SemaDecl.cpp revision c9875bfa6ffecc8d8316820e2970cf7354f610d2
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/Analysis/CFG.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/Parse/DeclSpec.h"
28#include "clang/Parse/ParseDiagnostic.h"
29#include "clang/Parse/Template.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
34#include "clang/Lex/Preprocessor.h"
35#include "clang/Lex/HeaderSearch.h"
36#include "llvm/ADT/BitVector.h"
37#include "llvm/ADT/STLExtras.h"
38#include <algorithm>
39#include <cstring>
40#include <functional>
41#include <queue>
42using namespace clang;
43
44/// getDeclName - Return a pretty name for the specified decl if possible, or
45/// an empty string if not.  This is used for pretty crash reporting.
46std::string Sema::getDeclName(DeclPtrTy d) {
47  Decl *D = d.getAs<Decl>();
48  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
49    return DN->getQualifiedNameAsString();
50  return "";
51}
52
53Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
54  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
55}
56
57/// \brief If the identifier refers to a type name within this scope,
58/// return the declaration of that type.
59///
60/// This routine performs ordinary name lookup of the identifier II
61/// within the given scope, with optional C++ scope specifier SS, to
62/// determine whether the name refers to a type. If so, returns an
63/// opaque pointer (actually a QualType) corresponding to that
64/// type. Otherwise, returns NULL.
65///
66/// If name lookup results in an ambiguity, this routine will complain
67/// and then return NULL.
68Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
69                                Scope *S, const CXXScopeSpec *SS,
70                                bool isClassName,
71                                TypeTy *ObjectTypePtr) {
72  // Determine where we will perform name lookup.
73  DeclContext *LookupCtx = 0;
74  if (ObjectTypePtr) {
75    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
76    if (ObjectType->isRecordType())
77      LookupCtx = computeDeclContext(ObjectType);
78  } else if (SS && SS->isSet()) {
79    LookupCtx = computeDeclContext(*SS, false);
80
81    if (!LookupCtx) {
82      if (isDependentScopeSpecifier(*SS)) {
83        // C++ [temp.res]p3:
84        //   A qualified-id that refers to a type and in which the
85        //   nested-name-specifier depends on a template-parameter (14.6.2)
86        //   shall be prefixed by the keyword typename to indicate that the
87        //   qualified-id denotes a type, forming an
88        //   elaborated-type-specifier (7.1.5.3).
89        //
90        // We therefore do not perform any name lookup if the result would
91        // refer to a member of an unknown specialization.
92        if (!isClassName)
93          return 0;
94
95        // We know from the grammar that this name refers to a type, so build a
96        // TypenameType node to describe the type.
97        // FIXME: Record somewhere that this TypenameType node has no "typename"
98        // keyword associated with it.
99        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
100                                 II, SS->getRange()).getAsOpaquePtr();
101      }
102
103      return 0;
104    }
105
106    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
107      return 0;
108  }
109
110  LookupResult Result(*this, &II, NameLoc, LookupOrdinaryName);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::FoundOverloaded:
136  case LookupResult::FoundUnresolvedValue:
137    return 0;
138
139  case LookupResult::Ambiguous:
140    // Recover from type-hiding ambiguities by hiding the type.  We'll
141    // do the lookup again when looking for an object, and we can
142    // diagnose the error then.  If we don't do this, then the error
143    // about hiding the type will be immediately followed by an error
144    // that only makes sense if the identifier was treated like a type.
145    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146      Result.suppressDiagnostics();
147      return 0;
148    }
149
150    // Look to see if we have a type anywhere in the list of results.
151    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152         Res != ResEnd; ++Res) {
153      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154        if (!IIDecl ||
155            (*Res)->getLocation().getRawEncoding() <
156              IIDecl->getLocation().getRawEncoding())
157          IIDecl = *Res;
158      }
159    }
160
161    if (!IIDecl) {
162      // None of the entities we found is a type, so there is no way
163      // to even assume that the result is a type. In this case, don't
164      // complain about the ambiguity. The parser will either try to
165      // perform this lookup again (e.g., as an object name), which
166      // will produce the ambiguity, or will complain that it expected
167      // a type name.
168      Result.suppressDiagnostics();
169      return 0;
170    }
171
172    // We found a type within the ambiguous lookup; diagnose the
173    // ambiguity and then return that type. This might be the right
174    // answer, or it might not be, but it suppresses any attempt to
175    // perform the name lookup again.
176    break;
177
178  case LookupResult::Found:
179    IIDecl = Result.getFoundDecl();
180    break;
181  }
182
183  assert(IIDecl && "Didn't find decl");
184
185  QualType T;
186  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187    DiagnoseUseOfDecl(IIDecl, NameLoc);
188
189    // C++ [temp.local]p2:
190    //   Within the scope of a class template specialization or
191    //   partial specialization, when the injected-class-name is
192    //   not followed by a <, it is equivalent to the
193    //   injected-class-name followed by the template-argument s
194    //   of the class template specialization or partial
195    //   specialization enclosed in <>.
196    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
197      if (RD->isInjectedClassName())
198        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
199          T = Template->getInjectedClassNameType(Context);
200
201    if (T.isNull())
202      T = Context.getTypeDeclType(TD);
203
204    if (SS)
205      T = getQualifiedNameType(*SS, T);
206
207  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
208    T = Context.getObjCInterfaceType(IDecl);
209  } else if (UnresolvedUsingTypenameDecl *UUDecl =
210               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
211    // FIXME: preserve source structure information.
212    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
213  } else {
214    // If it's not plausibly a type, suppress diagnostics.
215    Result.suppressDiagnostics();
216    return 0;
217  }
218
219  return T.getAsOpaquePtr();
220}
221
222/// isTagName() - This method is called *for error recovery purposes only*
223/// to determine if the specified name is a valid tag name ("struct foo").  If
224/// so, this returns the TST for the tag corresponding to it (TST_enum,
225/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
226/// where the user forgot to specify the tag.
227DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
228  // Do a tag name lookup in this scope.
229  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
230  LookupName(R, S, false);
231  R.suppressDiagnostics();
232  if (R.getResultKind() == LookupResult::Found)
233    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
234      switch (TD->getTagKind()) {
235      case TagDecl::TK_struct: return DeclSpec::TST_struct;
236      case TagDecl::TK_union:  return DeclSpec::TST_union;
237      case TagDecl::TK_class:  return DeclSpec::TST_class;
238      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
239      }
240    }
241
242  return DeclSpec::TST_unspecified;
243}
244
245bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
246                                   SourceLocation IILoc,
247                                   Scope *S,
248                                   const CXXScopeSpec *SS,
249                                   TypeTy *&SuggestedType) {
250  // We don't have anything to suggest (yet).
251  SuggestedType = 0;
252
253  // FIXME: Should we move the logic that tries to recover from a missing tag
254  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
255
256  if (!SS)
257    Diag(IILoc, diag::err_unknown_typename) << &II;
258  else if (DeclContext *DC = computeDeclContext(*SS, false))
259    Diag(IILoc, diag::err_typename_nested_not_found)
260      << &II << DC << SS->getRange();
261  else if (isDependentScopeSpecifier(*SS)) {
262    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
263      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
264      << SourceRange(SS->getRange().getBegin(), IILoc)
265      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
266                                               "typename ");
267    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
268  } else {
269    assert(SS && SS->isInvalid() &&
270           "Invalid scope specifier has already been diagnosed");
271  }
272
273  return true;
274}
275
276// Determines the context to return to after temporarily entering a
277// context.  This depends in an unnecessarily complicated way on the
278// exact ordering of callbacks from the parser.
279DeclContext *Sema::getContainingDC(DeclContext *DC) {
280
281  // Functions defined inline within classes aren't parsed until we've
282  // finished parsing the top-level class, so the top-level class is
283  // the context we'll need to return to.
284  if (isa<FunctionDecl>(DC)) {
285    DC = DC->getLexicalParent();
286
287    // A function not defined within a class will always return to its
288    // lexical context.
289    if (!isa<CXXRecordDecl>(DC))
290      return DC;
291
292    // A C++ inline method/friend is parsed *after* the topmost class
293    // it was declared in is fully parsed ("complete");  the topmost
294    // class is the context we need to return to.
295    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
296      DC = RD;
297
298    // Return the declaration context of the topmost class the inline method is
299    // declared in.
300    return DC;
301  }
302
303  if (isa<ObjCMethodDecl>(DC))
304    return Context.getTranslationUnitDecl();
305
306  return DC->getLexicalParent();
307}
308
309void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
310  assert(getContainingDC(DC) == CurContext &&
311      "The next DeclContext should be lexically contained in the current one.");
312  CurContext = DC;
313  S->setEntity(DC);
314}
315
316void Sema::PopDeclContext() {
317  assert(CurContext && "DeclContext imbalance!");
318
319  CurContext = getContainingDC(CurContext);
320}
321
322/// EnterDeclaratorContext - Used when we must lookup names in the context
323/// of a declarator's nested name specifier.
324void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
325  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
326  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
327  CurContext = DC;
328  assert(CurContext && "No context?");
329  S->setEntity(CurContext);
330}
331
332void Sema::ExitDeclaratorContext(Scope *S) {
333  S->setEntity(PreDeclaratorDC);
334  PreDeclaratorDC = 0;
335
336  // Reset CurContext to the nearest enclosing context.
337  while (!S->getEntity() && S->getParent())
338    S = S->getParent();
339  CurContext = static_cast<DeclContext*>(S->getEntity());
340  assert(CurContext && "No context?");
341}
342
343/// \brief Determine whether we allow overloading of the function
344/// PrevDecl with another declaration.
345///
346/// This routine determines whether overloading is possible, not
347/// whether some new function is actually an overload. It will return
348/// true in C++ (where we can always provide overloads) or, as an
349/// extension, in C when the previous function is already an
350/// overloaded function declaration or has the "overloadable"
351/// attribute.
352static bool AllowOverloadingOfFunction(LookupResult &Previous,
353                                       ASTContext &Context) {
354  if (Context.getLangOptions().CPlusPlus)
355    return true;
356
357  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
358    return true;
359
360  return (Previous.getResultKind() == LookupResult::Found
361          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
362}
363
364/// Add this decl to the scope shadowed decl chains.
365void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
366  // Move up the scope chain until we find the nearest enclosing
367  // non-transparent context. The declaration will be introduced into this
368  // scope.
369  while (S->getEntity() &&
370         ((DeclContext *)S->getEntity())->isTransparentContext())
371    S = S->getParent();
372
373  // Add scoped declarations into their context, so that they can be
374  // found later. Declarations without a context won't be inserted
375  // into any context.
376  if (AddToContext)
377    CurContext->addDecl(D);
378
379  // Out-of-line function and variable definitions should not be pushed into
380  // scope.
381  if ((isa<FunctionTemplateDecl>(D) &&
382       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
383      (isa<FunctionDecl>(D) &&
384       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
385        cast<FunctionDecl>(D)->isOutOfLine())) ||
386      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
387    return;
388
389  // If this replaces anything in the current scope,
390  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
391                               IEnd = IdResolver.end();
392  for (; I != IEnd; ++I) {
393    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
394      S->RemoveDecl(DeclPtrTy::make(*I));
395      IdResolver.RemoveDecl(*I);
396
397      // Should only need to replace one decl.
398      break;
399    }
400  }
401
402  S->AddDecl(DeclPtrTy::make(D));
403  IdResolver.AddDecl(D);
404}
405
406bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
407  return IdResolver.isDeclInScope(D, Ctx, Context, S);
408}
409
410static bool isOutOfScopePreviousDeclaration(NamedDecl *,
411                                            DeclContext*,
412                                            ASTContext&);
413
414/// Filters out lookup results that don't fall within the given scope
415/// as determined by isDeclInScope.
416static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
417                                 DeclContext *Ctx, Scope *S,
418                                 bool ConsiderLinkage) {
419  LookupResult::Filter F = R.makeFilter();
420  while (F.hasNext()) {
421    NamedDecl *D = F.next();
422
423    if (SemaRef.isDeclInScope(D, Ctx, S))
424      continue;
425
426    if (ConsiderLinkage &&
427        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
428      continue;
429
430    F.erase();
431  }
432
433  F.done();
434}
435
436static bool isUsingDecl(NamedDecl *D) {
437  return isa<UsingShadowDecl>(D) ||
438         isa<UnresolvedUsingTypenameDecl>(D) ||
439         isa<UnresolvedUsingValueDecl>(D);
440}
441
442/// Removes using shadow declarations from the lookup results.
443static void RemoveUsingDecls(LookupResult &R) {
444  LookupResult::Filter F = R.makeFilter();
445  while (F.hasNext())
446    if (isUsingDecl(F.next()))
447      F.erase();
448
449  F.done();
450}
451
452static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
453  if (D->isUsed() || D->hasAttr<UnusedAttr>())
454    return false;
455
456  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
457    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
458      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
459        if (!RD->hasTrivialConstructor())
460          return false;
461        if (!RD->hasTrivialDestructor())
462          return false;
463      }
464    }
465  }
466
467  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
468          !isa<ImplicitParamDecl>(D) &&
469          D->getDeclContext()->isFunctionOrMethod());
470}
471
472void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
473  if (S->decl_empty()) return;
474  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
475         "Scope shouldn't contain decls!");
476
477  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
478       I != E; ++I) {
479    Decl *TmpD = (*I).getAs<Decl>();
480    assert(TmpD && "This decl didn't get pushed??");
481
482    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
483    NamedDecl *D = cast<NamedDecl>(TmpD);
484
485    if (!D->getDeclName()) continue;
486
487    // Diagnose unused variables in this scope.
488    if (ShouldDiagnoseUnusedDecl(D))
489      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
490
491    // Remove this name from our lexical scope.
492    IdResolver.RemoveDecl(D);
493  }
494}
495
496/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
497/// return 0 if one not found.
498ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
499  // The third "scope" argument is 0 since we aren't enabling lazy built-in
500  // creation from this context.
501  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
502
503  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
504}
505
506/// getNonFieldDeclScope - Retrieves the innermost scope, starting
507/// from S, where a non-field would be declared. This routine copes
508/// with the difference between C and C++ scoping rules in structs and
509/// unions. For example, the following code is well-formed in C but
510/// ill-formed in C++:
511/// @code
512/// struct S6 {
513///   enum { BAR } e;
514/// };
515///
516/// void test_S6() {
517///   struct S6 a;
518///   a.e = BAR;
519/// }
520/// @endcode
521/// For the declaration of BAR, this routine will return a different
522/// scope. The scope S will be the scope of the unnamed enumeration
523/// within S6. In C++, this routine will return the scope associated
524/// with S6, because the enumeration's scope is a transparent
525/// context but structures can contain non-field names. In C, this
526/// routine will return the translation unit scope, since the
527/// enumeration's scope is a transparent context and structures cannot
528/// contain non-field names.
529Scope *Sema::getNonFieldDeclScope(Scope *S) {
530  while (((S->getFlags() & Scope::DeclScope) == 0) ||
531         (S->getEntity() &&
532          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
533         (S->isClassScope() && !getLangOptions().CPlusPlus))
534    S = S->getParent();
535  return S;
536}
537
538void Sema::InitBuiltinVaListType() {
539  if (!Context.getBuiltinVaListType().isNull())
540    return;
541
542  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
543  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
544  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
545  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
546}
547
548/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
549/// file scope.  lazily create a decl for it. ForRedeclaration is true
550/// if we're creating this built-in in anticipation of redeclaring the
551/// built-in.
552NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
553                                     Scope *S, bool ForRedeclaration,
554                                     SourceLocation Loc) {
555  Builtin::ID BID = (Builtin::ID)bid;
556
557  if (Context.BuiltinInfo.hasVAListUse(BID))
558    InitBuiltinVaListType();
559
560  ASTContext::GetBuiltinTypeError Error;
561  QualType R = Context.GetBuiltinType(BID, Error);
562  switch (Error) {
563  case ASTContext::GE_None:
564    // Okay
565    break;
566
567  case ASTContext::GE_Missing_stdio:
568    if (ForRedeclaration)
569      Diag(Loc, diag::err_implicit_decl_requires_stdio)
570        << Context.BuiltinInfo.GetName(BID);
571    return 0;
572
573  case ASTContext::GE_Missing_setjmp:
574    if (ForRedeclaration)
575      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
576        << Context.BuiltinInfo.GetName(BID);
577    return 0;
578  }
579
580  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
581    Diag(Loc, diag::ext_implicit_lib_function_decl)
582      << Context.BuiltinInfo.GetName(BID)
583      << R;
584    if (Context.BuiltinInfo.getHeaderName(BID) &&
585        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
586          != Diagnostic::Ignored)
587      Diag(Loc, diag::note_please_include_header)
588        << Context.BuiltinInfo.getHeaderName(BID)
589        << Context.BuiltinInfo.GetName(BID);
590  }
591
592  FunctionDecl *New = FunctionDecl::Create(Context,
593                                           Context.getTranslationUnitDecl(),
594                                           Loc, II, R, /*TInfo=*/0,
595                                           FunctionDecl::Extern, false,
596                                           /*hasPrototype=*/true);
597  New->setImplicit();
598
599  // Create Decl objects for each parameter, adding them to the
600  // FunctionDecl.
601  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
602    llvm::SmallVector<ParmVarDecl*, 16> Params;
603    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
604      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
605                                           FT->getArgType(i), /*TInfo=*/0,
606                                           VarDecl::None, 0));
607    New->setParams(Context, Params.data(), Params.size());
608  }
609
610  AddKnownFunctionAttributes(New);
611
612  // TUScope is the translation-unit scope to insert this function into.
613  // FIXME: This is hideous. We need to teach PushOnScopeChains to
614  // relate Scopes to DeclContexts, and probably eliminate CurContext
615  // entirely, but we're not there yet.
616  DeclContext *SavedContext = CurContext;
617  CurContext = Context.getTranslationUnitDecl();
618  PushOnScopeChains(New, TUScope);
619  CurContext = SavedContext;
620  return New;
621}
622
623/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
624/// same name and scope as a previous declaration 'Old'.  Figure out
625/// how to resolve this situation, merging decls or emitting
626/// diagnostics as appropriate. If there was an error, set New to be invalid.
627///
628void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
629  // If the new decl is known invalid already, don't bother doing any
630  // merging checks.
631  if (New->isInvalidDecl()) return;
632
633  // Allow multiple definitions for ObjC built-in typedefs.
634  // FIXME: Verify the underlying types are equivalent!
635  if (getLangOptions().ObjC1) {
636    const IdentifierInfo *TypeID = New->getIdentifier();
637    switch (TypeID->getLength()) {
638    default: break;
639    case 2:
640      if (!TypeID->isStr("id"))
641        break;
642      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
643      // Install the built-in type for 'id', ignoring the current definition.
644      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
645      return;
646    case 5:
647      if (!TypeID->isStr("Class"))
648        break;
649      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
650      // Install the built-in type for 'Class', ignoring the current definition.
651      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
652      return;
653    case 3:
654      if (!TypeID->isStr("SEL"))
655        break;
656      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
657      // Install the built-in type for 'SEL', ignoring the current definition.
658      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
659      return;
660    case 8:
661      if (!TypeID->isStr("Protocol"))
662        break;
663      Context.setObjCProtoType(New->getUnderlyingType());
664      return;
665    }
666    // Fall through - the typedef name was not a builtin type.
667  }
668
669  // Verify the old decl was also a type.
670  TypeDecl *Old = 0;
671  if (!OldDecls.isSingleResult() ||
672      !(Old = dyn_cast<TypeDecl>(OldDecls.getFoundDecl()))) {
673    Diag(New->getLocation(), diag::err_redefinition_different_kind)
674      << New->getDeclName();
675
676    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
677    if (OldD->getLocation().isValid())
678      Diag(OldD->getLocation(), diag::note_previous_definition);
679
680    return New->setInvalidDecl();
681  }
682
683  // If the old declaration is invalid, just give up here.
684  if (Old->isInvalidDecl())
685    return New->setInvalidDecl();
686
687  // Determine the "old" type we'll use for checking and diagnostics.
688  QualType OldType;
689  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
690    OldType = OldTypedef->getUnderlyingType();
691  else
692    OldType = Context.getTypeDeclType(Old);
693
694  // If the typedef types are not identical, reject them in all languages and
695  // with any extensions enabled.
696
697  if (OldType != New->getUnderlyingType() &&
698      Context.getCanonicalType(OldType) !=
699      Context.getCanonicalType(New->getUnderlyingType())) {
700    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
701      << New->getUnderlyingType() << OldType;
702    if (Old->getLocation().isValid())
703      Diag(Old->getLocation(), diag::note_previous_definition);
704    return New->setInvalidDecl();
705  }
706
707  if (getLangOptions().Microsoft)
708    return;
709
710  // C++ [dcl.typedef]p2:
711  //   In a given non-class scope, a typedef specifier can be used to
712  //   redefine the name of any type declared in that scope to refer
713  //   to the type to which it already refers.
714  if (getLangOptions().CPlusPlus) {
715    if (!isa<CXXRecordDecl>(CurContext))
716      return;
717    Diag(New->getLocation(), diag::err_redefinition)
718      << New->getDeclName();
719    Diag(Old->getLocation(), diag::note_previous_definition);
720    return New->setInvalidDecl();
721  }
722
723  // If we have a redefinition of a typedef in C, emit a warning.  This warning
724  // is normally mapped to an error, but can be controlled with
725  // -Wtypedef-redefinition.  If either the original or the redefinition is
726  // in a system header, don't emit this for compatibility with GCC.
727  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
728      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
729       Context.getSourceManager().isInSystemHeader(New->getLocation())))
730    return;
731
732  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
733    << New->getDeclName();
734  Diag(Old->getLocation(), diag::note_previous_definition);
735  return;
736}
737
738/// DeclhasAttr - returns true if decl Declaration already has the target
739/// attribute.
740static bool
741DeclHasAttr(const Decl *decl, const Attr *target) {
742  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
743    if (attr->getKind() == target->getKind())
744      return true;
745
746  return false;
747}
748
749/// MergeAttributes - append attributes from the Old decl to the New one.
750static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
751  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
752    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
753      Attr *NewAttr = attr->clone(C);
754      NewAttr->setInherited(true);
755      New->addAttr(NewAttr);
756    }
757  }
758}
759
760/// Used in MergeFunctionDecl to keep track of function parameters in
761/// C.
762struct GNUCompatibleParamWarning {
763  ParmVarDecl *OldParm;
764  ParmVarDecl *NewParm;
765  QualType PromotedType;
766};
767
768
769/// getSpecialMember - get the special member enum for a method.
770static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
771                                               const CXXMethodDecl *MD) {
772  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
773    if (Ctor->isDefaultConstructor())
774      return Sema::CXXDefaultConstructor;
775    if (Ctor->isCopyConstructor(Ctx))
776      return Sema::CXXCopyConstructor;
777  }
778
779  if (isa<CXXDestructorDecl>(MD))
780    return Sema::CXXDestructor;
781
782  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
783  return Sema::CXXCopyAssignment;
784}
785
786/// MergeFunctionDecl - We just parsed a function 'New' from
787/// declarator D which has the same name and scope as a previous
788/// declaration 'Old'.  Figure out how to resolve this situation,
789/// merging decls or emitting diagnostics as appropriate.
790///
791/// In C++, New and Old must be declarations that are not
792/// overloaded. Use IsOverload to determine whether New and Old are
793/// overloaded, and to select the Old declaration that New should be
794/// merged with.
795///
796/// Returns true if there was an error, false otherwise.
797bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
798  // Verify the old decl was also a function.
799  FunctionDecl *Old = 0;
800  if (FunctionTemplateDecl *OldFunctionTemplate
801        = dyn_cast<FunctionTemplateDecl>(OldD))
802    Old = OldFunctionTemplate->getTemplatedDecl();
803  else
804    Old = dyn_cast<FunctionDecl>(OldD);
805  if (!Old) {
806    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
807      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
808      Diag(Shadow->getTargetDecl()->getLocation(),
809           diag::note_using_decl_target);
810      Diag(Shadow->getUsingDecl()->getLocation(),
811           diag::note_using_decl) << 0;
812      return true;
813    }
814
815    Diag(New->getLocation(), diag::err_redefinition_different_kind)
816      << New->getDeclName();
817    Diag(OldD->getLocation(), diag::note_previous_definition);
818    return true;
819  }
820
821  // Determine whether the previous declaration was a definition,
822  // implicit declaration, or a declaration.
823  diag::kind PrevDiag;
824  if (Old->isThisDeclarationADefinition())
825    PrevDiag = diag::note_previous_definition;
826  else if (Old->isImplicit())
827    PrevDiag = diag::note_previous_implicit_declaration;
828  else
829    PrevDiag = diag::note_previous_declaration;
830
831  QualType OldQType = Context.getCanonicalType(Old->getType());
832  QualType NewQType = Context.getCanonicalType(New->getType());
833
834  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
835      New->getStorageClass() == FunctionDecl::Static &&
836      Old->getStorageClass() != FunctionDecl::Static) {
837    Diag(New->getLocation(), diag::err_static_non_static)
838      << New;
839    Diag(Old->getLocation(), PrevDiag);
840    return true;
841  }
842
843  if (getLangOptions().CPlusPlus) {
844    // (C++98 13.1p2):
845    //   Certain function declarations cannot be overloaded:
846    //     -- Function declarations that differ only in the return type
847    //        cannot be overloaded.
848    QualType OldReturnType
849      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
850    QualType NewReturnType
851      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
852    if (OldReturnType != NewReturnType) {
853      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
854      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
855      return true;
856    }
857
858    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
859    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
860    if (OldMethod && NewMethod) {
861      if (!NewMethod->getFriendObjectKind() &&
862          NewMethod->getLexicalDeclContext()->isRecord()) {
863        //    -- Member function declarations with the same name and the
864        //       same parameter types cannot be overloaded if any of them
865        //       is a static member function declaration.
866        if (OldMethod->isStatic() || NewMethod->isStatic()) {
867          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
868          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
869          return true;
870        }
871
872        // C++ [class.mem]p1:
873        //   [...] A member shall not be declared twice in the
874        //   member-specification, except that a nested class or member
875        //   class template can be declared and then later defined.
876        unsigned NewDiag;
877        if (isa<CXXConstructorDecl>(OldMethod))
878          NewDiag = diag::err_constructor_redeclared;
879        else if (isa<CXXDestructorDecl>(NewMethod))
880          NewDiag = diag::err_destructor_redeclared;
881        else if (isa<CXXConversionDecl>(NewMethod))
882          NewDiag = diag::err_conv_function_redeclared;
883        else
884          NewDiag = diag::err_member_redeclared;
885
886        Diag(New->getLocation(), NewDiag);
887        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
888      } else {
889        if (OldMethod->isImplicit()) {
890          Diag(NewMethod->getLocation(),
891               diag::err_definition_of_implicitly_declared_member)
892          << New << getSpecialMember(Context, OldMethod);
893
894          Diag(OldMethod->getLocation(),
895               diag::note_previous_implicit_declaration);
896          return true;
897        }
898      }
899    }
900
901    // (C++98 8.3.5p3):
902    //   All declarations for a function shall agree exactly in both the
903    //   return type and the parameter-type-list.
904    if (OldQType == NewQType)
905      return MergeCompatibleFunctionDecls(New, Old);
906
907    // Fall through for conflicting redeclarations and redefinitions.
908  }
909
910  // C: Function types need to be compatible, not identical. This handles
911  // duplicate function decls like "void f(int); void f(enum X);" properly.
912  if (!getLangOptions().CPlusPlus &&
913      Context.typesAreCompatible(OldQType, NewQType)) {
914    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
915    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
916    const FunctionProtoType *OldProto = 0;
917    if (isa<FunctionNoProtoType>(NewFuncType) &&
918        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
919      // The old declaration provided a function prototype, but the
920      // new declaration does not. Merge in the prototype.
921      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
922      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
923                                                 OldProto->arg_type_end());
924      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
925                                         ParamTypes.data(), ParamTypes.size(),
926                                         OldProto->isVariadic(),
927                                         OldProto->getTypeQuals());
928      New->setType(NewQType);
929      New->setHasInheritedPrototype();
930
931      // Synthesize a parameter for each argument type.
932      llvm::SmallVector<ParmVarDecl*, 16> Params;
933      for (FunctionProtoType::arg_type_iterator
934             ParamType = OldProto->arg_type_begin(),
935             ParamEnd = OldProto->arg_type_end();
936           ParamType != ParamEnd; ++ParamType) {
937        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
938                                                 SourceLocation(), 0,
939                                                 *ParamType, /*TInfo=*/0,
940                                                 VarDecl::None, 0);
941        Param->setImplicit();
942        Params.push_back(Param);
943      }
944
945      New->setParams(Context, Params.data(), Params.size());
946    }
947
948    return MergeCompatibleFunctionDecls(New, Old);
949  }
950
951  // GNU C permits a K&R definition to follow a prototype declaration
952  // if the declared types of the parameters in the K&R definition
953  // match the types in the prototype declaration, even when the
954  // promoted types of the parameters from the K&R definition differ
955  // from the types in the prototype. GCC then keeps the types from
956  // the prototype.
957  //
958  // If a variadic prototype is followed by a non-variadic K&R definition,
959  // the K&R definition becomes variadic.  This is sort of an edge case, but
960  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
961  // C99 6.9.1p8.
962  if (!getLangOptions().CPlusPlus &&
963      Old->hasPrototype() && !New->hasPrototype() &&
964      New->getType()->getAs<FunctionProtoType>() &&
965      Old->getNumParams() == New->getNumParams()) {
966    llvm::SmallVector<QualType, 16> ArgTypes;
967    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
968    const FunctionProtoType *OldProto
969      = Old->getType()->getAs<FunctionProtoType>();
970    const FunctionProtoType *NewProto
971      = New->getType()->getAs<FunctionProtoType>();
972
973    // Determine whether this is the GNU C extension.
974    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
975                                               NewProto->getResultType());
976    bool LooseCompatible = !MergedReturn.isNull();
977    for (unsigned Idx = 0, End = Old->getNumParams();
978         LooseCompatible && Idx != End; ++Idx) {
979      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
980      ParmVarDecl *NewParm = New->getParamDecl(Idx);
981      if (Context.typesAreCompatible(OldParm->getType(),
982                                     NewProto->getArgType(Idx))) {
983        ArgTypes.push_back(NewParm->getType());
984      } else if (Context.typesAreCompatible(OldParm->getType(),
985                                            NewParm->getType())) {
986        GNUCompatibleParamWarning Warn
987          = { OldParm, NewParm, NewProto->getArgType(Idx) };
988        Warnings.push_back(Warn);
989        ArgTypes.push_back(NewParm->getType());
990      } else
991        LooseCompatible = false;
992    }
993
994    if (LooseCompatible) {
995      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
996        Diag(Warnings[Warn].NewParm->getLocation(),
997             diag::ext_param_promoted_not_compatible_with_prototype)
998          << Warnings[Warn].PromotedType
999          << Warnings[Warn].OldParm->getType();
1000        Diag(Warnings[Warn].OldParm->getLocation(),
1001             diag::note_previous_declaration);
1002      }
1003
1004      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1005                                           ArgTypes.size(),
1006                                           OldProto->isVariadic(), 0));
1007      return MergeCompatibleFunctionDecls(New, Old);
1008    }
1009
1010    // Fall through to diagnose conflicting types.
1011  }
1012
1013  // A function that has already been declared has been redeclared or defined
1014  // with a different type- show appropriate diagnostic
1015  if (unsigned BuiltinID = Old->getBuiltinID()) {
1016    // The user has declared a builtin function with an incompatible
1017    // signature.
1018    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1019      // The function the user is redeclaring is a library-defined
1020      // function like 'malloc' or 'printf'. Warn about the
1021      // redeclaration, then pretend that we don't know about this
1022      // library built-in.
1023      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1024      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1025        << Old << Old->getType();
1026      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1027      Old->setInvalidDecl();
1028      return false;
1029    }
1030
1031    PrevDiag = diag::note_previous_builtin_declaration;
1032  }
1033
1034  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1035  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1036  return true;
1037}
1038
1039/// \brief Completes the merge of two function declarations that are
1040/// known to be compatible.
1041///
1042/// This routine handles the merging of attributes and other
1043/// properties of function declarations form the old declaration to
1044/// the new declaration, once we know that New is in fact a
1045/// redeclaration of Old.
1046///
1047/// \returns false
1048bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1049  // Merge the attributes
1050  MergeAttributes(New, Old, Context);
1051
1052  // Merge the storage class.
1053  if (Old->getStorageClass() != FunctionDecl::Extern &&
1054      Old->getStorageClass() != FunctionDecl::None)
1055    New->setStorageClass(Old->getStorageClass());
1056
1057  // Merge "pure" flag.
1058  if (Old->isPure())
1059    New->setPure();
1060
1061  // Merge the "deleted" flag.
1062  if (Old->isDeleted())
1063    New->setDeleted();
1064
1065  if (getLangOptions().CPlusPlus)
1066    return MergeCXXFunctionDecl(New, Old);
1067
1068  return false;
1069}
1070
1071/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1072/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1073/// situation, merging decls or emitting diagnostics as appropriate.
1074///
1075/// Tentative definition rules (C99 6.9.2p2) are checked by
1076/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1077/// definitions here, since the initializer hasn't been attached.
1078///
1079void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1080  // If the new decl is already invalid, don't do any other checking.
1081  if (New->isInvalidDecl())
1082    return;
1083
1084  // Verify the old decl was also a variable.
1085  VarDecl *Old = 0;
1086  if (!Previous.isSingleResult() ||
1087      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1088    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1089      << New->getDeclName();
1090    Diag(Previous.getRepresentativeDecl()->getLocation(),
1091         diag::note_previous_definition);
1092    return New->setInvalidDecl();
1093  }
1094
1095  MergeAttributes(New, Old, Context);
1096
1097  // Merge the types
1098  QualType MergedT;
1099  if (getLangOptions().CPlusPlus) {
1100    if (Context.hasSameType(New->getType(), Old->getType()))
1101      MergedT = New->getType();
1102    // C++ [basic.link]p10:
1103    //   [...] the types specified by all declarations referring to a given
1104    //   object or function shall be identical, except that declarations for an
1105    //   array object can specify array types that differ by the presence or
1106    //   absence of a major array bound (8.3.4).
1107    else if (Old->getType()->isIncompleteArrayType() &&
1108             New->getType()->isArrayType()) {
1109      CanQual<ArrayType> OldArray
1110        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1111      CanQual<ArrayType> NewArray
1112        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1113      if (OldArray->getElementType() == NewArray->getElementType())
1114        MergedT = New->getType();
1115    } else if (Old->getType()->isArrayType() &&
1116             New->getType()->isIncompleteArrayType()) {
1117      CanQual<ArrayType> OldArray
1118        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1119      CanQual<ArrayType> NewArray
1120        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1121      if (OldArray->getElementType() == NewArray->getElementType())
1122        MergedT = Old->getType();
1123    }
1124  } else {
1125    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1126  }
1127  if (MergedT.isNull()) {
1128    Diag(New->getLocation(), diag::err_redefinition_different_type)
1129      << New->getDeclName();
1130    Diag(Old->getLocation(), diag::note_previous_definition);
1131    return New->setInvalidDecl();
1132  }
1133  New->setType(MergedT);
1134
1135  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1136  if (New->getStorageClass() == VarDecl::Static &&
1137      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1138    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1139    Diag(Old->getLocation(), diag::note_previous_definition);
1140    return New->setInvalidDecl();
1141  }
1142  // C99 6.2.2p4:
1143  //   For an identifier declared with the storage-class specifier
1144  //   extern in a scope in which a prior declaration of that
1145  //   identifier is visible,23) if the prior declaration specifies
1146  //   internal or external linkage, the linkage of the identifier at
1147  //   the later declaration is the same as the linkage specified at
1148  //   the prior declaration. If no prior declaration is visible, or
1149  //   if the prior declaration specifies no linkage, then the
1150  //   identifier has external linkage.
1151  if (New->hasExternalStorage() && Old->hasLinkage())
1152    /* Okay */;
1153  else if (New->getStorageClass() != VarDecl::Static &&
1154           Old->getStorageClass() == VarDecl::Static) {
1155    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1156    Diag(Old->getLocation(), diag::note_previous_definition);
1157    return New->setInvalidDecl();
1158  }
1159
1160  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1161
1162  // FIXME: The test for external storage here seems wrong? We still
1163  // need to check for mismatches.
1164  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1165      // Don't complain about out-of-line definitions of static members.
1166      !(Old->getLexicalDeclContext()->isRecord() &&
1167        !New->getLexicalDeclContext()->isRecord())) {
1168    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1169    Diag(Old->getLocation(), diag::note_previous_definition);
1170    return New->setInvalidDecl();
1171  }
1172
1173  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1174    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1175    Diag(Old->getLocation(), diag::note_previous_definition);
1176  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1177    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1178    Diag(Old->getLocation(), diag::note_previous_definition);
1179  }
1180
1181  // Keep a chain of previous declarations.
1182  New->setPreviousDeclaration(Old);
1183}
1184
1185/// CheckFallThrough - Check that we don't fall off the end of a
1186/// Statement that should return a value.
1187///
1188/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1189/// MaybeFallThrough iff we might or might not fall off the end,
1190/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1191/// return.  We assume NeverFallThrough iff we never fall off the end of the
1192/// statement but we may return.  We assume that functions not marked noreturn
1193/// will return.
1194Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1195  // FIXME: Eventually share this CFG object when we have other warnings based
1196  // of the CFG.  This can be done using AnalysisContext.
1197  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1198
1199  // FIXME: They should never return 0, fix that, delete this code.
1200  if (cfg == 0)
1201    // FIXME: This should be NeverFallThrough
1202    return NeverFallThroughOrReturn;
1203  // The CFG leaves in dead things, and we don't want to dead code paths to
1204  // confuse us, so we mark all live things first.
1205  std::queue<CFGBlock*> workq;
1206  llvm::BitVector live(cfg->getNumBlockIDs());
1207  // Prep work queue
1208  workq.push(&cfg->getEntry());
1209  // Solve
1210  while (!workq.empty()) {
1211    CFGBlock *item = workq.front();
1212    workq.pop();
1213    live.set(item->getBlockID());
1214    for (CFGBlock::succ_iterator I=item->succ_begin(),
1215           E=item->succ_end();
1216         I != E;
1217         ++I) {
1218      if ((*I) && !live[(*I)->getBlockID()]) {
1219        live.set((*I)->getBlockID());
1220        workq.push(*I);
1221      }
1222    }
1223  }
1224
1225  // Now we know what is live, we check the live precessors of the exit block
1226  // and look for fall through paths, being careful to ignore normal returns,
1227  // and exceptional paths.
1228  bool HasLiveReturn = false;
1229  bool HasFakeEdge = false;
1230  bool HasPlainEdge = false;
1231  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1232         E = cfg->getExit().pred_end();
1233       I != E;
1234       ++I) {
1235    CFGBlock& B = **I;
1236    if (!live[B.getBlockID()])
1237      continue;
1238    if (B.size() == 0) {
1239      // A labeled empty statement, or the entry block...
1240      HasPlainEdge = true;
1241      continue;
1242    }
1243    Stmt *S = B[B.size()-1];
1244    if (isa<ReturnStmt>(S)) {
1245      HasLiveReturn = true;
1246      continue;
1247    }
1248    if (isa<ObjCAtThrowStmt>(S)) {
1249      HasFakeEdge = true;
1250      continue;
1251    }
1252    if (isa<CXXThrowExpr>(S)) {
1253      HasFakeEdge = true;
1254      continue;
1255    }
1256    if (isa<AsmStmt>(S)) {
1257      HasFakeEdge = true;
1258      HasLiveReturn = true;
1259      continue;
1260    }
1261    bool NoReturnEdge = false;
1262    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1263      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1264      if (CEE->getType().getNoReturnAttr()) {
1265        NoReturnEdge = true;
1266        HasFakeEdge = true;
1267      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1268        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1269          if (FD->hasAttr<NoReturnAttr>()) {
1270            NoReturnEdge = true;
1271            HasFakeEdge = true;
1272          }
1273        }
1274      }
1275    }
1276    // FIXME: Add noreturn message sends.
1277    if (NoReturnEdge == false)
1278      HasPlainEdge = true;
1279  }
1280  if (!HasPlainEdge) {
1281    if (HasLiveReturn)
1282      return NeverFallThrough;
1283    return NeverFallThroughOrReturn;
1284  }
1285  if (HasFakeEdge || HasLiveReturn)
1286    return MaybeFallThrough;
1287  // This says AlwaysFallThrough for calls to functions that are not marked
1288  // noreturn, that don't return.  If people would like this warning to be more
1289  // accurate, such functions should be marked as noreturn.
1290  return AlwaysFallThrough;
1291}
1292
1293/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1294/// function that should return a value.  Check that we don't fall off the end
1295/// of a noreturn function.  We assume that functions and blocks not marked
1296/// noreturn will return.
1297void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1298  // FIXME: Would be nice if we had a better way to control cascading errors,
1299  // but for now, avoid them.  The problem is that when Parse sees:
1300  //   int foo() { return a; }
1301  // The return is eaten and the Sema code sees just:
1302  //   int foo() { }
1303  // which this code would then warn about.
1304  if (getDiagnostics().hasErrorOccurred())
1305    return;
1306
1307  bool ReturnsVoid = false;
1308  bool HasNoReturn = false;
1309  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1310    // If the result type of the function is a dependent type, we don't know
1311    // whether it will be void or not, so don't
1312    if (FD->getResultType()->isDependentType())
1313      return;
1314    if (FD->getResultType()->isVoidType())
1315      ReturnsVoid = true;
1316    if (FD->hasAttr<NoReturnAttr>())
1317      HasNoReturn = true;
1318  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1319    if (MD->getResultType()->isVoidType())
1320      ReturnsVoid = true;
1321    if (MD->hasAttr<NoReturnAttr>())
1322      HasNoReturn = true;
1323  }
1324
1325  // Short circuit for compilation speed.
1326  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1327       == Diagnostic::Ignored || ReturnsVoid)
1328      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1329          == Diagnostic::Ignored || !HasNoReturn)
1330      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1331          == Diagnostic::Ignored || !ReturnsVoid))
1332    return;
1333  // FIXME: Function try block
1334  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1335    switch (CheckFallThrough(Body)) {
1336    case MaybeFallThrough:
1337      if (HasNoReturn)
1338        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1339      else if (!ReturnsVoid)
1340        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1341      break;
1342    case AlwaysFallThrough:
1343      if (HasNoReturn)
1344        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1345      else if (!ReturnsVoid)
1346        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1347      break;
1348    case NeverFallThroughOrReturn:
1349      if (ReturnsVoid && !HasNoReturn)
1350        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1351      break;
1352    case NeverFallThrough:
1353      break;
1354    }
1355  }
1356}
1357
1358/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1359/// that should return a value.  Check that we don't fall off the end of a
1360/// noreturn block.  We assume that functions and blocks not marked noreturn
1361/// will return.
1362void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1363  // FIXME: Would be nice if we had a better way to control cascading errors,
1364  // but for now, avoid them.  The problem is that when Parse sees:
1365  //   int foo() { return a; }
1366  // The return is eaten and the Sema code sees just:
1367  //   int foo() { }
1368  // which this code would then warn about.
1369  if (getDiagnostics().hasErrorOccurred())
1370    return;
1371  bool ReturnsVoid = false;
1372  bool HasNoReturn = false;
1373  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1374    if (FT->getResultType()->isVoidType())
1375      ReturnsVoid = true;
1376    if (FT->getNoReturnAttr())
1377      HasNoReturn = true;
1378  }
1379
1380  // Short circuit for compilation speed.
1381  if (ReturnsVoid
1382      && !HasNoReturn
1383      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1384          == Diagnostic::Ignored || !ReturnsVoid))
1385    return;
1386  // FIXME: Funtion try block
1387  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1388    switch (CheckFallThrough(Body)) {
1389    case MaybeFallThrough:
1390      if (HasNoReturn)
1391        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1392      else if (!ReturnsVoid)
1393        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1394      break;
1395    case AlwaysFallThrough:
1396      if (HasNoReturn)
1397        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1398      else if (!ReturnsVoid)
1399        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1400      break;
1401    case NeverFallThroughOrReturn:
1402      if (ReturnsVoid)
1403        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1404      break;
1405    case NeverFallThrough:
1406      break;
1407    }
1408  }
1409}
1410
1411/// CheckParmsForFunctionDef - Check that the parameters of the given
1412/// function are appropriate for the definition of a function. This
1413/// takes care of any checks that cannot be performed on the
1414/// declaration itself, e.g., that the types of each of the function
1415/// parameters are complete.
1416bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1417  bool HasInvalidParm = false;
1418  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1419    ParmVarDecl *Param = FD->getParamDecl(p);
1420
1421    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1422    // function declarator that is part of a function definition of
1423    // that function shall not have incomplete type.
1424    //
1425    // This is also C++ [dcl.fct]p6.
1426    if (!Param->isInvalidDecl() &&
1427        RequireCompleteType(Param->getLocation(), Param->getType(),
1428                               diag::err_typecheck_decl_incomplete_type)) {
1429      Param->setInvalidDecl();
1430      HasInvalidParm = true;
1431    }
1432
1433    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1434    // declaration of each parameter shall include an identifier.
1435    if (Param->getIdentifier() == 0 &&
1436        !Param->isImplicit() &&
1437        !getLangOptions().CPlusPlus)
1438      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1439  }
1440
1441  return HasInvalidParm;
1442}
1443
1444/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1445/// no declarator (e.g. "struct foo;") is parsed.
1446Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1447  // FIXME: Error on auto/register at file scope
1448  // FIXME: Error on inline/virtual/explicit
1449  // FIXME: Error on invalid restrict
1450  // FIXME: Warn on useless __thread
1451  // FIXME: Warn on useless const/volatile
1452  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1453  // FIXME: Warn on useless attributes
1454  Decl *TagD = 0;
1455  TagDecl *Tag = 0;
1456  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1457      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1458      DS.getTypeSpecType() == DeclSpec::TST_union ||
1459      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1460    TagD = static_cast<Decl *>(DS.getTypeRep());
1461
1462    if (!TagD) // We probably had an error
1463      return DeclPtrTy();
1464
1465    // Note that the above type specs guarantee that the
1466    // type rep is a Decl, whereas in many of the others
1467    // it's a Type.
1468    Tag = dyn_cast<TagDecl>(TagD);
1469  }
1470
1471  if (DS.isFriendSpecified()) {
1472    // If we're dealing with a class template decl, assume that the
1473    // template routines are handling it.
1474    if (TagD && isa<ClassTemplateDecl>(TagD))
1475      return DeclPtrTy();
1476    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1477  }
1478
1479  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1480    // If there are attributes in the DeclSpec, apply them to the record.
1481    if (const AttributeList *AL = DS.getAttributes())
1482      ProcessDeclAttributeList(S, Record, AL);
1483
1484    if (!Record->getDeclName() && Record->isDefinition() &&
1485        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1486      if (getLangOptions().CPlusPlus ||
1487          Record->getDeclContext()->isRecord())
1488        return BuildAnonymousStructOrUnion(S, DS, Record);
1489
1490      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1491        << DS.getSourceRange();
1492    }
1493
1494    // Microsoft allows unnamed struct/union fields. Don't complain
1495    // about them.
1496    // FIXME: Should we support Microsoft's extensions in this area?
1497    if (Record->getDeclName() && getLangOptions().Microsoft)
1498      return DeclPtrTy::make(Tag);
1499  }
1500
1501  if (!DS.isMissingDeclaratorOk() &&
1502      DS.getTypeSpecType() != DeclSpec::TST_error) {
1503    // Warn about typedefs of enums without names, since this is an
1504    // extension in both Microsoft an GNU.
1505    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1506        Tag && isa<EnumDecl>(Tag)) {
1507      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1508        << DS.getSourceRange();
1509      return DeclPtrTy::make(Tag);
1510    }
1511
1512    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1513      << DS.getSourceRange();
1514    return DeclPtrTy();
1515  }
1516
1517  return DeclPtrTy::make(Tag);
1518}
1519
1520/// We are trying to introduce the given name into the given context;
1521/// check if there's an existing declaration that can't be overloaded.
1522///
1523/// \return true if this is a forbidden redeclaration
1524bool Sema::CheckRedeclaration(DeclContext *DC,
1525                              DeclarationName Name,
1526                              SourceLocation NameLoc,
1527                              unsigned diagnostic) {
1528  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName,
1529                 ForRedeclaration);
1530  LookupQualifiedName(R, DC);
1531
1532  if (R.empty()) return false;
1533
1534  if (R.getResultKind() == LookupResult::Found &&
1535      isa<TagDecl>(R.getFoundDecl()))
1536    return false;
1537
1538  // Pick a representative declaration.
1539  NamedDecl *PrevDecl = (*R.begin())->getUnderlyingDecl();
1540
1541  Diag(NameLoc, diagnostic) << Name;
1542  Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1543
1544  return true;
1545}
1546
1547/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1548/// anonymous struct or union AnonRecord into the owning context Owner
1549/// and scope S. This routine will be invoked just after we realize
1550/// that an unnamed union or struct is actually an anonymous union or
1551/// struct, e.g.,
1552///
1553/// @code
1554/// union {
1555///   int i;
1556///   float f;
1557/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1558///    // f into the surrounding scope.x
1559/// @endcode
1560///
1561/// This routine is recursive, injecting the names of nested anonymous
1562/// structs/unions into the owning context and scope as well.
1563bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1564                                               RecordDecl *AnonRecord) {
1565  unsigned diagKind
1566    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1567                            : diag::err_anonymous_struct_member_redecl;
1568
1569  bool Invalid = false;
1570  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1571                               FEnd = AnonRecord->field_end();
1572       F != FEnd; ++F) {
1573    if ((*F)->getDeclName()) {
1574      if (CheckRedeclaration(Owner, (*F)->getDeclName(),
1575                             (*F)->getLocation(), diagKind)) {
1576        // C++ [class.union]p2:
1577        //   The names of the members of an anonymous union shall be
1578        //   distinct from the names of any other entity in the
1579        //   scope in which the anonymous union is declared.
1580        Invalid = true;
1581      } else {
1582        // C++ [class.union]p2:
1583        //   For the purpose of name lookup, after the anonymous union
1584        //   definition, the members of the anonymous union are
1585        //   considered to have been defined in the scope in which the
1586        //   anonymous union is declared.
1587        Owner->makeDeclVisibleInContext(*F);
1588        S->AddDecl(DeclPtrTy::make(*F));
1589        IdResolver.AddDecl(*F);
1590      }
1591    } else if (const RecordType *InnerRecordType
1592                 = (*F)->getType()->getAs<RecordType>()) {
1593      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1594      if (InnerRecord->isAnonymousStructOrUnion())
1595        Invalid = Invalid ||
1596          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1597    }
1598  }
1599
1600  return Invalid;
1601}
1602
1603/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1604/// anonymous structure or union. Anonymous unions are a C++ feature
1605/// (C++ [class.union]) and a GNU C extension; anonymous structures
1606/// are a GNU C and GNU C++ extension.
1607Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1608                                                  RecordDecl *Record) {
1609  DeclContext *Owner = Record->getDeclContext();
1610
1611  // Diagnose whether this anonymous struct/union is an extension.
1612  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1613    Diag(Record->getLocation(), diag::ext_anonymous_union);
1614  else if (!Record->isUnion())
1615    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1616
1617  // C and C++ require different kinds of checks for anonymous
1618  // structs/unions.
1619  bool Invalid = false;
1620  if (getLangOptions().CPlusPlus) {
1621    const char* PrevSpec = 0;
1622    unsigned DiagID;
1623    // C++ [class.union]p3:
1624    //   Anonymous unions declared in a named namespace or in the
1625    //   global namespace shall be declared static.
1626    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1627        (isa<TranslationUnitDecl>(Owner) ||
1628         (isa<NamespaceDecl>(Owner) &&
1629          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1630      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1631      Invalid = true;
1632
1633      // Recover by adding 'static'.
1634      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1635                             PrevSpec, DiagID);
1636    }
1637    // C++ [class.union]p3:
1638    //   A storage class is not allowed in a declaration of an
1639    //   anonymous union in a class scope.
1640    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1641             isa<RecordDecl>(Owner)) {
1642      Diag(DS.getStorageClassSpecLoc(),
1643           diag::err_anonymous_union_with_storage_spec);
1644      Invalid = true;
1645
1646      // Recover by removing the storage specifier.
1647      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1648                             PrevSpec, DiagID);
1649    }
1650
1651    // C++ [class.union]p2:
1652    //   The member-specification of an anonymous union shall only
1653    //   define non-static data members. [Note: nested types and
1654    //   functions cannot be declared within an anonymous union. ]
1655    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1656                                 MemEnd = Record->decls_end();
1657         Mem != MemEnd; ++Mem) {
1658      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1659        // C++ [class.union]p3:
1660        //   An anonymous union shall not have private or protected
1661        //   members (clause 11).
1662        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1663          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1664            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1665          Invalid = true;
1666        }
1667      } else if ((*Mem)->isImplicit()) {
1668        // Any implicit members are fine.
1669      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1670        // This is a type that showed up in an
1671        // elaborated-type-specifier inside the anonymous struct or
1672        // union, but which actually declares a type outside of the
1673        // anonymous struct or union. It's okay.
1674      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1675        if (!MemRecord->isAnonymousStructOrUnion() &&
1676            MemRecord->getDeclName()) {
1677          // This is a nested type declaration.
1678          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1679            << (int)Record->isUnion();
1680          Invalid = true;
1681        }
1682      } else {
1683        // We have something that isn't a non-static data
1684        // member. Complain about it.
1685        unsigned DK = diag::err_anonymous_record_bad_member;
1686        if (isa<TypeDecl>(*Mem))
1687          DK = diag::err_anonymous_record_with_type;
1688        else if (isa<FunctionDecl>(*Mem))
1689          DK = diag::err_anonymous_record_with_function;
1690        else if (isa<VarDecl>(*Mem))
1691          DK = diag::err_anonymous_record_with_static;
1692        Diag((*Mem)->getLocation(), DK)
1693            << (int)Record->isUnion();
1694          Invalid = true;
1695      }
1696    }
1697  }
1698
1699  if (!Record->isUnion() && !Owner->isRecord()) {
1700    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1701      << (int)getLangOptions().CPlusPlus;
1702    Invalid = true;
1703  }
1704
1705  // Mock up a declarator.
1706  Declarator Dc(DS, Declarator::TypeNameContext);
1707  TypeSourceInfo *TInfo = 0;
1708  GetTypeForDeclarator(Dc, S, &TInfo);
1709  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1710
1711  // Create a declaration for this anonymous struct/union.
1712  NamedDecl *Anon = 0;
1713  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1714    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1715                             /*IdentifierInfo=*/0,
1716                             Context.getTypeDeclType(Record),
1717                             TInfo,
1718                             /*BitWidth=*/0, /*Mutable=*/false);
1719    Anon->setAccess(AS_public);
1720    if (getLangOptions().CPlusPlus)
1721      FieldCollector->Add(cast<FieldDecl>(Anon));
1722  } else {
1723    VarDecl::StorageClass SC;
1724    switch (DS.getStorageClassSpec()) {
1725    default: assert(0 && "Unknown storage class!");
1726    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1727    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1728    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1729    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1730    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1731    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1732    case DeclSpec::SCS_mutable:
1733      // mutable can only appear on non-static class members, so it's always
1734      // an error here
1735      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1736      Invalid = true;
1737      SC = VarDecl::None;
1738      break;
1739    }
1740
1741    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1742                           /*IdentifierInfo=*/0,
1743                           Context.getTypeDeclType(Record),
1744                           TInfo,
1745                           SC);
1746  }
1747  Anon->setImplicit();
1748
1749  // Add the anonymous struct/union object to the current
1750  // context. We'll be referencing this object when we refer to one of
1751  // its members.
1752  Owner->addDecl(Anon);
1753
1754  // Inject the members of the anonymous struct/union into the owning
1755  // context and into the identifier resolver chain for name lookup
1756  // purposes.
1757  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1758    Invalid = true;
1759
1760  // Mark this as an anonymous struct/union type. Note that we do not
1761  // do this until after we have already checked and injected the
1762  // members of this anonymous struct/union type, because otherwise
1763  // the members could be injected twice: once by DeclContext when it
1764  // builds its lookup table, and once by
1765  // InjectAnonymousStructOrUnionMembers.
1766  Record->setAnonymousStructOrUnion(true);
1767
1768  if (Invalid)
1769    Anon->setInvalidDecl();
1770
1771  return DeclPtrTy::make(Anon);
1772}
1773
1774
1775/// GetNameForDeclarator - Determine the full declaration name for the
1776/// given Declarator.
1777DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1778  return GetNameFromUnqualifiedId(D.getName());
1779}
1780
1781/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1782DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1783  switch (Name.getKind()) {
1784    case UnqualifiedId::IK_Identifier:
1785      return DeclarationName(Name.Identifier);
1786
1787    case UnqualifiedId::IK_OperatorFunctionId:
1788      return Context.DeclarationNames.getCXXOperatorName(
1789                                              Name.OperatorFunctionId.Operator);
1790
1791    case UnqualifiedId::IK_LiteralOperatorId:
1792      return Context.DeclarationNames.getCXXLiteralOperatorName(
1793                                                               Name.Identifier);
1794
1795    case UnqualifiedId::IK_ConversionFunctionId: {
1796      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1797      if (Ty.isNull())
1798        return DeclarationName();
1799
1800      return Context.DeclarationNames.getCXXConversionFunctionName(
1801                                                  Context.getCanonicalType(Ty));
1802    }
1803
1804    case UnqualifiedId::IK_ConstructorName: {
1805      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1806      if (Ty.isNull())
1807        return DeclarationName();
1808
1809      return Context.DeclarationNames.getCXXConstructorName(
1810                                                  Context.getCanonicalType(Ty));
1811    }
1812
1813    case UnqualifiedId::IK_DestructorName: {
1814      QualType Ty = GetTypeFromParser(Name.DestructorName);
1815      if (Ty.isNull())
1816        return DeclarationName();
1817
1818      return Context.DeclarationNames.getCXXDestructorName(
1819                                                           Context.getCanonicalType(Ty));
1820    }
1821
1822    case UnqualifiedId::IK_TemplateId: {
1823      TemplateName TName
1824        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1825      return Context.getNameForTemplate(TName);
1826    }
1827  }
1828
1829  assert(false && "Unknown name kind");
1830  return DeclarationName();
1831}
1832
1833/// isNearlyMatchingFunction - Determine whether the C++ functions
1834/// Declaration and Definition are "nearly" matching. This heuristic
1835/// is used to improve diagnostics in the case where an out-of-line
1836/// function definition doesn't match any declaration within
1837/// the class or namespace.
1838static bool isNearlyMatchingFunction(ASTContext &Context,
1839                                     FunctionDecl *Declaration,
1840                                     FunctionDecl *Definition) {
1841  if (Declaration->param_size() != Definition->param_size())
1842    return false;
1843  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1844    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1845    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1846
1847    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1848                                        DefParamTy.getNonReferenceType()))
1849      return false;
1850  }
1851
1852  return true;
1853}
1854
1855Sema::DeclPtrTy
1856Sema::HandleDeclarator(Scope *S, Declarator &D,
1857                       MultiTemplateParamsArg TemplateParamLists,
1858                       bool IsFunctionDefinition) {
1859  DeclarationName Name = GetNameForDeclarator(D);
1860
1861  // All of these full declarators require an identifier.  If it doesn't have
1862  // one, the ParsedFreeStandingDeclSpec action should be used.
1863  if (!Name) {
1864    if (!D.isInvalidType())  // Reject this if we think it is valid.
1865      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1866           diag::err_declarator_need_ident)
1867        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1868    return DeclPtrTy();
1869  }
1870
1871  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1872  // we find one that is.
1873  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1874         (S->getFlags() & Scope::TemplateParamScope) != 0)
1875    S = S->getParent();
1876
1877  // If this is an out-of-line definition of a member of a class template
1878  // or class template partial specialization, we may need to rebuild the
1879  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1880  // for more information.
1881  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1882  // handle expressions properly.
1883  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1884  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1885      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1886      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1887       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1888       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1889       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1890    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1891      // FIXME: Preserve type source info.
1892      QualType T = GetTypeFromParser(DS.getTypeRep());
1893      EnterDeclaratorContext(S, DC);
1894      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1895      ExitDeclaratorContext(S);
1896      if (T.isNull())
1897        return DeclPtrTy();
1898      DS.UpdateTypeRep(T.getAsOpaquePtr());
1899    }
1900  }
1901
1902  DeclContext *DC;
1903  NamedDecl *New;
1904
1905  TypeSourceInfo *TInfo = 0;
1906  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1907
1908  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1909                        ForRedeclaration);
1910
1911  // See if this is a redefinition of a variable in the same scope.
1912  if (D.getCXXScopeSpec().isInvalid()) {
1913    DC = CurContext;
1914    D.setInvalidType();
1915  } else if (!D.getCXXScopeSpec().isSet()) {
1916    bool IsLinkageLookup = false;
1917
1918    // If the declaration we're planning to build will be a function
1919    // or object with linkage, then look for another declaration with
1920    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1921    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1922      /* Do nothing*/;
1923    else if (R->isFunctionType()) {
1924      if (CurContext->isFunctionOrMethod() ||
1925          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1926        IsLinkageLookup = true;
1927    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1928      IsLinkageLookup = true;
1929    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1930             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1931      IsLinkageLookup = true;
1932
1933    if (IsLinkageLookup)
1934      Previous.clear(LookupRedeclarationWithLinkage);
1935
1936    DC = CurContext;
1937    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1938  } else { // Something like "int foo::x;"
1939    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1940
1941    if (!DC) {
1942      // If we could not compute the declaration context, it's because the
1943      // declaration context is dependent but does not refer to a class,
1944      // class template, or class template partial specialization. Complain
1945      // and return early, to avoid the coming semantic disaster.
1946      Diag(D.getIdentifierLoc(),
1947           diag::err_template_qualified_declarator_no_match)
1948        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1949        << D.getCXXScopeSpec().getRange();
1950      return DeclPtrTy();
1951    }
1952
1953    if (!DC->isDependentContext() &&
1954        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1955      return DeclPtrTy();
1956
1957    LookupQualifiedName(Previous, DC);
1958
1959    // Don't consider using declarations as previous declarations for
1960    // out-of-line members.
1961    RemoveUsingDecls(Previous);
1962
1963    // C++ 7.3.1.2p2:
1964    // Members (including explicit specializations of templates) of a named
1965    // namespace can also be defined outside that namespace by explicit
1966    // qualification of the name being defined, provided that the entity being
1967    // defined was already declared in the namespace and the definition appears
1968    // after the point of declaration in a namespace that encloses the
1969    // declarations namespace.
1970    //
1971    // Note that we only check the context at this point. We don't yet
1972    // have enough information to make sure that PrevDecl is actually
1973    // the declaration we want to match. For example, given:
1974    //
1975    //   class X {
1976    //     void f();
1977    //     void f(float);
1978    //   };
1979    //
1980    //   void X::f(int) { } // ill-formed
1981    //
1982    // In this case, PrevDecl will point to the overload set
1983    // containing the two f's declared in X, but neither of them
1984    // matches.
1985
1986    // First check whether we named the global scope.
1987    if (isa<TranslationUnitDecl>(DC)) {
1988      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1989        << Name << D.getCXXScopeSpec().getRange();
1990    } else {
1991      DeclContext *Cur = CurContext;
1992      while (isa<LinkageSpecDecl>(Cur))
1993        Cur = Cur->getParent();
1994      if (!Cur->Encloses(DC)) {
1995        // The qualifying scope doesn't enclose the original declaration.
1996        // Emit diagnostic based on current scope.
1997        SourceLocation L = D.getIdentifierLoc();
1998        SourceRange R = D.getCXXScopeSpec().getRange();
1999        if (isa<FunctionDecl>(Cur))
2000          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2001        else
2002          Diag(L, diag::err_invalid_declarator_scope)
2003            << Name << cast<NamedDecl>(DC) << R;
2004        D.setInvalidType();
2005      }
2006    }
2007  }
2008
2009  if (Previous.isSingleResult() &&
2010      Previous.getFoundDecl()->isTemplateParameter()) {
2011    // Maybe we will complain about the shadowed template parameter.
2012    if (!D.isInvalidType())
2013      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2014                                          Previous.getFoundDecl()))
2015        D.setInvalidType();
2016
2017    // Just pretend that we didn't see the previous declaration.
2018    Previous.clear();
2019  }
2020
2021  // In C++, the previous declaration we find might be a tag type
2022  // (class or enum). In this case, the new declaration will hide the
2023  // tag type. Note that this does does not apply if we're declaring a
2024  // typedef (C++ [dcl.typedef]p4).
2025  if (Previous.isSingleTagDecl() &&
2026      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2027    Previous.clear();
2028
2029  bool Redeclaration = false;
2030  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2031    if (TemplateParamLists.size()) {
2032      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2033      return DeclPtrTy();
2034    }
2035
2036    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2037  } else if (R->isFunctionType()) {
2038    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2039                                  move(TemplateParamLists),
2040                                  IsFunctionDefinition, Redeclaration);
2041  } else {
2042    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2043                                  move(TemplateParamLists),
2044                                  Redeclaration);
2045  }
2046
2047  if (New == 0)
2048    return DeclPtrTy();
2049
2050  // If this has an identifier and is not an invalid redeclaration or
2051  // function template specialization, add it to the scope stack.
2052  if (Name && !(Redeclaration && New->isInvalidDecl()))
2053    PushOnScopeChains(New, S);
2054
2055  return DeclPtrTy::make(New);
2056}
2057
2058/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2059/// types into constant array types in certain situations which would otherwise
2060/// be errors (for GCC compatibility).
2061static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2062                                                    ASTContext &Context,
2063                                                    bool &SizeIsNegative) {
2064  // This method tries to turn a variable array into a constant
2065  // array even when the size isn't an ICE.  This is necessary
2066  // for compatibility with code that depends on gcc's buggy
2067  // constant expression folding, like struct {char x[(int)(char*)2];}
2068  SizeIsNegative = false;
2069
2070  QualifierCollector Qs;
2071  const Type *Ty = Qs.strip(T);
2072
2073  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2074    QualType Pointee = PTy->getPointeeType();
2075    QualType FixedType =
2076        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2077    if (FixedType.isNull()) return FixedType;
2078    FixedType = Context.getPointerType(FixedType);
2079    return Qs.apply(FixedType);
2080  }
2081
2082  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2083  if (!VLATy)
2084    return QualType();
2085  // FIXME: We should probably handle this case
2086  if (VLATy->getElementType()->isVariablyModifiedType())
2087    return QualType();
2088
2089  Expr::EvalResult EvalResult;
2090  if (!VLATy->getSizeExpr() ||
2091      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2092      !EvalResult.Val.isInt())
2093    return QualType();
2094
2095  llvm::APSInt &Res = EvalResult.Val.getInt();
2096  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2097    // TODO: preserve the size expression in declarator info
2098    return Context.getConstantArrayType(VLATy->getElementType(),
2099                                        Res, ArrayType::Normal, 0);
2100  }
2101
2102  SizeIsNegative = true;
2103  return QualType();
2104}
2105
2106/// \brief Register the given locally-scoped external C declaration so
2107/// that it can be found later for redeclarations
2108void
2109Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2110                                       const LookupResult &Previous,
2111                                       Scope *S) {
2112  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2113         "Decl is not a locally-scoped decl!");
2114  // Note that we have a locally-scoped external with this name.
2115  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2116
2117  if (!Previous.isSingleResult())
2118    return;
2119
2120  NamedDecl *PrevDecl = Previous.getFoundDecl();
2121
2122  // If there was a previous declaration of this variable, it may be
2123  // in our identifier chain. Update the identifier chain with the new
2124  // declaration.
2125  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2126    // The previous declaration was found on the identifer resolver
2127    // chain, so remove it from its scope.
2128    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2129      S = S->getParent();
2130
2131    if (S)
2132      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2133  }
2134}
2135
2136/// \brief Diagnose function specifiers on a declaration of an identifier that
2137/// does not identify a function.
2138void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2139  // FIXME: We should probably indicate the identifier in question to avoid
2140  // confusion for constructs like "inline int a(), b;"
2141  if (D.getDeclSpec().isInlineSpecified())
2142    Diag(D.getDeclSpec().getInlineSpecLoc(),
2143         diag::err_inline_non_function);
2144
2145  if (D.getDeclSpec().isVirtualSpecified())
2146    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2147         diag::err_virtual_non_function);
2148
2149  if (D.getDeclSpec().isExplicitSpecified())
2150    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2151         diag::err_explicit_non_function);
2152}
2153
2154NamedDecl*
2155Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2156                             QualType R,  TypeSourceInfo *TInfo,
2157                             LookupResult &Previous, bool &Redeclaration) {
2158  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2159  if (D.getCXXScopeSpec().isSet()) {
2160    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2161      << D.getCXXScopeSpec().getRange();
2162    D.setInvalidType();
2163    // Pretend we didn't see the scope specifier.
2164    DC = 0;
2165  }
2166
2167  if (getLangOptions().CPlusPlus) {
2168    // Check that there are no default arguments (C++ only).
2169    CheckExtraCXXDefaultArguments(D);
2170  }
2171
2172  DiagnoseFunctionSpecifiers(D);
2173
2174  if (D.getDeclSpec().isThreadSpecified())
2175    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2176
2177  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2178  if (!NewTD) return 0;
2179
2180  // Handle attributes prior to checking for duplicates in MergeVarDecl
2181  ProcessDeclAttributes(S, NewTD, D);
2182
2183  // Merge the decl with the existing one if appropriate. If the decl is
2184  // in an outer scope, it isn't the same thing.
2185  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2186  if (!Previous.empty()) {
2187    Redeclaration = true;
2188    MergeTypeDefDecl(NewTD, Previous);
2189  }
2190
2191  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2192  // then it shall have block scope.
2193  QualType T = NewTD->getUnderlyingType();
2194  if (T->isVariablyModifiedType()) {
2195    CurFunctionNeedsScopeChecking = true;
2196
2197    if (S->getFnParent() == 0) {
2198      bool SizeIsNegative;
2199      QualType FixedTy =
2200          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2201      if (!FixedTy.isNull()) {
2202        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2203        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2204      } else {
2205        if (SizeIsNegative)
2206          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2207        else if (T->isVariableArrayType())
2208          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2209        else
2210          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2211        NewTD->setInvalidDecl();
2212      }
2213    }
2214  }
2215
2216  // If this is the C FILE type, notify the AST context.
2217  if (IdentifierInfo *II = NewTD->getIdentifier())
2218    if (!NewTD->isInvalidDecl() &&
2219        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2220      if (II->isStr("FILE"))
2221        Context.setFILEDecl(NewTD);
2222      else if (II->isStr("jmp_buf"))
2223        Context.setjmp_bufDecl(NewTD);
2224      else if (II->isStr("sigjmp_buf"))
2225        Context.setsigjmp_bufDecl(NewTD);
2226    }
2227
2228  return NewTD;
2229}
2230
2231/// \brief Determines whether the given declaration is an out-of-scope
2232/// previous declaration.
2233///
2234/// This routine should be invoked when name lookup has found a
2235/// previous declaration (PrevDecl) that is not in the scope where a
2236/// new declaration by the same name is being introduced. If the new
2237/// declaration occurs in a local scope, previous declarations with
2238/// linkage may still be considered previous declarations (C99
2239/// 6.2.2p4-5, C++ [basic.link]p6).
2240///
2241/// \param PrevDecl the previous declaration found by name
2242/// lookup
2243///
2244/// \param DC the context in which the new declaration is being
2245/// declared.
2246///
2247/// \returns true if PrevDecl is an out-of-scope previous declaration
2248/// for a new delcaration with the same name.
2249static bool
2250isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2251                                ASTContext &Context) {
2252  if (!PrevDecl)
2253    return 0;
2254
2255  if (!PrevDecl->hasLinkage())
2256    return false;
2257
2258  if (Context.getLangOptions().CPlusPlus) {
2259    // C++ [basic.link]p6:
2260    //   If there is a visible declaration of an entity with linkage
2261    //   having the same name and type, ignoring entities declared
2262    //   outside the innermost enclosing namespace scope, the block
2263    //   scope declaration declares that same entity and receives the
2264    //   linkage of the previous declaration.
2265    DeclContext *OuterContext = DC->getLookupContext();
2266    if (!OuterContext->isFunctionOrMethod())
2267      // This rule only applies to block-scope declarations.
2268      return false;
2269    else {
2270      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2271      if (PrevOuterContext->isRecord())
2272        // We found a member function: ignore it.
2273        return false;
2274      else {
2275        // Find the innermost enclosing namespace for the new and
2276        // previous declarations.
2277        while (!OuterContext->isFileContext())
2278          OuterContext = OuterContext->getParent();
2279        while (!PrevOuterContext->isFileContext())
2280          PrevOuterContext = PrevOuterContext->getParent();
2281
2282        // The previous declaration is in a different namespace, so it
2283        // isn't the same function.
2284        if (OuterContext->getPrimaryContext() !=
2285            PrevOuterContext->getPrimaryContext())
2286          return false;
2287      }
2288    }
2289  }
2290
2291  return true;
2292}
2293
2294NamedDecl*
2295Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2296                              QualType R, TypeSourceInfo *TInfo,
2297                              LookupResult &Previous,
2298                              MultiTemplateParamsArg TemplateParamLists,
2299                              bool &Redeclaration) {
2300  DeclarationName Name = GetNameForDeclarator(D);
2301
2302  // Check that there are no default arguments (C++ only).
2303  if (getLangOptions().CPlusPlus)
2304    CheckExtraCXXDefaultArguments(D);
2305
2306  VarDecl *NewVD;
2307  VarDecl::StorageClass SC;
2308  switch (D.getDeclSpec().getStorageClassSpec()) {
2309  default: assert(0 && "Unknown storage class!");
2310  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2311  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2312  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2313  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2314  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2315  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2316  case DeclSpec::SCS_mutable:
2317    // mutable can only appear on non-static class members, so it's always
2318    // an error here
2319    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2320    D.setInvalidType();
2321    SC = VarDecl::None;
2322    break;
2323  }
2324
2325  IdentifierInfo *II = Name.getAsIdentifierInfo();
2326  if (!II) {
2327    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2328      << Name.getAsString();
2329    return 0;
2330  }
2331
2332  DiagnoseFunctionSpecifiers(D);
2333
2334  if (!DC->isRecord() && S->getFnParent() == 0) {
2335    // C99 6.9p2: The storage-class specifiers auto and register shall not
2336    // appear in the declaration specifiers in an external declaration.
2337    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2338
2339      // If this is a register variable with an asm label specified, then this
2340      // is a GNU extension.
2341      if (SC == VarDecl::Register && D.getAsmLabel())
2342        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2343      else
2344        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2345      D.setInvalidType();
2346    }
2347  }
2348  if (DC->isRecord() && !CurContext->isRecord()) {
2349    // This is an out-of-line definition of a static data member.
2350    if (SC == VarDecl::Static) {
2351      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2352           diag::err_static_out_of_line)
2353        << CodeModificationHint::CreateRemoval(
2354                                      D.getDeclSpec().getStorageClassSpecLoc());
2355    } else if (SC == VarDecl::None)
2356      SC = VarDecl::Static;
2357  }
2358  if (SC == VarDecl::Static) {
2359    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2360      if (RD->isLocalClass())
2361        Diag(D.getIdentifierLoc(),
2362             diag::err_static_data_member_not_allowed_in_local_class)
2363          << Name << RD->getDeclName();
2364    }
2365  }
2366
2367  // Match up the template parameter lists with the scope specifier, then
2368  // determine whether we have a template or a template specialization.
2369  bool isExplicitSpecialization = false;
2370  if (TemplateParameterList *TemplateParams
2371        = MatchTemplateParametersToScopeSpecifier(
2372                                  D.getDeclSpec().getSourceRange().getBegin(),
2373                                                  D.getCXXScopeSpec(),
2374                        (TemplateParameterList**)TemplateParamLists.get(),
2375                                                   TemplateParamLists.size(),
2376                                                  isExplicitSpecialization)) {
2377    if (TemplateParams->size() > 0) {
2378      // There is no such thing as a variable template.
2379      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2380        << II
2381        << SourceRange(TemplateParams->getTemplateLoc(),
2382                       TemplateParams->getRAngleLoc());
2383      return 0;
2384    } else {
2385      // There is an extraneous 'template<>' for this variable. Complain
2386      // about it, but allow the declaration of the variable.
2387      Diag(TemplateParams->getTemplateLoc(),
2388           diag::err_template_variable_noparams)
2389        << II
2390        << SourceRange(TemplateParams->getTemplateLoc(),
2391                       TemplateParams->getRAngleLoc());
2392
2393      isExplicitSpecialization = true;
2394    }
2395  }
2396
2397  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2398                          II, R, TInfo, SC);
2399
2400  if (D.isInvalidType())
2401    NewVD->setInvalidDecl();
2402
2403  if (D.getDeclSpec().isThreadSpecified()) {
2404    if (NewVD->hasLocalStorage())
2405      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2406    else if (!Context.Target.isTLSSupported())
2407      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2408    else
2409      NewVD->setThreadSpecified(true);
2410  }
2411
2412  // Set the lexical context. If the declarator has a C++ scope specifier, the
2413  // lexical context will be different from the semantic context.
2414  NewVD->setLexicalDeclContext(CurContext);
2415
2416  // Handle attributes prior to checking for duplicates in MergeVarDecl
2417  ProcessDeclAttributes(S, NewVD, D);
2418
2419  // Handle GNU asm-label extension (encoded as an attribute).
2420  if (Expr *E = (Expr*) D.getAsmLabel()) {
2421    // The parser guarantees this is a string.
2422    StringLiteral *SE = cast<StringLiteral>(E);
2423    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2424  }
2425
2426  // Don't consider existing declarations that are in a different
2427  // scope and are out-of-semantic-context declarations (if the new
2428  // declaration has linkage).
2429  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2430
2431  // Merge the decl with the existing one if appropriate.
2432  if (!Previous.empty()) {
2433    if (Previous.isSingleResult() &&
2434        isa<FieldDecl>(Previous.getFoundDecl()) &&
2435        D.getCXXScopeSpec().isSet()) {
2436      // The user tried to define a non-static data member
2437      // out-of-line (C++ [dcl.meaning]p1).
2438      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2439        << D.getCXXScopeSpec().getRange();
2440      Previous.clear();
2441      NewVD->setInvalidDecl();
2442    }
2443  } else if (D.getCXXScopeSpec().isSet()) {
2444    // No previous declaration in the qualifying scope.
2445    Diag(D.getIdentifierLoc(), diag::err_no_member)
2446      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2447      << D.getCXXScopeSpec().getRange();
2448    NewVD->setInvalidDecl();
2449  }
2450
2451  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2452
2453  // This is an explicit specialization of a static data member. Check it.
2454  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2455      CheckMemberSpecialization(NewVD, Previous))
2456    NewVD->setInvalidDecl();
2457
2458  // attributes declared post-definition are currently ignored
2459  if (Previous.isSingleResult()) {
2460    const VarDecl *Def = 0;
2461    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2462    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2463      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2464      Diag(Def->getLocation(), diag::note_previous_definition);
2465    }
2466  }
2467
2468  // If this is a locally-scoped extern C variable, update the map of
2469  // such variables.
2470  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2471      !NewVD->isInvalidDecl())
2472    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2473
2474  return NewVD;
2475}
2476
2477/// \brief Perform semantic checking on a newly-created variable
2478/// declaration.
2479///
2480/// This routine performs all of the type-checking required for a
2481/// variable declaration once it has been built. It is used both to
2482/// check variables after they have been parsed and their declarators
2483/// have been translated into a declaration, and to check variables
2484/// that have been instantiated from a template.
2485///
2486/// Sets NewVD->isInvalidDecl() if an error was encountered.
2487void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2488                                    LookupResult &Previous,
2489                                    bool &Redeclaration) {
2490  // If the decl is already known invalid, don't check it.
2491  if (NewVD->isInvalidDecl())
2492    return;
2493
2494  QualType T = NewVD->getType();
2495
2496  if (T->isObjCInterfaceType()) {
2497    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2498    return NewVD->setInvalidDecl();
2499  }
2500
2501  // Emit an error if an address space was applied to decl with local storage.
2502  // This includes arrays of objects with address space qualifiers, but not
2503  // automatic variables that point to other address spaces.
2504  // ISO/IEC TR 18037 S5.1.2
2505  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2506    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2507    return NewVD->setInvalidDecl();
2508  }
2509
2510  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2511      && !NewVD->hasAttr<BlocksAttr>())
2512    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2513
2514  bool isVM = T->isVariablyModifiedType();
2515  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2516      NewVD->hasAttr<BlocksAttr>())
2517    CurFunctionNeedsScopeChecking = true;
2518
2519  if ((isVM && NewVD->hasLinkage()) ||
2520      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2521    bool SizeIsNegative;
2522    QualType FixedTy =
2523        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2524
2525    if (FixedTy.isNull() && T->isVariableArrayType()) {
2526      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2527      // FIXME: This won't give the correct result for
2528      // int a[10][n];
2529      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2530
2531      if (NewVD->isFileVarDecl())
2532        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2533        << SizeRange;
2534      else if (NewVD->getStorageClass() == VarDecl::Static)
2535        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2536        << SizeRange;
2537      else
2538        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2539        << SizeRange;
2540      return NewVD->setInvalidDecl();
2541    }
2542
2543    if (FixedTy.isNull()) {
2544      if (NewVD->isFileVarDecl())
2545        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2546      else
2547        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2548      return NewVD->setInvalidDecl();
2549    }
2550
2551    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2552    NewVD->setType(FixedTy);
2553  }
2554
2555  if (Previous.empty() && NewVD->isExternC()) {
2556    // Since we did not find anything by this name and we're declaring
2557    // an extern "C" variable, look for a non-visible extern "C"
2558    // declaration with the same name.
2559    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2560      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2561    if (Pos != LocallyScopedExternalDecls.end())
2562      Previous.addDecl(Pos->second);
2563  }
2564
2565  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2566    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2567      << T;
2568    return NewVD->setInvalidDecl();
2569  }
2570
2571  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2572    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2573    return NewVD->setInvalidDecl();
2574  }
2575
2576  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2577    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2578    return NewVD->setInvalidDecl();
2579  }
2580
2581  if (!Previous.empty()) {
2582    Redeclaration = true;
2583    MergeVarDecl(NewVD, Previous);
2584  }
2585}
2586
2587/// \brief Data used with FindOverriddenMethod
2588struct FindOverriddenMethodData {
2589  Sema *S;
2590  CXXMethodDecl *Method;
2591};
2592
2593/// \brief Member lookup function that determines whether a given C++
2594/// method overrides a method in a base class, to be used with
2595/// CXXRecordDecl::lookupInBases().
2596static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2597                                 CXXBasePath &Path,
2598                                 void *UserData) {
2599  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2600
2601  FindOverriddenMethodData *Data
2602    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2603
2604  DeclarationName Name = Data->Method->getDeclName();
2605
2606  // FIXME: Do we care about other names here too?
2607  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2608    // We really want to find the base class constructor here.
2609    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2610    CanQualType CT = Data->S->Context.getCanonicalType(T);
2611
2612    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2613  }
2614
2615  for (Path.Decls = BaseRecord->lookup(Name);
2616       Path.Decls.first != Path.Decls.second;
2617       ++Path.Decls.first) {
2618    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2619      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2620        return true;
2621    }
2622  }
2623
2624  return false;
2625}
2626
2627/// AddOverriddenMethods - See if a method overrides any in the base classes,
2628/// and if so, check that it's a valid override and remember it.
2629void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2630  // Look for virtual methods in base classes that this method might override.
2631  CXXBasePaths Paths;
2632  FindOverriddenMethodData Data;
2633  Data.Method = MD;
2634  Data.S = this;
2635  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2636    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2637         E = Paths.found_decls_end(); I != E; ++I) {
2638      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2639        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2640            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2641            !CheckOverridingFunctionAttributes(MD, OldMD))
2642          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2643      }
2644    }
2645  }
2646}
2647
2648NamedDecl*
2649Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2650                              QualType R, TypeSourceInfo *TInfo,
2651                              LookupResult &Previous,
2652                              MultiTemplateParamsArg TemplateParamLists,
2653                              bool IsFunctionDefinition, bool &Redeclaration) {
2654  assert(R.getTypePtr()->isFunctionType());
2655
2656  DeclarationName Name = GetNameForDeclarator(D);
2657  FunctionDecl::StorageClass SC = FunctionDecl::None;
2658  switch (D.getDeclSpec().getStorageClassSpec()) {
2659  default: assert(0 && "Unknown storage class!");
2660  case DeclSpec::SCS_auto:
2661  case DeclSpec::SCS_register:
2662  case DeclSpec::SCS_mutable:
2663    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2664         diag::err_typecheck_sclass_func);
2665    D.setInvalidType();
2666    break;
2667  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2668  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2669  case DeclSpec::SCS_static: {
2670    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2671      // C99 6.7.1p5:
2672      //   The declaration of an identifier for a function that has
2673      //   block scope shall have no explicit storage-class specifier
2674      //   other than extern
2675      // See also (C++ [dcl.stc]p4).
2676      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2677           diag::err_static_block_func);
2678      SC = FunctionDecl::None;
2679    } else
2680      SC = FunctionDecl::Static;
2681    break;
2682  }
2683  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2684  }
2685
2686  if (D.getDeclSpec().isThreadSpecified())
2687    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2688
2689  bool isFriend = D.getDeclSpec().isFriendSpecified();
2690  bool isInline = D.getDeclSpec().isInlineSpecified();
2691  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2692  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2693
2694  // Check that the return type is not an abstract class type.
2695  // For record types, this is done by the AbstractClassUsageDiagnoser once
2696  // the class has been completely parsed.
2697  if (!DC->isRecord() &&
2698      RequireNonAbstractType(D.getIdentifierLoc(),
2699                             R->getAs<FunctionType>()->getResultType(),
2700                             diag::err_abstract_type_in_decl,
2701                             AbstractReturnType))
2702    D.setInvalidType();
2703
2704  // Do not allow returning a objc interface by-value.
2705  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2706    Diag(D.getIdentifierLoc(),
2707         diag::err_object_cannot_be_passed_returned_by_value) << 0
2708      << R->getAs<FunctionType>()->getResultType();
2709    D.setInvalidType();
2710  }
2711
2712  bool isVirtualOkay = false;
2713  FunctionDecl *NewFD;
2714
2715  if (isFriend) {
2716    // C++ [class.friend]p5
2717    //   A function can be defined in a friend declaration of a
2718    //   class . . . . Such a function is implicitly inline.
2719    isInline |= IsFunctionDefinition;
2720  }
2721
2722  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2723    // This is a C++ constructor declaration.
2724    assert(DC->isRecord() &&
2725           "Constructors can only be declared in a member context");
2726
2727    R = CheckConstructorDeclarator(D, R, SC);
2728
2729    // Create the new declaration
2730    NewFD = CXXConstructorDecl::Create(Context,
2731                                       cast<CXXRecordDecl>(DC),
2732                                       D.getIdentifierLoc(), Name, R, TInfo,
2733                                       isExplicit, isInline,
2734                                       /*isImplicitlyDeclared=*/false);
2735  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2736    // This is a C++ destructor declaration.
2737    if (DC->isRecord()) {
2738      R = CheckDestructorDeclarator(D, SC);
2739
2740      NewFD = CXXDestructorDecl::Create(Context,
2741                                        cast<CXXRecordDecl>(DC),
2742                                        D.getIdentifierLoc(), Name, R,
2743                                        isInline,
2744                                        /*isImplicitlyDeclared=*/false);
2745
2746      isVirtualOkay = true;
2747    } else {
2748      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2749
2750      // Create a FunctionDecl to satisfy the function definition parsing
2751      // code path.
2752      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2753                                   Name, R, TInfo, SC, isInline,
2754                                   /*hasPrototype=*/true);
2755      D.setInvalidType();
2756    }
2757  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2758    if (!DC->isRecord()) {
2759      Diag(D.getIdentifierLoc(),
2760           diag::err_conv_function_not_member);
2761      return 0;
2762    }
2763
2764    CheckConversionDeclarator(D, R, SC);
2765    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2766                                      D.getIdentifierLoc(), Name, R, TInfo,
2767                                      isInline, isExplicit);
2768
2769    isVirtualOkay = true;
2770  } else if (DC->isRecord()) {
2771    // If the of the function is the same as the name of the record, then this
2772    // must be an invalid constructor that has a return type.
2773    // (The parser checks for a return type and makes the declarator a
2774    // constructor if it has no return type).
2775    // must have an invalid constructor that has a return type
2776    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2777      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2778        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2779        << SourceRange(D.getIdentifierLoc());
2780      return 0;
2781    }
2782
2783    bool isStatic = SC == FunctionDecl::Static;
2784
2785    // [class.free]p1:
2786    // Any allocation function for a class T is a static member
2787    // (even if not explicitly declared static).
2788    if (Name.getCXXOverloadedOperator() == OO_New ||
2789        Name.getCXXOverloadedOperator() == OO_Array_New)
2790      isStatic = true;
2791
2792    // [class.free]p6 Any deallocation function for a class X is a static member
2793    // (even if not explicitly declared static).
2794    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2795        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2796      isStatic = true;
2797
2798    // This is a C++ method declaration.
2799    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2800                                  D.getIdentifierLoc(), Name, R, TInfo,
2801                                  isStatic, isInline);
2802
2803    isVirtualOkay = !isStatic;
2804  } else {
2805    // Determine whether the function was written with a
2806    // prototype. This true when:
2807    //   - we're in C++ (where every function has a prototype),
2808    //   - there is a prototype in the declarator, or
2809    //   - the type R of the function is some kind of typedef or other reference
2810    //     to a type name (which eventually refers to a function type).
2811    bool HasPrototype =
2812       getLangOptions().CPlusPlus ||
2813       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2814       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2815
2816    NewFD = FunctionDecl::Create(Context, DC,
2817                                 D.getIdentifierLoc(),
2818                                 Name, R, TInfo, SC, isInline, HasPrototype);
2819  }
2820
2821  if (D.isInvalidType())
2822    NewFD->setInvalidDecl();
2823
2824  // Set the lexical context. If the declarator has a C++
2825  // scope specifier, or is the object of a friend declaration, the
2826  // lexical context will be different from the semantic context.
2827  NewFD->setLexicalDeclContext(CurContext);
2828
2829  // Match up the template parameter lists with the scope specifier, then
2830  // determine whether we have a template or a template specialization.
2831  FunctionTemplateDecl *FunctionTemplate = 0;
2832  bool isExplicitSpecialization = false;
2833  bool isFunctionTemplateSpecialization = false;
2834  if (TemplateParameterList *TemplateParams
2835        = MatchTemplateParametersToScopeSpecifier(
2836                                  D.getDeclSpec().getSourceRange().getBegin(),
2837                                  D.getCXXScopeSpec(),
2838                           (TemplateParameterList**)TemplateParamLists.get(),
2839                                                  TemplateParamLists.size(),
2840                                                  isExplicitSpecialization)) {
2841    if (TemplateParams->size() > 0) {
2842      // This is a function template
2843
2844      // Check that we can declare a template here.
2845      if (CheckTemplateDeclScope(S, TemplateParams))
2846        return 0;
2847
2848      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2849                                                      NewFD->getLocation(),
2850                                                      Name, TemplateParams,
2851                                                      NewFD);
2852      FunctionTemplate->setLexicalDeclContext(CurContext);
2853      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2854    } else {
2855      // This is a function template specialization.
2856      isFunctionTemplateSpecialization = true;
2857    }
2858
2859    // FIXME: Free this memory properly.
2860    TemplateParamLists.release();
2861  }
2862
2863  // C++ [dcl.fct.spec]p5:
2864  //   The virtual specifier shall only be used in declarations of
2865  //   nonstatic class member functions that appear within a
2866  //   member-specification of a class declaration; see 10.3.
2867  //
2868  if (isVirtual && !NewFD->isInvalidDecl()) {
2869    if (!isVirtualOkay) {
2870       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2871           diag::err_virtual_non_function);
2872    } else if (!CurContext->isRecord()) {
2873      // 'virtual' was specified outside of the class.
2874      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2875        << CodeModificationHint::CreateRemoval(
2876                                           D.getDeclSpec().getVirtualSpecLoc());
2877    } else {
2878      // Okay: Add virtual to the method.
2879      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2880      CurClass->setMethodAsVirtual(NewFD);
2881    }
2882  }
2883
2884  // Filter out previous declarations that don't match the scope.
2885  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2886
2887  if (isFriend) {
2888    // DC is the namespace in which the function is being declared.
2889    assert((DC->isFileContext() || !Previous.empty()) &&
2890           "previously-undeclared friend function being created "
2891           "in a non-namespace context");
2892
2893    if (FunctionTemplate) {
2894      FunctionTemplate->setObjectOfFriendDecl(
2895                                   /* PreviouslyDeclared= */ !Previous.empty());
2896      FunctionTemplate->setAccess(AS_public);
2897    }
2898    else
2899      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2900
2901    NewFD->setAccess(AS_public);
2902  }
2903
2904  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2905      !CurContext->isRecord()) {
2906    // C++ [class.static]p1:
2907    //   A data or function member of a class may be declared static
2908    //   in a class definition, in which case it is a static member of
2909    //   the class.
2910
2911    // Complain about the 'static' specifier if it's on an out-of-line
2912    // member function definition.
2913    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2914         diag::err_static_out_of_line)
2915      << CodeModificationHint::CreateRemoval(
2916                                      D.getDeclSpec().getStorageClassSpecLoc());
2917  }
2918
2919  // Handle GNU asm-label extension (encoded as an attribute).
2920  if (Expr *E = (Expr*) D.getAsmLabel()) {
2921    // The parser guarantees this is a string.
2922    StringLiteral *SE = cast<StringLiteral>(E);
2923    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2924  }
2925
2926  // Copy the parameter declarations from the declarator D to the function
2927  // declaration NewFD, if they are available.  First scavenge them into Params.
2928  llvm::SmallVector<ParmVarDecl*, 16> Params;
2929  if (D.getNumTypeObjects() > 0) {
2930    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2931
2932    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2933    // function that takes no arguments, not a function that takes a
2934    // single void argument.
2935    // We let through "const void" here because Sema::GetTypeForDeclarator
2936    // already checks for that case.
2937    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2938        FTI.ArgInfo[0].Param &&
2939        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2940      // Empty arg list, don't push any params.
2941      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2942
2943      // In C++, the empty parameter-type-list must be spelled "void"; a
2944      // typedef of void is not permitted.
2945      if (getLangOptions().CPlusPlus &&
2946          Param->getType().getUnqualifiedType() != Context.VoidTy)
2947        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2948      // FIXME: Leaks decl?
2949    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2950      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2951        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2952        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2953        Param->setDeclContext(NewFD);
2954        Params.push_back(Param);
2955      }
2956    }
2957
2958  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2959    // When we're declaring a function with a typedef, typeof, etc as in the
2960    // following example, we'll need to synthesize (unnamed)
2961    // parameters for use in the declaration.
2962    //
2963    // @code
2964    // typedef void fn(int);
2965    // fn f;
2966    // @endcode
2967
2968    // Synthesize a parameter for each argument type.
2969    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2970         AE = FT->arg_type_end(); AI != AE; ++AI) {
2971      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2972                                               SourceLocation(), 0,
2973                                               *AI, /*TInfo=*/0,
2974                                               VarDecl::None, 0);
2975      Param->setImplicit();
2976      Params.push_back(Param);
2977    }
2978  } else {
2979    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2980           "Should not need args for typedef of non-prototype fn");
2981  }
2982  // Finally, we know we have the right number of parameters, install them.
2983  NewFD->setParams(Context, Params.data(), Params.size());
2984
2985  // If the declarator is a template-id, translate the parser's template
2986  // argument list into our AST format.
2987  bool HasExplicitTemplateArgs = false;
2988  TemplateArgumentListInfo TemplateArgs;
2989  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2990    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2991    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
2992    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
2993    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2994                                       TemplateId->getTemplateArgs(),
2995                                       TemplateId->NumArgs);
2996    translateTemplateArguments(TemplateArgsPtr,
2997                               TemplateArgs);
2998    TemplateArgsPtr.release();
2999
3000    HasExplicitTemplateArgs = true;
3001
3002    if (FunctionTemplate) {
3003      // FIXME: Diagnose function template with explicit template
3004      // arguments.
3005      HasExplicitTemplateArgs = false;
3006    } else if (!isFunctionTemplateSpecialization &&
3007               !D.getDeclSpec().isFriendSpecified()) {
3008      // We have encountered something that the user meant to be a
3009      // specialization (because it has explicitly-specified template
3010      // arguments) but that was not introduced with a "template<>" (or had
3011      // too few of them).
3012      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3013        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3014        << CodeModificationHint::CreateInsertion(
3015                                   D.getDeclSpec().getSourceRange().getBegin(),
3016                                                 "template<> ");
3017      isFunctionTemplateSpecialization = true;
3018    }
3019  }
3020
3021  if (isFunctionTemplateSpecialization) {
3022      if (CheckFunctionTemplateSpecialization(NewFD,
3023                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3024                                              Previous))
3025        NewFD->setInvalidDecl();
3026  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3027             CheckMemberSpecialization(NewFD, Previous))
3028    NewFD->setInvalidDecl();
3029
3030  // Perform semantic checking on the function declaration.
3031  bool OverloadableAttrRequired = false; // FIXME: HACK!
3032  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3033                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3034
3035  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3036          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3037         "previous declaration set still overloaded");
3038
3039  // If we have a function template, check the template parameter
3040  // list. This will check and merge default template arguments.
3041  if (FunctionTemplate) {
3042    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3043    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3044                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3045             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3046                                                : TPC_FunctionTemplate);
3047  }
3048
3049  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3050    // An out-of-line member function declaration must also be a
3051    // definition (C++ [dcl.meaning]p1).
3052    // Note that this is not the case for explicit specializations of
3053    // function templates or member functions of class templates, per
3054    // C++ [temp.expl.spec]p2.
3055    if (!IsFunctionDefinition && !isFriend &&
3056        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3057      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3058        << D.getCXXScopeSpec().getRange();
3059      NewFD->setInvalidDecl();
3060    } else if (!Redeclaration) {
3061      // The user tried to provide an out-of-line definition for a
3062      // function that is a member of a class or namespace, but there
3063      // was no such member function declared (C++ [class.mfct]p2,
3064      // C++ [namespace.memdef]p2). For example:
3065      //
3066      // class X {
3067      //   void f() const;
3068      // };
3069      //
3070      // void X::f() { } // ill-formed
3071      //
3072      // Complain about this problem, and attempt to suggest close
3073      // matches (e.g., those that differ only in cv-qualifiers and
3074      // whether the parameter types are references).
3075      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3076        << Name << DC << D.getCXXScopeSpec().getRange();
3077      NewFD->setInvalidDecl();
3078
3079      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3080                        ForRedeclaration);
3081      LookupQualifiedName(Prev, DC);
3082      assert(!Prev.isAmbiguous() &&
3083             "Cannot have an ambiguity in previous-declaration lookup");
3084      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3085           Func != FuncEnd; ++Func) {
3086        if (isa<FunctionDecl>(*Func) &&
3087            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3088          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3089      }
3090    }
3091  }
3092
3093  // Handle attributes. We need to have merged decls when handling attributes
3094  // (for example to check for conflicts, etc).
3095  // FIXME: This needs to happen before we merge declarations. Then,
3096  // let attribute merging cope with attribute conflicts.
3097  ProcessDeclAttributes(S, NewFD, D);
3098
3099  // attributes declared post-definition are currently ignored
3100  if (Redeclaration && Previous.isSingleResult()) {
3101    const FunctionDecl *Def;
3102    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3103    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3104      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3105      Diag(Def->getLocation(), diag::note_previous_definition);
3106    }
3107  }
3108
3109  AddKnownFunctionAttributes(NewFD);
3110
3111  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3112    // If a function name is overloadable in C, then every function
3113    // with that name must be marked "overloadable".
3114    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3115      << Redeclaration << NewFD;
3116    if (!Previous.empty())
3117      Diag(Previous.getRepresentativeDecl()->getLocation(),
3118           diag::note_attribute_overloadable_prev_overload);
3119    NewFD->addAttr(::new (Context) OverloadableAttr());
3120  }
3121
3122  // If this is a locally-scoped extern C function, update the
3123  // map of such names.
3124  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3125      && !NewFD->isInvalidDecl())
3126    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3127
3128  // Set this FunctionDecl's range up to the right paren.
3129  NewFD->setLocEnd(D.getSourceRange().getEnd());
3130
3131  if (FunctionTemplate && NewFD->isInvalidDecl())
3132    FunctionTemplate->setInvalidDecl();
3133
3134  if (FunctionTemplate)
3135    return FunctionTemplate;
3136
3137  return NewFD;
3138}
3139
3140/// \brief Perform semantic checking of a new function declaration.
3141///
3142/// Performs semantic analysis of the new function declaration
3143/// NewFD. This routine performs all semantic checking that does not
3144/// require the actual declarator involved in the declaration, and is
3145/// used both for the declaration of functions as they are parsed
3146/// (called via ActOnDeclarator) and for the declaration of functions
3147/// that have been instantiated via C++ template instantiation (called
3148/// via InstantiateDecl).
3149///
3150/// \param IsExplicitSpecialiation whether this new function declaration is
3151/// an explicit specialization of the previous declaration.
3152///
3153/// This sets NewFD->isInvalidDecl() to true if there was an error.
3154void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3155                                    LookupResult &Previous,
3156                                    bool IsExplicitSpecialization,
3157                                    bool &Redeclaration,
3158                                    bool &OverloadableAttrRequired) {
3159  // If NewFD is already known erroneous, don't do any of this checking.
3160  if (NewFD->isInvalidDecl())
3161    return;
3162
3163  if (NewFD->getResultType()->isVariablyModifiedType()) {
3164    // Functions returning a variably modified type violate C99 6.7.5.2p2
3165    // because all functions have linkage.
3166    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3167    return NewFD->setInvalidDecl();
3168  }
3169
3170  if (NewFD->isMain())
3171    CheckMain(NewFD);
3172
3173  // Check for a previous declaration of this name.
3174  if (Previous.empty() && NewFD->isExternC()) {
3175    // Since we did not find anything by this name and we're declaring
3176    // an extern "C" function, look for a non-visible extern "C"
3177    // declaration with the same name.
3178    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3179      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3180    if (Pos != LocallyScopedExternalDecls.end())
3181      Previous.addDecl(Pos->second);
3182  }
3183
3184  // Merge or overload the declaration with an existing declaration of
3185  // the same name, if appropriate.
3186  if (!Previous.empty()) {
3187    // Determine whether NewFD is an overload of PrevDecl or
3188    // a declaration that requires merging. If it's an overload,
3189    // there's no more work to do here; we'll just add the new
3190    // function to the scope.
3191
3192    NamedDecl *OldDecl = 0;
3193    if (!AllowOverloadingOfFunction(Previous, Context)) {
3194      Redeclaration = true;
3195      OldDecl = Previous.getFoundDecl();
3196    } else {
3197      if (!getLangOptions().CPlusPlus) {
3198        OverloadableAttrRequired = true;
3199
3200        // Functions marked "overloadable" must have a prototype (that
3201        // we can't get through declaration merging).
3202        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3203          Diag(NewFD->getLocation(),
3204               diag::err_attribute_overloadable_no_prototype)
3205            << NewFD;
3206          Redeclaration = true;
3207
3208          // Turn this into a variadic function with no parameters.
3209          QualType R = Context.getFunctionType(
3210                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3211                     0, 0, true, 0);
3212          NewFD->setType(R);
3213          return NewFD->setInvalidDecl();
3214        }
3215      }
3216
3217      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3218      case Ovl_Match:
3219        Redeclaration = true;
3220        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3221          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3222          Redeclaration = false;
3223        }
3224        break;
3225
3226      case Ovl_NonFunction:
3227        Redeclaration = true;
3228        break;
3229
3230      case Ovl_Overload:
3231        Redeclaration = false;
3232        break;
3233      }
3234    }
3235
3236    if (Redeclaration) {
3237      // NewFD and OldDecl represent declarations that need to be
3238      // merged.
3239      if (MergeFunctionDecl(NewFD, OldDecl))
3240        return NewFD->setInvalidDecl();
3241
3242      Previous.clear();
3243      Previous.addDecl(OldDecl);
3244
3245      if (FunctionTemplateDecl *OldTemplateDecl
3246                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3247        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3248        FunctionTemplateDecl *NewTemplateDecl
3249          = NewFD->getDescribedFunctionTemplate();
3250        assert(NewTemplateDecl && "Template/non-template mismatch");
3251        if (CXXMethodDecl *Method
3252              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3253          Method->setAccess(OldTemplateDecl->getAccess());
3254          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3255        }
3256
3257        // If this is an explicit specialization of a member that is a function
3258        // template, mark it as a member specialization.
3259        if (IsExplicitSpecialization &&
3260            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3261          NewTemplateDecl->setMemberSpecialization();
3262          assert(OldTemplateDecl->isMemberSpecialization());
3263        }
3264      } else {
3265        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3266          NewFD->setAccess(OldDecl->getAccess());
3267        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3268      }
3269    }
3270  }
3271
3272  // Semantic checking for this function declaration (in isolation).
3273  if (getLangOptions().CPlusPlus) {
3274    // C++-specific checks.
3275    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3276      CheckConstructor(Constructor);
3277    } else if (CXXDestructorDecl *Destructor =
3278                dyn_cast<CXXDestructorDecl>(NewFD)) {
3279      CXXRecordDecl *Record = Destructor->getParent();
3280      QualType ClassType = Context.getTypeDeclType(Record);
3281
3282      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3283      // type is dependent? Both gcc and edg can handle that.
3284      if (!ClassType->isDependentType()) {
3285        DeclarationName Name
3286          = Context.DeclarationNames.getCXXDestructorName(
3287                                        Context.getCanonicalType(ClassType));
3288        if (NewFD->getDeclName() != Name) {
3289          Diag(NewFD->getLocation(), diag::err_destructor_name);
3290          return NewFD->setInvalidDecl();
3291        }
3292      }
3293
3294      Record->setUserDeclaredDestructor(true);
3295      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3296      // user-defined destructor.
3297      Record->setPOD(false);
3298
3299      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3300      // declared destructor.
3301      // FIXME: C++0x: don't do this for "= default" destructors
3302      Record->setHasTrivialDestructor(false);
3303    } else if (CXXConversionDecl *Conversion
3304               = dyn_cast<CXXConversionDecl>(NewFD)) {
3305      ActOnConversionDeclarator(Conversion);
3306    }
3307
3308    // Find any virtual functions that this function overrides.
3309    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3310      if (!Method->isFunctionTemplateSpecialization() &&
3311          !Method->getDescribedFunctionTemplate())
3312        AddOverriddenMethods(Method->getParent(), Method);
3313    }
3314
3315    // Additional checks for the destructor; make sure we do this after we
3316    // figure out whether the destructor is virtual.
3317    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3318      if (!Destructor->getParent()->isDependentType())
3319        CheckDestructor(Destructor);
3320
3321    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3322    if (NewFD->isOverloadedOperator() &&
3323        CheckOverloadedOperatorDeclaration(NewFD))
3324      return NewFD->setInvalidDecl();
3325
3326    // In C++, check default arguments now that we have merged decls. Unless
3327    // the lexical context is the class, because in this case this is done
3328    // during delayed parsing anyway.
3329    if (!CurContext->isRecord())
3330      CheckCXXDefaultArguments(NewFD);
3331  }
3332}
3333
3334void Sema::CheckMain(FunctionDecl* FD) {
3335  // C++ [basic.start.main]p3:  A program that declares main to be inline
3336  //   or static is ill-formed.
3337  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3338  //   shall not appear in a declaration of main.
3339  // static main is not an error under C99, but we should warn about it.
3340  bool isInline = FD->isInlineSpecified();
3341  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3342  if (isInline || isStatic) {
3343    unsigned diagID = diag::warn_unusual_main_decl;
3344    if (isInline || getLangOptions().CPlusPlus)
3345      diagID = diag::err_unusual_main_decl;
3346
3347    int which = isStatic + (isInline << 1) - 1;
3348    Diag(FD->getLocation(), diagID) << which;
3349  }
3350
3351  QualType T = FD->getType();
3352  assert(T->isFunctionType() && "function decl is not of function type");
3353  const FunctionType* FT = T->getAs<FunctionType>();
3354
3355  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3356    // TODO: add a replacement fixit to turn the return type into 'int'.
3357    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3358    FD->setInvalidDecl(true);
3359  }
3360
3361  // Treat protoless main() as nullary.
3362  if (isa<FunctionNoProtoType>(FT)) return;
3363
3364  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3365  unsigned nparams = FTP->getNumArgs();
3366  assert(FD->getNumParams() == nparams);
3367
3368  if (nparams > 3) {
3369    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3370    FD->setInvalidDecl(true);
3371    nparams = 3;
3372  }
3373
3374  // FIXME: a lot of the following diagnostics would be improved
3375  // if we had some location information about types.
3376
3377  QualType CharPP =
3378    Context.getPointerType(Context.getPointerType(Context.CharTy));
3379  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3380
3381  for (unsigned i = 0; i < nparams; ++i) {
3382    QualType AT = FTP->getArgType(i);
3383
3384    bool mismatch = true;
3385
3386    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3387      mismatch = false;
3388    else if (Expected[i] == CharPP) {
3389      // As an extension, the following forms are okay:
3390      //   char const **
3391      //   char const * const *
3392      //   char * const *
3393
3394      QualifierCollector qs;
3395      const PointerType* PT;
3396      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3397          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3398          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3399        qs.removeConst();
3400        mismatch = !qs.empty();
3401      }
3402    }
3403
3404    if (mismatch) {
3405      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3406      // TODO: suggest replacing given type with expected type
3407      FD->setInvalidDecl(true);
3408    }
3409  }
3410
3411  if (nparams == 1 && !FD->isInvalidDecl()) {
3412    Diag(FD->getLocation(), diag::warn_main_one_arg);
3413  }
3414}
3415
3416bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3417  // FIXME: Need strict checking.  In C89, we need to check for
3418  // any assignment, increment, decrement, function-calls, or
3419  // commas outside of a sizeof.  In C99, it's the same list,
3420  // except that the aforementioned are allowed in unevaluated
3421  // expressions.  Everything else falls under the
3422  // "may accept other forms of constant expressions" exception.
3423  // (We never end up here for C++, so the constant expression
3424  // rules there don't matter.)
3425  if (Init->isConstantInitializer(Context))
3426    return false;
3427  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3428    << Init->getSourceRange();
3429  return true;
3430}
3431
3432void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3433  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3434}
3435
3436/// AddInitializerToDecl - Adds the initializer Init to the
3437/// declaration dcl. If DirectInit is true, this is C++ direct
3438/// initialization rather than copy initialization.
3439void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3440  Decl *RealDecl = dcl.getAs<Decl>();
3441  // If there is no declaration, there was an error parsing it.  Just ignore
3442  // the initializer.
3443  if (RealDecl == 0)
3444    return;
3445
3446  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3447    // With declarators parsed the way they are, the parser cannot
3448    // distinguish between a normal initializer and a pure-specifier.
3449    // Thus this grotesque test.
3450    IntegerLiteral *IL;
3451    Expr *Init = static_cast<Expr *>(init.get());
3452    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3453        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3454      CheckPureMethod(Method, Init->getSourceRange());
3455    else {
3456      Diag(Method->getLocation(), diag::err_member_function_initialization)
3457        << Method->getDeclName() << Init->getSourceRange();
3458      Method->setInvalidDecl();
3459    }
3460    return;
3461  }
3462
3463  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3464  if (!VDecl) {
3465    if (getLangOptions().CPlusPlus &&
3466        RealDecl->getLexicalDeclContext()->isRecord() &&
3467        isa<NamedDecl>(RealDecl))
3468      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3469        << cast<NamedDecl>(RealDecl)->getDeclName();
3470    else
3471      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3472    RealDecl->setInvalidDecl();
3473    return;
3474  }
3475
3476  // A definition must end up with a complete type, which means it must be
3477  // complete with the restriction that an array type might be completed by the
3478  // initializer; note that later code assumes this restriction.
3479  QualType BaseDeclType = VDecl->getType();
3480  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3481    BaseDeclType = Array->getElementType();
3482  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3483                          diag::err_typecheck_decl_incomplete_type)) {
3484    RealDecl->setInvalidDecl();
3485    return;
3486  }
3487
3488  // The variable can not have an abstract class type.
3489  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3490                             diag::err_abstract_type_in_decl,
3491                             AbstractVariableType))
3492    VDecl->setInvalidDecl();
3493
3494  const VarDecl *Def = 0;
3495  if (VDecl->getDefinition(Def)) {
3496    Diag(VDecl->getLocation(), diag::err_redefinition)
3497      << VDecl->getDeclName();
3498    Diag(Def->getLocation(), diag::note_previous_definition);
3499    VDecl->setInvalidDecl();
3500    return;
3501  }
3502
3503  // Take ownership of the expression, now that we're sure we have somewhere
3504  // to put it.
3505  Expr *Init = init.takeAs<Expr>();
3506  assert(Init && "missing initializer");
3507
3508  // Get the decls type and save a reference for later, since
3509  // CheckInitializerTypes may change it.
3510  QualType DclT = VDecl->getType(), SavT = DclT;
3511  if (VDecl->isBlockVarDecl()) {
3512    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3513      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3514      VDecl->setInvalidDecl();
3515    } else if (!VDecl->isInvalidDecl()) {
3516      if (VDecl->getType()->isReferenceType()
3517          || isa<InitListExpr>(Init)) {
3518        InitializedEntity Entity
3519          = InitializedEntity::InitializeVariable(VDecl);
3520
3521        // FIXME: Poor source location information.
3522        InitializationKind Kind
3523          = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3524                                                         SourceLocation(),
3525                                                         SourceLocation())
3526                      : InitializationKind::CreateCopy(VDecl->getLocation(),
3527                                                       SourceLocation());
3528        InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3529        if (InitSeq) {
3530          OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3531                                           MultiExprArg(*this, (void**)&Init, 1),
3532                                                    &DclT);
3533          if (Result.isInvalid()) {
3534            VDecl->setInvalidDecl();
3535            return;
3536          }
3537
3538          Init = Result.takeAs<Expr>();
3539        } else {
3540          InitSeq.Diagnose(*this, Entity, Kind, &Init, 1);
3541          VDecl->setInvalidDecl();
3542          return;
3543        }
3544      } else if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3545                                       VDecl->getDeclName(), DirectInit))
3546        VDecl->setInvalidDecl();
3547
3548      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3549      // Don't check invalid declarations to avoid emitting useless diagnostics.
3550      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3551        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3552          CheckForConstantInitializer(Init, DclT);
3553      }
3554    }
3555  } else if (VDecl->isStaticDataMember() &&
3556             VDecl->getLexicalDeclContext()->isRecord()) {
3557    // This is an in-class initialization for a static data member, e.g.,
3558    //
3559    // struct S {
3560    //   static const int value = 17;
3561    // };
3562
3563    // Attach the initializer
3564    VDecl->setInit(Context, Init);
3565
3566    // C++ [class.mem]p4:
3567    //   A member-declarator can contain a constant-initializer only
3568    //   if it declares a static member (9.4) of const integral or
3569    //   const enumeration type, see 9.4.2.
3570    QualType T = VDecl->getType();
3571    if (!T->isDependentType() &&
3572        (!Context.getCanonicalType(T).isConstQualified() ||
3573         !T->isIntegralType())) {
3574      Diag(VDecl->getLocation(), diag::err_member_initialization)
3575        << VDecl->getDeclName() << Init->getSourceRange();
3576      VDecl->setInvalidDecl();
3577    } else {
3578      // C++ [class.static.data]p4:
3579      //   If a static data member is of const integral or const
3580      //   enumeration type, its declaration in the class definition
3581      //   can specify a constant-initializer which shall be an
3582      //   integral constant expression (5.19).
3583      if (!Init->isTypeDependent() &&
3584          !Init->getType()->isIntegralType()) {
3585        // We have a non-dependent, non-integral or enumeration type.
3586        Diag(Init->getSourceRange().getBegin(),
3587             diag::err_in_class_initializer_non_integral_type)
3588          << Init->getType() << Init->getSourceRange();
3589        VDecl->setInvalidDecl();
3590      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3591        // Check whether the expression is a constant expression.
3592        llvm::APSInt Value;
3593        SourceLocation Loc;
3594        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3595          Diag(Loc, diag::err_in_class_initializer_non_constant)
3596            << Init->getSourceRange();
3597          VDecl->setInvalidDecl();
3598        } else if (!VDecl->getType()->isDependentType())
3599          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3600      }
3601    }
3602  } else if (VDecl->isFileVarDecl()) {
3603    if (VDecl->getStorageClass() == VarDecl::Extern)
3604      Diag(VDecl->getLocation(), diag::warn_extern_init);
3605    if (!VDecl->isInvalidDecl())
3606      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3607                                VDecl->getDeclName(), DirectInit))
3608        VDecl->setInvalidDecl();
3609
3610    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3611    // Don't check invalid declarations to avoid emitting useless diagnostics.
3612    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3613      // C99 6.7.8p4. All file scoped initializers need to be constant.
3614      CheckForConstantInitializer(Init, DclT);
3615    }
3616  }
3617  // If the type changed, it means we had an incomplete type that was
3618  // completed by the initializer. For example:
3619  //   int ary[] = { 1, 3, 5 };
3620  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3621  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3622    VDecl->setType(DclT);
3623    Init->setType(DclT);
3624  }
3625
3626  Init = MaybeCreateCXXExprWithTemporaries(Init,
3627                                           /*ShouldDestroyTemporaries=*/true);
3628  // Attach the initializer to the decl.
3629  VDecl->setInit(Context, Init);
3630
3631  // If the previous declaration of VDecl was a tentative definition,
3632  // remove it from the set of tentative definitions.
3633  if (VDecl->getPreviousDeclaration() &&
3634      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3635    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3636    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3637  }
3638
3639  return;
3640}
3641
3642void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3643                                  bool TypeContainsUndeducedAuto) {
3644  Decl *RealDecl = dcl.getAs<Decl>();
3645
3646  // If there is no declaration, there was an error parsing it. Just ignore it.
3647  if (RealDecl == 0)
3648    return;
3649
3650  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3651    QualType Type = Var->getType();
3652
3653    // Record tentative definitions.
3654    if (Var->isTentativeDefinition(Context)) {
3655      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3656        InsertPair =
3657           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3658
3659      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3660      // want the second one in the map.
3661      InsertPair.first->second = Var;
3662
3663      // However, for the list, we don't care about the order, just make sure
3664      // that there are no dupes for a given declaration name.
3665      if (InsertPair.second)
3666        TentativeDefinitionList.push_back(Var->getDeclName());
3667    }
3668
3669    // C++ [dcl.init.ref]p3:
3670    //   The initializer can be omitted for a reference only in a
3671    //   parameter declaration (8.3.5), in the declaration of a
3672    //   function return type, in the declaration of a class member
3673    //   within its class declaration (9.2), and where the extern
3674    //   specifier is explicitly used.
3675    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3676      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3677        << Var->getDeclName()
3678        << SourceRange(Var->getLocation(), Var->getLocation());
3679      Var->setInvalidDecl();
3680      return;
3681    }
3682
3683    // C++0x [dcl.spec.auto]p3
3684    if (TypeContainsUndeducedAuto) {
3685      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3686        << Var->getDeclName() << Type;
3687      Var->setInvalidDecl();
3688      return;
3689    }
3690
3691    // An array without size is an incomplete type, and there are no special
3692    // rules in C++ to make such a definition acceptable.
3693    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3694        !Var->hasExternalStorage()) {
3695      Diag(Var->getLocation(),
3696           diag::err_typecheck_incomplete_array_needs_initializer);
3697      Var->setInvalidDecl();
3698      return;
3699    }
3700
3701    // C++ [temp.expl.spec]p15:
3702    //   An explicit specialization of a static data member of a template is a
3703    //   definition if the declaration includes an initializer; otherwise, it
3704    //   is a declaration.
3705    if (Var->isStaticDataMember() &&
3706        Var->getInstantiatedFromStaticDataMember() &&
3707        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3708      return;
3709
3710    // C++ [dcl.init]p9:
3711    //   If no initializer is specified for an object, and the object
3712    //   is of (possibly cv-qualified) non-POD class type (or array
3713    //   thereof), the object shall be default-initialized; if the
3714    //   object is of const-qualified type, the underlying class type
3715    //   shall have a user-declared default constructor.
3716    //
3717    // FIXME: Diagnose the "user-declared default constructor" bit.
3718    if (getLangOptions().CPlusPlus) {
3719      QualType InitType = Type;
3720      if (const ArrayType *Array = Context.getAsArrayType(Type))
3721        InitType = Context.getBaseElementType(Array);
3722      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3723          InitType->isRecordType() && !InitType->isDependentType()) {
3724        if (!RequireCompleteType(Var->getLocation(), InitType,
3725                                 diag::err_invalid_incomplete_type_use)) {
3726          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3727
3728          CXXConstructorDecl *Constructor
3729            = PerformInitializationByConstructor(InitType,
3730                                                 MultiExprArg(*this, 0, 0),
3731                                                 Var->getLocation(),
3732                                               SourceRange(Var->getLocation(),
3733                                                           Var->getLocation()),
3734                                                 Var->getDeclName(),
3735                         InitializationKind::CreateDefault(Var->getLocation()),
3736                                                 ConstructorArgs);
3737
3738          // FIXME: Location info for the variable initialization?
3739          if (!Constructor)
3740            Var->setInvalidDecl();
3741          else {
3742            // FIXME: Cope with initialization of arrays
3743            if (!Constructor->isTrivial() &&
3744                InitializeVarWithConstructor(Var, Constructor,
3745                                             move_arg(ConstructorArgs)))
3746              Var->setInvalidDecl();
3747
3748            FinalizeVarWithDestructor(Var, InitType);
3749          }
3750        } else {
3751          Var->setInvalidDecl();
3752        }
3753      }
3754
3755      // The variable can not have an abstract class type.
3756      if (RequireNonAbstractType(Var->getLocation(), Type,
3757                                 diag::err_abstract_type_in_decl,
3758                                 AbstractVariableType))
3759        Var->setInvalidDecl();
3760    }
3761
3762#if 0
3763    // FIXME: Temporarily disabled because we are not properly parsing
3764    // linkage specifications on declarations, e.g.,
3765    //
3766    //   extern "C" const CGPoint CGPointerZero;
3767    //
3768    // C++ [dcl.init]p9:
3769    //
3770    //     If no initializer is specified for an object, and the
3771    //     object is of (possibly cv-qualified) non-POD class type (or
3772    //     array thereof), the object shall be default-initialized; if
3773    //     the object is of const-qualified type, the underlying class
3774    //     type shall have a user-declared default
3775    //     constructor. Otherwise, if no initializer is specified for
3776    //     an object, the object and its subobjects, if any, have an
3777    //     indeterminate initial value; if the object or any of its
3778    //     subobjects are of const-qualified type, the program is
3779    //     ill-formed.
3780    //
3781    // This isn't technically an error in C, so we don't diagnose it.
3782    //
3783    // FIXME: Actually perform the POD/user-defined default
3784    // constructor check.
3785    if (getLangOptions().CPlusPlus &&
3786        Context.getCanonicalType(Type).isConstQualified() &&
3787        !Var->hasExternalStorage())
3788      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3789        << Var->getName()
3790        << SourceRange(Var->getLocation(), Var->getLocation());
3791#endif
3792  }
3793}
3794
3795Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3796                                                   DeclPtrTy *Group,
3797                                                   unsigned NumDecls) {
3798  llvm::SmallVector<Decl*, 8> Decls;
3799
3800  if (DS.isTypeSpecOwned())
3801    Decls.push_back((Decl*)DS.getTypeRep());
3802
3803  for (unsigned i = 0; i != NumDecls; ++i)
3804    if (Decl *D = Group[i].getAs<Decl>())
3805      Decls.push_back(D);
3806
3807  // Perform semantic analysis that depends on having fully processed both
3808  // the declarator and initializer.
3809  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3810    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3811    if (!IDecl)
3812      continue;
3813    QualType T = IDecl->getType();
3814
3815    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3816    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3817    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3818      if (T->isDependentType()) {
3819        // If T is dependent, we should not require a complete type.
3820        // (RequireCompleteType shouldn't be called with dependent types.)
3821        // But we still can at least check if we've got an array of unspecified
3822        // size without an initializer.
3823        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3824            !IDecl->getInit()) {
3825          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3826            << T;
3827          IDecl->setInvalidDecl();
3828        }
3829      } else if (!IDecl->isInvalidDecl()) {
3830        // If T is an incomplete array type with an initializer list that is
3831        // dependent on something, its size has not been fixed. We could attempt
3832        // to fix the size for such arrays, but we would still have to check
3833        // here for initializers containing a C++0x vararg expansion, e.g.
3834        // template <typename... Args> void f(Args... args) {
3835        //   int vals[] = { args };
3836        // }
3837        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3838        Expr *Init = IDecl->getInit();
3839        if (IAT && Init &&
3840            (Init->isTypeDependent() || Init->isValueDependent())) {
3841          // Check that the member type of the array is complete, at least.
3842          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3843                                  diag::err_typecheck_decl_incomplete_type))
3844            IDecl->setInvalidDecl();
3845        } else if (RequireCompleteType(IDecl->getLocation(), T,
3846                                      diag::err_typecheck_decl_incomplete_type))
3847          IDecl->setInvalidDecl();
3848      }
3849    }
3850    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3851    // object that has file scope without an initializer, and without a
3852    // storage-class specifier or with the storage-class specifier "static",
3853    // constitutes a tentative definition. Note: A tentative definition with
3854    // external linkage is valid (C99 6.2.2p5).
3855    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3856      if (const IncompleteArrayType *ArrayT
3857          = Context.getAsIncompleteArrayType(T)) {
3858        if (RequireCompleteType(IDecl->getLocation(),
3859                                ArrayT->getElementType(),
3860                                diag::err_illegal_decl_array_incomplete_type))
3861          IDecl->setInvalidDecl();
3862      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3863        // C99 6.9.2p3: If the declaration of an identifier for an object is
3864        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3865        // declared type shall not be an incomplete type.
3866        // NOTE: code such as the following
3867        //     static struct s;
3868        //     struct s { int a; };
3869        // is accepted by gcc. Hence here we issue a warning instead of
3870        // an error and we do not invalidate the static declaration.
3871        // NOTE: to avoid multiple warnings, only check the first declaration.
3872        if (IDecl->getPreviousDeclaration() == 0)
3873          RequireCompleteType(IDecl->getLocation(), T,
3874                              diag::ext_typecheck_decl_incomplete_type);
3875      }
3876    }
3877  }
3878  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3879                                                   Decls.data(), Decls.size()));
3880}
3881
3882
3883/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3884/// to introduce parameters into function prototype scope.
3885Sema::DeclPtrTy
3886Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3887  const DeclSpec &DS = D.getDeclSpec();
3888
3889  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3890  VarDecl::StorageClass StorageClass = VarDecl::None;
3891  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3892    StorageClass = VarDecl::Register;
3893  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3894    Diag(DS.getStorageClassSpecLoc(),
3895         diag::err_invalid_storage_class_in_func_decl);
3896    D.getMutableDeclSpec().ClearStorageClassSpecs();
3897  }
3898
3899  if (D.getDeclSpec().isThreadSpecified())
3900    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3901
3902  DiagnoseFunctionSpecifiers(D);
3903
3904  // Check that there are no default arguments inside the type of this
3905  // parameter (C++ only).
3906  if (getLangOptions().CPlusPlus)
3907    CheckExtraCXXDefaultArguments(D);
3908
3909  TypeSourceInfo *TInfo = 0;
3910  TagDecl *OwnedDecl = 0;
3911  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
3912
3913  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3914    // C++ [dcl.fct]p6:
3915    //   Types shall not be defined in return or parameter types.
3916    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3917      << Context.getTypeDeclType(OwnedDecl);
3918  }
3919
3920  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3921  // Can this happen for params?  We already checked that they don't conflict
3922  // among each other.  Here they can only shadow globals, which is ok.
3923  IdentifierInfo *II = D.getIdentifier();
3924  if (II) {
3925    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3926      if (PrevDecl->isTemplateParameter()) {
3927        // Maybe we will complain about the shadowed template parameter.
3928        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3929        // Just pretend that we didn't see the previous declaration.
3930        PrevDecl = 0;
3931      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3932        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3933
3934        // Recover by removing the name
3935        II = 0;
3936        D.SetIdentifier(0, D.getIdentifierLoc());
3937      }
3938    }
3939  }
3940
3941  // Parameters can not be abstract class types.
3942  // For record types, this is done by the AbstractClassUsageDiagnoser once
3943  // the class has been completely parsed.
3944  if (!CurContext->isRecord() &&
3945      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3946                             diag::err_abstract_type_in_decl,
3947                             AbstractParamType))
3948    D.setInvalidType(true);
3949
3950  QualType T = adjustParameterType(parmDeclType);
3951
3952  ParmVarDecl *New
3953    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3954                          T, TInfo, StorageClass, 0);
3955
3956  if (D.isInvalidType())
3957    New->setInvalidDecl();
3958
3959  // Parameter declarators cannot be interface types. All ObjC objects are
3960  // passed by reference.
3961  if (T->isObjCInterfaceType()) {
3962    Diag(D.getIdentifierLoc(),
3963         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3964    New->setInvalidDecl();
3965  }
3966
3967  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3968  if (D.getCXXScopeSpec().isSet()) {
3969    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3970      << D.getCXXScopeSpec().getRange();
3971    New->setInvalidDecl();
3972  }
3973
3974  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3975  // duration shall not be qualified by an address-space qualifier."
3976  // Since all parameters have automatic store duration, they can not have
3977  // an address space.
3978  if (T.getAddressSpace() != 0) {
3979    Diag(D.getIdentifierLoc(),
3980         diag::err_arg_with_address_space);
3981    New->setInvalidDecl();
3982  }
3983
3984
3985  // Add the parameter declaration into this scope.
3986  S->AddDecl(DeclPtrTy::make(New));
3987  if (II)
3988    IdResolver.AddDecl(New);
3989
3990  ProcessDeclAttributes(S, New, D);
3991
3992  if (New->hasAttr<BlocksAttr>()) {
3993    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3994  }
3995  return DeclPtrTy::make(New);
3996}
3997
3998void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3999                                           SourceLocation LocAfterDecls) {
4000  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4001         "Not a function declarator!");
4002  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4003
4004  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4005  // for a K&R function.
4006  if (!FTI.hasPrototype) {
4007    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4008      --i;
4009      if (FTI.ArgInfo[i].Param == 0) {
4010        llvm::SmallString<256> Code;
4011        llvm::raw_svector_ostream(Code) << "  int "
4012                                        << FTI.ArgInfo[i].Ident->getName()
4013                                        << ";\n";
4014        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4015          << FTI.ArgInfo[i].Ident
4016          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
4017
4018        // Implicitly declare the argument as type 'int' for lack of a better
4019        // type.
4020        DeclSpec DS;
4021        const char* PrevSpec; // unused
4022        unsigned DiagID; // unused
4023        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4024                           PrevSpec, DiagID);
4025        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4026        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4027        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4028      }
4029    }
4030  }
4031}
4032
4033Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4034                                              Declarator &D) {
4035  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4036  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4037         "Not a function declarator!");
4038  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4039
4040  if (FTI.hasPrototype) {
4041    // FIXME: Diagnose arguments without names in C.
4042  }
4043
4044  Scope *ParentScope = FnBodyScope->getParent();
4045
4046  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4047                                  MultiTemplateParamsArg(*this),
4048                                  /*IsFunctionDefinition=*/true);
4049  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4050}
4051
4052static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4053  // Don't warn about invalid declarations.
4054  if (FD->isInvalidDecl())
4055    return false;
4056
4057  // Or declarations that aren't global.
4058  if (!FD->isGlobal())
4059    return false;
4060
4061  // Don't warn about C++ member functions.
4062  if (isa<CXXMethodDecl>(FD))
4063    return false;
4064
4065  // Don't warn about 'main'.
4066  if (FD->isMain())
4067    return false;
4068
4069  // Don't warn about inline functions.
4070  if (FD->isInlineSpecified())
4071    return false;
4072
4073  // Don't warn about function templates.
4074  if (FD->getDescribedFunctionTemplate())
4075    return false;
4076
4077  // Don't warn about function template specializations.
4078  if (FD->isFunctionTemplateSpecialization())
4079    return false;
4080
4081  bool MissingPrototype = true;
4082  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4083       Prev; Prev = Prev->getPreviousDeclaration()) {
4084    // Ignore any declarations that occur in function or method
4085    // scope, because they aren't visible from the header.
4086    if (Prev->getDeclContext()->isFunctionOrMethod())
4087      continue;
4088
4089    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4090    break;
4091  }
4092
4093  return MissingPrototype;
4094}
4095
4096Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4097  // Clear the last template instantiation error context.
4098  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4099
4100  if (!D)
4101    return D;
4102  FunctionDecl *FD = 0;
4103
4104  if (FunctionTemplateDecl *FunTmpl
4105        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4106    FD = FunTmpl->getTemplatedDecl();
4107  else
4108    FD = cast<FunctionDecl>(D.getAs<Decl>());
4109
4110  CurFunctionNeedsScopeChecking = false;
4111
4112  // See if this is a redefinition.
4113  const FunctionDecl *Definition;
4114  if (FD->getBody(Definition)) {
4115    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4116    Diag(Definition->getLocation(), diag::note_previous_definition);
4117  }
4118
4119  // Builtin functions cannot be defined.
4120  if (unsigned BuiltinID = FD->getBuiltinID()) {
4121    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4122      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4123      FD->setInvalidDecl();
4124    }
4125  }
4126
4127  // The return type of a function definition must be complete
4128  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4129  QualType ResultType = FD->getResultType();
4130  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4131      !FD->isInvalidDecl() &&
4132      RequireCompleteType(FD->getLocation(), ResultType,
4133                          diag::err_func_def_incomplete_result))
4134    FD->setInvalidDecl();
4135
4136  // GNU warning -Wmissing-prototypes:
4137  //   Warn if a global function is defined without a previous
4138  //   prototype declaration. This warning is issued even if the
4139  //   definition itself provides a prototype. The aim is to detect
4140  //   global functions that fail to be declared in header files.
4141  if (ShouldWarnAboutMissingPrototype(FD))
4142    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4143
4144  if (FnBodyScope)
4145    PushDeclContext(FnBodyScope, FD);
4146
4147  // Check the validity of our function parameters
4148  CheckParmsForFunctionDef(FD);
4149
4150  // Introduce our parameters into the function scope
4151  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4152    ParmVarDecl *Param = FD->getParamDecl(p);
4153    Param->setOwningFunction(FD);
4154
4155    // If this has an identifier, add it to the scope stack.
4156    if (Param->getIdentifier() && FnBodyScope)
4157      PushOnScopeChains(Param, FnBodyScope);
4158  }
4159
4160  // Checking attributes of current function definition
4161  // dllimport attribute.
4162  if (FD->getAttr<DLLImportAttr>() &&
4163      (!FD->getAttr<DLLExportAttr>())) {
4164    // dllimport attribute cannot be applied to definition.
4165    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4166      Diag(FD->getLocation(),
4167           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4168        << "dllimport";
4169      FD->setInvalidDecl();
4170      return DeclPtrTy::make(FD);
4171    } else {
4172      // If a symbol previously declared dllimport is later defined, the
4173      // attribute is ignored in subsequent references, and a warning is
4174      // emitted.
4175      Diag(FD->getLocation(),
4176           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4177        << FD->getNameAsCString() << "dllimport";
4178    }
4179  }
4180  return DeclPtrTy::make(FD);
4181}
4182
4183Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4184  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4185}
4186
4187Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4188                                              bool IsInstantiation) {
4189  Decl *dcl = D.getAs<Decl>();
4190  Stmt *Body = BodyArg.takeAs<Stmt>();
4191
4192  FunctionDecl *FD = 0;
4193  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4194  if (FunTmpl)
4195    FD = FunTmpl->getTemplatedDecl();
4196  else
4197    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4198
4199  if (FD) {
4200    FD->setBody(Body);
4201    if (FD->isMain())
4202      // C and C++ allow for main to automagically return 0.
4203      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4204      FD->setHasImplicitReturnZero(true);
4205    else
4206      CheckFallThroughForFunctionDef(FD, Body);
4207
4208    if (!FD->isInvalidDecl())
4209      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4210
4211    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4212      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4213
4214    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4215  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4216    assert(MD == getCurMethodDecl() && "Method parsing confused");
4217    MD->setBody(Body);
4218    CheckFallThroughForFunctionDef(MD, Body);
4219    MD->setEndLoc(Body->getLocEnd());
4220
4221    if (!MD->isInvalidDecl())
4222      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4223  } else {
4224    Body->Destroy(Context);
4225    return DeclPtrTy();
4226  }
4227  if (!IsInstantiation)
4228    PopDeclContext();
4229
4230  // Verify and clean out per-function state.
4231
4232  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4233
4234  // Check goto/label use.
4235  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4236       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4237    LabelStmt *L = I->second;
4238
4239    // Verify that we have no forward references left.  If so, there was a goto
4240    // or address of a label taken, but no definition of it.  Label fwd
4241    // definitions are indicated with a null substmt.
4242    if (L->getSubStmt() != 0)
4243      continue;
4244
4245    // Emit error.
4246    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4247
4248    // At this point, we have gotos that use the bogus label.  Stitch it into
4249    // the function body so that they aren't leaked and that the AST is well
4250    // formed.
4251    if (Body == 0) {
4252      // The whole function wasn't parsed correctly, just delete this.
4253      L->Destroy(Context);
4254      continue;
4255    }
4256
4257    // Otherwise, the body is valid: we want to stitch the label decl into the
4258    // function somewhere so that it is properly owned and so that the goto
4259    // has a valid target.  Do this by creating a new compound stmt with the
4260    // label in it.
4261
4262    // Give the label a sub-statement.
4263    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4264
4265    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4266                               cast<CXXTryStmt>(Body)->getTryBlock() :
4267                               cast<CompoundStmt>(Body);
4268    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4269    Elements.push_back(L);
4270    Compound->setStmts(Context, &Elements[0], Elements.size());
4271  }
4272  FunctionLabelMap.clear();
4273
4274  if (!Body) return D;
4275
4276  // Verify that that gotos and switch cases don't jump into scopes illegally.
4277  if (CurFunctionNeedsScopeChecking)
4278    DiagnoseInvalidJumps(Body);
4279
4280  // C++ constructors that have function-try-blocks can't have return
4281  // statements in the handlers of that block. (C++ [except.handle]p14)
4282  // Verify this.
4283  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4284    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4285
4286  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4287    MarkBaseAndMemberDestructorsReferenced(Destructor);
4288
4289  // If any errors have occurred, clear out any temporaries that may have
4290  // been leftover. This ensures that these temporaries won't be picked up for
4291  // deletion in some later function.
4292  if (PP.getDiagnostics().hasErrorOccurred())
4293    ExprTemporaries.clear();
4294
4295  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4296  return D;
4297}
4298
4299/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4300/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4301NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4302                                          IdentifierInfo &II, Scope *S) {
4303  // Before we produce a declaration for an implicitly defined
4304  // function, see whether there was a locally-scoped declaration of
4305  // this name as a function or variable. If so, use that
4306  // (non-visible) declaration, and complain about it.
4307  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4308    = LocallyScopedExternalDecls.find(&II);
4309  if (Pos != LocallyScopedExternalDecls.end()) {
4310    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4311    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4312    return Pos->second;
4313  }
4314
4315  // Extension in C99.  Legal in C90, but warn about it.
4316  if (II.getName().startswith("__builtin_"))
4317    Diag(Loc, diag::warn_builtin_unknown) << &II;
4318  else if (getLangOptions().C99)
4319    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4320  else
4321    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4322
4323  // Set a Declarator for the implicit definition: int foo();
4324  const char *Dummy;
4325  DeclSpec DS;
4326  unsigned DiagID;
4327  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4328  Error = Error; // Silence warning.
4329  assert(!Error && "Error setting up implicit decl!");
4330  Declarator D(DS, Declarator::BlockContext);
4331  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4332                                             0, 0, false, SourceLocation(),
4333                                             false, 0,0,0, Loc, Loc, D),
4334                SourceLocation());
4335  D.SetIdentifier(&II, Loc);
4336
4337  // Insert this function into translation-unit scope.
4338
4339  DeclContext *PrevDC = CurContext;
4340  CurContext = Context.getTranslationUnitDecl();
4341
4342  FunctionDecl *FD =
4343 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4344  FD->setImplicit();
4345
4346  CurContext = PrevDC;
4347
4348  AddKnownFunctionAttributes(FD);
4349
4350  return FD;
4351}
4352
4353/// \brief Adds any function attributes that we know a priori based on
4354/// the declaration of this function.
4355///
4356/// These attributes can apply both to implicitly-declared builtins
4357/// (like __builtin___printf_chk) or to library-declared functions
4358/// like NSLog or printf.
4359void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4360  if (FD->isInvalidDecl())
4361    return;
4362
4363  // If this is a built-in function, map its builtin attributes to
4364  // actual attributes.
4365  if (unsigned BuiltinID = FD->getBuiltinID()) {
4366    // Handle printf-formatting attributes.
4367    unsigned FormatIdx;
4368    bool HasVAListArg;
4369    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4370      if (!FD->getAttr<FormatAttr>())
4371        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4372                                             HasVAListArg ? 0 : FormatIdx + 2));
4373    }
4374
4375    // Mark const if we don't care about errno and that is the only
4376    // thing preventing the function from being const. This allows
4377    // IRgen to use LLVM intrinsics for such functions.
4378    if (!getLangOptions().MathErrno &&
4379        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4380      if (!FD->getAttr<ConstAttr>())
4381        FD->addAttr(::new (Context) ConstAttr());
4382    }
4383
4384    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4385      FD->addAttr(::new (Context) NoReturnAttr());
4386  }
4387
4388  IdentifierInfo *Name = FD->getIdentifier();
4389  if (!Name)
4390    return;
4391  if ((!getLangOptions().CPlusPlus &&
4392       FD->getDeclContext()->isTranslationUnit()) ||
4393      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4394       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4395       LinkageSpecDecl::lang_c)) {
4396    // Okay: this could be a libc/libm/Objective-C function we know
4397    // about.
4398  } else
4399    return;
4400
4401  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4402    // FIXME: NSLog and NSLogv should be target specific
4403    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4404      // FIXME: We known better than our headers.
4405      const_cast<FormatAttr *>(Format)->setType("printf");
4406    } else
4407      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4408                                             Name->isStr("NSLogv") ? 0 : 2));
4409  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4410    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4411    // target-specific builtins, perhaps?
4412    if (!FD->getAttr<FormatAttr>())
4413      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4414                                             Name->isStr("vasprintf") ? 0 : 3));
4415  }
4416}
4417
4418TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4419                                    TypeSourceInfo *TInfo) {
4420  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4421  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4422
4423  if (!TInfo) {
4424    assert(D.isInvalidType() && "no declarator info for valid type");
4425    TInfo = Context.getTrivialTypeSourceInfo(T);
4426  }
4427
4428  // Scope manipulation handled by caller.
4429  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4430                                           D.getIdentifierLoc(),
4431                                           D.getIdentifier(),
4432                                           TInfo);
4433
4434  if (const TagType *TT = T->getAs<TagType>()) {
4435    TagDecl *TD = TT->getDecl();
4436
4437    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4438    // keep track of the TypedefDecl.
4439    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4440      TD->setTypedefForAnonDecl(NewTD);
4441  }
4442
4443  if (D.isInvalidType())
4444    NewTD->setInvalidDecl();
4445  return NewTD;
4446}
4447
4448
4449/// \brief Determine whether a tag with a given kind is acceptable
4450/// as a redeclaration of the given tag declaration.
4451///
4452/// \returns true if the new tag kind is acceptable, false otherwise.
4453bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4454                                        TagDecl::TagKind NewTag,
4455                                        SourceLocation NewTagLoc,
4456                                        const IdentifierInfo &Name) {
4457  // C++ [dcl.type.elab]p3:
4458  //   The class-key or enum keyword present in the
4459  //   elaborated-type-specifier shall agree in kind with the
4460  //   declaration to which the name in theelaborated-type-specifier
4461  //   refers. This rule also applies to the form of
4462  //   elaborated-type-specifier that declares a class-name or
4463  //   friend class since it can be construed as referring to the
4464  //   definition of the class. Thus, in any
4465  //   elaborated-type-specifier, the enum keyword shall be used to
4466  //   refer to an enumeration (7.2), the union class-keyshall be
4467  //   used to refer to a union (clause 9), and either the class or
4468  //   struct class-key shall be used to refer to a class (clause 9)
4469  //   declared using the class or struct class-key.
4470  TagDecl::TagKind OldTag = Previous->getTagKind();
4471  if (OldTag == NewTag)
4472    return true;
4473
4474  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4475      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4476    // Warn about the struct/class tag mismatch.
4477    bool isTemplate = false;
4478    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4479      isTemplate = Record->getDescribedClassTemplate();
4480
4481    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4482      << (NewTag == TagDecl::TK_class)
4483      << isTemplate << &Name
4484      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4485                              OldTag == TagDecl::TK_class? "class" : "struct");
4486    Diag(Previous->getLocation(), diag::note_previous_use);
4487    return true;
4488  }
4489  return false;
4490}
4491
4492/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4493/// former case, Name will be non-null.  In the later case, Name will be null.
4494/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4495/// reference/declaration/definition of a tag.
4496Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4497                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4498                               IdentifierInfo *Name, SourceLocation NameLoc,
4499                               AttributeList *Attr, AccessSpecifier AS,
4500                               MultiTemplateParamsArg TemplateParameterLists,
4501                               bool &OwnedDecl, bool &IsDependent) {
4502  // If this is not a definition, it must have a name.
4503  assert((Name != 0 || TUK == TUK_Definition) &&
4504         "Nameless record must be a definition!");
4505
4506  OwnedDecl = false;
4507  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4508
4509  // FIXME: Check explicit specializations more carefully.
4510  bool isExplicitSpecialization = false;
4511  if (TUK != TUK_Reference) {
4512    if (TemplateParameterList *TemplateParams
4513          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4514                        (TemplateParameterList**)TemplateParameterLists.get(),
4515                                              TemplateParameterLists.size(),
4516                                                    isExplicitSpecialization)) {
4517      if (TemplateParams->size() > 0) {
4518        // This is a declaration or definition of a class template (which may
4519        // be a member of another template).
4520        OwnedDecl = false;
4521        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4522                                               SS, Name, NameLoc, Attr,
4523                                               TemplateParams,
4524                                               AS);
4525        TemplateParameterLists.release();
4526        return Result.get();
4527      } else {
4528        // The "template<>" header is extraneous.
4529        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4530          << ElaboratedType::getNameForTagKind(Kind) << Name;
4531        isExplicitSpecialization = true;
4532      }
4533    }
4534
4535    TemplateParameterLists.release();
4536  }
4537
4538  DeclContext *SearchDC = CurContext;
4539  DeclContext *DC = CurContext;
4540  bool isStdBadAlloc = false;
4541  bool Invalid = false;
4542
4543  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4544                                                   : NotForRedeclaration);
4545
4546  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4547
4548  if (Name && SS.isNotEmpty()) {
4549    // We have a nested-name tag ('struct foo::bar').
4550
4551    // Check for invalid 'foo::'.
4552    if (SS.isInvalid()) {
4553      Name = 0;
4554      goto CreateNewDecl;
4555    }
4556
4557    // If this is a friend or a reference to a class in a dependent
4558    // context, don't try to make a decl for it.
4559    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4560      DC = computeDeclContext(SS, false);
4561      if (!DC) {
4562        IsDependent = true;
4563        return DeclPtrTy();
4564      }
4565    }
4566
4567    if (RequireCompleteDeclContext(SS))
4568      return DeclPtrTy::make((Decl *)0);
4569
4570    DC = computeDeclContext(SS, true);
4571    SearchDC = DC;
4572    // Look-up name inside 'foo::'.
4573    LookupQualifiedName(Previous, DC);
4574
4575    if (Previous.isAmbiguous())
4576      return DeclPtrTy();
4577
4578    // A tag 'foo::bar' must already exist.
4579    if (Previous.empty()) {
4580      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4581      Name = 0;
4582      Invalid = true;
4583      goto CreateNewDecl;
4584    }
4585  } else if (Name) {
4586    // If this is a named struct, check to see if there was a previous forward
4587    // declaration or definition.
4588    // FIXME: We're looking into outer scopes here, even when we
4589    // shouldn't be. Doing so can result in ambiguities that we
4590    // shouldn't be diagnosing.
4591    LookupName(Previous, S);
4592
4593    // Note:  there used to be some attempt at recovery here.
4594    if (Previous.isAmbiguous())
4595      return DeclPtrTy();
4596
4597    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4598      // FIXME: This makes sure that we ignore the contexts associated
4599      // with C structs, unions, and enums when looking for a matching
4600      // tag declaration or definition. See the similar lookup tweak
4601      // in Sema::LookupName; is there a better way to deal with this?
4602      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4603        SearchDC = SearchDC->getParent();
4604    }
4605  }
4606
4607  if (Previous.isSingleResult() &&
4608      Previous.getFoundDecl()->isTemplateParameter()) {
4609    // Maybe we will complain about the shadowed template parameter.
4610    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4611    // Just pretend that we didn't see the previous declaration.
4612    Previous.clear();
4613  }
4614
4615  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4616      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4617    // This is a declaration of or a reference to "std::bad_alloc".
4618    isStdBadAlloc = true;
4619
4620    if (Previous.empty() && StdBadAlloc) {
4621      // std::bad_alloc has been implicitly declared (but made invisible to
4622      // name lookup). Fill in this implicit declaration as the previous
4623      // declaration, so that the declarations get chained appropriately.
4624      Previous.addDecl(StdBadAlloc);
4625    }
4626  }
4627
4628  if (!Previous.empty()) {
4629    assert(Previous.isSingleResult());
4630    NamedDecl *PrevDecl = Previous.getFoundDecl();
4631    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4632      // If this is a use of a previous tag, or if the tag is already declared
4633      // in the same scope (so that the definition/declaration completes or
4634      // rementions the tag), reuse the decl.
4635      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4636          isDeclInScope(PrevDecl, SearchDC, S)) {
4637        // Make sure that this wasn't declared as an enum and now used as a
4638        // struct or something similar.
4639        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4640          bool SafeToContinue
4641            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4642               Kind != TagDecl::TK_enum);
4643          if (SafeToContinue)
4644            Diag(KWLoc, diag::err_use_with_wrong_tag)
4645              << Name
4646              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4647                                                  PrevTagDecl->getKindName());
4648          else
4649            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4650          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4651
4652          if (SafeToContinue)
4653            Kind = PrevTagDecl->getTagKind();
4654          else {
4655            // Recover by making this an anonymous redefinition.
4656            Name = 0;
4657            Previous.clear();
4658            Invalid = true;
4659          }
4660        }
4661
4662        if (!Invalid) {
4663          // If this is a use, just return the declaration we found.
4664
4665          // FIXME: In the future, return a variant or some other clue
4666          // for the consumer of this Decl to know it doesn't own it.
4667          // For our current ASTs this shouldn't be a problem, but will
4668          // need to be changed with DeclGroups.
4669          if (TUK == TUK_Reference || TUK == TUK_Friend)
4670            return DeclPtrTy::make(PrevTagDecl);
4671
4672          // Diagnose attempts to redefine a tag.
4673          if (TUK == TUK_Definition) {
4674            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4675              // If we're defining a specialization and the previous definition
4676              // is from an implicit instantiation, don't emit an error
4677              // here; we'll catch this in the general case below.
4678              if (!isExplicitSpecialization ||
4679                  !isa<CXXRecordDecl>(Def) ||
4680                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4681                                               == TSK_ExplicitSpecialization) {
4682                Diag(NameLoc, diag::err_redefinition) << Name;
4683                Diag(Def->getLocation(), diag::note_previous_definition);
4684                // If this is a redefinition, recover by making this
4685                // struct be anonymous, which will make any later
4686                // references get the previous definition.
4687                Name = 0;
4688                Previous.clear();
4689                Invalid = true;
4690              }
4691            } else {
4692              // If the type is currently being defined, complain
4693              // about a nested redefinition.
4694              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4695              if (Tag->isBeingDefined()) {
4696                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4697                Diag(PrevTagDecl->getLocation(),
4698                     diag::note_previous_definition);
4699                Name = 0;
4700                Previous.clear();
4701                Invalid = true;
4702              }
4703            }
4704
4705            // Okay, this is definition of a previously declared or referenced
4706            // tag PrevDecl. We're going to create a new Decl for it.
4707          }
4708        }
4709        // If we get here we have (another) forward declaration or we
4710        // have a definition.  Just create a new decl.
4711
4712      } else {
4713        // If we get here, this is a definition of a new tag type in a nested
4714        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4715        // new decl/type.  We set PrevDecl to NULL so that the entities
4716        // have distinct types.
4717        Previous.clear();
4718      }
4719      // If we get here, we're going to create a new Decl. If PrevDecl
4720      // is non-NULL, it's a definition of the tag declared by
4721      // PrevDecl. If it's NULL, we have a new definition.
4722    } else {
4723      // PrevDecl is a namespace, template, or anything else
4724      // that lives in the IDNS_Tag identifier namespace.
4725      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4726        // The tag name clashes with a namespace name, issue an error and
4727        // recover by making this tag be anonymous.
4728        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4729        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4730        Name = 0;
4731        Previous.clear();
4732        Invalid = true;
4733      } else {
4734        // The existing declaration isn't relevant to us; we're in a
4735        // new scope, so clear out the previous declaration.
4736        Previous.clear();
4737      }
4738    }
4739  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4740    // C++ [basic.scope.pdecl]p5:
4741    //   -- for an elaborated-type-specifier of the form
4742    //
4743    //          class-key identifier
4744    //
4745    //      if the elaborated-type-specifier is used in the
4746    //      decl-specifier-seq or parameter-declaration-clause of a
4747    //      function defined in namespace scope, the identifier is
4748    //      declared as a class-name in the namespace that contains
4749    //      the declaration; otherwise, except as a friend
4750    //      declaration, the identifier is declared in the smallest
4751    //      non-class, non-function-prototype scope that contains the
4752    //      declaration.
4753    //
4754    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4755    // C structs and unions.
4756    //
4757    // It is an error in C++ to declare (rather than define) an enum
4758    // type, including via an elaborated type specifier.  We'll
4759    // diagnose that later; for now, declare the enum in the same
4760    // scope as we would have picked for any other tag type.
4761    //
4762    // GNU C also supports this behavior as part of its incomplete
4763    // enum types extension, while GNU C++ does not.
4764    //
4765    // Find the context where we'll be declaring the tag.
4766    // FIXME: We would like to maintain the current DeclContext as the
4767    // lexical context,
4768    while (SearchDC->isRecord())
4769      SearchDC = SearchDC->getParent();
4770
4771    // Find the scope where we'll be declaring the tag.
4772    while (S->isClassScope() ||
4773           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4774           ((S->getFlags() & Scope::DeclScope) == 0) ||
4775           (S->getEntity() &&
4776            ((DeclContext *)S->getEntity())->isTransparentContext()))
4777      S = S->getParent();
4778
4779  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4780    // C++ [namespace.memdef]p3:
4781    //   If a friend declaration in a non-local class first declares a
4782    //   class or function, the friend class or function is a member of
4783    //   the innermost enclosing namespace.
4784    while (!SearchDC->isFileContext())
4785      SearchDC = SearchDC->getParent();
4786
4787    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4788    while (S->getEntity() != SearchDC)
4789      S = S->getParent();
4790  }
4791
4792CreateNewDecl:
4793
4794  TagDecl *PrevDecl = 0;
4795  if (Previous.isSingleResult())
4796    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4797
4798  // If there is an identifier, use the location of the identifier as the
4799  // location of the decl, otherwise use the location of the struct/union
4800  // keyword.
4801  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4802
4803  // Otherwise, create a new declaration. If there is a previous
4804  // declaration of the same entity, the two will be linked via
4805  // PrevDecl.
4806  TagDecl *New;
4807
4808  if (Kind == TagDecl::TK_enum) {
4809    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4810    // enum X { A, B, C } D;    D should chain to X.
4811    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4812                           cast_or_null<EnumDecl>(PrevDecl));
4813    // If this is an undefined enum, warn.
4814    if (TUK != TUK_Definition && !Invalid)  {
4815      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4816                                              : diag::ext_forward_ref_enum;
4817      Diag(Loc, DK);
4818    }
4819  } else {
4820    // struct/union/class
4821
4822    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4823    // struct X { int A; } D;    D should chain to X.
4824    if (getLangOptions().CPlusPlus) {
4825      // FIXME: Look for a way to use RecordDecl for simple structs.
4826      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4827                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4828
4829      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4830        StdBadAlloc = cast<CXXRecordDecl>(New);
4831    } else
4832      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4833                               cast_or_null<RecordDecl>(PrevDecl));
4834  }
4835
4836  if (Kind != TagDecl::TK_enum) {
4837    // Handle #pragma pack: if the #pragma pack stack has non-default
4838    // alignment, make up a packed attribute for this decl. These
4839    // attributes are checked when the ASTContext lays out the
4840    // structure.
4841    //
4842    // It is important for implementing the correct semantics that this
4843    // happen here (in act on tag decl). The #pragma pack stack is
4844    // maintained as a result of parser callbacks which can occur at
4845    // many points during the parsing of a struct declaration (because
4846    // the #pragma tokens are effectively skipped over during the
4847    // parsing of the struct).
4848    if (unsigned Alignment = getPragmaPackAlignment())
4849      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4850  }
4851
4852  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4853    // C++ [dcl.typedef]p3:
4854    //   [...] Similarly, in a given scope, a class or enumeration
4855    //   shall not be declared with the same name as a typedef-name
4856    //   that is declared in that scope and refers to a type other
4857    //   than the class or enumeration itself.
4858    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4859                        ForRedeclaration);
4860    LookupName(Lookup, S);
4861    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4862    NamedDecl *PrevTypedefNamed = PrevTypedef;
4863    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4864        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4865          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4866      Diag(Loc, diag::err_tag_definition_of_typedef)
4867        << Context.getTypeDeclType(New)
4868        << PrevTypedef->getUnderlyingType();
4869      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4870      Invalid = true;
4871    }
4872  }
4873
4874  // If this is a specialization of a member class (of a class template),
4875  // check the specialization.
4876  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4877    Invalid = true;
4878
4879  if (Invalid)
4880    New->setInvalidDecl();
4881
4882  if (Attr)
4883    ProcessDeclAttributeList(S, New, Attr);
4884
4885  // If we're declaring or defining a tag in function prototype scope
4886  // in C, note that this type can only be used within the function.
4887  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4888    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4889
4890  // Set the lexical context. If the tag has a C++ scope specifier, the
4891  // lexical context will be different from the semantic context.
4892  New->setLexicalDeclContext(CurContext);
4893
4894  // Mark this as a friend decl if applicable.
4895  if (TUK == TUK_Friend)
4896    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4897
4898  // Set the access specifier.
4899  if (!Invalid && TUK != TUK_Friend)
4900    SetMemberAccessSpecifier(New, PrevDecl, AS);
4901
4902  if (TUK == TUK_Definition)
4903    New->startDefinition();
4904
4905  // If this has an identifier, add it to the scope stack.
4906  if (TUK == TUK_Friend) {
4907    // We might be replacing an existing declaration in the lookup tables;
4908    // if so, borrow its access specifier.
4909    if (PrevDecl)
4910      New->setAccess(PrevDecl->getAccess());
4911
4912    // Friend tag decls are visible in fairly strange ways.
4913    if (!CurContext->isDependentContext()) {
4914      DeclContext *DC = New->getDeclContext()->getLookupContext();
4915      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4916      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4917        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4918    }
4919  } else if (Name) {
4920    S = getNonFieldDeclScope(S);
4921    PushOnScopeChains(New, S);
4922  } else {
4923    CurContext->addDecl(New);
4924  }
4925
4926  // If this is the C FILE type, notify the AST context.
4927  if (IdentifierInfo *II = New->getIdentifier())
4928    if (!New->isInvalidDecl() &&
4929        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4930        II->isStr("FILE"))
4931      Context.setFILEDecl(New);
4932
4933  OwnedDecl = true;
4934  return DeclPtrTy::make(New);
4935}
4936
4937void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4938  AdjustDeclIfTemplate(TagD);
4939  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4940
4941  // Enter the tag context.
4942  PushDeclContext(S, Tag);
4943
4944  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4945    FieldCollector->StartClass();
4946
4947    if (Record->getIdentifier()) {
4948      // C++ [class]p2:
4949      //   [...] The class-name is also inserted into the scope of the
4950      //   class itself; this is known as the injected-class-name. For
4951      //   purposes of access checking, the injected-class-name is treated
4952      //   as if it were a public member name.
4953      CXXRecordDecl *InjectedClassName
4954        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4955                                CurContext, Record->getLocation(),
4956                                Record->getIdentifier(),
4957                                Record->getTagKeywordLoc(),
4958                                Record);
4959      InjectedClassName->setImplicit();
4960      InjectedClassName->setAccess(AS_public);
4961      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4962        InjectedClassName->setDescribedClassTemplate(Template);
4963      PushOnScopeChains(InjectedClassName, S);
4964      assert(InjectedClassName->isInjectedClassName() &&
4965             "Broken injected-class-name");
4966    }
4967  }
4968}
4969
4970void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4971                                    SourceLocation RBraceLoc) {
4972  AdjustDeclIfTemplate(TagD);
4973  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4974  Tag->setRBraceLoc(RBraceLoc);
4975
4976  if (isa<CXXRecordDecl>(Tag))
4977    FieldCollector->FinishClass();
4978
4979  // Exit this scope of this tag's definition.
4980  PopDeclContext();
4981
4982  // Notify the consumer that we've defined a tag.
4983  Consumer.HandleTagDeclDefinition(Tag);
4984}
4985
4986// Note that FieldName may be null for anonymous bitfields.
4987bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4988                          QualType FieldTy, const Expr *BitWidth,
4989                          bool *ZeroWidth) {
4990  // Default to true; that shouldn't confuse checks for emptiness
4991  if (ZeroWidth)
4992    *ZeroWidth = true;
4993
4994  // C99 6.7.2.1p4 - verify the field type.
4995  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4996  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4997    // Handle incomplete types with specific error.
4998    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4999      return true;
5000    if (FieldName)
5001      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5002        << FieldName << FieldTy << BitWidth->getSourceRange();
5003    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5004      << FieldTy << BitWidth->getSourceRange();
5005  }
5006
5007  // If the bit-width is type- or value-dependent, don't try to check
5008  // it now.
5009  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5010    return false;
5011
5012  llvm::APSInt Value;
5013  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5014    return true;
5015
5016  if (Value != 0 && ZeroWidth)
5017    *ZeroWidth = false;
5018
5019  // Zero-width bitfield is ok for anonymous field.
5020  if (Value == 0 && FieldName)
5021    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5022
5023  if (Value.isSigned() && Value.isNegative()) {
5024    if (FieldName)
5025      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5026               << FieldName << Value.toString(10);
5027    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5028      << Value.toString(10);
5029  }
5030
5031  if (!FieldTy->isDependentType()) {
5032    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5033    if (Value.getZExtValue() > TypeSize) {
5034      if (FieldName)
5035        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5036          << FieldName << (unsigned)TypeSize;
5037      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5038        << (unsigned)TypeSize;
5039    }
5040  }
5041
5042  return false;
5043}
5044
5045/// ActOnField - Each field of a struct/union/class is passed into this in order
5046/// to create a FieldDecl object for it.
5047Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5048                                 SourceLocation DeclStart,
5049                                 Declarator &D, ExprTy *BitfieldWidth) {
5050  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5051                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5052                               AS_public);
5053  return DeclPtrTy::make(Res);
5054}
5055
5056/// HandleField - Analyze a field of a C struct or a C++ data member.
5057///
5058FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5059                             SourceLocation DeclStart,
5060                             Declarator &D, Expr *BitWidth,
5061                             AccessSpecifier AS) {
5062  IdentifierInfo *II = D.getIdentifier();
5063  SourceLocation Loc = DeclStart;
5064  if (II) Loc = D.getIdentifierLoc();
5065
5066  TypeSourceInfo *TInfo = 0;
5067  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5068  if (getLangOptions().CPlusPlus)
5069    CheckExtraCXXDefaultArguments(D);
5070
5071  DiagnoseFunctionSpecifiers(D);
5072
5073  if (D.getDeclSpec().isThreadSpecified())
5074    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5075
5076  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5077                                         ForRedeclaration);
5078
5079  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5080    // Maybe we will complain about the shadowed template parameter.
5081    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5082    // Just pretend that we didn't see the previous declaration.
5083    PrevDecl = 0;
5084  }
5085
5086  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5087    PrevDecl = 0;
5088
5089  bool Mutable
5090    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5091  SourceLocation TSSL = D.getSourceRange().getBegin();
5092  FieldDecl *NewFD
5093    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5094                     AS, PrevDecl, &D);
5095  if (NewFD->isInvalidDecl() && PrevDecl) {
5096    // Don't introduce NewFD into scope; there's already something
5097    // with the same name in the same scope.
5098  } else if (II) {
5099    PushOnScopeChains(NewFD, S);
5100  } else
5101    Record->addDecl(NewFD);
5102
5103  return NewFD;
5104}
5105
5106/// \brief Build a new FieldDecl and check its well-formedness.
5107///
5108/// This routine builds a new FieldDecl given the fields name, type,
5109/// record, etc. \p PrevDecl should refer to any previous declaration
5110/// with the same name and in the same scope as the field to be
5111/// created.
5112///
5113/// \returns a new FieldDecl.
5114///
5115/// \todo The Declarator argument is a hack. It will be removed once
5116FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5117                                TypeSourceInfo *TInfo,
5118                                RecordDecl *Record, SourceLocation Loc,
5119                                bool Mutable, Expr *BitWidth,
5120                                SourceLocation TSSL,
5121                                AccessSpecifier AS, NamedDecl *PrevDecl,
5122                                Declarator *D) {
5123  IdentifierInfo *II = Name.getAsIdentifierInfo();
5124  bool InvalidDecl = false;
5125  if (D) InvalidDecl = D->isInvalidType();
5126
5127  // If we receive a broken type, recover by assuming 'int' and
5128  // marking this declaration as invalid.
5129  if (T.isNull()) {
5130    InvalidDecl = true;
5131    T = Context.IntTy;
5132  }
5133
5134  QualType EltTy = Context.getBaseElementType(T);
5135  if (!EltTy->isDependentType() &&
5136      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5137    InvalidDecl = true;
5138
5139  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5140  // than a variably modified type.
5141  if (!InvalidDecl && T->isVariablyModifiedType()) {
5142    bool SizeIsNegative;
5143    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5144                                                           SizeIsNegative);
5145    if (!FixedTy.isNull()) {
5146      Diag(Loc, diag::warn_illegal_constant_array_size);
5147      T = FixedTy;
5148    } else {
5149      if (SizeIsNegative)
5150        Diag(Loc, diag::err_typecheck_negative_array_size);
5151      else
5152        Diag(Loc, diag::err_typecheck_field_variable_size);
5153      InvalidDecl = true;
5154    }
5155  }
5156
5157  // Fields can not have abstract class types
5158  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5159                                             diag::err_abstract_type_in_decl,
5160                                             AbstractFieldType))
5161    InvalidDecl = true;
5162
5163  bool ZeroWidth = false;
5164  // If this is declared as a bit-field, check the bit-field.
5165  if (!InvalidDecl && BitWidth &&
5166      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5167    InvalidDecl = true;
5168    DeleteExpr(BitWidth);
5169    BitWidth = 0;
5170    ZeroWidth = false;
5171  }
5172
5173  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5174                                       BitWidth, Mutable);
5175  if (InvalidDecl)
5176    NewFD->setInvalidDecl();
5177
5178  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5179    Diag(Loc, diag::err_duplicate_member) << II;
5180    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5181    NewFD->setInvalidDecl();
5182  }
5183
5184  if (getLangOptions().CPlusPlus) {
5185    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5186
5187    if (!T->isPODType())
5188      CXXRecord->setPOD(false);
5189    if (!ZeroWidth)
5190      CXXRecord->setEmpty(false);
5191
5192    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5193      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5194
5195      if (!RDecl->hasTrivialConstructor())
5196        CXXRecord->setHasTrivialConstructor(false);
5197      if (!RDecl->hasTrivialCopyConstructor())
5198        CXXRecord->setHasTrivialCopyConstructor(false);
5199      if (!RDecl->hasTrivialCopyAssignment())
5200        CXXRecord->setHasTrivialCopyAssignment(false);
5201      if (!RDecl->hasTrivialDestructor())
5202        CXXRecord->setHasTrivialDestructor(false);
5203
5204      // C++ 9.5p1: An object of a class with a non-trivial
5205      // constructor, a non-trivial copy constructor, a non-trivial
5206      // destructor, or a non-trivial copy assignment operator
5207      // cannot be a member of a union, nor can an array of such
5208      // objects.
5209      // TODO: C++0x alters this restriction significantly.
5210      if (Record->isUnion()) {
5211        // We check for copy constructors before constructors
5212        // because otherwise we'll never get complaints about
5213        // copy constructors.
5214
5215        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5216
5217        CXXSpecialMember member;
5218        if (!RDecl->hasTrivialCopyConstructor())
5219          member = CXXCopyConstructor;
5220        else if (!RDecl->hasTrivialConstructor())
5221          member = CXXDefaultConstructor;
5222        else if (!RDecl->hasTrivialCopyAssignment())
5223          member = CXXCopyAssignment;
5224        else if (!RDecl->hasTrivialDestructor())
5225          member = CXXDestructor;
5226        else
5227          member = invalid;
5228
5229        if (member != invalid) {
5230          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5231          DiagnoseNontrivial(RT, member);
5232          NewFD->setInvalidDecl();
5233        }
5234      }
5235    }
5236  }
5237
5238  // FIXME: We need to pass in the attributes given an AST
5239  // representation, not a parser representation.
5240  if (D)
5241    // FIXME: What to pass instead of TUScope?
5242    ProcessDeclAttributes(TUScope, NewFD, *D);
5243
5244  if (T.isObjCGCWeak())
5245    Diag(Loc, diag::warn_attribute_weak_on_field);
5246
5247  NewFD->setAccess(AS);
5248
5249  // C++ [dcl.init.aggr]p1:
5250  //   An aggregate is an array or a class (clause 9) with [...] no
5251  //   private or protected non-static data members (clause 11).
5252  // A POD must be an aggregate.
5253  if (getLangOptions().CPlusPlus &&
5254      (AS == AS_private || AS == AS_protected)) {
5255    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5256    CXXRecord->setAggregate(false);
5257    CXXRecord->setPOD(false);
5258  }
5259
5260  return NewFD;
5261}
5262
5263/// DiagnoseNontrivial - Given that a class has a non-trivial
5264/// special member, figure out why.
5265void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5266  QualType QT(T, 0U);
5267  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5268
5269  // Check whether the member was user-declared.
5270  switch (member) {
5271  case CXXDefaultConstructor:
5272    if (RD->hasUserDeclaredConstructor()) {
5273      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5274      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5275        const FunctionDecl *body = 0;
5276        ci->getBody(body);
5277        if (!body ||
5278            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5279          SourceLocation CtorLoc = ci->getLocation();
5280          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5281          return;
5282        }
5283      }
5284
5285      assert(0 && "found no user-declared constructors");
5286      return;
5287    }
5288    break;
5289
5290  case CXXCopyConstructor:
5291    if (RD->hasUserDeclaredCopyConstructor()) {
5292      SourceLocation CtorLoc =
5293        RD->getCopyConstructor(Context, 0)->getLocation();
5294      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5295      return;
5296    }
5297    break;
5298
5299  case CXXCopyAssignment:
5300    if (RD->hasUserDeclaredCopyAssignment()) {
5301      // FIXME: this should use the location of the copy
5302      // assignment, not the type.
5303      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5304      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5305      return;
5306    }
5307    break;
5308
5309  case CXXDestructor:
5310    if (RD->hasUserDeclaredDestructor()) {
5311      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5312      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5313      return;
5314    }
5315    break;
5316  }
5317
5318  typedef CXXRecordDecl::base_class_iterator base_iter;
5319
5320  // Virtual bases and members inhibit trivial copying/construction,
5321  // but not trivial destruction.
5322  if (member != CXXDestructor) {
5323    // Check for virtual bases.  vbases includes indirect virtual bases,
5324    // so we just iterate through the direct bases.
5325    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5326      if (bi->isVirtual()) {
5327        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5328        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5329        return;
5330      }
5331
5332    // Check for virtual methods.
5333    typedef CXXRecordDecl::method_iterator meth_iter;
5334    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5335         ++mi) {
5336      if (mi->isVirtual()) {
5337        SourceLocation MLoc = mi->getSourceRange().getBegin();
5338        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5339        return;
5340      }
5341    }
5342  }
5343
5344  bool (CXXRecordDecl::*hasTrivial)() const;
5345  switch (member) {
5346  case CXXDefaultConstructor:
5347    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5348  case CXXCopyConstructor:
5349    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5350  case CXXCopyAssignment:
5351    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5352  case CXXDestructor:
5353    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5354  default:
5355    assert(0 && "unexpected special member"); return;
5356  }
5357
5358  // Check for nontrivial bases (and recurse).
5359  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5360    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5361    assert(BaseRT && "Don't know how to handle dependent bases");
5362    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5363    if (!(BaseRecTy->*hasTrivial)()) {
5364      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5365      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5366      DiagnoseNontrivial(BaseRT, member);
5367      return;
5368    }
5369  }
5370
5371  // Check for nontrivial members (and recurse).
5372  typedef RecordDecl::field_iterator field_iter;
5373  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5374       ++fi) {
5375    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5376    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5377      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5378
5379      if (!(EltRD->*hasTrivial)()) {
5380        SourceLocation FLoc = (*fi)->getLocation();
5381        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5382        DiagnoseNontrivial(EltRT, member);
5383        return;
5384      }
5385    }
5386  }
5387
5388  assert(0 && "found no explanation for non-trivial member");
5389}
5390
5391/// TranslateIvarVisibility - Translate visibility from a token ID to an
5392///  AST enum value.
5393static ObjCIvarDecl::AccessControl
5394TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5395  switch (ivarVisibility) {
5396  default: assert(0 && "Unknown visitibility kind");
5397  case tok::objc_private: return ObjCIvarDecl::Private;
5398  case tok::objc_public: return ObjCIvarDecl::Public;
5399  case tok::objc_protected: return ObjCIvarDecl::Protected;
5400  case tok::objc_package: return ObjCIvarDecl::Package;
5401  }
5402}
5403
5404/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5405/// in order to create an IvarDecl object for it.
5406Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5407                                SourceLocation DeclStart,
5408                                DeclPtrTy IntfDecl,
5409                                Declarator &D, ExprTy *BitfieldWidth,
5410                                tok::ObjCKeywordKind Visibility) {
5411
5412  IdentifierInfo *II = D.getIdentifier();
5413  Expr *BitWidth = (Expr*)BitfieldWidth;
5414  SourceLocation Loc = DeclStart;
5415  if (II) Loc = D.getIdentifierLoc();
5416
5417  // FIXME: Unnamed fields can be handled in various different ways, for
5418  // example, unnamed unions inject all members into the struct namespace!
5419
5420  TypeSourceInfo *TInfo = 0;
5421  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5422
5423  if (BitWidth) {
5424    // 6.7.2.1p3, 6.7.2.1p4
5425    if (VerifyBitField(Loc, II, T, BitWidth)) {
5426      D.setInvalidType();
5427      DeleteExpr(BitWidth);
5428      BitWidth = 0;
5429    }
5430  } else {
5431    // Not a bitfield.
5432
5433    // validate II.
5434
5435  }
5436
5437  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5438  // than a variably modified type.
5439  if (T->isVariablyModifiedType()) {
5440    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5441    D.setInvalidType();
5442  }
5443
5444  // Get the visibility (access control) for this ivar.
5445  ObjCIvarDecl::AccessControl ac =
5446    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5447                                        : ObjCIvarDecl::None;
5448  // Must set ivar's DeclContext to its enclosing interface.
5449  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5450  DeclContext *EnclosingContext;
5451  if (ObjCImplementationDecl *IMPDecl =
5452      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5453    // Case of ivar declared in an implementation. Context is that of its class.
5454    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5455    assert(IDecl && "No class- ActOnIvar");
5456    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5457  } else
5458    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5459  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5460
5461  // Construct the decl.
5462  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5463                                             EnclosingContext, Loc, II, T,
5464                                             TInfo, ac, (Expr *)BitfieldWidth);
5465
5466  if (II) {
5467    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5468                                           ForRedeclaration);
5469    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5470        && !isa<TagDecl>(PrevDecl)) {
5471      Diag(Loc, diag::err_duplicate_member) << II;
5472      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5473      NewID->setInvalidDecl();
5474    }
5475  }
5476
5477  // Process attributes attached to the ivar.
5478  ProcessDeclAttributes(S, NewID, D);
5479
5480  if (D.isInvalidType())
5481    NewID->setInvalidDecl();
5482
5483  if (II) {
5484    // FIXME: When interfaces are DeclContexts, we'll need to add
5485    // these to the interface.
5486    S->AddDecl(DeclPtrTy::make(NewID));
5487    IdResolver.AddDecl(NewID);
5488  }
5489
5490  return DeclPtrTy::make(NewID);
5491}
5492
5493void Sema::ActOnFields(Scope* S,
5494                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5495                       DeclPtrTy *Fields, unsigned NumFields,
5496                       SourceLocation LBrac, SourceLocation RBrac,
5497                       AttributeList *Attr) {
5498  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5499  assert(EnclosingDecl && "missing record or interface decl");
5500
5501  // If the decl this is being inserted into is invalid, then it may be a
5502  // redeclaration or some other bogus case.  Don't try to add fields to it.
5503  if (EnclosingDecl->isInvalidDecl()) {
5504    // FIXME: Deallocate fields?
5505    return;
5506  }
5507
5508
5509  // Verify that all the fields are okay.
5510  unsigned NumNamedMembers = 0;
5511  llvm::SmallVector<FieldDecl*, 32> RecFields;
5512
5513  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5514  for (unsigned i = 0; i != NumFields; ++i) {
5515    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5516
5517    // Get the type for the field.
5518    Type *FDTy = FD->getType().getTypePtr();
5519
5520    if (!FD->isAnonymousStructOrUnion()) {
5521      // Remember all fields written by the user.
5522      RecFields.push_back(FD);
5523    }
5524
5525    // If the field is already invalid for some reason, don't emit more
5526    // diagnostics about it.
5527    if (FD->isInvalidDecl()) {
5528      EnclosingDecl->setInvalidDecl();
5529      continue;
5530    }
5531
5532    // C99 6.7.2.1p2:
5533    //   A structure or union shall not contain a member with
5534    //   incomplete or function type (hence, a structure shall not
5535    //   contain an instance of itself, but may contain a pointer to
5536    //   an instance of itself), except that the last member of a
5537    //   structure with more than one named member may have incomplete
5538    //   array type; such a structure (and any union containing,
5539    //   possibly recursively, a member that is such a structure)
5540    //   shall not be a member of a structure or an element of an
5541    //   array.
5542    if (FDTy->isFunctionType()) {
5543      // Field declared as a function.
5544      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5545        << FD->getDeclName();
5546      FD->setInvalidDecl();
5547      EnclosingDecl->setInvalidDecl();
5548      continue;
5549    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5550               Record && Record->isStruct()) {
5551      // Flexible array member.
5552      if (NumNamedMembers < 1) {
5553        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5554          << FD->getDeclName();
5555        FD->setInvalidDecl();
5556        EnclosingDecl->setInvalidDecl();
5557        continue;
5558      }
5559      // Okay, we have a legal flexible array member at the end of the struct.
5560      if (Record)
5561        Record->setHasFlexibleArrayMember(true);
5562    } else if (!FDTy->isDependentType() &&
5563               RequireCompleteType(FD->getLocation(), FD->getType(),
5564                                   diag::err_field_incomplete)) {
5565      // Incomplete type
5566      FD->setInvalidDecl();
5567      EnclosingDecl->setInvalidDecl();
5568      continue;
5569    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5570      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5571        // If this is a member of a union, then entire union becomes "flexible".
5572        if (Record && Record->isUnion()) {
5573          Record->setHasFlexibleArrayMember(true);
5574        } else {
5575          // If this is a struct/class and this is not the last element, reject
5576          // it.  Note that GCC supports variable sized arrays in the middle of
5577          // structures.
5578          if (i != NumFields-1)
5579            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5580              << FD->getDeclName() << FD->getType();
5581          else {
5582            // We support flexible arrays at the end of structs in
5583            // other structs as an extension.
5584            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5585              << FD->getDeclName();
5586            if (Record)
5587              Record->setHasFlexibleArrayMember(true);
5588          }
5589        }
5590      }
5591      if (Record && FDTTy->getDecl()->hasObjectMember())
5592        Record->setHasObjectMember(true);
5593    } else if (FDTy->isObjCInterfaceType()) {
5594      /// A field cannot be an Objective-c object
5595      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5596      FD->setInvalidDecl();
5597      EnclosingDecl->setInvalidDecl();
5598      continue;
5599    } else if (getLangOptions().ObjC1 &&
5600               getLangOptions().getGCMode() != LangOptions::NonGC &&
5601               Record &&
5602               (FD->getType()->isObjCObjectPointerType() ||
5603                FD->getType().isObjCGCStrong()))
5604      Record->setHasObjectMember(true);
5605    // Keep track of the number of named members.
5606    if (FD->getIdentifier())
5607      ++NumNamedMembers;
5608  }
5609
5610  // Okay, we successfully defined 'Record'.
5611  if (Record) {
5612    Record->completeDefinition(Context);
5613  } else {
5614    ObjCIvarDecl **ClsFields =
5615      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5616    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5617      ID->setIVarList(ClsFields, RecFields.size(), Context);
5618      ID->setLocEnd(RBrac);
5619      // Add ivar's to class's DeclContext.
5620      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5621        ClsFields[i]->setLexicalDeclContext(ID);
5622        ID->addDecl(ClsFields[i]);
5623      }
5624      // Must enforce the rule that ivars in the base classes may not be
5625      // duplicates.
5626      if (ID->getSuperClass()) {
5627        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5628             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5629          ObjCIvarDecl* Ivar = (*IVI);
5630
5631          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5632            ObjCIvarDecl* prevIvar =
5633              ID->getSuperClass()->lookupInstanceVariable(II);
5634            if (prevIvar) {
5635              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5636              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5637            }
5638          }
5639        }
5640      }
5641    } else if (ObjCImplementationDecl *IMPDecl =
5642                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5643      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5644      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5645        // Ivar declared in @implementation never belongs to the implementation.
5646        // Only it is in implementation's lexical context.
5647        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5648      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5649    }
5650  }
5651
5652  if (Attr)
5653    ProcessDeclAttributeList(S, Record, Attr);
5654}
5655
5656EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5657                                          EnumConstantDecl *LastEnumConst,
5658                                          SourceLocation IdLoc,
5659                                          IdentifierInfo *Id,
5660                                          ExprArg val) {
5661  Expr *Val = (Expr *)val.get();
5662
5663  llvm::APSInt EnumVal(32);
5664  QualType EltTy;
5665  if (Val) {
5666    if (Val->isTypeDependent())
5667      EltTy = Context.DependentTy;
5668    else {
5669      // Make sure to promote the operand type to int.
5670      UsualUnaryConversions(Val);
5671      if (Val != val.get()) {
5672        val.release();
5673        val = Val;
5674      }
5675
5676      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5677      SourceLocation ExpLoc;
5678      if (!Val->isValueDependent() &&
5679          VerifyIntegerConstantExpression(Val, &EnumVal)) {
5680        Val = 0;
5681      } else {
5682        EltTy = Val->getType();
5683      }
5684    }
5685  }
5686
5687  if (!Val) {
5688    if (LastEnumConst) {
5689      // Assign the last value + 1.
5690      EnumVal = LastEnumConst->getInitVal();
5691      ++EnumVal;
5692
5693      // Check for overflow on increment.
5694      if (EnumVal < LastEnumConst->getInitVal())
5695        Diag(IdLoc, diag::warn_enum_value_overflow);
5696
5697      EltTy = LastEnumConst->getType();
5698    } else {
5699      // First value, set to zero.
5700      EltTy = Context.IntTy;
5701      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5702      EnumVal.setIsSigned(true);
5703    }
5704  }
5705
5706  assert(!EltTy.isNull() && "Enum constant with NULL type");
5707
5708  val.release();
5709  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5710                                  Val, EnumVal);
5711}
5712
5713
5714Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5715                                        DeclPtrTy lastEnumConst,
5716                                        SourceLocation IdLoc,
5717                                        IdentifierInfo *Id,
5718                                        SourceLocation EqualLoc, ExprTy *val) {
5719  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5720  EnumConstantDecl *LastEnumConst =
5721    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5722  Expr *Val = static_cast<Expr*>(val);
5723
5724  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5725  // we find one that is.
5726  S = getNonFieldDeclScope(S);
5727
5728  // Verify that there isn't already something declared with this name in this
5729  // scope.
5730  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5731  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5732    // Maybe we will complain about the shadowed template parameter.
5733    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5734    // Just pretend that we didn't see the previous declaration.
5735    PrevDecl = 0;
5736  }
5737
5738  if (PrevDecl) {
5739    // When in C++, we may get a TagDecl with the same name; in this case the
5740    // enum constant will 'hide' the tag.
5741    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5742           "Received TagDecl when not in C++!");
5743    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5744      if (isa<EnumConstantDecl>(PrevDecl))
5745        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5746      else
5747        Diag(IdLoc, diag::err_redefinition) << Id;
5748      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5749      if (Val) Val->Destroy(Context);
5750      return DeclPtrTy();
5751    }
5752  }
5753
5754  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5755                                            IdLoc, Id, Owned(Val));
5756
5757  // Register this decl in the current scope stack.
5758  if (New)
5759    PushOnScopeChains(New, S);
5760
5761  return DeclPtrTy::make(New);
5762}
5763
5764void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5765                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5766                         DeclPtrTy *Elements, unsigned NumElements,
5767                         Scope *S, AttributeList *Attr) {
5768  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5769  QualType EnumType = Context.getTypeDeclType(Enum);
5770
5771  if (Attr)
5772    ProcessDeclAttributeList(S, Enum, Attr);
5773
5774  // TODO: If the result value doesn't fit in an int, it must be a long or long
5775  // long value.  ISO C does not support this, but GCC does as an extension,
5776  // emit a warning.
5777  unsigned IntWidth = Context.Target.getIntWidth();
5778  unsigned CharWidth = Context.Target.getCharWidth();
5779  unsigned ShortWidth = Context.Target.getShortWidth();
5780
5781  // Verify that all the values are okay, compute the size of the values, and
5782  // reverse the list.
5783  unsigned NumNegativeBits = 0;
5784  unsigned NumPositiveBits = 0;
5785
5786  // Keep track of whether all elements have type int.
5787  bool AllElementsInt = true;
5788
5789  for (unsigned i = 0; i != NumElements; ++i) {
5790    EnumConstantDecl *ECD =
5791      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5792    if (!ECD) continue;  // Already issued a diagnostic.
5793
5794    // If the enum value doesn't fit in an int, emit an extension warning.
5795    const llvm::APSInt &InitVal = ECD->getInitVal();
5796    assert(InitVal.getBitWidth() >= IntWidth &&
5797           "Should have promoted value to int");
5798    if (InitVal.getBitWidth() > IntWidth) {
5799      llvm::APSInt V(InitVal);
5800      V.trunc(IntWidth);
5801      V.extend(InitVal.getBitWidth());
5802      if (V != InitVal)
5803        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5804          << InitVal.toString(10);
5805    }
5806
5807    // Keep track of the size of positive and negative values.
5808    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5809      NumPositiveBits = std::max(NumPositiveBits,
5810                                 (unsigned)InitVal.getActiveBits());
5811    else
5812      NumNegativeBits = std::max(NumNegativeBits,
5813                                 (unsigned)InitVal.getMinSignedBits());
5814
5815    // Keep track of whether every enum element has type int (very commmon).
5816    if (AllElementsInt)
5817      AllElementsInt = ECD->getType() == Context.IntTy;
5818  }
5819
5820  // Figure out the type that should be used for this enum.
5821  // FIXME: Support -fshort-enums.
5822  QualType BestType;
5823  unsigned BestWidth;
5824
5825  // C++0x N3000 [conv.prom]p3:
5826  //   An rvalue of an unscoped enumeration type whose underlying
5827  //   type is not fixed can be converted to an rvalue of the first
5828  //   of the following types that can represent all the values of
5829  //   the enumeration: int, unsigned int, long int, unsigned long
5830  //   int, long long int, or unsigned long long int.
5831  // C99 6.4.4.3p2:
5832  //   An identifier declared as an enumeration constant has type int.
5833  // The C99 rule is modified by a gcc extension
5834  QualType BestPromotionType;
5835
5836  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5837
5838  if (NumNegativeBits) {
5839    // If there is a negative value, figure out the smallest integer type (of
5840    // int/long/longlong) that fits.
5841    // If it's packed, check also if it fits a char or a short.
5842    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5843      BestType = Context.SignedCharTy;
5844      BestWidth = CharWidth;
5845    } else if (Packed && NumNegativeBits <= ShortWidth &&
5846               NumPositiveBits < ShortWidth) {
5847      BestType = Context.ShortTy;
5848      BestWidth = ShortWidth;
5849    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5850      BestType = Context.IntTy;
5851      BestWidth = IntWidth;
5852    } else {
5853      BestWidth = Context.Target.getLongWidth();
5854
5855      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
5856        BestType = Context.LongTy;
5857      } else {
5858        BestWidth = Context.Target.getLongLongWidth();
5859
5860        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5861          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5862        BestType = Context.LongLongTy;
5863      }
5864    }
5865    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
5866  } else {
5867    // If there is no negative value, figure out which of uint, ulong, ulonglong
5868    // fits.
5869    // If it's packed, check also if it fits a char or a short.
5870    if (Packed && NumPositiveBits <= CharWidth) {
5871      BestType = Context.UnsignedCharTy;
5872      BestPromotionType = Context.IntTy;
5873      BestWidth = CharWidth;
5874    } else if (Packed && NumPositiveBits <= ShortWidth) {
5875      BestType = Context.UnsignedShortTy;
5876      BestPromotionType = Context.IntTy;
5877      BestWidth = ShortWidth;
5878    } else if (NumPositiveBits <= IntWidth) {
5879      BestType = Context.UnsignedIntTy;
5880      BestWidth = IntWidth;
5881      BestPromotionType = (NumPositiveBits == BestWidth
5882                           ? Context.UnsignedIntTy : Context.IntTy);
5883    } else if (NumPositiveBits <=
5884               (BestWidth = Context.Target.getLongWidth())) {
5885      BestType = Context.UnsignedLongTy;
5886      BestPromotionType = (NumPositiveBits == BestWidth
5887                           ? Context.UnsignedLongTy : Context.LongTy);
5888    } else {
5889      BestWidth = Context.Target.getLongLongWidth();
5890      assert(NumPositiveBits <= BestWidth &&
5891             "How could an initializer get larger than ULL?");
5892      BestType = Context.UnsignedLongLongTy;
5893      BestPromotionType = (NumPositiveBits == BestWidth
5894                           ? Context.UnsignedLongLongTy : Context.LongLongTy);
5895    }
5896  }
5897
5898  // If we're in C and the promotion type is larger than an int, just
5899  // use the underlying type, which is generally the unsigned integer
5900  // type of the same rank as the promotion type.  This is how the gcc
5901  // extension works.
5902  if (!getLangOptions().CPlusPlus && BestPromotionType != Context.IntTy)
5903    BestPromotionType = BestType;
5904
5905  // Loop over all of the enumerator constants, changing their types to match
5906  // the type of the enum if needed.
5907  for (unsigned i = 0; i != NumElements; ++i) {
5908    EnumConstantDecl *ECD =
5909      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5910    if (!ECD) continue;  // Already issued a diagnostic.
5911
5912    // Standard C says the enumerators have int type, but we allow, as an
5913    // extension, the enumerators to be larger than int size.  If each
5914    // enumerator value fits in an int, type it as an int, otherwise type it the
5915    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5916    // that X has type 'int', not 'unsigned'.
5917    if (!getLangOptions().CPlusPlus && ECD->getType() == Context.IntTy)
5918      continue;
5919
5920    // Determine whether the value fits into an int.
5921    llvm::APSInt InitVal = ECD->getInitVal();
5922    bool FitsInInt;
5923    if (InitVal.isUnsigned() || !InitVal.isNegative())
5924      FitsInInt = InitVal.getActiveBits() < IntWidth;
5925    else
5926      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5927
5928    // If it fits into an integer type, force it.  Otherwise force it to match
5929    // the enum decl type.
5930    QualType NewTy;
5931    unsigned NewWidth;
5932    bool NewSign;
5933    if (FitsInInt && !getLangOptions().CPlusPlus) {
5934      NewTy = Context.IntTy;
5935      NewWidth = IntWidth;
5936      NewSign = true;
5937    } else if (ECD->getType() == BestType) {
5938      // Already the right type!
5939      if (getLangOptions().CPlusPlus)
5940        // C++ [dcl.enum]p4: Following the closing brace of an
5941        // enum-specifier, each enumerator has the type of its
5942        // enumeration.
5943        ECD->setType(EnumType);
5944      continue;
5945    } else {
5946      NewTy = BestType;
5947      NewWidth = BestWidth;
5948      NewSign = BestType->isSignedIntegerType();
5949    }
5950
5951    // Adjust the APSInt value.
5952    InitVal.extOrTrunc(NewWidth);
5953    InitVal.setIsSigned(NewSign);
5954    ECD->setInitVal(InitVal);
5955
5956    // Adjust the Expr initializer and type.
5957    if (ECD->getInitExpr())
5958      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5959                                                      CastExpr::CK_IntegralCast,
5960                                                      ECD->getInitExpr(),
5961                                                      /*isLvalue=*/false));
5962    if (getLangOptions().CPlusPlus)
5963      // C++ [dcl.enum]p4: Following the closing brace of an
5964      // enum-specifier, each enumerator has the type of its
5965      // enumeration.
5966      ECD->setType(EnumType);
5967    else
5968      ECD->setType(NewTy);
5969  }
5970
5971  Enum->completeDefinition(Context, BestType, BestPromotionType);
5972}
5973
5974Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5975                                            ExprArg expr) {
5976  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5977
5978  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5979                                                   Loc, AsmString);
5980  CurContext->addDecl(New);
5981  return DeclPtrTy::make(New);
5982}
5983
5984void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5985                             SourceLocation PragmaLoc,
5986                             SourceLocation NameLoc) {
5987  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5988
5989  if (PrevDecl) {
5990    PrevDecl->addAttr(::new (Context) WeakAttr());
5991  } else {
5992    (void)WeakUndeclaredIdentifiers.insert(
5993      std::pair<IdentifierInfo*,WeakInfo>
5994        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5995  }
5996}
5997
5998void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5999                                IdentifierInfo* AliasName,
6000                                SourceLocation PragmaLoc,
6001                                SourceLocation NameLoc,
6002                                SourceLocation AliasNameLoc) {
6003  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6004  WeakInfo W = WeakInfo(Name, NameLoc);
6005
6006  if (PrevDecl) {
6007    if (!PrevDecl->hasAttr<AliasAttr>())
6008      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6009        DeclApplyPragmaWeak(TUScope, ND, W);
6010  } else {
6011    (void)WeakUndeclaredIdentifiers.insert(
6012      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6013  }
6014}
6015