarators require an identifier.  If it doesn't have
2229  // one, the ParsedFreeStandingDeclSpec action should be used.
2230  if (!Name) {
2231    if (!D.isInvalidType())  // Reject this if we think it is valid.
2232      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2233           diag::err_declarator_need_ident)
2234        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2235    return 0;
2236  }
2237
2238  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2239  // we find one that is.
2240  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2241         (S->getFlags() & Scope::TemplateParamScope) != 0)
2242    S = S->getParent();
2243
2244  DeclContext *DC = CurContext;
2245  if (D.getCXXScopeSpec().isInvalid())
2246    D.setInvalidType();
2247  else if (D.getCXXScopeSpec().isSet()) {
2248    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2249    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2250    if (!DC) {
2251      // If we could not compute the declaration context, it's because the
2252      // declaration context is dependent but does not refer to a class,
2253      // class template, or class template partial specialization. Complain
2254      // and return early, to avoid the coming semantic disaster.
2255      Diag(D.getIdentifierLoc(),
2256           diag::err_template_qualified_declarator_no_match)
2257        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2258        << D.getCXXScopeSpec().getRange();
2259      return 0;
2260    }
2261
2262    bool IsDependentContext = DC->isDependentContext();
2263
2264    if (!IsDependentContext &&
2265        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2266      return 0;
2267
2268    if (isa<CXXRecordDecl>(DC)) {
2269      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2270        Diag(D.getIdentifierLoc(),
2271             diag::err_member_def_undefined_record)
2272          << Name << DC << D.getCXXScopeSpec().getRange();
2273        D.setInvalidType();
2274      } else if (isa<CXXRecordDecl>(CurContext) &&
2275                 !D.getDeclSpec().isFriendSpecified()) {
2276        // The user provided a superfluous scope specifier inside a class
2277        // definition:
2278        //
2279        // class X {
2280        //   void X::f();
2281        // };
2282        if (CurContext->Equals(DC))
2283          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2284            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2285        else
2286          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2287            << Name << D.getCXXScopeSpec().getRange();
2288
2289        // Pretend that this qualifier was not here.
2290        D.getCXXScopeSpec().clear();
2291      }
2292    }
2293
2294    // Check whether we need to rebuild the type of the given
2295    // declaration in the current instantiation.
2296    if (EnteringContext && IsDependentContext &&
2297        TemplateParamLists.size() != 0) {
2298      ContextRAII SavedContext(*this, DC);
2299      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2300        D.setInvalidType();
2301    }
2302  }
2303
2304  NamedDecl *New;
2305
2306  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2307  QualType R = TInfo->getType();
2308
2309  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2310                        ForRedeclaration);
2311
2312  // See if this is a redefinition of a variable in the same scope.
2313  if (!D.getCXXScopeSpec().isSet()) {
2314    bool IsLinkageLookup = false;
2315
2316    // If the declaration we're planning to build will be a function
2317    // or object with linkage, then look for another declaration with
2318    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2319    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2320      /* Do nothing*/;
2321    else if (R->isFunctionType()) {
2322      if (CurContext->isFunctionOrMethod() ||
2323          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2324        IsLinkageLookup = true;
2325    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2326      IsLinkageLookup = true;
2327    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2328             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2329      IsLinkageLookup = true;
2330
2331    if (IsLinkageLookup)
2332      Previous.clear(LookupRedeclarationWithLinkage);
2333
2334    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2335  } else { // Something like "int foo::x;"
2336    LookupQualifiedName(Previous, DC);
2337
2338    // Don't consider using declarations as previous declarations for
2339    // out-of-line members.
2340    RemoveUsingDecls(Previous);
2341
2342    // C++ 7.3.1.2p2:
2343    // Members (including explicit specializations of templates) of a named
2344    // namespace can also be defined outside that namespace by explicit
2345    // qualification of the name being defined, provided that the entity being
2346    // defined was already declared in the namespace and the definition appears
2347    // after the point of declaration in a namespace that encloses the
2348    // declarations namespace.
2349    //
2350    // Note that we only check the context at this point. We don't yet
2351    // have enough information to make sure that PrevDecl is actually
2352    // the declaration we want to match. For example, given:
2353    //
2354    //   class X {
2355    //     void f();
2356    //     void f(float);
2357    //   };
2358    //
2359    //   void X::f(int) { } // ill-formed
2360    //
2361    // In this case, PrevDecl will point to the overload set
2362    // containing the two f's declared in X, but neither of them
2363    // matches.
2364
2365    // First check whether we named the global scope.
2366    if (isa<TranslationUnitDecl>(DC)) {
2367      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2368        << Name << D.getCXXScopeSpec().getRange();
2369    } else {
2370      DeclContext *Cur = CurContext;
2371      while (isa<LinkageSpecDecl>(Cur))
2372        Cur = Cur->getParent();
2373      if (!Cur->Encloses(DC)) {
2374        // The qualifying scope doesn't enclose the original declaration.
2375        // Emit diagnostic based on current scope.
2376        SourceLocation L = D.getIdentifierLoc();
2377        SourceRange R = D.getCXXScopeSpec().getRange();
2378        if (isa<FunctionDecl>(Cur))
2379          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2380        else
2381          Diag(L, diag::err_invalid_declarator_scope)
2382            << Name << cast<NamedDecl>(DC) << R;
2383        D.setInvalidType();
2384      }
2385    }
2386  }
2387
2388  if (Previous.isSingleResult() &&
2389      Previous.getFoundDecl()->isTemplateParameter()) {
2390    // Maybe we will complain about the shadowed template parameter.
2391    if (!D.isInvalidType())
2392      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2393                                          Previous.getFoundDecl()))
2394        D.setInvalidType();
2395
2396    // Just pretend that we didn't see the previous declaration.
2397    Previous.clear();
2398  }
2399
2400  // In C++, the previous declaration we find might be a tag type
2401  // (class or enum). In this case, the new declaration will hide the
2402  // tag type. Note that this does does not apply if we're declaring a
2403  // typedef (C++ [dcl.typedef]p4).
2404  if (Previous.isSingleTagDecl() &&
2405      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2406    Previous.clear();
2407
2408  bool Redeclaration = false;
2409  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2410    if (TemplateParamLists.size()) {
2411      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2412      return 0;
2413    }
2414
2415    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2416  } else if (R->isFunctionType()) {
2417    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2418                                  move(TemplateParamLists),
2419                                  IsFunctionDefinition, Redeclaration);
2420  } else {
2421    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2422                                  move(TemplateParamLists),
2423                                  Redeclaration);
2424  }
2425
2426  if (New == 0)
2427    return 0;
2428
2429  // If this has an identifier and is not an invalid redeclaration or
2430  // function template specialization, add it to the scope stack.
2431  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2432    PushOnScopeChains(New, S);
2433
2434  return New;
2435}
2436
2437/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2438/// types into constant array types in certain situations which would otherwise
2439/// be errors (for GCC compatibility).
2440static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2441                                                    ASTContext &Context,
2442                                                    bool &SizeIsNegative,
2443                                                    llvm::APSInt &Oversized) {
2444  // This method tries to turn a variable array into a constant
2445  // array even when the size isn't an ICE.  This is necessary
2446  // for compatibility with code that depends on gcc's buggy
2447  // constant expression folding, like struct {char x[(int)(char*)2];}
2448  SizeIsNegative = false;
2449  Oversized = 0;
2450
2451  if (T->isDependentType())
2452    return QualType();
2453
2454  QualifierCollector Qs;
2455  const Type *Ty = Qs.strip(T);
2456
2457  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2458    QualType Pointee = PTy->getPointeeType();
2459    QualType FixedType =
2460        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2461                                            Oversized);
2462    if (FixedType.isNull()) return FixedType;
2463    FixedType = Context.getPointerType(FixedType);
2464    return Qs.apply(FixedType);
2465  }
2466
2467  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2468  if (!VLATy)
2469    return QualType();
2470  // FIXME: We should probably handle this case
2471  if (VLATy->getElementType()->isVariablyModifiedType())
2472    return QualType();
2473
2474  Expr::EvalResult EvalResult;
2475  if (!VLATy->getSizeExpr() ||
2476      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2477      !EvalResult.Val.isInt())
2478    return QualType();
2479
2480  // Check whether the array size is negative.
2481  llvm::APSInt &Res = EvalResult.Val.getInt();
2482  if (Res.isSigned() && Res.isNegative()) {
2483    SizeIsNegative = true;
2484    return QualType();
2485  }
2486
2487  // Check whether the array is too large to be addressed.
2488  unsigned ActiveSizeBits
2489    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2490                                              Res);
2491  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2492    Oversized = Res;
2493    return QualType();
2494  }
2495
2496  return Context.getConstantArrayType(VLATy->getElementType(),
2497                                      Res, ArrayType::Normal, 0);
2498}
2499
2500/// \brief Register the given locally-scoped external C declaration so
2501/// that it can be found later for redeclarations
2502void
2503Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2504                                       const LookupResult &Previous,
2505                                       Scope *S) {
2506  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2507         "Decl is not a locally-scoped decl!");
2508  // Note that we have a locally-scoped external with this name.
2509  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2510
2511  if (!Previous.isSingleResult())
2512    return;
2513
2514  NamedDecl *PrevDecl = Previous.getFoundDecl();
2515
2516  // If there was a previous declaration of this variable, it may be
2517  // in our identifier chain. Update the identifier chain with the new
2518  // declaration.
2519  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2520    // The previous declaration was found on the identifer resolver
2521    // chain, so remove it from its scope.
2522    while (S && !S->isDeclScope(PrevDecl))
2523      S = S->getParent();
2524
2525    if (S)
2526      S->RemoveDecl(PrevDecl);
2527  }
2528}
2529
2530/// \brief Diagnose function specifiers on a declaration of an identifier that
2531/// does not identify a function.
2532void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2533  // FIXME: We should probably indicate the identifier in question to avoid
2534  // confusion for constructs like "inline int a(), b;"
2535  if (D.getDeclSpec().isInlineSpecified())
2536    Diag(D.getDeclSpec().getInlineSpecLoc(),
2537         diag::err_inline_non_function);
2538
2539  if (D.getDeclSpec().isVirtualSpecified())
2540    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2541         diag::err_virtual_non_function);
2542
2543  if (D.getDeclSpec().isExplicitSpecified())
2544    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2545         diag::err_explicit_non_function);
2546}
2547
2548NamedDecl*
2549Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2550                             QualType R,  TypeSourceInfo *TInfo,
2551                             LookupResult &Previous, bool &Redeclaration) {
2552  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2553  if (D.getCXXScopeSpec().isSet()) {
2554    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2555      << D.getCXXScopeSpec().getRange();
2556    D.setInvalidType();
2557    // Pretend we didn't see the scope specifier.
2558    DC = CurContext;
2559    Previous.clear();
2560  }
2561
2562  if (getLangOptions().CPlusPlus) {
2563    // Check that there are no default arguments (C++ only).
2564    CheckExtraCXXDefaultArguments(D);
2565  }
2566
2567  DiagnoseFunctionSpecifiers(D);
2568
2569  if (D.getDeclSpec().isThreadSpecified())
2570    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2571
2572  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2573    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2574      << D.getName().getSourceRange();
2575    return 0;
2576  }
2577
2578  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2579  if (!NewTD) return 0;
2580
2581  // Handle attributes prior to checking for duplicates in MergeVarDecl
2582  ProcessDeclAttributes(S, NewTD, D);
2583
2584  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2585  // then it shall have block scope.
2586  // Note that variably modified types must be fixed before merging the decl so
2587  // that redeclarations will match.
2588  QualType T = NewTD->getUnderlyingType();
2589  if (T->isVariablyModifiedType()) {
2590    getCurFunction()->setHasBranchProtectedScope();
2591
2592    if (S->getFnParent() == 0) {
2593      bool SizeIsNegative;
2594      llvm::APSInt Oversized;
2595      QualType FixedTy =
2596          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2597                                              Oversized);
2598      if (!FixedTy.isNull()) {
2599        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2600        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2601      } else {
2602        if (SizeIsNegative)
2603          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2604        else if (T->isVariableArrayType())
2605          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2606        else if (Oversized.getBoolValue())
2607          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2608            << Oversized.toString(10);
2609        else
2610          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2611        NewTD->setInvalidDecl();
2612      }
2613    }
2614  }
2615
2616  // Merge the decl with the existing one if appropriate. If the decl is
2617  // in an outer scope, it isn't the same thing.
2618  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2619  if (!Previous.empty()) {
2620    Redeclaration = true;
2621    MergeTypeDefDecl(NewTD, Previous);
2622  }
2623
2624  // If this is the C FILE type, notify the AST context.
2625  if (IdentifierInfo *II = NewTD->getIdentifier())
2626    if (!NewTD->isInvalidDecl() &&
2627        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2628      if (II->isStr("FILE"))
2629        Context.setFILEDecl(NewTD);
2630      else if (II->isStr("jmp_buf"))
2631        Context.setjmp_bufDecl(NewTD);
2632      else if (II->isStr("sigjmp_buf"))
2633        Context.setsigjmp_bufDecl(NewTD);
2634      else if (II->isStr("__builtin_va_list"))
2635        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2636    }
2637
2638  return NewTD;
2639}
2640
2641/// \brief Determines whether the given declaration is an out-of-scope
2642/// previous declaration.
2643///
2644/// This routine should be invoked when name lookup has found a
2645/// previous declaration (PrevDecl) that is not in the scope where a
2646/// new declaration by the same name is being introduced. If the new
2647/// declaration occurs in a local scope, previous declarations with
2648/// linkage may still be considered previous declarations (C99
2649/// 6.2.2p4-5, C++ [basic.link]p6).
2650///
2651/// \param PrevDecl the previous declaration found by name
2652/// lookup
2653///
2654/// \param DC the context in which the new declaration is being
2655/// declared.
2656///
2657/// \returns true if PrevDecl is an out-of-scope previous declaration
2658/// for a new delcaration with the same name.
2659static bool
2660isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2661                                ASTContext &Context) {
2662  if (!PrevDecl)
2663    return false;
2664
2665  if (!PrevDecl->hasLinkage())
2666    return false;
2667
2668  if (Context.getLangOptions().CPlusPlus) {
2669    // C++ [basic.link]p6:
2670    //   If there is a visible declaration of an entity with linkage
2671    //   having the same name and type, ignoring entities declared
2672    //   outside the innermost enclosing namespace scope, the block
2673    //   scope declaration declares that same entity and receives the
2674    //   linkage of the previous declaration.
2675    DeclContext *OuterContext = DC->getRedeclContext();
2676    if (!OuterContext->isFunctionOrMethod())
2677      // This rule only applies to block-scope declarations.
2678      return false;
2679
2680    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2681    if (PrevOuterContext->isRecord())
2682      // We found a member function: ignore it.
2683      return false;
2684
2685    // Find the innermost enclosing namespace for the new and
2686    // previous declarations.
2687    OuterContext = OuterContext->getEnclosingNamespaceContext();
2688    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2689
2690    // The previous declaration is in a different namespace, so it
2691    // isn't the same function.
2692    if (!OuterContext->Equals(PrevOuterContext))
2693      return false;
2694  }
2695
2696  return true;
2697}
2698
2699static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2700  CXXScopeSpec &SS = D.getCXXScopeSpec();
2701  if (!SS.isSet()) return;
2702  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2703                       SS.getRange());
2704}
2705
2706NamedDecl*
2707Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2708                              QualType R, TypeSourceInfo *TInfo,
2709                              LookupResult &Previous,
2710                              MultiTemplateParamsArg TemplateParamLists,
2711                              bool &Redeclaration) {
2712  DeclarationName Name = GetNameForDeclarator(D).getName();
2713
2714  // Check that there are no default arguments (C++ only).
2715  if (getLangOptions().CPlusPlus)
2716    CheckExtraCXXDefaultArguments(D);
2717
2718  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2719  assert(SCSpec != DeclSpec::SCS_typedef &&
2720         "Parser allowed 'typedef' as storage class VarDecl.");
2721  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2722  if (SCSpec == DeclSpec::SCS_mutable) {
2723    // mutable can only appear on non-static class members, so it's always
2724    // an error here
2725    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2726    D.setInvalidType();
2727    SC = SC_None;
2728  }
2729  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2730  VarDecl::StorageClass SCAsWritten
2731    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2732
2733  IdentifierInfo *II = Name.getAsIdentifierInfo();
2734  if (!II) {
2735    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2736      << Name.getAsString();
2737    return 0;
2738  }
2739
2740  DiagnoseFunctionSpecifiers(D);
2741
2742  if (!DC->isRecord() && S->getFnParent() == 0) {
2743    // C99 6.9p2: The storage-class specifiers auto and register shall not
2744    // appear in the declaration specifiers in an external declaration.
2745    if (SC == SC_Auto || SC == SC_Register) {
2746
2747      // If this is a register variable with an asm label specified, then this
2748      // is a GNU extension.
2749      if (SC == SC_Register && D.getAsmLabel())
2750        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2751      else
2752        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2753      D.setInvalidType();
2754    }
2755  }
2756  if (DC->isRecord() && !CurContext->isRecord()) {
2757    // This is an out-of-line definition of a static data member.
2758    if (SC == SC_Static) {
2759      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2760           diag::err_static_out_of_line)
2761        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2762    } else if (SC == SC_None)
2763      SC = SC_Static;
2764  }
2765  if (SC == SC_Static) {
2766    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2767      if (RD->isLocalClass())
2768        Diag(D.getIdentifierLoc(),
2769             diag::err_static_data_member_not_allowed_in_local_class)
2770          << Name << RD->getDeclName();
2771    }
2772  }
2773
2774  // Match up the template parameter lists with the scope specifier, then
2775  // determine whether we have a template or a template specialization.
2776  bool isExplicitSpecialization = false;
2777  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2778  bool Invalid = false;
2779  if (TemplateParameterList *TemplateParams
2780        = MatchTemplateParametersToScopeSpecifier(
2781                                  D.getDeclSpec().getSourceRange().getBegin(),
2782                                                  D.getCXXScopeSpec(),
2783                        (TemplateParameterList**)TemplateParamLists.get(),
2784                                                   TemplateParamLists.size(),
2785                                                  /*never a friend*/ false,
2786                                                  isExplicitSpecialization,
2787                                                  Invalid)) {
2788    // All but one template parameter lists have been matching.
2789    --NumMatchedTemplateParamLists;
2790
2791    if (TemplateParams->size() > 0) {
2792      // There is no such thing as a variable template.
2793      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2794        << II
2795        << SourceRange(TemplateParams->getTemplateLoc(),
2796                       TemplateParams->getRAngleLoc());
2797      return 0;
2798    } else {
2799      // There is an extraneous 'template<>' for this variable. Complain
2800      // about it, but allow the declaration of the variable.
2801      Diag(TemplateParams->getTemplateLoc(),
2802           diag::err_template_variable_noparams)
2803        << II
2804        << SourceRange(TemplateParams->getTemplateLoc(),
2805                       TemplateParams->getRAngleLoc());
2806
2807      isExplicitSpecialization = true;
2808    }
2809  }
2810
2811  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2812                                   II, R, TInfo, SC, SCAsWritten);
2813
2814  if (D.isInvalidType() || Invalid)
2815    NewVD->setInvalidDecl();
2816
2817  SetNestedNameSpecifier(NewVD, D);
2818
2819  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2820    NewVD->setTemplateParameterListsInfo(Context,
2821                                         NumMatchedTemplateParamLists,
2822                        (TemplateParameterList**)TemplateParamLists.release());
2823  }
2824
2825  if (D.getDeclSpec().isThreadSpecified()) {
2826    if (NewVD->hasLocalStorage())
2827      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2828    else if (!Context.Target.isTLSSupported())
2829      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2830    else
2831      NewVD->setThreadSpecified(true);
2832  }
2833
2834  // Set the lexical context. If the declarator has a C++ scope specifier, the
2835  // lexical context will be different from the semantic context.
2836  NewVD->setLexicalDeclContext(CurContext);
2837
2838  // Handle attributes prior to checking for duplicates in MergeVarDecl
2839  ProcessDeclAttributes(S, NewVD, D);
2840
2841  // Handle GNU asm-label extension (encoded as an attribute).
2842  if (Expr *E = (Expr*)D.getAsmLabel()) {
2843    // The parser guarantees this is a string.
2844    StringLiteral *SE = cast<StringLiteral>(E);
2845    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2846                                                Context, SE->getString()));
2847  }
2848
2849  // Diagnose shadowed variables before filtering for scope.
2850  if (!D.getCXXScopeSpec().isSet())
2851    CheckShadow(S, NewVD, Previous);
2852
2853  // Don't consider existing declarations that are in a different
2854  // scope and are out-of-semantic-context declarations (if the new
2855  // declaration has linkage).
2856  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2857
2858  // Merge the decl with the existing one if appropriate.
2859  if (!Previous.empty()) {
2860    if (Previous.isSingleResult() &&
2861        isa<FieldDecl>(Previous.getFoundDecl()) &&
2862        D.getCXXScopeSpec().isSet()) {
2863      // The user tried to define a non-static data member
2864      // out-of-line (C++ [dcl.meaning]p1).
2865      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2866        << D.getCXXScopeSpec().getRange();
2867      Previous.clear();
2868      NewVD->setInvalidDecl();
2869    }
2870  } else if (D.getCXXScopeSpec().isSet()) {
2871    // No previous declaration in the qualifying scope.
2872    Diag(D.getIdentifierLoc(), diag::err_no_member)
2873      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2874      << D.getCXXScopeSpec().getRange();
2875    NewVD->setInvalidDecl();
2876  }
2877
2878  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2879
2880  // This is an explicit specialization of a static data member. Check it.
2881  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2882      CheckMemberSpecialization(NewVD, Previous))
2883    NewVD->setInvalidDecl();
2884
2885  // attributes declared post-definition are currently ignored
2886  // FIXME: This should be handled in attribute merging, not
2887  // here.
2888  if (Previous.isSingleResult()) {
2889    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2890    if (Def && (Def = Def->getDefinition()) &&
2891        Def != NewVD && D.hasAttributes()) {
2892      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2893      Diag(Def->getLocation(), diag::note_previous_definition);
2894    }
2895  }
2896
2897  // If this is a locally-scoped extern C variable, update the map of
2898  // such variables.
2899  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2900      !NewVD->isInvalidDecl())
2901    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2902
2903  // If there's a #pragma GCC visibility in scope, and this isn't a class
2904  // member, set the visibility of this variable.
2905  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2906    AddPushedVisibilityAttribute(NewVD);
2907
2908  MarkUnusedFileScopedDecl(NewVD);
2909
2910  return NewVD;
2911}
2912
2913/// \brief Diagnose variable or built-in function shadowing.  Implements
2914/// -Wshadow.
2915///
2916/// This method is called whenever a VarDecl is added to a "useful"
2917/// scope.
2918///
2919/// \param S the scope in which the shadowing name is being declared
2920/// \param R the lookup of the name
2921///
2922void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2923  // Return if warning is ignored.
2924  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2925    return;
2926
2927  // Don't diagnose declarations at file scope.  The scope might not
2928  // have a DeclContext if (e.g.) we're parsing a function prototype.
2929  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2930  if (NewDC && NewDC->isFileContext())
2931    return;
2932
2933  // Only diagnose if we're shadowing an unambiguous field or variable.
2934  if (R.getResultKind() != LookupResult::Found)
2935    return;
2936
2937  NamedDecl* ShadowedDecl = R.getFoundDecl();
2938  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2939    return;
2940
2941  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2942
2943  // Only warn about certain kinds of shadowing for class members.
2944  if (NewDC && NewDC->isRecord()) {
2945    // In particular, don't warn about shadowing non-class members.
2946    if (!OldDC->isRecord())
2947      return;
2948
2949    // TODO: should we warn about static data members shadowing
2950    // static data members from base classes?
2951
2952    // TODO: don't diagnose for inaccessible shadowed members.
2953    // This is hard to do perfectly because we might friend the
2954    // shadowing context, but that's just a false negative.
2955  }
2956
2957  // Determine what kind of declaration we're shadowing.
2958  unsigned Kind;
2959  if (isa<RecordDecl>(OldDC)) {
2960    if (isa<FieldDecl>(ShadowedDecl))
2961      Kind = 3; // field
2962    else
2963      Kind = 2; // static data member
2964  } else if (OldDC->isFileContext())
2965    Kind = 1; // global
2966  else
2967    Kind = 0; // local
2968
2969  DeclarationName Name = R.getLookupName();
2970
2971  // Emit warning and note.
2972  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2973  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2974}
2975
2976/// \brief Check -Wshadow without the advantage of a previous lookup.
2977void Sema::CheckShadow(Scope *S, VarDecl *D) {
2978  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2979                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2980  LookupName(R, S);
2981  CheckShadow(S, D, R);
2982}
2983
2984/// \brief Perform semantic checking on a newly-created variable
2985/// declaration.
2986///
2987/// This routine performs all of the type-checking required for a
2988/// variable declaration once it has been built. It is used both to
2989/// check variables after they have been parsed and their declarators
2990/// have been translated into a declaration, and to check variables
2991/// that have been instantiated from a template.
2992///
2993/// Sets NewVD->isInvalidDecl() if an error was encountered.
2994void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2995                                    LookupResult &Previous,
2996                                    bool &Redeclaration) {
2997  // If the decl is already known invalid, don't check it.
2998  if (NewVD->isInvalidDecl())
2999    return;
3000
3001  QualType T = NewVD->getType();
3002
3003  if (T->isObjCObjectType()) {
3004    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3005    return NewVD->setInvalidDecl();
3006  }
3007
3008  // Emit an error if an address space was applied to decl with local storage.
3009  // This includes arrays of objects with address space qualifiers, but not
3010  // automatic variables that point to other address spaces.
3011  // ISO/IEC TR 18037 S5.1.2
3012  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3013    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3014    return NewVD->setInvalidDecl();
3015  }
3016
3017  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3018      && !NewVD->hasAttr<BlocksAttr>())
3019    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3020
3021  bool isVM = T->isVariablyModifiedType();
3022  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3023      NewVD->hasAttr<BlocksAttr>())
3024    getCurFunction()->setHasBranchProtectedScope();
3025
3026  if ((isVM && NewVD->hasLinkage()) ||
3027      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3028    bool SizeIsNegative;
3029    llvm::APSInt Oversized;
3030    QualType FixedTy =
3031        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3032                                            Oversized);
3033
3034    if (FixedTy.isNull() && T->isVariableArrayType()) {
3035      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3036      // FIXME: This won't give the correct result for
3037      // int a[10][n];
3038      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3039
3040      if (NewVD->isFileVarDecl())
3041        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3042        << SizeRange;
3043      else if (NewVD->getStorageClass() == SC_Static)
3044        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3045        << SizeRange;
3046      else
3047        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3048        << SizeRange;
3049      return NewVD->setInvalidDecl();
3050    }
3051
3052    if (FixedTy.isNull()) {
3053      if (NewVD->isFileVarDecl())
3054        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3055      else
3056        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3057      return NewVD->setInvalidDecl();
3058    }
3059
3060    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3061    NewVD->setType(FixedTy);
3062  }
3063
3064  if (Previous.empty() && NewVD->isExternC()) {
3065    // Since we did not find anything by this name and we're declaring
3066    // an extern "C" variable, look for a non-visible extern "C"
3067    // declaration with the same name.
3068    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3069      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3070    if (Pos != LocallyScopedExternalDecls.end())
3071      Previous.addDecl(Pos->second);
3072  }
3073
3074  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3075    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3076      << T;
3077    return NewVD->setInvalidDecl();
3078  }
3079
3080  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3081    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3082    return NewVD->setInvalidDecl();
3083  }
3084
3085  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3086    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3087    return NewVD->setInvalidDecl();
3088  }
3089
3090  // Function pointers and references cannot have qualified function type, only
3091  // function pointer-to-members can do that.
3092  QualType Pointee;
3093  unsigned PtrOrRef = 0;
3094  if (const PointerType *Ptr = T->getAs<PointerType>())
3095    Pointee = Ptr->getPointeeType();
3096  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3097    Pointee = Ref->getPointeeType();
3098    PtrOrRef = 1;
3099  }
3100  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3101      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3102    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3103        << PtrOrRef;
3104    return NewVD->setInvalidDecl();
3105  }
3106
3107  if (!Previous.empty()) {
3108    Redeclaration = true;
3109    MergeVarDecl(NewVD, Previous);
3110  }
3111}
3112
3113/// \brief Data used with FindOverriddenMethod
3114struct FindOverriddenMethodData {
3115  Sema *S;
3116  CXXMethodDecl *Method;
3117};
3118
3119/// \brief Member lookup function that determines whether a given C++
3120/// method overrides a method in a base class, to be used with
3121/// CXXRecordDecl::lookupInBases().
3122static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3123                                 CXXBasePath &Path,
3124                                 void *UserData) {
3125  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3126
3127  FindOverriddenMethodData *Data
3128    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3129
3130  DeclarationName Name = Data->Method->getDeclName();
3131
3132  // FIXME: Do we care about other names here too?
3133  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3134    // We really want to find the base class destructor here.
3135    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3136    CanQualType CT = Data->S->Context.getCanonicalType(T);
3137
3138    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3139  }
3140
3141  for (Path.Decls = BaseRecord->lookup(Name);
3142       Path.Decls.first != Path.Decls.second;
3143       ++Path.Decls.first) {
3144    NamedDecl *D = *Path.Decls.first;
3145    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3146      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3147        return true;
3148    }
3149  }
3150
3151  return false;
3152}
3153
3154/// AddOverriddenMethods - See if a method overrides any in the base classes,
3155/// and if so, check that it's a valid override and remember it.
3156bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3157  // Look for virtual methods in base classes that this method might override.
3158  CXXBasePaths Paths;
3159  FindOverriddenMethodData Data;
3160  Data.Method = MD;
3161  Data.S = this;
3162  bool AddedAny = false;
3163  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3164    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3165         E = Paths.found_decls_end(); I != E; ++I) {
3166      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3167        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3168            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3169            !CheckOverridingFunctionAttributes(MD, OldMD)) {
3170          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3171          AddedAny = true;
3172        }
3173      }
3174    }
3175  }
3176
3177  return AddedAny;
3178}
3179
3180static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3181  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3182                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3183  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3184  assert(!Prev.isAmbiguous() &&
3185         "Cannot have an ambiguity in previous-declaration lookup");
3186  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3187       Func != FuncEnd; ++Func) {
3188    if (isa<FunctionDecl>(*Func) &&
3189        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3190      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3191  }
3192}
3193
3194NamedDecl*
3195Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3196                              QualType R, TypeSourceInfo *TInfo,
3197                              LookupResult &Previous,
3198                              MultiTemplateParamsArg TemplateParamLists,
3199                              bool IsFunctionDefinition, bool &Redeclaration) {
3200  assert(R.getTypePtr()->isFunctionType());
3201
3202  // TODO: consider using NameInfo for diagnostic.
3203  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3204  DeclarationName Name = NameInfo.getName();
3205  FunctionDecl::StorageClass SC = SC_None;
3206  switch (D.getDeclSpec().getStorageClassSpec()) {
3207  default: assert(0 && "Unknown storage class!");
3208  case DeclSpec::SCS_auto:
3209  case DeclSpec::SCS_register:
3210  case DeclSpec::SCS_mutable:
3211    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3212         diag::err_typecheck_sclass_func);
3213    D.setInvalidType();
3214    break;
3215  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3216  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3217  case DeclSpec::SCS_static: {
3218    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3219      // C99 6.7.1p5:
3220      //   The declaration of an identifier for a function that has
3221      //   block scope shall have no explicit storage-class specifier
3222      //   other than extern
3223      // See also (C++ [dcl.stc]p4).
3224      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3225           diag::err_static_block_func);
3226      SC = SC_None;
3227    } else
3228      SC = SC_Static;
3229    break;
3230  }
3231  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3232  }
3233
3234  if (D.getDeclSpec().isThreadSpecified())
3235    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3236
3237  bool isFriend = D.getDeclSpec().isFriendSpecified();
3238  bool isInline = D.getDeclSpec().isInlineSpecified();
3239  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3240  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3241
3242  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3243  FunctionDecl::StorageClass SCAsWritten
3244    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3245
3246  // Check that the return type is not an abstract class type.
3247  // For record types, this is done by the AbstractClassUsageDiagnoser once
3248  // the class has been completely parsed.
3249  if (!DC->isRecord() &&
3250      RequireNonAbstractType(D.getIdentifierLoc(),
3251                             R->getAs<FunctionType>()->getResultType(),
3252                             diag::err_abstract_type_in_decl,
3253                             AbstractReturnType))
3254    D.setInvalidType();
3255
3256  // Do not allow returning a objc interface by-value.
3257  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3258    Diag(D.getIdentifierLoc(),
3259         diag::err_object_cannot_be_passed_returned_by_value) << 0
3260      << R->getAs<FunctionType>()->getResultType();
3261    D.setInvalidType();
3262  }
3263
3264  bool isVirtualOkay = false;
3265  FunctionDecl *NewFD;
3266
3267  if (isFriend) {
3268    // C++ [class.friend]p5
3269    //   A function can be defined in a friend declaration of a
3270    //   class . . . . Such a function is implicitly inline.
3271    isInline |= IsFunctionDefinition;
3272  }
3273
3274  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3275    // This is a C++ constructor declaration.
3276    assert(DC->isRecord() &&
3277           "Constructors can only be declared in a member context");
3278
3279    R = CheckConstructorDeclarator(D, R, SC);
3280
3281    // Create the new declaration
3282    NewFD = CXXConstructorDecl::Create(Context,
3283                                       cast<CXXRecordDecl>(DC),
3284                                       NameInfo, R, TInfo,
3285                                       isExplicit, isInline,
3286                                       /*isImplicitlyDeclared=*/false);
3287  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3288    // This is a C++ destructor declaration.
3289    if (DC->isRecord()) {
3290      R = CheckDestructorDeclarator(D, R, SC);
3291
3292      NewFD = CXXDestructorDecl::Create(Context,
3293                                        cast<CXXRecordDecl>(DC),
3294                                        NameInfo, R,
3295                                        isInline,
3296                                        /*isImplicitlyDeclared=*/false);
3297      NewFD->setTypeSourceInfo(TInfo);
3298
3299      isVirtualOkay = true;
3300    } else {
3301      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3302
3303      // Create a FunctionDecl to satisfy the function definition parsing
3304      // code path.
3305      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3306                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3307                                   /*hasPrototype=*/true);
3308      D.setInvalidType();
3309    }
3310  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3311    if (!DC->isRecord()) {
3312      Diag(D.getIdentifierLoc(),
3313           diag::err_conv_function_not_member);
3314      return 0;
3315    }
3316
3317    CheckConversionDeclarator(D, R, SC);
3318    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3319                                      NameInfo, R, TInfo,
3320                                      isInline, isExplicit);
3321
3322    isVirtualOkay = true;
3323  } else if (DC->isRecord()) {
3324    // If the of the function is the same as the name of the record, then this
3325    // must be an invalid constructor that has a return type.
3326    // (The parser checks for a return type and makes the declarator a
3327    // constructor if it has no return type).
3328    // must have an invalid constructor that has a return type
3329    if (Name.getAsIdentifierInfo() &&
3330        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3331      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3332        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3333        << SourceRange(D.getIdentifierLoc());
3334      return 0;
3335    }
3336
3337    bool isStatic = SC == SC_Static;
3338
3339    // [class.free]p1:
3340    // Any allocation function for a class T is a static member
3341    // (even if not explicitly declared static).
3342    if (Name.getCXXOverloadedOperator() == OO_New ||
3343        Name.getCXXOverloadedOperator() == OO_Array_New)
3344      isStatic = true;
3345
3346    // [class.free]p6 Any deallocation function for a class X is a static member
3347    // (even if not explicitly declared static).
3348    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3349        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3350      isStatic = true;
3351
3352    // This is a C++ method declaration.
3353    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3354                                  NameInfo, R, TInfo,
3355                                  isStatic, SCAsWritten, isInline);
3356
3357    isVirtualOkay = !isStatic;
3358  } else {
3359    // Determine whether the function was written with a
3360    // prototype. This true when:
3361    //   - we're in C++ (where every function has a prototype),
3362    //   - there is a prototype in the declarator, or
3363    //   - the type R of the function is some kind of typedef or other reference
3364    //     to a type name (which eventually refers to a function type).
3365    bool HasPrototype =
3366       getLangOptions().CPlusPlus ||
3367       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3368       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3369
3370    NewFD = FunctionDecl::Create(Context, DC,
3371                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3372                                 HasPrototype);
3373  }
3374
3375  if (D.isInvalidType())
3376    NewFD->setInvalidDecl();
3377
3378  SetNestedNameSpecifier(NewFD, D);
3379
3380  // Set the lexical context. If the declarator has a C++
3381  // scope specifier, or is the object of a friend declaration, the
3382  // lexical context will be different from the semantic context.
3383  NewFD->setLexicalDeclContext(CurContext);
3384
3385  // Match up the template parameter lists with the scope specifier, then
3386  // determine whether we have a template or a template specialization.
3387  FunctionTemplateDecl *FunctionTemplate = 0;
3388  bool isExplicitSpecialization = false;
3389  bool isFunctionTemplateSpecialization = false;
3390  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3391  bool Invalid = false;
3392  if (TemplateParameterList *TemplateParams
3393        = MatchTemplateParametersToScopeSpecifier(
3394                                  D.getDeclSpec().getSourceRange().getBegin(),
3395                                  D.getCXXScopeSpec(),
3396                           (TemplateParameterList**)TemplateParamLists.get(),
3397                                                  TemplateParamLists.size(),
3398                                                  isFriend,
3399                                                  isExplicitSpecialization,
3400                                                  Invalid)) {
3401    // All but one template parameter lists have been matching.
3402    --NumMatchedTemplateParamLists;
3403
3404    if (TemplateParams->size() > 0) {
3405      // This is a function template
3406
3407      // Check that we can declare a template here.
3408      if (CheckTemplateDeclScope(S, TemplateParams))
3409        return 0;
3410
3411      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3412                                                      NewFD->getLocation(),
3413                                                      Name, TemplateParams,
3414                                                      NewFD);
3415      FunctionTemplate->setLexicalDeclContext(CurContext);
3416      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3417    } else {
3418      // This is a function template specialization.
3419      isFunctionTemplateSpecialization = true;
3420
3421      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3422      if (isFriend && isFunctionTemplateSpecialization) {
3423        // We want to remove the "template<>", found here.
3424        SourceRange RemoveRange = TemplateParams->getSourceRange();
3425
3426        // If we remove the template<> and the name is not a
3427        // template-id, we're actually silently creating a problem:
3428        // the friend declaration will refer to an untemplated decl,
3429        // and clearly the user wants a template specialization.  So
3430        // we need to insert '<>' after the name.
3431        SourceLocation InsertLoc;
3432        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3433          InsertLoc = D.getName().getSourceRange().getEnd();
3434          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3435        }
3436
3437        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3438          << Name << RemoveRange
3439          << FixItHint::CreateRemoval(RemoveRange)
3440          << FixItHint::CreateInsertion(InsertLoc, "<>");
3441      }
3442    }
3443  }
3444
3445  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3446    NewFD->setTemplateParameterListsInfo(Context,
3447                                         NumMatchedTemplateParamLists,
3448                        (TemplateParameterList**)TemplateParamLists.release());
3449  }
3450
3451  if (Invalid) {
3452    NewFD->setInvalidDecl();
3453    if (FunctionTemplate)
3454      FunctionTemplate->setInvalidDecl();
3455  }
3456
3457  // C++ [dcl.fct.spec]p5:
3458  //   The virtual specifier shall only be used in declarations of
3459  //   nonstatic class member functions that appear within a
3460  //   member-specification of a class declaration; see 10.3.
3461  //
3462  if (isVirtual && !NewFD->isInvalidDecl()) {
3463    if (!isVirtualOkay) {
3464       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3465           diag::err_virtual_non_function);
3466    } else if (!CurContext->isRecord()) {
3467      // 'virtual' was specified outside of the class.
3468      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3469        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3470    } else {
3471      // Okay: Add virtual to the method.
3472      NewFD->setVirtualAsWritten(true);
3473    }
3474  }
3475
3476  // C++ [dcl.fct.spec]p3:
3477  //  The inline specifier shall not appear on a block scope function declaration.
3478  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3479    if (CurContext->isFunctionOrMethod()) {
3480      // 'inline' is not allowed on block scope function declaration.
3481      Diag(D.getDeclSpec().getInlineSpecLoc(),
3482           diag::err_inline_declaration_block_scope) << Name
3483        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3484    }
3485  }
3486
3487  // C++ [dcl.fct.spec]p6:
3488  //  The explicit specifier shall be used only in the declaration of a
3489  //  constructor or conversion function within its class definition; see 12.3.1
3490  //  and 12.3.2.
3491  if (isExplicit && !NewFD->isInvalidDecl()) {
3492    if (!CurContext->isRecord()) {
3493      // 'explicit' was specified outside of the class.
3494      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3495           diag::err_explicit_out_of_class)
3496        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3497    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3498               !isa<CXXConversionDecl>(NewFD)) {
3499      // 'explicit' was specified on a function that wasn't a constructor
3500      // or conversion function.
3501      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3502           diag::err_explicit_non_ctor_or_conv_function)
3503        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3504    }
3505  }
3506
3507  // Filter out previous declarations that don't match the scope.
3508  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3509
3510  if (isFriend) {
3511    // For now, claim that the objects have no previous declaration.
3512    if (FunctionTemplate) {
3513      FunctionTemplate->setObjectOfFriendDecl(false);
3514      FunctionTemplate->setAccess(AS_public);
3515    }
3516    NewFD->setObjectOfFriendDecl(false);
3517    NewFD->setAccess(AS_public);
3518  }
3519
3520  if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3521      !CurContext->isRecord()) {
3522    // C++ [class.static]p1:
3523    //   A data or function member of a class may be declared static
3524    //   in a class definition, in which case it is a static member of
3525    //   the class.
3526
3527    // Complain about the 'static' specifier if it's on an out-of-line
3528    // member function definition.
3529    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3530         diag::err_static_out_of_line)
3531      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3532  }
3533
3534  // Handle GNU asm-label extension (encoded as an attribute).
3535  if (Expr *E = (Expr*) D.getAsmLabel()) {
3536    // The parser guarantees this is a string.
3537    StringLiteral *SE = cast<StringLiteral>(E);
3538    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3539                                                SE->getString()));
3540  }
3541
3542  // Copy the parameter declarations from the declarator D to the function
3543  // declaration NewFD, if they are available.  First scavenge them into Params.
3544  llvm::SmallVector<ParmVarDecl*, 16> Params;
3545  if (D.getNumTypeObjects() > 0) {
3546    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3547
3548    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3549    // function that takes no arguments, not a function that takes a
3550    // single void argument.
3551    // We let through "const void" here because Sema::GetTypeForDeclarator
3552    // already checks for that case.
3553    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3554        FTI.ArgInfo[0].Param &&
3555        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3556      // Empty arg list, don't push any params.
3557      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3558
3559      // In C++, the empty parameter-type-list must be spelled "void"; a
3560      // typedef of void is not permitted.
3561      if (getLangOptions().CPlusPlus &&
3562          Param->getType().getUnqualifiedType() != Context.VoidTy)
3563        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3564      // FIXME: Leaks decl?
3565    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3566      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3567        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3568        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3569        Param->setDeclContext(NewFD);
3570        Params.push_back(Param);
3571
3572        if (Param->isInvalidDecl())
3573          NewFD->setInvalidDecl();
3574      }
3575    }
3576
3577  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3578    // When we're declaring a function with a typedef, typeof, etc as in the
3579    // following example, we'll need to synthesize (unnamed)
3580    // parameters for use in the declaration.
3581    //
3582    // @code
3583    // typedef void fn(int);
3584    // fn f;
3585    // @endcode
3586
3587    // Synthesize a parameter for each argument type.
3588    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3589         AE = FT->arg_type_end(); AI != AE; ++AI) {
3590      ParmVarDecl *Param =
3591        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3592      Params.push_back(Param);
3593    }
3594  } else {
3595    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3596           "Should not need args for typedef of non-prototype fn");
3597  }
3598  // Finally, we know we have the right number of parameters, install them.
3599  NewFD->setParams(Params.data(), Params.size());
3600
3601  // If the declarator is a template-id, translate the parser's template
3602  // argument list into our AST format.
3603  bool HasExplicitTemplateArgs = false;
3604  TemplateArgumentListInfo TemplateArgs;
3605  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3606    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3607    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3608    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3609    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3610                                       TemplateId->getTemplateArgs(),
3611                                       TemplateId->NumArgs);
3612    translateTemplateArguments(TemplateArgsPtr,
3613                               TemplateArgs);
3614    TemplateArgsPtr.release();
3615
3616    HasExplicitTemplateArgs = true;
3617
3618    if (FunctionTemplate) {
3619      // FIXME: Diagnose function template with explicit template
3620      // arguments.
3621      HasExplicitTemplateArgs = false;
3622    } else if (!isFunctionTemplateSpecialization &&
3623               !D.getDeclSpec().isFriendSpecified()) {
3624      // We have encountered something that the user meant to be a
3625      // specialization (because it has explicitly-specified template
3626      // arguments) but that was not introduced with a "template<>" (or had
3627      // too few of them).
3628      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3629        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3630        << FixItHint::CreateInsertion(
3631                                   D.getDeclSpec().getSourceRange().getBegin(),
3632                                                 "template<> ");
3633      isFunctionTemplateSpecialization = true;
3634    } else {
3635      // "friend void foo<>(int);" is an implicit specialization decl.
3636      isFunctionTemplateSpecialization = true;
3637    }
3638  } else if (isFriend && isFunctionTemplateSpecialization) {
3639    // This combination is only possible in a recovery case;  the user
3640    // wrote something like:
3641    //   template <> friend void foo(int);
3642    // which we're recovering from as if the user had written:
3643    //   friend void foo<>(int);
3644    // Go ahead and fake up a template id.
3645    HasExplicitTemplateArgs = true;
3646    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3647    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3648  }
3649
3650  // If it's a friend (and only if it's a friend), it's possible
3651  // that either the specialized function type or the specialized
3652  // template is dependent, and therefore matching will fail.  In
3653  // this case, don't check the specialization yet.
3654  if (isFunctionTemplateSpecialization && isFriend &&
3655      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3656    assert(HasExplicitTemplateArgs &&
3657           "friend function specialization without template args");
3658    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3659                                                     Previous))
3660      NewFD->setInvalidDecl();
3661  } else if (isFunctionTemplateSpecialization) {
3662    if (CheckFunctionTemplateSpecialization(NewFD,
3663                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3664                                            Previous))
3665      NewFD->setInvalidDecl();
3666  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3667    if (CheckMemberSpecialization(NewFD, Previous))
3668      NewFD->setInvalidDecl();
3669  }
3670
3671  // Perform semantic checking on the function declaration.
3672  bool OverloadableAttrRequired = false; // FIXME: HACK!
3673  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3674                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3675
3676  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3677          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3678         "previous declaration set still overloaded");
3679
3680  NamedDecl *PrincipalDecl = (FunctionTemplate
3681                              ? cast<NamedDecl>(FunctionTemplate)
3682                              : NewFD);
3683
3684  if (isFriend && Redeclaration) {
3685    AccessSpecifier Access = AS_public;
3686    if (!NewFD->isInvalidDecl())
3687      Access = NewFD->getPreviousDeclaration()->getAccess();
3688
3689    NewFD->setAccess(Access);
3690    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3691
3692    PrincipalDecl->setObjectOfFriendDecl(true);
3693  }
3694
3695  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3696      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3697    PrincipalDecl->setNonMemberOperator();
3698
3699  // If we have a function template, check the template parameter
3700  // list. This will check and merge default template arguments.
3701  if (FunctionTemplate) {
3702    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3703    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3704                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3705             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3706                                                : TPC_FunctionTemplate);
3707  }
3708
3709  if (NewFD->isInvalidDecl()) {
3710    // Ignore all the rest of this.
3711  } else if (!Redeclaration) {
3712    // Fake up an access specifier if it's supposed to be a class member.
3713    if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
3714      NewFD->setAccess(AS_public);
3715
3716    // Qualified decls generally require a previous declaration.
3717    if (D.getCXXScopeSpec().isSet()) {
3718      // ...with the major exception of dependent friend declarations.
3719      // In theory, this condition could be whether the qualifier
3720      // is dependent;  in practice, the way we nest template parameters
3721      // prevents this sort of matching from working, so we have to base it
3722      // on the general dependence of the context.
3723      if (isFriend && CurContext->isDependentContext()) {
3724        // ignore these
3725
3726      } else {
3727        // The user tried to provide an out-of-line definition for a
3728        // function that is a member of a class or namespace, but there
3729        // was no such member function declared (C++ [class.mfct]p2,
3730        // C++ [namespace.memdef]p2). For example:
3731        //
3732        // class X {
3733        //   void f() const;
3734        // };
3735        //
3736        // void X::f() { } // ill-formed
3737        //
3738        // Complain about this problem, and attempt to suggest close
3739        // matches (e.g., those that differ only in cv-qualifiers and
3740        // whether the parameter types are references).
3741        Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3742          << Name << DC << D.getCXXScopeSpec().getRange();
3743        NewFD->setInvalidDecl();
3744
3745        DiagnoseInvalidRedeclaration(*this, NewFD);
3746      }
3747
3748    // Unqualified local friend declarations are required to resolve
3749    // to something.
3750    } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
3751      Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
3752      NewFD->setInvalidDecl();
3753      DiagnoseInvalidRedeclaration(*this, NewFD);
3754    }
3755
3756  } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
3757             !isFriend && !isFunctionTemplateSpecialization &&
3758             !isExplicitSpecialization) {
3759    // An out-of-line member function declaration must also be a
3760    // definition (C++ [dcl.meaning]p1).
3761    // Note that this is not the case for explicit specializations of
3762    // function templates or member functions of class templates, per
3763    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3764    // for compatibility with old SWIG code which likes to generate them.
3765    Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3766      << D.getCXXScopeSpec().getRange();
3767  }
3768
3769  // Handle attributes. We need to have merged decls when handling attributes
3770  // (for example to check for conflicts, etc).
3771  // FIXME: This needs to happen before we merge declarations. Then,
3772  // let attribute merging cope with attribute conflicts.
3773  ProcessDeclAttributes(S, NewFD, D);
3774
3775  // attributes declared post-definition are currently ignored
3776  // FIXME: This should happen during attribute merging
3777  if (Redeclaration && Previous.isSingleResult()) {
3778    const FunctionDecl *Def;
3779    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3780    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3781      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3782      Diag(Def->getLocation(), diag::note_previous_definition);
3783    }
3784  }
3785
3786  AddKnownFunctionAttributes(NewFD);
3787
3788  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3789    // If a function name is overloadable in C, then every function
3790    // with that name must be marked "overloadable".
3791    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3792      << Redeclaration << NewFD;
3793    if (!Previous.empty())
3794      Diag(Previous.getRepresentativeDecl()->getLocation(),
3795           diag::note_attribute_overloadable_prev_overload);
3796    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3797  }
3798
3799  if (NewFD->hasAttr<OverloadableAttr>() &&
3800      !NewFD->getType()->getAs<FunctionProtoType>()) {
3801    Diag(NewFD->getLocation(),
3802         diag::err_attribute_overloadable_no_prototype)
3803      << NewFD;
3804
3805    // Turn this into a variadic function with no parameters.
3806    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3807    QualType R = Context.getFunctionType(FT->getResultType(),
3808                                         0, 0, true, 0, false, false, 0, 0,
3809                                         FT->getExtInfo());
3810    NewFD->setType(R);
3811  }
3812
3813  // If there's a #pragma GCC visibility in scope, and this isn't a class
3814  // member, set the visibility of this function.
3815  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3816    AddPushedVisibilityAttribute(NewFD);
3817
3818  // If this is a locally-scoped extern C function, update the
3819  // map of such names.
3820  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3821      && !NewFD->isInvalidDecl())
3822    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3823
3824  // Set this FunctionDecl's range up to the right paren.
3825  NewFD->setLocEnd(D.getSourceRange().getEnd());
3826
3827  if (FunctionTemplate && NewFD->isInvalidDecl())
3828    FunctionTemplate->setInvalidDecl();
3829
3830  if (FunctionTemplate)
3831    return FunctionTemplate;
3832
3833  MarkUnusedFileScopedDecl(NewFD);
3834
3835  return NewFD;
3836}
3837
3838/// \brief Perform semantic checking of a new function declaration.
3839///
3840/// Performs semantic analysis of the new function declaration
3841/// NewFD. This routine performs all semantic checking that does not
3842/// require the actual declarator involved in the declaration, and is
3843/// used both for the declaration of functions as they are parsed
3844/// (called via ActOnDeclarator) and for the declaration of functions
3845/// that have been instantiated via C++ template instantiation (called
3846/// via InstantiateDecl).
3847///
3848/// \param IsExplicitSpecialiation whether this new function declaration is
3849/// an explicit specialization of the previous declaration.
3850///
3851/// This sets NewFD->isInvalidDecl() to true if there was an error.
3852void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3853                                    LookupResult &Previous,
3854                                    bool IsExplicitSpecialization,
3855                                    bool &Redeclaration,
3856                                    bool &OverloadableAttrRequired) {
3857  // If NewFD is already known erroneous, don't do any of this checking.
3858  if (NewFD->isInvalidDecl()) {
3859    // If this is a class member, mark the class invalid immediately.
3860    // This avoids some consistency errors later.
3861    if (isa<CXXMethodDecl>(NewFD))
3862      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3863
3864    return;
3865  }
3866
3867  if (NewFD->getResultType()->isVariablyModifiedType()) {
3868    // Functions returning a variably modified type violate C99 6.7.5.2p2
3869    // because all functions have linkage.
3870    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3871    return NewFD->setInvalidDecl();
3872  }
3873
3874  if (NewFD->isMain())
3875    CheckMain(NewFD);
3876
3877  // Check for a previous declaration of this name.
3878  if (Previous.empty() && NewFD->isExternC()) {
3879    // Since we did not find anything by this name and we're declaring
3880    // an extern "C" function, look for a non-visible extern "C"
3881    // declaration with the same name.
3882    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3883      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3884    if (Pos != LocallyScopedExternalDecls.end())
3885      Previous.addDecl(Pos->second);
3886  }
3887
3888  // Merge or overload the declaration with an existing declaration of
3889  // the same name, if appropriate.
3890  if (!Previous.empty()) {
3891    // Determine whether NewFD is an overload of PrevDecl or
3892    // a declaration that requires merging. If it's an overload,
3893    // there's no more work to do here; we'll just add the new
3894    // function to the scope.
3895
3896    NamedDecl *OldDecl = 0;
3897    if (!AllowOverloadingOfFunction(Previous, Context)) {
3898      Redeclaration = true;
3899      OldDecl = Previous.getFoundDecl();
3900    } else {
3901      if (!getLangOptions().CPlusPlus)
3902        OverloadableAttrRequired = true;
3903
3904      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3905                            /*NewIsUsingDecl*/ false)) {
3906      case Ovl_Match:
3907        Redeclaration = true;
3908        break;
3909
3910      case Ovl_NonFunction:
3911        Redeclaration = true;
3912        break;
3913
3914      case Ovl_Overload:
3915        Redeclaration = false;
3916        break;
3917      }
3918    }
3919
3920    if (Redeclaration) {
3921      // NewFD and OldDecl represent declarations that need to be
3922      // merged.
3923      if (MergeFunctionDecl(NewFD, OldDecl))
3924        return NewFD->setInvalidDecl();
3925
3926      Previous.clear();
3927      Previous.addDecl(OldDecl);
3928
3929      if (FunctionTemplateDecl *OldTemplateDecl
3930                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3931        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3932        FunctionTemplateDecl *NewTemplateDecl
3933          = NewFD->getDescribedFunctionTemplate();
3934        assert(NewTemplateDecl && "Template/non-template mismatch");
3935        if (CXXMethodDecl *Method
3936              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3937          Method->setAccess(OldTemplateDecl->getAccess());
3938          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3939        }
3940
3941        // If this is an explicit specialization of a member that is a function
3942        // template, mark it as a member specialization.
3943        if (IsExplicitSpecialization &&
3944            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3945          NewTemplateDecl->setMemberSpecialization();
3946          assert(OldTemplateDecl->isMemberSpecialization());
3947        }
3948      } else {
3949        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3950          NewFD->setAccess(OldDecl->getAccess());
3951        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3952      }
3953    }
3954  }
3955
3956  // Semantic checking for this function declaration (in isolation).
3957  if (getLangOptions().CPlusPlus) {
3958    // C++-specific checks.
3959    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3960      CheckConstructor(Constructor);
3961    } else if (CXXDestructorDecl *Destructor =
3962                dyn_cast<CXXDestructorDecl>(NewFD)) {
3963      CXXRecordDecl *Record = Destructor->getParent();
3964      QualType ClassType = Context.getTypeDeclType(Record);
3965
3966      // FIXME: Shouldn't we be able to perform this check even when the class
3967      // type is dependent? Both gcc and edg can handle that.
3968      if (!ClassType->isDependentType()) {
3969        DeclarationName Name
3970          = Context.DeclarationNames.getCXXDestructorName(
3971                                        Context.getCanonicalType(ClassType));
3972        if (NewFD->getDeclName() != Name) {
3973          Diag(NewFD->getLocation(), diag::err_destructor_name);
3974          return NewFD->setInvalidDecl();
3975        }
3976      }
3977    } else if (CXXConversionDecl *Conversion
3978               = dyn_cast<CXXConversionDecl>(NewFD)) {
3979      ActOnConversionDeclarator(Conversion);
3980    }
3981
3982    // Find any virtual functions that this function overrides.
3983    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3984      if (!Method->isFunctionTemplateSpecialization() &&
3985          !Method->getDescribedFunctionTemplate()) {
3986        if (AddOverriddenMethods(Method->getParent(), Method)) {
3987          // If the function was marked as "static", we have a problem.
3988          if (NewFD->getStorageClass() == SC_Static) {
3989            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
3990              << NewFD->getDeclName();
3991            for (CXXMethodDecl::method_iterator
3992                      Overridden = Method->begin_overridden_methods(),
3993                   OverriddenEnd = Method->end_overridden_methods();
3994                 Overridden != OverriddenEnd;
3995                 ++Overridden) {
3996              Diag((*Overridden)->getLocation(),
3997                   diag::note_overridden_virtual_function);
3998            }
3999          }
4000        }
4001      }
4002    }
4003
4004    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4005    if (NewFD->isOverloadedOperator() &&
4006        CheckOverloadedOperatorDeclaration(NewFD))
4007      return NewFD->setInvalidDecl();
4008
4009    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4010    if (NewFD->getLiteralIdentifier() &&
4011        CheckLiteralOperatorDeclaration(NewFD))
4012      return NewFD->setInvalidDecl();
4013
4014    // In C++, check default arguments now that we have merged decls. Unless
4015    // the lexical context is the class, because in this case this is done
4016    // during delayed parsing anyway.
4017    if (!CurContext->isRecord())
4018      CheckCXXDefaultArguments(NewFD);
4019  }
4020}
4021
4022void Sema::CheckMain(FunctionDecl* FD) {
4023  // C++ [basic.start.main]p3:  A program that declares main to be inline
4024  //   or static is ill-formed.
4025  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4026  //   shall not appear in a declaration of main.
4027  // static main is not an error under C99, but we should warn about it.
4028  bool isInline = FD->isInlineSpecified();
4029  bool isStatic = FD->getStorageClass() == SC_Static;
4030  if (isInline || isStatic) {
4031    unsigned diagID = diag::warn_unusual_main_decl;
4032    if (isInline || getLangOptions().CPlusPlus)
4033      diagID = diag::err_unusual_main_decl;
4034
4035    int which = isStatic + (isInline << 1) - 1;
4036    Diag(FD->getLocation(), diagID) << which;
4037  }
4038
4039  QualType T = FD->getType();
4040  assert(T->isFunctionType() && "function decl is not of function type");
4041  const FunctionType* FT = T->getAs<FunctionType>();
4042
4043  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4044    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4045    TypeLoc TL = TSI->getTypeLoc();
4046    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4047                                          diag::err_main_returns_nonint);
4048    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4049      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4050                                        "int");
4051    }
4052    FD->setInvalidDecl(true);
4053  }
4054
4055  // Treat protoless main() as nullary.
4056  if (isa<FunctionNoProtoType>(FT)) return;
4057
4058  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4059  unsigned nparams = FTP->getNumArgs();
4060  assert(FD->getNumParams() == nparams);
4061
4062  bool HasExtraParameters = (nparams > 3);
4063
4064  // Darwin passes an undocumented fourth argument of type char**.  If
4065  // other platforms start sprouting these, the logic below will start
4066  // getting shifty.
4067  if (nparams == 4 &&
4068      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4069    HasExtraParameters = false;
4070
4071  if (HasExtraParameters) {
4072    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4073    FD->setInvalidDecl(true);
4074    nparams = 3;
4075  }
4076
4077  // FIXME: a lot of the following diagnostics would be improved
4078  // if we had some location information about types.
4079
4080  QualType CharPP =
4081    Context.getPointerType(Context.getPointerType(Context.CharTy));
4082  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4083
4084  for (unsigned i = 0; i < nparams; ++i) {
4085    QualType AT = FTP->getArgType(i);
4086
4087    bool mismatch = true;
4088
4089    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4090      mismatch = false;
4091    else if (Expected[i] == CharPP) {
4092      // As an extension, the following forms are okay:
4093      //   char const **
4094      //   char const * const *
4095      //   char * const *
4096
4097      QualifierCollector qs;
4098      const PointerType* PT;
4099      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4100          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4101          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4102        qs.removeConst();
4103        mismatch = !qs.empty();
4104      }
4105    }
4106
4107    if (mismatch) {
4108      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4109      // TODO: suggest replacing given type with expected type
4110      FD->setInvalidDecl(true);
4111    }
4112  }
4113
4114  if (nparams == 1 && !FD->isInvalidDecl()) {
4115    Diag(FD->getLocation(), diag::warn_main_one_arg);
4116  }
4117}
4118
4119bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4120  // FIXME: Need strict checking.  In C89, we need to check for
4121  // any assignment, increment, decrement, function-calls, or
4122  // commas outside of a sizeof.  In C99, it's the same list,
4123  // except that the aforementioned are allowed in unevaluated
4124  // expressions.  Everything else falls under the
4125  // "may accept other forms of constant expressions" exception.
4126  // (We never end up here for C++, so the constant expression
4127  // rules there don't matter.)
4128  if (Init->isConstantInitializer(Context, false))
4129    return false;
4130  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4131    << Init->getSourceRange();
4132  return true;
4133}
4134
4135void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4136  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4137}
4138
4139/// AddInitializerToDecl - Adds the initializer Init to the
4140/// declaration dcl. If DirectInit is true, this is C++ direct
4141/// initialization rather than copy initialization.
4142void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4143  // If there is no declaration, there was an error parsing it.  Just ignore
4144  // the initializer.
4145  if (RealDecl == 0)
4146    return;
4147
4148  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4149    // With declarators parsed the way they are, the parser cannot
4150    // distinguish between a normal initializer and a pure-specifier.
4151    // Thus this grotesque test.
4152    IntegerLiteral *IL;
4153    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4154        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4155      CheckPureMethod(Method, Init->getSourceRange());
4156    else {
4157      Diag(Method->getLocation(), diag::err_member_function_initialization)
4158        << Method->getDeclName() << Init->getSourceRange();
4159      Method->setInvalidDecl();
4160    }
4161    return;
4162  }
4163
4164  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4165  if (!VDecl) {
4166    if (getLangOptions().CPlusPlus &&
4167        RealDecl->getLexicalDeclContext()->isRecord() &&
4168        isa<NamedDecl>(RealDecl))
4169      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4170    else
4171      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4172    RealDecl->setInvalidDecl();
4173    return;
4174  }
4175
4176
4177
4178  // A definition must end up with a complete type, which means it must be
4179  // complete with the restriction that an array type might be completed by the
4180  // initializer; note that later code assumes this restriction.
4181  QualType BaseDeclType = VDecl->getType();
4182  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4183    BaseDeclType = Array->getElementType();
4184  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4185                          diag::err_typecheck_decl_incomplete_type)) {
4186    RealDecl->setInvalidDecl();
4187    return;
4188  }
4189
4190  // The variable can not have an abstract class type.
4191  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4192                             diag::err_abstract_type_in_decl,
4193                             AbstractVariableType))
4194    VDecl->setInvalidDecl();
4195
4196  const VarDecl *Def;
4197  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4198    Diag(VDecl->getLocation(), diag::err_redefinition)
4199      << VDecl->getDeclName();
4200    Diag(Def->getLocation(), diag::note_previous_definition);
4201    VDecl->setInvalidDecl();
4202    return;
4203  }
4204
4205  // C++ [class.static.data]p4
4206  //   If a static data member is of const integral or const
4207  //   enumeration type, its declaration in the class definition can
4208  //   specify a constant-initializer which shall be an integral
4209  //   constant expression (5.19). In that case, the member can appear
4210  //   in integral constant expressions. The member shall still be
4211  //   defined in a namespace scope if it is used in the program and the
4212  //   namespace scope definition shall not contain an initializer.
4213  //
4214  // We already performed a redefinition check above, but for static
4215  // data members we also need to check whether there was an in-class
4216  // declaration with an initializer.
4217  const VarDecl* PrevInit = 0;
4218  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4219    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4220    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4221    return;
4222  }
4223
4224  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4225    getCurFunction()->setHasBranchProtectedScope();
4226
4227  // Capture the variable that is being initialized and the style of
4228  // initialization.
4229  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4230
4231  // FIXME: Poor source location information.
4232  InitializationKind Kind
4233    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4234                                                   Init->getLocStart(),
4235                                                   Init->getLocEnd())
4236                : InitializationKind::CreateCopy(VDecl->getLocation(),
4237                                                 Init->getLocStart());
4238
4239  // Get the decls type and save a reference for later, since
4240  // CheckInitializerTypes may change it.
4241  QualType DclT = VDecl->getType(), SavT = DclT;
4242  if (VDecl->isLocalVarDecl()) {
4243    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4244      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4245      VDecl->setInvalidDecl();
4246    } else if (!VDecl->isInvalidDecl()) {
4247      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4248      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4249                                                MultiExprArg(*this, &Init, 1),
4250                                                &DclT);
4251      if (Result.isInvalid()) {
4252        VDecl->setInvalidDecl();
4253        return;
4254      }
4255
4256      Init = Result.takeAs<Expr>();
4257
4258      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4259      // Don't check invalid declarations to avoid emitting useless diagnostics.
4260      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4261        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4262          CheckForConstantInitializer(Init, DclT);
4263      }
4264    }
4265  } else if (VDecl->isStaticDataMember() &&
4266             VDecl->getLexicalDeclContext()->isRecord()) {
4267    // This is an in-class initialization for a static data member, e.g.,
4268    //
4269    // struct S {
4270    //   static const int value = 17;
4271    // };
4272
4273    // Try to perform the initialization regardless.
4274    if (!VDecl->isInvalidDecl()) {
4275      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4276      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4277                                          MultiExprArg(*this, &Init, 1),
4278                                          &DclT);
4279      if (Result.isInvalid()) {
4280        VDecl->setInvalidDecl();
4281        return;
4282      }
4283
4284      Init = Result.takeAs<Expr>();
4285    }
4286
4287    // C++ [class.mem]p4:
4288    //   A member-declarator can contain a constant-initializer only
4289    //   if it declares a static member (9.4) of const integral or
4290    //   const enumeration type, see 9.4.2.
4291    QualType T = VDecl->getType();
4292
4293    // Do nothing on dependent types.
4294    if (T->isDependentType()) {
4295
4296    // Require constness.
4297    } else if (!T.isConstQualified()) {
4298      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4299        << Init->getSourceRange();
4300      VDecl->setInvalidDecl();
4301
4302    // We allow integer constant expressions in all cases.
4303    } else if (T->isIntegralOrEnumerationType()) {
4304      if (!Init->isValueDependent()) {
4305        // Check whether the expression is a constant expression.
4306        llvm::APSInt Value;
4307        SourceLocation Loc;
4308        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4309          Diag(Loc, diag::err_in_class_initializer_non_constant)
4310            << Init->getSourceRange();
4311          VDecl->setInvalidDecl();
4312        }
4313      }
4314
4315    // We allow floating-point constants as an extension in C++03, and
4316    // C++0x has far more complicated rules that we don't really
4317    // implement fully.
4318    } else {
4319      bool Allowed = false;
4320      if (getLangOptions().CPlusPlus0x) {
4321        Allowed = T->isLiteralType();
4322      } else if (T->isFloatingType()) { // also permits complex, which is ok
4323        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4324          << T << Init->getSourceRange();
4325        Allowed = true;
4326      }
4327
4328      if (!Allowed) {
4329        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4330          << T << Init->getSourceRange();
4331        VDecl->setInvalidDecl();
4332
4333      // TODO: there are probably expressions that pass here that shouldn't.
4334      } else if (!Init->isValueDependent() &&
4335                 !Init->isConstantInitializer(Context, false)) {
4336        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4337          << Init->getSourceRange();
4338        VDecl->setInvalidDecl();
4339      }
4340    }
4341  } else if (VDecl->isFileVarDecl()) {
4342    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4343        (!getLangOptions().CPlusPlus ||
4344         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4345      Diag(VDecl->getLocation(), diag::warn_extern_init);
4346    if (!VDecl->isInvalidDecl()) {
4347      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4348      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4349                                                MultiExprArg(*this, &Init, 1),
4350                                                &DclT);
4351      if (Result.isInvalid()) {
4352        VDecl->setInvalidDecl();
4353        return;
4354      }
4355
4356      Init = Result.takeAs<Expr>();
4357    }
4358
4359    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4360    // Don't check invalid declarations to avoid emitting useless diagnostics.
4361    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4362      // C99 6.7.8p4. All file scoped initializers need to be constant.
4363      CheckForConstantInitializer(Init, DclT);
4364    }
4365  }
4366  // If the type changed, it means we had an incomplete type that was
4367  // completed by the initializer. For example:
4368  //   int ary[] = { 1, 3, 5 };
4369  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4370  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4371    VDecl->setType(DclT);
4372    Init->setType(DclT);
4373  }
4374
4375
4376  // If this variable is a local declaration with record type, make sure it
4377  // doesn't have a flexible member initialization.  We only support this as a
4378  // global/static definition.
4379  if (VDecl->hasLocalStorage())
4380    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4381      if (RT->getDecl()->hasFlexibleArrayMember() && isa<InitListExpr>(Init)) {
4382        Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4383        VDecl->setInvalidDecl();
4384      }
4385
4386  // Check any implicit conversions within the expression.
4387  CheckImplicitConversions(Init, VDecl->getLocation());
4388
4389  Init = MaybeCreateCXXExprWithTemporaries(Init);
4390  // Attach the initializer to the decl.
4391  VDecl->setInit(Init);
4392
4393  if (getLangOptions().CPlusPlus) {
4394    if (!VDecl->isInvalidDecl() &&
4395        !VDecl->getDeclContext()->isDependentContext() &&
4396        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4397        !Init->isConstantInitializer(Context,
4398                                     VDecl->getType()->isReferenceType()))
4399      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4400        << Init->getSourceRange();
4401
4402    // Make sure we mark the destructor as used if necessary.
4403    QualType InitType = VDecl->getType();
4404    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4405      InitType = Context.getBaseElementType(Array);
4406    if (const RecordType *Record = InitType->getAs<RecordType>())
4407      FinalizeVarWithDestructor(VDecl, Record);
4408  }
4409
4410  return;
4411}
4412
4413/// ActOnInitializerError - Given that there was an error parsing an
4414/// initializer for the given declaration, try to return to some form
4415/// of sanity.
4416void Sema::ActOnInitializerError(Decl *D) {
4417  // Our main concern here is re-establishing invariants like "a
4418  // variable's type is either dependent or complete".
4419  if (!D || D->isInvalidDecl()) return;
4420
4421  VarDecl *VD = dyn_cast<VarDecl>(D);
4422  if (!VD) return;
4423
4424  QualType Ty = VD->getType();
4425  if (Ty->isDependentType()) return;
4426
4427  // Require a complete type.
4428  if (RequireCompleteType(VD->getLocation(),
4429                          Context.getBaseElementType(Ty),
4430                          diag::err_typecheck_decl_incomplete_type)) {
4431    VD->setInvalidDecl();
4432    return;
4433  }
4434
4435  // Require an abstract type.
4436  if (RequireNonAbstractType(VD->getLocation(), Ty,
4437                             diag::err_abstract_type_in_decl,
4438                             AbstractVariableType)) {
4439    VD->setInvalidDecl();
4440    return;
4441  }
4442
4443  // Don't bother complaining about constructors or destructors,
4444  // though.
4445}
4446
4447void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4448                                  bool TypeContainsUndeducedAuto) {
4449  // If there is no declaration, there was an error parsing it. Just ignore it.
4450  if (RealDecl == 0)
4451    return;
4452
4453  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4454    QualType Type = Var->getType();
4455
4456    // C++0x [dcl.spec.auto]p3
4457    if (TypeContainsUndeducedAuto) {
4458      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4459        << Var->getDeclName() << Type;
4460      Var->setInvalidDecl();
4461      return;
4462    }
4463
4464    switch (Var->isThisDeclarationADefinition()) {
4465    case VarDecl::Definition:
4466      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4467        break;
4468
4469      // We have an out-of-line definition of a static data member
4470      // that has an in-class initializer, so we type-check this like
4471      // a declaration.
4472      //
4473      // Fall through
4474
4475    case VarDecl::DeclarationOnly:
4476      // It's only a declaration.
4477
4478      // Block scope. C99 6.7p7: If an identifier for an object is
4479      // declared with no linkage (C99 6.2.2p6), the type for the
4480      // object shall be complete.
4481      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4482          !Var->getLinkage() && !Var->isInvalidDecl() &&
4483          RequireCompleteType(Var->getLocation(), Type,
4484                              diag::err_typecheck_decl_incomplete_type))
4485        Var->setInvalidDecl();
4486
4487      // Make sure that the type is not abstract.
4488      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4489          RequireNonAbstractType(Var->getLocation(), Type,
4490                                 diag::err_abstract_type_in_decl,
4491                                 AbstractVariableType))
4492        Var->setInvalidDecl();
4493      return;
4494
4495    case VarDecl::TentativeDefinition:
4496      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4497      // object that has file scope without an initializer, and without a
4498      // storage-class specifier or with the storage-class specifier "static",
4499      // constitutes a tentative definition. Note: A tentative definition with
4500      // external linkage is valid (C99 6.2.2p5).
4501      if (!Var->isInvalidDecl()) {
4502        if (const IncompleteArrayType *ArrayT
4503                                    = Context.getAsIncompleteArrayType(Type)) {
4504          if (RequireCompleteType(Var->getLocation(),
4505                                  ArrayT->getElementType(),
4506                                  diag::err_illegal_decl_array_incomplete_type))
4507            Var->setInvalidDecl();
4508        } else if (Var->getStorageClass() == SC_Static) {
4509          // C99 6.9.2p3: If the declaration of an identifier for an object is
4510          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4511          // declared type shall not be an incomplete type.
4512          // NOTE: code such as the following
4513          //     static struct s;
4514          //     struct s { int a; };
4515          // is accepted by gcc. Hence here we issue a warning instead of
4516          // an error and we do not invalidate the static declaration.
4517          // NOTE: to avoid multiple warnings, only check the first declaration.
4518          if (Var->getPreviousDeclaration() == 0)
4519            RequireCompleteType(Var->getLocation(), Type,
4520                                diag::ext_typecheck_decl_incomplete_type);
4521        }
4522      }
4523
4524      // Record the tentative definition; we're done.
4525      if (!Var->isInvalidDecl())
4526        TentativeDefinitions.push_back(Var);
4527      return;
4528    }
4529
4530    // Provide a specific diagnostic for uninitialized variable
4531    // definitions with incomplete array type.
4532    if (Type->isIncompleteArrayType()) {
4533      Diag(Var->getLocation(),
4534           diag::err_typecheck_incomplete_array_needs_initializer);
4535      Var->setInvalidDecl();
4536      return;
4537    }
4538
4539    // Provide a specific diagnostic for uninitialized variable
4540    // definitions with reference type.
4541    if (Type->isReferenceType()) {
4542      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4543        << Var->getDeclName()
4544        << SourceRange(Var->getLocation(), Var->getLocation());
4545      Var->setInvalidDecl();
4546      return;
4547    }
4548
4549    // Do not attempt to type-check the default initializer for a
4550    // variable with dependent type.
4551    if (Type->isDependentType())
4552      return;
4553
4554    if (Var->isInvalidDecl())
4555      return;
4556
4557    if (RequireCompleteType(Var->getLocation(),
4558                            Context.getBaseElementType(Type),
4559                            diag::err_typecheck_decl_incomplete_type)) {
4560      Var->setInvalidDecl();
4561      return;
4562    }
4563
4564    // The variable can not have an abstract class type.
4565    if (RequireNonAbstractType(Var->getLocation(), Type,
4566                               diag::err_abstract_type_in_decl,
4567                               AbstractVariableType)) {
4568      Var->setInvalidDecl();
4569      return;
4570    }
4571
4572    const RecordType *Record
4573      = Context.getBaseElementType(Type)->getAs<RecordType>();
4574    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4575        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4576      // C++03 [dcl.init]p9:
4577      //   If no initializer is specified for an object, and the
4578      //   object is of (possibly cv-qualified) non-POD class type (or
4579      //   array thereof), the object shall be default-initialized; if
4580      //   the object is of const-qualified type, the underlying class
4581      //   type shall have a user-declared default
4582      //   constructor. Otherwise, if no initializer is specified for
4583      //   a non- static object, the object and its subobjects, if
4584      //   any, have an indeterminate initial value); if the object
4585      //   or any of its subobjects are of const-qualified type, the
4586      //   program is ill-formed.
4587      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4588    } else {
4589      // Check for jumps past the implicit initializer.  C++0x
4590      // clarifies that this applies to a "variable with automatic
4591      // storage duration", not a "local variable".
4592      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4593        getCurFunction()->setHasBranchProtectedScope();
4594
4595      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4596      InitializationKind Kind
4597        = InitializationKind::CreateDefault(Var->getLocation());
4598
4599      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4600      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4601                                        MultiExprArg(*this, 0, 0));
4602      if (Init.isInvalid())
4603        Var->setInvalidDecl();
4604      else if (Init.get()) {
4605        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4606
4607        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4608            Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4609            !Var->getDeclContext()->isDependentContext() &&
4610            !Var->getInit()->isConstantInitializer(Context, false))
4611          Diag(Var->getLocation(), diag::warn_global_constructor);
4612      }
4613    }
4614
4615    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4616      FinalizeVarWithDestructor(Var, Record);
4617  }
4618}
4619
4620Sema::DeclGroupPtrTy
4621Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4622                              Decl **Group, unsigned NumDecls) {
4623  llvm::SmallVector<Decl*, 8> Decls;
4624
4625  if (DS.isTypeSpecOwned())
4626    Decls.push_back(DS.getRepAsDecl());
4627
4628  for (unsigned i = 0; i != NumDecls; ++i)
4629    if (Decl *D = Group[i])
4630      Decls.push_back(D);
4631
4632  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4633                                                   Decls.data(), Decls.size()));
4634}
4635
4636
4637/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4638/// to introduce parameters into function prototype scope.
4639Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4640  const DeclSpec &DS = D.getDeclSpec();
4641
4642  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4643  VarDecl::StorageClass StorageClass = SC_None;
4644  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4645  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4646    StorageClass = SC_Register;
4647    StorageClassAsWritten = SC_Register;
4648  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4649    Diag(DS.getStorageClassSpecLoc(),
4650         diag::err_invalid_storage_class_in_func_decl);
4651    D.getMutableDeclSpec().ClearStorageClassSpecs();
4652  }
4653
4654  if (D.getDeclSpec().isThreadSpecified())
4655    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4656
4657  DiagnoseFunctionSpecifiers(D);
4658
4659  // Check that there are no default arguments inside the type of this
4660  // parameter (C++ only).
4661  if (getLangOptions().CPlusPlus)
4662    CheckExtraCXXDefaultArguments(D);
4663
4664  TagDecl *OwnedDecl = 0;
4665  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4666  QualType parmDeclType = TInfo->getType();
4667
4668  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4669    // C++ [dcl.fct]p6:
4670    //   Types shall not be defined in return or parameter types.
4671    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4672      << Context.getTypeDeclType(OwnedDecl);
4673  }
4674
4675  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4676  IdentifierInfo *II = D.getIdentifier();
4677  if (II) {
4678    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4679                   ForRedeclaration);
4680    LookupName(R, S);
4681    if (R.isSingleResult()) {
4682      NamedDecl *PrevDecl = R.getFoundDecl();
4683      if (PrevDecl->isTemplateParameter()) {
4684        // Maybe we will complain about the shadowed template parameter.
4685        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4686        // Just pretend that we didn't see the previous declaration.
4687        PrevDecl = 0;
4688      } else if (S->isDeclScope(PrevDecl)) {
4689        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4690        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4691
4692        // Recover by removing the name
4693        II = 0;
4694        D.SetIdentifier(0, D.getIdentifierLoc());
4695        D.setInvalidType(true);
4696      }
4697    }
4698  }
4699
4700  // Temporarily put parameter variables in the translation unit, not
4701  // the enclosing context.  This prevents them from accidentally
4702  // looking like class members in C++.
4703  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4704                                    TInfo, parmDeclType, II,
4705                                    D.getIdentifierLoc(),
4706                                    StorageClass, StorageClassAsWritten);
4707
4708  if (D.isInvalidType())
4709    New->setInvalidDecl();
4710
4711  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4712  if (D.getCXXScopeSpec().isSet()) {
4713    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4714      << D.getCXXScopeSpec().getRange();
4715    New->setInvalidDecl();
4716  }
4717
4718  // Add the parameter declaration into this scope.
4719  S->AddDecl(New);
4720  if (II)
4721    IdResolver.AddDecl(New);
4722
4723  ProcessDeclAttributes(S, New, D);
4724
4725  if (New->hasAttr<BlocksAttr>()) {
4726    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4727  }
4728  return New;
4729}
4730
4731/// \brief Synthesizes a variable for a parameter arising from a
4732/// typedef.
4733ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4734                                              SourceLocation Loc,
4735                                              QualType T) {
4736  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4737                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4738                                           SC_None, SC_None, 0);
4739  Param->setImplicit();
4740  return Param;
4741}
4742
4743void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
4744                                    ParmVarDecl * const *ParamEnd) {
4745  if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
4746        Diagnostic::Ignored)
4747    return;
4748
4749  // Don't diagnose unused-parameter errors in template instantiations; we
4750  // will already have done so in the template itself.
4751  if (!ActiveTemplateInstantiations.empty())
4752    return;
4753
4754  for (; Param != ParamEnd; ++Param) {
4755    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
4756        !(*Param)->hasAttr<UnusedAttr>()) {
4757      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
4758        << (*Param)->getDeclName();
4759    }
4760  }
4761}
4762
4763ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4764                                  TypeSourceInfo *TSInfo, QualType T,
4765                                  IdentifierInfo *Name,
4766                                  SourceLocation NameLoc,
4767                                  VarDecl::StorageClass StorageClass,
4768                                  VarDecl::StorageClass StorageClassAsWritten) {
4769  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4770                                         adjustParameterType(T), TSInfo,
4771                                         StorageClass, StorageClassAsWritten,
4772                                         0);
4773
4774  // Parameters can not be abstract class types.
4775  // For record types, this is done by the AbstractClassUsageDiagnoser once
4776  // the class has been completely parsed.
4777  if (!CurContext->isRecord() &&
4778      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4779                             AbstractParamType))
4780    New->setInvalidDecl();
4781
4782  // Parameter declarators cannot be interface types. All ObjC objects are
4783  // passed by reference.
4784  if (T->isObjCObjectType()) {
4785    Diag(NameLoc,
4786         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4787    New->setInvalidDecl();
4788  }
4789
4790  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4791  // duration shall not be qualified by an address-space qualifier."
4792  // Since all parameters have automatic store duration, they can not have
4793  // an address space.
4794  if (T.getAddressSpace() != 0) {
4795    Diag(NameLoc, diag::err_arg_with_address_space);
4796    New->setInvalidDecl();
4797  }
4798
4799  return New;
4800}
4801
4802void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4803                                           SourceLocation LocAfterDecls) {
4804  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4805         "Not a function declarator!");
4806  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4807
4808  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4809  // for a K&R function.
4810  if (!FTI.hasPrototype) {
4811    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4812      --i;
4813      if (FTI.ArgInfo[i].Param == 0) {
4814        llvm::SmallString<256> Code;
4815        llvm::raw_svector_ostream(Code) << "  int "
4816                                        << FTI.ArgInfo[i].Ident->getName()
4817                                        << ";\n";
4818        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4819          << FTI.ArgInfo[i].Ident
4820          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4821
4822        // Implicitly declare the argument as type 'int' for lack of a better
4823        // type.
4824        DeclSpec DS;
4825        const char* PrevSpec; // unused
4826        unsigned DiagID; // unused
4827        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4828                           PrevSpec, DiagID);
4829        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4830        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4831        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4832      }
4833    }
4834  }
4835}
4836
4837Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4838                                         Declarator &D) {
4839  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4840  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4841         "Not a function declarator!");
4842  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4843
4844  if (FTI.hasPrototype) {
4845    // FIXME: Diagnose arguments without names in C.
4846  }
4847
4848  Scope *ParentScope = FnBodyScope->getParent();
4849
4850  Decl *DP = HandleDeclarator(ParentScope, D,
4851                              MultiTemplateParamsArg(*this),
4852                              /*IsFunctionDefinition=*/true);
4853  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4854}
4855
4856static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4857  // Don't warn about invalid declarations.
4858  if (FD->isInvalidDecl())
4859    return false;
4860
4861  // Or declarations that aren't global.
4862  if (!FD->isGlobal())
4863    return false;
4864
4865  // Don't warn about C++ member functions.
4866  if (isa<CXXMethodDecl>(FD))
4867    return false;
4868
4869  // Don't warn about 'main'.
4870  if (FD->isMain())
4871    return false;
4872
4873  // Don't warn about inline functions.
4874  if (FD->isInlineSpecified())
4875    return false;
4876
4877  // Don't warn about function templates.
4878  if (FD->getDescribedFunctionTemplate())
4879    return false;
4880
4881  // Don't warn about function template specializations.
4882  if (FD->isFunctionTemplateSpecialization())
4883    return false;
4884
4885  bool MissingPrototype = true;
4886  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4887       Prev; Prev = Prev->getPreviousDeclaration()) {
4888    // Ignore any declarations that occur in function or method
4889    // scope, because they aren't visible from the header.
4890    if (Prev->getDeclContext()->isFunctionOrMethod())
4891      continue;
4892
4893    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4894    break;
4895  }
4896
4897  return MissingPrototype;
4898}
4899
4900Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4901  // Clear the last template instantiation error context.
4902  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4903
4904  if (!D)
4905    return D;
4906  FunctionDecl *FD = 0;
4907
4908  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4909    FD = FunTmpl->getTemplatedDecl();
4910  else
4911    FD = cast<FunctionDecl>(D);
4912
4913  // Enter a new function scope
4914  PushFunctionScope();
4915
4916  // See if this is a redefinition.
4917  // But don't complain if we're in GNU89 mode and the previous definition
4918  // was an extern inline function.
4919  const FunctionDecl *Definition;
4920  if (FD->hasBody(Definition) &&
4921      !canRedefineFunction(Definition, getLangOptions())) {
4922    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
4923        Definition->getStorageClass() == SC_Extern)
4924      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
4925        << FD->getDeclName() << getLangOptions().CPlusPlus;
4926    else
4927      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4928    Diag(Definition->getLocation(), diag::note_previous_definition);
4929  }
4930
4931  // Builtin functions cannot be defined.
4932  if (unsigned BuiltinID = FD->getBuiltinID()) {
4933    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4934      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4935      FD->setInvalidDecl();
4936    }
4937  }
4938
4939  // The return type of a function definition must be complete
4940  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4941  QualType ResultType = FD->getResultType();
4942  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4943      !FD->isInvalidDecl() &&
4944      RequireCompleteType(FD->getLocation(), ResultType,
4945                          diag::err_func_def_incomplete_result))
4946    FD->setInvalidDecl();
4947
4948  // GNU warning -Wmissing-prototypes:
4949  //   Warn if a global function is defined without a previous
4950  //   prototype declaration. This warning is issued even if the
4951  //   definition itself provides a prototype. The aim is to detect
4952  //   global functions that fail to be declared in header files.
4953  if (ShouldWarnAboutMissingPrototype(FD))
4954    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4955
4956  if (FnBodyScope)
4957    PushDeclContext(FnBodyScope, FD);
4958
4959  // Check the validity of our function parameters
4960  CheckParmsForFunctionDef(FD);
4961
4962  bool ShouldCheckShadow =
4963    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4964
4965  // Introduce our parameters into the function scope
4966  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4967    ParmVarDecl *Param = FD->getParamDecl(p);
4968    Param->setOwningFunction(FD);
4969
4970    // If this has an identifier, add it to the scope stack.
4971    if (Param->getIdentifier() && FnBodyScope) {
4972      if (ShouldCheckShadow)
4973        CheckShadow(FnBodyScope, Param);
4974
4975      PushOnScopeChains(Param, FnBodyScope);
4976    }
4977  }
4978
4979  // Checking attributes of current function definition
4980  // dllimport attribute.
4981  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
4982  if (DA && (!FD->getAttr<DLLExportAttr>())) {
4983    // dllimport attribute cannot be directly applied to definition.
4984    if (!DA->isInherited()) {
4985      Diag(FD->getLocation(),
4986           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4987        << "dllimport";
4988      FD->setInvalidDecl();
4989      return FD;
4990    }
4991
4992    // Visual C++ appears to not think this is an issue, so only issue
4993    // a warning when Microsoft extensions are disabled.
4994    if (!LangOpts.Microsoft) {
4995      // If a symbol previously declared dllimport is later defined, the
4996      // attribute is ignored in subsequent references, and a warning is
4997      // emitted.
4998      Diag(FD->getLocation(),
4999           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5000        << FD->getName() << "dllimport";
5001    }
5002  }
5003  return FD;
5004}
5005
5006/// \brief Given the set of return statements within a function body,
5007/// compute the variables that are subject to the named return value
5008/// optimization.
5009///
5010/// Each of the variables that is subject to the named return value
5011/// optimization will be marked as NRVO variables in the AST, and any
5012/// return statement that has a marked NRVO variable as its NRVO candidate can
5013/// use the named return value optimization.
5014///
5015/// This function applies a very simplistic algorithm for NRVO: if every return
5016/// statement in the function has the same NRVO candidate, that candidate is
5017/// the NRVO variable.
5018///
5019/// FIXME: Employ a smarter algorithm that accounts for multiple return
5020/// statements and the lifetimes of the NRVO candidates. We should be able to
5021/// find a maximal set of NRVO variables.
5022static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5023  ReturnStmt **Returns = Scope->Returns.data();
5024
5025  const VarDecl *NRVOCandidate = 0;
5026  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5027    if (!Returns[I]->getNRVOCandidate())
5028      return;
5029
5030    if (!NRVOCandidate)
5031      NRVOCandidate = Returns[I]->getNRVOCandidate();
5032    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5033      return;
5034  }
5035
5036  if (NRVOCandidate)
5037    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5038}
5039
5040Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5041  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5042}
5043
5044Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5045                                    bool IsInstantiation) {
5046  FunctionDecl *FD = 0;
5047  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5048  if (FunTmpl)
5049    FD = FunTmpl->getTemplatedDecl();
5050  else
5051    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5052
5053  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5054
5055  if (FD) {
5056    FD->setBody(Body);
5057    if (FD->isMain()) {
5058      // C and C++ allow for main to automagically return 0.
5059      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5060      FD->setHasImplicitReturnZero(true);
5061      WP.disableCheckFallThrough();
5062    }
5063
5064    if (!FD->isInvalidDecl()) {
5065      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5066
5067      // If this is a constructor, we need a vtable.
5068      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5069        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5070
5071      ComputeNRVO(Body, getCurFunction());
5072    }
5073
5074    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5075  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5076    assert(MD == getCurMethodDecl() && "Method parsing confused");
5077    MD->setBody(Body);
5078    MD->setEndLoc(Body->getLocEnd());
5079    if (!MD->isInvalidDecl())
5080      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5081  } else {
5082    return 0;
5083  }
5084
5085  // Verify and clean out per-function state.
5086
5087  // Check goto/label use.
5088  FunctionScopeInfo *CurFn = getCurFunction();
5089  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5090         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5091    LabelStmt *L = I->second;
5092
5093    // Verify that we have no forward references left.  If so, there was a goto
5094    // or address of a label taken, but no definition of it.  Label fwd
5095    // definitions are indicated with a null substmt.
5096    if (L->getSubStmt() != 0) {
5097      if (!L->isUsed())
5098        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5099      continue;
5100    }
5101
5102    // Emit error.
5103    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5104
5105    // At this point, we have gotos that use the bogus label.  Stitch it into
5106    // the function body so that they aren't leaked and that the AST is well
5107    // formed.
5108    if (Body == 0) {
5109      // The whole function wasn't parsed correctly.
5110      continue;
5111    }
5112
5113    // Otherwise, the body is valid: we want to stitch the label decl into the
5114    // function somewhere so that it is properly owned and so that the goto
5115    // has a valid target.  Do this by creating a new compound stmt with the
5116    // label in it.
5117
5118    // Give the label a sub-statement.
5119    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5120
5121    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5122                               cast<CXXTryStmt>(Body)->getTryBlock() :
5123                               cast<CompoundStmt>(Body);
5124    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5125                                          Compound->body_end());
5126    Elements.push_back(L);
5127    Compound->setStmts(Context, Elements.data(), Elements.size());
5128  }
5129
5130  if (Body) {
5131    // C++ constructors that have function-try-blocks can't have return
5132    // statements in the handlers of that block. (C++ [except.handle]p14)
5133    // Verify this.
5134    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5135      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5136
5137    // Verify that that gotos and switch cases don't jump into scopes illegally.
5138    // Verify that that gotos and switch cases don't jump into scopes illegally.
5139    if (getCurFunction()->NeedsScopeChecking() &&
5140        !dcl->isInvalidDecl() &&
5141        !hasAnyErrorsInThisFunction())
5142      DiagnoseInvalidJumps(Body);
5143
5144    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5145      if (!Destructor->getParent()->isDependentType())
5146        CheckDestructor(Destructor);
5147
5148      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5149                                             Destructor->getParent());
5150    }
5151
5152    // If any errors have occurred, clear out any temporaries that may have
5153    // been leftover. This ensures that these temporaries won't be picked up for
5154    // deletion in some later function.
5155    if (PP.getDiagnostics().hasErrorOccurred())
5156      ExprTemporaries.clear();
5157    else if (!isa<FunctionTemplateDecl>(dcl)) {
5158      // Since the body is valid, issue any analysis-based warnings that are
5159      // enabled.
5160      QualType ResultType;
5161      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5162        AnalysisWarnings.IssueWarnings(WP, FD);
5163      } else {
5164        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5165        AnalysisWarnings.IssueWarnings(WP, MD);
5166      }
5167    }
5168
5169    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5170  }
5171
5172  if (!IsInstantiation)
5173    PopDeclContext();
5174
5175  PopFunctionOrBlockScope();
5176
5177  // If any errors have occurred, clear out any temporaries that may have
5178  // been leftover. This ensures that these temporaries won't be picked up for
5179  // deletion in some later function.
5180  if (getDiagnostics().hasErrorOccurred())
5181    ExprTemporaries.clear();
5182
5183  return dcl;
5184}
5185
5186/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5187/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5188NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5189                                          IdentifierInfo &II, Scope *S) {
5190  // Before we produce a declaration for an implicitly defined
5191  // function, see whether there was a locally-scoped declaration of
5192  // this name as a function or variable. If so, use that
5193  // (non-visible) declaration, and complain about it.
5194  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5195    = LocallyScopedExternalDecls.find(&II);
5196  if (Pos != LocallyScopedExternalDecls.end()) {
5197    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5198    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5199    return Pos->second;
5200  }
5201
5202  // Extension in C99.  Legal in C90, but warn about it.
5203  if (II.getName().startswith("__builtin_"))
5204    Diag(Loc, diag::warn_builtin_unknown) << &II;
5205  else if (getLangOptions().C99)
5206    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5207  else
5208    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5209
5210  // Set a Declarator for the implicit definition: int foo();
5211  const char *Dummy;
5212  DeclSpec DS;
5213  unsigned DiagID;
5214  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5215  Error = Error; // Silence warning.
5216  assert(!Error && "Error setting up implicit decl!");
5217  Declarator D(DS, Declarator::BlockContext);
5218  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5219                                             0, 0, false, SourceLocation(),
5220                                             false, 0,0,0, Loc, Loc, D),
5221                SourceLocation());
5222  D.SetIdentifier(&II, Loc);
5223
5224  // Insert this function into translation-unit scope.
5225
5226  DeclContext *PrevDC = CurContext;
5227  CurContext = Context.getTranslationUnitDecl();
5228
5229  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5230  FD->setImplicit();
5231
5232  CurContext = PrevDC;
5233
5234  AddKnownFunctionAttributes(FD);
5235
5236  return FD;
5237}
5238
5239/// \brief Adds any function attributes that we know a priori based on
5240/// the declaration of this function.
5241///
5242/// These attributes can apply both to implicitly-declared builtins
5243/// (like __builtin___printf_chk) or to library-declared functions
5244/// like NSLog or printf.
5245void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5246  if (FD->isInvalidDecl())
5247    return;
5248
5249  // If this is a built-in function, map its builtin attributes to
5250  // actual attributes.
5251  if (unsigned BuiltinID = FD->getBuiltinID()) {
5252    // Handle printf-formatting attributes.
5253    unsigned FormatIdx;
5254    bool HasVAListArg;
5255    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5256      if (!FD->getAttr<FormatAttr>())
5257        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5258                                                "printf", FormatIdx+1,
5259                                               HasVAListArg ? 0 : FormatIdx+2));
5260    }
5261    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5262                                             HasVAListArg)) {
5263     if (!FD->getAttr<FormatAttr>())
5264       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5265                                              "scanf", FormatIdx+1,
5266                                              HasVAListArg ? 0 : FormatIdx+2));
5267    }
5268
5269    // Mark const if we don't care about errno and that is the only
5270    // thing preventing the function from being const. This allows
5271    // IRgen to use LLVM intrinsics for such functions.
5272    if (!getLangOptions().MathErrno &&
5273        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5274      if (!FD->getAttr<ConstAttr>())
5275        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5276    }
5277
5278    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5279      FD->setType(Context.getNoReturnType(FD->getType()));
5280    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5281      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5282    if (Context.BuiltinInfo.isConst(BuiltinID))
5283      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5284  }
5285
5286  IdentifierInfo *Name = FD->getIdentifier();
5287  if (!Name)
5288    return;
5289  if ((!getLangOptions().CPlusPlus &&
5290       FD->getDeclContext()->isTranslationUnit()) ||
5291      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5292       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5293       LinkageSpecDecl::lang_c)) {
5294    // Okay: this could be a libc/libm/Objective-C function we know
5295    // about.
5296  } else
5297    return;
5298
5299  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5300    // FIXME: NSLog and NSLogv should be target specific
5301    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5302      // FIXME: We known better than our headers.
5303      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5304    } else
5305      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5306                                             "printf", 1,
5307                                             Name->isStr("NSLogv") ? 0 : 2));
5308  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5309    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5310    // target-specific builtins, perhaps?
5311    if (!FD->getAttr<FormatAttr>())
5312      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5313                                             "printf", 2,
5314                                             Name->isStr("vasprintf") ? 0 : 3));
5315  }
5316}
5317
5318TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5319                                    TypeSourceInfo *TInfo) {
5320  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5321  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5322
5323  if (!TInfo) {
5324    assert(D.isInvalidType() && "no declarator info for valid type");
5325    TInfo = Context.getTrivialTypeSourceInfo(T);
5326  }
5327
5328  // Scope manipulation handled by caller.
5329  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5330                                           D.getIdentifierLoc(),
5331                                           D.getIdentifier(),
5332                                           TInfo);
5333
5334  if (const TagType *TT = T->getAs<TagType>()) {
5335    TagDecl *TD = TT->getDecl();
5336
5337    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5338    // keep track of the TypedefDecl.
5339    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5340      TD->setTypedefForAnonDecl(NewTD);
5341  }
5342
5343  if (D.isInvalidType())
5344    NewTD->setInvalidDecl();
5345  return NewTD;
5346}
5347
5348
5349/// \brief Determine whether a tag with a given kind is acceptable
5350/// as a redeclaration of the given tag declaration.
5351///
5352/// \returns true if the new tag kind is acceptable, false otherwise.
5353bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5354                                        TagTypeKind NewTag,
5355                                        SourceLocation NewTagLoc,
5356                                        const IdentifierInfo &Name) {
5357  // C++ [dcl.type.elab]p3:
5358  //   The class-key or enum keyword present in the
5359  //   elaborated-type-specifier shall agree in kind with the
5360  //   declaration to which the name in the elaborated-type-specifier
5361  //   refers. This rule also applies to the form of
5362  //   elaborated-type-specifier that declares a class-name or
5363  //   friend class since it can be construed as referring to the
5364  //   definition of the class. Thus, in any
5365  //   elaborated-type-specifier, the enum keyword shall be used to
5366  //   refer to an enumeration (7.2), the union class-key shall be
5367  //   used to refer to a union (clause 9), and either the class or
5368  //   struct class-key shall be used to refer to a class (clause 9)
5369  //   declared using the class or struct class-key.
5370  TagTypeKind OldTag = Previous->getTagKind();
5371  if (OldTag == NewTag)
5372    return true;
5373
5374  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5375      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5376    // Warn about the struct/class tag mismatch.
5377    bool isTemplate = false;
5378    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5379      isTemplate = Record->getDescribedClassTemplate();
5380
5381    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5382      << (NewTag == TTK_Class)
5383      << isTemplate << &Name
5384      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5385                              OldTag == TTK_Class? "class" : "struct");
5386    Diag(Previous->getLocation(), diag::note_previous_use);
5387    return true;
5388  }
5389  return false;
5390}
5391
5392/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5393/// former case, Name will be non-null.  In the later case, Name will be null.
5394/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5395/// reference/declaration/definition of a tag.
5396Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5397                     SourceLocation KWLoc, CXXScopeSpec &SS,
5398                     IdentifierInfo *Name, SourceLocation NameLoc,
5399                     AttributeList *Attr, AccessSpecifier AS,
5400                     MultiTemplateParamsArg TemplateParameterLists,
5401                     bool &OwnedDecl, bool &IsDependent, bool ScopedEnum,
5402                     TypeResult UnderlyingType) {
5403  // If this is not a definition, it must have a name.
5404  assert((Name != 0 || TUK == TUK_Definition) &&
5405         "Nameless record must be a definition!");
5406
5407  OwnedDecl = false;
5408  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5409
5410  // FIXME: Check explicit specializations more carefully.
5411  bool isExplicitSpecialization = false;
5412  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5413  bool Invalid = false;
5414  if (TUK != TUK_Reference) {
5415    if (TemplateParameterList *TemplateParams
5416          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5417                        (TemplateParameterList**)TemplateParameterLists.get(),
5418                                              TemplateParameterLists.size(),
5419                                                    TUK == TUK_Friend,
5420                                                    isExplicitSpecialization,
5421                                                    Invalid)) {
5422      // All but one template parameter lists have been matching.
5423      --NumMatchedTemplateParamLists;
5424
5425      if (TemplateParams->size() > 0) {
5426        // This is a declaration or definition of a class template (which may
5427        // be a member of another template).
5428        if (Invalid)
5429          return 0;
5430
5431        OwnedDecl = false;
5432        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5433                                               SS, Name, NameLoc, Attr,
5434                                               TemplateParams,
5435                                               AS);
5436        TemplateParameterLists.release();
5437        return Result.get();
5438      } else {
5439        // The "template<>" header is extraneous.
5440        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5441          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5442        isExplicitSpecialization = true;
5443      }
5444    }
5445  }
5446
5447  // Figure out the underlying type if this a enum declaration. We need to do
5448  // this early, because it's needed to detect if this is an incompatible
5449  // redeclaration.
5450  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5451
5452  if (Kind == TTK_Enum) {
5453    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5454      // No underlying type explicitly specified, or we failed to parse the
5455      // type, default to int.
5456      EnumUnderlying = Context.IntTy.getTypePtr();
5457    else if (UnderlyingType.get()) {
5458      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5459      // integral type; any cv-qualification is ignored.
5460      TypeSourceInfo *TI = 0;
5461      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5462      EnumUnderlying = TI;
5463
5464      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5465
5466      if (!T->isDependentType() && !T->isIntegralType(Context)) {
5467        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5468          << T;
5469        // Recover by falling back to int.
5470        EnumUnderlying = Context.IntTy.getTypePtr();
5471      }
5472    }
5473  }
5474
5475  DeclContext *SearchDC = CurContext;
5476  DeclContext *DC = CurContext;
5477  bool isStdBadAlloc = false;
5478
5479  RedeclarationKind Redecl = ForRedeclaration;
5480  if (TUK == TUK_Friend || TUK == TUK_Reference)
5481    Redecl = NotForRedeclaration;
5482
5483  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5484
5485  if (Name && SS.isNotEmpty()) {
5486    // We have a nested-name tag ('struct foo::bar').
5487
5488    // Check for invalid 'foo::'.
5489    if (SS.isInvalid()) {
5490      Name = 0;
5491      goto CreateNewDecl;
5492    }
5493
5494    // If this is a friend or a reference to a class in a dependent
5495    // context, don't try to make a decl for it.
5496    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5497      DC = computeDeclContext(SS, false);
5498      if (!DC) {
5499        IsDependent = true;
5500        return 0;
5501      }
5502    } else {
5503      DC = computeDeclContext(SS, true);
5504      if (!DC) {
5505        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5506          << SS.getRange();
5507        return 0;
5508      }
5509    }
5510
5511    if (RequireCompleteDeclContext(SS, DC))
5512      return 0;
5513
5514    SearchDC = DC;
5515    // Look-up name inside 'foo::'.
5516    LookupQualifiedName(Previous, DC);
5517
5518    if (Previous.isAmbiguous())
5519      return 0;
5520
5521    if (Previous.empty()) {
5522      // Name lookup did not find anything. However, if the
5523      // nested-name-specifier refers to the current instantiation,
5524      // and that current instantiation has any dependent base
5525      // classes, we might find something at instantiation time: treat
5526      // this as a dependent elaborated-type-specifier.
5527      if (Previous.wasNotFoundInCurrentInstantiation()) {
5528        IsDependent = true;
5529        return 0;
5530      }
5531
5532      // A tag 'foo::bar' must already exist.
5533      Diag(NameLoc, diag::err_not_tag_in_scope)
5534        << Kind << Name << DC << SS.getRange();
5535      Name = 0;
5536      Invalid = true;
5537      goto CreateNewDecl;
5538    }
5539  } else if (Name) {
5540    // If this is a named struct, check to see if there was a previous forward
5541    // declaration or definition.
5542    // FIXME: We're looking into outer scopes here, even when we
5543    // shouldn't be. Doing so can result in ambiguities that we
5544    // shouldn't be diagnosing.
5545    LookupName(Previous, S);
5546
5547    // Note:  there used to be some attempt at recovery here.
5548    if (Previous.isAmbiguous())
5549      return 0;
5550
5551    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5552      // FIXME: This makes sure that we ignore the contexts associated
5553      // with C structs, unions, and enums when looking for a matching
5554      // tag declaration or definition. See the similar lookup tweak
5555      // in Sema::LookupName; is there a better way to deal with this?
5556      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5557        SearchDC = SearchDC->getParent();
5558    }
5559  } else if (S->isFunctionPrototypeScope()) {
5560    // If this is an enum declaration in function prototype scope, set its
5561    // initial context to the translation unit.
5562    SearchDC = Context.getTranslationUnitDecl();
5563  }
5564
5565  if (Previous.isSingleResult() &&
5566      Previous.getFoundDecl()->isTemplateParameter()) {
5567    // Maybe we will complain about the shadowed template parameter.
5568    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5569    // Just pretend that we didn't see the previous declaration.
5570    Previous.clear();
5571  }
5572
5573  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5574      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5575    // This is a declaration of or a reference to "std::bad_alloc".
5576    isStdBadAlloc = true;
5577
5578    if (Previous.empty() && StdBadAlloc) {
5579      // std::bad_alloc has been implicitly declared (but made invisible to
5580      // name lookup). Fill in this implicit declaration as the previous
5581      // declaration, so that the declarations get chained appropriately.
5582      Previous.addDecl(getStdBadAlloc());
5583    }
5584  }
5585
5586  // If we didn't find a previous declaration, and this is a reference
5587  // (or friend reference), move to the correct scope.  In C++, we
5588  // also need to do a redeclaration lookup there, just in case
5589  // there's a shadow friend decl.
5590  if (Name && Previous.empty() &&
5591      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5592    if (Invalid) goto CreateNewDecl;
5593    assert(SS.isEmpty());
5594
5595    if (TUK == TUK_Reference) {
5596      // C++ [basic.scope.pdecl]p5:
5597      //   -- for an elaborated-type-specifier of the form
5598      //
5599      //          class-key identifier
5600      //
5601      //      if the elaborated-type-specifier is used in the
5602      //      decl-specifier-seq or parameter-declaration-clause of a
5603      //      function defined in namespace scope, the identifier is
5604      //      declared as a class-name in the namespace that contains
5605      //      the declaration; otherwise, except as a friend
5606      //      declaration, the identifier is declared in the smallest
5607      //      non-class, non-function-prototype scope that contains the
5608      //      declaration.
5609      //
5610      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5611      // C structs and unions.
5612      //
5613      // It is an error in C++ to declare (rather than define) an enum
5614      // type, including via an elaborated type specifier.  We'll
5615      // diagnose that later; for now, declare the enum in the same
5616      // scope as we would have picked for any other tag type.
5617      //
5618      // GNU C also supports this behavior as part of its incomplete
5619      // enum types extension, while GNU C++ does not.
5620      //
5621      // Find the context where we'll be declaring the tag.
5622      // FIXME: We would like to maintain the current DeclContext as the
5623      // lexical context,
5624      while (SearchDC->isRecord())
5625        SearchDC = SearchDC->getParent();
5626
5627      // Find the scope where we'll be declaring the tag.
5628      while (S->isClassScope() ||
5629             (getLangOptions().CPlusPlus &&
5630              S->isFunctionPrototypeScope()) ||
5631             ((S->getFlags() & Scope::DeclScope) == 0) ||
5632             (S->getEntity() &&
5633              ((DeclContext *)S->getEntity())->isTransparentContext()))
5634        S = S->getParent();
5635    } else {
5636      assert(TUK == TUK_Friend);
5637      // C++ [namespace.memdef]p3:
5638      //   If a friend declaration in a non-local class first declares a
5639      //   class or function, the friend class or function is a member of
5640      //   the innermost enclosing namespace.
5641      SearchDC = SearchDC->getEnclosingNamespaceContext();
5642    }
5643
5644    // In C++, we need to do a redeclaration lookup to properly
5645    // diagnose some problems.
5646    if (getLangOptions().CPlusPlus) {
5647      Previous.setRedeclarationKind(ForRedeclaration);
5648      LookupQualifiedName(Previous, SearchDC);
5649    }
5650  }
5651
5652  if (!Previous.empty()) {
5653    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5654
5655    // It's okay to have a tag decl in the same scope as a typedef
5656    // which hides a tag decl in the same scope.  Finding this
5657    // insanity with a redeclaration lookup can only actually happen
5658    // in C++.
5659    //
5660    // This is also okay for elaborated-type-specifiers, which is
5661    // technically forbidden by the current standard but which is
5662    // okay according to the likely resolution of an open issue;
5663    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5664    if (getLangOptions().CPlusPlus) {
5665      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5666        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5667          TagDecl *Tag = TT->getDecl();
5668          if (Tag->getDeclName() == Name &&
5669              Tag->getDeclContext()->getRedeclContext()
5670                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
5671            PrevDecl = Tag;
5672            Previous.clear();
5673            Previous.addDecl(Tag);
5674            Previous.resolveKind();
5675          }
5676        }
5677      }
5678    }
5679
5680    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5681      // If this is a use of a previous tag, or if the tag is already declared
5682      // in the same scope (so that the definition/declaration completes or
5683      // rementions the tag), reuse the decl.
5684      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5685          isDeclInScope(PrevDecl, SearchDC, S)) {
5686        // Make sure that this wasn't declared as an enum and now used as a
5687        // struct or something similar.
5688        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5689          bool SafeToContinue
5690            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5691               Kind != TTK_Enum);
5692          if (SafeToContinue)
5693            Diag(KWLoc, diag::err_use_with_wrong_tag)
5694              << Name
5695              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5696                                              PrevTagDecl->getKindName());
5697          else
5698            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5699          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5700
5701          if (SafeToContinue)
5702            Kind = PrevTagDecl->getTagKind();
5703          else {
5704            // Recover by making this an anonymous redefinition.
5705            Name = 0;
5706            Previous.clear();
5707            Invalid = true;
5708          }
5709        }
5710
5711        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
5712          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
5713
5714          // All conflicts with previous declarations are recovered by
5715          // returning the previous declaration.
5716          if (ScopedEnum != PrevEnum->isScoped()) {
5717            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
5718              << PrevEnum->isScoped();
5719            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5720            return PrevTagDecl;
5721          }
5722          else if (EnumUnderlying && PrevEnum->isFixed()) {
5723            QualType T;
5724            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
5725                T = TI->getType();
5726            else
5727                T = QualType(EnumUnderlying.get<const Type*>(), 0);
5728
5729            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
5730              Diag(KWLoc, diag::err_enum_redeclare_type_mismatch);
5731              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5732              return PrevTagDecl;
5733            }
5734          }
5735          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
5736            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
5737              << PrevEnum->isFixed();
5738            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5739            return PrevTagDecl;
5740          }
5741        }
5742
5743        if (!Invalid) {
5744          // If this is a use, just return the declaration we found.
5745
5746          // FIXME: In the future, return a variant or some other clue
5747          // for the consumer of this Decl to know it doesn't own it.
5748          // For our current ASTs this shouldn't be a problem, but will
5749          // need to be changed with DeclGroups.
5750          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5751              TUK == TUK_Friend)
5752            return PrevTagDecl;
5753
5754          // Diagnose attempts to redefine a tag.
5755          if (TUK == TUK_Definition) {
5756            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5757              // If we're defining a specialization and the previous definition
5758              // is from an implicit instantiation, don't emit an error
5759              // here; we'll catch this in the general case below.
5760              if (!isExplicitSpecialization ||
5761                  !isa<CXXRecordDecl>(Def) ||
5762                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5763                                               == TSK_ExplicitSpecialization) {
5764                Diag(NameLoc, diag::err_redefinition) << Name;
5765                Diag(Def->getLocation(), diag::note_previous_definition);
5766                // If this is a redefinition, recover by making this
5767                // struct be anonymous, which will make any later
5768                // references get the previous definition.
5769                Name = 0;
5770                Previous.clear();
5771                Invalid = true;
5772              }
5773            } else {
5774              // If the type is currently being defined, complain
5775              // about a nested redefinition.
5776              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5777              if (Tag->isBeingDefined()) {
5778                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5779                Diag(PrevTagDecl->getLocation(),
5780                     diag::note_previous_definition);
5781                Name = 0;
5782                Previous.clear();
5783                Invalid = true;
5784              }
5785            }
5786
5787            // Okay, this is definition of a previously declared or referenced
5788            // tag PrevDecl. We're going to create a new Decl for it.
5789          }
5790        }
5791        // If we get here we have (another) forward declaration or we
5792        // have a definition.  Just create a new decl.
5793
5794      } else {
5795        // If we get here, this is a definition of a new tag type in a nested
5796        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5797        // new decl/type.  We set PrevDecl to NULL so that the entities
5798        // have distinct types.
5799        Previous.clear();
5800      }
5801      // If we get here, we're going to create a new Decl. If PrevDecl
5802      // is non-NULL, it's a definition of the tag declared by
5803      // PrevDecl. If it's NULL, we have a new definition.
5804
5805
5806    // Otherwise, PrevDecl is not a tag, but was found with tag
5807    // lookup.  This is only actually possible in C++, where a few
5808    // things like templates still live in the tag namespace.
5809    } else {
5810      assert(getLangOptions().CPlusPlus);
5811
5812      // Use a better diagnostic if an elaborated-type-specifier
5813      // found the wrong kind of type on the first
5814      // (non-redeclaration) lookup.
5815      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5816          !Previous.isForRedeclaration()) {
5817        unsigned Kind = 0;
5818        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5819        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5820        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5821        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5822        Invalid = true;
5823
5824      // Otherwise, only diagnose if the declaration is in scope.
5825      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5826        // do nothing
5827
5828      // Diagnose implicit declarations introduced by elaborated types.
5829      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5830        unsigned Kind = 0;
5831        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5832        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5833        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5834        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5835        Invalid = true;
5836
5837      // Otherwise it's a declaration.  Call out a particularly common
5838      // case here.
5839      } else if (isa<TypedefDecl>(PrevDecl)) {
5840        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5841          << Name
5842          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5843        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5844        Invalid = true;
5845
5846      // Otherwise, diagnose.
5847      } else {
5848        // The tag name clashes with something else in the target scope,
5849        // issue an error and recover by making this tag be anonymous.
5850        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5851        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5852        Name = 0;
5853        Invalid = true;
5854      }
5855
5856      // The existing declaration isn't relevant to us; we're in a
5857      // new scope, so clear out the previous declaration.
5858      Previous.clear();
5859    }
5860  }
5861
5862CreateNewDecl:
5863
5864  TagDecl *PrevDecl = 0;
5865  if (Previous.isSingleResult())
5866    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5867
5868  // If there is an identifier, use the location of the identifier as the
5869  // location of the decl, otherwise use the location of the struct/union
5870  // keyword.
5871  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5872
5873  // Otherwise, create a new declaration. If there is a previous
5874  // declaration of the same entity, the two will be linked via
5875  // PrevDecl.
5876  TagDecl *New;
5877
5878  bool IsForwardReference = false;
5879  if (Kind == TTK_Enum) {
5880    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5881    // enum X { A, B, C } D;    D should chain to X.
5882    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5883                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
5884                           !EnumUnderlying.isNull());
5885    // If this is an undefined enum, warn.
5886    if (TUK != TUK_Definition && !Invalid) {
5887      TagDecl *Def;
5888      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
5889        // C++0x: 7.2p2: opaque-enum-declaration.
5890        // Conflicts are diagnosed above. Do nothing.
5891      }
5892      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5893        Diag(Loc, diag::ext_forward_ref_enum_def)
5894          << New;
5895        Diag(Def->getLocation(), diag::note_previous_definition);
5896      } else {
5897        unsigned DiagID = diag::ext_forward_ref_enum;
5898        if (getLangOptions().Microsoft)
5899          DiagID = diag::ext_ms_forward_ref_enum;
5900        else if (getLangOptions().CPlusPlus)
5901          DiagID = diag::err_forward_ref_enum;
5902        Diag(Loc, DiagID);
5903
5904        // If this is a forward-declared reference to an enumeration, make a
5905        // note of it; we won't actually be introducing the declaration into
5906        // the declaration context.
5907        if (TUK == TUK_Reference)
5908          IsForwardReference = true;
5909      }
5910    }
5911
5912    if (EnumUnderlying) {
5913      EnumDecl *ED = cast<EnumDecl>(New);
5914      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
5915        ED->setIntegerTypeSourceInfo(TI);
5916      else
5917        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
5918      ED->setPromotionType(ED->getIntegerType());
5919    }
5920
5921  } else {
5922    // struct/union/class
5923
5924    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5925    // struct X { int A; } D;    D should chain to X.
5926    if (getLangOptions().CPlusPlus) {
5927      // FIXME: Look for a way to use RecordDecl for simple structs.
5928      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5929                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5930
5931      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5932        StdBadAlloc = cast<CXXRecordDecl>(New);
5933    } else
5934      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5935                               cast_or_null<RecordDecl>(PrevDecl));
5936  }
5937
5938  // Maybe add qualifier info.
5939  if (SS.isNotEmpty()) {
5940    if (SS.isSet()) {
5941      NestedNameSpecifier *NNS
5942        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5943      New->setQualifierInfo(NNS, SS.getRange());
5944      if (NumMatchedTemplateParamLists > 0) {
5945        New->setTemplateParameterListsInfo(Context,
5946                                           NumMatchedTemplateParamLists,
5947                    (TemplateParameterList**) TemplateParameterLists.release());
5948      }
5949    }
5950    else
5951      Invalid = true;
5952  }
5953
5954  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5955    // Add alignment attributes if necessary; these attributes are checked when
5956    // the ASTContext lays out the structure.
5957    //
5958    // It is important for implementing the correct semantics that this
5959    // happen here (in act on tag decl). The #pragma pack stack is
5960    // maintained as a result of parser callbacks which can occur at
5961    // many points during the parsing of a struct declaration (because
5962    // the #pragma tokens are effectively skipped over during the
5963    // parsing of the struct).
5964    AddAlignmentAttributesForRecord(RD);
5965  }
5966
5967  // If this is a specialization of a member class (of a class template),
5968  // check the specialization.
5969  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5970    Invalid = true;
5971
5972  if (Invalid)
5973    New->setInvalidDecl();
5974
5975  if (Attr)
5976    ProcessDeclAttributeList(S, New, Attr);
5977
5978  // If we're declaring or defining a tag in function prototype scope
5979  // in C, note that this type can only be used within the function.
5980  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5981    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5982
5983  // Set the lexical context. If the tag has a C++ scope specifier, the
5984  // lexical context will be different from the semantic context.
5985  New->setLexicalDeclContext(CurContext);
5986
5987  // Mark this as a friend decl if applicable.
5988  if (TUK == TUK_Friend)
5989    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5990
5991  // Set the access specifier.
5992  if (!Invalid && SearchDC->isRecord())
5993    SetMemberAccessSpecifier(New, PrevDecl, AS);
5994
5995  if (TUK == TUK_Definition)
5996    New->startDefinition();
5997
5998  // If this has an identifier, add it to the scope stack.
5999  if (TUK == TUK_Friend) {
6000    // We might be replacing an existing declaration in the lookup tables;
6001    // if so, borrow its access specifier.
6002    if (PrevDecl)
6003      New->setAccess(PrevDecl->getAccess());
6004
6005    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6006    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6007    if (Name) // can be null along some error paths
6008      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6009        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6010  } else if (Name) {
6011    S = getNonFieldDeclScope(S);
6012    PushOnScopeChains(New, S, !IsForwardReference);
6013    if (IsForwardReference)
6014      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6015
6016  } else {
6017    CurContext->addDecl(New);
6018  }
6019
6020  // If this is the C FILE type, notify the AST context.
6021  if (IdentifierInfo *II = New->getIdentifier())
6022    if (!New->isInvalidDecl() &&
6023        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6024        II->isStr("FILE"))
6025      Context.setFILEDecl(New);
6026
6027  OwnedDecl = true;
6028  return New;
6029}
6030
6031void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6032  AdjustDeclIfTemplate(TagD);
6033  TagDecl *Tag = cast<TagDecl>(TagD);
6034
6035  // Enter the tag context.
6036  PushDeclContext(S, Tag);
6037}
6038
6039void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6040                                           SourceLocation LBraceLoc) {
6041  AdjustDeclIfTemplate(TagD);
6042  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6043
6044  FieldCollector->StartClass();
6045
6046  if (!Record->getIdentifier())
6047    return;
6048
6049  // C++ [class]p2:
6050  //   [...] The class-name is also inserted into the scope of the
6051  //   class itself; this is known as the injected-class-name. For
6052  //   purposes of access checking, the injected-class-name is treated
6053  //   as if it were a public member name.
6054  CXXRecordDecl *InjectedClassName
6055    = CXXRecordDecl::Create(Context, Record->getTagKind(),
6056                            CurContext, Record->getLocation(),
6057                            Record->getIdentifier(),
6058                            Record->getTagKeywordLoc(),
6059                            /*PrevDecl=*/0,
6060                            /*DelayTypeCreation=*/true);
6061  Context.getTypeDeclType(InjectedClassName, Record);
6062  InjectedClassName->setImplicit();
6063  InjectedClassName->setAccess(AS_public);
6064  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6065      InjectedClassName->setDescribedClassTemplate(Template);
6066  PushOnScopeChains(InjectedClassName, S);
6067  assert(InjectedClassName->isInjectedClassName() &&
6068         "Broken injected-class-name");
6069}
6070
6071void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6072                                    SourceLocation RBraceLoc) {
6073  AdjustDeclIfTemplate(TagD);
6074  TagDecl *Tag = cast<TagDecl>(TagD);
6075  Tag->setRBraceLoc(RBraceLoc);
6076
6077  if (isa<CXXRecordDecl>(Tag))
6078    FieldCollector->FinishClass();
6079
6080  // Exit this scope of this tag's definition.
6081  PopDeclContext();
6082
6083  // Notify the consumer that we've defined a tag.
6084  Consumer.HandleTagDeclDefinition(Tag);
6085}
6086
6087void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6088  AdjustDeclIfTemplate(TagD);
6089  TagDecl *Tag = cast<TagDecl>(TagD);
6090  Tag->setInvalidDecl();
6091
6092  // We're undoing ActOnTagStartDefinition here, not
6093  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6094  // the FieldCollector.
6095
6096  PopDeclContext();
6097}
6098
6099// Note that FieldName may be null for anonymous bitfields.
6100bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6101                          QualType FieldTy, const Expr *BitWidth,
6102                          bool *ZeroWidth) {
6103  // Default to true; that shouldn't confuse checks for emptiness
6104  if (ZeroWidth)
6105    *ZeroWidth = true;
6106
6107  // C99 6.7.2.1p4 - verify the field type.
6108  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6109  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6110    // Handle incomplete types with specific error.
6111    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6112      return true;
6113    if (FieldName)
6114      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6115        << FieldName << FieldTy << BitWidth->getSourceRange();
6116    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6117      << FieldTy << BitWidth->getSourceRange();
6118  }
6119
6120  // If the bit-width is type- or value-dependent, don't try to check
6121  // it now.
6122  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6123    return false;
6124
6125  llvm::APSInt Value;
6126  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6127    return true;
6128
6129  if (Value != 0 && ZeroWidth)
6130    *ZeroWidth = false;
6131
6132  // Zero-width bitfield is ok for anonymous field.
6133  if (Value == 0 && FieldName)
6134    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6135
6136  if (Value.isSigned() && Value.isNegative()) {
6137    if (FieldName)
6138      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6139               << FieldName << Value.toString(10);
6140    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6141      << Value.toString(10);
6142  }
6143
6144  if (!FieldTy->isDependentType()) {
6145    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6146    if (Value.getZExtValue() > TypeSize) {
6147      if (!getLangOptions().CPlusPlus) {
6148        if (FieldName)
6149          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6150            << FieldName << (unsigned)Value.getZExtValue()
6151            << (unsigned)TypeSize;
6152
6153        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6154          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6155      }
6156
6157      if (FieldName)
6158        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6159          << FieldName << (unsigned)Value.getZExtValue()
6160          << (unsigned)TypeSize;
6161      else
6162        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6163          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6164    }
6165  }
6166
6167  return false;
6168}
6169
6170/// ActOnField - Each field of a struct/union/class is passed into this in order
6171/// to create a FieldDecl object for it.
6172Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6173                                 SourceLocation DeclStart,
6174                                 Declarator &D, ExprTy *BitfieldWidth) {
6175  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6176                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6177                               AS_public);
6178  return Res;
6179}
6180
6181/// HandleField - Analyze a field of a C struct or a C++ data member.
6182///
6183FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6184                             SourceLocation DeclStart,
6185                             Declarator &D, Expr *BitWidth,
6186                             AccessSpecifier AS) {
6187  IdentifierInfo *II = D.getIdentifier();
6188  SourceLocation Loc = DeclStart;
6189  if (II) Loc = D.getIdentifierLoc();
6190
6191  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6192  QualType T = TInfo->getType();
6193  if (getLangOptions().CPlusPlus)
6194    CheckExtraCXXDefaultArguments(D);
6195
6196  DiagnoseFunctionSpecifiers(D);
6197
6198  if (D.getDeclSpec().isThreadSpecified())
6199    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6200
6201  // Check to see if this name was declared as a member previously
6202  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6203  LookupName(Previous, S);
6204  assert((Previous.empty() || Previous.isOverloadedResult() ||
6205          Previous.isSingleResult())
6206    && "Lookup of member name should be either overloaded, single or null");
6207
6208  // If the name is overloaded then get any declaration else get the single result
6209  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6210    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6211
6212  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6213    // Maybe we will complain about the shadowed template parameter.
6214    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6215    // Just pretend that we didn't see the previous declaration.
6216    PrevDecl = 0;
6217  }
6218
6219  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6220    PrevDecl = 0;
6221
6222  bool Mutable
6223    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6224  SourceLocation TSSL = D.getSourceRange().getBegin();
6225  FieldDecl *NewFD
6226    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6227                     AS, PrevDecl, &D);
6228
6229  if (NewFD->isInvalidDecl())
6230    Record->setInvalidDecl();
6231
6232  if (NewFD->isInvalidDecl() && PrevDecl) {
6233    // Don't introduce NewFD into scope; there's already something
6234    // with the same name in the same scope.
6235  } else if (II) {
6236    PushOnScopeChains(NewFD, S);
6237  } else
6238    Record->addDecl(NewFD);
6239
6240  return NewFD;
6241}
6242
6243/// \brief Build a new FieldDecl and check its well-formedness.
6244///
6245/// This routine builds a new FieldDecl given the fields name, type,
6246/// record, etc. \p PrevDecl should refer to any previous declaration
6247/// with the same name and in the same scope as the field to be
6248/// created.
6249///
6250/// \returns a new FieldDecl.
6251///
6252/// \todo The Declarator argument is a hack. It will be removed once
6253FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6254                                TypeSourceInfo *TInfo,
6255                                RecordDecl *Record, SourceLocation Loc,
6256                                bool Mutable, Expr *BitWidth,
6257                                SourceLocation TSSL,
6258                                AccessSpecifier AS, NamedDecl *PrevDecl,
6259                                Declarator *D) {
6260  IdentifierInfo *II = Name.getAsIdentifierInfo();
6261  bool InvalidDecl = false;
6262  if (D) InvalidDecl = D->isInvalidType();
6263
6264  // If we receive a broken type, recover by assuming 'int' and
6265  // marking this declaration as invalid.
6266  if (T.isNull()) {
6267    InvalidDecl = true;
6268    T = Context.IntTy;
6269  }
6270
6271  QualType EltTy = Context.getBaseElementType(T);
6272  if (!EltTy->isDependentType() &&
6273      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6274    // Fields of incomplete type force their record to be invalid.
6275    Record->setInvalidDecl();
6276    InvalidDecl = true;
6277  }
6278
6279  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6280  // than a variably modified type.
6281  if (!InvalidDecl && T->isVariablyModifiedType()) {
6282    bool SizeIsNegative;
6283    llvm::APSInt Oversized;
6284    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6285                                                           SizeIsNegative,
6286                                                           Oversized);
6287    if (!FixedTy.isNull()) {
6288      Diag(Loc, diag::warn_illegal_constant_array_size);
6289      T = FixedTy;
6290    } else {
6291      if (SizeIsNegative)
6292        Diag(Loc, diag::err_typecheck_negative_array_size);
6293      else if (Oversized.getBoolValue())
6294        Diag(Loc, diag::err_array_too_large)
6295          << Oversized.toString(10);
6296      else
6297        Diag(Loc, diag::err_typecheck_field_variable_size);
6298      InvalidDecl = true;
6299    }
6300  }
6301
6302  // Fields can not have abstract class types
6303  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6304                                             diag::err_abstract_type_in_decl,
6305                                             AbstractFieldType))
6306    InvalidDecl = true;
6307
6308  bool ZeroWidth = false;
6309  // If this is declared as a bit-field, check the bit-field.
6310  if (!InvalidDecl && BitWidth &&
6311      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6312    InvalidDecl = true;
6313    BitWidth = 0;
6314    ZeroWidth = false;
6315  }
6316
6317  // Check that 'mutable' is consistent with the type of the declaration.
6318  if (!InvalidDecl && Mutable) {
6319    unsigned DiagID = 0;
6320    if (T->isReferenceType())
6321      DiagID = diag::err_mutable_reference;
6322    else if (T.isConstQualified())
6323      DiagID = diag::err_mutable_const;
6324
6325    if (DiagID) {
6326      SourceLocation ErrLoc = Loc;
6327      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6328        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6329      Diag(ErrLoc, DiagID);
6330      Mutable = false;
6331      InvalidDecl = true;
6332    }
6333  }
6334
6335  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6336                                       BitWidth, Mutable);
6337  if (InvalidDecl)
6338    NewFD->setInvalidDecl();
6339
6340  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6341    Diag(Loc, diag::err_duplicate_member) << II;
6342    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6343    NewFD->setInvalidDecl();
6344  }
6345
6346  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6347    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6348      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6349      if (RDecl->getDefinition()) {
6350        // C++ 9.5p1: An object of a class with a non-trivial
6351        // constructor, a non-trivial copy constructor, a non-trivial
6352        // destructor, or a non-trivial copy assignment operator
6353        // cannot be a member of a union, nor can an array of such
6354        // objects.
6355        // TODO: C++0x alters this restriction significantly.
6356        if (Record->isUnion() && CheckNontrivialField(NewFD))
6357          NewFD->setInvalidDecl();
6358      }
6359    }
6360  }
6361
6362  // FIXME: We need to pass in the attributes given an AST
6363  // representation, not a parser representation.
6364  if (D)
6365    // FIXME: What to pass instead of TUScope?
6366    ProcessDeclAttributes(TUScope, NewFD, *D);
6367
6368  if (T.isObjCGCWeak())
6369    Diag(Loc, diag::warn_attribute_weak_on_field);
6370
6371  NewFD->setAccess(AS);
6372  return NewFD;
6373}
6374
6375bool Sema::CheckNontrivialField(FieldDecl *FD) {
6376  assert(FD);
6377  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6378
6379  if (FD->isInvalidDecl())
6380    return true;
6381
6382  QualType EltTy = Context.getBaseElementType(FD->getType());
6383  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6384    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6385    if (RDecl->getDefinition()) {
6386      // We check for copy constructors before constructors
6387      // because otherwise we'll never get complaints about
6388      // copy constructors.
6389
6390      CXXSpecialMember member = CXXInvalid;
6391      if (!RDecl->hasTrivialCopyConstructor())
6392        member = CXXCopyConstructor;
6393      else if (!RDecl->hasTrivialConstructor())
6394        member = CXXConstructor;
6395      else if (!RDecl->hasTrivialCopyAssignment())
6396        member = CXXCopyAssignment;
6397      else if (!RDecl->hasTrivialDestructor())
6398        member = CXXDestructor;
6399
6400      if (member != CXXInvalid) {
6401        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6402              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6403        DiagnoseNontrivial(RT, member);
6404        return true;
6405      }
6406    }
6407  }
6408
6409  return false;
6410}
6411
6412/// DiagnoseNontrivial - Given that a class has a non-trivial
6413/// special member, figure out why.
6414void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6415  QualType QT(T, 0U);
6416  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6417
6418  // Check whether the member was user-declared.
6419  switch (member) {
6420  case CXXInvalid:
6421    break;
6422
6423  case CXXConstructor:
6424    if (RD->hasUserDeclaredConstructor()) {
6425      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6426      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6427        const FunctionDecl *body = 0;
6428        ci->hasBody(body);
6429        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6430          SourceLocation CtorLoc = ci->getLocation();
6431          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6432          return;
6433        }
6434      }
6435
6436      assert(0 && "found no user-declared constructors");
6437      return;
6438    }
6439    break;
6440
6441  case CXXCopyConstructor:
6442    if (RD->hasUserDeclaredCopyConstructor()) {
6443      SourceLocation CtorLoc =
6444        RD->getCopyConstructor(Context, 0)->getLocation();
6445      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6446      return;
6447    }
6448    break;
6449
6450  case CXXCopyAssignment:
6451    if (RD->hasUserDeclaredCopyAssignment()) {
6452      // FIXME: this should use the location of the copy
6453      // assignment, not the type.
6454      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6455      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6456      return;
6457    }
6458    break;
6459
6460  case CXXDestructor:
6461    if (RD->hasUserDeclaredDestructor()) {
6462      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6463      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6464      return;
6465    }
6466    break;
6467  }
6468
6469  typedef CXXRecordDecl::base_class_iterator base_iter;
6470
6471  // Virtual bases and members inhibit trivial copying/construction,
6472  // but not trivial destruction.
6473  if (member != CXXDestructor) {
6474    // Check for virtual bases.  vbases includes indirect virtual bases,
6475    // so we just iterate through the direct bases.
6476    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6477      if (bi->isVirtual()) {
6478        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6479        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6480        return;
6481      }
6482
6483    // Check for virtual methods.
6484    typedef CXXRecordDecl::method_iterator meth_iter;
6485    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6486         ++mi) {
6487      if (mi->isVirtual()) {
6488        SourceLocation MLoc = mi->getSourceRange().getBegin();
6489        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6490        return;
6491      }
6492    }
6493  }
6494
6495  bool (CXXRecordDecl::*hasTrivial)() const;
6496  switch (member) {
6497  case CXXConstructor:
6498    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6499  case CXXCopyConstructor:
6500    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6501  case CXXCopyAssignment:
6502    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6503  case CXXDestructor:
6504    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6505  default:
6506    assert(0 && "unexpected special member"); return;
6507  }
6508
6509  // Check for nontrivial bases (and recurse).
6510  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6511    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6512    assert(BaseRT && "Don't know how to handle dependent bases");
6513    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6514    if (!(BaseRecTy->*hasTrivial)()) {
6515      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6516      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6517      DiagnoseNontrivial(BaseRT, member);
6518      return;
6519    }
6520  }
6521
6522  // Check for nontrivial members (and recurse).
6523  typedef RecordDecl::field_iterator field_iter;
6524  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6525       ++fi) {
6526    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6527    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6528      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6529
6530      if (!(EltRD->*hasTrivial)()) {
6531        SourceLocation FLoc = (*fi)->getLocation();
6532        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6533        DiagnoseNontrivial(EltRT, member);
6534        return;
6535      }
6536    }
6537  }
6538
6539  assert(0 && "found no explanation for non-trivial member");
6540}
6541
6542/// TranslateIvarVisibility - Translate visibility from a token ID to an
6543///  AST enum value.
6544static ObjCIvarDecl::AccessControl
6545TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6546  switch (ivarVisibility) {
6547  default: assert(0 && "Unknown visitibility kind");
6548  case tok::objc_private: return ObjCIvarDecl::Private;
6549  case tok::objc_public: return ObjCIvarDecl::Public;
6550  case tok::objc_protected: return ObjCIvarDecl::Protected;
6551  case tok::objc_package: return ObjCIvarDecl::Package;
6552  }
6553}
6554
6555/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6556/// in order to create an IvarDecl object for it.
6557Decl *Sema::ActOnIvar(Scope *S,
6558                                SourceLocation DeclStart,
6559                                Decl *IntfDecl,
6560                                Declarator &D, ExprTy *BitfieldWidth,
6561                                tok::ObjCKeywordKind Visibility) {
6562
6563  IdentifierInfo *II = D.getIdentifier();
6564  Expr *BitWidth = (Expr*)BitfieldWidth;
6565  SourceLocation Loc = DeclStart;
6566  if (II) Loc = D.getIdentifierLoc();
6567
6568  // FIXME: Unnamed fields can be handled in various different ways, for
6569  // example, unnamed unions inject all members into the struct namespace!
6570
6571  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6572  QualType T = TInfo->getType();
6573
6574  if (BitWidth) {
6575    // 6.7.2.1p3, 6.7.2.1p4
6576    if (VerifyBitField(Loc, II, T, BitWidth)) {
6577      D.setInvalidType();
6578      BitWidth = 0;
6579    }
6580  } else {
6581    // Not a bitfield.
6582
6583    // validate II.
6584
6585  }
6586  if (T->isReferenceType()) {
6587    Diag(Loc, diag::err_ivar_reference_type);
6588    D.setInvalidType();
6589  }
6590  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6591  // than a variably modified type.
6592  else if (T->isVariablyModifiedType()) {
6593    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6594    D.setInvalidType();
6595  }
6596
6597  // Get the visibility (access control) for this ivar.
6598  ObjCIvarDecl::AccessControl ac =
6599    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6600                                        : ObjCIvarDecl::None;
6601  // Must set ivar's DeclContext to its enclosing interface.
6602  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6603  ObjCContainerDecl *EnclosingContext;
6604  if (ObjCImplementationDecl *IMPDecl =
6605      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6606    if (!LangOpts.ObjCNonFragileABI2) {
6607    // Case of ivar declared in an implementation. Context is that of its class.
6608      EnclosingContext = IMPDecl->getClassInterface();
6609      assert(EnclosingContext && "Implementation has no class interface!");
6610    }
6611    else
6612      EnclosingContext = EnclosingDecl;
6613  } else {
6614    if (ObjCCategoryDecl *CDecl =
6615        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6616      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6617        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6618        return 0;
6619      }
6620    }
6621    EnclosingContext = EnclosingDecl;
6622  }
6623
6624  // Construct the decl.
6625  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6626                                             EnclosingContext, Loc, II, T,
6627                                             TInfo, ac, (Expr *)BitfieldWidth);
6628
6629  if (II) {
6630    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6631                                           ForRedeclaration);
6632    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6633        && !isa<TagDecl>(PrevDecl)) {
6634      Diag(Loc, diag::err_duplicate_member) << II;
6635      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6636      NewID->setInvalidDecl();
6637    }
6638  }
6639
6640  // Process attributes attached to the ivar.
6641  ProcessDeclAttributes(S, NewID, D);
6642
6643  if (D.isInvalidType())
6644    NewID->setInvalidDecl();
6645
6646  if (II) {
6647    // FIXME: When interfaces are DeclContexts, we'll need to add
6648    // these to the interface.
6649    S->AddDecl(NewID);
6650    IdResolver.AddDecl(NewID);
6651  }
6652
6653  return NewID;
6654}
6655
6656/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6657/// class and class extensions. For every class @interface and class
6658/// extension @interface, if the last ivar is a bitfield of any type,
6659/// then add an implicit `char :0` ivar to the end of that interface.
6660void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6661                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6662  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6663    return;
6664
6665  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6666  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6667
6668  if (!Ivar->isBitField())
6669    return;
6670  uint64_t BitFieldSize =
6671    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6672  if (BitFieldSize == 0)
6673    return;
6674  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6675  if (!ID) {
6676    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6677      if (!CD->IsClassExtension())
6678        return;
6679    }
6680    // No need to add this to end of @implementation.
6681    else
6682      return;
6683  }
6684  // All conditions are met. Add a new bitfield to the tail end of ivars.
6685  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6686  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
6687
6688  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6689                              DeclLoc, 0,
6690                              Context.CharTy,
6691                              Context.CreateTypeSourceInfo(Context.CharTy),
6692                              ObjCIvarDecl::Private, BW,
6693                              true);
6694  AllIvarDecls.push_back(Ivar);
6695}
6696
6697void Sema::ActOnFields(Scope* S,
6698                       SourceLocation RecLoc, Decl *EnclosingDecl,
6699                       Decl **Fields, unsigned NumFields,
6700                       SourceLocation LBrac, SourceLocation RBrac,
6701                       AttributeList *Attr) {
6702  assert(EnclosingDecl && "missing record or interface decl");
6703
6704  // If the decl this is being inserted into is invalid, then it may be a
6705  // redeclaration or some other bogus case.  Don't try to add fields to it.
6706  if (EnclosingDecl->isInvalidDecl()) {
6707    // FIXME: Deallocate fields?
6708    return;
6709  }
6710
6711
6712  // Verify that all the fields are okay.
6713  unsigned NumNamedMembers = 0;
6714  llvm::SmallVector<FieldDecl*, 32> RecFields;
6715
6716  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6717  for (unsigned i = 0; i != NumFields; ++i) {
6718    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6719
6720    // Get the type for the field.
6721    Type *FDTy = FD->getType().getTypePtr();
6722
6723    if (!FD->isAnonymousStructOrUnion()) {
6724      // Remember all fields written by the user.
6725      RecFields.push_back(FD);
6726    }
6727
6728    // If the field is already invalid for some reason, don't emit more
6729    // diagnostics about it.
6730    if (FD->isInvalidDecl()) {
6731      EnclosingDecl->setInvalidDecl();
6732      continue;
6733    }
6734
6735    // C99 6.7.2.1p2:
6736    //   A structure or union shall not contain a member with
6737    //   incomplete or function type (hence, a structure shall not
6738    //   contain an instance of itself, but may contain a pointer to
6739    //   an instance of itself), except that the last member of a
6740    //   structure with more than one named member may have incomplete
6741    //   array type; such a structure (and any union containing,
6742    //   possibly recursively, a member that is such a structure)
6743    //   shall not be a member of a structure or an element of an
6744    //   array.
6745    if (FDTy->isFunctionType()) {
6746      // Field declared as a function.
6747      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6748        << FD->getDeclName();
6749      FD->setInvalidDecl();
6750      EnclosingDecl->setInvalidDecl();
6751      continue;
6752    } else if (FDTy->isIncompleteArrayType() && Record &&
6753               ((i == NumFields - 1 && !Record->isUnion()) ||
6754                (getLangOptions().Microsoft &&
6755                 (i == NumFields - 1 || Record->isUnion())))) {
6756      // Flexible array member.
6757      // Microsoft is more permissive regarding flexible array.
6758      // It will accept flexible array in union and also
6759	    // as the sole element of a struct/class.
6760      if (getLangOptions().Microsoft) {
6761        if (Record->isUnion())
6762          Diag(FD->getLocation(), diag::ext_flexible_array_union)
6763            << FD->getDeclName();
6764        else if (NumFields == 1)
6765          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
6766            << FD->getDeclName() << Record->getTagKind();
6767      } else  if (NumNamedMembers < 1) {
6768        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6769          << FD->getDeclName();
6770        FD->setInvalidDecl();
6771        EnclosingDecl->setInvalidDecl();
6772        continue;
6773      }
6774      if (!FD->getType()->isDependentType() &&
6775          !Context.getBaseElementType(FD->getType())->isPODType()) {
6776        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6777          << FD->getDeclName() << FD->getType();
6778        FD->setInvalidDecl();
6779        EnclosingDecl->setInvalidDecl();
6780        continue;
6781      }
6782      // Okay, we have a legal flexible array member at the end of the struct.
6783      if (Record)
6784        Record->setHasFlexibleArrayMember(true);
6785    } else if (!FDTy->isDependentType() &&
6786               RequireCompleteType(FD->getLocation(), FD->getType(),
6787                                   diag::err_field_incomplete)) {
6788      // Incomplete type
6789      FD->setInvalidDecl();
6790      EnclosingDecl->setInvalidDecl();
6791      continue;
6792    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6793      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6794        // If this is a member of a union, then entire union becomes "flexible".
6795        if (Record && Record->isUnion()) {
6796          Record->setHasFlexibleArrayMember(true);
6797        } else {
6798          // If this is a struct/class and this is not the last element, reject
6799          // it.  Note that GCC supports variable sized arrays in the middle of
6800          // structures.
6801          if (i != NumFields-1)
6802            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6803              << FD->getDeclName() << FD->getType();
6804          else {
6805            // We support flexible arrays at the end of structs in
6806            // other structs as an extension.
6807            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6808              << FD->getDeclName();
6809            if (Record)
6810              Record->setHasFlexibleArrayMember(true);
6811          }
6812        }
6813      }
6814      if (Record && FDTTy->getDecl()->hasObjectMember())
6815        Record->setHasObjectMember(true);
6816    } else if (FDTy->isObjCObjectType()) {
6817      /// A field cannot be an Objective-c object
6818      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6819      FD->setInvalidDecl();
6820      EnclosingDecl->setInvalidDecl();
6821      continue;
6822    } else if (getLangOptions().ObjC1 &&
6823               getLangOptions().getGCMode() != LangOptions::NonGC &&
6824               Record &&
6825               (FD->getType()->isObjCObjectPointerType() ||
6826                FD->getType().isObjCGCStrong()))
6827      Record->setHasObjectMember(true);
6828    else if (Context.getAsArrayType(FD->getType())) {
6829      QualType BaseType = Context.getBaseElementType(FD->getType());
6830      if (Record && BaseType->isRecordType() &&
6831          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6832        Record->setHasObjectMember(true);
6833    }
6834    // Keep track of the number of named members.
6835    if (FD->getIdentifier())
6836      ++NumNamedMembers;
6837  }
6838
6839  // Okay, we successfully defined 'Record'.
6840  if (Record) {
6841    bool Completed = false;
6842    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
6843      if (!CXXRecord->isInvalidDecl()) {
6844        // Set access bits correctly on the directly-declared conversions.
6845        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
6846        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
6847             I != E; ++I)
6848          Convs->setAccess(I, (*I)->getAccess());
6849
6850        if (!CXXRecord->isDependentType()) {
6851          // Add any implicitly-declared members to this class.
6852          AddImplicitlyDeclaredMembersToClass(CXXRecord);
6853
6854          // If we have virtual base classes, we may end up finding multiple
6855          // final overriders for a given virtual function. Check for this
6856          // problem now.
6857          if (CXXRecord->getNumVBases()) {
6858            CXXFinalOverriderMap FinalOverriders;
6859            CXXRecord->getFinalOverriders(FinalOverriders);
6860
6861            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
6862                                             MEnd = FinalOverriders.end();
6863                 M != MEnd; ++M) {
6864              for (OverridingMethods::iterator SO = M->second.begin(),
6865                                            SOEnd = M->second.end();
6866                   SO != SOEnd; ++SO) {
6867                assert(SO->second.size() > 0 &&
6868                       "Virtual function without overridding functions?");
6869                if (SO->second.size() == 1)
6870                  continue;
6871
6872                // C++ [class.virtual]p2:
6873                //   In a derived class, if a virtual member function of a base
6874                //   class subobject has more than one final overrider the
6875                //   program is ill-formed.
6876                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
6877                  << (NamedDecl *)M->first << Record;
6878                Diag(M->first->getLocation(),
6879                     diag::note_overridden_virtual_function);
6880                for (OverridingMethods::overriding_iterator
6881                          OM = SO->second.begin(),
6882                       OMEnd = SO->second.end();
6883                     OM != OMEnd; ++OM)
6884                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
6885                    << (NamedDecl *)M->first << OM->Method->getParent();
6886
6887                Record->setInvalidDecl();
6888              }
6889            }
6890            CXXRecord->completeDefinition(&FinalOverriders);
6891            Completed = true;
6892          }
6893        }
6894      }
6895    }
6896
6897    if (!Completed)
6898      Record->completeDefinition();
6899  } else {
6900    ObjCIvarDecl **ClsFields =
6901      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6902    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6903      ID->setLocEnd(RBrac);
6904      // Add ivar's to class's DeclContext.
6905      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6906        ClsFields[i]->setLexicalDeclContext(ID);
6907        ID->addDecl(ClsFields[i]);
6908      }
6909      // Must enforce the rule that ivars in the base classes may not be
6910      // duplicates.
6911      if (ID->getSuperClass())
6912        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6913    } else if (ObjCImplementationDecl *IMPDecl =
6914                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6915      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6916      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6917        // Ivar declared in @implementation never belongs to the implementation.
6918        // Only it is in implementation's lexical context.
6919        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6920      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6921    } else if (ObjCCategoryDecl *CDecl =
6922                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6923      // case of ivars in class extension; all other cases have been
6924      // reported as errors elsewhere.
6925      // FIXME. Class extension does not have a LocEnd field.
6926      // CDecl->setLocEnd(RBrac);
6927      // Add ivar's to class extension's DeclContext.
6928      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6929        ClsFields[i]->setLexicalDeclContext(CDecl);
6930        CDecl->addDecl(ClsFields[i]);
6931      }
6932    }
6933  }
6934
6935  if (Attr)
6936    ProcessDeclAttributeList(S, Record, Attr);
6937
6938  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6939  // set the visibility of this record.
6940  if (Record && !Record->getDeclContext()->isRecord())
6941    AddPushedVisibilityAttribute(Record);
6942}
6943
6944/// \brief Determine whether the given integral value is representable within
6945/// the given type T.
6946static bool isRepresentableIntegerValue(ASTContext &Context,
6947                                        llvm::APSInt &Value,
6948                                        QualType T) {
6949  assert(T->isIntegralType(Context) && "Integral type required!");
6950  unsigned BitWidth = Context.getIntWidth(T);
6951
6952  if (Value.isUnsigned() || Value.isNonNegative()) {
6953    if (T->isSignedIntegerType())
6954      --BitWidth;
6955    return Value.getActiveBits() <= BitWidth;
6956  }
6957  return Value.getMinSignedBits() <= BitWidth;
6958}
6959
6960// \brief Given an integral type, return the next larger integral type
6961// (or a NULL type of no such type exists).
6962static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6963  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6964  // enum checking below.
6965  assert(T->isIntegralType(Context) && "Integral type required!");
6966  const unsigned NumTypes = 4;
6967  QualType SignedIntegralTypes[NumTypes] = {
6968    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6969  };
6970  QualType UnsignedIntegralTypes[NumTypes] = {
6971    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6972    Context.UnsignedLongLongTy
6973  };
6974
6975  unsigned BitWidth = Context.getTypeSize(T);
6976  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6977                                            : UnsignedIntegralTypes;
6978  for (unsigned I = 0; I != NumTypes; ++I)
6979    if (Context.getTypeSize(Types[I]) > BitWidth)
6980      return Types[I];
6981
6982  return QualType();
6983}
6984
6985EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6986                                          EnumConstantDecl *LastEnumConst,
6987                                          SourceLocation IdLoc,
6988                                          IdentifierInfo *Id,
6989                                          Expr *Val) {
6990  unsigned IntWidth = Context.Target.getIntWidth();
6991  llvm::APSInt EnumVal(IntWidth);
6992  QualType EltTy;
6993  if (Val) {
6994    if (Enum->isDependentType() || Val->isTypeDependent())
6995      EltTy = Context.DependentTy;
6996    else {
6997      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6998      SourceLocation ExpLoc;
6999      if (!Val->isValueDependent() &&
7000          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7001        Val = 0;
7002      } else {
7003        if (!getLangOptions().CPlusPlus) {
7004          // C99 6.7.2.2p2:
7005          //   The expression that defines the value of an enumeration constant
7006          //   shall be an integer constant expression that has a value
7007          //   representable as an int.
7008
7009          // Complain if the value is not representable in an int.
7010          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7011            Diag(IdLoc, diag::ext_enum_value_not_int)
7012              << EnumVal.toString(10) << Val->getSourceRange()
7013              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7014          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7015            // Force the type of the expression to 'int'.
7016            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7017          }
7018        }
7019
7020        if (Enum->isFixed()) {
7021          EltTy = Enum->getIntegerType();
7022
7023          // C++0x [dcl.enum]p5:
7024          //   ... if the initializing value of an enumerator cannot be
7025          //   represented by the underlying type, the program is ill-formed.
7026          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy))
7027            Diag(IdLoc, diag::err_enumerator_too_large)
7028              << EltTy;
7029          else
7030            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7031        }
7032        else {
7033          // C++0x [dcl.enum]p5:
7034          //   If the underlying type is not fixed, the type of each enumerator
7035          //   is the type of its initializing value:
7036          //     - If an initializer is specified for an enumerator, the
7037          //       initializing value has the same type as the expression.
7038          EltTy = Val->getType();
7039        }
7040      }
7041    }
7042  }
7043
7044  if (!Val) {
7045    if (Enum->isDependentType())
7046      EltTy = Context.DependentTy;
7047    else if (!LastEnumConst) {
7048      // C++0x [dcl.enum]p5:
7049      //   If the underlying type is not fixed, the type of each enumerator
7050      //   is the type of its initializing value:
7051      //     - If no initializer is specified for the first enumerator, the
7052      //       initializing value has an unspecified integral type.
7053      //
7054      // GCC uses 'int' for its unspecified integral type, as does
7055      // C99 6.7.2.2p3.
7056      if (Enum->isFixed()) {
7057        EltTy = Enum->getIntegerType();
7058      }
7059      else {
7060        EltTy = Context.IntTy;
7061      }
7062    } else {
7063      // Assign the last value + 1.
7064      EnumVal = LastEnumConst->getInitVal();
7065      ++EnumVal;
7066      EltTy = LastEnumConst->getType();
7067
7068      // Check for overflow on increment.
7069      if (EnumVal < LastEnumConst->getInitVal()) {
7070        // C++0x [dcl.enum]p5:
7071        //   If the underlying type is not fixed, the type of each enumerator
7072        //   is the type of its initializing value:
7073        //
7074        //     - Otherwise the type of the initializing value is the same as
7075        //       the type of the initializing value of the preceding enumerator
7076        //       unless the incremented value is not representable in that type,
7077        //       in which case the type is an unspecified integral type
7078        //       sufficient to contain the incremented value. If no such type
7079        //       exists, the program is ill-formed.
7080        QualType T = getNextLargerIntegralType(Context, EltTy);
7081        if (T.isNull() || Enum->isFixed()) {
7082          // There is no integral type larger enough to represent this
7083          // value. Complain, then allow the value to wrap around.
7084          EnumVal = LastEnumConst->getInitVal();
7085          EnumVal.zext(EnumVal.getBitWidth() * 2);
7086          ++EnumVal;
7087          if (Enum->isFixed())
7088            // When the underlying type is fixed, this is ill-formed.
7089            Diag(IdLoc, diag::err_enumerator_wrapped)
7090              << EnumVal.toString(10)
7091              << EltTy;
7092          else
7093            Diag(IdLoc, diag::warn_enumerator_too_large)
7094              << EnumVal.toString(10);
7095        } else {
7096          EltTy = T;
7097        }
7098
7099        // Retrieve the last enumerator's value, extent that type to the
7100        // type that is supposed to be large enough to represent the incremented
7101        // value, then increment.
7102        EnumVal = LastEnumConst->getInitVal();
7103        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7104        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7105        ++EnumVal;
7106
7107        // If we're not in C++, diagnose the overflow of enumerator values,
7108        // which in C99 means that the enumerator value is not representable in
7109        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7110        // permits enumerator values that are representable in some larger
7111        // integral type.
7112        if (!getLangOptions().CPlusPlus && !T.isNull())
7113          Diag(IdLoc, diag::warn_enum_value_overflow);
7114      } else if (!getLangOptions().CPlusPlus &&
7115                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7116        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7117        Diag(IdLoc, diag::ext_enum_value_not_int)
7118          << EnumVal.toString(10) << 1;
7119      }
7120    }
7121  }
7122
7123  if (!EltTy->isDependentType()) {
7124    // Make the enumerator value match the signedness and size of the
7125    // enumerator's type.
7126    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7127    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7128  }
7129
7130  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7131                                  Val, EnumVal);
7132}
7133
7134
7135Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl,
7136                                        Decl *lastEnumConst,
7137                                        SourceLocation IdLoc,
7138                                        IdentifierInfo *Id,
7139                                        SourceLocation EqualLoc, ExprTy *val) {
7140  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7141  EnumConstantDecl *LastEnumConst =
7142    cast_or_null<EnumConstantDecl>(lastEnumConst);
7143  Expr *Val = static_cast<Expr*>(val);
7144
7145  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7146  // we find one that is.
7147  S = getNonFieldDeclScope(S);
7148
7149  // Verify that there isn't already something declared with this name in this
7150  // scope.
7151  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7152                                         ForRedeclaration);
7153  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7154    // Maybe we will complain about the shadowed template parameter.
7155    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7156    // Just pretend that we didn't see the previous declaration.
7157    PrevDecl = 0;
7158  }
7159
7160  if (PrevDecl) {
7161    // When in C++, we may get a TagDecl with the same name; in this case the
7162    // enum constant will 'hide' the tag.
7163    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7164           "Received TagDecl when not in C++!");
7165    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7166      if (isa<EnumConstantDecl>(PrevDecl))
7167        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7168      else
7169        Diag(IdLoc, diag::err_redefinition) << Id;
7170      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7171      return 0;
7172    }
7173  }
7174
7175  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
7176                                            IdLoc, Id, Val);
7177
7178  // Register this decl in the current scope stack.
7179  if (New) {
7180    New->setAccess(TheEnumDecl->getAccess());
7181    PushOnScopeChains(New, S);
7182  }
7183
7184  return New;
7185}
7186
7187void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7188                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7189                         Decl **Elements, unsigned NumElements,
7190                         Scope *S, AttributeList *Attr) {
7191  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7192  QualType EnumType = Context.getTypeDeclType(Enum);
7193
7194  if (Attr)
7195    ProcessDeclAttributeList(S, Enum, Attr);
7196
7197  if (Enum->isDependentType()) {
7198    for (unsigned i = 0; i != NumElements; ++i) {
7199      EnumConstantDecl *ECD =
7200        cast_or_null<EnumConstantDecl>(Elements[i]);
7201      if (!ECD) continue;
7202
7203      ECD->setType(EnumType);
7204    }
7205
7206    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7207    return;
7208  }
7209
7210  // TODO: If the result value doesn't fit in an int, it must be a long or long
7211  // long value.  ISO C does not support this, but GCC does as an extension,
7212  // emit a warning.
7213  unsigned IntWidth = Context.Target.getIntWidth();
7214  unsigned CharWidth = Context.Target.getCharWidth();
7215  unsigned ShortWidth = Context.Target.getShortWidth();
7216
7217  // Verify that all the values are okay, compute the size of the values, and
7218  // reverse the list.
7219  unsigned NumNegativeBits = 0;
7220  unsigned NumPositiveBits = 0;
7221
7222  // Keep track of whether all elements have type int.
7223  bool AllElementsInt = true;
7224
7225  for (unsigned i = 0; i != NumElements; ++i) {
7226    EnumConstantDecl *ECD =
7227      cast_or_null<EnumConstantDecl>(Elements[i]);
7228    if (!ECD) continue;  // Already issued a diagnostic.
7229
7230    const llvm::APSInt &InitVal = ECD->getInitVal();
7231
7232    // Keep track of the size of positive and negative values.
7233    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7234      NumPositiveBits = std::max(NumPositiveBits,
7235                                 (unsigned)InitVal.getActiveBits());
7236    else
7237      NumNegativeBits = std::max(NumNegativeBits,
7238                                 (unsigned)InitVal.getMinSignedBits());
7239
7240    // Keep track of whether every enum element has type int (very commmon).
7241    if (AllElementsInt)
7242      AllElementsInt = ECD->getType() == Context.IntTy;
7243  }
7244
7245  // Figure out the type that should be used for this enum.
7246  // FIXME: Support -fshort-enums.
7247  QualType BestType;
7248  unsigned BestWidth;
7249
7250  // C++0x N3000 [conv.prom]p3:
7251  //   An rvalue of an unscoped enumeration type whose underlying
7252  //   type is not fixed can be converted to an rvalue of the first
7253  //   of the following types that can represent all the values of
7254  //   the enumeration: int, unsigned int, long int, unsigned long
7255  //   int, long long int, or unsigned long long int.
7256  // C99 6.4.4.3p2:
7257  //   An identifier declared as an enumeration constant has type int.
7258  // The C99 rule is modified by a gcc extension
7259  QualType BestPromotionType;
7260
7261  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7262  // -fshort-enums is the equivalent to specifying the packed attribute on all
7263  // enum definitions.
7264  if (LangOpts.ShortEnums)
7265    Packed = true;
7266
7267  if (Enum->isFixed()) {
7268    BestType = BestPromotionType = Enum->getIntegerType();
7269    // We don't need to set BestWidth, because BestType is going to be the type
7270    // of the enumerators, but we do anyway because otherwise some compilers
7271    // warn that it might be used uninitialized.
7272    BestWidth = CharWidth;
7273  }
7274  else if (NumNegativeBits) {
7275    // If there is a negative value, figure out the smallest integer type (of
7276    // int/long/longlong) that fits.
7277    // If it's packed, check also if it fits a char or a short.
7278    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7279      BestType = Context.SignedCharTy;
7280      BestWidth = CharWidth;
7281    } else if (Packed && NumNegativeBits <= ShortWidth &&
7282               NumPositiveBits < ShortWidth) {
7283      BestType = Context.ShortTy;
7284      BestWidth = ShortWidth;
7285    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7286      BestType = Context.IntTy;
7287      BestWidth = IntWidth;
7288    } else {
7289      BestWidth = Context.Target.getLongWidth();
7290
7291      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7292        BestType = Context.LongTy;
7293      } else {
7294        BestWidth = Context.Target.getLongLongWidth();
7295
7296        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7297          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7298        BestType = Context.LongLongTy;
7299      }
7300    }
7301    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7302  } else {
7303    // If there is no negative value, figure out the smallest type that fits
7304    // all of the enumerator values.
7305    // If it's packed, check also if it fits a char or a short.
7306    if (Packed && NumPositiveBits <= CharWidth) {
7307      BestType = Context.UnsignedCharTy;
7308      BestPromotionType = Context.IntTy;
7309      BestWidth = CharWidth;
7310    } else if (Packed && NumPositiveBits <= ShortWidth) {
7311      BestType = Context.UnsignedShortTy;
7312      BestPromotionType = Context.IntTy;
7313      BestWidth = ShortWidth;
7314    } else if (NumPositiveBits <= IntWidth) {
7315      BestType = Context.UnsignedIntTy;
7316      BestWidth = IntWidth;
7317      BestPromotionType
7318        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7319                           ? Context.UnsignedIntTy : Context.IntTy;
7320    } else if (NumPositiveBits <=
7321               (BestWidth = Context.Target.getLongWidth())) {
7322      BestType = Context.UnsignedLongTy;
7323      BestPromotionType
7324        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7325                           ? Context.UnsignedLongTy : Context.LongTy;
7326    } else {
7327      BestWidth = Context.Target.getLongLongWidth();
7328      assert(NumPositiveBits <= BestWidth &&
7329             "How could an initializer get larger than ULL?");
7330      BestType = Context.UnsignedLongLongTy;
7331      BestPromotionType
7332        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7333                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7334    }
7335  }
7336
7337  // Loop over all of the enumerator constants, changing their types to match
7338  // the type of the enum if needed.
7339  for (unsigned i = 0; i != NumElements; ++i) {
7340    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7341    if (!ECD) continue;  // Already issued a diagnostic.
7342
7343    // Standard C says the enumerators have int type, but we allow, as an
7344    // extension, the enumerators to be larger than int size.  If each
7345    // enumerator value fits in an int, type it as an int, otherwise type it the
7346    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7347    // that X has type 'int', not 'unsigned'.
7348
7349    // Determine whether the value fits into an int.
7350    llvm::APSInt InitVal = ECD->getInitVal();
7351
7352    // If it fits into an integer type, force it.  Otherwise force it to match
7353    // the enum decl type.
7354    QualType NewTy;
7355    unsigned NewWidth;
7356    bool NewSign;
7357    if (!getLangOptions().CPlusPlus &&
7358        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7359      NewTy = Context.IntTy;
7360      NewWidth = IntWidth;
7361      NewSign = true;
7362    } else if (ECD->getType() == BestType) {
7363      // Already the right type!
7364      if (getLangOptions().CPlusPlus)
7365        // C++ [dcl.enum]p4: Following the closing brace of an
7366        // enum-specifier, each enumerator has the type of its
7367        // enumeration.
7368        ECD->setType(EnumType);
7369      continue;
7370    } else {
7371      NewTy = BestType;
7372      NewWidth = BestWidth;
7373      NewSign = BestType->isSignedIntegerType();
7374    }
7375
7376    // Adjust the APSInt value.
7377    InitVal.extOrTrunc(NewWidth);
7378    InitVal.setIsSigned(NewSign);
7379    ECD->setInitVal(InitVal);
7380
7381    // Adjust the Expr initializer and type.
7382    if (ECD->getInitExpr())
7383      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7384                                                CK_IntegralCast,
7385                                                ECD->getInitExpr(),
7386                                                /*base paths*/ 0,
7387                                                VK_RValue));
7388    if (getLangOptions().CPlusPlus)
7389      // C++ [dcl.enum]p4: Following the closing brace of an
7390      // enum-specifier, each enumerator has the type of its
7391      // enumeration.
7392      ECD->setType(EnumType);
7393    else
7394      ECD->setType(NewTy);
7395  }
7396
7397  Enum->completeDefinition(BestType, BestPromotionType,
7398                           NumPositiveBits, NumNegativeBits);
7399}
7400
7401Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7402  StringLiteral *AsmString = cast<StringLiteral>(expr);
7403
7404  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7405                                                   Loc, AsmString);
7406  CurContext->addDecl(New);
7407  return New;
7408}
7409
7410void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7411                             SourceLocation PragmaLoc,
7412                             SourceLocation NameLoc) {
7413  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7414
7415  if (PrevDecl) {
7416    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7417  } else {
7418    (void)WeakUndeclaredIdentifiers.insert(
7419      std::pair<IdentifierInfo*,WeakInfo>
7420        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7421  }
7422}
7423
7424void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7425                                IdentifierInfo* AliasName,
7426                                SourceLocation PragmaLoc,
7427                                SourceLocation NameLoc,
7428                                SourceLocation AliasNameLoc) {
7429  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7430                                    LookupOrdinaryName);
7431  WeakInfo W = WeakInfo(Name, NameLoc);
7432
7433  if (PrevDecl) {
7434    if (!PrevDecl->hasAttr<AliasAttr>())
7435      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7436        DeclApplyPragmaWeak(TUScope, ND, W);
7437  } else {
7438    (void)WeakUndeclaredIdentifiers.insert(
7439      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7440  }
7441}
7442