SemaDecl.cpp revision c5c903acd805581dc7ef881f7cb8df38afca4468
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/SourceManager.h"
26// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Lex/HeaderSearch.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32#include <functional>
33using namespace clang;
34
35/// getDeclName - Return a pretty name for the specified decl if possible, or
36/// an empty string if not.  This is used for pretty crash reporting.
37std::string Sema::getDeclName(DeclPtrTy d) {
38  Decl *D = d.getAs<Decl>();
39  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
40    return DN->getQualifiedNameAsString();
41  return "";
42}
43
44Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
45  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
46}
47
48/// \brief If the identifier refers to a type name within this scope,
49/// return the declaration of that type.
50///
51/// This routine performs ordinary name lookup of the identifier II
52/// within the given scope, with optional C++ scope specifier SS, to
53/// determine whether the name refers to a type. If so, returns an
54/// opaque pointer (actually a QualType) corresponding to that
55/// type. Otherwise, returns NULL.
56///
57/// If name lookup results in an ambiguity, this routine will complain
58/// and then return NULL.
59Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
60                                Scope *S, const CXXScopeSpec *SS) {
61  // C++ [temp.res]p3:
62  //   A qualified-id that refers to a type and in which the
63  //   nested-name-specifier depends on a template-parameter (14.6.2)
64  //   shall be prefixed by the keyword typename to indicate that the
65  //   qualified-id denotes a type, forming an
66  //   elaborated-type-specifier (7.1.5.3).
67  //
68  // We therefore do not perform any name lookup if the result would
69  // refer to a member of an unknown specialization.
70  if (SS && isUnknownSpecialization(*SS))
71    return 0;
72
73  LookupResult Result
74    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
75
76  NamedDecl *IIDecl = 0;
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      if (getLangOptions().CPlusPlus) {
128        // C++ [temp.local]p2:
129        //   Within the scope of a class template specialization or
130        //   partial specialization, when the injected-class-name is
131        //   not followed by a <, it is equivalent to the
132        //   injected-class-name followed by the template-argument s
133        //   of the class template specialization or partial
134        //   specialization enclosed in <>.
135        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
136          if (RD->isInjectedClassName())
137            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
138              T = Template->getInjectedClassNameType(Context);
139      }
140
141      if (T.isNull())
142        T = Context.getTypeDeclType(TD);
143    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
144      // Check whether we can use this interface.
145      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147      T = Context.getObjCInterfaceType(IDecl);
148    } else
149      return 0;
150
151    if (SS)
152      T = getQualifiedNameType(*SS, T);
153
154    return T.getAsOpaquePtr();
155  }
156
157  return 0;
158}
159
160/// isTagName() - This method is called *for error recovery purposes only*
161/// to determine if the specified name is a valid tag name ("struct foo").  If
162/// so, this returns the TST for the tag corresponding to it (TST_enum,
163/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
164/// where the user forgot to specify the tag.
165DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
166  // Do a tag name lookup in this scope.
167  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
168  if (R.getKind() == LookupResult::Found)
169    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
170      switch (TD->getTagKind()) {
171      case TagDecl::TK_struct: return DeclSpec::TST_struct;
172      case TagDecl::TK_union:  return DeclSpec::TST_union;
173      case TagDecl::TK_class:  return DeclSpec::TST_class;
174      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
175      }
176    }
177
178  return DeclSpec::TST_unspecified;
179}
180
181
182
183DeclContext *Sema::getContainingDC(DeclContext *DC) {
184  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
185    // A C++ out-of-line method will return to the file declaration context.
186    if (MD->isOutOfLine())
187      return MD->getLexicalDeclContext();
188
189    // A C++ inline method is parsed *after* the topmost class it was declared
190    // in is fully parsed (it's "complete").
191    // The parsing of a C++ inline method happens at the declaration context of
192    // the topmost (non-nested) class it is lexically declared in.
193    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
194    DC = MD->getParent();
195    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
196      DC = RD;
197
198    // Return the declaration context of the topmost class the inline method is
199    // declared in.
200    return DC;
201  }
202
203  if (isa<ObjCMethodDecl>(DC))
204    return Context.getTranslationUnitDecl();
205
206  return DC->getLexicalParent();
207}
208
209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
210  assert(getContainingDC(DC) == CurContext &&
211      "The next DeclContext should be lexically contained in the current one.");
212  CurContext = DC;
213  S->setEntity(DC);
214}
215
216void Sema::PopDeclContext() {
217  assert(CurContext && "DeclContext imbalance!");
218
219  CurContext = getContainingDC(CurContext);
220}
221
222/// EnterDeclaratorContext - Used when we must lookup names in the context
223/// of a declarator's nested name specifier.
224void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
225  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
226  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
227  CurContext = DC;
228  assert(CurContext && "No context?");
229  S->setEntity(CurContext);
230}
231
232void Sema::ExitDeclaratorContext(Scope *S) {
233  S->setEntity(PreDeclaratorDC);
234  PreDeclaratorDC = 0;
235
236  // Reset CurContext to the nearest enclosing context.
237  while (!S->getEntity() && S->getParent())
238    S = S->getParent();
239  CurContext = static_cast<DeclContext*>(S->getEntity());
240  assert(CurContext && "No context?");
241}
242
243/// \brief Determine whether we allow overloading of the function
244/// PrevDecl with another declaration.
245///
246/// This routine determines whether overloading is possible, not
247/// whether some new function is actually an overload. It will return
248/// true in C++ (where we can always provide overloads) or, as an
249/// extension, in C when the previous function is already an
250/// overloaded function declaration or has the "overloadable"
251/// attribute.
252static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
253  if (Context.getLangOptions().CPlusPlus)
254    return true;
255
256  if (isa<OverloadedFunctionDecl>(PrevDecl))
257    return true;
258
259  return PrevDecl->getAttr<OverloadableAttr>(Context) != 0;
260}
261
262/// Add this decl to the scope shadowed decl chains.
263void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
264  // Move up the scope chain until we find the nearest enclosing
265  // non-transparent context. The declaration will be introduced into this
266  // scope.
267  while (S->getEntity() &&
268         ((DeclContext *)S->getEntity())->isTransparentContext())
269    S = S->getParent();
270
271  S->AddDecl(DeclPtrTy::make(D));
272
273  // Add scoped declarations into their context, so that they can be
274  // found later. Declarations without a context won't be inserted
275  // into any context.
276  CurContext->addDecl(Context, D);
277
278  // C++ [basic.scope]p4:
279  //   -- exactly one declaration shall declare a class name or
280  //   enumeration name that is not a typedef name and the other
281  //   declarations shall all refer to the same object or
282  //   enumerator, or all refer to functions and function templates;
283  //   in this case the class name or enumeration name is hidden.
284  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
285    // We are pushing the name of a tag (enum or class).
286    if (CurContext->getLookupContext()
287          == TD->getDeclContext()->getLookupContext()) {
288      // We're pushing the tag into the current context, which might
289      // require some reshuffling in the identifier resolver.
290      IdentifierResolver::iterator
291        I = IdResolver.begin(TD->getDeclName()),
292        IEnd = IdResolver.end();
293      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
294        NamedDecl *PrevDecl = *I;
295        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
296             PrevDecl = *I, ++I) {
297          if (TD->declarationReplaces(*I)) {
298            // This is a redeclaration. Remove it from the chain and
299            // break out, so that we'll add in the shadowed
300            // declaration.
301            S->RemoveDecl(DeclPtrTy::make(*I));
302            if (PrevDecl == *I) {
303              IdResolver.RemoveDecl(*I);
304              IdResolver.AddDecl(TD);
305              return;
306            } else {
307              IdResolver.RemoveDecl(*I);
308              break;
309            }
310          }
311        }
312
313        // There is already a declaration with the same name in the same
314        // scope, which is not a tag declaration. It must be found
315        // before we find the new declaration, so insert the new
316        // declaration at the end of the chain.
317        IdResolver.AddShadowedDecl(TD, PrevDecl);
318
319        return;
320      }
321    }
322  } else if (isa<FunctionDecl>(D) &&
323             AllowOverloadingOfFunction(D, Context)) {
324    // We are pushing the name of a function, which might be an
325    // overloaded name.
326    FunctionDecl *FD = cast<FunctionDecl>(D);
327    IdentifierResolver::iterator Redecl
328      = std::find_if(IdResolver.begin(FD->getDeclName()),
329                     IdResolver.end(),
330                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
331                                  FD));
332    if (Redecl != IdResolver.end() &&
333        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
334      // There is already a declaration of a function on our
335      // IdResolver chain. Replace it with this declaration.
336      S->RemoveDecl(DeclPtrTy::make(*Redecl));
337      IdResolver.RemoveDecl(*Redecl);
338    }
339  } else if (isa<ObjCInterfaceDecl>(D)) {
340    // We're pushing an Objective-C interface into the current
341    // context. If there is already an alias declaration, remove it first.
342    for (IdentifierResolver::iterator
343           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
344         I != IEnd; ++I) {
345      if (isa<ObjCCompatibleAliasDecl>(*I)) {
346        S->RemoveDecl(DeclPtrTy::make(*I));
347        IdResolver.RemoveDecl(*I);
348        break;
349      }
350    }
351  }
352
353  IdResolver.AddDecl(D);
354}
355
356void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
357  if (S->decl_empty()) return;
358  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
359	 "Scope shouldn't contain decls!");
360
361  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
362       I != E; ++I) {
363    Decl *TmpD = (*I).getAs<Decl>();
364    assert(TmpD && "This decl didn't get pushed??");
365
366    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
367    NamedDecl *D = cast<NamedDecl>(TmpD);
368
369    if (!D->getDeclName()) continue;
370
371    // Remove this name from our lexical scope.
372    IdResolver.RemoveDecl(D);
373  }
374}
375
376/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
377/// return 0 if one not found.
378ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
379  // The third "scope" argument is 0 since we aren't enabling lazy built-in
380  // creation from this context.
381  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
382
383  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
384}
385
386/// getNonFieldDeclScope - Retrieves the innermost scope, starting
387/// from S, where a non-field would be declared. This routine copes
388/// with the difference between C and C++ scoping rules in structs and
389/// unions. For example, the following code is well-formed in C but
390/// ill-formed in C++:
391/// @code
392/// struct S6 {
393///   enum { BAR } e;
394/// };
395///
396/// void test_S6() {
397///   struct S6 a;
398///   a.e = BAR;
399/// }
400/// @endcode
401/// For the declaration of BAR, this routine will return a different
402/// scope. The scope S will be the scope of the unnamed enumeration
403/// within S6. In C++, this routine will return the scope associated
404/// with S6, because the enumeration's scope is a transparent
405/// context but structures can contain non-field names. In C, this
406/// routine will return the translation unit scope, since the
407/// enumeration's scope is a transparent context and structures cannot
408/// contain non-field names.
409Scope *Sema::getNonFieldDeclScope(Scope *S) {
410  while (((S->getFlags() & Scope::DeclScope) == 0) ||
411         (S->getEntity() &&
412          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
413         (S->isClassScope() && !getLangOptions().CPlusPlus))
414    S = S->getParent();
415  return S;
416}
417
418void Sema::InitBuiltinVaListType() {
419  if (!Context.getBuiltinVaListType().isNull())
420    return;
421
422  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
423  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
424  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
425  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
426}
427
428/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
429/// file scope.  lazily create a decl for it. ForRedeclaration is true
430/// if we're creating this built-in in anticipation of redeclaring the
431/// built-in.
432NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
433                                     Scope *S, bool ForRedeclaration,
434                                     SourceLocation Loc) {
435  Builtin::ID BID = (Builtin::ID)bid;
436
437  if (Context.BuiltinInfo.hasVAListUse(BID))
438    InitBuiltinVaListType();
439
440  ASTContext::GetBuiltinTypeError Error;
441  QualType R = Context.GetBuiltinType(BID, Error);
442  switch (Error) {
443  case ASTContext::GE_None:
444    // Okay
445    break;
446
447  case ASTContext::GE_Missing_FILE:
448    if (ForRedeclaration)
449      Diag(Loc, diag::err_implicit_decl_requires_stdio)
450        << Context.BuiltinInfo.GetName(BID);
451    return 0;
452  }
453
454  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
455    Diag(Loc, diag::ext_implicit_lib_function_decl)
456      << Context.BuiltinInfo.GetName(BID)
457      << R;
458    if (Context.BuiltinInfo.getHeaderName(BID) &&
459        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
460          != Diagnostic::Ignored)
461      Diag(Loc, diag::note_please_include_header)
462        << Context.BuiltinInfo.getHeaderName(BID)
463        << Context.BuiltinInfo.GetName(BID);
464  }
465
466  FunctionDecl *New = FunctionDecl::Create(Context,
467                                           Context.getTranslationUnitDecl(),
468                                           Loc, II, R,
469                                           FunctionDecl::Extern, false,
470                                           /*hasPrototype=*/true);
471  New->setImplicit();
472
473  // Create Decl objects for each parameter, adding them to the
474  // FunctionDecl.
475  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
476    llvm::SmallVector<ParmVarDecl*, 16> Params;
477    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
478      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
479                                           FT->getArgType(i), VarDecl::None, 0));
480    New->setParams(Context, Params.data(), Params.size());
481  }
482
483  AddKnownFunctionAttributes(New);
484
485  // TUScope is the translation-unit scope to insert this function into.
486  // FIXME: This is hideous. We need to teach PushOnScopeChains to
487  // relate Scopes to DeclContexts, and probably eliminate CurContext
488  // entirely, but we're not there yet.
489  DeclContext *SavedContext = CurContext;
490  CurContext = Context.getTranslationUnitDecl();
491  PushOnScopeChains(New, TUScope);
492  CurContext = SavedContext;
493  return New;
494}
495
496/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
497/// everything from the standard library is defined.
498NamespaceDecl *Sema::GetStdNamespace() {
499  if (!StdNamespace) {
500    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
501    DeclContext *Global = Context.getTranslationUnitDecl();
502    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
503    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
504  }
505  return StdNamespace;
506}
507
508/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
509/// same name and scope as a previous declaration 'Old'.  Figure out
510/// how to resolve this situation, merging decls or emitting
511/// diagnostics as appropriate. If there was an error, set New to be invalid.
512///
513void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
514  // If either decl is known invalid already, set the new one to be invalid and
515  // don't bother doing any merging checks.
516  if (New->isInvalidDecl() || OldD->isInvalidDecl())
517    return New->setInvalidDecl();
518
519  bool objc_types = false;
520
521  // Allow multiple definitions for ObjC built-in typedefs.
522  // FIXME: Verify the underlying types are equivalent!
523  if (getLangOptions().ObjC1) {
524    const IdentifierInfo *TypeID = New->getIdentifier();
525    switch (TypeID->getLength()) {
526    default: break;
527    case 2:
528      if (!TypeID->isStr("id"))
529        break;
530      Context.setObjCIdType(Context.getTypeDeclType(New));
531      objc_types = true;
532      break;
533    case 5:
534      if (!TypeID->isStr("Class"))
535        break;
536      Context.setObjCClassType(Context.getTypeDeclType(New));
537      return;
538    case 3:
539      if (!TypeID->isStr("SEL"))
540        break;
541      Context.setObjCSelType(Context.getTypeDeclType(New));
542      return;
543    case 8:
544      if (!TypeID->isStr("Protocol"))
545        break;
546      Context.setObjCProtoType(New->getUnderlyingType());
547      return;
548    }
549    // Fall through - the typedef name was not a builtin type.
550  }
551  // Verify the old decl was also a type.
552  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
553  if (!Old) {
554    Diag(New->getLocation(), diag::err_redefinition_different_kind)
555      << New->getDeclName();
556    if (OldD->getLocation().isValid())
557      Diag(OldD->getLocation(), diag::note_previous_definition);
558    return New->setInvalidDecl();
559  }
560
561  // Determine the "old" type we'll use for checking and diagnostics.
562  QualType OldType;
563  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
564    OldType = OldTypedef->getUnderlyingType();
565  else
566    OldType = Context.getTypeDeclType(Old);
567
568  // If the typedef types are not identical, reject them in all languages and
569  // with any extensions enabled.
570
571  if (OldType != New->getUnderlyingType() &&
572      Context.getCanonicalType(OldType) !=
573      Context.getCanonicalType(New->getUnderlyingType())) {
574    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
575      << New->getUnderlyingType() << OldType;
576    if (Old->getLocation().isValid())
577      Diag(Old->getLocation(), diag::note_previous_definition);
578    return New->setInvalidDecl();
579  }
580
581  if (objc_types || getLangOptions().Microsoft)
582    return;
583
584  // C++ [dcl.typedef]p2:
585  //   In a given non-class scope, a typedef specifier can be used to
586  //   redefine the name of any type declared in that scope to refer
587  //   to the type to which it already refers.
588  if (getLangOptions().CPlusPlus) {
589    if (!isa<CXXRecordDecl>(CurContext))
590      return;
591    Diag(New->getLocation(), diag::err_redefinition)
592      << New->getDeclName();
593    Diag(Old->getLocation(), diag::note_previous_definition);
594    return New->setInvalidDecl();
595  }
596
597  // If we have a redefinition of a typedef in C, emit a warning.  This warning
598  // is normally mapped to an error, but can be controlled with
599  // -Wtypedef-redefinition.  If either the original or the redefinition is
600  // in a system header, don't emit this for compatibility with GCC.
601  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
602      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
603       Context.getSourceManager().isInSystemHeader(New->getLocation())))
604    return;
605
606  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
607    << New->getDeclName();
608  Diag(Old->getLocation(), diag::note_previous_definition);
609  return;
610}
611
612/// DeclhasAttr - returns true if decl Declaration already has the target
613/// attribute.
614static bool
615DeclHasAttr(ASTContext &Context, const Decl *decl, const Attr *target) {
616  for (const Attr *attr = decl->getAttrs(Context); attr; attr = attr->getNext())
617    if (attr->getKind() == target->getKind())
618      return true;
619
620  return false;
621}
622
623/// MergeAttributes - append attributes from the Old decl to the New one.
624static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
625  for (const Attr *attr = Old->getAttrs(C); attr; attr = attr->getNext()) {
626    if (!DeclHasAttr(C, New, attr) && attr->isMerged()) {
627      Attr *NewAttr = attr->clone(C);
628      NewAttr->setInherited(true);
629      New->addAttr(C, NewAttr);
630    }
631  }
632}
633
634/// Used in MergeFunctionDecl to keep track of function parameters in
635/// C.
636struct GNUCompatibleParamWarning {
637  ParmVarDecl *OldParm;
638  ParmVarDecl *NewParm;
639  QualType PromotedType;
640};
641
642/// MergeFunctionDecl - We just parsed a function 'New' from
643/// declarator D which has the same name and scope as a previous
644/// declaration 'Old'.  Figure out how to resolve this situation,
645/// merging decls or emitting diagnostics as appropriate.
646///
647/// In C++, New and Old must be declarations that are not
648/// overloaded. Use IsOverload to determine whether New and Old are
649/// overloaded, and to select the Old declaration that New should be
650/// merged with.
651///
652/// Returns true if there was an error, false otherwise.
653bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
654  assert(!isa<OverloadedFunctionDecl>(OldD) &&
655         "Cannot merge with an overloaded function declaration");
656
657  // Verify the old decl was also a function.
658  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
659  if (!Old) {
660    Diag(New->getLocation(), diag::err_redefinition_different_kind)
661      << New->getDeclName();
662    Diag(OldD->getLocation(), diag::note_previous_definition);
663    return true;
664  }
665
666  // Determine whether the previous declaration was a definition,
667  // implicit declaration, or a declaration.
668  diag::kind PrevDiag;
669  if (Old->isThisDeclarationADefinition())
670    PrevDiag = diag::note_previous_definition;
671  else if (Old->isImplicit())
672    PrevDiag = diag::note_previous_implicit_declaration;
673  else
674    PrevDiag = diag::note_previous_declaration;
675
676  QualType OldQType = Context.getCanonicalType(Old->getType());
677  QualType NewQType = Context.getCanonicalType(New->getType());
678
679  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
680      New->getStorageClass() == FunctionDecl::Static &&
681      Old->getStorageClass() != FunctionDecl::Static) {
682    Diag(New->getLocation(), diag::err_static_non_static)
683      << New;
684    Diag(Old->getLocation(), PrevDiag);
685    return true;
686  }
687
688  if (getLangOptions().CPlusPlus) {
689    // (C++98 13.1p2):
690    //   Certain function declarations cannot be overloaded:
691    //     -- Function declarations that differ only in the return type
692    //        cannot be overloaded.
693    QualType OldReturnType
694      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
695    QualType NewReturnType
696      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
697    if (OldReturnType != NewReturnType) {
698      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
699      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
700      return true;
701    }
702
703    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
704    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
705    if (OldMethod && NewMethod &&
706        OldMethod->getLexicalDeclContext() ==
707          NewMethod->getLexicalDeclContext()) {
708      //    -- Member function declarations with the same name and the
709      //       same parameter types cannot be overloaded if any of them
710      //       is a static member function declaration.
711      if (OldMethod->isStatic() || NewMethod->isStatic()) {
712        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
713        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
714        return true;
715      }
716
717      // C++ [class.mem]p1:
718      //   [...] A member shall not be declared twice in the
719      //   member-specification, except that a nested class or member
720      //   class template can be declared and then later defined.
721      unsigned NewDiag;
722      if (isa<CXXConstructorDecl>(OldMethod))
723        NewDiag = diag::err_constructor_redeclared;
724      else if (isa<CXXDestructorDecl>(NewMethod))
725        NewDiag = diag::err_destructor_redeclared;
726      else if (isa<CXXConversionDecl>(NewMethod))
727        NewDiag = diag::err_conv_function_redeclared;
728      else
729        NewDiag = diag::err_member_redeclared;
730
731      Diag(New->getLocation(), NewDiag);
732      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
733    }
734
735    // (C++98 8.3.5p3):
736    //   All declarations for a function shall agree exactly in both the
737    //   return type and the parameter-type-list.
738    if (OldQType == NewQType)
739      return MergeCompatibleFunctionDecls(New, Old);
740
741    // Fall through for conflicting redeclarations and redefinitions.
742  }
743
744  // C: Function types need to be compatible, not identical. This handles
745  // duplicate function decls like "void f(int); void f(enum X);" properly.
746  if (!getLangOptions().CPlusPlus &&
747      Context.typesAreCompatible(OldQType, NewQType)) {
748    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
749    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
750    const FunctionProtoType *OldProto = 0;
751    if (isa<FunctionNoProtoType>(NewFuncType) &&
752        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
753      // The old declaration provided a function prototype, but the
754      // new declaration does not. Merge in the prototype.
755      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
756      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
757                                                 OldProto->arg_type_end());
758      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
759                                         ParamTypes.data(), ParamTypes.size(),
760                                         OldProto->isVariadic(),
761                                         OldProto->getTypeQuals());
762      New->setType(NewQType);
763      New->setHasInheritedPrototype();
764
765      // Synthesize a parameter for each argument type.
766      llvm::SmallVector<ParmVarDecl*, 16> Params;
767      for (FunctionProtoType::arg_type_iterator
768             ParamType = OldProto->arg_type_begin(),
769             ParamEnd = OldProto->arg_type_end();
770           ParamType != ParamEnd; ++ParamType) {
771        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
772                                                 SourceLocation(), 0,
773                                                 *ParamType, VarDecl::None,
774                                                 0);
775        Param->setImplicit();
776        Params.push_back(Param);
777      }
778
779      New->setParams(Context, Params.data(), Params.size());
780    }
781
782    return MergeCompatibleFunctionDecls(New, Old);
783  }
784
785  // GNU C permits a K&R definition to follow a prototype declaration
786  // if the declared types of the parameters in the K&R definition
787  // match the types in the prototype declaration, even when the
788  // promoted types of the parameters from the K&R definition differ
789  // from the types in the prototype. GCC then keeps the types from
790  // the prototype.
791  //
792  // If a variadic prototype is followed by a non-variadic K&R definition,
793  // the K&R definition becomes variadic.  This is sort of an edge case, but
794  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
795  // C99 6.9.1p8.
796  if (!getLangOptions().CPlusPlus &&
797      Old->hasPrototype() && !New->hasPrototype() &&
798      New->getType()->getAsFunctionProtoType() &&
799      Old->getNumParams() == New->getNumParams()) {
800    llvm::SmallVector<QualType, 16> ArgTypes;
801    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
802    const FunctionProtoType *OldProto
803      = Old->getType()->getAsFunctionProtoType();
804    const FunctionProtoType *NewProto
805      = New->getType()->getAsFunctionProtoType();
806
807    // Determine whether this is the GNU C extension.
808    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
809                                               NewProto->getResultType());
810    bool LooseCompatible = !MergedReturn.isNull();
811    for (unsigned Idx = 0, End = Old->getNumParams();
812         LooseCompatible && Idx != End; ++Idx) {
813      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
814      ParmVarDecl *NewParm = New->getParamDecl(Idx);
815      if (Context.typesAreCompatible(OldParm->getType(),
816                                     NewProto->getArgType(Idx))) {
817        ArgTypes.push_back(NewParm->getType());
818      } else if (Context.typesAreCompatible(OldParm->getType(),
819                                            NewParm->getType())) {
820        GNUCompatibleParamWarning Warn
821          = { OldParm, NewParm, NewProto->getArgType(Idx) };
822        Warnings.push_back(Warn);
823        ArgTypes.push_back(NewParm->getType());
824      } else
825        LooseCompatible = false;
826    }
827
828    if (LooseCompatible) {
829      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
830        Diag(Warnings[Warn].NewParm->getLocation(),
831             diag::ext_param_promoted_not_compatible_with_prototype)
832          << Warnings[Warn].PromotedType
833          << Warnings[Warn].OldParm->getType();
834        Diag(Warnings[Warn].OldParm->getLocation(),
835             diag::note_previous_declaration);
836      }
837
838      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
839                                           ArgTypes.size(),
840                                           OldProto->isVariadic(), 0));
841      return MergeCompatibleFunctionDecls(New, Old);
842    }
843
844    // Fall through to diagnose conflicting types.
845  }
846
847  // A function that has already been declared has been redeclared or defined
848  // with a different type- show appropriate diagnostic
849  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
850    // The user has declared a builtin function with an incompatible
851    // signature.
852    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
853      // The function the user is redeclaring is a library-defined
854      // function like 'malloc' or 'printf'. Warn about the
855      // redeclaration, then pretend that we don't know about this
856      // library built-in.
857      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
858      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
859        << Old << Old->getType();
860      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
861      Old->setInvalidDecl();
862      return false;
863    }
864
865    PrevDiag = diag::note_previous_builtin_declaration;
866  }
867
868  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
869  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
870  return true;
871}
872
873/// \brief Completes the merge of two function declarations that are
874/// known to be compatible.
875///
876/// This routine handles the merging of attributes and other
877/// properties of function declarations form the old declaration to
878/// the new declaration, once we know that New is in fact a
879/// redeclaration of Old.
880///
881/// \returns false
882bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
883  // Merge the attributes
884  MergeAttributes(New, Old, Context);
885
886  // Merge the storage class.
887  if (Old->getStorageClass() != FunctionDecl::Extern)
888    New->setStorageClass(Old->getStorageClass());
889
890  // Merge "inline"
891  if (Old->isInline())
892    New->setInline(true);
893
894  // If this function declaration by itself qualifies as a C99 inline
895  // definition (C99 6.7.4p6), but the previous definition did not,
896  // then the function is not a C99 inline definition.
897  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
898    New->setC99InlineDefinition(false);
899  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
900    // Mark all preceding definitions as not being C99 inline definitions.
901    for (const FunctionDecl *Prev = Old; Prev;
902         Prev = Prev->getPreviousDeclaration())
903      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
904  }
905
906  // Merge "pure" flag.
907  if (Old->isPure())
908    New->setPure();
909
910  // Merge the "deleted" flag.
911  if (Old->isDeleted())
912    New->setDeleted();
913
914  if (getLangOptions().CPlusPlus)
915    return MergeCXXFunctionDecl(New, Old);
916
917  return false;
918}
919
920/// MergeVarDecl - We just parsed a variable 'New' which has the same name
921/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
922/// situation, merging decls or emitting diagnostics as appropriate.
923///
924/// Tentative definition rules (C99 6.9.2p2) are checked by
925/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
926/// definitions here, since the initializer hasn't been attached.
927///
928void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
929  // If either decl is invalid, make sure the new one is marked invalid and
930  // don't do any other checking.
931  if (New->isInvalidDecl() || OldD->isInvalidDecl())
932    return New->setInvalidDecl();
933
934  // Verify the old decl was also a variable.
935  VarDecl *Old = dyn_cast<VarDecl>(OldD);
936  if (!Old) {
937    Diag(New->getLocation(), diag::err_redefinition_different_kind)
938      << New->getDeclName();
939    Diag(OldD->getLocation(), diag::note_previous_definition);
940    return New->setInvalidDecl();
941  }
942
943  MergeAttributes(New, Old, Context);
944
945  // Merge the types
946  QualType MergedT;
947  if (getLangOptions().CPlusPlus) {
948    if (Context.hasSameType(New->getType(), Old->getType()))
949      MergedT = New->getType();
950  } else {
951    MergedT = Context.mergeTypes(New->getType(), Old->getType());
952  }
953  if (MergedT.isNull()) {
954    Diag(New->getLocation(), diag::err_redefinition_different_type)
955      << New->getDeclName();
956    Diag(Old->getLocation(), diag::note_previous_definition);
957    return New->setInvalidDecl();
958  }
959  New->setType(MergedT);
960
961  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
962  if (New->getStorageClass() == VarDecl::Static &&
963      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
964    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
965    Diag(Old->getLocation(), diag::note_previous_definition);
966    return New->setInvalidDecl();
967  }
968  // C99 6.2.2p4:
969  //   For an identifier declared with the storage-class specifier
970  //   extern in a scope in which a prior declaration of that
971  //   identifier is visible,23) if the prior declaration specifies
972  //   internal or external linkage, the linkage of the identifier at
973  //   the later declaration is the same as the linkage specified at
974  //   the prior declaration. If no prior declaration is visible, or
975  //   if the prior declaration specifies no linkage, then the
976  //   identifier has external linkage.
977  if (New->hasExternalStorage() && Old->hasLinkage())
978    /* Okay */;
979  else if (New->getStorageClass() != VarDecl::Static &&
980           Old->getStorageClass() == VarDecl::Static) {
981    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
982    Diag(Old->getLocation(), diag::note_previous_definition);
983    return New->setInvalidDecl();
984  }
985
986  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
987
988  // FIXME: The test for external storage here seems wrong? We still
989  // need to check for mismatches.
990  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
991      // Don't complain about out-of-line definitions of static members.
992      !(Old->getLexicalDeclContext()->isRecord() &&
993        !New->getLexicalDeclContext()->isRecord())) {
994    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
995    Diag(Old->getLocation(), diag::note_previous_definition);
996    return New->setInvalidDecl();
997  }
998
999  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1000    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1001    Diag(Old->getLocation(), diag::note_previous_definition);
1002  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1003    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1004    Diag(Old->getLocation(), diag::note_previous_definition);
1005  }
1006
1007  // Keep a chain of previous declarations.
1008  New->setPreviousDeclaration(Old);
1009}
1010
1011/// CheckParmsForFunctionDef - Check that the parameters of the given
1012/// function are appropriate for the definition of a function. This
1013/// takes care of any checks that cannot be performed on the
1014/// declaration itself, e.g., that the types of each of the function
1015/// parameters are complete.
1016bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1017  bool HasInvalidParm = false;
1018  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1019    ParmVarDecl *Param = FD->getParamDecl(p);
1020
1021    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1022    // function declarator that is part of a function definition of
1023    // that function shall not have incomplete type.
1024    //
1025    // This is also C++ [dcl.fct]p6.
1026    if (!Param->isInvalidDecl() &&
1027        RequireCompleteType(Param->getLocation(), Param->getType(),
1028                               diag::err_typecheck_decl_incomplete_type)) {
1029      Param->setInvalidDecl();
1030      HasInvalidParm = true;
1031    }
1032
1033    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1034    // declaration of each parameter shall include an identifier.
1035    if (Param->getIdentifier() == 0 &&
1036        !Param->isImplicit() &&
1037        !getLangOptions().CPlusPlus)
1038      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1039  }
1040
1041  return HasInvalidParm;
1042}
1043
1044/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1045/// no declarator (e.g. "struct foo;") is parsed.
1046Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1047  // FIXME: Error on auto/register at file scope
1048  // FIXME: Error on inline/virtual/explicit
1049  // FIXME: Error on invalid restrict
1050  // FIXME: Warn on useless __thread
1051  // FIXME: Warn on useless const/volatile
1052  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1053  // FIXME: Warn on useless attributes
1054  TagDecl *Tag = 0;
1055  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1056      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1057      DS.getTypeSpecType() == DeclSpec::TST_union ||
1058      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1059    if (!DS.getTypeRep()) // We probably had an error
1060      return DeclPtrTy();
1061
1062    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1063  }
1064
1065  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1066    if (!Record->getDeclName() && Record->isDefinition() &&
1067        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1068      if (getLangOptions().CPlusPlus ||
1069          Record->getDeclContext()->isRecord())
1070        return BuildAnonymousStructOrUnion(S, DS, Record);
1071
1072      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1073        << DS.getSourceRange();
1074    }
1075
1076    // Microsoft allows unnamed struct/union fields. Don't complain
1077    // about them.
1078    // FIXME: Should we support Microsoft's extensions in this area?
1079    if (Record->getDeclName() && getLangOptions().Microsoft)
1080      return DeclPtrTy::make(Tag);
1081  }
1082
1083  if (!DS.isMissingDeclaratorOk() &&
1084      DS.getTypeSpecType() != DeclSpec::TST_error) {
1085    // Warn about typedefs of enums without names, since this is an
1086    // extension in both Microsoft an GNU.
1087    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1088        Tag && isa<EnumDecl>(Tag)) {
1089      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1090        << DS.getSourceRange();
1091      return DeclPtrTy::make(Tag);
1092    }
1093
1094    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1095      << DS.getSourceRange();
1096    return DeclPtrTy();
1097  }
1098
1099  return DeclPtrTy::make(Tag);
1100}
1101
1102/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1103/// anonymous struct or union AnonRecord into the owning context Owner
1104/// and scope S. This routine will be invoked just after we realize
1105/// that an unnamed union or struct is actually an anonymous union or
1106/// struct, e.g.,
1107///
1108/// @code
1109/// union {
1110///   int i;
1111///   float f;
1112/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1113///    // f into the surrounding scope.x
1114/// @endcode
1115///
1116/// This routine is recursive, injecting the names of nested anonymous
1117/// structs/unions into the owning context and scope as well.
1118bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1119                                               RecordDecl *AnonRecord) {
1120  bool Invalid = false;
1121  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1122                               FEnd = AnonRecord->field_end(Context);
1123       F != FEnd; ++F) {
1124    if ((*F)->getDeclName()) {
1125      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1126                                                LookupOrdinaryName, true);
1127      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1128        // C++ [class.union]p2:
1129        //   The names of the members of an anonymous union shall be
1130        //   distinct from the names of any other entity in the
1131        //   scope in which the anonymous union is declared.
1132        unsigned diagKind
1133          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1134                                 : diag::err_anonymous_struct_member_redecl;
1135        Diag((*F)->getLocation(), diagKind)
1136          << (*F)->getDeclName();
1137        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1138        Invalid = true;
1139      } else {
1140        // C++ [class.union]p2:
1141        //   For the purpose of name lookup, after the anonymous union
1142        //   definition, the members of the anonymous union are
1143        //   considered to have been defined in the scope in which the
1144        //   anonymous union is declared.
1145        Owner->makeDeclVisibleInContext(Context, *F);
1146        S->AddDecl(DeclPtrTy::make(*F));
1147        IdResolver.AddDecl(*F);
1148      }
1149    } else if (const RecordType *InnerRecordType
1150                 = (*F)->getType()->getAsRecordType()) {
1151      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1152      if (InnerRecord->isAnonymousStructOrUnion())
1153        Invalid = Invalid ||
1154          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1155    }
1156  }
1157
1158  return Invalid;
1159}
1160
1161/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1162/// anonymous structure or union. Anonymous unions are a C++ feature
1163/// (C++ [class.union]) and a GNU C extension; anonymous structures
1164/// are a GNU C and GNU C++ extension.
1165Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1166                                                  RecordDecl *Record) {
1167  DeclContext *Owner = Record->getDeclContext();
1168
1169  // Diagnose whether this anonymous struct/union is an extension.
1170  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1171    Diag(Record->getLocation(), diag::ext_anonymous_union);
1172  else if (!Record->isUnion())
1173    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1174
1175  // C and C++ require different kinds of checks for anonymous
1176  // structs/unions.
1177  bool Invalid = false;
1178  if (getLangOptions().CPlusPlus) {
1179    const char* PrevSpec = 0;
1180    // C++ [class.union]p3:
1181    //   Anonymous unions declared in a named namespace or in the
1182    //   global namespace shall be declared static.
1183    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1184        (isa<TranslationUnitDecl>(Owner) ||
1185         (isa<NamespaceDecl>(Owner) &&
1186          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1187      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1188      Invalid = true;
1189
1190      // Recover by adding 'static'.
1191      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1192    }
1193    // C++ [class.union]p3:
1194    //   A storage class is not allowed in a declaration of an
1195    //   anonymous union in a class scope.
1196    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1197             isa<RecordDecl>(Owner)) {
1198      Diag(DS.getStorageClassSpecLoc(),
1199           diag::err_anonymous_union_with_storage_spec);
1200      Invalid = true;
1201
1202      // Recover by removing the storage specifier.
1203      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1204                             PrevSpec);
1205    }
1206
1207    // C++ [class.union]p2:
1208    //   The member-specification of an anonymous union shall only
1209    //   define non-static data members. [Note: nested types and
1210    //   functions cannot be declared within an anonymous union. ]
1211    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1212                                 MemEnd = Record->decls_end(Context);
1213         Mem != MemEnd; ++Mem) {
1214      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1215        // C++ [class.union]p3:
1216        //   An anonymous union shall not have private or protected
1217        //   members (clause 11).
1218        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1219          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1220            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1221          Invalid = true;
1222        }
1223      } else if ((*Mem)->isImplicit()) {
1224        // Any implicit members are fine.
1225      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1226        // This is a type that showed up in an
1227        // elaborated-type-specifier inside the anonymous struct or
1228        // union, but which actually declares a type outside of the
1229        // anonymous struct or union. It's okay.
1230      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1231        if (!MemRecord->isAnonymousStructOrUnion() &&
1232            MemRecord->getDeclName()) {
1233          // This is a nested type declaration.
1234          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1235            << (int)Record->isUnion();
1236          Invalid = true;
1237        }
1238      } else {
1239        // We have something that isn't a non-static data
1240        // member. Complain about it.
1241        unsigned DK = diag::err_anonymous_record_bad_member;
1242        if (isa<TypeDecl>(*Mem))
1243          DK = diag::err_anonymous_record_with_type;
1244        else if (isa<FunctionDecl>(*Mem))
1245          DK = diag::err_anonymous_record_with_function;
1246        else if (isa<VarDecl>(*Mem))
1247          DK = diag::err_anonymous_record_with_static;
1248        Diag((*Mem)->getLocation(), DK)
1249            << (int)Record->isUnion();
1250          Invalid = true;
1251      }
1252    }
1253  }
1254
1255  if (!Record->isUnion() && !Owner->isRecord()) {
1256    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1257      << (int)getLangOptions().CPlusPlus;
1258    Invalid = true;
1259  }
1260
1261  // Create a declaration for this anonymous struct/union.
1262  NamedDecl *Anon = 0;
1263  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1264    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1265                             /*IdentifierInfo=*/0,
1266                             Context.getTypeDeclType(Record),
1267                             /*BitWidth=*/0, /*Mutable=*/false);
1268    Anon->setAccess(AS_public);
1269    if (getLangOptions().CPlusPlus)
1270      FieldCollector->Add(cast<FieldDecl>(Anon));
1271  } else {
1272    VarDecl::StorageClass SC;
1273    switch (DS.getStorageClassSpec()) {
1274    default: assert(0 && "Unknown storage class!");
1275    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1276    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1277    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1278    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1279    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1280    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1281    case DeclSpec::SCS_mutable:
1282      // mutable can only appear on non-static class members, so it's always
1283      // an error here
1284      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1285      Invalid = true;
1286      SC = VarDecl::None;
1287      break;
1288    }
1289
1290    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1291                           /*IdentifierInfo=*/0,
1292                           Context.getTypeDeclType(Record),
1293                           SC, DS.getSourceRange().getBegin());
1294  }
1295  Anon->setImplicit();
1296
1297  // Add the anonymous struct/union object to the current
1298  // context. We'll be referencing this object when we refer to one of
1299  // its members.
1300  Owner->addDecl(Context, Anon);
1301
1302  // Inject the members of the anonymous struct/union into the owning
1303  // context and into the identifier resolver chain for name lookup
1304  // purposes.
1305  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1306    Invalid = true;
1307
1308  // Mark this as an anonymous struct/union type. Note that we do not
1309  // do this until after we have already checked and injected the
1310  // members of this anonymous struct/union type, because otherwise
1311  // the members could be injected twice: once by DeclContext when it
1312  // builds its lookup table, and once by
1313  // InjectAnonymousStructOrUnionMembers.
1314  Record->setAnonymousStructOrUnion(true);
1315
1316  if (Invalid)
1317    Anon->setInvalidDecl();
1318
1319  return DeclPtrTy::make(Anon);
1320}
1321
1322
1323/// GetNameForDeclarator - Determine the full declaration name for the
1324/// given Declarator.
1325DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1326  switch (D.getKind()) {
1327  case Declarator::DK_Abstract:
1328    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1329    return DeclarationName();
1330
1331  case Declarator::DK_Normal:
1332    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1333    return DeclarationName(D.getIdentifier());
1334
1335  case Declarator::DK_Constructor: {
1336    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1337    Ty = Context.getCanonicalType(Ty);
1338    return Context.DeclarationNames.getCXXConstructorName(Ty);
1339  }
1340
1341  case Declarator::DK_Destructor: {
1342    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1343    Ty = Context.getCanonicalType(Ty);
1344    return Context.DeclarationNames.getCXXDestructorName(Ty);
1345  }
1346
1347  case Declarator::DK_Conversion: {
1348    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1349    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1350    Ty = Context.getCanonicalType(Ty);
1351    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1352  }
1353
1354  case Declarator::DK_Operator:
1355    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1356    return Context.DeclarationNames.getCXXOperatorName(
1357                                                D.getOverloadedOperator());
1358  }
1359
1360  assert(false && "Unknown name kind");
1361  return DeclarationName();
1362}
1363
1364/// isNearlyMatchingFunction - Determine whether the C++ functions
1365/// Declaration and Definition are "nearly" matching. This heuristic
1366/// is used to improve diagnostics in the case where an out-of-line
1367/// function definition doesn't match any declaration within
1368/// the class or namespace.
1369static bool isNearlyMatchingFunction(ASTContext &Context,
1370                                     FunctionDecl *Declaration,
1371                                     FunctionDecl *Definition) {
1372  if (Declaration->param_size() != Definition->param_size())
1373    return false;
1374  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1375    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1376    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1377
1378    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1379    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1380    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1381      return false;
1382  }
1383
1384  return true;
1385}
1386
1387Sema::DeclPtrTy
1388Sema::HandleDeclarator(Scope *S, Declarator &D,
1389                       MultiTemplateParamsArg TemplateParamLists,
1390                       bool IsFunctionDefinition) {
1391  DeclarationName Name = GetNameForDeclarator(D);
1392
1393  // All of these full declarators require an identifier.  If it doesn't have
1394  // one, the ParsedFreeStandingDeclSpec action should be used.
1395  if (!Name) {
1396    if (!D.isInvalidType())  // Reject this if we think it is valid.
1397      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1398           diag::err_declarator_need_ident)
1399        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1400    return DeclPtrTy();
1401  }
1402
1403  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1404  // we find one that is.
1405  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1406         (S->getFlags() & Scope::TemplateParamScope) != 0)
1407    S = S->getParent();
1408
1409  DeclContext *DC;
1410  NamedDecl *PrevDecl;
1411  NamedDecl *New;
1412
1413  QualType R = GetTypeForDeclarator(D, S);
1414
1415  // See if this is a redefinition of a variable in the same scope.
1416  if (D.getCXXScopeSpec().isInvalid()) {
1417    DC = CurContext;
1418    PrevDecl = 0;
1419    D.setInvalidType();
1420  } else if (!D.getCXXScopeSpec().isSet()) {
1421    LookupNameKind NameKind = LookupOrdinaryName;
1422
1423    // If the declaration we're planning to build will be a function
1424    // or object with linkage, then look for another declaration with
1425    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1426    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1427      /* Do nothing*/;
1428    else if (R->isFunctionType()) {
1429      if (CurContext->isFunctionOrMethod())
1430        NameKind = LookupRedeclarationWithLinkage;
1431    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1432      NameKind = LookupRedeclarationWithLinkage;
1433
1434    DC = CurContext;
1435    PrevDecl = LookupName(S, Name, NameKind, true,
1436                          D.getDeclSpec().getStorageClassSpec() !=
1437                            DeclSpec::SCS_static,
1438                          D.getIdentifierLoc());
1439  } else { // Something like "int foo::x;"
1440    DC = computeDeclContext(D.getCXXScopeSpec());
1441    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1442    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1443
1444    // C++ 7.3.1.2p2:
1445    // Members (including explicit specializations of templates) of a named
1446    // namespace can also be defined outside that namespace by explicit
1447    // qualification of the name being defined, provided that the entity being
1448    // defined was already declared in the namespace and the definition appears
1449    // after the point of declaration in a namespace that encloses the
1450    // declarations namespace.
1451    //
1452    // Note that we only check the context at this point. We don't yet
1453    // have enough information to make sure that PrevDecl is actually
1454    // the declaration we want to match. For example, given:
1455    //
1456    //   class X {
1457    //     void f();
1458    //     void f(float);
1459    //   };
1460    //
1461    //   void X::f(int) { } // ill-formed
1462    //
1463    // In this case, PrevDecl will point to the overload set
1464    // containing the two f's declared in X, but neither of them
1465    // matches.
1466
1467    // First check whether we named the global scope.
1468    if (isa<TranslationUnitDecl>(DC)) {
1469      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1470        << Name << D.getCXXScopeSpec().getRange();
1471    } else if (!CurContext->Encloses(DC)) {
1472      // The qualifying scope doesn't enclose the original declaration.
1473      // Emit diagnostic based on current scope.
1474      SourceLocation L = D.getIdentifierLoc();
1475      SourceRange R = D.getCXXScopeSpec().getRange();
1476      if (isa<FunctionDecl>(CurContext))
1477        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1478      else
1479        Diag(L, diag::err_invalid_declarator_scope)
1480          << Name << cast<NamedDecl>(DC) << R;
1481      D.setInvalidType();
1482    }
1483  }
1484
1485  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1486    // Maybe we will complain about the shadowed template parameter.
1487    if (!D.isInvalidType())
1488      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1489        D.setInvalidType();
1490
1491    // Just pretend that we didn't see the previous declaration.
1492    PrevDecl = 0;
1493  }
1494
1495  // In C++, the previous declaration we find might be a tag type
1496  // (class or enum). In this case, the new declaration will hide the
1497  // tag type. Note that this does does not apply if we're declaring a
1498  // typedef (C++ [dcl.typedef]p4).
1499  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1500      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1501    PrevDecl = 0;
1502
1503  bool Redeclaration = false;
1504  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1505    if (TemplateParamLists.size()) {
1506      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1507      return DeclPtrTy();
1508    }
1509
1510    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1511  } else if (R->isFunctionType()) {
1512    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1513                                  move(TemplateParamLists),
1514                                  IsFunctionDefinition, Redeclaration);
1515  } else {
1516    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1517  }
1518
1519  if (New == 0)
1520    return DeclPtrTy();
1521
1522  // If this has an identifier and is not an invalid redeclaration,
1523  // add it to the scope stack.
1524  if (Name && !(Redeclaration && New->isInvalidDecl()))
1525    PushOnScopeChains(New, S);
1526
1527  return DeclPtrTy::make(New);
1528}
1529
1530/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1531/// types into constant array types in certain situations which would otherwise
1532/// be errors (for GCC compatibility).
1533static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1534                                                    ASTContext &Context,
1535                                                    bool &SizeIsNegative) {
1536  // This method tries to turn a variable array into a constant
1537  // array even when the size isn't an ICE.  This is necessary
1538  // for compatibility with code that depends on gcc's buggy
1539  // constant expression folding, like struct {char x[(int)(char*)2];}
1540  SizeIsNegative = false;
1541
1542  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1543    QualType Pointee = PTy->getPointeeType();
1544    QualType FixedType =
1545        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1546    if (FixedType.isNull()) return FixedType;
1547    FixedType = Context.getPointerType(FixedType);
1548    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1549    return FixedType;
1550  }
1551
1552  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1553  if (!VLATy)
1554    return QualType();
1555  // FIXME: We should probably handle this case
1556  if (VLATy->getElementType()->isVariablyModifiedType())
1557    return QualType();
1558
1559  Expr::EvalResult EvalResult;
1560  if (!VLATy->getSizeExpr() ||
1561      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1562      !EvalResult.Val.isInt())
1563    return QualType();
1564
1565  llvm::APSInt &Res = EvalResult.Val.getInt();
1566  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1567    return Context.getConstantArrayType(VLATy->getElementType(),
1568                                        Res, ArrayType::Normal, 0);
1569
1570  SizeIsNegative = true;
1571  return QualType();
1572}
1573
1574/// \brief Register the given locally-scoped external C declaration so
1575/// that it can be found later for redeclarations
1576void
1577Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1578                                       Scope *S) {
1579  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1580         "Decl is not a locally-scoped decl!");
1581  // Note that we have a locally-scoped external with this name.
1582  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1583
1584  if (!PrevDecl)
1585    return;
1586
1587  // If there was a previous declaration of this variable, it may be
1588  // in our identifier chain. Update the identifier chain with the new
1589  // declaration.
1590  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1591    // The previous declaration was found on the identifer resolver
1592    // chain, so remove it from its scope.
1593    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1594      S = S->getParent();
1595
1596    if (S)
1597      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1598  }
1599}
1600
1601/// \brief Diagnose function specifiers on a declaration of an identifier that
1602/// does not identify a function.
1603void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1604  // FIXME: We should probably indicate the identifier in question to avoid
1605  // confusion for constructs like "inline int a(), b;"
1606  if (D.getDeclSpec().isInlineSpecified())
1607    Diag(D.getDeclSpec().getInlineSpecLoc(),
1608         diag::err_inline_non_function);
1609
1610  if (D.getDeclSpec().isVirtualSpecified())
1611    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1612         diag::err_virtual_non_function);
1613
1614  if (D.getDeclSpec().isExplicitSpecified())
1615    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1616         diag::err_explicit_non_function);
1617}
1618
1619NamedDecl*
1620Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1621                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1622  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1623  if (D.getCXXScopeSpec().isSet()) {
1624    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1625      << D.getCXXScopeSpec().getRange();
1626    D.setInvalidType();
1627    // Pretend we didn't see the scope specifier.
1628    DC = 0;
1629  }
1630
1631  if (getLangOptions().CPlusPlus) {
1632    // Check that there are no default arguments (C++ only).
1633    CheckExtraCXXDefaultArguments(D);
1634  }
1635
1636  DiagnoseFunctionSpecifiers(D);
1637
1638  if (D.getDeclSpec().isThreadSpecified())
1639    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1640
1641  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1642  if (!NewTD) return 0;
1643
1644  if (D.isInvalidType())
1645    NewTD->setInvalidDecl();
1646
1647  // Handle attributes prior to checking for duplicates in MergeVarDecl
1648  ProcessDeclAttributes(S, NewTD, D);
1649  // Merge the decl with the existing one if appropriate. If the decl is
1650  // in an outer scope, it isn't the same thing.
1651  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1652    Redeclaration = true;
1653    MergeTypeDefDecl(NewTD, PrevDecl);
1654  }
1655
1656  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1657  // then it shall have block scope.
1658  QualType T = NewTD->getUnderlyingType();
1659  if (T->isVariablyModifiedType()) {
1660    CurFunctionNeedsScopeChecking = true;
1661
1662    if (S->getFnParent() == 0) {
1663      bool SizeIsNegative;
1664      QualType FixedTy =
1665          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1666      if (!FixedTy.isNull()) {
1667        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1668        NewTD->setUnderlyingType(FixedTy);
1669      } else {
1670        if (SizeIsNegative)
1671          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1672        else if (T->isVariableArrayType())
1673          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1674        else
1675          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1676        NewTD->setInvalidDecl();
1677      }
1678    }
1679  }
1680  return NewTD;
1681}
1682
1683/// \brief Determines whether the given declaration is an out-of-scope
1684/// previous declaration.
1685///
1686/// This routine should be invoked when name lookup has found a
1687/// previous declaration (PrevDecl) that is not in the scope where a
1688/// new declaration by the same name is being introduced. If the new
1689/// declaration occurs in a local scope, previous declarations with
1690/// linkage may still be considered previous declarations (C99
1691/// 6.2.2p4-5, C++ [basic.link]p6).
1692///
1693/// \param PrevDecl the previous declaration found by name
1694/// lookup
1695///
1696/// \param DC the context in which the new declaration is being
1697/// declared.
1698///
1699/// \returns true if PrevDecl is an out-of-scope previous declaration
1700/// for a new delcaration with the same name.
1701static bool
1702isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1703                                ASTContext &Context) {
1704  if (!PrevDecl)
1705    return 0;
1706
1707  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1708  // case we need to check each of the overloaded functions.
1709  if (!PrevDecl->hasLinkage())
1710    return false;
1711
1712  if (Context.getLangOptions().CPlusPlus) {
1713    // C++ [basic.link]p6:
1714    //   If there is a visible declaration of an entity with linkage
1715    //   having the same name and type, ignoring entities declared
1716    //   outside the innermost enclosing namespace scope, the block
1717    //   scope declaration declares that same entity and receives the
1718    //   linkage of the previous declaration.
1719    DeclContext *OuterContext = DC->getLookupContext();
1720    if (!OuterContext->isFunctionOrMethod())
1721      // This rule only applies to block-scope declarations.
1722      return false;
1723    else {
1724      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1725      if (PrevOuterContext->isRecord())
1726        // We found a member function: ignore it.
1727        return false;
1728      else {
1729        // Find the innermost enclosing namespace for the new and
1730        // previous declarations.
1731        while (!OuterContext->isFileContext())
1732          OuterContext = OuterContext->getParent();
1733        while (!PrevOuterContext->isFileContext())
1734          PrevOuterContext = PrevOuterContext->getParent();
1735
1736        // The previous declaration is in a different namespace, so it
1737        // isn't the same function.
1738        if (OuterContext->getPrimaryContext() !=
1739            PrevOuterContext->getPrimaryContext())
1740          return false;
1741      }
1742    }
1743  }
1744
1745  return true;
1746}
1747
1748NamedDecl*
1749Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1750                              QualType R,NamedDecl* PrevDecl,
1751                              bool &Redeclaration) {
1752  DeclarationName Name = GetNameForDeclarator(D);
1753
1754  // Check that there are no default arguments (C++ only).
1755  if (getLangOptions().CPlusPlus)
1756    CheckExtraCXXDefaultArguments(D);
1757
1758  VarDecl *NewVD;
1759  VarDecl::StorageClass SC;
1760  switch (D.getDeclSpec().getStorageClassSpec()) {
1761  default: assert(0 && "Unknown storage class!");
1762  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1763  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1764  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1765  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1766  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1767  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1768  case DeclSpec::SCS_mutable:
1769    // mutable can only appear on non-static class members, so it's always
1770    // an error here
1771    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1772    D.setInvalidType();
1773    SC = VarDecl::None;
1774    break;
1775  }
1776
1777  IdentifierInfo *II = Name.getAsIdentifierInfo();
1778  if (!II) {
1779    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1780      << Name.getAsString();
1781    return 0;
1782  }
1783
1784  DiagnoseFunctionSpecifiers(D);
1785
1786  if (!DC->isRecord() && S->getFnParent() == 0) {
1787    // C99 6.9p2: The storage-class specifiers auto and register shall not
1788    // appear in the declaration specifiers in an external declaration.
1789    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1790
1791      // If this is a register variable with an asm label specified, then this
1792      // is a GNU extension.
1793      if (SC == VarDecl::Register && D.getAsmLabel())
1794        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1795      else
1796        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1797      D.setInvalidType();
1798    }
1799  }
1800  if (DC->isRecord() && !CurContext->isRecord()) {
1801    // This is an out-of-line definition of a static data member.
1802    if (SC == VarDecl::Static) {
1803      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1804           diag::err_static_out_of_line)
1805        << CodeModificationHint::CreateRemoval(
1806                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1807    } else if (SC == VarDecl::None)
1808      SC = VarDecl::Static;
1809  }
1810
1811  // The variable can not
1812  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1813                          II, R, SC,
1814                          // FIXME: Move to DeclGroup...
1815                          D.getDeclSpec().getSourceRange().getBegin());
1816
1817  if (D.isInvalidType())
1818    NewVD->setInvalidDecl();
1819
1820  if (D.getDeclSpec().isThreadSpecified()) {
1821    if (NewVD->hasLocalStorage())
1822      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1823    else if (!Context.Target.isTLSSupported())
1824      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1825    else
1826      NewVD->setThreadSpecified(true);
1827  }
1828
1829  // Set the lexical context. If the declarator has a C++ scope specifier, the
1830  // lexical context will be different from the semantic context.
1831  NewVD->setLexicalDeclContext(CurContext);
1832
1833  // Handle attributes prior to checking for duplicates in MergeVarDecl
1834  ProcessDeclAttributes(S, NewVD, D);
1835
1836  // Handle GNU asm-label extension (encoded as an attribute).
1837  if (Expr *E = (Expr*) D.getAsmLabel()) {
1838    // The parser guarantees this is a string.
1839    StringLiteral *SE = cast<StringLiteral>(E);
1840    NewVD->addAttr(Context,
1841                   ::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1842                                                        SE->getByteLength())));
1843  }
1844
1845  // If name lookup finds a previous declaration that is not in the
1846  // same scope as the new declaration, this may still be an
1847  // acceptable redeclaration.
1848  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1849      !(NewVD->hasLinkage() &&
1850        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1851    PrevDecl = 0;
1852
1853  // Merge the decl with the existing one if appropriate.
1854  if (PrevDecl) {
1855    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1856      // The user tried to define a non-static data member
1857      // out-of-line (C++ [dcl.meaning]p1).
1858      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1859        << D.getCXXScopeSpec().getRange();
1860      PrevDecl = 0;
1861      NewVD->setInvalidDecl();
1862    }
1863  } else if (D.getCXXScopeSpec().isSet()) {
1864    // No previous declaration in the qualifying scope.
1865    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1866      << Name << D.getCXXScopeSpec().getRange();
1867    NewVD->setInvalidDecl();
1868  }
1869
1870  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1871
1872  // If this is a locally-scoped extern C variable, update the map of
1873  // such variables.
1874  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1875      !NewVD->isInvalidDecl())
1876    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1877
1878  return NewVD;
1879}
1880
1881/// \brief Perform semantic checking on a newly-created variable
1882/// declaration.
1883///
1884/// This routine performs all of the type-checking required for a
1885/// variable declaration once it has been built. It is used both to
1886/// check variables after they have been parsed and their declarators
1887/// have been translated into a declaration, and to check variables
1888/// that have been instantiated from a template.
1889///
1890/// Sets NewVD->isInvalidDecl() if an error was encountered.
1891void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1892                                    bool &Redeclaration) {
1893  // If the decl is already known invalid, don't check it.
1894  if (NewVD->isInvalidDecl())
1895    return;
1896
1897  QualType T = NewVD->getType();
1898
1899  if (T->isObjCInterfaceType()) {
1900    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1901    return NewVD->setInvalidDecl();
1902  }
1903
1904  // The variable can not have an abstract class type.
1905  if (RequireNonAbstractType(NewVD->getLocation(), T,
1906                             diag::err_abstract_type_in_decl,
1907                             AbstractVariableType))
1908    return NewVD->setInvalidDecl();
1909
1910  // Emit an error if an address space was applied to decl with local storage.
1911  // This includes arrays of objects with address space qualifiers, but not
1912  // automatic variables that point to other address spaces.
1913  // ISO/IEC TR 18037 S5.1.2
1914  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1915    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1916    return NewVD->setInvalidDecl();
1917  }
1918
1919  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1920      && !NewVD->hasAttr<BlocksAttr>(Context))
1921    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1922
1923  bool isVM = T->isVariablyModifiedType();
1924  if (isVM || NewVD->hasAttr<CleanupAttr>(Context))
1925    CurFunctionNeedsScopeChecking = true;
1926
1927  if ((isVM && NewVD->hasLinkage()) ||
1928      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1929    bool SizeIsNegative;
1930    QualType FixedTy =
1931        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1932
1933    if (FixedTy.isNull() && T->isVariableArrayType()) {
1934      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1935      // FIXME: This won't give the correct result for
1936      // int a[10][n];
1937      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1938
1939      if (NewVD->isFileVarDecl())
1940        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1941        << SizeRange;
1942      else if (NewVD->getStorageClass() == VarDecl::Static)
1943        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1944        << SizeRange;
1945      else
1946        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1947        << SizeRange;
1948      return NewVD->setInvalidDecl();
1949    }
1950
1951    if (FixedTy.isNull()) {
1952      if (NewVD->isFileVarDecl())
1953        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1954      else
1955        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1956      return NewVD->setInvalidDecl();
1957    }
1958
1959    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1960    NewVD->setType(FixedTy);
1961  }
1962
1963  if (!PrevDecl && NewVD->isExternC(Context)) {
1964    // Since we did not find anything by this name and we're declaring
1965    // an extern "C" variable, look for a non-visible extern "C"
1966    // declaration with the same name.
1967    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1968      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1969    if (Pos != LocallyScopedExternalDecls.end())
1970      PrevDecl = Pos->second;
1971  }
1972
1973  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
1974    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1975      << T;
1976    return NewVD->setInvalidDecl();
1977  }
1978
1979  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>(Context)) {
1980    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
1981    return NewVD->setInvalidDecl();
1982  }
1983
1984  if (isVM && NewVD->hasAttr<BlocksAttr>(Context)) {
1985    Diag(NewVD->getLocation(), diag::err_block_on_vm);
1986    return NewVD->setInvalidDecl();
1987  }
1988
1989  if (PrevDecl) {
1990    Redeclaration = true;
1991    MergeVarDecl(NewVD, PrevDecl);
1992  }
1993}
1994
1995NamedDecl*
1996Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1997                              QualType R, NamedDecl* PrevDecl,
1998                              MultiTemplateParamsArg TemplateParamLists,
1999                              bool IsFunctionDefinition, bool &Redeclaration) {
2000  assert(R.getTypePtr()->isFunctionType());
2001
2002  DeclarationName Name = GetNameForDeclarator(D);
2003  FunctionDecl::StorageClass SC = FunctionDecl::None;
2004  switch (D.getDeclSpec().getStorageClassSpec()) {
2005  default: assert(0 && "Unknown storage class!");
2006  case DeclSpec::SCS_auto:
2007  case DeclSpec::SCS_register:
2008  case DeclSpec::SCS_mutable:
2009    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2010         diag::err_typecheck_sclass_func);
2011    D.setInvalidType();
2012    break;
2013  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2014  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2015  case DeclSpec::SCS_static: {
2016    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2017      // C99 6.7.1p5:
2018      //   The declaration of an identifier for a function that has
2019      //   block scope shall have no explicit storage-class specifier
2020      //   other than extern
2021      // See also (C++ [dcl.stc]p4).
2022      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2023           diag::err_static_block_func);
2024      SC = FunctionDecl::None;
2025    } else
2026      SC = FunctionDecl::Static;
2027    break;
2028  }
2029  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2030  }
2031
2032  if (D.getDeclSpec().isThreadSpecified())
2033    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2034
2035  bool isInline = D.getDeclSpec().isInlineSpecified();
2036  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2037  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2038
2039  // Check that the return type is not an abstract class type.
2040  // For record types, this is done by the AbstractClassUsageDiagnoser once
2041  // the class has been completely parsed.
2042  if (!DC->isRecord() &&
2043      RequireNonAbstractType(D.getIdentifierLoc(),
2044                             R->getAsFunctionType()->getResultType(),
2045                             diag::err_abstract_type_in_decl,
2046                             AbstractReturnType))
2047    D.setInvalidType();
2048
2049  // Do not allow returning a objc interface by-value.
2050  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2051    Diag(D.getIdentifierLoc(),
2052         diag::err_object_cannot_be_passed_returned_by_value) << 0
2053      << R->getAsFunctionType()->getResultType();
2054    D.setInvalidType();
2055  }
2056
2057  // Check that we can declare a template here.
2058  if (TemplateParamLists.size() &&
2059      CheckTemplateDeclScope(S, TemplateParamLists))
2060    return 0;
2061
2062  bool isVirtualOkay = false;
2063  FunctionDecl *NewFD;
2064  if (D.getKind() == Declarator::DK_Constructor) {
2065    // This is a C++ constructor declaration.
2066    assert(DC->isRecord() &&
2067           "Constructors can only be declared in a member context");
2068
2069    R = CheckConstructorDeclarator(D, R, SC);
2070
2071    // Create the new declaration
2072    NewFD = CXXConstructorDecl::Create(Context,
2073                                       cast<CXXRecordDecl>(DC),
2074                                       D.getIdentifierLoc(), Name, R,
2075                                       isExplicit, isInline,
2076                                       /*isImplicitlyDeclared=*/false);
2077  } else if (D.getKind() == Declarator::DK_Destructor) {
2078    // This is a C++ destructor declaration.
2079    if (DC->isRecord()) {
2080      R = CheckDestructorDeclarator(D, SC);
2081
2082      NewFD = CXXDestructorDecl::Create(Context,
2083                                        cast<CXXRecordDecl>(DC),
2084                                        D.getIdentifierLoc(), Name, R,
2085                                        isInline,
2086                                        /*isImplicitlyDeclared=*/false);
2087
2088      isVirtualOkay = true;
2089    } else {
2090      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2091
2092      // Create a FunctionDecl to satisfy the function definition parsing
2093      // code path.
2094      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2095                                   Name, R, SC, isInline,
2096                                   /*hasPrototype=*/true,
2097                                   // FIXME: Move to DeclGroup...
2098                                   D.getDeclSpec().getSourceRange().getBegin());
2099      D.setInvalidType();
2100    }
2101  } else if (D.getKind() == Declarator::DK_Conversion) {
2102    if (!DC->isRecord()) {
2103      Diag(D.getIdentifierLoc(),
2104           diag::err_conv_function_not_member);
2105      return 0;
2106    }
2107
2108    CheckConversionDeclarator(D, R, SC);
2109    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2110                                      D.getIdentifierLoc(), Name, R,
2111                                      isInline, isExplicit);
2112
2113    isVirtualOkay = true;
2114  } else if (DC->isRecord()) {
2115    // If the of the function is the same as the name of the record, then this
2116    // must be an invalid constructor that has a return type.
2117    // (The parser checks for a return type and makes the declarator a
2118    // constructor if it has no return type).
2119    // must have an invalid constructor that has a return type
2120    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2121      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2122        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2123        << SourceRange(D.getIdentifierLoc());
2124      return 0;
2125    }
2126
2127    // This is a C++ method declaration.
2128    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2129                                  D.getIdentifierLoc(), Name, R,
2130                                  (SC == FunctionDecl::Static), isInline);
2131
2132    isVirtualOkay = (SC != FunctionDecl::Static);
2133  } else {
2134    // Determine whether the function was written with a
2135    // prototype. This true when:
2136    //   - we're in C++ (where every function has a prototype),
2137    //   - there is a prototype in the declarator, or
2138    //   - the type R of the function is some kind of typedef or other reference
2139    //     to a type name (which eventually refers to a function type).
2140    bool HasPrototype =
2141       getLangOptions().CPlusPlus ||
2142       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2143       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2144
2145    NewFD = FunctionDecl::Create(Context, DC,
2146                                 D.getIdentifierLoc(),
2147                                 Name, R, SC, isInline, HasPrototype,
2148                                 // FIXME: Move to DeclGroup...
2149                                 D.getDeclSpec().getSourceRange().getBegin());
2150  }
2151
2152  if (D.isInvalidType())
2153    NewFD->setInvalidDecl();
2154
2155  // Set the lexical context. If the declarator has a C++
2156  // scope specifier, the lexical context will be different
2157  // from the semantic context.
2158  NewFD->setLexicalDeclContext(CurContext);
2159
2160  // If there is a template parameter list, then we are dealing with a
2161  // template declaration or specialization.
2162  FunctionTemplateDecl *FunctionTemplate = 0;
2163  if (TemplateParamLists.size()) {
2164    // FIXME: member templates!
2165    TemplateParameterList *TemplateParams
2166      = static_cast<TemplateParameterList *>(*TemplateParamLists.release());
2167
2168    if (TemplateParams->size() > 0) {
2169      // This is a function template
2170      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2171                                                      NewFD->getLocation(),
2172                                                      Name, TemplateParams,
2173                                                      NewFD);
2174      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2175    } else {
2176      // FIXME: Handle function template specializations
2177    }
2178  }
2179
2180  // C++ [dcl.fct.spec]p5:
2181  //   The virtual specifier shall only be used in declarations of
2182  //   nonstatic class member functions that appear within a
2183  //   member-specification of a class declaration; see 10.3.
2184  //
2185  if (isVirtual && !NewFD->isInvalidDecl()) {
2186    if (!isVirtualOkay) {
2187       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2188           diag::err_virtual_non_function);
2189    } else if (!CurContext->isRecord()) {
2190      // 'virtual' was specified outside of the class.
2191      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2192        << CodeModificationHint::CreateRemoval(
2193                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2194    } else {
2195      // Okay: Add virtual to the method.
2196      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2197      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2198      CurClass->setAggregate(false);
2199      CurClass->setPOD(false);
2200      CurClass->setPolymorphic(true);
2201      CurClass->setHasTrivialConstructor(false);
2202    }
2203  }
2204
2205  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2206    // Look for virtual methods in base classes that this method might override.
2207
2208    BasePaths Paths;
2209    if (LookupInBases(cast<CXXRecordDecl>(DC),
2210                      MemberLookupCriteria(NewMD), Paths)) {
2211      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2212           E = Paths.found_decls_end(); I != E; ++I) {
2213        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2214          if (!CheckOverridingFunctionReturnType(NewMD, OldMD))
2215            NewMD->addOverriddenMethod(OldMD);
2216        }
2217      }
2218    }
2219  }
2220
2221  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2222      !CurContext->isRecord()) {
2223    // C++ [class.static]p1:
2224    //   A data or function member of a class may be declared static
2225    //   in a class definition, in which case it is a static member of
2226    //   the class.
2227
2228    // Complain about the 'static' specifier if it's on an out-of-line
2229    // member function definition.
2230    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2231         diag::err_static_out_of_line)
2232      << CodeModificationHint::CreateRemoval(
2233                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2234  }
2235
2236  // Handle GNU asm-label extension (encoded as an attribute).
2237  if (Expr *E = (Expr*) D.getAsmLabel()) {
2238    // The parser guarantees this is a string.
2239    StringLiteral *SE = cast<StringLiteral>(E);
2240    NewFD->addAttr(Context,
2241                   ::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2242                                                        SE->getByteLength())));
2243  }
2244
2245  // Copy the parameter declarations from the declarator D to the function
2246  // declaration NewFD, if they are available.  First scavenge them into Params.
2247  llvm::SmallVector<ParmVarDecl*, 16> Params;
2248  if (D.getNumTypeObjects() > 0) {
2249    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2250
2251    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2252    // function that takes no arguments, not a function that takes a
2253    // single void argument.
2254    // We let through "const void" here because Sema::GetTypeForDeclarator
2255    // already checks for that case.
2256    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2257        FTI.ArgInfo[0].Param &&
2258        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2259      // Empty arg list, don't push any params.
2260      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2261
2262      // In C++, the empty parameter-type-list must be spelled "void"; a
2263      // typedef of void is not permitted.
2264      if (getLangOptions().CPlusPlus &&
2265          Param->getType().getUnqualifiedType() != Context.VoidTy)
2266        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2267      // FIXME: Leaks decl?
2268    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2269      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2270        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2271    }
2272
2273  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2274    // When we're declaring a function with a typedef, typeof, etc as in the
2275    // following example, we'll need to synthesize (unnamed)
2276    // parameters for use in the declaration.
2277    //
2278    // @code
2279    // typedef void fn(int);
2280    // fn f;
2281    // @endcode
2282
2283    // Synthesize a parameter for each argument type.
2284    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2285         AE = FT->arg_type_end(); AI != AE; ++AI) {
2286      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2287                                               SourceLocation(), 0,
2288                                               *AI, VarDecl::None, 0);
2289      Param->setImplicit();
2290      Params.push_back(Param);
2291    }
2292  } else {
2293    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2294           "Should not need args for typedef of non-prototype fn");
2295  }
2296  // Finally, we know we have the right number of parameters, install them.
2297  NewFD->setParams(Context, Params.data(), Params.size());
2298
2299
2300
2301  // If name lookup finds a previous declaration that is not in the
2302  // same scope as the new declaration, this may still be an
2303  // acceptable redeclaration.
2304  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2305      !(NewFD->hasLinkage() &&
2306        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2307    PrevDecl = 0;
2308
2309  // Perform semantic checking on the function declaration.
2310  bool OverloadableAttrRequired = false; // FIXME: HACK!
2311  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2312                           /*FIXME:*/OverloadableAttrRequired);
2313
2314  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2315    // An out-of-line member function declaration must also be a
2316    // definition (C++ [dcl.meaning]p1).
2317    if (!IsFunctionDefinition) {
2318      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2319        << D.getCXXScopeSpec().getRange();
2320      NewFD->setInvalidDecl();
2321    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2322      // The user tried to provide an out-of-line definition for a
2323      // function that is a member of a class or namespace, but there
2324      // was no such member function declared (C++ [class.mfct]p2,
2325      // C++ [namespace.memdef]p2). For example:
2326      //
2327      // class X {
2328      //   void f() const;
2329      // };
2330      //
2331      // void X::f() { } // ill-formed
2332      //
2333      // Complain about this problem, and attempt to suggest close
2334      // matches (e.g., those that differ only in cv-qualifiers and
2335      // whether the parameter types are references).
2336      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2337        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2338      NewFD->setInvalidDecl();
2339
2340      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2341                                              true);
2342      assert(!Prev.isAmbiguous() &&
2343             "Cannot have an ambiguity in previous-declaration lookup");
2344      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2345           Func != FuncEnd; ++Func) {
2346        if (isa<FunctionDecl>(*Func) &&
2347            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2348          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2349      }
2350
2351      PrevDecl = 0;
2352    }
2353  }
2354
2355  // Handle attributes. We need to have merged decls when handling attributes
2356  // (for example to check for conflicts, etc).
2357  // FIXME: This needs to happen before we merge declarations. Then,
2358  // let attribute merging cope with attribute conflicts.
2359  ProcessDeclAttributes(S, NewFD, D);
2360  AddKnownFunctionAttributes(NewFD);
2361
2362  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>(Context)) {
2363    // If a function name is overloadable in C, then every function
2364    // with that name must be marked "overloadable".
2365    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2366      << Redeclaration << NewFD;
2367    if (PrevDecl)
2368      Diag(PrevDecl->getLocation(),
2369           diag::note_attribute_overloadable_prev_overload);
2370    NewFD->addAttr(Context, ::new (Context) OverloadableAttr());
2371  }
2372
2373  // If this is a locally-scoped extern C function, update the
2374  // map of such names.
2375  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2376      && !NewFD->isInvalidDecl())
2377    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2378
2379  return NewFD;
2380}
2381
2382/// \brief Perform semantic checking of a new function declaration.
2383///
2384/// Performs semantic analysis of the new function declaration
2385/// NewFD. This routine performs all semantic checking that does not
2386/// require the actual declarator involved in the declaration, and is
2387/// used both for the declaration of functions as they are parsed
2388/// (called via ActOnDeclarator) and for the declaration of functions
2389/// that have been instantiated via C++ template instantiation (called
2390/// via InstantiateDecl).
2391///
2392/// This sets NewFD->isInvalidDecl() to true if there was an error.
2393void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2394                                    bool &Redeclaration,
2395                                    bool &OverloadableAttrRequired) {
2396  // If NewFD is already known erroneous, don't do any of this checking.
2397  if (NewFD->isInvalidDecl())
2398    return;
2399
2400  if (NewFD->getResultType()->isVariablyModifiedType()) {
2401    // Functions returning a variably modified type violate C99 6.7.5.2p2
2402    // because all functions have linkage.
2403    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2404    return NewFD->setInvalidDecl();
2405  }
2406
2407  // Semantic checking for this function declaration (in isolation).
2408  if (getLangOptions().CPlusPlus) {
2409    // C++-specific checks.
2410    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2411      CheckConstructor(Constructor);
2412    } else if (isa<CXXDestructorDecl>(NewFD)) {
2413      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2414      Record->setUserDeclaredDestructor(true);
2415      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2416      // user-defined destructor.
2417      Record->setPOD(false);
2418
2419      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2420      // declared destructor.
2421      Record->setHasTrivialDestructor(false);
2422    } else if (CXXConversionDecl *Conversion
2423               = dyn_cast<CXXConversionDecl>(NewFD))
2424      ActOnConversionDeclarator(Conversion);
2425
2426    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2427    if (NewFD->isOverloadedOperator() &&
2428        CheckOverloadedOperatorDeclaration(NewFD))
2429      return NewFD->setInvalidDecl();
2430  }
2431
2432  // C99 6.7.4p6:
2433  //   [... ] For a function with external linkage, the following
2434  //   restrictions apply: [...] If all of the file scope declarations
2435  //   for a function in a translation unit include the inline
2436  //   function specifier without extern, then the definition in that
2437  //   translation unit is an inline definition. An inline definition
2438  //   does not provide an external definition for the function, and
2439  //   does not forbid an external definition in another translation
2440  //   unit.
2441  //
2442  // Here we determine whether this function, in isolation, would be a
2443  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2444  // previous declarations.
2445  if (NewFD->isInline() && getLangOptions().C99 &&
2446      NewFD->getStorageClass() == FunctionDecl::None &&
2447      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2448    NewFD->setC99InlineDefinition(true);
2449
2450  // Check for a previous declaration of this name.
2451  if (!PrevDecl && NewFD->isExternC(Context)) {
2452    // Since we did not find anything by this name and we're declaring
2453    // an extern "C" function, look for a non-visible extern "C"
2454    // declaration with the same name.
2455    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2456      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2457    if (Pos != LocallyScopedExternalDecls.end())
2458      PrevDecl = Pos->second;
2459  }
2460
2461  // Merge or overload the declaration with an existing declaration of
2462  // the same name, if appropriate.
2463  if (PrevDecl) {
2464    // Determine whether NewFD is an overload of PrevDecl or
2465    // a declaration that requires merging. If it's an overload,
2466    // there's no more work to do here; we'll just add the new
2467    // function to the scope.
2468    OverloadedFunctionDecl::function_iterator MatchedDecl;
2469
2470    if (!getLangOptions().CPlusPlus &&
2471        AllowOverloadingOfFunction(PrevDecl, Context)) {
2472      OverloadableAttrRequired = true;
2473
2474      // Functions marked "overloadable" must have a prototype (that
2475      // we can't get through declaration merging).
2476      if (!NewFD->getType()->getAsFunctionProtoType()) {
2477        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2478          << NewFD;
2479        Redeclaration = true;
2480
2481        // Turn this into a variadic function with no parameters.
2482        QualType R = Context.getFunctionType(
2483                       NewFD->getType()->getAsFunctionType()->getResultType(),
2484                       0, 0, true, 0);
2485        NewFD->setType(R);
2486        return NewFD->setInvalidDecl();
2487      }
2488    }
2489
2490    if (PrevDecl &&
2491        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2492         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2493        !isa<UsingDecl>(PrevDecl)) {
2494      Redeclaration = true;
2495      Decl *OldDecl = PrevDecl;
2496
2497      // If PrevDecl was an overloaded function, extract the
2498      // FunctionDecl that matched.
2499      if (isa<OverloadedFunctionDecl>(PrevDecl))
2500        OldDecl = *MatchedDecl;
2501
2502      // NewFD and OldDecl represent declarations that need to be
2503      // merged.
2504      if (MergeFunctionDecl(NewFD, OldDecl))
2505        return NewFD->setInvalidDecl();
2506
2507      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2508    }
2509  }
2510
2511  // In C++, check default arguments now that we have merged decls. Unless
2512  // the lexical context is the class, because in this case this is done
2513  // during delayed parsing anyway.
2514  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2515    CheckCXXDefaultArguments(NewFD);
2516}
2517
2518bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2519  // FIXME: Need strict checking.  In C89, we need to check for
2520  // any assignment, increment, decrement, function-calls, or
2521  // commas outside of a sizeof.  In C99, it's the same list,
2522  // except that the aforementioned are allowed in unevaluated
2523  // expressions.  Everything else falls under the
2524  // "may accept other forms of constant expressions" exception.
2525  // (We never end up here for C++, so the constant expression
2526  // rules there don't matter.)
2527  if (Init->isConstantInitializer(Context))
2528    return false;
2529  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2530    << Init->getSourceRange();
2531  return true;
2532}
2533
2534void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2535  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2536}
2537
2538/// AddInitializerToDecl - Adds the initializer Init to the
2539/// declaration dcl. If DirectInit is true, this is C++ direct
2540/// initialization rather than copy initialization.
2541void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2542  Decl *RealDecl = dcl.getAs<Decl>();
2543  // If there is no declaration, there was an error parsing it.  Just ignore
2544  // the initializer.
2545  if (RealDecl == 0)
2546    return;
2547
2548  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2549    // With declarators parsed the way they are, the parser cannot
2550    // distinguish between a normal initializer and a pure-specifier.
2551    // Thus this grotesque test.
2552    IntegerLiteral *IL;
2553    Expr *Init = static_cast<Expr *>(init.get());
2554    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2555        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2556      if (Method->isVirtualAsWritten()) {
2557        Method->setPure();
2558
2559        // A class is abstract if at least one function is pure virtual.
2560        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2561      } else if (!Method->isInvalidDecl()) {
2562        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2563          << Method->getDeclName() << Init->getSourceRange();
2564        Method->setInvalidDecl();
2565      }
2566    } else {
2567      Diag(Method->getLocation(), diag::err_member_function_initialization)
2568        << Method->getDeclName() << Init->getSourceRange();
2569      Method->setInvalidDecl();
2570    }
2571    return;
2572  }
2573
2574  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2575  if (!VDecl) {
2576    if (getLangOptions().CPlusPlus &&
2577        RealDecl->getLexicalDeclContext()->isRecord() &&
2578        isa<NamedDecl>(RealDecl))
2579      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2580        << cast<NamedDecl>(RealDecl)->getDeclName();
2581    else
2582      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2583    RealDecl->setInvalidDecl();
2584    return;
2585  }
2586
2587  if (!VDecl->getType()->isArrayType() &&
2588      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2589                          diag::err_typecheck_decl_incomplete_type)) {
2590    RealDecl->setInvalidDecl();
2591    return;
2592  }
2593
2594  const VarDecl *Def = 0;
2595  if (VDecl->getDefinition(Def)) {
2596    Diag(VDecl->getLocation(), diag::err_redefinition)
2597      << VDecl->getDeclName();
2598    Diag(Def->getLocation(), diag::note_previous_definition);
2599    VDecl->setInvalidDecl();
2600    return;
2601  }
2602
2603  // Take ownership of the expression, now that we're sure we have somewhere
2604  // to put it.
2605  Expr *Init = init.takeAs<Expr>();
2606  assert(Init && "missing initializer");
2607
2608  // Get the decls type and save a reference for later, since
2609  // CheckInitializerTypes may change it.
2610  QualType DclT = VDecl->getType(), SavT = DclT;
2611  if (VDecl->isBlockVarDecl()) {
2612    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2613      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2614      VDecl->setInvalidDecl();
2615    } else if (!VDecl->isInvalidDecl()) {
2616      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2617                                VDecl->getDeclName(), DirectInit))
2618        VDecl->setInvalidDecl();
2619
2620      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2621      // Don't check invalid declarations to avoid emitting useless diagnostics.
2622      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2623        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2624          CheckForConstantInitializer(Init, DclT);
2625      }
2626    }
2627  } else if (VDecl->isStaticDataMember() &&
2628             VDecl->getLexicalDeclContext()->isRecord()) {
2629    // This is an in-class initialization for a static data member, e.g.,
2630    //
2631    // struct S {
2632    //   static const int value = 17;
2633    // };
2634
2635    // Attach the initializer
2636    VDecl->setInit(Context, Init);
2637
2638    // C++ [class.mem]p4:
2639    //   A member-declarator can contain a constant-initializer only
2640    //   if it declares a static member (9.4) of const integral or
2641    //   const enumeration type, see 9.4.2.
2642    QualType T = VDecl->getType();
2643    if (!T->isDependentType() &&
2644        (!Context.getCanonicalType(T).isConstQualified() ||
2645         !T->isIntegralType())) {
2646      Diag(VDecl->getLocation(), diag::err_member_initialization)
2647        << VDecl->getDeclName() << Init->getSourceRange();
2648      VDecl->setInvalidDecl();
2649    } else {
2650      // C++ [class.static.data]p4:
2651      //   If a static data member is of const integral or const
2652      //   enumeration type, its declaration in the class definition
2653      //   can specify a constant-initializer which shall be an
2654      //   integral constant expression (5.19).
2655      if (!Init->isTypeDependent() &&
2656          !Init->getType()->isIntegralType()) {
2657        // We have a non-dependent, non-integral or enumeration type.
2658        Diag(Init->getSourceRange().getBegin(),
2659             diag::err_in_class_initializer_non_integral_type)
2660          << Init->getType() << Init->getSourceRange();
2661        VDecl->setInvalidDecl();
2662      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2663        // Check whether the expression is a constant expression.
2664        llvm::APSInt Value;
2665        SourceLocation Loc;
2666        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2667          Diag(Loc, diag::err_in_class_initializer_non_constant)
2668            << Init->getSourceRange();
2669          VDecl->setInvalidDecl();
2670        } else if (!VDecl->getType()->isDependentType())
2671          ImpCastExprToType(Init, VDecl->getType());
2672      }
2673    }
2674  } else if (VDecl->isFileVarDecl()) {
2675    if (VDecl->getStorageClass() == VarDecl::Extern)
2676      Diag(VDecl->getLocation(), diag::warn_extern_init);
2677    if (!VDecl->isInvalidDecl())
2678      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2679                                VDecl->getDeclName(), DirectInit))
2680        VDecl->setInvalidDecl();
2681
2682    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2683    // Don't check invalid declarations to avoid emitting useless diagnostics.
2684    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2685      // C99 6.7.8p4. All file scoped initializers need to be constant.
2686      CheckForConstantInitializer(Init, DclT);
2687    }
2688  }
2689  // If the type changed, it means we had an incomplete type that was
2690  // completed by the initializer. For example:
2691  //   int ary[] = { 1, 3, 5 };
2692  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2693  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2694    VDecl->setType(DclT);
2695    Init->setType(DclT);
2696  }
2697
2698  // Attach the initializer to the decl.
2699  VDecl->setInit(Context, Init);
2700
2701  // If the previous declaration of VDecl was a tentative definition,
2702  // remove it from the set of tentative definitions.
2703  if (VDecl->getPreviousDeclaration() &&
2704      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2705    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2706      = TentativeDefinitions.find(VDecl->getDeclName());
2707    assert(Pos != TentativeDefinitions.end() &&
2708           "Unrecorded tentative definition?");
2709    TentativeDefinitions.erase(Pos);
2710  }
2711
2712  return;
2713}
2714
2715void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2716  Decl *RealDecl = dcl.getAs<Decl>();
2717
2718  // If there is no declaration, there was an error parsing it. Just ignore it.
2719  if (RealDecl == 0)
2720    return;
2721
2722  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2723    QualType Type = Var->getType();
2724
2725    // Record tentative definitions.
2726    if (Var->isTentativeDefinition(Context))
2727      TentativeDefinitions[Var->getDeclName()] = Var;
2728
2729    // C++ [dcl.init.ref]p3:
2730    //   The initializer can be omitted for a reference only in a
2731    //   parameter declaration (8.3.5), in the declaration of a
2732    //   function return type, in the declaration of a class member
2733    //   within its class declaration (9.2), and where the extern
2734    //   specifier is explicitly used.
2735    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2736      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2737        << Var->getDeclName()
2738        << SourceRange(Var->getLocation(), Var->getLocation());
2739      Var->setInvalidDecl();
2740      return;
2741    }
2742
2743    // C++ [dcl.init]p9:
2744    //
2745    //   If no initializer is specified for an object, and the object
2746    //   is of (possibly cv-qualified) non-POD class type (or array
2747    //   thereof), the object shall be default-initialized; if the
2748    //   object is of const-qualified type, the underlying class type
2749    //   shall have a user-declared default constructor.
2750    if (getLangOptions().CPlusPlus) {
2751      QualType InitType = Type;
2752      if (const ArrayType *Array = Context.getAsArrayType(Type))
2753        InitType = Array->getElementType();
2754      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
2755          InitType->isRecordType() && !InitType->isDependentType()) {
2756        CXXRecordDecl *RD =
2757          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2758        CXXConstructorDecl *Constructor = 0;
2759        if (!RequireCompleteType(Var->getLocation(), InitType,
2760                                    diag::err_invalid_incomplete_type_use))
2761          Constructor
2762            = PerformInitializationByConstructor(InitType, 0, 0,
2763                                                 Var->getLocation(),
2764                                               SourceRange(Var->getLocation(),
2765                                                           Var->getLocation()),
2766                                                 Var->getDeclName(),
2767                                                 IK_Default);
2768        if (!Constructor)
2769          Var->setInvalidDecl();
2770        else
2771          if (!RD->hasTrivialConstructor())
2772            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2773      }
2774    }
2775
2776#if 0
2777    // FIXME: Temporarily disabled because we are not properly parsing
2778    // linkage specifications on declarations, e.g.,
2779    //
2780    //   extern "C" const CGPoint CGPointerZero;
2781    //
2782    // C++ [dcl.init]p9:
2783    //
2784    //     If no initializer is specified for an object, and the
2785    //     object is of (possibly cv-qualified) non-POD class type (or
2786    //     array thereof), the object shall be default-initialized; if
2787    //     the object is of const-qualified type, the underlying class
2788    //     type shall have a user-declared default
2789    //     constructor. Otherwise, if no initializer is specified for
2790    //     an object, the object and its subobjects, if any, have an
2791    //     indeterminate initial value; if the object or any of its
2792    //     subobjects are of const-qualified type, the program is
2793    //     ill-formed.
2794    //
2795    // This isn't technically an error in C, so we don't diagnose it.
2796    //
2797    // FIXME: Actually perform the POD/user-defined default
2798    // constructor check.
2799    if (getLangOptions().CPlusPlus &&
2800        Context.getCanonicalType(Type).isConstQualified() &&
2801        !Var->hasExternalStorage())
2802      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2803        << Var->getName()
2804        << SourceRange(Var->getLocation(), Var->getLocation());
2805#endif
2806  }
2807}
2808
2809Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2810                                                   DeclPtrTy *Group,
2811                                                   unsigned NumDecls) {
2812  llvm::SmallVector<Decl*, 8> Decls;
2813
2814  if (DS.isTypeSpecOwned())
2815    Decls.push_back((Decl*)DS.getTypeRep());
2816
2817  for (unsigned i = 0; i != NumDecls; ++i)
2818    if (Decl *D = Group[i].getAs<Decl>())
2819      Decls.push_back(D);
2820
2821  // Perform semantic analysis that depends on having fully processed both
2822  // the declarator and initializer.
2823  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2824    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2825    if (!IDecl)
2826      continue;
2827    QualType T = IDecl->getType();
2828
2829    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2830    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2831    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2832      if (!IDecl->isInvalidDecl() &&
2833          RequireCompleteType(IDecl->getLocation(), T,
2834                              diag::err_typecheck_decl_incomplete_type))
2835        IDecl->setInvalidDecl();
2836    }
2837    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2838    // object that has file scope without an initializer, and without a
2839    // storage-class specifier or with the storage-class specifier "static",
2840    // constitutes a tentative definition. Note: A tentative definition with
2841    // external linkage is valid (C99 6.2.2p5).
2842    if (IDecl->isTentativeDefinition(Context)) {
2843      QualType CheckType = T;
2844      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2845
2846      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2847      if (ArrayT) {
2848        CheckType = ArrayT->getElementType();
2849        DiagID = diag::err_illegal_decl_array_incomplete_type;
2850      }
2851
2852      if (IDecl->isInvalidDecl()) {
2853        // Do nothing with invalid declarations
2854      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2855                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2856        // C99 6.9.2p3: If the declaration of an identifier for an object is
2857        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2858        // declared type shall not be an incomplete type.
2859        IDecl->setInvalidDecl();
2860      }
2861    }
2862  }
2863  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2864                                                   Decls.data(), Decls.size()));
2865}
2866
2867
2868/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2869/// to introduce parameters into function prototype scope.
2870Sema::DeclPtrTy
2871Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2872  const DeclSpec &DS = D.getDeclSpec();
2873
2874  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2875  VarDecl::StorageClass StorageClass = VarDecl::None;
2876  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2877    StorageClass = VarDecl::Register;
2878  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2879    Diag(DS.getStorageClassSpecLoc(),
2880         diag::err_invalid_storage_class_in_func_decl);
2881    D.getMutableDeclSpec().ClearStorageClassSpecs();
2882  }
2883
2884  if (D.getDeclSpec().isThreadSpecified())
2885    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2886
2887  DiagnoseFunctionSpecifiers(D);
2888
2889  // Check that there are no default arguments inside the type of this
2890  // parameter (C++ only).
2891  if (getLangOptions().CPlusPlus)
2892    CheckExtraCXXDefaultArguments(D);
2893
2894  TagDecl *OwnedDecl = 0;
2895  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
2896
2897  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
2898    // C++ [dcl.fct]p6:
2899    //   Types shall not be defined in return or parameter types.
2900    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
2901      << Context.getTypeDeclType(OwnedDecl);
2902  }
2903
2904  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2905  // Can this happen for params?  We already checked that they don't conflict
2906  // among each other.  Here they can only shadow globals, which is ok.
2907  IdentifierInfo *II = D.getIdentifier();
2908  if (II) {
2909    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2910      if (PrevDecl->isTemplateParameter()) {
2911        // Maybe we will complain about the shadowed template parameter.
2912        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2913        // Just pretend that we didn't see the previous declaration.
2914        PrevDecl = 0;
2915      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2916        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2917
2918        // Recover by removing the name
2919        II = 0;
2920        D.SetIdentifier(0, D.getIdentifierLoc());
2921      }
2922    }
2923  }
2924
2925  // Parameters can not be abstract class types.
2926  // For record types, this is done by the AbstractClassUsageDiagnoser once
2927  // the class has been completely parsed.
2928  if (!CurContext->isRecord() &&
2929      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2930                             diag::err_abstract_type_in_decl,
2931                             AbstractParamType))
2932    D.setInvalidType(true);
2933
2934  QualType T = adjustParameterType(parmDeclType);
2935
2936  ParmVarDecl *New;
2937  if (T == parmDeclType) // parameter type did not need adjustment
2938    New = ParmVarDecl::Create(Context, CurContext,
2939                              D.getIdentifierLoc(), II,
2940                              parmDeclType, StorageClass,
2941                              0);
2942  else // keep track of both the adjusted and unadjusted types
2943    New = OriginalParmVarDecl::Create(Context, CurContext,
2944                                      D.getIdentifierLoc(), II, T,
2945                                      parmDeclType, StorageClass, 0);
2946
2947  if (D.isInvalidType())
2948    New->setInvalidDecl();
2949
2950  // Parameter declarators cannot be interface types. All ObjC objects are
2951  // passed by reference.
2952  if (T->isObjCInterfaceType()) {
2953    Diag(D.getIdentifierLoc(),
2954         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2955    New->setInvalidDecl();
2956  }
2957
2958  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2959  if (D.getCXXScopeSpec().isSet()) {
2960    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2961      << D.getCXXScopeSpec().getRange();
2962    New->setInvalidDecl();
2963  }
2964
2965  // Add the parameter declaration into this scope.
2966  S->AddDecl(DeclPtrTy::make(New));
2967  if (II)
2968    IdResolver.AddDecl(New);
2969
2970  ProcessDeclAttributes(S, New, D);
2971
2972  if (New->hasAttr<BlocksAttr>(Context)) {
2973    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2974  }
2975  return DeclPtrTy::make(New);
2976}
2977
2978void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2979                                           SourceLocation LocAfterDecls) {
2980  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2981         "Not a function declarator!");
2982  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2983
2984  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2985  // for a K&R function.
2986  if (!FTI.hasPrototype) {
2987    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2988      --i;
2989      if (FTI.ArgInfo[i].Param == 0) {
2990        std::string Code = "  int ";
2991        Code += FTI.ArgInfo[i].Ident->getName();
2992        Code += ";\n";
2993        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2994          << FTI.ArgInfo[i].Ident
2995          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2996
2997        // Implicitly declare the argument as type 'int' for lack of a better
2998        // type.
2999        DeclSpec DS;
3000        const char* PrevSpec; // unused
3001        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3002                           PrevSpec);
3003        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3004        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3005        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3006      }
3007    }
3008  }
3009}
3010
3011Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3012                                              Declarator &D) {
3013  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3014  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3015         "Not a function declarator!");
3016  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3017
3018  if (FTI.hasPrototype) {
3019    // FIXME: Diagnose arguments without names in C.
3020  }
3021
3022  Scope *ParentScope = FnBodyScope->getParent();
3023
3024  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3025                                  MultiTemplateParamsArg(*this),
3026                                  /*IsFunctionDefinition=*/true);
3027  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3028}
3029
3030Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3031  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3032
3033  CurFunctionNeedsScopeChecking = false;
3034
3035  // See if this is a redefinition.
3036  const FunctionDecl *Definition;
3037  if (FD->getBody(Context, Definition)) {
3038    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3039    Diag(Definition->getLocation(), diag::note_previous_definition);
3040  }
3041
3042  // Builtin functions cannot be defined.
3043  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3044    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3045      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3046      FD->setInvalidDecl();
3047    }
3048  }
3049
3050  // The return type of a function definition must be complete
3051  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3052  QualType ResultType = FD->getResultType();
3053  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3054      !FD->isInvalidDecl() &&
3055      RequireCompleteType(FD->getLocation(), ResultType,
3056                          diag::err_func_def_incomplete_result))
3057    FD->setInvalidDecl();
3058
3059  // GNU warning -Wmissing-prototypes:
3060  //   Warn if a global function is defined without a previous
3061  //   prototype declaration. This warning is issued even if the
3062  //   definition itself provides a prototype. The aim is to detect
3063  //   global functions that fail to be declared in header files.
3064  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3065      !FD->isMain()) {
3066    bool MissingPrototype = true;
3067    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3068         Prev; Prev = Prev->getPreviousDeclaration()) {
3069      // Ignore any declarations that occur in function or method
3070      // scope, because they aren't visible from the header.
3071      if (Prev->getDeclContext()->isFunctionOrMethod())
3072        continue;
3073
3074      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3075      break;
3076    }
3077
3078    if (MissingPrototype)
3079      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3080  }
3081
3082  if (FnBodyScope)
3083    PushDeclContext(FnBodyScope, FD);
3084
3085  // Check the validity of our function parameters
3086  CheckParmsForFunctionDef(FD);
3087
3088  // Introduce our parameters into the function scope
3089  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3090    ParmVarDecl *Param = FD->getParamDecl(p);
3091    Param->setOwningFunction(FD);
3092
3093    // If this has an identifier, add it to the scope stack.
3094    if (Param->getIdentifier() && FnBodyScope)
3095      PushOnScopeChains(Param, FnBodyScope);
3096  }
3097
3098  // Checking attributes of current function definition
3099  // dllimport attribute.
3100  if (FD->getAttr<DLLImportAttr>(Context) &&
3101      (!FD->getAttr<DLLExportAttr>(Context))) {
3102    // dllimport attribute cannot be applied to definition.
3103    if (!(FD->getAttr<DLLImportAttr>(Context))->isInherited()) {
3104      Diag(FD->getLocation(),
3105           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3106        << "dllimport";
3107      FD->setInvalidDecl();
3108      return DeclPtrTy::make(FD);
3109    } else {
3110      // If a symbol previously declared dllimport is later defined, the
3111      // attribute is ignored in subsequent references, and a warning is
3112      // emitted.
3113      Diag(FD->getLocation(),
3114           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3115        << FD->getNameAsCString() << "dllimport";
3116    }
3117  }
3118  return DeclPtrTy::make(FD);
3119}
3120
3121Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3122  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3123}
3124
3125Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3126                                              bool IsInstantiation) {
3127  Decl *dcl = D.getAs<Decl>();
3128  Stmt *Body = BodyArg.takeAs<Stmt>();
3129  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3130    FD->setBody(Body);
3131
3132    if (!FD->isInvalidDecl())
3133      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3134
3135    // C++ [basic.def.odr]p2:
3136    //   [...] A virtual member function is used if it is not pure. [...]
3137    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3138      if (Method->isVirtual() && !Method->isPure())
3139        MarkDeclarationReferenced(Method->getLocation(), Method);
3140
3141    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3142  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3143    assert(MD == getCurMethodDecl() && "Method parsing confused");
3144    MD->setBody(Body);
3145
3146    if (!MD->isInvalidDecl())
3147      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3148  } else {
3149    Body->Destroy(Context);
3150    return DeclPtrTy();
3151  }
3152  if (!IsInstantiation)
3153    PopDeclContext();
3154
3155  // Verify and clean out per-function state.
3156
3157  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3158
3159  // Check goto/label use.
3160  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3161       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3162    LabelStmt *L = I->second;
3163
3164    // Verify that we have no forward references left.  If so, there was a goto
3165    // or address of a label taken, but no definition of it.  Label fwd
3166    // definitions are indicated with a null substmt.
3167    if (L->getSubStmt() != 0)
3168      continue;
3169
3170    // Emit error.
3171    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3172
3173    // At this point, we have gotos that use the bogus label.  Stitch it into
3174    // the function body so that they aren't leaked and that the AST is well
3175    // formed.
3176    if (Body == 0) {
3177      // The whole function wasn't parsed correctly, just delete this.
3178      L->Destroy(Context);
3179      continue;
3180    }
3181
3182    // Otherwise, the body is valid: we want to stitch the label decl into the
3183    // function somewhere so that it is properly owned and so that the goto
3184    // has a valid target.  Do this by creating a new compound stmt with the
3185    // label in it.
3186
3187    // Give the label a sub-statement.
3188    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3189
3190    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3191                               cast<CXXTryStmt>(Body)->getTryBlock() :
3192                               cast<CompoundStmt>(Body);
3193    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3194    Elements.push_back(L);
3195    Compound->setStmts(Context, &Elements[0], Elements.size());
3196  }
3197  FunctionLabelMap.clear();
3198
3199  if (!Body) return D;
3200
3201  // Verify that that gotos and switch cases don't jump into scopes illegally.
3202  if (CurFunctionNeedsScopeChecking)
3203    DiagnoseInvalidJumps(Body);
3204
3205  // C++ constructors that have function-try-blocks can't have return statements
3206  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
3207  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3208    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3209
3210  return D;
3211}
3212
3213/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3214/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3215NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3216                                          IdentifierInfo &II, Scope *S) {
3217  // Before we produce a declaration for an implicitly defined
3218  // function, see whether there was a locally-scoped declaration of
3219  // this name as a function or variable. If so, use that
3220  // (non-visible) declaration, and complain about it.
3221  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3222    = LocallyScopedExternalDecls.find(&II);
3223  if (Pos != LocallyScopedExternalDecls.end()) {
3224    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3225    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3226    return Pos->second;
3227  }
3228
3229  // Extension in C99.  Legal in C90, but warn about it.
3230  if (getLangOptions().C99)
3231    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3232  else
3233    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3234
3235  // FIXME: handle stuff like:
3236  // void foo() { extern float X(); }
3237  // void bar() { X(); }  <-- implicit decl for X in another scope.
3238
3239  // Set a Declarator for the implicit definition: int foo();
3240  const char *Dummy;
3241  DeclSpec DS;
3242  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3243  Error = Error; // Silence warning.
3244  assert(!Error && "Error setting up implicit decl!");
3245  Declarator D(DS, Declarator::BlockContext);
3246  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3247                                             0, 0, false, SourceLocation(),
3248                                             false, 0,0,0, Loc, D),
3249                SourceLocation());
3250  D.SetIdentifier(&II, Loc);
3251
3252  // Insert this function into translation-unit scope.
3253
3254  DeclContext *PrevDC = CurContext;
3255  CurContext = Context.getTranslationUnitDecl();
3256
3257  FunctionDecl *FD =
3258 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3259  FD->setImplicit();
3260
3261  CurContext = PrevDC;
3262
3263  AddKnownFunctionAttributes(FD);
3264
3265  return FD;
3266}
3267
3268/// \brief Adds any function attributes that we know a priori based on
3269/// the declaration of this function.
3270///
3271/// These attributes can apply both to implicitly-declared builtins
3272/// (like __builtin___printf_chk) or to library-declared functions
3273/// like NSLog or printf.
3274void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3275  if (FD->isInvalidDecl())
3276    return;
3277
3278  // If this is a built-in function, map its builtin attributes to
3279  // actual attributes.
3280  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3281    // Handle printf-formatting attributes.
3282    unsigned FormatIdx;
3283    bool HasVAListArg;
3284    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3285      if (!FD->getAttr<FormatAttr>(Context))
3286        FD->addAttr(Context,
3287                    ::new (Context) FormatAttr("printf", FormatIdx + 1,
3288                                             HasVAListArg ? 0 : FormatIdx + 2));
3289    }
3290
3291    // Mark const if we don't care about errno and that is the only
3292    // thing preventing the function from being const. This allows
3293    // IRgen to use LLVM intrinsics for such functions.
3294    if (!getLangOptions().MathErrno &&
3295        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3296      if (!FD->getAttr<ConstAttr>(Context))
3297        FD->addAttr(Context, ::new (Context) ConstAttr());
3298    }
3299  }
3300
3301  IdentifierInfo *Name = FD->getIdentifier();
3302  if (!Name)
3303    return;
3304  if ((!getLangOptions().CPlusPlus &&
3305       FD->getDeclContext()->isTranslationUnit()) ||
3306      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3307       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3308       LinkageSpecDecl::lang_c)) {
3309    // Okay: this could be a libc/libm/Objective-C function we know
3310    // about.
3311  } else
3312    return;
3313
3314  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3315    if (const FormatAttr *Format = FD->getAttr<FormatAttr>(Context)) {
3316      // FIXME: We known better than our headers.
3317      const_cast<FormatAttr *>(Format)->setType("printf");
3318    } else
3319      FD->addAttr(Context,
3320                  ::new (Context) FormatAttr("printf", 1,
3321                                             Name->isStr("NSLogv") ? 0 : 2));
3322  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3323    if (!FD->getAttr<FormatAttr>(Context))
3324      FD->addAttr(Context,
3325                  ::new (Context) FormatAttr("printf", 2,
3326                                             Name->isStr("vasprintf") ? 0 : 3));
3327  }
3328}
3329
3330TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3331  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3332  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3333
3334  // Scope manipulation handled by caller.
3335  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3336                                           D.getIdentifierLoc(),
3337                                           D.getIdentifier(),
3338                                           T);
3339
3340  if (TagType *TT = dyn_cast<TagType>(T)) {
3341    TagDecl *TD = TT->getDecl();
3342
3343    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3344    // keep track of the TypedefDecl.
3345    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3346      TD->setTypedefForAnonDecl(NewTD);
3347  }
3348
3349  if (D.isInvalidType())
3350    NewTD->setInvalidDecl();
3351  return NewTD;
3352}
3353
3354
3355/// \brief Determine whether a tag with a given kind is acceptable
3356/// as a redeclaration of the given tag declaration.
3357///
3358/// \returns true if the new tag kind is acceptable, false otherwise.
3359bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3360                                        TagDecl::TagKind NewTag,
3361                                        SourceLocation NewTagLoc,
3362                                        const IdentifierInfo &Name) {
3363  // C++ [dcl.type.elab]p3:
3364  //   The class-key or enum keyword present in the
3365  //   elaborated-type-specifier shall agree in kind with the
3366  //   declaration to which the name in theelaborated-type-specifier
3367  //   refers. This rule also applies to the form of
3368  //   elaborated-type-specifier that declares a class-name or
3369  //   friend class since it can be construed as referring to the
3370  //   definition of the class. Thus, in any
3371  //   elaborated-type-specifier, the enum keyword shall be used to
3372  //   refer to an enumeration (7.2), the union class-keyshall be
3373  //   used to refer to a union (clause 9), and either the class or
3374  //   struct class-key shall be used to refer to a class (clause 9)
3375  //   declared using the class or struct class-key.
3376  TagDecl::TagKind OldTag = Previous->getTagKind();
3377  if (OldTag == NewTag)
3378    return true;
3379
3380  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3381      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3382    // Warn about the struct/class tag mismatch.
3383    bool isTemplate = false;
3384    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3385      isTemplate = Record->getDescribedClassTemplate();
3386
3387    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3388      << (NewTag == TagDecl::TK_class)
3389      << isTemplate << &Name
3390      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3391                              OldTag == TagDecl::TK_class? "class" : "struct");
3392    Diag(Previous->getLocation(), diag::note_previous_use);
3393    return true;
3394  }
3395  return false;
3396}
3397
3398/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3399/// former case, Name will be non-null.  In the later case, Name will be null.
3400/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3401/// reference/declaration/definition of a tag.
3402Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3403                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3404                               IdentifierInfo *Name, SourceLocation NameLoc,
3405                               AttributeList *Attr, AccessSpecifier AS,
3406                               bool &OwnedDecl) {
3407  // If this is not a definition, it must have a name.
3408  assert((Name != 0 || TK == TK_Definition) &&
3409         "Nameless record must be a definition!");
3410
3411  OwnedDecl = false;
3412  TagDecl::TagKind Kind;
3413  switch (TagSpec) {
3414  default: assert(0 && "Unknown tag type!");
3415  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3416  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3417  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3418  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3419  }
3420
3421  DeclContext *SearchDC = CurContext;
3422  DeclContext *DC = CurContext;
3423  NamedDecl *PrevDecl = 0;
3424
3425  bool Invalid = false;
3426
3427  if (Name && SS.isNotEmpty()) {
3428    // We have a nested-name tag ('struct foo::bar').
3429
3430    // Check for invalid 'foo::'.
3431    if (SS.isInvalid()) {
3432      Name = 0;
3433      goto CreateNewDecl;
3434    }
3435
3436    if (RequireCompleteDeclContext(SS))
3437      return DeclPtrTy::make((Decl *)0);
3438
3439    DC = computeDeclContext(SS);
3440    SearchDC = DC;
3441    // Look-up name inside 'foo::'.
3442    PrevDecl
3443      = dyn_cast_or_null<TagDecl>(
3444               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3445
3446    // A tag 'foo::bar' must already exist.
3447    if (PrevDecl == 0) {
3448      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3449      Name = 0;
3450      Invalid = true;
3451      goto CreateNewDecl;
3452    }
3453  } else if (Name) {
3454    // If this is a named struct, check to see if there was a previous forward
3455    // declaration or definition.
3456    // FIXME: We're looking into outer scopes here, even when we
3457    // shouldn't be. Doing so can result in ambiguities that we
3458    // shouldn't be diagnosing.
3459    LookupResult R = LookupName(S, Name, LookupTagName,
3460                                /*RedeclarationOnly=*/(TK != TK_Reference));
3461    if (R.isAmbiguous()) {
3462      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3463      // FIXME: This is not best way to recover from case like:
3464      //
3465      // struct S s;
3466      //
3467      // causes needless "incomplete type" error later.
3468      Name = 0;
3469      PrevDecl = 0;
3470      Invalid = true;
3471    }
3472    else
3473      PrevDecl = R;
3474
3475    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3476      // FIXME: This makes sure that we ignore the contexts associated
3477      // with C structs, unions, and enums when looking for a matching
3478      // tag declaration or definition. See the similar lookup tweak
3479      // in Sema::LookupName; is there a better way to deal with this?
3480      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3481        SearchDC = SearchDC->getParent();
3482    }
3483  }
3484
3485  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3486    // Maybe we will complain about the shadowed template parameter.
3487    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3488    // Just pretend that we didn't see the previous declaration.
3489    PrevDecl = 0;
3490  }
3491
3492  if (PrevDecl) {
3493    // Check whether the previous declaration is usable.
3494    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3495
3496    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3497      // If this is a use of a previous tag, or if the tag is already declared
3498      // in the same scope (so that the definition/declaration completes or
3499      // rementions the tag), reuse the decl.
3500      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3501        // Make sure that this wasn't declared as an enum and now used as a
3502        // struct or something similar.
3503        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3504          bool SafeToContinue
3505            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3506               Kind != TagDecl::TK_enum);
3507          if (SafeToContinue)
3508            Diag(KWLoc, diag::err_use_with_wrong_tag)
3509              << Name
3510              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3511                                                  PrevTagDecl->getKindName());
3512          else
3513            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3514          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3515
3516          if (SafeToContinue)
3517            Kind = PrevTagDecl->getTagKind();
3518          else {
3519            // Recover by making this an anonymous redefinition.
3520            Name = 0;
3521            PrevDecl = 0;
3522            Invalid = true;
3523          }
3524        }
3525
3526        if (!Invalid) {
3527          // If this is a use, just return the declaration we found.
3528
3529          // FIXME: In the future, return a variant or some other clue
3530          // for the consumer of this Decl to know it doesn't own it.
3531          // For our current ASTs this shouldn't be a problem, but will
3532          // need to be changed with DeclGroups.
3533          if (TK == TK_Reference)
3534            return DeclPtrTy::make(PrevDecl);
3535
3536          // Diagnose attempts to redefine a tag.
3537          if (TK == TK_Definition) {
3538            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3539              Diag(NameLoc, diag::err_redefinition) << Name;
3540              Diag(Def->getLocation(), diag::note_previous_definition);
3541              // If this is a redefinition, recover by making this
3542              // struct be anonymous, which will make any later
3543              // references get the previous definition.
3544              Name = 0;
3545              PrevDecl = 0;
3546              Invalid = true;
3547            } else {
3548              // If the type is currently being defined, complain
3549              // about a nested redefinition.
3550              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3551              if (Tag->isBeingDefined()) {
3552                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3553                Diag(PrevTagDecl->getLocation(),
3554                     diag::note_previous_definition);
3555                Name = 0;
3556                PrevDecl = 0;
3557                Invalid = true;
3558              }
3559            }
3560
3561            // Okay, this is definition of a previously declared or referenced
3562            // tag PrevDecl. We're going to create a new Decl for it.
3563          }
3564        }
3565        // If we get here we have (another) forward declaration or we
3566        // have a definition.  Just create a new decl.
3567      } else {
3568        // If we get here, this is a definition of a new tag type in a nested
3569        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3570        // new decl/type.  We set PrevDecl to NULL so that the entities
3571        // have distinct types.
3572        PrevDecl = 0;
3573      }
3574      // If we get here, we're going to create a new Decl. If PrevDecl
3575      // is non-NULL, it's a definition of the tag declared by
3576      // PrevDecl. If it's NULL, we have a new definition.
3577    } else {
3578      // PrevDecl is a namespace, template, or anything else
3579      // that lives in the IDNS_Tag identifier namespace.
3580      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3581        // The tag name clashes with a namespace name, issue an error and
3582        // recover by making this tag be anonymous.
3583        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3584        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3585        Name = 0;
3586        PrevDecl = 0;
3587        Invalid = true;
3588      } else {
3589        // The existing declaration isn't relevant to us; we're in a
3590        // new scope, so clear out the previous declaration.
3591        PrevDecl = 0;
3592      }
3593    }
3594  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3595             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3596    // C++ [basic.scope.pdecl]p5:
3597    //   -- for an elaborated-type-specifier of the form
3598    //
3599    //          class-key identifier
3600    //
3601    //      if the elaborated-type-specifier is used in the
3602    //      decl-specifier-seq or parameter-declaration-clause of a
3603    //      function defined in namespace scope, the identifier is
3604    //      declared as a class-name in the namespace that contains
3605    //      the declaration; otherwise, except as a friend
3606    //      declaration, the identifier is declared in the smallest
3607    //      non-class, non-function-prototype scope that contains the
3608    //      declaration.
3609    //
3610    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3611    // C structs and unions.
3612    //
3613    // GNU C also supports this behavior as part of its incomplete
3614    // enum types extension, while GNU C++ does not.
3615    //
3616    // Find the context where we'll be declaring the tag.
3617    // FIXME: We would like to maintain the current DeclContext as the
3618    // lexical context,
3619    while (SearchDC->isRecord())
3620      SearchDC = SearchDC->getParent();
3621
3622    // Find the scope where we'll be declaring the tag.
3623    while (S->isClassScope() ||
3624           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3625           ((S->getFlags() & Scope::DeclScope) == 0) ||
3626           (S->getEntity() &&
3627            ((DeclContext *)S->getEntity())->isTransparentContext()))
3628      S = S->getParent();
3629  }
3630
3631CreateNewDecl:
3632
3633  // If there is an identifier, use the location of the identifier as the
3634  // location of the decl, otherwise use the location of the struct/union
3635  // keyword.
3636  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3637
3638  // Otherwise, create a new declaration. If there is a previous
3639  // declaration of the same entity, the two will be linked via
3640  // PrevDecl.
3641  TagDecl *New;
3642
3643  if (Kind == TagDecl::TK_enum) {
3644    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3645    // enum X { A, B, C } D;    D should chain to X.
3646    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3647                           cast_or_null<EnumDecl>(PrevDecl));
3648    // If this is an undefined enum, warn.
3649    if (TK != TK_Definition && !Invalid)  {
3650      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3651                                              : diag::ext_forward_ref_enum;
3652      Diag(Loc, DK);
3653    }
3654  } else {
3655    // struct/union/class
3656
3657    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3658    // struct X { int A; } D;    D should chain to X.
3659    if (getLangOptions().CPlusPlus)
3660      // FIXME: Look for a way to use RecordDecl for simple structs.
3661      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3662                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3663    else
3664      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3665                               cast_or_null<RecordDecl>(PrevDecl));
3666  }
3667
3668  if (Kind != TagDecl::TK_enum) {
3669    // Handle #pragma pack: if the #pragma pack stack has non-default
3670    // alignment, make up a packed attribute for this decl. These
3671    // attributes are checked when the ASTContext lays out the
3672    // structure.
3673    //
3674    // It is important for implementing the correct semantics that this
3675    // happen here (in act on tag decl). The #pragma pack stack is
3676    // maintained as a result of parser callbacks which can occur at
3677    // many points during the parsing of a struct declaration (because
3678    // the #pragma tokens are effectively skipped over during the
3679    // parsing of the struct).
3680    if (unsigned Alignment = getPragmaPackAlignment())
3681      New->addAttr(Context, ::new (Context) PackedAttr(Alignment * 8));
3682  }
3683
3684  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3685    // C++ [dcl.typedef]p3:
3686    //   [...] Similarly, in a given scope, a class or enumeration
3687    //   shall not be declared with the same name as a typedef-name
3688    //   that is declared in that scope and refers to a type other
3689    //   than the class or enumeration itself.
3690    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3691    TypedefDecl *PrevTypedef = 0;
3692    if (Lookup.getKind() == LookupResult::Found)
3693      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3694
3695    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3696        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3697          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3698      Diag(Loc, diag::err_tag_definition_of_typedef)
3699        << Context.getTypeDeclType(New)
3700        << PrevTypedef->getUnderlyingType();
3701      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3702      Invalid = true;
3703    }
3704  }
3705
3706  if (Invalid)
3707    New->setInvalidDecl();
3708
3709  if (Attr)
3710    ProcessDeclAttributeList(S, New, Attr);
3711
3712  // If we're declaring or defining a tag in function prototype scope
3713  // in C, note that this type can only be used within the function.
3714  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3715    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3716
3717  // Set the lexical context. If the tag has a C++ scope specifier, the
3718  // lexical context will be different from the semantic context.
3719  New->setLexicalDeclContext(CurContext);
3720
3721  // Set the access specifier.
3722  if (!Invalid)
3723    SetMemberAccessSpecifier(New, PrevDecl, AS);
3724
3725  if (TK == TK_Definition)
3726    New->startDefinition();
3727
3728  // If this has an identifier, add it to the scope stack.
3729  if (Name) {
3730    S = getNonFieldDeclScope(S);
3731    PushOnScopeChains(New, S);
3732  } else {
3733    CurContext->addDecl(Context, New);
3734  }
3735
3736  OwnedDecl = true;
3737  return DeclPtrTy::make(New);
3738}
3739
3740void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3741  AdjustDeclIfTemplate(TagD);
3742  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3743
3744  // Enter the tag context.
3745  PushDeclContext(S, Tag);
3746
3747  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3748    FieldCollector->StartClass();
3749
3750    if (Record->getIdentifier()) {
3751      // C++ [class]p2:
3752      //   [...] The class-name is also inserted into the scope of the
3753      //   class itself; this is known as the injected-class-name. For
3754      //   purposes of access checking, the injected-class-name is treated
3755      //   as if it were a public member name.
3756      CXXRecordDecl *InjectedClassName
3757        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3758                                CurContext, Record->getLocation(),
3759                                Record->getIdentifier(), Record);
3760      InjectedClassName->setImplicit();
3761      InjectedClassName->setAccess(AS_public);
3762      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3763        InjectedClassName->setDescribedClassTemplate(Template);
3764      PushOnScopeChains(InjectedClassName, S);
3765      assert(InjectedClassName->isInjectedClassName() &&
3766             "Broken injected-class-name");
3767    }
3768  }
3769}
3770
3771void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3772  AdjustDeclIfTemplate(TagD);
3773  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3774
3775  if (isa<CXXRecordDecl>(Tag))
3776    FieldCollector->FinishClass();
3777
3778  // Exit this scope of this tag's definition.
3779  PopDeclContext();
3780
3781  // Notify the consumer that we've defined a tag.
3782  Consumer.HandleTagDeclDefinition(Tag);
3783}
3784
3785// Note that FieldName may be null for anonymous bitfields.
3786bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3787                          QualType FieldTy, const Expr *BitWidth) {
3788
3789  // C99 6.7.2.1p4 - verify the field type.
3790  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3791  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3792    // Handle incomplete types with specific error.
3793    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3794      return true;
3795    if (FieldName)
3796      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3797        << FieldName << FieldTy << BitWidth->getSourceRange();
3798    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3799      << FieldTy << BitWidth->getSourceRange();
3800  }
3801
3802  // If the bit-width is type- or value-dependent, don't try to check
3803  // it now.
3804  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3805    return false;
3806
3807  llvm::APSInt Value;
3808  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3809    return true;
3810
3811  // Zero-width bitfield is ok for anonymous field.
3812  if (Value == 0 && FieldName)
3813    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3814
3815  if (Value.isSigned() && Value.isNegative()) {
3816    if (FieldName)
3817      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3818               << FieldName << Value.toString(10);
3819    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3820      << Value.toString(10);
3821  }
3822
3823  if (!FieldTy->isDependentType()) {
3824    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3825    if (Value.getZExtValue() > TypeSize) {
3826      if (FieldName)
3827        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3828          << FieldName << (unsigned)TypeSize;
3829      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3830        << (unsigned)TypeSize;
3831    }
3832  }
3833
3834  return false;
3835}
3836
3837/// ActOnField - Each field of a struct/union/class is passed into this in order
3838/// to create a FieldDecl object for it.
3839Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3840                                 SourceLocation DeclStart,
3841                                 Declarator &D, ExprTy *BitfieldWidth) {
3842  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3843                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3844                               AS_public);
3845  return DeclPtrTy::make(Res);
3846}
3847
3848/// HandleField - Analyze a field of a C struct or a C++ data member.
3849///
3850FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3851                             SourceLocation DeclStart,
3852                             Declarator &D, Expr *BitWidth,
3853                             AccessSpecifier AS) {
3854  IdentifierInfo *II = D.getIdentifier();
3855  SourceLocation Loc = DeclStart;
3856  if (II) Loc = D.getIdentifierLoc();
3857
3858  QualType T = GetTypeForDeclarator(D, S);
3859  if (getLangOptions().CPlusPlus)
3860    CheckExtraCXXDefaultArguments(D);
3861
3862  DiagnoseFunctionSpecifiers(D);
3863
3864  if (D.getDeclSpec().isThreadSpecified())
3865    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3866
3867  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3868
3869  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3870    // Maybe we will complain about the shadowed template parameter.
3871    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3872    // Just pretend that we didn't see the previous declaration.
3873    PrevDecl = 0;
3874  }
3875
3876  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3877    PrevDecl = 0;
3878
3879  FieldDecl *NewFD
3880    = CheckFieldDecl(II, T, Record, Loc,
3881               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3882                     BitWidth, AS, PrevDecl, &D);
3883  if (NewFD->isInvalidDecl() && PrevDecl) {
3884    // Don't introduce NewFD into scope; there's already something
3885    // with the same name in the same scope.
3886  } else if (II) {
3887    PushOnScopeChains(NewFD, S);
3888  } else
3889    Record->addDecl(Context, NewFD);
3890
3891  return NewFD;
3892}
3893
3894/// \brief Build a new FieldDecl and check its well-formedness.
3895///
3896/// This routine builds a new FieldDecl given the fields name, type,
3897/// record, etc. \p PrevDecl should refer to any previous declaration
3898/// with the same name and in the same scope as the field to be
3899/// created.
3900///
3901/// \returns a new FieldDecl.
3902///
3903/// \todo The Declarator argument is a hack. It will be removed once
3904FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3905                                RecordDecl *Record, SourceLocation Loc,
3906                                bool Mutable, Expr *BitWidth,
3907                                AccessSpecifier AS, NamedDecl *PrevDecl,
3908                                Declarator *D) {
3909  IdentifierInfo *II = Name.getAsIdentifierInfo();
3910  bool InvalidDecl = false;
3911  if (D) InvalidDecl = D->isInvalidType();
3912
3913  // If we receive a broken type, recover by assuming 'int' and
3914  // marking this declaration as invalid.
3915  if (T.isNull()) {
3916    InvalidDecl = true;
3917    T = Context.IntTy;
3918  }
3919
3920  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3921  // than a variably modified type.
3922  if (T->isVariablyModifiedType()) {
3923    bool SizeIsNegative;
3924    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3925                                                           SizeIsNegative);
3926    if (!FixedTy.isNull()) {
3927      Diag(Loc, diag::warn_illegal_constant_array_size);
3928      T = FixedTy;
3929    } else {
3930      if (SizeIsNegative)
3931        Diag(Loc, diag::err_typecheck_negative_array_size);
3932      else
3933        Diag(Loc, diag::err_typecheck_field_variable_size);
3934      T = Context.IntTy;
3935      InvalidDecl = true;
3936    }
3937  }
3938
3939  // Fields can not have abstract class types
3940  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3941                             AbstractFieldType))
3942    InvalidDecl = true;
3943
3944  // If this is declared as a bit-field, check the bit-field.
3945  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3946    InvalidDecl = true;
3947    DeleteExpr(BitWidth);
3948    BitWidth = 0;
3949  }
3950
3951  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3952                                       Mutable);
3953  if (InvalidDecl)
3954    NewFD->setInvalidDecl();
3955
3956  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3957    Diag(Loc, diag::err_duplicate_member) << II;
3958    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3959    NewFD->setInvalidDecl();
3960  }
3961
3962  if (getLangOptions().CPlusPlus && !T->isPODType())
3963    cast<CXXRecordDecl>(Record)->setPOD(false);
3964
3965  // FIXME: We need to pass in the attributes given an AST
3966  // representation, not a parser representation.
3967  if (D)
3968    // FIXME: What to pass instead of TUScope?
3969    ProcessDeclAttributes(TUScope, NewFD, *D);
3970
3971  if (T.isObjCGCWeak())
3972    Diag(Loc, diag::warn_attribute_weak_on_field);
3973
3974  NewFD->setAccess(AS);
3975
3976  // C++ [dcl.init.aggr]p1:
3977  //   An aggregate is an array or a class (clause 9) with [...] no
3978  //   private or protected non-static data members (clause 11).
3979  // A POD must be an aggregate.
3980  if (getLangOptions().CPlusPlus &&
3981      (AS == AS_private || AS == AS_protected)) {
3982    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3983    CXXRecord->setAggregate(false);
3984    CXXRecord->setPOD(false);
3985  }
3986
3987  return NewFD;
3988}
3989
3990/// TranslateIvarVisibility - Translate visibility from a token ID to an
3991///  AST enum value.
3992static ObjCIvarDecl::AccessControl
3993TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3994  switch (ivarVisibility) {
3995  default: assert(0 && "Unknown visitibility kind");
3996  case tok::objc_private: return ObjCIvarDecl::Private;
3997  case tok::objc_public: return ObjCIvarDecl::Public;
3998  case tok::objc_protected: return ObjCIvarDecl::Protected;
3999  case tok::objc_package: return ObjCIvarDecl::Package;
4000  }
4001}
4002
4003/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4004/// in order to create an IvarDecl object for it.
4005Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4006                                SourceLocation DeclStart,
4007                                DeclPtrTy IntfDecl,
4008                                Declarator &D, ExprTy *BitfieldWidth,
4009                                tok::ObjCKeywordKind Visibility) {
4010
4011  IdentifierInfo *II = D.getIdentifier();
4012  Expr *BitWidth = (Expr*)BitfieldWidth;
4013  SourceLocation Loc = DeclStart;
4014  if (II) Loc = D.getIdentifierLoc();
4015
4016  // FIXME: Unnamed fields can be handled in various different ways, for
4017  // example, unnamed unions inject all members into the struct namespace!
4018
4019  QualType T = GetTypeForDeclarator(D, S);
4020
4021  if (BitWidth) {
4022    // 6.7.2.1p3, 6.7.2.1p4
4023    if (VerifyBitField(Loc, II, T, BitWidth)) {
4024      D.setInvalidType();
4025      DeleteExpr(BitWidth);
4026      BitWidth = 0;
4027    }
4028  } else {
4029    // Not a bitfield.
4030
4031    // validate II.
4032
4033  }
4034
4035  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4036  // than a variably modified type.
4037  if (T->isVariablyModifiedType()) {
4038    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4039    D.setInvalidType();
4040  }
4041
4042  // Get the visibility (access control) for this ivar.
4043  ObjCIvarDecl::AccessControl ac =
4044    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4045                                        : ObjCIvarDecl::None;
4046  // Must set ivar's DeclContext to its enclosing interface.
4047  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4048  DeclContext *EnclosingContext;
4049  if (ObjCImplementationDecl *IMPDecl =
4050      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4051    // Case of ivar declared in an implementation. Context is that of its class.
4052    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4053    assert(IDecl && "No class- ActOnIvar");
4054    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4055  }
4056  else
4057    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4058  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4059
4060  // Construct the decl.
4061  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4062                                             EnclosingContext, Loc, II, T,ac,
4063                                             (Expr *)BitfieldWidth);
4064
4065  if (II) {
4066    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4067    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4068        && !isa<TagDecl>(PrevDecl)) {
4069      Diag(Loc, diag::err_duplicate_member) << II;
4070      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4071      NewID->setInvalidDecl();
4072    }
4073  }
4074
4075  // Process attributes attached to the ivar.
4076  ProcessDeclAttributes(S, NewID, D);
4077
4078  if (D.isInvalidType())
4079    NewID->setInvalidDecl();
4080
4081  if (II) {
4082    // FIXME: When interfaces are DeclContexts, we'll need to add
4083    // these to the interface.
4084    S->AddDecl(DeclPtrTy::make(NewID));
4085    IdResolver.AddDecl(NewID);
4086  }
4087
4088  return DeclPtrTy::make(NewID);
4089}
4090
4091void Sema::ActOnFields(Scope* S,
4092                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4093                       DeclPtrTy *Fields, unsigned NumFields,
4094                       SourceLocation LBrac, SourceLocation RBrac,
4095                       AttributeList *Attr) {
4096  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4097  assert(EnclosingDecl && "missing record or interface decl");
4098
4099  // If the decl this is being inserted into is invalid, then it may be a
4100  // redeclaration or some other bogus case.  Don't try to add fields to it.
4101  if (EnclosingDecl->isInvalidDecl()) {
4102    // FIXME: Deallocate fields?
4103    return;
4104  }
4105
4106
4107  // Verify that all the fields are okay.
4108  unsigned NumNamedMembers = 0;
4109  llvm::SmallVector<FieldDecl*, 32> RecFields;
4110
4111  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4112  for (unsigned i = 0; i != NumFields; ++i) {
4113    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4114
4115    // Get the type for the field.
4116    Type *FDTy = FD->getType().getTypePtr();
4117
4118    if (!FD->isAnonymousStructOrUnion()) {
4119      // Remember all fields written by the user.
4120      RecFields.push_back(FD);
4121    }
4122
4123    // If the field is already invalid for some reason, don't emit more
4124    // diagnostics about it.
4125    if (FD->isInvalidDecl())
4126      continue;
4127
4128    // C99 6.7.2.1p2:
4129    //   A structure or union shall not contain a member with
4130    //   incomplete or function type (hence, a structure shall not
4131    //   contain an instance of itself, but may contain a pointer to
4132    //   an instance of itself), except that the last member of a
4133    //   structure with more than one named member may have incomplete
4134    //   array type; such a structure (and any union containing,
4135    //   possibly recursively, a member that is such a structure)
4136    //   shall not be a member of a structure or an element of an
4137    //   array.
4138    if (FDTy->isFunctionType()) {
4139      // Field declared as a function.
4140      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4141        << FD->getDeclName();
4142      FD->setInvalidDecl();
4143      EnclosingDecl->setInvalidDecl();
4144      continue;
4145    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4146               Record && Record->isStruct()) {
4147      // Flexible array member.
4148      if (NumNamedMembers < 1) {
4149        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4150          << FD->getDeclName();
4151        FD->setInvalidDecl();
4152        EnclosingDecl->setInvalidDecl();
4153        continue;
4154      }
4155      // Okay, we have a legal flexible array member at the end of the struct.
4156      if (Record)
4157        Record->setHasFlexibleArrayMember(true);
4158    } else if (!FDTy->isDependentType() &&
4159               RequireCompleteType(FD->getLocation(), FD->getType(),
4160                                   diag::err_field_incomplete)) {
4161      // Incomplete type
4162      FD->setInvalidDecl();
4163      EnclosingDecl->setInvalidDecl();
4164      continue;
4165    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4166      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4167        // If this is a member of a union, then entire union becomes "flexible".
4168        if (Record && Record->isUnion()) {
4169          Record->setHasFlexibleArrayMember(true);
4170        } else {
4171          // If this is a struct/class and this is not the last element, reject
4172          // it.  Note that GCC supports variable sized arrays in the middle of
4173          // structures.
4174          if (i != NumFields-1)
4175            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4176              << FD->getDeclName() << FD->getType();
4177          else {
4178            // We support flexible arrays at the end of structs in
4179            // other structs as an extension.
4180            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4181              << FD->getDeclName();
4182            if (Record)
4183              Record->setHasFlexibleArrayMember(true);
4184          }
4185        }
4186      }
4187    } else if (FDTy->isObjCInterfaceType()) {
4188      /// A field cannot be an Objective-c object
4189      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4190      FD->setInvalidDecl();
4191      EnclosingDecl->setInvalidDecl();
4192      continue;
4193    }
4194    // Keep track of the number of named members.
4195    if (FD->getIdentifier())
4196      ++NumNamedMembers;
4197  }
4198
4199  // Okay, we successfully defined 'Record'.
4200  if (Record) {
4201    Record->completeDefinition(Context);
4202  } else {
4203    ObjCIvarDecl **ClsFields =
4204      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4205    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4206      ID->setIVarList(ClsFields, RecFields.size(), Context);
4207      ID->setLocEnd(RBrac);
4208      // Add ivar's to class's DeclContext.
4209      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4210        ClsFields[i]->setLexicalDeclContext(ID);
4211        ID->addDecl(Context, ClsFields[i]);
4212      }
4213      // Must enforce the rule that ivars in the base classes may not be
4214      // duplicates.
4215      if (ID->getSuperClass()) {
4216        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4217             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4218          ObjCIvarDecl* Ivar = (*IVI);
4219
4220          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4221            ObjCIvarDecl* prevIvar =
4222              ID->getSuperClass()->lookupInstanceVariable(Context, II);
4223            if (prevIvar) {
4224              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4225              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4226            }
4227          }
4228        }
4229      }
4230    } else if (ObjCImplementationDecl *IMPDecl =
4231                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4232      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4233      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4234        // Ivar declared in @implementation never belongs to the implementation.
4235        // Only it is in implementation's lexical context.
4236        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4237      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4238    }
4239  }
4240
4241  if (Attr)
4242    ProcessDeclAttributeList(S, Record, Attr);
4243}
4244
4245EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4246                                          EnumConstantDecl *LastEnumConst,
4247                                          SourceLocation IdLoc,
4248                                          IdentifierInfo *Id,
4249                                          ExprArg val) {
4250  Expr *Val = (Expr *)val.get();
4251
4252  llvm::APSInt EnumVal(32);
4253  QualType EltTy;
4254  if (Val && !Val->isTypeDependent()) {
4255    // Make sure to promote the operand type to int.
4256    UsualUnaryConversions(Val);
4257    if (Val != val.get()) {
4258      val.release();
4259      val = Val;
4260    }
4261
4262    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4263    SourceLocation ExpLoc;
4264    if (!Val->isValueDependent() &&
4265        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4266      Val = 0;
4267    } else {
4268      EltTy = Val->getType();
4269    }
4270  }
4271
4272  if (!Val) {
4273    if (LastEnumConst) {
4274      // Assign the last value + 1.
4275      EnumVal = LastEnumConst->getInitVal();
4276      ++EnumVal;
4277
4278      // Check for overflow on increment.
4279      if (EnumVal < LastEnumConst->getInitVal())
4280        Diag(IdLoc, diag::warn_enum_value_overflow);
4281
4282      EltTy = LastEnumConst->getType();
4283    } else {
4284      // First value, set to zero.
4285      EltTy = Context.IntTy;
4286      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4287    }
4288  }
4289
4290  val.release();
4291  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4292                                  Val, EnumVal);
4293}
4294
4295
4296Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4297                                        DeclPtrTy lastEnumConst,
4298                                        SourceLocation IdLoc,
4299                                        IdentifierInfo *Id,
4300                                        SourceLocation EqualLoc, ExprTy *val) {
4301  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4302  EnumConstantDecl *LastEnumConst =
4303    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4304  Expr *Val = static_cast<Expr*>(val);
4305
4306  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4307  // we find one that is.
4308  S = getNonFieldDeclScope(S);
4309
4310  // Verify that there isn't already something declared with this name in this
4311  // scope.
4312  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4313  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4314    // Maybe we will complain about the shadowed template parameter.
4315    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4316    // Just pretend that we didn't see the previous declaration.
4317    PrevDecl = 0;
4318  }
4319
4320  if (PrevDecl) {
4321    // When in C++, we may get a TagDecl with the same name; in this case the
4322    // enum constant will 'hide' the tag.
4323    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4324           "Received TagDecl when not in C++!");
4325    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4326      if (isa<EnumConstantDecl>(PrevDecl))
4327        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4328      else
4329        Diag(IdLoc, diag::err_redefinition) << Id;
4330      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4331      if (Val) Val->Destroy(Context);
4332      return DeclPtrTy();
4333    }
4334  }
4335
4336  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4337                                            IdLoc, Id, Owned(Val));
4338
4339  // Register this decl in the current scope stack.
4340  if (New)
4341    PushOnScopeChains(New, S);
4342
4343  return DeclPtrTy::make(New);
4344}
4345
4346void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4347                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4348                         DeclPtrTy *Elements, unsigned NumElements) {
4349  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4350  QualType EnumType = Context.getTypeDeclType(Enum);
4351
4352  // TODO: If the result value doesn't fit in an int, it must be a long or long
4353  // long value.  ISO C does not support this, but GCC does as an extension,
4354  // emit a warning.
4355  unsigned IntWidth = Context.Target.getIntWidth();
4356
4357  // Verify that all the values are okay, compute the size of the values, and
4358  // reverse the list.
4359  unsigned NumNegativeBits = 0;
4360  unsigned NumPositiveBits = 0;
4361
4362  // Keep track of whether all elements have type int.
4363  bool AllElementsInt = true;
4364
4365  for (unsigned i = 0; i != NumElements; ++i) {
4366    EnumConstantDecl *ECD =
4367      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4368    if (!ECD) continue;  // Already issued a diagnostic.
4369
4370    // If the enum value doesn't fit in an int, emit an extension warning.
4371    const llvm::APSInt &InitVal = ECD->getInitVal();
4372    assert(InitVal.getBitWidth() >= IntWidth &&
4373           "Should have promoted value to int");
4374    if (InitVal.getBitWidth() > IntWidth) {
4375      llvm::APSInt V(InitVal);
4376      V.trunc(IntWidth);
4377      V.extend(InitVal.getBitWidth());
4378      if (V != InitVal)
4379        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4380          << InitVal.toString(10);
4381    }
4382
4383    // Keep track of the size of positive and negative values.
4384    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4385      NumPositiveBits = std::max(NumPositiveBits,
4386                                 (unsigned)InitVal.getActiveBits());
4387    else
4388      NumNegativeBits = std::max(NumNegativeBits,
4389                                 (unsigned)InitVal.getMinSignedBits());
4390
4391    // Keep track of whether every enum element has type int (very commmon).
4392    if (AllElementsInt)
4393      AllElementsInt = ECD->getType() == Context.IntTy;
4394  }
4395
4396  // Figure out the type that should be used for this enum.
4397  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4398  QualType BestType;
4399  unsigned BestWidth;
4400
4401  if (NumNegativeBits) {
4402    // If there is a negative value, figure out the smallest integer type (of
4403    // int/long/longlong) that fits.
4404    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4405      BestType = Context.IntTy;
4406      BestWidth = IntWidth;
4407    } else {
4408      BestWidth = Context.Target.getLongWidth();
4409
4410      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4411        BestType = Context.LongTy;
4412      else {
4413        BestWidth = Context.Target.getLongLongWidth();
4414
4415        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4416          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4417        BestType = Context.LongLongTy;
4418      }
4419    }
4420  } else {
4421    // If there is no negative value, figure out which of uint, ulong, ulonglong
4422    // fits.
4423    if (NumPositiveBits <= IntWidth) {
4424      BestType = Context.UnsignedIntTy;
4425      BestWidth = IntWidth;
4426    } else if (NumPositiveBits <=
4427               (BestWidth = Context.Target.getLongWidth())) {
4428      BestType = Context.UnsignedLongTy;
4429    } else {
4430      BestWidth = Context.Target.getLongLongWidth();
4431      assert(NumPositiveBits <= BestWidth &&
4432             "How could an initializer get larger than ULL?");
4433      BestType = Context.UnsignedLongLongTy;
4434    }
4435  }
4436
4437  // Loop over all of the enumerator constants, changing their types to match
4438  // the type of the enum if needed.
4439  for (unsigned i = 0; i != NumElements; ++i) {
4440    EnumConstantDecl *ECD =
4441      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4442    if (!ECD) continue;  // Already issued a diagnostic.
4443
4444    // Standard C says the enumerators have int type, but we allow, as an
4445    // extension, the enumerators to be larger than int size.  If each
4446    // enumerator value fits in an int, type it as an int, otherwise type it the
4447    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4448    // that X has type 'int', not 'unsigned'.
4449    if (ECD->getType() == Context.IntTy) {
4450      // Make sure the init value is signed.
4451      llvm::APSInt IV = ECD->getInitVal();
4452      IV.setIsSigned(true);
4453      ECD->setInitVal(IV);
4454
4455      if (getLangOptions().CPlusPlus)
4456        // C++ [dcl.enum]p4: Following the closing brace of an
4457        // enum-specifier, each enumerator has the type of its
4458        // enumeration.
4459        ECD->setType(EnumType);
4460      continue;  // Already int type.
4461    }
4462
4463    // Determine whether the value fits into an int.
4464    llvm::APSInt InitVal = ECD->getInitVal();
4465    bool FitsInInt;
4466    if (InitVal.isUnsigned() || !InitVal.isNegative())
4467      FitsInInt = InitVal.getActiveBits() < IntWidth;
4468    else
4469      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4470
4471    // If it fits into an integer type, force it.  Otherwise force it to match
4472    // the enum decl type.
4473    QualType NewTy;
4474    unsigned NewWidth;
4475    bool NewSign;
4476    if (FitsInInt) {
4477      NewTy = Context.IntTy;
4478      NewWidth = IntWidth;
4479      NewSign = true;
4480    } else if (ECD->getType() == BestType) {
4481      // Already the right type!
4482      if (getLangOptions().CPlusPlus)
4483        // C++ [dcl.enum]p4: Following the closing brace of an
4484        // enum-specifier, each enumerator has the type of its
4485        // enumeration.
4486        ECD->setType(EnumType);
4487      continue;
4488    } else {
4489      NewTy = BestType;
4490      NewWidth = BestWidth;
4491      NewSign = BestType->isSignedIntegerType();
4492    }
4493
4494    // Adjust the APSInt value.
4495    InitVal.extOrTrunc(NewWidth);
4496    InitVal.setIsSigned(NewSign);
4497    ECD->setInitVal(InitVal);
4498
4499    // Adjust the Expr initializer and type.
4500    if (ECD->getInitExpr())
4501      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4502                                                      /*isLvalue=*/false));
4503    if (getLangOptions().CPlusPlus)
4504      // C++ [dcl.enum]p4: Following the closing brace of an
4505      // enum-specifier, each enumerator has the type of its
4506      // enumeration.
4507      ECD->setType(EnumType);
4508    else
4509      ECD->setType(NewTy);
4510  }
4511
4512  Enum->completeDefinition(Context, BestType);
4513}
4514
4515Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4516                                            ExprArg expr) {
4517  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4518
4519  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
4520                                                   Loc, AsmString);
4521  CurContext->addDecl(Context, New);
4522  return DeclPtrTy::make(New);
4523}
4524
4525void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
4526                             SourceLocation PragmaLoc,
4527                             SourceLocation NameLoc) {
4528  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4529
4530  // FIXME: This implementation is an ugly hack!
4531  if (PrevDecl) {
4532    PrevDecl->addAttr(Context, ::new (Context) WeakAttr());
4533    return;
4534  }
4535  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4536  return;
4537}
4538
4539void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
4540                                IdentifierInfo* AliasName,
4541                                SourceLocation PragmaLoc,
4542                                SourceLocation NameLoc,
4543                                SourceLocation AliasNameLoc) {
4544  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4545
4546  // FIXME: This implementation is an ugly hack!
4547  if (PrevDecl) {
4548    PrevDecl->addAttr(Context, ::new (Context) AliasAttr(AliasName->getName()));
4549    PrevDecl->addAttr(Context, ::new (Context) WeakAttr());
4550    return;
4551  }
4552  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4553  return;
4554}
4555