SemaDecl.cpp revision c34ee5ef2b267a683c432ba0c342f7c3a14889d6
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/DiagnosticSema.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31
32using namespace clang;
33
34Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, Scope *S,
35                                const CXXScopeSpec *SS) {
36  DeclContext *DC = 0;
37
38  if (SS) {
39    if (SS->isInvalid())
40      return 0;
41    DC = static_cast<DeclContext*>(SS->getScopeRep());
42  }
43  LookupResult Result = DC ?
44                 LookupDeclInContext(&II, Decl::IDNS_Ordinary, DC) :
45                 LookupDeclInScope(&II, Decl::IDNS_Ordinary, S);
46
47  Decl *IIDecl = 0;
48  switch (Result.getKind()) {
49  case LookupResult::NotFound:
50  case LookupResult::FoundOverloaded:
51  case LookupResult::AmbiguousBaseSubobjectTypes:
52  case LookupResult::AmbiguousBaseSubobjects:
53    // FIXME: In the event of an ambiguous lookup, we could visit all of
54    // the entities found to determine whether they are all types. This
55    // might provide better diagnostics.
56    return 0;
57
58  case LookupResult::Found:
59    IIDecl = Result.getAsDecl();
60    break;
61  }
62
63  if (isa<TypedefDecl>(IIDecl) ||
64      isa<ObjCInterfaceDecl>(IIDecl) ||
65      isa<TagDecl>(IIDecl) ||
66      isa<TemplateTypeParmDecl>(IIDecl))
67    return IIDecl;
68  return 0;
69}
70
71DeclContext *Sema::getContainingDC(DeclContext *DC) {
72  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
73    // A C++ out-of-line method will return to the file declaration context.
74    if (MD->isOutOfLineDefinition())
75      return MD->getLexicalDeclContext();
76
77    // A C++ inline method is parsed *after* the topmost class it was declared in
78    // is fully parsed (it's "complete").
79    // The parsing of a C++ inline method happens at the declaration context of
80    // the topmost (non-nested) class it is lexically declared in.
81    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
82    DC = MD->getParent();
83    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
84      DC = RD;
85
86    // Return the declaration context of the topmost class the inline method is
87    // declared in.
88    return DC;
89  }
90
91  if (isa<ObjCMethodDecl>(DC))
92    return Context.getTranslationUnitDecl();
93
94  if (Decl *D = dyn_cast<Decl>(DC))
95    return D->getLexicalDeclContext();
96
97  return DC->getLexicalParent();
98}
99
100void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
101  assert(getContainingDC(DC) == CurContext &&
102      "The next DeclContext should be lexically contained in the current one.");
103  CurContext = DC;
104  S->setEntity(DC);
105}
106
107void Sema::PopDeclContext() {
108  assert(CurContext && "DeclContext imbalance!");
109
110  CurContext = getContainingDC(CurContext);
111}
112
113/// Add this decl to the scope shadowed decl chains.
114void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
115  // Move up the scope chain until we find the nearest enclosing
116  // non-transparent context. The declaration will be introduced into this
117  // scope.
118  while (S->getEntity() &&
119         ((DeclContext *)S->getEntity())->isTransparentContext())
120    S = S->getParent();
121
122  S->AddDecl(D);
123
124  // Add scoped declarations into their context, so that they can be
125  // found later. Declarations without a context won't be inserted
126  // into any context.
127  CurContext->addDecl(D);
128
129  // C++ [basic.scope]p4:
130  //   -- exactly one declaration shall declare a class name or
131  //   enumeration name that is not a typedef name and the other
132  //   declarations shall all refer to the same object or
133  //   enumerator, or all refer to functions and function templates;
134  //   in this case the class name or enumeration name is hidden.
135  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
136    // We are pushing the name of a tag (enum or class).
137    if (CurContext->getLookupContext()
138          == TD->getDeclContext()->getLookupContext()) {
139      // We're pushing the tag into the current context, which might
140      // require some reshuffling in the identifier resolver.
141      IdentifierResolver::iterator
142        I = IdResolver.begin(TD->getDeclName(), CurContext,
143                             false/*LookInParentCtx*/),
144        IEnd = IdResolver.end();
145      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
146        NamedDecl *PrevDecl = *I;
147        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
148             PrevDecl = *I, ++I) {
149          if (TD->declarationReplaces(*I)) {
150            // This is a redeclaration. Remove it from the chain and
151            // break out, so that we'll add in the shadowed
152            // declaration.
153            S->RemoveDecl(*I);
154            if (PrevDecl == *I) {
155              IdResolver.RemoveDecl(*I);
156              IdResolver.AddDecl(TD);
157              return;
158            } else {
159              IdResolver.RemoveDecl(*I);
160              break;
161            }
162          }
163        }
164
165        // There is already a declaration with the same name in the same
166        // scope, which is not a tag declaration. It must be found
167        // before we find the new declaration, so insert the new
168        // declaration at the end of the chain.
169        IdResolver.AddShadowedDecl(TD, PrevDecl);
170
171        return;
172      }
173    }
174  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
175    // We are pushing the name of a function, which might be an
176    // overloaded name.
177    FunctionDecl *FD = cast<FunctionDecl>(D);
178    DeclContext *DC = FD->getDeclContext()->getLookupContext();
179    IdentifierResolver::iterator Redecl
180      = std::find_if(IdResolver.begin(FD->getDeclName(), DC,
181                                      false/*LookInParentCtx*/),
182                     IdResolver.end(),
183                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
184                                  FD));
185    if (Redecl != IdResolver.end()) {
186      // There is already a declaration of a function on our
187      // IdResolver chain. Replace it with this declaration.
188      S->RemoveDecl(*Redecl);
189      IdResolver.RemoveDecl(*Redecl);
190    }
191  }
192
193  IdResolver.AddDecl(D);
194}
195
196void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
197  if (S->decl_empty()) return;
198  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
199	 "Scope shouldn't contain decls!");
200
201  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
202       I != E; ++I) {
203    Decl *TmpD = static_cast<Decl*>(*I);
204    assert(TmpD && "This decl didn't get pushed??");
205
206    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
207    NamedDecl *D = cast<NamedDecl>(TmpD);
208
209    if (!D->getDeclName()) continue;
210
211    // Remove this name from our lexical scope.
212    IdResolver.RemoveDecl(D);
213  }
214}
215
216/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
217/// return 0 if one not found.
218ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
219  // The third "scope" argument is 0 since we aren't enabling lazy built-in
220  // creation from this context.
221  Decl *IDecl = LookupDeclInScope(Id, Decl::IDNS_Ordinary, 0);
222
223  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
224}
225
226/// getNonFieldDeclScope - Retrieves the innermost scope, starting
227/// from S, where a non-field would be declared. This routine copes
228/// with the difference between C and C++ scoping rules in structs and
229/// unions. For example, the following code is well-formed in C but
230/// ill-formed in C++:
231/// @code
232/// struct S6 {
233///   enum { BAR } e;
234/// };
235///
236/// void test_S6() {
237///   struct S6 a;
238///   a.e = BAR;
239/// }
240/// @endcode
241/// For the declaration of BAR, this routine will return a different
242/// scope. The scope S will be the scope of the unnamed enumeration
243/// within S6. In C++, this routine will return the scope associated
244/// with S6, because the enumeration's scope is a transparent
245/// context but structures can contain non-field names. In C, this
246/// routine will return the translation unit scope, since the
247/// enumeration's scope is a transparent context and structures cannot
248/// contain non-field names.
249Scope *Sema::getNonFieldDeclScope(Scope *S) {
250  while (((S->getFlags() & Scope::DeclScope) == 0) ||
251         (S->getEntity() &&
252          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
253         (S->isClassScope() && !getLangOptions().CPlusPlus))
254    S = S->getParent();
255  return S;
256}
257
258/// LookupDeclInScope - Look up the inner-most declaration in the specified
259/// namespace. NamespaceNameOnly - during lookup only namespace names
260/// are considered as required in C++ [basic.lookup.udir] 3.4.6.p1
261/// 'When looking up a namespace-name in a using-directive or
262/// namespace-alias-definition, only namespace names are considered.'
263///
264/// Note: The use of this routine is deprecated. Please use
265/// LookupName, LookupQualifiedName, or LookupParsedName instead.
266Sema::LookupResult
267Sema::LookupDeclInScope(DeclarationName Name, unsigned NSI, Scope *S,
268                        bool LookInParent) {
269  LookupCriteria::NameKind Kind;
270  if (NSI == Decl::IDNS_Ordinary) {
271    Kind = LookupCriteria::Ordinary;
272  } else if (NSI == Decl::IDNS_Tag)
273    Kind = LookupCriteria::Tag;
274  else {
275    assert(NSI == Decl::IDNS_Member &&"Unable to grok LookupDecl NSI argument");
276    Kind = LookupCriteria::Member;
277  }
278  // Unqualified lookup
279  return LookupName(S, Name,
280                    LookupCriteria(Kind, !LookInParent,
281                                   getLangOptions().CPlusPlus));
282}
283
284Sema::LookupResult
285Sema::LookupDeclInContext(DeclarationName Name, unsigned NSI,
286                          const DeclContext *LookupCtx,
287                          bool LookInParent) {
288  assert(LookupCtx && "LookupDeclInContext(): Missing DeclContext");
289  LookupCriteria::NameKind Kind;
290  if (NSI == Decl::IDNS_Ordinary) {
291    Kind = LookupCriteria::Ordinary;
292  } else if (NSI == Decl::IDNS_Tag)
293    Kind = LookupCriteria::Tag;
294  else {
295    assert(NSI == Decl::IDNS_Member &&"Unable to grok LookupDecl NSI argument");
296    Kind = LookupCriteria::Member;
297  }
298  return LookupQualifiedName(const_cast<DeclContext *>(LookupCtx), Name,
299                             LookupCriteria(Kind, !LookInParent,
300                                            getLangOptions().CPlusPlus));
301}
302
303void Sema::InitBuiltinVaListType() {
304  if (!Context.getBuiltinVaListType().isNull())
305    return;
306
307  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
308  Decl *VaDecl = LookupDeclInScope(VaIdent, Decl::IDNS_Ordinary, TUScope);
309  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
310  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
311}
312
313/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
314/// lazily create a decl for it.
315NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
316                                     Scope *S) {
317  Builtin::ID BID = (Builtin::ID)bid;
318
319  if (Context.BuiltinInfo.hasVAListUse(BID))
320    InitBuiltinVaListType();
321
322  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
323  FunctionDecl *New = FunctionDecl::Create(Context,
324                                           Context.getTranslationUnitDecl(),
325                                           SourceLocation(), II, R,
326                                           FunctionDecl::Extern, false);
327
328  // Create Decl objects for each parameter, adding them to the
329  // FunctionDecl.
330  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
331    llvm::SmallVector<ParmVarDecl*, 16> Params;
332    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
333      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
334                                           FT->getArgType(i), VarDecl::None, 0));
335    New->setParams(Context, &Params[0], Params.size());
336  }
337
338
339
340  // TUScope is the translation-unit scope to insert this function into.
341  // FIXME: This is hideous. We need to teach PushOnScopeChains to
342  // relate Scopes to DeclContexts, and probably eliminate CurContext
343  // entirely, but we're not there yet.
344  DeclContext *SavedContext = CurContext;
345  CurContext = Context.getTranslationUnitDecl();
346  PushOnScopeChains(New, TUScope);
347  CurContext = SavedContext;
348  return New;
349}
350
351/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
352/// everything from the standard library is defined.
353NamespaceDecl *Sema::GetStdNamespace() {
354  if (!StdNamespace) {
355    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
356    DeclContext *Global = Context.getTranslationUnitDecl();
357    Decl *Std = LookupDeclInContext(StdIdent, Decl::IDNS_Ordinary, Global);
358    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
359  }
360  return StdNamespace;
361}
362
363/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
364/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
365/// situation, merging decls or emitting diagnostics as appropriate.
366///
367TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
368  bool objc_types = false;
369  // Allow multiple definitions for ObjC built-in typedefs.
370  // FIXME: Verify the underlying types are equivalent!
371  if (getLangOptions().ObjC1) {
372    const IdentifierInfo *TypeID = New->getIdentifier();
373    switch (TypeID->getLength()) {
374    default: break;
375    case 2:
376      if (!TypeID->isStr("id"))
377        break;
378      Context.setObjCIdType(New);
379      objc_types = true;
380      break;
381    case 5:
382      if (!TypeID->isStr("Class"))
383        break;
384      Context.setObjCClassType(New);
385      objc_types = true;
386      return New;
387    case 3:
388      if (!TypeID->isStr("SEL"))
389        break;
390      Context.setObjCSelType(New);
391      objc_types = true;
392      return New;
393    case 8:
394      if (!TypeID->isStr("Protocol"))
395        break;
396      Context.setObjCProtoType(New->getUnderlyingType());
397      objc_types = true;
398      return New;
399    }
400    // Fall through - the typedef name was not a builtin type.
401  }
402  // Verify the old decl was also a type.
403  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
404  if (!Old) {
405    Diag(New->getLocation(), diag::err_redefinition_different_kind)
406      << New->getDeclName();
407    if (!objc_types)
408      Diag(OldD->getLocation(), diag::note_previous_definition);
409    return New;
410  }
411
412  // Determine the "old" type we'll use for checking and diagnostics.
413  QualType OldType;
414  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
415    OldType = OldTypedef->getUnderlyingType();
416  else
417    OldType = Context.getTypeDeclType(Old);
418
419  // If the typedef types are not identical, reject them in all languages and
420  // with any extensions enabled.
421
422  if (OldType != New->getUnderlyingType() &&
423      Context.getCanonicalType(OldType) !=
424      Context.getCanonicalType(New->getUnderlyingType())) {
425    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
426      << New->getUnderlyingType() << OldType;
427    if (!objc_types)
428      Diag(Old->getLocation(), diag::note_previous_definition);
429    return New;
430  }
431  if (objc_types) return New;
432  if (getLangOptions().Microsoft) return New;
433
434  // C++ [dcl.typedef]p2:
435  //   In a given non-class scope, a typedef specifier can be used to
436  //   redefine the name of any type declared in that scope to refer
437  //   to the type to which it already refers.
438  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
439    return New;
440
441  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
442  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
443  // *either* declaration is in a system header. The code below implements
444  // this adhoc compatibility rule. FIXME: The following code will not
445  // work properly when compiling ".i" files (containing preprocessed output).
446  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
447    SourceManager &SrcMgr = Context.getSourceManager();
448    if (SrcMgr.isInSystemHeader(Old->getLocation()))
449      return New;
450    if (SrcMgr.isInSystemHeader(New->getLocation()))
451      return New;
452  }
453
454  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
455  Diag(Old->getLocation(), diag::note_previous_definition);
456  return New;
457}
458
459/// DeclhasAttr - returns true if decl Declaration already has the target
460/// attribute.
461static bool DeclHasAttr(const Decl *decl, const Attr *target) {
462  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
463    if (attr->getKind() == target->getKind())
464      return true;
465
466  return false;
467}
468
469/// MergeAttributes - append attributes from the Old decl to the New one.
470static void MergeAttributes(Decl *New, Decl *Old) {
471  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
472
473  while (attr) {
474     tmp = attr;
475     attr = attr->getNext();
476
477    if (!DeclHasAttr(New, tmp)) {
478       tmp->setInherited(true);
479       New->addAttr(tmp);
480    } else {
481       tmp->setNext(0);
482       delete(tmp);
483    }
484  }
485
486  Old->invalidateAttrs();
487}
488
489/// MergeFunctionDecl - We just parsed a function 'New' from
490/// declarator D which has the same name and scope as a previous
491/// declaration 'Old'.  Figure out how to resolve this situation,
492/// merging decls or emitting diagnostics as appropriate.
493/// Redeclaration will be set true if this New is a redeclaration OldD.
494///
495/// In C++, New and Old must be declarations that are not
496/// overloaded. Use IsOverload to determine whether New and Old are
497/// overloaded, and to select the Old declaration that New should be
498/// merged with.
499FunctionDecl *
500Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
501  assert(!isa<OverloadedFunctionDecl>(OldD) &&
502         "Cannot merge with an overloaded function declaration");
503
504  Redeclaration = false;
505  // Verify the old decl was also a function.
506  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
507  if (!Old) {
508    Diag(New->getLocation(), diag::err_redefinition_different_kind)
509      << New->getDeclName();
510    Diag(OldD->getLocation(), diag::note_previous_definition);
511    return New;
512  }
513
514  // Determine whether the previous declaration was a definition,
515  // implicit declaration, or a declaration.
516  diag::kind PrevDiag;
517  if (Old->isThisDeclarationADefinition())
518    PrevDiag = diag::note_previous_definition;
519  else if (Old->isImplicit())
520    PrevDiag = diag::note_previous_implicit_declaration;
521  else
522    PrevDiag = diag::note_previous_declaration;
523
524  QualType OldQType = Context.getCanonicalType(Old->getType());
525  QualType NewQType = Context.getCanonicalType(New->getType());
526
527  if (getLangOptions().CPlusPlus) {
528    // (C++98 13.1p2):
529    //   Certain function declarations cannot be overloaded:
530    //     -- Function declarations that differ only in the return type
531    //        cannot be overloaded.
532    QualType OldReturnType
533      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
534    QualType NewReturnType
535      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
536    if (OldReturnType != NewReturnType) {
537      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
538      Diag(Old->getLocation(), PrevDiag);
539      Redeclaration = true;
540      return New;
541    }
542
543    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
544    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
545    if (OldMethod && NewMethod) {
546      //    -- Member function declarations with the same name and the
547      //       same parameter types cannot be overloaded if any of them
548      //       is a static member function declaration.
549      if (OldMethod->isStatic() || NewMethod->isStatic()) {
550        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
551        Diag(Old->getLocation(), PrevDiag);
552        return New;
553      }
554
555      // C++ [class.mem]p1:
556      //   [...] A member shall not be declared twice in the
557      //   member-specification, except that a nested class or member
558      //   class template can be declared and then later defined.
559      if (OldMethod->getLexicalDeclContext() ==
560            NewMethod->getLexicalDeclContext()) {
561        unsigned NewDiag;
562        if (isa<CXXConstructorDecl>(OldMethod))
563          NewDiag = diag::err_constructor_redeclared;
564        else if (isa<CXXDestructorDecl>(NewMethod))
565          NewDiag = diag::err_destructor_redeclared;
566        else if (isa<CXXConversionDecl>(NewMethod))
567          NewDiag = diag::err_conv_function_redeclared;
568        else
569          NewDiag = diag::err_member_redeclared;
570
571        Diag(New->getLocation(), NewDiag);
572        Diag(Old->getLocation(), PrevDiag);
573      }
574    }
575
576    // (C++98 8.3.5p3):
577    //   All declarations for a function shall agree exactly in both the
578    //   return type and the parameter-type-list.
579    if (OldQType == NewQType) {
580      // We have a redeclaration.
581      MergeAttributes(New, Old);
582      Redeclaration = true;
583      return MergeCXXFunctionDecl(New, Old);
584    }
585
586    // Fall through for conflicting redeclarations and redefinitions.
587  }
588
589  // C: Function types need to be compatible, not identical. This handles
590  // duplicate function decls like "void f(int); void f(enum X);" properly.
591  if (!getLangOptions().CPlusPlus &&
592      Context.typesAreCompatible(OldQType, NewQType)) {
593    MergeAttributes(New, Old);
594    Redeclaration = true;
595    return New;
596  }
597
598  // A function that has already been declared has been redeclared or defined
599  // with a different type- show appropriate diagnostic
600
601  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
602  // TODO: This is totally simplistic.  It should handle merging functions
603  // together etc, merging extern int X; int X; ...
604  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
605  Diag(Old->getLocation(), PrevDiag);
606  return New;
607}
608
609/// Predicate for C "tentative" external object definitions (C99 6.9.2).
610static bool isTentativeDefinition(VarDecl *VD) {
611  if (VD->isFileVarDecl())
612    return (!VD->getInit() &&
613            (VD->getStorageClass() == VarDecl::None ||
614             VD->getStorageClass() == VarDecl::Static));
615  return false;
616}
617
618/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
619/// when dealing with C "tentative" external object definitions (C99 6.9.2).
620void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
621  bool VDIsTentative = isTentativeDefinition(VD);
622  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
623
624  // FIXME: I don't think this will actually see all of the
625  // redefinitions. Can't we check this property on-the-fly?
626  for (IdentifierResolver::iterator
627       I = IdResolver.begin(VD->getIdentifier(),
628                            VD->getDeclContext(), false/*LookInParentCtx*/),
629       E = IdResolver.end(); I != E; ++I) {
630    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
631      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
632
633      // Handle the following case:
634      //   int a[10];
635      //   int a[];   - the code below makes sure we set the correct type.
636      //   int a[11]; - this is an error, size isn't 10.
637      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
638          OldDecl->getType()->isConstantArrayType())
639        VD->setType(OldDecl->getType());
640
641      // Check for "tentative" definitions. We can't accomplish this in
642      // MergeVarDecl since the initializer hasn't been attached.
643      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
644        continue;
645
646      // Handle __private_extern__ just like extern.
647      if (OldDecl->getStorageClass() != VarDecl::Extern &&
648          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
649          VD->getStorageClass() != VarDecl::Extern &&
650          VD->getStorageClass() != VarDecl::PrivateExtern) {
651        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
652        Diag(OldDecl->getLocation(), diag::note_previous_definition);
653      }
654    }
655  }
656}
657
658/// MergeVarDecl - We just parsed a variable 'New' which has the same name
659/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
660/// situation, merging decls or emitting diagnostics as appropriate.
661///
662/// Tentative definition rules (C99 6.9.2p2) are checked by
663/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
664/// definitions here, since the initializer hasn't been attached.
665///
666VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
667  // Verify the old decl was also a variable.
668  VarDecl *Old = dyn_cast<VarDecl>(OldD);
669  if (!Old) {
670    Diag(New->getLocation(), diag::err_redefinition_different_kind)
671      << New->getDeclName();
672    Diag(OldD->getLocation(), diag::note_previous_definition);
673    return New;
674  }
675
676  MergeAttributes(New, Old);
677
678  // Merge the types
679  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
680  if (MergedT.isNull()) {
681    Diag(New->getLocation(), diag::err_redefinition_different_type)
682      << New->getDeclName();
683    Diag(Old->getLocation(), diag::note_previous_definition);
684    return New;
685  }
686  New->setType(MergedT);
687  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
688  if (New->getStorageClass() == VarDecl::Static &&
689      (Old->getStorageClass() == VarDecl::None ||
690       Old->getStorageClass() == VarDecl::Extern)) {
691    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
692    Diag(Old->getLocation(), diag::note_previous_definition);
693    return New;
694  }
695  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
696  if (New->getStorageClass() != VarDecl::Static &&
697      Old->getStorageClass() == VarDecl::Static) {
698    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
699    Diag(Old->getLocation(), diag::note_previous_definition);
700    return New;
701  }
702  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
703  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
704    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
705    Diag(Old->getLocation(), diag::note_previous_definition);
706  }
707  return New;
708}
709
710/// CheckParmsForFunctionDef - Check that the parameters of the given
711/// function are appropriate for the definition of a function. This
712/// takes care of any checks that cannot be performed on the
713/// declaration itself, e.g., that the types of each of the function
714/// parameters are complete.
715bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
716  bool HasInvalidParm = false;
717  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
718    ParmVarDecl *Param = FD->getParamDecl(p);
719
720    // C99 6.7.5.3p4: the parameters in a parameter type list in a
721    // function declarator that is part of a function definition of
722    // that function shall not have incomplete type.
723    if (!Param->isInvalidDecl() &&
724        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
725                               diag::err_typecheck_decl_incomplete_type)) {
726      Param->setInvalidDecl();
727      HasInvalidParm = true;
728    }
729
730    // C99 6.9.1p5: If the declarator includes a parameter type list, the
731    // declaration of each parameter shall include an identifier.
732    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
733      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
734  }
735
736  return HasInvalidParm;
737}
738
739/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
740/// no declarator (e.g. "struct foo;") is parsed.
741Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
742  TagDecl *Tag
743    = dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
744  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
745    if (!Record->getDeclName() && Record->isDefinition() &&
746        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
747      return BuildAnonymousStructOrUnion(S, DS, Record);
748
749    // Microsoft allows unnamed struct/union fields. Don't complain
750    // about them.
751    // FIXME: Should we support Microsoft's extensions in this area?
752    if (Record->getDeclName() && getLangOptions().Microsoft)
753      return Tag;
754  }
755
756  if (!DS.isMissingDeclaratorOk()) {
757    // Warn about typedefs of enums without names, since this is an
758    // extension in both Microsoft an GNU.
759    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
760        Tag && isa<EnumDecl>(Tag)) {
761      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
762        << DS.getSourceRange();
763      return Tag;
764    }
765
766    // FIXME: This diagnostic is emitted even when various previous
767    // errors occurred (see e.g. test/Sema/decl-invalid.c). However,
768    // DeclSpec has no means of communicating this information, and the
769    // responsible parser functions are quite far apart.
770    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
771      << DS.getSourceRange();
772    return 0;
773  }
774
775  return Tag;
776}
777
778/// InjectAnonymousStructOrUnionMembers - Inject the members of the
779/// anonymous struct or union AnonRecord into the owning context Owner
780/// and scope S. This routine will be invoked just after we realize
781/// that an unnamed union or struct is actually an anonymous union or
782/// struct, e.g.,
783///
784/// @code
785/// union {
786///   int i;
787///   float f;
788/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
789///    // f into the surrounding scope.x
790/// @endcode
791///
792/// This routine is recursive, injecting the names of nested anonymous
793/// structs/unions into the owning context and scope as well.
794bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
795                                               RecordDecl *AnonRecord) {
796  bool Invalid = false;
797  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
798                               FEnd = AnonRecord->field_end();
799       F != FEnd; ++F) {
800    if ((*F)->getDeclName()) {
801      Decl *PrevDecl = LookupDeclInContext((*F)->getDeclName(),
802                         Decl::IDNS_Ordinary, Owner, false);
803      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
804        // C++ [class.union]p2:
805        //   The names of the members of an anonymous union shall be
806        //   distinct from the names of any other entity in the
807        //   scope in which the anonymous union is declared.
808        unsigned diagKind
809          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
810                                 : diag::err_anonymous_struct_member_redecl;
811        Diag((*F)->getLocation(), diagKind)
812          << (*F)->getDeclName();
813        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
814        Invalid = true;
815      } else {
816        // C++ [class.union]p2:
817        //   For the purpose of name lookup, after the anonymous union
818        //   definition, the members of the anonymous union are
819        //   considered to have been defined in the scope in which the
820        //   anonymous union is declared.
821        Owner->makeDeclVisibleInContext(*F);
822        S->AddDecl(*F);
823        IdResolver.AddDecl(*F);
824      }
825    } else if (const RecordType *InnerRecordType
826                 = (*F)->getType()->getAsRecordType()) {
827      RecordDecl *InnerRecord = InnerRecordType->getDecl();
828      if (InnerRecord->isAnonymousStructOrUnion())
829        Invalid = Invalid ||
830          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
831    }
832  }
833
834  return Invalid;
835}
836
837/// ActOnAnonymousStructOrUnion - Handle the declaration of an
838/// anonymous structure or union. Anonymous unions are a C++ feature
839/// (C++ [class.union]) and a GNU C extension; anonymous structures
840/// are a GNU C and GNU C++ extension.
841Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
842                                                RecordDecl *Record) {
843  DeclContext *Owner = Record->getDeclContext();
844
845  // Diagnose whether this anonymous struct/union is an extension.
846  if (Record->isUnion() && !getLangOptions().CPlusPlus)
847    Diag(Record->getLocation(), diag::ext_anonymous_union);
848  else if (!Record->isUnion())
849    Diag(Record->getLocation(), diag::ext_anonymous_struct);
850
851  // C and C++ require different kinds of checks for anonymous
852  // structs/unions.
853  bool Invalid = false;
854  if (getLangOptions().CPlusPlus) {
855    const char* PrevSpec = 0;
856    // C++ [class.union]p3:
857    //   Anonymous unions declared in a named namespace or in the
858    //   global namespace shall be declared static.
859    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
860        (isa<TranslationUnitDecl>(Owner) ||
861         (isa<NamespaceDecl>(Owner) &&
862          cast<NamespaceDecl>(Owner)->getDeclName()))) {
863      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
864      Invalid = true;
865
866      // Recover by adding 'static'.
867      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
868    }
869    // C++ [class.union]p3:
870    //   A storage class is not allowed in a declaration of an
871    //   anonymous union in a class scope.
872    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
873             isa<RecordDecl>(Owner)) {
874      Diag(DS.getStorageClassSpecLoc(),
875           diag::err_anonymous_union_with_storage_spec);
876      Invalid = true;
877
878      // Recover by removing the storage specifier.
879      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
880                             PrevSpec);
881    }
882
883    // C++ [class.union]p2:
884    //   The member-specification of an anonymous union shall only
885    //   define non-static data members. [Note: nested types and
886    //   functions cannot be declared within an anonymous union. ]
887    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
888                                 MemEnd = Record->decls_end();
889         Mem != MemEnd; ++Mem) {
890      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
891        // C++ [class.union]p3:
892        //   An anonymous union shall not have private or protected
893        //   members (clause 11).
894        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
895          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
896            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
897          Invalid = true;
898        }
899      } else if ((*Mem)->isImplicit()) {
900        // Any implicit members are fine.
901      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
902        if (!MemRecord->isAnonymousStructOrUnion() &&
903            MemRecord->getDeclName()) {
904          // This is a nested type declaration.
905          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
906            << (int)Record->isUnion();
907          Invalid = true;
908        }
909      } else {
910        // We have something that isn't a non-static data
911        // member. Complain about it.
912        unsigned DK = diag::err_anonymous_record_bad_member;
913        if (isa<TypeDecl>(*Mem))
914          DK = diag::err_anonymous_record_with_type;
915        else if (isa<FunctionDecl>(*Mem))
916          DK = diag::err_anonymous_record_with_function;
917        else if (isa<VarDecl>(*Mem))
918          DK = diag::err_anonymous_record_with_static;
919        Diag((*Mem)->getLocation(), DK)
920            << (int)Record->isUnion();
921          Invalid = true;
922      }
923    }
924  } else {
925    // FIXME: Check GNU C semantics
926    if (Record->isUnion() && !Owner->isRecord()) {
927      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
928        << (int)getLangOptions().CPlusPlus;
929      Invalid = true;
930    }
931  }
932
933  if (!Record->isUnion() && !Owner->isRecord()) {
934    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
935      << (int)getLangOptions().CPlusPlus;
936    Invalid = true;
937  }
938
939  // Create a declaration for this anonymous struct/union.
940  NamedDecl *Anon = 0;
941  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
942    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
943                             /*IdentifierInfo=*/0,
944                             Context.getTypeDeclType(Record),
945                             /*BitWidth=*/0, /*Mutable=*/false);
946    Anon->setAccess(AS_public);
947    if (getLangOptions().CPlusPlus)
948      FieldCollector->Add(cast<FieldDecl>(Anon));
949  } else {
950    VarDecl::StorageClass SC;
951    switch (DS.getStorageClassSpec()) {
952    default: assert(0 && "Unknown storage class!");
953    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
954    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
955    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
956    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
957    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
958    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
959    case DeclSpec::SCS_mutable:
960      // mutable can only appear on non-static class members, so it's always
961      // an error here
962      Diag(Record->getLocation(), diag::err_mutable_nonmember);
963      Invalid = true;
964      SC = VarDecl::None;
965      break;
966    }
967
968    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
969                           /*IdentifierInfo=*/0,
970                           Context.getTypeDeclType(Record),
971                           SC, DS.getSourceRange().getBegin());
972  }
973  Anon->setImplicit();
974
975  // Add the anonymous struct/union object to the current
976  // context. We'll be referencing this object when we refer to one of
977  // its members.
978  Owner->addDecl(Anon);
979
980  // Inject the members of the anonymous struct/union into the owning
981  // context and into the identifier resolver chain for name lookup
982  // purposes.
983  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
984    Invalid = true;
985
986  // Mark this as an anonymous struct/union type. Note that we do not
987  // do this until after we have already checked and injected the
988  // members of this anonymous struct/union type, because otherwise
989  // the members could be injected twice: once by DeclContext when it
990  // builds its lookup table, and once by
991  // InjectAnonymousStructOrUnionMembers.
992  Record->setAnonymousStructOrUnion(true);
993
994  if (Invalid)
995    Anon->setInvalidDecl();
996
997  return Anon;
998}
999
1000bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
1001                                  bool DirectInit) {
1002  // Get the type before calling CheckSingleAssignmentConstraints(), since
1003  // it can promote the expression.
1004  QualType InitType = Init->getType();
1005
1006  if (getLangOptions().CPlusPlus) {
1007    // FIXME: I dislike this error message. A lot.
1008    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
1009      return Diag(Init->getSourceRange().getBegin(),
1010                  diag::err_typecheck_convert_incompatible)
1011        << DeclType << Init->getType() << "initializing"
1012        << Init->getSourceRange();
1013
1014    return false;
1015  }
1016
1017  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
1018  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1019                                  InitType, Init, "initializing");
1020}
1021
1022bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1023  const ArrayType *AT = Context.getAsArrayType(DeclT);
1024
1025  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1026    // C99 6.7.8p14. We have an array of character type with unknown size
1027    // being initialized to a string literal.
1028    llvm::APSInt ConstVal(32);
1029    ConstVal = strLiteral->getByteLength() + 1;
1030    // Return a new array type (C99 6.7.8p22).
1031    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1032                                         ArrayType::Normal, 0);
1033  } else {
1034    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1035    // C99 6.7.8p14. We have an array of character type with known size.
1036    // FIXME: Avoid truncation for 64-bit length strings.
1037    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1038      Diag(strLiteral->getSourceRange().getBegin(),
1039           diag::warn_initializer_string_for_char_array_too_long)
1040        << strLiteral->getSourceRange();
1041  }
1042  // Set type from "char *" to "constant array of char".
1043  strLiteral->setType(DeclT);
1044  // For now, we always return false (meaning success).
1045  return false;
1046}
1047
1048StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1049  const ArrayType *AT = Context.getAsArrayType(DeclType);
1050  if (AT && AT->getElementType()->isCharType()) {
1051    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1052  }
1053  return 0;
1054}
1055
1056bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1057                                 SourceLocation InitLoc,
1058                                 DeclarationName InitEntity,
1059                                 bool DirectInit) {
1060  if (DeclType->isDependentType() || Init->isTypeDependent())
1061    return false;
1062
1063  // C++ [dcl.init.ref]p1:
1064  //   A variable declared to be a T&, that is "reference to type T"
1065  //   (8.3.2), shall be initialized by an object, or function, of
1066  //   type T or by an object that can be converted into a T.
1067  if (DeclType->isReferenceType())
1068    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1069
1070  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1071  // of unknown size ("[]") or an object type that is not a variable array type.
1072  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1073    return Diag(InitLoc,  diag::err_variable_object_no_init)
1074      << VAT->getSizeExpr()->getSourceRange();
1075
1076  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1077  if (!InitList) {
1078    // FIXME: Handle wide strings
1079    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1080      return CheckStringLiteralInit(strLiteral, DeclType);
1081
1082    // C++ [dcl.init]p14:
1083    //   -- If the destination type is a (possibly cv-qualified) class
1084    //      type:
1085    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1086      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1087      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1088
1089      //   -- If the initialization is direct-initialization, or if it is
1090      //      copy-initialization where the cv-unqualified version of the
1091      //      source type is the same class as, or a derived class of, the
1092      //      class of the destination, constructors are considered.
1093      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1094          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1095        CXXConstructorDecl *Constructor
1096          = PerformInitializationByConstructor(DeclType, &Init, 1,
1097                                               InitLoc, Init->getSourceRange(),
1098                                               InitEntity,
1099                                               DirectInit? IK_Direct : IK_Copy);
1100        return Constructor == 0;
1101      }
1102
1103      //   -- Otherwise (i.e., for the remaining copy-initialization
1104      //      cases), user-defined conversion sequences that can
1105      //      convert from the source type to the destination type or
1106      //      (when a conversion function is used) to a derived class
1107      //      thereof are enumerated as described in 13.3.1.4, and the
1108      //      best one is chosen through overload resolution
1109      //      (13.3). If the conversion cannot be done or is
1110      //      ambiguous, the initialization is ill-formed. The
1111      //      function selected is called with the initializer
1112      //      expression as its argument; if the function is a
1113      //      constructor, the call initializes a temporary of the
1114      //      destination type.
1115      // FIXME: We're pretending to do copy elision here; return to
1116      // this when we have ASTs for such things.
1117      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1118        return false;
1119
1120      if (InitEntity)
1121        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1122          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1123          << Init->getType() << Init->getSourceRange();
1124      else
1125        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1126          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1127          << Init->getType() << Init->getSourceRange();
1128    }
1129
1130    // C99 6.7.8p16.
1131    if (DeclType->isArrayType())
1132      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1133        << Init->getSourceRange();
1134
1135    return CheckSingleInitializer(Init, DeclType, DirectInit);
1136  } else if (getLangOptions().CPlusPlus) {
1137    // C++ [dcl.init]p14:
1138    //   [...] If the class is an aggregate (8.5.1), and the initializer
1139    //   is a brace-enclosed list, see 8.5.1.
1140    //
1141    // Note: 8.5.1 is handled below; here, we diagnose the case where
1142    // we have an initializer list and a destination type that is not
1143    // an aggregate.
1144    // FIXME: In C++0x, this is yet another form of initialization.
1145    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
1146      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1147      if (!ClassDecl->isAggregate())
1148        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
1149           << DeclType << Init->getSourceRange();
1150    }
1151  }
1152
1153  bool hadError = CheckInitList(InitList, DeclType);
1154  Init = InitList;
1155  return hadError;
1156}
1157
1158/// GetNameForDeclarator - Determine the full declaration name for the
1159/// given Declarator.
1160DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1161  switch (D.getKind()) {
1162  case Declarator::DK_Abstract:
1163    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1164    return DeclarationName();
1165
1166  case Declarator::DK_Normal:
1167    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1168    return DeclarationName(D.getIdentifier());
1169
1170  case Declarator::DK_Constructor: {
1171    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1172    Ty = Context.getCanonicalType(Ty);
1173    return Context.DeclarationNames.getCXXConstructorName(Ty);
1174  }
1175
1176  case Declarator::DK_Destructor: {
1177    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1178    Ty = Context.getCanonicalType(Ty);
1179    return Context.DeclarationNames.getCXXDestructorName(Ty);
1180  }
1181
1182  case Declarator::DK_Conversion: {
1183    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1184    Ty = Context.getCanonicalType(Ty);
1185    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1186  }
1187
1188  case Declarator::DK_Operator:
1189    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1190    return Context.DeclarationNames.getCXXOperatorName(
1191                                                D.getOverloadedOperator());
1192  }
1193
1194  assert(false && "Unknown name kind");
1195  return DeclarationName();
1196}
1197
1198/// isNearlyMatchingMemberFunction - Determine whether the C++ member
1199/// functions Declaration and Definition are "nearly" matching. This
1200/// heuristic is used to improve diagnostics in the case where an
1201/// out-of-line member function definition doesn't match any
1202/// declaration within the class.
1203static bool isNearlyMatchingMemberFunction(ASTContext &Context,
1204                                           FunctionDecl *Declaration,
1205                                           FunctionDecl *Definition) {
1206  if (Declaration->param_size() != Definition->param_size())
1207    return false;
1208  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1209    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1210    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1211
1212    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1213    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1214    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1215      return false;
1216  }
1217
1218  return true;
1219}
1220
1221Sema::DeclTy *
1222Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1223                      bool IsFunctionDefinition) {
1224  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1225  DeclarationName Name = GetNameForDeclarator(D);
1226
1227  // All of these full declarators require an identifier.  If it doesn't have
1228  // one, the ParsedFreeStandingDeclSpec action should be used.
1229  if (!Name) {
1230    if (!D.getInvalidType())  // Reject this if we think it is valid.
1231      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1232           diag::err_declarator_need_ident)
1233        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1234    return 0;
1235  }
1236
1237  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1238  // we find one that is.
1239  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1240        (S->getFlags() & Scope::TemplateParamScope) != 0)
1241    S = S->getParent();
1242
1243  DeclContext *DC;
1244  Decl *PrevDecl;
1245  NamedDecl *New;
1246  bool InvalidDecl = false;
1247
1248  // See if this is a redefinition of a variable in the same scope.
1249  if (!D.getCXXScopeSpec().isSet()) {
1250    DC = CurContext;
1251    PrevDecl = LookupDeclInScope(Name, Decl::IDNS_Ordinary, S);
1252  } else { // Something like "int foo::x;"
1253    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1254    PrevDecl = DC ? LookupDeclInContext(Name, Decl::IDNS_Ordinary, DC)
1255                  : LookupDeclInScope(Name, Decl::IDNS_Ordinary, S);
1256
1257    // C++ 7.3.1.2p2:
1258    // Members (including explicit specializations of templates) of a named
1259    // namespace can also be defined outside that namespace by explicit
1260    // qualification of the name being defined, provided that the entity being
1261    // defined was already declared in the namespace and the definition appears
1262    // after the point of declaration in a namespace that encloses the
1263    // declarations namespace.
1264    //
1265    // Note that we only check the context at this point. We don't yet
1266    // have enough information to make sure that PrevDecl is actually
1267    // the declaration we want to match. For example, given:
1268    //
1269    //   class X {
1270    //     void f();
1271    //     void f(float);
1272    //   };
1273    //
1274    //   void X::f(int) { } // ill-formed
1275    //
1276    // In this case, PrevDecl will point to the overload set
1277    // containing the two f's declared in X, but neither of them
1278    // matches.
1279    if (!CurContext->Encloses(DC)) {
1280      // The qualifying scope doesn't enclose the original declaration.
1281      // Emit diagnostic based on current scope.
1282      SourceLocation L = D.getIdentifierLoc();
1283      SourceRange R = D.getCXXScopeSpec().getRange();
1284      if (isa<FunctionDecl>(CurContext)) {
1285        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1286      } else {
1287        Diag(L, diag::err_invalid_declarator_scope)
1288          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
1289      }
1290      InvalidDecl = true;
1291    }
1292  }
1293
1294  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1295    // Maybe we will complain about the shadowed template parameter.
1296    InvalidDecl = InvalidDecl
1297      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1298    // Just pretend that we didn't see the previous declaration.
1299    PrevDecl = 0;
1300  }
1301
1302  // In C++, the previous declaration we find might be a tag type
1303  // (class or enum). In this case, the new declaration will hide the
1304  // tag type. Note that this does does not apply if we're declaring a
1305  // typedef (C++ [dcl.typedef]p4).
1306  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1307      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1308    PrevDecl = 0;
1309
1310  QualType R = GetTypeForDeclarator(D, S);
1311  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1312
1313  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1314    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1315                                 InvalidDecl);
1316  } else if (R.getTypePtr()->isFunctionType()) {
1317    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1318                                  IsFunctionDefinition, InvalidDecl);
1319  } else {
1320    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1321                                  InvalidDecl);
1322  }
1323
1324  if (New == 0)
1325    return 0;
1326
1327  // Set the lexical context. If the declarator has a C++ scope specifier, the
1328  // lexical context will be different from the semantic context.
1329  New->setLexicalDeclContext(CurContext);
1330
1331  // If this has an identifier, add it to the scope stack.
1332  if (Name)
1333    PushOnScopeChains(New, S);
1334  // If any semantic error occurred, mark the decl as invalid.
1335  if (D.getInvalidType() || InvalidDecl)
1336    New->setInvalidDecl();
1337
1338  return New;
1339}
1340
1341NamedDecl*
1342Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1343                             QualType R, Decl* LastDeclarator,
1344                             Decl* PrevDecl, bool& InvalidDecl) {
1345  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1346  if (D.getCXXScopeSpec().isSet()) {
1347    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1348      << D.getCXXScopeSpec().getRange();
1349    InvalidDecl = true;
1350    // Pretend we didn't see the scope specifier.
1351    DC = 0;
1352  }
1353
1354  // Check that there are no default arguments (C++ only).
1355  if (getLangOptions().CPlusPlus)
1356    CheckExtraCXXDefaultArguments(D);
1357
1358  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1359  if (!NewTD) return 0;
1360
1361  // Handle attributes prior to checking for duplicates in MergeVarDecl
1362  ProcessDeclAttributes(NewTD, D);
1363  // Merge the decl with the existing one if appropriate. If the decl is
1364  // in an outer scope, it isn't the same thing.
1365  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1366    NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1367    if (NewTD == 0) return 0;
1368  }
1369
1370  if (S->getFnParent() == 0) {
1371    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1372    // then it shall have block scope.
1373    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1374      if (NewTD->getUnderlyingType()->isVariableArrayType())
1375        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1376      else
1377        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1378
1379      InvalidDecl = true;
1380    }
1381  }
1382  return NewTD;
1383}
1384
1385NamedDecl*
1386Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1387                              QualType R, Decl* LastDeclarator,
1388                              Decl* PrevDecl, bool& InvalidDecl) {
1389  DeclarationName Name = GetNameForDeclarator(D);
1390
1391  // Check that there are no default arguments (C++ only).
1392  if (getLangOptions().CPlusPlus)
1393    CheckExtraCXXDefaultArguments(D);
1394
1395  if (R.getTypePtr()->isObjCInterfaceType()) {
1396    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1397      << D.getIdentifier();
1398    InvalidDecl = true;
1399  }
1400
1401  VarDecl *NewVD;
1402  VarDecl::StorageClass SC;
1403  switch (D.getDeclSpec().getStorageClassSpec()) {
1404  default: assert(0 && "Unknown storage class!");
1405  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1406  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1407  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1408  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1409  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1410  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1411  case DeclSpec::SCS_mutable:
1412    // mutable can only appear on non-static class members, so it's always
1413    // an error here
1414    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1415    InvalidDecl = true;
1416    SC = VarDecl::None;
1417    break;
1418  }
1419
1420  IdentifierInfo *II = Name.getAsIdentifierInfo();
1421  if (!II) {
1422    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1423      << Name.getAsString();
1424    return 0;
1425  }
1426
1427  if (DC->isRecord()) {
1428    // This is a static data member for a C++ class.
1429    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1430                                    D.getIdentifierLoc(), II,
1431                                    R);
1432  } else {
1433    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1434    if (S->getFnParent() == 0) {
1435      // C99 6.9p2: The storage-class specifiers auto and register shall not
1436      // appear in the declaration specifiers in an external declaration.
1437      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1438        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1439        InvalidDecl = true;
1440      }
1441    }
1442    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1443                            II, R, SC,
1444                            // FIXME: Move to DeclGroup...
1445                            D.getDeclSpec().getSourceRange().getBegin());
1446    NewVD->setThreadSpecified(ThreadSpecified);
1447  }
1448  NewVD->setNextDeclarator(LastDeclarator);
1449
1450  // Handle attributes prior to checking for duplicates in MergeVarDecl
1451  ProcessDeclAttributes(NewVD, D);
1452
1453  // Handle GNU asm-label extension (encoded as an attribute).
1454  if (Expr *E = (Expr*) D.getAsmLabel()) {
1455    // The parser guarantees this is a string.
1456    StringLiteral *SE = cast<StringLiteral>(E);
1457    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1458                                                SE->getByteLength())));
1459  }
1460
1461  // Emit an error if an address space was applied to decl with local storage.
1462  // This includes arrays of objects with address space qualifiers, but not
1463  // automatic variables that point to other address spaces.
1464  // ISO/IEC TR 18037 S5.1.2
1465  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1466    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1467    InvalidDecl = true;
1468  }
1469  // Merge the decl with the existing one if appropriate. If the decl is
1470  // in an outer scope, it isn't the same thing.
1471  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1472    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1473      // The user tried to define a non-static data member
1474      // out-of-line (C++ [dcl.meaning]p1).
1475      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1476        << D.getCXXScopeSpec().getRange();
1477      NewVD->Destroy(Context);
1478      return 0;
1479    }
1480
1481    NewVD = MergeVarDecl(NewVD, PrevDecl);
1482    if (NewVD == 0) return 0;
1483
1484    if (D.getCXXScopeSpec().isSet()) {
1485      // No previous declaration in the qualifying scope.
1486      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1487        << Name << D.getCXXScopeSpec().getRange();
1488      InvalidDecl = true;
1489    }
1490  }
1491  return NewVD;
1492}
1493
1494NamedDecl*
1495Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1496                              QualType R, Decl *LastDeclarator,
1497                              Decl* PrevDecl, bool IsFunctionDefinition,
1498                              bool& InvalidDecl) {
1499  assert(R.getTypePtr()->isFunctionType());
1500
1501  DeclarationName Name = GetNameForDeclarator(D);
1502  FunctionDecl::StorageClass SC = FunctionDecl::None;
1503  switch (D.getDeclSpec().getStorageClassSpec()) {
1504  default: assert(0 && "Unknown storage class!");
1505  case DeclSpec::SCS_auto:
1506  case DeclSpec::SCS_register:
1507  case DeclSpec::SCS_mutable:
1508    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1509    InvalidDecl = true;
1510    break;
1511  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1512  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1513  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1514  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1515  }
1516
1517  bool isInline = D.getDeclSpec().isInlineSpecified();
1518  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1519  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1520
1521  FunctionDecl *NewFD;
1522  if (D.getKind() == Declarator::DK_Constructor) {
1523    // This is a C++ constructor declaration.
1524    assert(DC->isRecord() &&
1525           "Constructors can only be declared in a member context");
1526
1527    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1528
1529    // Create the new declaration
1530    NewFD = CXXConstructorDecl::Create(Context,
1531                                       cast<CXXRecordDecl>(DC),
1532                                       D.getIdentifierLoc(), Name, R,
1533                                       isExplicit, isInline,
1534                                       /*isImplicitlyDeclared=*/false);
1535
1536    if (InvalidDecl)
1537      NewFD->setInvalidDecl();
1538  } else if (D.getKind() == Declarator::DK_Destructor) {
1539    // This is a C++ destructor declaration.
1540    if (DC->isRecord()) {
1541      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1542
1543      NewFD = CXXDestructorDecl::Create(Context,
1544                                        cast<CXXRecordDecl>(DC),
1545                                        D.getIdentifierLoc(), Name, R,
1546                                        isInline,
1547                                        /*isImplicitlyDeclared=*/false);
1548
1549      if (InvalidDecl)
1550        NewFD->setInvalidDecl();
1551    } else {
1552      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1553
1554      // Create a FunctionDecl to satisfy the function definition parsing
1555      // code path.
1556      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1557                                   Name, R, SC, isInline,
1558                                   // FIXME: Move to DeclGroup...
1559                                   D.getDeclSpec().getSourceRange().getBegin());
1560      InvalidDecl = true;
1561      NewFD->setInvalidDecl();
1562    }
1563  } else if (D.getKind() == Declarator::DK_Conversion) {
1564    if (!DC->isRecord()) {
1565      Diag(D.getIdentifierLoc(),
1566           diag::err_conv_function_not_member);
1567      return 0;
1568    } else {
1569      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1570
1571      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1572                                        D.getIdentifierLoc(), Name, R,
1573                                        isInline, isExplicit);
1574
1575      if (InvalidDecl)
1576        NewFD->setInvalidDecl();
1577    }
1578  } else if (DC->isRecord()) {
1579    // This is a C++ method declaration.
1580    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1581                                  D.getIdentifierLoc(), Name, R,
1582                                  (SC == FunctionDecl::Static), isInline);
1583  } else {
1584    NewFD = FunctionDecl::Create(Context, DC,
1585                                 D.getIdentifierLoc(),
1586                                 Name, R, SC, isInline,
1587                                 // FIXME: Move to DeclGroup...
1588                                 D.getDeclSpec().getSourceRange().getBegin());
1589  }
1590  NewFD->setNextDeclarator(LastDeclarator);
1591
1592  // Set the lexical context. If the declarator has a C++
1593  // scope specifier, the lexical context will be different
1594  // from the semantic context.
1595  NewFD->setLexicalDeclContext(CurContext);
1596
1597  // Handle GNU asm-label extension (encoded as an attribute).
1598  if (Expr *E = (Expr*) D.getAsmLabel()) {
1599    // The parser guarantees this is a string.
1600    StringLiteral *SE = cast<StringLiteral>(E);
1601    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1602                                                SE->getByteLength())));
1603  }
1604
1605  // Copy the parameter declarations from the declarator D to
1606  // the function declaration NewFD, if they are available.
1607  if (D.getNumTypeObjects() > 0) {
1608    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1609
1610    // Create Decl objects for each parameter, adding them to the
1611    // FunctionDecl.
1612    llvm::SmallVector<ParmVarDecl*, 16> Params;
1613
1614    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1615    // function that takes no arguments, not a function that takes a
1616    // single void argument.
1617    // We let through "const void" here because Sema::GetTypeForDeclarator
1618    // already checks for that case.
1619    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1620        FTI.ArgInfo[0].Param &&
1621        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1622      // empty arg list, don't push any params.
1623      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1624
1625      // In C++, the empty parameter-type-list must be spelled "void"; a
1626      // typedef of void is not permitted.
1627      if (getLangOptions().CPlusPlus &&
1628          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1629        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1630      }
1631    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1632      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1633        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1634    }
1635
1636    NewFD->setParams(Context, &Params[0], Params.size());
1637  } else if (R->getAsTypedefType()) {
1638    // When we're declaring a function with a typedef, as in the
1639    // following example, we'll need to synthesize (unnamed)
1640    // parameters for use in the declaration.
1641    //
1642    // @code
1643    // typedef void fn(int);
1644    // fn f;
1645    // @endcode
1646    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1647    if (!FT) {
1648      // This is a typedef of a function with no prototype, so we
1649      // don't need to do anything.
1650    } else if ((FT->getNumArgs() == 0) ||
1651               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1652                FT->getArgType(0)->isVoidType())) {
1653      // This is a zero-argument function. We don't need to do anything.
1654    } else {
1655      // Synthesize a parameter for each argument type.
1656      llvm::SmallVector<ParmVarDecl*, 16> Params;
1657      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1658           ArgType != FT->arg_type_end(); ++ArgType) {
1659        Params.push_back(ParmVarDecl::Create(Context, DC,
1660                                             SourceLocation(), 0,
1661                                             *ArgType, VarDecl::None,
1662                                             0));
1663      }
1664
1665      NewFD->setParams(Context, &Params[0], Params.size());
1666    }
1667  }
1668
1669  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1670    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1671  else if (isa<CXXDestructorDecl>(NewFD)) {
1672    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1673    Record->setUserDeclaredDestructor(true);
1674    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1675    // user-defined destructor.
1676    Record->setPOD(false);
1677  } else if (CXXConversionDecl *Conversion =
1678             dyn_cast<CXXConversionDecl>(NewFD))
1679    ActOnConversionDeclarator(Conversion);
1680
1681  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1682  if (NewFD->isOverloadedOperator() &&
1683      CheckOverloadedOperatorDeclaration(NewFD))
1684    NewFD->setInvalidDecl();
1685
1686  // Merge the decl with the existing one if appropriate. Since C functions
1687  // are in a flat namespace, make sure we consider decls in outer scopes.
1688  if (PrevDecl &&
1689      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1690    bool Redeclaration = false;
1691
1692    // If C++, determine whether NewFD is an overload of PrevDecl or
1693    // a declaration that requires merging. If it's an overload,
1694    // there's no more work to do here; we'll just add the new
1695    // function to the scope.
1696    OverloadedFunctionDecl::function_iterator MatchedDecl;
1697    if (!getLangOptions().CPlusPlus ||
1698        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1699      Decl *OldDecl = PrevDecl;
1700
1701      // If PrevDecl was an overloaded function, extract the
1702      // FunctionDecl that matched.
1703      if (isa<OverloadedFunctionDecl>(PrevDecl))
1704        OldDecl = *MatchedDecl;
1705
1706      // NewFD and PrevDecl represent declarations that need to be
1707      // merged.
1708      NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1709
1710      if (NewFD == 0) return 0;
1711      if (Redeclaration) {
1712        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1713
1714        // An out-of-line member function declaration must also be a
1715        // definition (C++ [dcl.meaning]p1).
1716        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1717            !InvalidDecl) {
1718          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1719            << D.getCXXScopeSpec().getRange();
1720          NewFD->setInvalidDecl();
1721        }
1722      }
1723    }
1724
1725    if (!Redeclaration && D.getCXXScopeSpec().isSet()) {
1726      // The user tried to provide an out-of-line definition for a
1727      // member function, but there was no such member function
1728      // declared (C++ [class.mfct]p2). For example:
1729      //
1730      // class X {
1731      //   void f() const;
1732      // };
1733      //
1734      // void X::f() { } // ill-formed
1735      //
1736      // Complain about this problem, and attempt to suggest close
1737      // matches (e.g., those that differ only in cv-qualifiers and
1738      // whether the parameter types are references).
1739      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1740        << cast<CXXRecordDecl>(DC)->getDeclName()
1741        << D.getCXXScopeSpec().getRange();
1742      InvalidDecl = true;
1743
1744      PrevDecl = LookupDeclInContext(Name, Decl::IDNS_Ordinary, DC);
1745      if (!PrevDecl) {
1746        // Nothing to suggest.
1747      } else if (OverloadedFunctionDecl *Ovl
1748                 = dyn_cast<OverloadedFunctionDecl>(PrevDecl)) {
1749        for (OverloadedFunctionDecl::function_iterator
1750               Func = Ovl->function_begin(),
1751               FuncEnd = Ovl->function_end();
1752             Func != FuncEnd; ++Func) {
1753          if (isNearlyMatchingMemberFunction(Context, *Func, NewFD))
1754            Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1755
1756        }
1757      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(PrevDecl)) {
1758        // Suggest this no matter how mismatched it is; it's the only
1759        // thing we have.
1760        unsigned diag;
1761        if (isNearlyMatchingMemberFunction(Context, Method, NewFD))
1762          diag = diag::note_member_def_close_match;
1763        else if (Method->getBody())
1764          diag = diag::note_previous_definition;
1765        else
1766          diag = diag::note_previous_declaration;
1767        Diag(Method->getLocation(), diag);
1768      }
1769
1770      PrevDecl = 0;
1771    }
1772  }
1773  // Handle attributes. We need to have merged decls when handling attributes
1774  // (for example to check for conflicts, etc).
1775  ProcessDeclAttributes(NewFD, D);
1776
1777  if (getLangOptions().CPlusPlus) {
1778    // In C++, check default arguments now that we have merged decls.
1779    CheckCXXDefaultArguments(NewFD);
1780
1781    // An out-of-line member function declaration must also be a
1782    // definition (C++ [dcl.meaning]p1).
1783    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1784      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1785        << D.getCXXScopeSpec().getRange();
1786      InvalidDecl = true;
1787    }
1788  }
1789  return NewFD;
1790}
1791
1792void Sema::InitializerElementNotConstant(const Expr *Init) {
1793  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1794    << Init->getSourceRange();
1795}
1796
1797bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1798  switch (Init->getStmtClass()) {
1799  default:
1800    InitializerElementNotConstant(Init);
1801    return true;
1802  case Expr::ParenExprClass: {
1803    const ParenExpr* PE = cast<ParenExpr>(Init);
1804    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1805  }
1806  case Expr::CompoundLiteralExprClass:
1807    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1808  case Expr::DeclRefExprClass:
1809  case Expr::QualifiedDeclRefExprClass: {
1810    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1811    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1812      if (VD->hasGlobalStorage())
1813        return false;
1814      InitializerElementNotConstant(Init);
1815      return true;
1816    }
1817    if (isa<FunctionDecl>(D))
1818      return false;
1819    InitializerElementNotConstant(Init);
1820    return true;
1821  }
1822  case Expr::MemberExprClass: {
1823    const MemberExpr *M = cast<MemberExpr>(Init);
1824    if (M->isArrow())
1825      return CheckAddressConstantExpression(M->getBase());
1826    return CheckAddressConstantExpressionLValue(M->getBase());
1827  }
1828  case Expr::ArraySubscriptExprClass: {
1829    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1830    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1831    return CheckAddressConstantExpression(ASE->getBase()) ||
1832           CheckArithmeticConstantExpression(ASE->getIdx());
1833  }
1834  case Expr::StringLiteralClass:
1835  case Expr::PredefinedExprClass:
1836    return false;
1837  case Expr::UnaryOperatorClass: {
1838    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1839
1840    // C99 6.6p9
1841    if (Exp->getOpcode() == UnaryOperator::Deref)
1842      return CheckAddressConstantExpression(Exp->getSubExpr());
1843
1844    InitializerElementNotConstant(Init);
1845    return true;
1846  }
1847  }
1848}
1849
1850bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1851  switch (Init->getStmtClass()) {
1852  default:
1853    InitializerElementNotConstant(Init);
1854    return true;
1855  case Expr::ParenExprClass:
1856    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1857  case Expr::StringLiteralClass:
1858  case Expr::ObjCStringLiteralClass:
1859    return false;
1860  case Expr::CallExprClass:
1861  case Expr::CXXOperatorCallExprClass:
1862    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1863    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1864           Builtin::BI__builtin___CFStringMakeConstantString)
1865      return false;
1866
1867    InitializerElementNotConstant(Init);
1868    return true;
1869
1870  case Expr::UnaryOperatorClass: {
1871    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1872
1873    // C99 6.6p9
1874    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1875      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1876
1877    if (Exp->getOpcode() == UnaryOperator::Extension)
1878      return CheckAddressConstantExpression(Exp->getSubExpr());
1879
1880    InitializerElementNotConstant(Init);
1881    return true;
1882  }
1883  case Expr::BinaryOperatorClass: {
1884    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1885    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1886
1887    Expr *PExp = Exp->getLHS();
1888    Expr *IExp = Exp->getRHS();
1889    if (IExp->getType()->isPointerType())
1890      std::swap(PExp, IExp);
1891
1892    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1893    return CheckAddressConstantExpression(PExp) ||
1894           CheckArithmeticConstantExpression(IExp);
1895  }
1896  case Expr::ImplicitCastExprClass:
1897  case Expr::CStyleCastExprClass: {
1898    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1899    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1900      // Check for implicit promotion
1901      if (SubExpr->getType()->isFunctionType() ||
1902          SubExpr->getType()->isArrayType())
1903        return CheckAddressConstantExpressionLValue(SubExpr);
1904    }
1905
1906    // Check for pointer->pointer cast
1907    if (SubExpr->getType()->isPointerType())
1908      return CheckAddressConstantExpression(SubExpr);
1909
1910    if (SubExpr->getType()->isIntegralType()) {
1911      // Check for the special-case of a pointer->int->pointer cast;
1912      // this isn't standard, but some code requires it. See
1913      // PR2720 for an example.
1914      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1915        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1916          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1917          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1918          if (IntWidth >= PointerWidth) {
1919            return CheckAddressConstantExpression(SubCast->getSubExpr());
1920          }
1921        }
1922      }
1923    }
1924    if (SubExpr->getType()->isArithmeticType()) {
1925      return CheckArithmeticConstantExpression(SubExpr);
1926    }
1927
1928    InitializerElementNotConstant(Init);
1929    return true;
1930  }
1931  case Expr::ConditionalOperatorClass: {
1932    // FIXME: Should we pedwarn here?
1933    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1934    if (!Exp->getCond()->getType()->isArithmeticType()) {
1935      InitializerElementNotConstant(Init);
1936      return true;
1937    }
1938    if (CheckArithmeticConstantExpression(Exp->getCond()))
1939      return true;
1940    if (Exp->getLHS() &&
1941        CheckAddressConstantExpression(Exp->getLHS()))
1942      return true;
1943    return CheckAddressConstantExpression(Exp->getRHS());
1944  }
1945  case Expr::AddrLabelExprClass:
1946    return false;
1947  }
1948}
1949
1950static const Expr* FindExpressionBaseAddress(const Expr* E);
1951
1952static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1953  switch (E->getStmtClass()) {
1954  default:
1955    return E;
1956  case Expr::ParenExprClass: {
1957    const ParenExpr* PE = cast<ParenExpr>(E);
1958    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1959  }
1960  case Expr::MemberExprClass: {
1961    const MemberExpr *M = cast<MemberExpr>(E);
1962    if (M->isArrow())
1963      return FindExpressionBaseAddress(M->getBase());
1964    return FindExpressionBaseAddressLValue(M->getBase());
1965  }
1966  case Expr::ArraySubscriptExprClass: {
1967    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1968    return FindExpressionBaseAddress(ASE->getBase());
1969  }
1970  case Expr::UnaryOperatorClass: {
1971    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1972
1973    if (Exp->getOpcode() == UnaryOperator::Deref)
1974      return FindExpressionBaseAddress(Exp->getSubExpr());
1975
1976    return E;
1977  }
1978  }
1979}
1980
1981static const Expr* FindExpressionBaseAddress(const Expr* E) {
1982  switch (E->getStmtClass()) {
1983  default:
1984    return E;
1985  case Expr::ParenExprClass: {
1986    const ParenExpr* PE = cast<ParenExpr>(E);
1987    return FindExpressionBaseAddress(PE->getSubExpr());
1988  }
1989  case Expr::UnaryOperatorClass: {
1990    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1991
1992    // C99 6.6p9
1993    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1994      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1995
1996    if (Exp->getOpcode() == UnaryOperator::Extension)
1997      return FindExpressionBaseAddress(Exp->getSubExpr());
1998
1999    return E;
2000  }
2001  case Expr::BinaryOperatorClass: {
2002    const BinaryOperator *Exp = cast<BinaryOperator>(E);
2003
2004    Expr *PExp = Exp->getLHS();
2005    Expr *IExp = Exp->getRHS();
2006    if (IExp->getType()->isPointerType())
2007      std::swap(PExp, IExp);
2008
2009    return FindExpressionBaseAddress(PExp);
2010  }
2011  case Expr::ImplicitCastExprClass: {
2012    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
2013
2014    // Check for implicit promotion
2015    if (SubExpr->getType()->isFunctionType() ||
2016        SubExpr->getType()->isArrayType())
2017      return FindExpressionBaseAddressLValue(SubExpr);
2018
2019    // Check for pointer->pointer cast
2020    if (SubExpr->getType()->isPointerType())
2021      return FindExpressionBaseAddress(SubExpr);
2022
2023    // We assume that we have an arithmetic expression here;
2024    // if we don't, we'll figure it out later
2025    return 0;
2026  }
2027  case Expr::CStyleCastExprClass: {
2028    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2029
2030    // Check for pointer->pointer cast
2031    if (SubExpr->getType()->isPointerType())
2032      return FindExpressionBaseAddress(SubExpr);
2033
2034    // We assume that we have an arithmetic expression here;
2035    // if we don't, we'll figure it out later
2036    return 0;
2037  }
2038  }
2039}
2040
2041bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2042  switch (Init->getStmtClass()) {
2043  default:
2044    InitializerElementNotConstant(Init);
2045    return true;
2046  case Expr::ParenExprClass: {
2047    const ParenExpr* PE = cast<ParenExpr>(Init);
2048    return CheckArithmeticConstantExpression(PE->getSubExpr());
2049  }
2050  case Expr::FloatingLiteralClass:
2051  case Expr::IntegerLiteralClass:
2052  case Expr::CharacterLiteralClass:
2053  case Expr::ImaginaryLiteralClass:
2054  case Expr::TypesCompatibleExprClass:
2055  case Expr::CXXBoolLiteralExprClass:
2056    return false;
2057  case Expr::CallExprClass:
2058  case Expr::CXXOperatorCallExprClass: {
2059    const CallExpr *CE = cast<CallExpr>(Init);
2060
2061    // Allow any constant foldable calls to builtins.
2062    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
2063      return false;
2064
2065    InitializerElementNotConstant(Init);
2066    return true;
2067  }
2068  case Expr::DeclRefExprClass:
2069  case Expr::QualifiedDeclRefExprClass: {
2070    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2071    if (isa<EnumConstantDecl>(D))
2072      return false;
2073    InitializerElementNotConstant(Init);
2074    return true;
2075  }
2076  case Expr::CompoundLiteralExprClass:
2077    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2078    // but vectors are allowed to be magic.
2079    if (Init->getType()->isVectorType())
2080      return false;
2081    InitializerElementNotConstant(Init);
2082    return true;
2083  case Expr::UnaryOperatorClass: {
2084    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2085
2086    switch (Exp->getOpcode()) {
2087    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2088    // See C99 6.6p3.
2089    default:
2090      InitializerElementNotConstant(Init);
2091      return true;
2092    case UnaryOperator::OffsetOf:
2093      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2094        return false;
2095      InitializerElementNotConstant(Init);
2096      return true;
2097    case UnaryOperator::Extension:
2098    case UnaryOperator::LNot:
2099    case UnaryOperator::Plus:
2100    case UnaryOperator::Minus:
2101    case UnaryOperator::Not:
2102      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2103    }
2104  }
2105  case Expr::SizeOfAlignOfExprClass: {
2106    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2107    // Special check for void types, which are allowed as an extension
2108    if (Exp->getTypeOfArgument()->isVoidType())
2109      return false;
2110    // alignof always evaluates to a constant.
2111    // FIXME: is sizeof(int[3.0]) a constant expression?
2112    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2113      InitializerElementNotConstant(Init);
2114      return true;
2115    }
2116    return false;
2117  }
2118  case Expr::BinaryOperatorClass: {
2119    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2120
2121    if (Exp->getLHS()->getType()->isArithmeticType() &&
2122        Exp->getRHS()->getType()->isArithmeticType()) {
2123      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2124             CheckArithmeticConstantExpression(Exp->getRHS());
2125    }
2126
2127    if (Exp->getLHS()->getType()->isPointerType() &&
2128        Exp->getRHS()->getType()->isPointerType()) {
2129      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2130      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2131
2132      // Only allow a null (constant integer) base; we could
2133      // allow some additional cases if necessary, but this
2134      // is sufficient to cover offsetof-like constructs.
2135      if (!LHSBase && !RHSBase) {
2136        return CheckAddressConstantExpression(Exp->getLHS()) ||
2137               CheckAddressConstantExpression(Exp->getRHS());
2138      }
2139    }
2140
2141    InitializerElementNotConstant(Init);
2142    return true;
2143  }
2144  case Expr::ImplicitCastExprClass:
2145  case Expr::CStyleCastExprClass: {
2146    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
2147    if (SubExpr->getType()->isArithmeticType())
2148      return CheckArithmeticConstantExpression(SubExpr);
2149
2150    if (SubExpr->getType()->isPointerType()) {
2151      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2152      // If the pointer has a null base, this is an offsetof-like construct
2153      if (!Base)
2154        return CheckAddressConstantExpression(SubExpr);
2155    }
2156
2157    InitializerElementNotConstant(Init);
2158    return true;
2159  }
2160  case Expr::ConditionalOperatorClass: {
2161    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2162
2163    // If GNU extensions are disabled, we require all operands to be arithmetic
2164    // constant expressions.
2165    if (getLangOptions().NoExtensions) {
2166      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2167          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2168             CheckArithmeticConstantExpression(Exp->getRHS());
2169    }
2170
2171    // Otherwise, we have to emulate some of the behavior of fold here.
2172    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2173    // because it can constant fold things away.  To retain compatibility with
2174    // GCC code, we see if we can fold the condition to a constant (which we
2175    // should always be able to do in theory).  If so, we only require the
2176    // specified arm of the conditional to be a constant.  This is a horrible
2177    // hack, but is require by real world code that uses __builtin_constant_p.
2178    Expr::EvalResult EvalResult;
2179    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2180        EvalResult.HasSideEffects) {
2181      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2182      // won't be able to either.  Use it to emit the diagnostic though.
2183      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2184      assert(Res && "Evaluate couldn't evaluate this constant?");
2185      return Res;
2186    }
2187
2188    // Verify that the side following the condition is also a constant.
2189    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2190    if (EvalResult.Val.getInt() == 0)
2191      std::swap(TrueSide, FalseSide);
2192
2193    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2194      return true;
2195
2196    // Okay, the evaluated side evaluates to a constant, so we accept this.
2197    // Check to see if the other side is obviously not a constant.  If so,
2198    // emit a warning that this is a GNU extension.
2199    if (FalseSide && !FalseSide->isEvaluatable(Context))
2200      Diag(Init->getExprLoc(),
2201           diag::ext_typecheck_expression_not_constant_but_accepted)
2202        << FalseSide->getSourceRange();
2203    return false;
2204  }
2205  }
2206}
2207
2208bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2209  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2210    Init = DIE->getInit();
2211
2212  Init = Init->IgnoreParens();
2213
2214  if (Init->isEvaluatable(Context))
2215    return false;
2216
2217  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2218  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2219    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2220
2221  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2222    return CheckForConstantInitializer(e->getInitializer(), DclT);
2223
2224  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2225    unsigned numInits = Exp->getNumInits();
2226    for (unsigned i = 0; i < numInits; i++) {
2227      // FIXME: Need to get the type of the declaration for C++,
2228      // because it could be a reference?
2229
2230      // Implicitly-generated value initializations are okay.
2231      if (isa<CXXZeroInitValueExpr>(Exp->getInit(i)) &&
2232          cast<CXXZeroInitValueExpr>(Exp->getInit(i))->isImplicit())
2233        continue;
2234
2235      if (CheckForConstantInitializer(Exp->getInit(i),
2236                                      Exp->getInit(i)->getType()))
2237        return true;
2238    }
2239    return false;
2240  }
2241
2242  // FIXME: We can probably remove some of this code below, now that
2243  // Expr::Evaluate is doing the heavy lifting for scalars.
2244
2245  if (Init->isNullPointerConstant(Context))
2246    return false;
2247  if (Init->getType()->isArithmeticType()) {
2248    QualType InitTy = Context.getCanonicalType(Init->getType())
2249                             .getUnqualifiedType();
2250    if (InitTy == Context.BoolTy) {
2251      // Special handling for pointers implicitly cast to bool;
2252      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2253      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2254        Expr* SubE = ICE->getSubExpr();
2255        if (SubE->getType()->isPointerType() ||
2256            SubE->getType()->isArrayType() ||
2257            SubE->getType()->isFunctionType()) {
2258          return CheckAddressConstantExpression(Init);
2259        }
2260      }
2261    } else if (InitTy->isIntegralType()) {
2262      Expr* SubE = 0;
2263      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2264        SubE = CE->getSubExpr();
2265      // Special check for pointer cast to int; we allow as an extension
2266      // an address constant cast to an integer if the integer
2267      // is of an appropriate width (this sort of code is apparently used
2268      // in some places).
2269      // FIXME: Add pedwarn?
2270      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2271      if (SubE && (SubE->getType()->isPointerType() ||
2272                   SubE->getType()->isArrayType() ||
2273                   SubE->getType()->isFunctionType())) {
2274        unsigned IntWidth = Context.getTypeSize(Init->getType());
2275        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2276        if (IntWidth >= PointerWidth)
2277          return CheckAddressConstantExpression(Init);
2278      }
2279    }
2280
2281    return CheckArithmeticConstantExpression(Init);
2282  }
2283
2284  if (Init->getType()->isPointerType())
2285    return CheckAddressConstantExpression(Init);
2286
2287  // An array type at the top level that isn't an init-list must
2288  // be a string literal
2289  if (Init->getType()->isArrayType())
2290    return false;
2291
2292  if (Init->getType()->isFunctionType())
2293    return false;
2294
2295  // Allow block exprs at top level.
2296  if (Init->getType()->isBlockPointerType())
2297    return false;
2298
2299  // GCC cast to union extension
2300  // note: the validity of the cast expr is checked by CheckCastTypes()
2301  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2302    QualType T = C->getType();
2303    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2304  }
2305
2306  InitializerElementNotConstant(Init);
2307  return true;
2308}
2309
2310void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2311  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2312}
2313
2314/// AddInitializerToDecl - Adds the initializer Init to the
2315/// declaration dcl. If DirectInit is true, this is C++ direct
2316/// initialization rather than copy initialization.
2317void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2318  Decl *RealDecl = static_cast<Decl *>(dcl);
2319  Expr *Init = static_cast<Expr *>(init.release());
2320  assert(Init && "missing initializer");
2321
2322  // If there is no declaration, there was an error parsing it.  Just ignore
2323  // the initializer.
2324  if (RealDecl == 0) {
2325    delete Init;
2326    return;
2327  }
2328
2329  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2330  if (!VDecl) {
2331    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2332    RealDecl->setInvalidDecl();
2333    return;
2334  }
2335  // Get the decls type and save a reference for later, since
2336  // CheckInitializerTypes may change it.
2337  QualType DclT = VDecl->getType(), SavT = DclT;
2338  if (VDecl->isBlockVarDecl()) {
2339    VarDecl::StorageClass SC = VDecl->getStorageClass();
2340    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2341      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2342      VDecl->setInvalidDecl();
2343    } else if (!VDecl->isInvalidDecl()) {
2344      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2345                                VDecl->getDeclName(), DirectInit))
2346        VDecl->setInvalidDecl();
2347
2348      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2349      if (!getLangOptions().CPlusPlus) {
2350        if (SC == VarDecl::Static) // C99 6.7.8p4.
2351          CheckForConstantInitializer(Init, DclT);
2352      }
2353    }
2354  } else if (VDecl->isFileVarDecl()) {
2355    if (VDecl->getStorageClass() == VarDecl::Extern)
2356      Diag(VDecl->getLocation(), diag::warn_extern_init);
2357    if (!VDecl->isInvalidDecl())
2358      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2359                                VDecl->getDeclName(), DirectInit))
2360        VDecl->setInvalidDecl();
2361
2362    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2363    if (!getLangOptions().CPlusPlus) {
2364      // C99 6.7.8p4. All file scoped initializers need to be constant.
2365      CheckForConstantInitializer(Init, DclT);
2366    }
2367  }
2368  // If the type changed, it means we had an incomplete type that was
2369  // completed by the initializer. For example:
2370  //   int ary[] = { 1, 3, 5 };
2371  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2372  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2373    VDecl->setType(DclT);
2374    Init->setType(DclT);
2375  }
2376
2377  // Attach the initializer to the decl.
2378  VDecl->setInit(Init);
2379  return;
2380}
2381
2382void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2383  Decl *RealDecl = static_cast<Decl *>(dcl);
2384
2385  // If there is no declaration, there was an error parsing it. Just ignore it.
2386  if (RealDecl == 0)
2387    return;
2388
2389  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2390    QualType Type = Var->getType();
2391    // C++ [dcl.init.ref]p3:
2392    //   The initializer can be omitted for a reference only in a
2393    //   parameter declaration (8.3.5), in the declaration of a
2394    //   function return type, in the declaration of a class member
2395    //   within its class declaration (9.2), and where the extern
2396    //   specifier is explicitly used.
2397    if (Type->isReferenceType() &&
2398        Var->getStorageClass() != VarDecl::Extern &&
2399        Var->getStorageClass() != VarDecl::PrivateExtern) {
2400      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2401        << Var->getDeclName()
2402        << SourceRange(Var->getLocation(), Var->getLocation());
2403      Var->setInvalidDecl();
2404      return;
2405    }
2406
2407    // C++ [dcl.init]p9:
2408    //
2409    //   If no initializer is specified for an object, and the object
2410    //   is of (possibly cv-qualified) non-POD class type (or array
2411    //   thereof), the object shall be default-initialized; if the
2412    //   object is of const-qualified type, the underlying class type
2413    //   shall have a user-declared default constructor.
2414    if (getLangOptions().CPlusPlus) {
2415      QualType InitType = Type;
2416      if (const ArrayType *Array = Context.getAsArrayType(Type))
2417        InitType = Array->getElementType();
2418      if (Var->getStorageClass() != VarDecl::Extern &&
2419          Var->getStorageClass() != VarDecl::PrivateExtern &&
2420          InitType->isRecordType()) {
2421        const CXXConstructorDecl *Constructor
2422          = PerformInitializationByConstructor(InitType, 0, 0,
2423                                               Var->getLocation(),
2424                                               SourceRange(Var->getLocation(),
2425                                                           Var->getLocation()),
2426                                               Var->getDeclName(),
2427                                               IK_Default);
2428        if (!Constructor)
2429          Var->setInvalidDecl();
2430      }
2431    }
2432
2433#if 0
2434    // FIXME: Temporarily disabled because we are not properly parsing
2435    // linkage specifications on declarations, e.g.,
2436    //
2437    //   extern "C" const CGPoint CGPointerZero;
2438    //
2439    // C++ [dcl.init]p9:
2440    //
2441    //     If no initializer is specified for an object, and the
2442    //     object is of (possibly cv-qualified) non-POD class type (or
2443    //     array thereof), the object shall be default-initialized; if
2444    //     the object is of const-qualified type, the underlying class
2445    //     type shall have a user-declared default
2446    //     constructor. Otherwise, if no initializer is specified for
2447    //     an object, the object and its subobjects, if any, have an
2448    //     indeterminate initial value; if the object or any of its
2449    //     subobjects are of const-qualified type, the program is
2450    //     ill-formed.
2451    //
2452    // This isn't technically an error in C, so we don't diagnose it.
2453    //
2454    // FIXME: Actually perform the POD/user-defined default
2455    // constructor check.
2456    if (getLangOptions().CPlusPlus &&
2457        Context.getCanonicalType(Type).isConstQualified() &&
2458        Var->getStorageClass() != VarDecl::Extern)
2459      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2460        << Var->getName()
2461        << SourceRange(Var->getLocation(), Var->getLocation());
2462#endif
2463  }
2464}
2465
2466/// The declarators are chained together backwards, reverse the list.
2467Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2468  // Often we have single declarators, handle them quickly.
2469  Decl *GroupDecl = static_cast<Decl*>(group);
2470  if (GroupDecl == 0)
2471    return 0;
2472
2473  Decl *Group = dyn_cast<Decl>(GroupDecl);
2474  Decl *NewGroup = 0;
2475  if (Group->getNextDeclarator() == 0)
2476    NewGroup = Group;
2477  else { // reverse the list.
2478    while (Group) {
2479      Decl *Next = Group->getNextDeclarator();
2480      Group->setNextDeclarator(NewGroup);
2481      NewGroup = Group;
2482      Group = Next;
2483    }
2484  }
2485  // Perform semantic analysis that depends on having fully processed both
2486  // the declarator and initializer.
2487  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2488    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2489    if (!IDecl)
2490      continue;
2491    QualType T = IDecl->getType();
2492
2493    if (T->isVariableArrayType()) {
2494      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2495
2496      // FIXME: This won't give the correct result for
2497      // int a[10][n];
2498      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2499      if (IDecl->isFileVarDecl()) {
2500        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2501          SizeRange;
2502
2503        IDecl->setInvalidDecl();
2504      } else {
2505        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2506        // static storage duration, it shall not have a variable length array.
2507        if (IDecl->getStorageClass() == VarDecl::Static) {
2508          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2509            << SizeRange;
2510          IDecl->setInvalidDecl();
2511        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2512          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2513            << SizeRange;
2514          IDecl->setInvalidDecl();
2515        }
2516      }
2517    } else if (T->isVariablyModifiedType()) {
2518      if (IDecl->isFileVarDecl()) {
2519        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2520        IDecl->setInvalidDecl();
2521      } else {
2522        if (IDecl->getStorageClass() == VarDecl::Extern) {
2523          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2524          IDecl->setInvalidDecl();
2525        }
2526      }
2527    }
2528
2529    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2530    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2531    if (IDecl->isBlockVarDecl() &&
2532        IDecl->getStorageClass() != VarDecl::Extern) {
2533      if (!IDecl->isInvalidDecl() &&
2534          DiagnoseIncompleteType(IDecl->getLocation(), T,
2535                                 diag::err_typecheck_decl_incomplete_type))
2536        IDecl->setInvalidDecl();
2537    }
2538    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2539    // object that has file scope without an initializer, and without a
2540    // storage-class specifier or with the storage-class specifier "static",
2541    // constitutes a tentative definition. Note: A tentative definition with
2542    // external linkage is valid (C99 6.2.2p5).
2543    if (isTentativeDefinition(IDecl)) {
2544      if (T->isIncompleteArrayType()) {
2545        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2546        // array to be completed. Don't issue a diagnostic.
2547      } else if (!IDecl->isInvalidDecl() &&
2548                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2549                                        diag::err_typecheck_decl_incomplete_type))
2550        // C99 6.9.2p3: If the declaration of an identifier for an object is
2551        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2552        // declared type shall not be an incomplete type.
2553        IDecl->setInvalidDecl();
2554    }
2555    if (IDecl->isFileVarDecl())
2556      CheckForFileScopedRedefinitions(S, IDecl);
2557  }
2558  return NewGroup;
2559}
2560
2561/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2562/// to introduce parameters into function prototype scope.
2563Sema::DeclTy *
2564Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2565  const DeclSpec &DS = D.getDeclSpec();
2566
2567  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2568  VarDecl::StorageClass StorageClass = VarDecl::None;
2569  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2570    StorageClass = VarDecl::Register;
2571  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2572    Diag(DS.getStorageClassSpecLoc(),
2573         diag::err_invalid_storage_class_in_func_decl);
2574    D.getMutableDeclSpec().ClearStorageClassSpecs();
2575  }
2576  if (DS.isThreadSpecified()) {
2577    Diag(DS.getThreadSpecLoc(),
2578         diag::err_invalid_storage_class_in_func_decl);
2579    D.getMutableDeclSpec().ClearStorageClassSpecs();
2580  }
2581
2582  // Check that there are no default arguments inside the type of this
2583  // parameter (C++ only).
2584  if (getLangOptions().CPlusPlus)
2585    CheckExtraCXXDefaultArguments(D);
2586
2587  // In this context, we *do not* check D.getInvalidType(). If the declarator
2588  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2589  // though it will not reflect the user specified type.
2590  QualType parmDeclType = GetTypeForDeclarator(D, S);
2591
2592  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2593
2594  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2595  // Can this happen for params?  We already checked that they don't conflict
2596  // among each other.  Here they can only shadow globals, which is ok.
2597  IdentifierInfo *II = D.getIdentifier();
2598  if (II) {
2599    if (Decl *PrevDecl = LookupDeclInScope(II, Decl::IDNS_Ordinary, S)) {
2600      if (PrevDecl->isTemplateParameter()) {
2601        // Maybe we will complain about the shadowed template parameter.
2602        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2603        // Just pretend that we didn't see the previous declaration.
2604        PrevDecl = 0;
2605      } else if (S->isDeclScope(PrevDecl)) {
2606        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2607
2608        // Recover by removing the name
2609        II = 0;
2610        D.SetIdentifier(0, D.getIdentifierLoc());
2611      }
2612    }
2613  }
2614
2615  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2616  // Doing the promotion here has a win and a loss. The win is the type for
2617  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2618  // code generator). The loss is the orginal type isn't preserved. For example:
2619  //
2620  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2621  //    int blockvardecl[5];
2622  //    sizeof(parmvardecl);  // size == 4
2623  //    sizeof(blockvardecl); // size == 20
2624  // }
2625  //
2626  // For expressions, all implicit conversions are captured using the
2627  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2628  //
2629  // FIXME: If a source translation tool needs to see the original type, then
2630  // we need to consider storing both types (in ParmVarDecl)...
2631  //
2632  if (parmDeclType->isArrayType()) {
2633    // int x[restrict 4] ->  int *restrict
2634    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2635  } else if (parmDeclType->isFunctionType())
2636    parmDeclType = Context.getPointerType(parmDeclType);
2637
2638  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2639                                         D.getIdentifierLoc(), II,
2640                                         parmDeclType, StorageClass,
2641                                         0);
2642
2643  if (D.getInvalidType())
2644    New->setInvalidDecl();
2645
2646  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2647  if (D.getCXXScopeSpec().isSet()) {
2648    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2649      << D.getCXXScopeSpec().getRange();
2650    New->setInvalidDecl();
2651  }
2652
2653  // Add the parameter declaration into this scope.
2654  S->AddDecl(New);
2655  if (II)
2656    IdResolver.AddDecl(New);
2657
2658  ProcessDeclAttributes(New, D);
2659  return New;
2660
2661}
2662
2663void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2664  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2665         "Not a function declarator!");
2666  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2667
2668  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2669  // for a K&R function.
2670  if (!FTI.hasPrototype) {
2671    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2672      if (FTI.ArgInfo[i].Param == 0) {
2673        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2674          << FTI.ArgInfo[i].Ident;
2675        // Implicitly declare the argument as type 'int' for lack of a better
2676        // type.
2677        DeclSpec DS;
2678        const char* PrevSpec; // unused
2679        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2680                           PrevSpec);
2681        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2682        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2683        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2684      }
2685    }
2686  }
2687}
2688
2689Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2690  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2691  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2692         "Not a function declarator!");
2693  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2694
2695  if (FTI.hasPrototype) {
2696    // FIXME: Diagnose arguments without names in C.
2697  }
2698
2699  Scope *ParentScope = FnBodyScope->getParent();
2700
2701  return ActOnStartOfFunctionDef(FnBodyScope,
2702                                 ActOnDeclarator(ParentScope, D, 0,
2703                                                 /*IsFunctionDefinition=*/true));
2704}
2705
2706Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2707  Decl *decl = static_cast<Decl*>(D);
2708  FunctionDecl *FD = cast<FunctionDecl>(decl);
2709
2710  // See if this is a redefinition.
2711  const FunctionDecl *Definition;
2712  if (FD->getBody(Definition)) {
2713    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2714    Diag(Definition->getLocation(), diag::note_previous_definition);
2715  }
2716
2717  PushDeclContext(FnBodyScope, FD);
2718
2719  // Check the validity of our function parameters
2720  CheckParmsForFunctionDef(FD);
2721
2722  // Introduce our parameters into the function scope
2723  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2724    ParmVarDecl *Param = FD->getParamDecl(p);
2725    Param->setOwningFunction(FD);
2726
2727    // If this has an identifier, add it to the scope stack.
2728    if (Param->getIdentifier())
2729      PushOnScopeChains(Param, FnBodyScope);
2730  }
2731
2732  // Checking attributes of current function definition
2733  // dllimport attribute.
2734  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2735    // dllimport attribute cannot be applied to definition.
2736    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2737      Diag(FD->getLocation(),
2738           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2739        << "dllimport";
2740      FD->setInvalidDecl();
2741      return FD;
2742    } else {
2743      // If a symbol previously declared dllimport is later defined, the
2744      // attribute is ignored in subsequent references, and a warning is
2745      // emitted.
2746      Diag(FD->getLocation(),
2747           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2748        << FD->getNameAsCString() << "dllimport";
2749    }
2750  }
2751  return FD;
2752}
2753
2754Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2755  Decl *dcl = static_cast<Decl *>(D);
2756  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2757  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2758    FD->setBody(Body);
2759    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2760  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2761    MD->setBody((Stmt*)Body);
2762  } else
2763    return 0;
2764  PopDeclContext();
2765  // Verify and clean out per-function state.
2766
2767  // Check goto/label use.
2768  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2769       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2770    // Verify that we have no forward references left.  If so, there was a goto
2771    // or address of a label taken, but no definition of it.  Label fwd
2772    // definitions are indicated with a null substmt.
2773    if (I->second->getSubStmt() == 0) {
2774      LabelStmt *L = I->second;
2775      // Emit error.
2776      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2777
2778      // At this point, we have gotos that use the bogus label.  Stitch it into
2779      // the function body so that they aren't leaked and that the AST is well
2780      // formed.
2781      if (Body) {
2782        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2783        cast<CompoundStmt>(Body)->push_back(L);
2784      } else {
2785        // The whole function wasn't parsed correctly, just delete this.
2786        delete L;
2787      }
2788    }
2789  }
2790  LabelMap.clear();
2791
2792  return D;
2793}
2794
2795/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2796/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2797NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2798                                          IdentifierInfo &II, Scope *S) {
2799  // Extension in C99.  Legal in C90, but warn about it.
2800  if (getLangOptions().C99)
2801    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2802  else
2803    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2804
2805  // FIXME: handle stuff like:
2806  // void foo() { extern float X(); }
2807  // void bar() { X(); }  <-- implicit decl for X in another scope.
2808
2809  // Set a Declarator for the implicit definition: int foo();
2810  const char *Dummy;
2811  DeclSpec DS;
2812  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2813  Error = Error; // Silence warning.
2814  assert(!Error && "Error setting up implicit decl!");
2815  Declarator D(DS, Declarator::BlockContext);
2816  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D));
2817  D.SetIdentifier(&II, Loc);
2818
2819  // Insert this function into translation-unit scope.
2820
2821  DeclContext *PrevDC = CurContext;
2822  CurContext = Context.getTranslationUnitDecl();
2823
2824  FunctionDecl *FD =
2825    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2826  FD->setImplicit();
2827
2828  CurContext = PrevDC;
2829
2830  return FD;
2831}
2832
2833
2834TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2835                                    Decl *LastDeclarator) {
2836  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2837  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2838
2839  // Scope manipulation handled by caller.
2840  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2841                                           D.getIdentifierLoc(),
2842                                           D.getIdentifier(),
2843                                           T);
2844  NewTD->setNextDeclarator(LastDeclarator);
2845  if (D.getInvalidType())
2846    NewTD->setInvalidDecl();
2847  return NewTD;
2848}
2849
2850/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2851/// former case, Name will be non-null.  In the later case, Name will be null.
2852/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2853/// reference/declaration/definition of a tag.
2854Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2855                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2856                             IdentifierInfo *Name, SourceLocation NameLoc,
2857                             AttributeList *Attr,
2858                             MultiTemplateParamsArg TemplateParameterLists) {
2859  // If this is not a definition, it must have a name.
2860  assert((Name != 0 || TK == TK_Definition) &&
2861         "Nameless record must be a definition!");
2862
2863  TagDecl::TagKind Kind;
2864  switch (TagSpec) {
2865  default: assert(0 && "Unknown tag type!");
2866  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2867  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2868  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2869  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2870  }
2871
2872  DeclContext *SearchDC = CurContext;
2873  DeclContext *DC = CurContext;
2874  DeclContext *LexicalContext = CurContext;
2875  Decl *PrevDecl = 0;
2876
2877  bool Invalid = false;
2878
2879  if (Name && SS.isNotEmpty()) {
2880    // We have a nested-name tag ('struct foo::bar').
2881
2882    // Check for invalid 'foo::'.
2883    if (SS.isInvalid()) {
2884      Name = 0;
2885      goto CreateNewDecl;
2886    }
2887
2888    DC = static_cast<DeclContext*>(SS.getScopeRep());
2889    // Look-up name inside 'foo::'.
2890    PrevDecl = dyn_cast_or_null<TagDecl>(
2891                 LookupDeclInContext(Name, Decl::IDNS_Tag, DC).getAsDecl());
2892
2893    // A tag 'foo::bar' must already exist.
2894    if (PrevDecl == 0) {
2895      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2896      Name = 0;
2897      goto CreateNewDecl;
2898    }
2899  } else if (Name) {
2900    // If this is a named struct, check to see if there was a previous forward
2901    // declaration or definition.
2902    PrevDecl = dyn_cast_or_null<NamedDecl>(LookupDeclInScope(Name,
2903                                                             Decl::IDNS_Tag,S)
2904                                           .getAsDecl());
2905
2906    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2907      // FIXME: This makes sure that we ignore the contexts associated
2908      // with C structs, unions, and enums when looking for a matching
2909      // tag declaration or definition. See the similar lookup tweak
2910      // in Sema::LookupDecl; is there a better way to deal with this?
2911      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2912        SearchDC = SearchDC->getParent();
2913    }
2914  }
2915
2916  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2917    // Maybe we will complain about the shadowed template parameter.
2918    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2919    // Just pretend that we didn't see the previous declaration.
2920    PrevDecl = 0;
2921  }
2922
2923  if (PrevDecl) {
2924    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2925      // If this is a use of a previous tag, or if the tag is already declared
2926      // in the same scope (so that the definition/declaration completes or
2927      // rementions the tag), reuse the decl.
2928      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2929        // Make sure that this wasn't declared as an enum and now used as a
2930        // struct or something similar.
2931        if (PrevTagDecl->getTagKind() != Kind) {
2932          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2933          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2934          // Recover by making this an anonymous redefinition.
2935          Name = 0;
2936          PrevDecl = 0;
2937          Invalid = true;
2938        } else {
2939          // If this is a use, just return the declaration we found.
2940
2941          // FIXME: In the future, return a variant or some other clue
2942          // for the consumer of this Decl to know it doesn't own it.
2943          // For our current ASTs this shouldn't be a problem, but will
2944          // need to be changed with DeclGroups.
2945          if (TK == TK_Reference)
2946            return PrevDecl;
2947
2948          // Diagnose attempts to redefine a tag.
2949          if (TK == TK_Definition) {
2950            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2951              Diag(NameLoc, diag::err_redefinition) << Name;
2952              Diag(Def->getLocation(), diag::note_previous_definition);
2953              // If this is a redefinition, recover by making this
2954              // struct be anonymous, which will make any later
2955              // references get the previous definition.
2956              Name = 0;
2957              PrevDecl = 0;
2958              Invalid = true;
2959            } else {
2960              // If the type is currently being defined, complain
2961              // about a nested redefinition.
2962              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2963              if (Tag->isBeingDefined()) {
2964                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2965                Diag(PrevTagDecl->getLocation(),
2966                     diag::note_previous_definition);
2967                Name = 0;
2968                PrevDecl = 0;
2969                Invalid = true;
2970              }
2971            }
2972
2973            // Okay, this is definition of a previously declared or referenced
2974            // tag PrevDecl. We're going to create a new Decl for it.
2975          }
2976        }
2977        // If we get here we have (another) forward declaration or we
2978        // have a definition.  Just create a new decl.
2979      } else {
2980        // If we get here, this is a definition of a new tag type in a nested
2981        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2982        // new decl/type.  We set PrevDecl to NULL so that the entities
2983        // have distinct types.
2984        PrevDecl = 0;
2985      }
2986      // If we get here, we're going to create a new Decl. If PrevDecl
2987      // is non-NULL, it's a definition of the tag declared by
2988      // PrevDecl. If it's NULL, we have a new definition.
2989    } else {
2990      // PrevDecl is a namespace, template, or anything else
2991      // that lives in the IDNS_Tag identifier namespace.
2992      if (isDeclInScope(PrevDecl, SearchDC, S)) {
2993        // The tag name clashes with a namespace name, issue an error and
2994        // recover by making this tag be anonymous.
2995        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2996        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2997        Name = 0;
2998        PrevDecl = 0;
2999        Invalid = true;
3000      } else {
3001        // The existing declaration isn't relevant to us; we're in a
3002        // new scope, so clear out the previous declaration.
3003        PrevDecl = 0;
3004      }
3005    }
3006  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3007             (Kind != TagDecl::TK_enum))  {
3008    // C++ [basic.scope.pdecl]p5:
3009    //   -- for an elaborated-type-specifier of the form
3010    //
3011    //          class-key identifier
3012    //
3013    //      if the elaborated-type-specifier is used in the
3014    //      decl-specifier-seq or parameter-declaration-clause of a
3015    //      function defined in namespace scope, the identifier is
3016    //      declared as a class-name in the namespace that contains
3017    //      the declaration; otherwise, except as a friend
3018    //      declaration, the identifier is declared in the smallest
3019    //      non-class, non-function-prototype scope that contains the
3020    //      declaration.
3021    //
3022    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3023    // C structs and unions.
3024
3025    // Find the context where we'll be declaring the tag.
3026    // FIXME: We would like to maintain the current DeclContext as the
3027    // lexical context,
3028    while (DC->isRecord())
3029      DC = DC->getParent();
3030    LexicalContext = DC;
3031
3032    // Find the scope where we'll be declaring the tag.
3033    while (S->isClassScope() ||
3034           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3035           ((S->getFlags() & Scope::DeclScope) == 0) ||
3036           (S->getEntity() &&
3037            ((DeclContext *)S->getEntity())->isTransparentContext()))
3038      S = S->getParent();
3039  }
3040
3041CreateNewDecl:
3042
3043  // If there is an identifier, use the location of the identifier as the
3044  // location of the decl, otherwise use the location of the struct/union
3045  // keyword.
3046  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3047
3048  // Otherwise, create a new declaration. If there is a previous
3049  // declaration of the same entity, the two will be linked via
3050  // PrevDecl.
3051  TagDecl *New;
3052
3053  if (Kind == TagDecl::TK_enum) {
3054    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3055    // enum X { A, B, C } D;    D should chain to X.
3056    New = EnumDecl::Create(Context, DC, Loc, Name,
3057                           cast_or_null<EnumDecl>(PrevDecl));
3058    // If this is an undefined enum, warn.
3059    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3060  } else {
3061    // struct/union/class
3062
3063    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3064    // struct X { int A; } D;    D should chain to X.
3065    if (getLangOptions().CPlusPlus)
3066      // FIXME: Look for a way to use RecordDecl for simple structs.
3067      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
3068                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3069    else
3070      New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
3071                               cast_or_null<RecordDecl>(PrevDecl));
3072  }
3073
3074  if (Kind != TagDecl::TK_enum) {
3075    // Handle #pragma pack: if the #pragma pack stack has non-default
3076    // alignment, make up a packed attribute for this decl. These
3077    // attributes are checked when the ASTContext lays out the
3078    // structure.
3079    //
3080    // It is important for implementing the correct semantics that this
3081    // happen here (in act on tag decl). The #pragma pack stack is
3082    // maintained as a result of parser callbacks which can occur at
3083    // many points during the parsing of a struct declaration (because
3084    // the #pragma tokens are effectively skipped over during the
3085    // parsing of the struct).
3086    if (unsigned Alignment = PackContext.getAlignment())
3087      New->addAttr(new PackedAttr(Alignment * 8));
3088  }
3089
3090  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3091    // C++ [dcl.typedef]p3:
3092    //   [...] Similarly, in a given scope, a class or enumeration
3093    //   shall not be declared with the same name as a typedef-name
3094    //   that is declared in that scope and refers to a type other
3095    //   than the class or enumeration itself.
3096    LookupResult Lookup = LookupName(S, Name,
3097                                     LookupCriteria(LookupCriteria::Ordinary,
3098                                                    true, true));
3099    TypedefDecl *PrevTypedef = 0;
3100    if (Lookup.getKind() == LookupResult::Found)
3101      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3102
3103    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3104        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3105          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3106      Diag(Loc, diag::err_tag_definition_of_typedef)
3107        << Context.getTypeDeclType(New)
3108        << PrevTypedef->getUnderlyingType();
3109      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3110      Invalid = true;
3111    }
3112  }
3113
3114  if (Invalid)
3115    New->setInvalidDecl();
3116
3117  if (Attr)
3118    ProcessDeclAttributeList(New, Attr);
3119
3120  // If we're declaring or defining a tag in function prototype scope
3121  // in C, note that this type can only be used within the function.
3122  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3123    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3124
3125  // Set the lexical context. If the tag has a C++ scope specifier, the
3126  // lexical context will be different from the semantic context.
3127  New->setLexicalDeclContext(LexicalContext);
3128
3129  if (TK == TK_Definition)
3130    New->startDefinition();
3131
3132  // If this has an identifier, add it to the scope stack.
3133  if (Name) {
3134    S = getNonFieldDeclScope(S);
3135
3136    // Add it to the decl chain.
3137    if (LexicalContext != CurContext) {
3138      // FIXME: PushOnScopeChains should not rely on CurContext!
3139      DeclContext *OldContext = CurContext;
3140      CurContext = LexicalContext;
3141      PushOnScopeChains(New, S);
3142      CurContext = OldContext;
3143    } else
3144      PushOnScopeChains(New, S);
3145  } else {
3146    LexicalContext->addDecl(New);
3147  }
3148
3149  return New;
3150}
3151
3152void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3153  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3154
3155  // Enter the tag context.
3156  PushDeclContext(S, Tag);
3157
3158  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3159    FieldCollector->StartClass();
3160
3161    if (Record->getIdentifier()) {
3162      // C++ [class]p2:
3163      //   [...] The class-name is also inserted into the scope of the
3164      //   class itself; this is known as the injected-class-name. For
3165      //   purposes of access checking, the injected-class-name is treated
3166      //   as if it were a public member name.
3167      RecordDecl *InjectedClassName
3168        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3169                                CurContext, Record->getLocation(),
3170                                Record->getIdentifier(), Record);
3171      InjectedClassName->setImplicit();
3172      PushOnScopeChains(InjectedClassName, S);
3173    }
3174  }
3175}
3176
3177void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3178  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3179
3180  if (isa<CXXRecordDecl>(Tag))
3181    FieldCollector->FinishClass();
3182
3183  // Exit this scope of this tag's definition.
3184  PopDeclContext();
3185
3186  // Notify the consumer that we've defined a tag.
3187  Consumer.HandleTagDeclDefinition(Tag);
3188}
3189
3190/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3191/// types into constant array types in certain situations which would otherwise
3192/// be errors (for GCC compatibility).
3193static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3194                                                    ASTContext &Context) {
3195  // This method tries to turn a variable array into a constant
3196  // array even when the size isn't an ICE.  This is necessary
3197  // for compatibility with code that depends on gcc's buggy
3198  // constant expression folding, like struct {char x[(int)(char*)2];}
3199  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3200  if (!VLATy) return QualType();
3201
3202  Expr::EvalResult EvalResult;
3203  if (!VLATy->getSizeExpr() ||
3204      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3205    return QualType();
3206
3207  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3208  llvm::APSInt &Res = EvalResult.Val.getInt();
3209  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3210    return Context.getConstantArrayType(VLATy->getElementType(),
3211                                        Res, ArrayType::Normal, 0);
3212  return QualType();
3213}
3214
3215bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3216                          QualType FieldTy, const Expr *BitWidth) {
3217  // FIXME: 6.7.2.1p4 - verify the field type.
3218
3219  llvm::APSInt Value;
3220  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3221    return true;
3222
3223  // Zero-width bitfield is ok for anonymous field.
3224  if (Value == 0 && FieldName)
3225    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3226
3227  if (Value.isNegative())
3228    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3229
3230  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3231  // FIXME: We won't need the 0 size once we check that the field type is valid.
3232  if (TypeSize && Value.getZExtValue() > TypeSize)
3233    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3234       << FieldName << (unsigned)TypeSize;
3235
3236  return false;
3237}
3238
3239/// ActOnField - Each field of a struct/union/class is passed into this in order
3240/// to create a FieldDecl object for it.
3241Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3242                               SourceLocation DeclStart,
3243                               Declarator &D, ExprTy *BitfieldWidth) {
3244  IdentifierInfo *II = D.getIdentifier();
3245  Expr *BitWidth = (Expr*)BitfieldWidth;
3246  SourceLocation Loc = DeclStart;
3247  RecordDecl *Record = (RecordDecl *)TagD;
3248  if (II) Loc = D.getIdentifierLoc();
3249
3250  // FIXME: Unnamed fields can be handled in various different ways, for
3251  // example, unnamed unions inject all members into the struct namespace!
3252
3253  QualType T = GetTypeForDeclarator(D, S);
3254  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3255  bool InvalidDecl = false;
3256
3257  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3258  // than a variably modified type.
3259  if (T->isVariablyModifiedType()) {
3260    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3261    if (!FixedTy.isNull()) {
3262      Diag(Loc, diag::warn_illegal_constant_array_size);
3263      T = FixedTy;
3264    } else {
3265      Diag(Loc, diag::err_typecheck_field_variable_size);
3266      T = Context.IntTy;
3267      InvalidDecl = true;
3268    }
3269  }
3270
3271  if (BitWidth) {
3272    if (VerifyBitField(Loc, II, T, BitWidth))
3273      InvalidDecl = true;
3274  } else {
3275    // Not a bitfield.
3276
3277    // validate II.
3278
3279  }
3280
3281  // FIXME: Chain fielddecls together.
3282  FieldDecl *NewFD;
3283
3284  NewFD = FieldDecl::Create(Context, Record,
3285                            Loc, II, T, BitWidth,
3286                            D.getDeclSpec().getStorageClassSpec() ==
3287                              DeclSpec::SCS_mutable);
3288
3289  if (II) {
3290    Decl *PrevDecl
3291      = LookupDeclInScope(II, Decl::IDNS_Member, S, false);
3292    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3293        && !isa<TagDecl>(PrevDecl)) {
3294      Diag(Loc, diag::err_duplicate_member) << II;
3295      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3296      NewFD->setInvalidDecl();
3297      Record->setInvalidDecl();
3298    }
3299  }
3300
3301  if (getLangOptions().CPlusPlus) {
3302    CheckExtraCXXDefaultArguments(D);
3303    if (!T->isPODType())
3304      cast<CXXRecordDecl>(Record)->setPOD(false);
3305  }
3306
3307  ProcessDeclAttributes(NewFD, D);
3308
3309  if (D.getInvalidType() || InvalidDecl)
3310    NewFD->setInvalidDecl();
3311
3312  if (II) {
3313    PushOnScopeChains(NewFD, S);
3314  } else
3315    Record->addDecl(NewFD);
3316
3317  return NewFD;
3318}
3319
3320/// TranslateIvarVisibility - Translate visibility from a token ID to an
3321///  AST enum value.
3322static ObjCIvarDecl::AccessControl
3323TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3324  switch (ivarVisibility) {
3325  default: assert(0 && "Unknown visitibility kind");
3326  case tok::objc_private: return ObjCIvarDecl::Private;
3327  case tok::objc_public: return ObjCIvarDecl::Public;
3328  case tok::objc_protected: return ObjCIvarDecl::Protected;
3329  case tok::objc_package: return ObjCIvarDecl::Package;
3330  }
3331}
3332
3333/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3334/// in order to create an IvarDecl object for it.
3335Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3336                              SourceLocation DeclStart,
3337                              Declarator &D, ExprTy *BitfieldWidth,
3338                              tok::ObjCKeywordKind Visibility) {
3339
3340  IdentifierInfo *II = D.getIdentifier();
3341  Expr *BitWidth = (Expr*)BitfieldWidth;
3342  SourceLocation Loc = DeclStart;
3343  if (II) Loc = D.getIdentifierLoc();
3344
3345  // FIXME: Unnamed fields can be handled in various different ways, for
3346  // example, unnamed unions inject all members into the struct namespace!
3347
3348  QualType T = GetTypeForDeclarator(D, S);
3349  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3350  bool InvalidDecl = false;
3351
3352  if (BitWidth) {
3353    // TODO: Validate.
3354    //printf("WARNING: BITFIELDS IGNORED!\n");
3355
3356    // 6.7.2.1p3
3357    // 6.7.2.1p4
3358
3359  } else {
3360    // Not a bitfield.
3361
3362    // validate II.
3363
3364  }
3365
3366  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3367  // than a variably modified type.
3368  if (T->isVariablyModifiedType()) {
3369    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3370    InvalidDecl = true;
3371  }
3372
3373  // Get the visibility (access control) for this ivar.
3374  ObjCIvarDecl::AccessControl ac =
3375    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3376                                        : ObjCIvarDecl::None;
3377
3378  // Construct the decl.
3379  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3380                                             (Expr *)BitfieldWidth);
3381
3382  if (II) {
3383    Decl *PrevDecl = LookupDeclInScope(II, Decl::IDNS_Member, S, false);
3384    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3385        && !isa<TagDecl>(PrevDecl)) {
3386      Diag(Loc, diag::err_duplicate_member) << II;
3387      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3388      NewID->setInvalidDecl();
3389    }
3390  }
3391
3392  // Process attributes attached to the ivar.
3393  ProcessDeclAttributes(NewID, D);
3394
3395  if (D.getInvalidType() || InvalidDecl)
3396    NewID->setInvalidDecl();
3397
3398  if (II) {
3399    // FIXME: When interfaces are DeclContexts, we'll need to add
3400    // these to the interface.
3401    S->AddDecl(NewID);
3402    IdResolver.AddDecl(NewID);
3403  }
3404
3405  return NewID;
3406}
3407
3408void Sema::ActOnFields(Scope* S,
3409                       SourceLocation RecLoc, DeclTy *RecDecl,
3410                       DeclTy **Fields, unsigned NumFields,
3411                       SourceLocation LBrac, SourceLocation RBrac,
3412                       AttributeList *Attr) {
3413  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3414  assert(EnclosingDecl && "missing record or interface decl");
3415  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3416
3417  // Verify that all the fields are okay.
3418  unsigned NumNamedMembers = 0;
3419  llvm::SmallVector<FieldDecl*, 32> RecFields;
3420
3421  for (unsigned i = 0; i != NumFields; ++i) {
3422    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3423    assert(FD && "missing field decl");
3424
3425    // Get the type for the field.
3426    Type *FDTy = FD->getType().getTypePtr();
3427
3428    if (!FD->isAnonymousStructOrUnion()) {
3429      // Remember all fields written by the user.
3430      RecFields.push_back(FD);
3431    }
3432
3433    // C99 6.7.2.1p2 - A field may not be a function type.
3434    if (FDTy->isFunctionType()) {
3435      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3436        << FD->getDeclName();
3437      FD->setInvalidDecl();
3438      EnclosingDecl->setInvalidDecl();
3439      continue;
3440    }
3441    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3442    if (FDTy->isIncompleteType()) {
3443      if (!Record) {  // Incomplete ivar type is always an error.
3444        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3445                               diag::err_field_incomplete);
3446        FD->setInvalidDecl();
3447        EnclosingDecl->setInvalidDecl();
3448        continue;
3449      }
3450      if (i != NumFields-1 ||                   // ... that the last member ...
3451          !Record->isStruct() ||  // ... of a structure ...
3452          !FDTy->isArrayType()) {         //... may have incomplete array type.
3453        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3454                               diag::err_field_incomplete);
3455        FD->setInvalidDecl();
3456        EnclosingDecl->setInvalidDecl();
3457        continue;
3458      }
3459      if (NumNamedMembers < 1) {  //... must have more than named member ...
3460        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3461          << FD->getDeclName();
3462        FD->setInvalidDecl();
3463        EnclosingDecl->setInvalidDecl();
3464        continue;
3465      }
3466      // Okay, we have a legal flexible array member at the end of the struct.
3467      if (Record)
3468        Record->setHasFlexibleArrayMember(true);
3469    }
3470    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3471    /// field of another structure or the element of an array.
3472    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3473      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3474        // If this is a member of a union, then entire union becomes "flexible".
3475        if (Record && Record->isUnion()) {
3476          Record->setHasFlexibleArrayMember(true);
3477        } else {
3478          // If this is a struct/class and this is not the last element, reject
3479          // it.  Note that GCC supports variable sized arrays in the middle of
3480          // structures.
3481          if (i != NumFields-1) {
3482            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3483              << FD->getDeclName();
3484            FD->setInvalidDecl();
3485            EnclosingDecl->setInvalidDecl();
3486            continue;
3487          }
3488          // We support flexible arrays at the end of structs in other structs
3489          // as an extension.
3490          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3491            << FD->getDeclName();
3492          if (Record)
3493            Record->setHasFlexibleArrayMember(true);
3494        }
3495      }
3496    }
3497    /// A field cannot be an Objective-c object
3498    if (FDTy->isObjCInterfaceType()) {
3499      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3500        << FD->getDeclName();
3501      FD->setInvalidDecl();
3502      EnclosingDecl->setInvalidDecl();
3503      continue;
3504    }
3505    // Keep track of the number of named members.
3506    if (FD->getIdentifier())
3507      ++NumNamedMembers;
3508  }
3509
3510  // Okay, we successfully defined 'Record'.
3511  if (Record) {
3512    Record->completeDefinition(Context);
3513  } else {
3514    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3515    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3516      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3517      // Must enforce the rule that ivars in the base classes may not be
3518      // duplicates.
3519      if (ID->getSuperClass()) {
3520        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3521             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3522          ObjCIvarDecl* Ivar = (*IVI);
3523          IdentifierInfo *II = Ivar->getIdentifier();
3524          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3525          if (prevIvar) {
3526            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3527            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3528          }
3529        }
3530      }
3531    }
3532    else if (ObjCImplementationDecl *IMPDecl =
3533               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3534      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3535      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3536      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3537    }
3538  }
3539
3540  if (Attr)
3541    ProcessDeclAttributeList(Record, Attr);
3542}
3543
3544Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3545                                      DeclTy *lastEnumConst,
3546                                      SourceLocation IdLoc, IdentifierInfo *Id,
3547                                      SourceLocation EqualLoc, ExprTy *val) {
3548  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3549  EnumConstantDecl *LastEnumConst =
3550    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3551  Expr *Val = static_cast<Expr*>(val);
3552
3553  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3554  // we find one that is.
3555  S = getNonFieldDeclScope(S);
3556
3557  // Verify that there isn't already something declared with this name in this
3558  // scope.
3559  Decl *PrevDecl = LookupDeclInScope(Id, Decl::IDNS_Ordinary, S);
3560  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3561    // Maybe we will complain about the shadowed template parameter.
3562    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3563    // Just pretend that we didn't see the previous declaration.
3564    PrevDecl = 0;
3565  }
3566
3567  if (PrevDecl) {
3568    // When in C++, we may get a TagDecl with the same name; in this case the
3569    // enum constant will 'hide' the tag.
3570    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3571           "Received TagDecl when not in C++!");
3572    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3573      if (isa<EnumConstantDecl>(PrevDecl))
3574        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3575      else
3576        Diag(IdLoc, diag::err_redefinition) << Id;
3577      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3578      delete Val;
3579      return 0;
3580    }
3581  }
3582
3583  llvm::APSInt EnumVal(32);
3584  QualType EltTy;
3585  if (Val) {
3586    // Make sure to promote the operand type to int.
3587    UsualUnaryConversions(Val);
3588
3589    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3590    SourceLocation ExpLoc;
3591    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3592      delete Val;
3593      Val = 0;  // Just forget about it.
3594    } else {
3595      EltTy = Val->getType();
3596    }
3597  }
3598
3599  if (!Val) {
3600    if (LastEnumConst) {
3601      // Assign the last value + 1.
3602      EnumVal = LastEnumConst->getInitVal();
3603      ++EnumVal;
3604
3605      // Check for overflow on increment.
3606      if (EnumVal < LastEnumConst->getInitVal())
3607        Diag(IdLoc, diag::warn_enum_value_overflow);
3608
3609      EltTy = LastEnumConst->getType();
3610    } else {
3611      // First value, set to zero.
3612      EltTy = Context.IntTy;
3613      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3614    }
3615  }
3616
3617  EnumConstantDecl *New =
3618    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3619                             Val, EnumVal);
3620
3621  // Register this decl in the current scope stack.
3622  PushOnScopeChains(New, S);
3623
3624  return New;
3625}
3626
3627// FIXME: For consistency with ActOnFields(), we should have the parser
3628// pass in the source location for the left/right braces.
3629void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3630                         DeclTy **Elements, unsigned NumElements) {
3631  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3632  QualType EnumType = Context.getTypeDeclType(Enum);
3633
3634  // TODO: If the result value doesn't fit in an int, it must be a long or long
3635  // long value.  ISO C does not support this, but GCC does as an extension,
3636  // emit a warning.
3637  unsigned IntWidth = Context.Target.getIntWidth();
3638
3639  // Verify that all the values are okay, compute the size of the values, and
3640  // reverse the list.
3641  unsigned NumNegativeBits = 0;
3642  unsigned NumPositiveBits = 0;
3643
3644  // Keep track of whether all elements have type int.
3645  bool AllElementsInt = true;
3646
3647  for (unsigned i = 0; i != NumElements; ++i) {
3648    EnumConstantDecl *ECD =
3649      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3650    if (!ECD) continue;  // Already issued a diagnostic.
3651
3652    // If the enum value doesn't fit in an int, emit an extension warning.
3653    const llvm::APSInt &InitVal = ECD->getInitVal();
3654    assert(InitVal.getBitWidth() >= IntWidth &&
3655           "Should have promoted value to int");
3656    if (InitVal.getBitWidth() > IntWidth) {
3657      llvm::APSInt V(InitVal);
3658      V.trunc(IntWidth);
3659      V.extend(InitVal.getBitWidth());
3660      if (V != InitVal)
3661        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3662          << InitVal.toString(10);
3663    }
3664
3665    // Keep track of the size of positive and negative values.
3666    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3667      NumPositiveBits = std::max(NumPositiveBits,
3668                                 (unsigned)InitVal.getActiveBits());
3669    else
3670      NumNegativeBits = std::max(NumNegativeBits,
3671                                 (unsigned)InitVal.getMinSignedBits());
3672
3673    // Keep track of whether every enum element has type int (very commmon).
3674    if (AllElementsInt)
3675      AllElementsInt = ECD->getType() == Context.IntTy;
3676  }
3677
3678  // Figure out the type that should be used for this enum.
3679  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3680  QualType BestType;
3681  unsigned BestWidth;
3682
3683  if (NumNegativeBits) {
3684    // If there is a negative value, figure out the smallest integer type (of
3685    // int/long/longlong) that fits.
3686    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3687      BestType = Context.IntTy;
3688      BestWidth = IntWidth;
3689    } else {
3690      BestWidth = Context.Target.getLongWidth();
3691
3692      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3693        BestType = Context.LongTy;
3694      else {
3695        BestWidth = Context.Target.getLongLongWidth();
3696
3697        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3698          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3699        BestType = Context.LongLongTy;
3700      }
3701    }
3702  } else {
3703    // If there is no negative value, figure out which of uint, ulong, ulonglong
3704    // fits.
3705    if (NumPositiveBits <= IntWidth) {
3706      BestType = Context.UnsignedIntTy;
3707      BestWidth = IntWidth;
3708    } else if (NumPositiveBits <=
3709               (BestWidth = Context.Target.getLongWidth())) {
3710      BestType = Context.UnsignedLongTy;
3711    } else {
3712      BestWidth = Context.Target.getLongLongWidth();
3713      assert(NumPositiveBits <= BestWidth &&
3714             "How could an initializer get larger than ULL?");
3715      BestType = Context.UnsignedLongLongTy;
3716    }
3717  }
3718
3719  // Loop over all of the enumerator constants, changing their types to match
3720  // the type of the enum if needed.
3721  for (unsigned i = 0; i != NumElements; ++i) {
3722    EnumConstantDecl *ECD =
3723      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3724    if (!ECD) continue;  // Already issued a diagnostic.
3725
3726    // Standard C says the enumerators have int type, but we allow, as an
3727    // extension, the enumerators to be larger than int size.  If each
3728    // enumerator value fits in an int, type it as an int, otherwise type it the
3729    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3730    // that X has type 'int', not 'unsigned'.
3731    if (ECD->getType() == Context.IntTy) {
3732      // Make sure the init value is signed.
3733      llvm::APSInt IV = ECD->getInitVal();
3734      IV.setIsSigned(true);
3735      ECD->setInitVal(IV);
3736
3737      if (getLangOptions().CPlusPlus)
3738        // C++ [dcl.enum]p4: Following the closing brace of an
3739        // enum-specifier, each enumerator has the type of its
3740        // enumeration.
3741        ECD->setType(EnumType);
3742      continue;  // Already int type.
3743    }
3744
3745    // Determine whether the value fits into an int.
3746    llvm::APSInt InitVal = ECD->getInitVal();
3747    bool FitsInInt;
3748    if (InitVal.isUnsigned() || !InitVal.isNegative())
3749      FitsInInt = InitVal.getActiveBits() < IntWidth;
3750    else
3751      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3752
3753    // If it fits into an integer type, force it.  Otherwise force it to match
3754    // the enum decl type.
3755    QualType NewTy;
3756    unsigned NewWidth;
3757    bool NewSign;
3758    if (FitsInInt) {
3759      NewTy = Context.IntTy;
3760      NewWidth = IntWidth;
3761      NewSign = true;
3762    } else if (ECD->getType() == BestType) {
3763      // Already the right type!
3764      if (getLangOptions().CPlusPlus)
3765        // C++ [dcl.enum]p4: Following the closing brace of an
3766        // enum-specifier, each enumerator has the type of its
3767        // enumeration.
3768        ECD->setType(EnumType);
3769      continue;
3770    } else {
3771      NewTy = BestType;
3772      NewWidth = BestWidth;
3773      NewSign = BestType->isSignedIntegerType();
3774    }
3775
3776    // Adjust the APSInt value.
3777    InitVal.extOrTrunc(NewWidth);
3778    InitVal.setIsSigned(NewSign);
3779    ECD->setInitVal(InitVal);
3780
3781    // Adjust the Expr initializer and type.
3782    if (ECD->getInitExpr())
3783      ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3784                                            /*isLvalue=*/false));
3785    if (getLangOptions().CPlusPlus)
3786      // C++ [dcl.enum]p4: Following the closing brace of an
3787      // enum-specifier, each enumerator has the type of its
3788      // enumeration.
3789      ECD->setType(EnumType);
3790    else
3791      ECD->setType(NewTy);
3792  }
3793
3794  Enum->completeDefinition(Context, BestType);
3795}
3796
3797Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3798                                          ExprArg expr) {
3799  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3800
3801  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3802}
3803
3804
3805void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3806                           ExprTy *alignment, SourceLocation PragmaLoc,
3807                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3808  Expr *Alignment = static_cast<Expr *>(alignment);
3809
3810  // If specified then alignment must be a "small" power of two.
3811  unsigned AlignmentVal = 0;
3812  if (Alignment) {
3813    llvm::APSInt Val;
3814    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3815        !Val.isPowerOf2() ||
3816        Val.getZExtValue() > 16) {
3817      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3818      delete Alignment;
3819      return; // Ignore
3820    }
3821
3822    AlignmentVal = (unsigned) Val.getZExtValue();
3823  }
3824
3825  switch (Kind) {
3826  case Action::PPK_Default: // pack([n])
3827    PackContext.setAlignment(AlignmentVal);
3828    break;
3829
3830  case Action::PPK_Show: // pack(show)
3831    // Show the current alignment, making sure to show the right value
3832    // for the default.
3833    AlignmentVal = PackContext.getAlignment();
3834    // FIXME: This should come from the target.
3835    if (AlignmentVal == 0)
3836      AlignmentVal = 8;
3837    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3838    break;
3839
3840  case Action::PPK_Push: // pack(push [, id] [, [n])
3841    PackContext.push(Name);
3842    // Set the new alignment if specified.
3843    if (Alignment)
3844      PackContext.setAlignment(AlignmentVal);
3845    break;
3846
3847  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3848    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3849    // "#pragma pack(pop, identifier, n) is undefined"
3850    if (Alignment && Name)
3851      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3852
3853    // Do the pop.
3854    if (!PackContext.pop(Name)) {
3855      // If a name was specified then failure indicates the name
3856      // wasn't found. Otherwise failure indicates the stack was
3857      // empty.
3858      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3859        << (Name ? "no record matching name" : "stack empty");
3860
3861      // FIXME: Warn about popping named records as MSVC does.
3862    } else {
3863      // Pop succeeded, set the new alignment if specified.
3864      if (Alignment)
3865        PackContext.setAlignment(AlignmentVal);
3866    }
3867    break;
3868
3869  default:
3870    assert(0 && "Invalid #pragma pack kind.");
3871  }
3872}
3873
3874bool PragmaPackStack::pop(IdentifierInfo *Name) {
3875  if (Stack.empty())
3876    return false;
3877
3878  // If name is empty just pop top.
3879  if (!Name) {
3880    Alignment = Stack.back().first;
3881    Stack.pop_back();
3882    return true;
3883  }
3884
3885  // Otherwise, find the named record.
3886  for (unsigned i = Stack.size(); i != 0; ) {
3887    --i;
3888    if (Stack[i].second == Name) {
3889      // Found it, pop up to and including this record.
3890      Alignment = Stack[i].first;
3891      Stack.erase(Stack.begin() + i, Stack.end());
3892      return true;
3893    }
3894  }
3895
3896  return false;
3897}
3898