SemaDecl.cpp revision d0359af5113c1936ff3f699c7d700adff59351f2
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/StmtCXX.h"
22#include "clang/Parse/DeclSpec.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Basic/SourceManager.h"
25// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
26#include "clang/Lex/Preprocessor.h"
27#include "clang/Lex/HeaderSearch.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/STLExtras.h"
30#include <algorithm>
31#include <functional>
32using namespace clang;
33
34/// getDeclName - Return a pretty name for the specified decl if possible, or
35/// an empty string if not.  This is used for pretty crash reporting.
36std::string Sema::getDeclName(DeclPtrTy d) {
37  Decl *D = d.getAs<Decl>();
38  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
39    return DN->getQualifiedNameAsString();
40  return "";
41}
42
43Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
44  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
45}
46
47/// \brief If the identifier refers to a type name within this scope,
48/// return the declaration of that type.
49///
50/// This routine performs ordinary name lookup of the identifier II
51/// within the given scope, with optional C++ scope specifier SS, to
52/// determine whether the name refers to a type. If so, returns an
53/// opaque pointer (actually a QualType) corresponding to that
54/// type. Otherwise, returns NULL.
55///
56/// If name lookup results in an ambiguity, this routine will complain
57/// and then return NULL.
58Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
59                                Scope *S, const CXXScopeSpec *SS) {
60  // C++ [temp.res]p3:
61  //   A qualified-id that refers to a type and in which the
62  //   nested-name-specifier depends on a template-parameter (14.6.2)
63  //   shall be prefixed by the keyword typename to indicate that the
64  //   qualified-id denotes a type, forming an
65  //   elaborated-type-specifier (7.1.5.3).
66  //
67  // We therefore do not perform any name lookup up SS is a dependent
68  // scope name. FIXME: we will need to perform a special kind of
69  // lookup if the scope specifier names a member of the current
70  // instantiation.
71  if (SS && isDependentScopeSpecifier(*SS))
72    return 0;
73
74  NamedDecl *IIDecl = 0;
75  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
76                                         false, false);
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      T = Context.getTypeDeclType(TD);
128    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
129      // Check whether we can use this interface.
130      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
131
132      T = Context.getObjCInterfaceType(IDecl);
133    } else
134      return 0;
135
136    if (SS)
137      T = getQualifiedNameType(*SS, T);
138
139    return T.getAsOpaquePtr();
140  }
141
142  return 0;
143}
144
145/// isTagName() - This method is called *for error recovery purposes only*
146/// to determine if the specified name is a valid tag name ("struct foo").  If
147/// so, this returns the TST for the tag corresponding to it (TST_enum,
148/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
149/// where the user forgot to specify the tag.
150DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
151  // Do a tag name lookup in this scope.
152  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
153  if (R.getKind() == LookupResult::Found)
154    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
155      switch (TD->getTagKind()) {
156      case TagDecl::TK_struct: return DeclSpec::TST_struct;
157      case TagDecl::TK_union:  return DeclSpec::TST_union;
158      case TagDecl::TK_class:  return DeclSpec::TST_class;
159      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
160      }
161    }
162
163  return DeclSpec::TST_unspecified;
164}
165
166
167
168DeclContext *Sema::getContainingDC(DeclContext *DC) {
169  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
170    // A C++ out-of-line method will return to the file declaration context.
171    if (MD->isOutOfLineDefinition())
172      return MD->getLexicalDeclContext();
173
174    // A C++ inline method is parsed *after* the topmost class it was declared
175    // in is fully parsed (it's "complete").
176    // The parsing of a C++ inline method happens at the declaration context of
177    // the topmost (non-nested) class it is lexically declared in.
178    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
179    DC = MD->getParent();
180    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
181      DC = RD;
182
183    // Return the declaration context of the topmost class the inline method is
184    // declared in.
185    return DC;
186  }
187
188  if (isa<ObjCMethodDecl>(DC))
189    return Context.getTranslationUnitDecl();
190
191  return DC->getLexicalParent();
192}
193
194void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
195  assert(getContainingDC(DC) == CurContext &&
196      "The next DeclContext should be lexically contained in the current one.");
197  CurContext = DC;
198  S->setEntity(DC);
199}
200
201void Sema::PopDeclContext() {
202  assert(CurContext && "DeclContext imbalance!");
203
204  CurContext = getContainingDC(CurContext);
205}
206
207/// \brief Determine whether we allow overloading of the function
208/// PrevDecl with another declaration.
209///
210/// This routine determines whether overloading is possible, not
211/// whether some new function is actually an overload. It will return
212/// true in C++ (where we can always provide overloads) or, as an
213/// extension, in C when the previous function is already an
214/// overloaded function declaration or has the "overloadable"
215/// attribute.
216static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
217  if (Context.getLangOptions().CPlusPlus)
218    return true;
219
220  if (isa<OverloadedFunctionDecl>(PrevDecl))
221    return true;
222
223  return PrevDecl->getAttr<OverloadableAttr>() != 0;
224}
225
226/// Add this decl to the scope shadowed decl chains.
227void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
228  // Move up the scope chain until we find the nearest enclosing
229  // non-transparent context. The declaration will be introduced into this
230  // scope.
231  while (S->getEntity() &&
232         ((DeclContext *)S->getEntity())->isTransparentContext())
233    S = S->getParent();
234
235  S->AddDecl(DeclPtrTy::make(D));
236
237  // Add scoped declarations into their context, so that they can be
238  // found later. Declarations without a context won't be inserted
239  // into any context.
240  CurContext->addDecl(Context, D);
241
242  // C++ [basic.scope]p4:
243  //   -- exactly one declaration shall declare a class name or
244  //   enumeration name that is not a typedef name and the other
245  //   declarations shall all refer to the same object or
246  //   enumerator, or all refer to functions and function templates;
247  //   in this case the class name or enumeration name is hidden.
248  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
249    // We are pushing the name of a tag (enum or class).
250    if (CurContext->getLookupContext()
251          == TD->getDeclContext()->getLookupContext()) {
252      // We're pushing the tag into the current context, which might
253      // require some reshuffling in the identifier resolver.
254      IdentifierResolver::iterator
255        I = IdResolver.begin(TD->getDeclName()),
256        IEnd = IdResolver.end();
257      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
258        NamedDecl *PrevDecl = *I;
259        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
260             PrevDecl = *I, ++I) {
261          if (TD->declarationReplaces(*I)) {
262            // This is a redeclaration. Remove it from the chain and
263            // break out, so that we'll add in the shadowed
264            // declaration.
265            S->RemoveDecl(DeclPtrTy::make(*I));
266            if (PrevDecl == *I) {
267              IdResolver.RemoveDecl(*I);
268              IdResolver.AddDecl(TD);
269              return;
270            } else {
271              IdResolver.RemoveDecl(*I);
272              break;
273            }
274          }
275        }
276
277        // There is already a declaration with the same name in the same
278        // scope, which is not a tag declaration. It must be found
279        // before we find the new declaration, so insert the new
280        // declaration at the end of the chain.
281        IdResolver.AddShadowedDecl(TD, PrevDecl);
282
283        return;
284      }
285    }
286  } else if (isa<FunctionDecl>(D) &&
287             AllowOverloadingOfFunction(D, Context)) {
288    // We are pushing the name of a function, which might be an
289    // overloaded name.
290    FunctionDecl *FD = cast<FunctionDecl>(D);
291    IdentifierResolver::iterator Redecl
292      = std::find_if(IdResolver.begin(FD->getDeclName()),
293                     IdResolver.end(),
294                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
295                                  FD));
296    if (Redecl != IdResolver.end() &&
297        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
298      // There is already a declaration of a function on our
299      // IdResolver chain. Replace it with this declaration.
300      S->RemoveDecl(DeclPtrTy::make(*Redecl));
301      IdResolver.RemoveDecl(*Redecl);
302    }
303  } else if (isa<ObjCInterfaceDecl>(D)) {
304    // We're pushing an Objective-C interface into the current
305    // context. If there is already an alias declaration, remove it first.
306    for (IdentifierResolver::iterator
307           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
308         I != IEnd; ++I) {
309      if (isa<ObjCCompatibleAliasDecl>(*I)) {
310        S->RemoveDecl(DeclPtrTy::make(*I));
311        IdResolver.RemoveDecl(*I);
312        break;
313      }
314    }
315  }
316
317  IdResolver.AddDecl(D);
318}
319
320void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
321  if (S->decl_empty()) return;
322  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
323	 "Scope shouldn't contain decls!");
324
325  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
326       I != E; ++I) {
327    Decl *TmpD = (*I).getAs<Decl>();
328    assert(TmpD && "This decl didn't get pushed??");
329
330    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
331    NamedDecl *D = cast<NamedDecl>(TmpD);
332
333    if (!D->getDeclName()) continue;
334
335    // Remove this name from our lexical scope.
336    IdResolver.RemoveDecl(D);
337  }
338}
339
340/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
341/// return 0 if one not found.
342ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
343  // The third "scope" argument is 0 since we aren't enabling lazy built-in
344  // creation from this context.
345  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
346
347  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
348}
349
350/// getNonFieldDeclScope - Retrieves the innermost scope, starting
351/// from S, where a non-field would be declared. This routine copes
352/// with the difference between C and C++ scoping rules in structs and
353/// unions. For example, the following code is well-formed in C but
354/// ill-formed in C++:
355/// @code
356/// struct S6 {
357///   enum { BAR } e;
358/// };
359///
360/// void test_S6() {
361///   struct S6 a;
362///   a.e = BAR;
363/// }
364/// @endcode
365/// For the declaration of BAR, this routine will return a different
366/// scope. The scope S will be the scope of the unnamed enumeration
367/// within S6. In C++, this routine will return the scope associated
368/// with S6, because the enumeration's scope is a transparent
369/// context but structures can contain non-field names. In C, this
370/// routine will return the translation unit scope, since the
371/// enumeration's scope is a transparent context and structures cannot
372/// contain non-field names.
373Scope *Sema::getNonFieldDeclScope(Scope *S) {
374  while (((S->getFlags() & Scope::DeclScope) == 0) ||
375         (S->getEntity() &&
376          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
377         (S->isClassScope() && !getLangOptions().CPlusPlus))
378    S = S->getParent();
379  return S;
380}
381
382void Sema::InitBuiltinVaListType() {
383  if (!Context.getBuiltinVaListType().isNull())
384    return;
385
386  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
387  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
388  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
389  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
390}
391
392/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
393/// file scope.  lazily create a decl for it. ForRedeclaration is true
394/// if we're creating this built-in in anticipation of redeclaring the
395/// built-in.
396NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
397                                     Scope *S, bool ForRedeclaration,
398                                     SourceLocation Loc) {
399  Builtin::ID BID = (Builtin::ID)bid;
400
401  if (Context.BuiltinInfo.hasVAListUse(BID))
402    InitBuiltinVaListType();
403
404  Builtin::Context::GetBuiltinTypeError Error;
405  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
406  switch (Error) {
407  case Builtin::Context::GE_None:
408    // Okay
409    break;
410
411  case Builtin::Context::GE_Missing_FILE:
412    if (ForRedeclaration)
413      Diag(Loc, diag::err_implicit_decl_requires_stdio)
414        << Context.BuiltinInfo.GetName(BID);
415    return 0;
416  }
417
418  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
419    Diag(Loc, diag::ext_implicit_lib_function_decl)
420      << Context.BuiltinInfo.GetName(BID)
421      << R;
422    if (Context.BuiltinInfo.getHeaderName(BID) &&
423        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
424          != Diagnostic::Ignored)
425      Diag(Loc, diag::note_please_include_header)
426        << Context.BuiltinInfo.getHeaderName(BID)
427        << Context.BuiltinInfo.GetName(BID);
428  }
429
430  FunctionDecl *New = FunctionDecl::Create(Context,
431                                           Context.getTranslationUnitDecl(),
432                                           Loc, II, R,
433                                           FunctionDecl::Extern, false,
434                                           /*hasPrototype=*/true);
435  New->setImplicit();
436
437  // Create Decl objects for each parameter, adding them to the
438  // FunctionDecl.
439  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
440    llvm::SmallVector<ParmVarDecl*, 16> Params;
441    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
442      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
443                                           FT->getArgType(i), VarDecl::None, 0));
444    New->setParams(Context, &Params[0], Params.size());
445  }
446
447  AddKnownFunctionAttributes(New);
448
449  // TUScope is the translation-unit scope to insert this function into.
450  // FIXME: This is hideous. We need to teach PushOnScopeChains to
451  // relate Scopes to DeclContexts, and probably eliminate CurContext
452  // entirely, but we're not there yet.
453  DeclContext *SavedContext = CurContext;
454  CurContext = Context.getTranslationUnitDecl();
455  PushOnScopeChains(New, TUScope);
456  CurContext = SavedContext;
457  return New;
458}
459
460/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
461/// everything from the standard library is defined.
462NamespaceDecl *Sema::GetStdNamespace() {
463  if (!StdNamespace) {
464    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
465    DeclContext *Global = Context.getTranslationUnitDecl();
466    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
467    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
468  }
469  return StdNamespace;
470}
471
472/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
473/// same name and scope as a previous declaration 'Old'.  Figure out
474/// how to resolve this situation, merging decls or emitting
475/// diagnostics as appropriate. If there was an error, set New to be invalid.
476///
477void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
478  // If either decl is known invalid already, set the new one to be invalid and
479  // don't bother doing any merging checks.
480  if (New->isInvalidDecl() || OldD->isInvalidDecl())
481    return New->setInvalidDecl();
482
483  bool objc_types = false;
484
485  // Allow multiple definitions for ObjC built-in typedefs.
486  // FIXME: Verify the underlying types are equivalent!
487  if (getLangOptions().ObjC1) {
488    const IdentifierInfo *TypeID = New->getIdentifier();
489    switch (TypeID->getLength()) {
490    default: break;
491    case 2:
492      if (!TypeID->isStr("id"))
493        break;
494      Context.setObjCIdType(Context.getTypeDeclType(New));
495      objc_types = true;
496      break;
497    case 5:
498      if (!TypeID->isStr("Class"))
499        break;
500      Context.setObjCClassType(Context.getTypeDeclType(New));
501      return;
502    case 3:
503      if (!TypeID->isStr("SEL"))
504        break;
505      Context.setObjCSelType(Context.getTypeDeclType(New));
506      return;
507    case 8:
508      if (!TypeID->isStr("Protocol"))
509        break;
510      Context.setObjCProtoType(New->getUnderlyingType());
511      return;
512    }
513    // Fall through - the typedef name was not a builtin type.
514  }
515  // Verify the old decl was also a type.
516  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
517  if (!Old) {
518    Diag(New->getLocation(), diag::err_redefinition_different_kind)
519      << New->getDeclName();
520    if (OldD->getLocation().isValid())
521      Diag(OldD->getLocation(), diag::note_previous_definition);
522    return New->setInvalidDecl();
523  }
524
525  // Determine the "old" type we'll use for checking and diagnostics.
526  QualType OldType;
527  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
528    OldType = OldTypedef->getUnderlyingType();
529  else
530    OldType = Context.getTypeDeclType(Old);
531
532  // If the typedef types are not identical, reject them in all languages and
533  // with any extensions enabled.
534
535  if (OldType != New->getUnderlyingType() &&
536      Context.getCanonicalType(OldType) !=
537      Context.getCanonicalType(New->getUnderlyingType())) {
538    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
539      << New->getUnderlyingType() << OldType;
540    if (Old->getLocation().isValid())
541      Diag(Old->getLocation(), diag::note_previous_definition);
542    return New->setInvalidDecl();
543  }
544
545  if (objc_types || getLangOptions().Microsoft)
546    return;
547
548  // C++ [dcl.typedef]p2:
549  //   In a given non-class scope, a typedef specifier can be used to
550  //   redefine the name of any type declared in that scope to refer
551  //   to the type to which it already refers.
552  if (getLangOptions().CPlusPlus) {
553    if (!isa<CXXRecordDecl>(CurContext))
554      return;
555    Diag(New->getLocation(), diag::err_redefinition)
556      << New->getDeclName();
557    Diag(Old->getLocation(), diag::note_previous_definition);
558    return New->setInvalidDecl();
559  }
560
561  // If we have a redefinition of a typedef in C, emit a warning.  This warning
562  // is normally mapped to an error, but can be controlled with
563  // -Wtypedef-redefinition.  If either the original was in a system header,
564  // don't emit this for compatibility with GCC.
565  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
566      Context.getSourceManager().isInSystemHeader(Old->getLocation()))
567    return;
568
569  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
570    << New->getDeclName();
571  Diag(Old->getLocation(), diag::note_previous_definition);
572  return;
573}
574
575/// DeclhasAttr - returns true if decl Declaration already has the target
576/// attribute.
577static bool DeclHasAttr(const Decl *decl, const Attr *target) {
578  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
579    if (attr->getKind() == target->getKind())
580      return true;
581
582  return false;
583}
584
585/// MergeAttributes - append attributes from the Old decl to the New one.
586static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
587  Attr *attr = const_cast<Attr*>(Old->getAttrs());
588
589  while (attr) {
590    Attr *tmp = attr;
591    attr = attr->getNext();
592
593    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
594      tmp->setInherited(true);
595      New->addAttr(tmp);
596    } else {
597      tmp->setNext(0);
598      tmp->Destroy(C);
599    }
600  }
601
602  Old->invalidateAttrs();
603}
604
605/// Used in MergeFunctionDecl to keep track of function parameters in
606/// C.
607struct GNUCompatibleParamWarning {
608  ParmVarDecl *OldParm;
609  ParmVarDecl *NewParm;
610  QualType PromotedType;
611};
612
613/// MergeFunctionDecl - We just parsed a function 'New' from
614/// declarator D which has the same name and scope as a previous
615/// declaration 'Old'.  Figure out how to resolve this situation,
616/// merging decls or emitting diagnostics as appropriate.
617///
618/// In C++, New and Old must be declarations that are not
619/// overloaded. Use IsOverload to determine whether New and Old are
620/// overloaded, and to select the Old declaration that New should be
621/// merged with.
622///
623/// Returns true if there was an error, false otherwise.
624bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
625  assert(!isa<OverloadedFunctionDecl>(OldD) &&
626         "Cannot merge with an overloaded function declaration");
627
628  // Verify the old decl was also a function.
629  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
630  if (!Old) {
631    Diag(New->getLocation(), diag::err_redefinition_different_kind)
632      << New->getDeclName();
633    Diag(OldD->getLocation(), diag::note_previous_definition);
634    return true;
635  }
636
637  // Determine whether the previous declaration was a definition,
638  // implicit declaration, or a declaration.
639  diag::kind PrevDiag;
640  if (Old->isThisDeclarationADefinition())
641    PrevDiag = diag::note_previous_definition;
642  else if (Old->isImplicit())
643    PrevDiag = diag::note_previous_implicit_declaration;
644  else
645    PrevDiag = diag::note_previous_declaration;
646
647  QualType OldQType = Context.getCanonicalType(Old->getType());
648  QualType NewQType = Context.getCanonicalType(New->getType());
649
650  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
651      New->getStorageClass() == FunctionDecl::Static &&
652      Old->getStorageClass() != FunctionDecl::Static) {
653    Diag(New->getLocation(), diag::err_static_non_static)
654      << New;
655    Diag(Old->getLocation(), PrevDiag);
656    return true;
657  }
658
659  if (getLangOptions().CPlusPlus) {
660    // (C++98 13.1p2):
661    //   Certain function declarations cannot be overloaded:
662    //     -- Function declarations that differ only in the return type
663    //        cannot be overloaded.
664    QualType OldReturnType
665      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
666    QualType NewReturnType
667      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
668    if (OldReturnType != NewReturnType) {
669      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
670      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
671      return true;
672    }
673
674    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
675    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
676    if (OldMethod && NewMethod &&
677        OldMethod->getLexicalDeclContext() ==
678          NewMethod->getLexicalDeclContext()) {
679      //    -- Member function declarations with the same name and the
680      //       same parameter types cannot be overloaded if any of them
681      //       is a static member function declaration.
682      if (OldMethod->isStatic() || NewMethod->isStatic()) {
683        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
684        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
685        return true;
686      }
687
688      // C++ [class.mem]p1:
689      //   [...] A member shall not be declared twice in the
690      //   member-specification, except that a nested class or member
691      //   class template can be declared and then later defined.
692      unsigned NewDiag;
693      if (isa<CXXConstructorDecl>(OldMethod))
694        NewDiag = diag::err_constructor_redeclared;
695      else if (isa<CXXDestructorDecl>(NewMethod))
696        NewDiag = diag::err_destructor_redeclared;
697      else if (isa<CXXConversionDecl>(NewMethod))
698        NewDiag = diag::err_conv_function_redeclared;
699      else
700        NewDiag = diag::err_member_redeclared;
701
702      Diag(New->getLocation(), NewDiag);
703      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
704    }
705
706    // (C++98 8.3.5p3):
707    //   All declarations for a function shall agree exactly in both the
708    //   return type and the parameter-type-list.
709    if (OldQType == NewQType)
710      return MergeCompatibleFunctionDecls(New, Old);
711
712    // Fall through for conflicting redeclarations and redefinitions.
713  }
714
715  // C: Function types need to be compatible, not identical. This handles
716  // duplicate function decls like "void f(int); void f(enum X);" properly.
717  if (!getLangOptions().CPlusPlus &&
718      Context.typesAreCompatible(OldQType, NewQType)) {
719    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
720    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
721    const FunctionProtoType *OldProto = 0;
722    if (isa<FunctionNoProtoType>(NewFuncType) &&
723        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
724      // The old declaration provided a function prototype, but the
725      // new declaration does not. Merge in the prototype.
726      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
727                                                 OldProto->arg_type_end());
728      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
729                                         &ParamTypes[0], ParamTypes.size(),
730                                         OldProto->isVariadic(),
731                                         OldProto->getTypeQuals());
732      New->setType(NewQType);
733      New->setInheritedPrototype();
734
735      // Synthesize a parameter for each argument type.
736      llvm::SmallVector<ParmVarDecl*, 16> Params;
737      for (FunctionProtoType::arg_type_iterator
738             ParamType = OldProto->arg_type_begin(),
739             ParamEnd = OldProto->arg_type_end();
740           ParamType != ParamEnd; ++ParamType) {
741        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
742                                                 SourceLocation(), 0,
743                                                 *ParamType, VarDecl::None,
744                                                 0);
745        Param->setImplicit();
746        Params.push_back(Param);
747      }
748
749      New->setParams(Context, &Params[0], Params.size());
750    }
751
752    return MergeCompatibleFunctionDecls(New, Old);
753  }
754
755  // GNU C permits a K&R definition to follow a prototype declaration
756  // if the declared types of the parameters in the K&R definition
757  // match the types in the prototype declaration, even when the
758  // promoted types of the parameters from the K&R definition differ
759  // from the types in the prototype. GCC then keeps the types from
760  // the prototype.
761  if (!getLangOptions().CPlusPlus &&
762      !getLangOptions().NoExtensions &&
763      Old->hasPrototype() && !New->hasPrototype() &&
764      New->getType()->getAsFunctionProtoType() &&
765      Old->getNumParams() == New->getNumParams()) {
766    llvm::SmallVector<QualType, 16> ArgTypes;
767    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
768    const FunctionProtoType *OldProto
769      = Old->getType()->getAsFunctionProtoType();
770    const FunctionProtoType *NewProto
771      = New->getType()->getAsFunctionProtoType();
772
773    // Determine whether this is the GNU C extension.
774    bool GNUCompatible =
775      Context.typesAreCompatible(OldProto->getResultType(),
776                                 NewProto->getResultType()) &&
777      (OldProto->isVariadic() == NewProto->isVariadic());
778    for (unsigned Idx = 0, End = Old->getNumParams();
779         GNUCompatible && Idx != End; ++Idx) {
780      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
781      ParmVarDecl *NewParm = New->getParamDecl(Idx);
782      if (Context.typesAreCompatible(OldParm->getType(),
783                                     NewProto->getArgType(Idx))) {
784        ArgTypes.push_back(NewParm->getType());
785      } else if (Context.typesAreCompatible(OldParm->getType(),
786                                            NewParm->getType())) {
787        GNUCompatibleParamWarning Warn
788          = { OldParm, NewParm, NewProto->getArgType(Idx) };
789        Warnings.push_back(Warn);
790        ArgTypes.push_back(NewParm->getType());
791      } else
792        GNUCompatible = false;
793    }
794
795    if (GNUCompatible) {
796      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
797        Diag(Warnings[Warn].NewParm->getLocation(),
798             diag::ext_param_promoted_not_compatible_with_prototype)
799          << Warnings[Warn].PromotedType
800          << Warnings[Warn].OldParm->getType();
801        Diag(Warnings[Warn].OldParm->getLocation(),
802             diag::note_previous_declaration);
803      }
804
805      New->setType(Context.getFunctionType(NewProto->getResultType(),
806                                           &ArgTypes[0], ArgTypes.size(),
807                                           NewProto->isVariadic(),
808                                           NewProto->getTypeQuals()));
809      return MergeCompatibleFunctionDecls(New, Old);
810    }
811
812    // Fall through to diagnose conflicting types.
813  }
814
815  // A function that has already been declared has been redeclared or defined
816  // with a different type- show appropriate diagnostic
817  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
818    // The user has declared a builtin function with an incompatible
819    // signature.
820    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
821      // The function the user is redeclaring is a library-defined
822      // function like 'malloc' or 'printf'. Warn about the
823      // redeclaration, then pretend that we don't know about this
824      // library built-in.
825      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
826      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
827        << Old << Old->getType();
828      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
829      Old->setInvalidDecl();
830      return false;
831    }
832
833    PrevDiag = diag::note_previous_builtin_declaration;
834  }
835
836  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
837  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
838  return true;
839}
840
841/// \brief Completes the merge of two function declarations that are
842/// known to be compatible.
843///
844/// This routine handles the merging of attributes and other
845/// properties of function declarations form the old declaration to
846/// the new declaration, once we know that New is in fact a
847/// redeclaration of Old.
848///
849/// \returns false
850bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
851  // Merge the attributes
852  MergeAttributes(New, Old, Context);
853
854  // Merge the storage class.
855  New->setStorageClass(Old->getStorageClass());
856
857  // Merge "inline"
858  if (Old->isInline())
859    New->setInline(true);
860
861  // If this function declaration by itself qualifies as a C99 inline
862  // definition (C99 6.7.4p6), but the previous definition did not,
863  // then the function is not a C99 inline definition.
864  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
865    New->setC99InlineDefinition(false);
866  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
867    // Mark all preceding definitions as not being C99 inline definitions.
868    for (const FunctionDecl *Prev = Old; Prev;
869         Prev = Prev->getPreviousDeclaration())
870      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
871  }
872
873  // Merge "pure" flag.
874  if (Old->isPure())
875    New->setPure();
876
877  // Merge the "deleted" flag.
878  if (Old->isDeleted())
879    New->setDeleted();
880
881  if (getLangOptions().CPlusPlus)
882    return MergeCXXFunctionDecl(New, Old);
883
884  return false;
885}
886
887/// MergeVarDecl - We just parsed a variable 'New' which has the same name
888/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
889/// situation, merging decls or emitting diagnostics as appropriate.
890///
891/// Tentative definition rules (C99 6.9.2p2) are checked by
892/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
893/// definitions here, since the initializer hasn't been attached.
894///
895void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
896  // If either decl is invalid, make sure the new one is marked invalid and
897  // don't do any other checking.
898  if (New->isInvalidDecl() || OldD->isInvalidDecl())
899    return New->setInvalidDecl();
900
901  // Verify the old decl was also a variable.
902  VarDecl *Old = dyn_cast<VarDecl>(OldD);
903  if (!Old) {
904    Diag(New->getLocation(), diag::err_redefinition_different_kind)
905      << New->getDeclName();
906    Diag(OldD->getLocation(), diag::note_previous_definition);
907    return New->setInvalidDecl();
908  }
909
910  MergeAttributes(New, Old, Context);
911
912  // Merge the types
913  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
914  if (MergedT.isNull()) {
915    Diag(New->getLocation(), diag::err_redefinition_different_type)
916      << New->getDeclName();
917    Diag(Old->getLocation(), diag::note_previous_definition);
918    return New->setInvalidDecl();
919  }
920  New->setType(MergedT);
921
922  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
923  if (New->getStorageClass() == VarDecl::Static &&
924      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
925    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
926    Diag(Old->getLocation(), diag::note_previous_definition);
927    return New->setInvalidDecl();
928  }
929  // C99 6.2.2p4:
930  //   For an identifier declared with the storage-class specifier
931  //   extern in a scope in which a prior declaration of that
932  //   identifier is visible,23) if the prior declaration specifies
933  //   internal or external linkage, the linkage of the identifier at
934  //   the later declaration is the same as the linkage specified at
935  //   the prior declaration. If no prior declaration is visible, or
936  //   if the prior declaration specifies no linkage, then the
937  //   identifier has external linkage.
938  if (New->hasExternalStorage() && Old->hasLinkage())
939    /* Okay */;
940  else if (New->getStorageClass() != VarDecl::Static &&
941           Old->getStorageClass() == VarDecl::Static) {
942    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
943    Diag(Old->getLocation(), diag::note_previous_definition);
944    return New->setInvalidDecl();
945  }
946
947  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
948
949  // FIXME: The test for external storage here seems wrong? We still
950  // need to check for mismatches.
951  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
952      // Don't complain about out-of-line definitions of static members.
953      !(Old->getLexicalDeclContext()->isRecord() &&
954        !New->getLexicalDeclContext()->isRecord())) {
955    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
956    Diag(Old->getLocation(), diag::note_previous_definition);
957    return New->setInvalidDecl();
958  }
959
960  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
961    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
962    Diag(Old->getLocation(), diag::note_previous_definition);
963  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
964    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
965    Diag(Old->getLocation(), diag::note_previous_definition);
966  }
967
968  // Keep a chain of previous declarations.
969  New->setPreviousDeclaration(Old);
970}
971
972/// CheckParmsForFunctionDef - Check that the parameters of the given
973/// function are appropriate for the definition of a function. This
974/// takes care of any checks that cannot be performed on the
975/// declaration itself, e.g., that the types of each of the function
976/// parameters are complete.
977bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
978  bool HasInvalidParm = false;
979  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
980    ParmVarDecl *Param = FD->getParamDecl(p);
981
982    // C99 6.7.5.3p4: the parameters in a parameter type list in a
983    // function declarator that is part of a function definition of
984    // that function shall not have incomplete type.
985    //
986    // This is also C++ [dcl.fct]p6.
987    if (!Param->isInvalidDecl() &&
988        RequireCompleteType(Param->getLocation(), Param->getType(),
989                               diag::err_typecheck_decl_incomplete_type)) {
990      Param->setInvalidDecl();
991      HasInvalidParm = true;
992    }
993
994    // C99 6.9.1p5: If the declarator includes a parameter type list, the
995    // declaration of each parameter shall include an identifier.
996    if (Param->getIdentifier() == 0 &&
997        !Param->isImplicit() &&
998        !getLangOptions().CPlusPlus)
999      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1000  }
1001
1002  return HasInvalidParm;
1003}
1004
1005/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1006/// no declarator (e.g. "struct foo;") is parsed.
1007Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1008  // FIXME: Error on auto/register at file scope
1009  // FIXME: Error on inline/virtual/explicit
1010  // FIXME: Error on invalid restrict
1011  // FIXME: Warn on useless __thread
1012  // FIXME: Warn on useless const/volatile
1013  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1014  // FIXME: Warn on useless attributes
1015
1016  TagDecl *Tag = 0;
1017  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1018      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1019      DS.getTypeSpecType() == DeclSpec::TST_union ||
1020      DS.getTypeSpecType() == DeclSpec::TST_enum)
1021    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1022
1023  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1024    if (!Record->getDeclName() && Record->isDefinition() &&
1025        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1026      if (getLangOptions().CPlusPlus ||
1027          Record->getDeclContext()->isRecord())
1028        return BuildAnonymousStructOrUnion(S, DS, Record);
1029
1030      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1031        << DS.getSourceRange();
1032    }
1033
1034    // Microsoft allows unnamed struct/union fields. Don't complain
1035    // about them.
1036    // FIXME: Should we support Microsoft's extensions in this area?
1037    if (Record->getDeclName() && getLangOptions().Microsoft)
1038      return DeclPtrTy::make(Tag);
1039  }
1040
1041  if (!DS.isMissingDeclaratorOk() &&
1042      DS.getTypeSpecType() != DeclSpec::TST_error) {
1043    // Warn about typedefs of enums without names, since this is an
1044    // extension in both Microsoft an GNU.
1045    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1046        Tag && isa<EnumDecl>(Tag)) {
1047      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1048        << DS.getSourceRange();
1049      return DeclPtrTy::make(Tag);
1050    }
1051
1052    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1053      << DS.getSourceRange();
1054    return DeclPtrTy();
1055  }
1056
1057  return DeclPtrTy::make(Tag);
1058}
1059
1060/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1061/// anonymous struct or union AnonRecord into the owning context Owner
1062/// and scope S. This routine will be invoked just after we realize
1063/// that an unnamed union or struct is actually an anonymous union or
1064/// struct, e.g.,
1065///
1066/// @code
1067/// union {
1068///   int i;
1069///   float f;
1070/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1071///    // f into the surrounding scope.x
1072/// @endcode
1073///
1074/// This routine is recursive, injecting the names of nested anonymous
1075/// structs/unions into the owning context and scope as well.
1076bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1077                                               RecordDecl *AnonRecord) {
1078  bool Invalid = false;
1079  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1080                               FEnd = AnonRecord->field_end(Context);
1081       F != FEnd; ++F) {
1082    if ((*F)->getDeclName()) {
1083      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1084                                                LookupOrdinaryName, true);
1085      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1086        // C++ [class.union]p2:
1087        //   The names of the members of an anonymous union shall be
1088        //   distinct from the names of any other entity in the
1089        //   scope in which the anonymous union is declared.
1090        unsigned diagKind
1091          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1092                                 : diag::err_anonymous_struct_member_redecl;
1093        Diag((*F)->getLocation(), diagKind)
1094          << (*F)->getDeclName();
1095        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1096        Invalid = true;
1097      } else {
1098        // C++ [class.union]p2:
1099        //   For the purpose of name lookup, after the anonymous union
1100        //   definition, the members of the anonymous union are
1101        //   considered to have been defined in the scope in which the
1102        //   anonymous union is declared.
1103        Owner->makeDeclVisibleInContext(Context, *F);
1104        S->AddDecl(DeclPtrTy::make(*F));
1105        IdResolver.AddDecl(*F);
1106      }
1107    } else if (const RecordType *InnerRecordType
1108                 = (*F)->getType()->getAsRecordType()) {
1109      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1110      if (InnerRecord->isAnonymousStructOrUnion())
1111        Invalid = Invalid ||
1112          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1113    }
1114  }
1115
1116  return Invalid;
1117}
1118
1119/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1120/// anonymous structure or union. Anonymous unions are a C++ feature
1121/// (C++ [class.union]) and a GNU C extension; anonymous structures
1122/// are a GNU C and GNU C++ extension.
1123Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1124                                                  RecordDecl *Record) {
1125  DeclContext *Owner = Record->getDeclContext();
1126
1127  // Diagnose whether this anonymous struct/union is an extension.
1128  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1129    Diag(Record->getLocation(), diag::ext_anonymous_union);
1130  else if (!Record->isUnion())
1131    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1132
1133  // C and C++ require different kinds of checks for anonymous
1134  // structs/unions.
1135  bool Invalid = false;
1136  if (getLangOptions().CPlusPlus) {
1137    const char* PrevSpec = 0;
1138    // C++ [class.union]p3:
1139    //   Anonymous unions declared in a named namespace or in the
1140    //   global namespace shall be declared static.
1141    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1142        (isa<TranslationUnitDecl>(Owner) ||
1143         (isa<NamespaceDecl>(Owner) &&
1144          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1145      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1146      Invalid = true;
1147
1148      // Recover by adding 'static'.
1149      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1150    }
1151    // C++ [class.union]p3:
1152    //   A storage class is not allowed in a declaration of an
1153    //   anonymous union in a class scope.
1154    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1155             isa<RecordDecl>(Owner)) {
1156      Diag(DS.getStorageClassSpecLoc(),
1157           diag::err_anonymous_union_with_storage_spec);
1158      Invalid = true;
1159
1160      // Recover by removing the storage specifier.
1161      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1162                             PrevSpec);
1163    }
1164
1165    // C++ [class.union]p2:
1166    //   The member-specification of an anonymous union shall only
1167    //   define non-static data members. [Note: nested types and
1168    //   functions cannot be declared within an anonymous union. ]
1169    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1170                                 MemEnd = Record->decls_end(Context);
1171         Mem != MemEnd; ++Mem) {
1172      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1173        // C++ [class.union]p3:
1174        //   An anonymous union shall not have private or protected
1175        //   members (clause 11).
1176        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1177          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1178            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1179          Invalid = true;
1180        }
1181      } else if ((*Mem)->isImplicit()) {
1182        // Any implicit members are fine.
1183      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1184        // This is a type that showed up in an
1185        // elaborated-type-specifier inside the anonymous struct or
1186        // union, but which actually declares a type outside of the
1187        // anonymous struct or union. It's okay.
1188      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1189        if (!MemRecord->isAnonymousStructOrUnion() &&
1190            MemRecord->getDeclName()) {
1191          // This is a nested type declaration.
1192          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1193            << (int)Record->isUnion();
1194          Invalid = true;
1195        }
1196      } else {
1197        // We have something that isn't a non-static data
1198        // member. Complain about it.
1199        unsigned DK = diag::err_anonymous_record_bad_member;
1200        if (isa<TypeDecl>(*Mem))
1201          DK = diag::err_anonymous_record_with_type;
1202        else if (isa<FunctionDecl>(*Mem))
1203          DK = diag::err_anonymous_record_with_function;
1204        else if (isa<VarDecl>(*Mem))
1205          DK = diag::err_anonymous_record_with_static;
1206        Diag((*Mem)->getLocation(), DK)
1207            << (int)Record->isUnion();
1208          Invalid = true;
1209      }
1210    }
1211  }
1212
1213  if (!Record->isUnion() && !Owner->isRecord()) {
1214    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1215      << (int)getLangOptions().CPlusPlus;
1216    Invalid = true;
1217  }
1218
1219  // Create a declaration for this anonymous struct/union.
1220  NamedDecl *Anon = 0;
1221  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1222    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1223                             /*IdentifierInfo=*/0,
1224                             Context.getTypeDeclType(Record),
1225                             /*BitWidth=*/0, /*Mutable=*/false);
1226    Anon->setAccess(AS_public);
1227    if (getLangOptions().CPlusPlus)
1228      FieldCollector->Add(cast<FieldDecl>(Anon));
1229  } else {
1230    VarDecl::StorageClass SC;
1231    switch (DS.getStorageClassSpec()) {
1232    default: assert(0 && "Unknown storage class!");
1233    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1234    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1235    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1236    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1237    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1238    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1239    case DeclSpec::SCS_mutable:
1240      // mutable can only appear on non-static class members, so it's always
1241      // an error here
1242      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1243      Invalid = true;
1244      SC = VarDecl::None;
1245      break;
1246    }
1247
1248    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1249                           /*IdentifierInfo=*/0,
1250                           Context.getTypeDeclType(Record),
1251                           SC, DS.getSourceRange().getBegin());
1252  }
1253  Anon->setImplicit();
1254
1255  // Add the anonymous struct/union object to the current
1256  // context. We'll be referencing this object when we refer to one of
1257  // its members.
1258  Owner->addDecl(Context, Anon);
1259
1260  // Inject the members of the anonymous struct/union into the owning
1261  // context and into the identifier resolver chain for name lookup
1262  // purposes.
1263  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1264    Invalid = true;
1265
1266  // Mark this as an anonymous struct/union type. Note that we do not
1267  // do this until after we have already checked and injected the
1268  // members of this anonymous struct/union type, because otherwise
1269  // the members could be injected twice: once by DeclContext when it
1270  // builds its lookup table, and once by
1271  // InjectAnonymousStructOrUnionMembers.
1272  Record->setAnonymousStructOrUnion(true);
1273
1274  if (Invalid)
1275    Anon->setInvalidDecl();
1276
1277  return DeclPtrTy::make(Anon);
1278}
1279
1280
1281/// GetNameForDeclarator - Determine the full declaration name for the
1282/// given Declarator.
1283DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1284  switch (D.getKind()) {
1285  case Declarator::DK_Abstract:
1286    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1287    return DeclarationName();
1288
1289  case Declarator::DK_Normal:
1290    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1291    return DeclarationName(D.getIdentifier());
1292
1293  case Declarator::DK_Constructor: {
1294    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1295    Ty = Context.getCanonicalType(Ty);
1296    return Context.DeclarationNames.getCXXConstructorName(Ty);
1297  }
1298
1299  case Declarator::DK_Destructor: {
1300    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1301    Ty = Context.getCanonicalType(Ty);
1302    return Context.DeclarationNames.getCXXDestructorName(Ty);
1303  }
1304
1305  case Declarator::DK_Conversion: {
1306    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1307    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1308    Ty = Context.getCanonicalType(Ty);
1309    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1310  }
1311
1312  case Declarator::DK_Operator:
1313    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1314    return Context.DeclarationNames.getCXXOperatorName(
1315                                                D.getOverloadedOperator());
1316  }
1317
1318  assert(false && "Unknown name kind");
1319  return DeclarationName();
1320}
1321
1322/// isNearlyMatchingFunction - Determine whether the C++ functions
1323/// Declaration and Definition are "nearly" matching. This heuristic
1324/// is used to improve diagnostics in the case where an out-of-line
1325/// function definition doesn't match any declaration within
1326/// the class or namespace.
1327static bool isNearlyMatchingFunction(ASTContext &Context,
1328                                     FunctionDecl *Declaration,
1329                                     FunctionDecl *Definition) {
1330  if (Declaration->param_size() != Definition->param_size())
1331    return false;
1332  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1333    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1334    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1335
1336    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1337    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1338    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1339      return false;
1340  }
1341
1342  return true;
1343}
1344
1345Sema::DeclPtrTy
1346Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1347  DeclarationName Name = GetNameForDeclarator(D);
1348
1349  // All of these full declarators require an identifier.  If it doesn't have
1350  // one, the ParsedFreeStandingDeclSpec action should be used.
1351  if (!Name) {
1352    if (!D.isInvalidType())  // Reject this if we think it is valid.
1353      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1354           diag::err_declarator_need_ident)
1355        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1356    return DeclPtrTy();
1357  }
1358
1359  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1360  // we find one that is.
1361  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1362         (S->getFlags() & Scope::TemplateParamScope) != 0)
1363    S = S->getParent();
1364
1365  DeclContext *DC;
1366  NamedDecl *PrevDecl;
1367  NamedDecl *New;
1368
1369  QualType R = GetTypeForDeclarator(D, S);
1370
1371  // See if this is a redefinition of a variable in the same scope.
1372  if (D.getCXXScopeSpec().isInvalid()) {
1373    DC = CurContext;
1374    PrevDecl = 0;
1375    D.setInvalidType();
1376  } else if (!D.getCXXScopeSpec().isSet()) {
1377    LookupNameKind NameKind = LookupOrdinaryName;
1378
1379    // If the declaration we're planning to build will be a function
1380    // or object with linkage, then look for another declaration with
1381    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1382    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1383      /* Do nothing*/;
1384    else if (R->isFunctionType()) {
1385      if (CurContext->isFunctionOrMethod())
1386        NameKind = LookupRedeclarationWithLinkage;
1387    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1388      NameKind = LookupRedeclarationWithLinkage;
1389
1390    DC = CurContext;
1391    PrevDecl = LookupName(S, Name, NameKind, true,
1392                          D.getDeclSpec().getStorageClassSpec() !=
1393                            DeclSpec::SCS_static,
1394                          D.getIdentifierLoc());
1395  } else { // Something like "int foo::x;"
1396    DC = computeDeclContext(D.getCXXScopeSpec());
1397    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1398    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1399
1400    // C++ 7.3.1.2p2:
1401    // Members (including explicit specializations of templates) of a named
1402    // namespace can also be defined outside that namespace by explicit
1403    // qualification of the name being defined, provided that the entity being
1404    // defined was already declared in the namespace and the definition appears
1405    // after the point of declaration in a namespace that encloses the
1406    // declarations namespace.
1407    //
1408    // Note that we only check the context at this point. We don't yet
1409    // have enough information to make sure that PrevDecl is actually
1410    // the declaration we want to match. For example, given:
1411    //
1412    //   class X {
1413    //     void f();
1414    //     void f(float);
1415    //   };
1416    //
1417    //   void X::f(int) { } // ill-formed
1418    //
1419    // In this case, PrevDecl will point to the overload set
1420    // containing the two f's declared in X, but neither of them
1421    // matches.
1422
1423    // First check whether we named the global scope.
1424    if (isa<TranslationUnitDecl>(DC)) {
1425      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1426        << Name << D.getCXXScopeSpec().getRange();
1427    } else if (!CurContext->Encloses(DC)) {
1428      // The qualifying scope doesn't enclose the original declaration.
1429      // Emit diagnostic based on current scope.
1430      SourceLocation L = D.getIdentifierLoc();
1431      SourceRange R = D.getCXXScopeSpec().getRange();
1432      if (isa<FunctionDecl>(CurContext))
1433        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1434      else
1435        Diag(L, diag::err_invalid_declarator_scope)
1436          << Name << cast<NamedDecl>(DC) << R;
1437      D.setInvalidType();
1438    }
1439  }
1440
1441  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1442    // Maybe we will complain about the shadowed template parameter.
1443    if (!D.isInvalidType())
1444      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1445        D.setInvalidType();
1446
1447    // Just pretend that we didn't see the previous declaration.
1448    PrevDecl = 0;
1449  }
1450
1451  // In C++, the previous declaration we find might be a tag type
1452  // (class or enum). In this case, the new declaration will hide the
1453  // tag type. Note that this does does not apply if we're declaring a
1454  // typedef (C++ [dcl.typedef]p4).
1455  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1456      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1457    PrevDecl = 0;
1458
1459  bool Redeclaration = false;
1460  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1461    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1462  } else if (R->isFunctionType()) {
1463    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1464                                  IsFunctionDefinition, Redeclaration);
1465  } else {
1466    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1467  }
1468
1469  if (New == 0)
1470    return DeclPtrTy();
1471
1472  // If this has an identifier and is not an invalid redeclaration,
1473  // add it to the scope stack.
1474  if (Name && !(Redeclaration && New->isInvalidDecl()))
1475    PushOnScopeChains(New, S);
1476
1477  return DeclPtrTy::make(New);
1478}
1479
1480/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1481/// types into constant array types in certain situations which would otherwise
1482/// be errors (for GCC compatibility).
1483static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1484                                                    ASTContext &Context,
1485                                                    bool &SizeIsNegative) {
1486  // This method tries to turn a variable array into a constant
1487  // array even when the size isn't an ICE.  This is necessary
1488  // for compatibility with code that depends on gcc's buggy
1489  // constant expression folding, like struct {char x[(int)(char*)2];}
1490  SizeIsNegative = false;
1491
1492  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1493    QualType Pointee = PTy->getPointeeType();
1494    QualType FixedType =
1495        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1496    if (FixedType.isNull()) return FixedType;
1497    FixedType = Context.getPointerType(FixedType);
1498    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1499    return FixedType;
1500  }
1501
1502  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1503  if (!VLATy)
1504    return QualType();
1505  // FIXME: We should probably handle this case
1506  if (VLATy->getElementType()->isVariablyModifiedType())
1507    return QualType();
1508
1509  Expr::EvalResult EvalResult;
1510  if (!VLATy->getSizeExpr() ||
1511      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1512      !EvalResult.Val.isInt())
1513    return QualType();
1514
1515  llvm::APSInt &Res = EvalResult.Val.getInt();
1516  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1517    return Context.getConstantArrayType(VLATy->getElementType(),
1518                                        Res, ArrayType::Normal, 0);
1519
1520  SizeIsNegative = true;
1521  return QualType();
1522}
1523
1524/// \brief Register the given locally-scoped external C declaration so
1525/// that it can be found later for redeclarations
1526void
1527Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1528                                       Scope *S) {
1529  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1530         "Decl is not a locally-scoped decl!");
1531  // Note that we have a locally-scoped external with this name.
1532  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1533
1534  if (!PrevDecl)
1535    return;
1536
1537  // If there was a previous declaration of this variable, it may be
1538  // in our identifier chain. Update the identifier chain with the new
1539  // declaration.
1540  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1541    // The previous declaration was found on the identifer resolver
1542    // chain, so remove it from its scope.
1543    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1544      S = S->getParent();
1545
1546    if (S)
1547      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1548  }
1549}
1550
1551/// \brief Diagnose function specifiers on a declaration of an identifier that
1552/// does not identify a function.
1553void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1554  // FIXME: We should probably indicate the identifier in question to avoid
1555  // confusion for constructs like "inline int a(), b;"
1556  if (D.getDeclSpec().isInlineSpecified())
1557    Diag(D.getDeclSpec().getInlineSpecLoc(),
1558         diag::err_inline_non_function);
1559
1560  if (D.getDeclSpec().isVirtualSpecified())
1561    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1562         diag::err_virtual_non_function);
1563
1564  if (D.getDeclSpec().isExplicitSpecified())
1565    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1566         diag::err_explicit_non_function);
1567}
1568
1569NamedDecl*
1570Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1571                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1572  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1573  if (D.getCXXScopeSpec().isSet()) {
1574    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1575      << D.getCXXScopeSpec().getRange();
1576    D.setInvalidType();
1577    // Pretend we didn't see the scope specifier.
1578    DC = 0;
1579  }
1580
1581  if (getLangOptions().CPlusPlus) {
1582    // Check that there are no default arguments (C++ only).
1583    CheckExtraCXXDefaultArguments(D);
1584  }
1585
1586  DiagnoseFunctionSpecifiers(D);
1587
1588  if (D.getDeclSpec().isThreadSpecified())
1589    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1590
1591  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1592  if (!NewTD) return 0;
1593
1594  if (D.isInvalidType())
1595    NewTD->setInvalidDecl();
1596
1597  // Handle attributes prior to checking for duplicates in MergeVarDecl
1598  ProcessDeclAttributes(NewTD, D);
1599  // Merge the decl with the existing one if appropriate. If the decl is
1600  // in an outer scope, it isn't the same thing.
1601  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1602    Redeclaration = true;
1603    MergeTypeDefDecl(NewTD, PrevDecl);
1604  }
1605
1606  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1607  // then it shall have block scope.
1608  QualType T = NewTD->getUnderlyingType();
1609  if (T->isVariablyModifiedType()) {
1610    CurFunctionNeedsScopeChecking = true;
1611
1612    if (S->getFnParent() == 0) {
1613      bool SizeIsNegative;
1614      QualType FixedTy =
1615          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1616      if (!FixedTy.isNull()) {
1617        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1618        NewTD->setUnderlyingType(FixedTy);
1619      } else {
1620        if (SizeIsNegative)
1621          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1622        else if (T->isVariableArrayType())
1623          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1624        else
1625          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1626        NewTD->setInvalidDecl();
1627      }
1628    }
1629  }
1630  return NewTD;
1631}
1632
1633/// \brief Determines whether the given declaration is an out-of-scope
1634/// previous declaration.
1635///
1636/// This routine should be invoked when name lookup has found a
1637/// previous declaration (PrevDecl) that is not in the scope where a
1638/// new declaration by the same name is being introduced. If the new
1639/// declaration occurs in a local scope, previous declarations with
1640/// linkage may still be considered previous declarations (C99
1641/// 6.2.2p4-5, C++ [basic.link]p6).
1642///
1643/// \param PrevDecl the previous declaration found by name
1644/// lookup
1645///
1646/// \param DC the context in which the new declaration is being
1647/// declared.
1648///
1649/// \returns true if PrevDecl is an out-of-scope previous declaration
1650/// for a new delcaration with the same name.
1651static bool
1652isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1653                                ASTContext &Context) {
1654  if (!PrevDecl)
1655    return 0;
1656
1657  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1658  // case we need to check each of the overloaded functions.
1659  if (!PrevDecl->hasLinkage())
1660    return false;
1661
1662  if (Context.getLangOptions().CPlusPlus) {
1663    // C++ [basic.link]p6:
1664    //   If there is a visible declaration of an entity with linkage
1665    //   having the same name and type, ignoring entities declared
1666    //   outside the innermost enclosing namespace scope, the block
1667    //   scope declaration declares that same entity and receives the
1668    //   linkage of the previous declaration.
1669    DeclContext *OuterContext = DC->getLookupContext();
1670    if (!OuterContext->isFunctionOrMethod())
1671      // This rule only applies to block-scope declarations.
1672      return false;
1673    else {
1674      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1675      if (PrevOuterContext->isRecord())
1676        // We found a member function: ignore it.
1677        return false;
1678      else {
1679        // Find the innermost enclosing namespace for the new and
1680        // previous declarations.
1681        while (!OuterContext->isFileContext())
1682          OuterContext = OuterContext->getParent();
1683        while (!PrevOuterContext->isFileContext())
1684          PrevOuterContext = PrevOuterContext->getParent();
1685
1686        // The previous declaration is in a different namespace, so it
1687        // isn't the same function.
1688        if (OuterContext->getPrimaryContext() !=
1689            PrevOuterContext->getPrimaryContext())
1690          return false;
1691      }
1692    }
1693  }
1694
1695  return true;
1696}
1697
1698NamedDecl*
1699Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1700                              QualType R,NamedDecl* PrevDecl,
1701                              bool &Redeclaration) {
1702  DeclarationName Name = GetNameForDeclarator(D);
1703
1704  // Check that there are no default arguments (C++ only).
1705  if (getLangOptions().CPlusPlus)
1706    CheckExtraCXXDefaultArguments(D);
1707
1708  VarDecl *NewVD;
1709  VarDecl::StorageClass SC;
1710  switch (D.getDeclSpec().getStorageClassSpec()) {
1711  default: assert(0 && "Unknown storage class!");
1712  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1713  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1714  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1715  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1716  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1717  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1718  case DeclSpec::SCS_mutable:
1719    // mutable can only appear on non-static class members, so it's always
1720    // an error here
1721    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1722    D.setInvalidType();
1723    SC = VarDecl::None;
1724    break;
1725  }
1726
1727  IdentifierInfo *II = Name.getAsIdentifierInfo();
1728  if (!II) {
1729    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1730      << Name.getAsString();
1731    return 0;
1732  }
1733
1734  DiagnoseFunctionSpecifiers(D);
1735
1736  if (!DC->isRecord() && S->getFnParent() == 0) {
1737    // C99 6.9p2: The storage-class specifiers auto and register shall not
1738    // appear in the declaration specifiers in an external declaration.
1739    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1740      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1741      D.setInvalidType();
1742    }
1743  }
1744  if (DC->isRecord() && !CurContext->isRecord()) {
1745    // This is an out-of-line definition of a static data member.
1746    if (SC == VarDecl::Static) {
1747      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1748           diag::err_static_out_of_line)
1749        << CodeModificationHint::CreateRemoval(
1750                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1751    } else if (SC == VarDecl::None)
1752      SC = VarDecl::Static;
1753  }
1754
1755  // The variable can not
1756  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1757                          II, R, SC,
1758                          // FIXME: Move to DeclGroup...
1759                          D.getDeclSpec().getSourceRange().getBegin());
1760
1761  if (D.isInvalidType())
1762    NewVD->setInvalidDecl();
1763
1764  if (D.getDeclSpec().isThreadSpecified()) {
1765    if (NewVD->hasLocalStorage())
1766      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1767    else if (!Context.Target.isTLSSupported())
1768      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1769    else
1770      NewVD->setThreadSpecified(true);
1771  }
1772
1773  // Set the lexical context. If the declarator has a C++ scope specifier, the
1774  // lexical context will be different from the semantic context.
1775  NewVD->setLexicalDeclContext(CurContext);
1776
1777  // Handle attributes prior to checking for duplicates in MergeVarDecl
1778  ProcessDeclAttributes(NewVD, D);
1779
1780  // Handle GNU asm-label extension (encoded as an attribute).
1781  if (Expr *E = (Expr*) D.getAsmLabel()) {
1782    // The parser guarantees this is a string.
1783    StringLiteral *SE = cast<StringLiteral>(E);
1784    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1785                                                        SE->getByteLength())));
1786  }
1787
1788  // If name lookup finds a previous declaration that is not in the
1789  // same scope as the new declaration, this may still be an
1790  // acceptable redeclaration.
1791  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1792      !(NewVD->hasLinkage() &&
1793        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1794    PrevDecl = 0;
1795
1796  // Merge the decl with the existing one if appropriate.
1797  if (PrevDecl) {
1798    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1799      // The user tried to define a non-static data member
1800      // out-of-line (C++ [dcl.meaning]p1).
1801      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1802        << D.getCXXScopeSpec().getRange();
1803      PrevDecl = 0;
1804      NewVD->setInvalidDecl();
1805    }
1806  } else if (D.getCXXScopeSpec().isSet()) {
1807    // No previous declaration in the qualifying scope.
1808    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1809      << Name << D.getCXXScopeSpec().getRange();
1810    NewVD->setInvalidDecl();
1811  }
1812
1813  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1814
1815  // If this is a locally-scoped extern C variable, update the map of
1816  // such variables.
1817  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1818      !NewVD->isInvalidDecl())
1819    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1820
1821  return NewVD;
1822}
1823
1824/// \brief Perform semantic checking on a newly-created variable
1825/// declaration.
1826///
1827/// This routine performs all of the type-checking required for a
1828/// variable declaration once it has been build. It is used both to
1829/// check variables after they have been parsed and their declarators
1830/// have been translated into a declaration, and to check
1831///
1832/// Sets NewVD->isInvalidDecl() if an error was encountered.
1833void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1834                                    bool &Redeclaration) {
1835  // If the decl is already known invalid, don't check it.
1836  if (NewVD->isInvalidDecl())
1837    return;
1838
1839  QualType T = NewVD->getType();
1840
1841  if (T->isObjCInterfaceType()) {
1842    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1843    return NewVD->setInvalidDecl();
1844  }
1845
1846  // The variable can not have an abstract class type.
1847  if (RequireNonAbstractType(NewVD->getLocation(), T,
1848                             diag::err_abstract_type_in_decl,
1849                             AbstractVariableType))
1850    return NewVD->setInvalidDecl();
1851
1852  // Emit an error if an address space was applied to decl with local storage.
1853  // This includes arrays of objects with address space qualifiers, but not
1854  // automatic variables that point to other address spaces.
1855  // ISO/IEC TR 18037 S5.1.2
1856  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1857    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1858    return NewVD->setInvalidDecl();
1859  }
1860
1861  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1862      && !NewVD->hasAttr<BlocksAttr>())
1863    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1864
1865  bool isVM = T->isVariablyModifiedType();
1866  if (isVM || NewVD->hasAttr<CleanupAttr>())
1867    CurFunctionNeedsScopeChecking = true;
1868
1869  if ((isVM && NewVD->hasLinkage()) ||
1870      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1871    bool SizeIsNegative;
1872    QualType FixedTy =
1873        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1874
1875    if (FixedTy.isNull() && T->isVariableArrayType()) {
1876      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1877      // FIXME: This won't give the correct result for
1878      // int a[10][n];
1879      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1880
1881      if (NewVD->isFileVarDecl())
1882        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1883        << SizeRange;
1884      else if (NewVD->getStorageClass() == VarDecl::Static)
1885        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1886        << SizeRange;
1887      else
1888        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1889        << SizeRange;
1890      return NewVD->setInvalidDecl();
1891    }
1892
1893    if (FixedTy.isNull()) {
1894      if (NewVD->isFileVarDecl())
1895        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1896      else
1897        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1898      return NewVD->setInvalidDecl();
1899    }
1900
1901    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1902    NewVD->setType(FixedTy);
1903  }
1904
1905  if (!PrevDecl && NewVD->isExternC(Context)) {
1906    // Since we did not find anything by this name and we're declaring
1907    // an extern "C" variable, look for a non-visible extern "C"
1908    // declaration with the same name.
1909    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1910      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1911    if (Pos != LocallyScopedExternalDecls.end())
1912      PrevDecl = Pos->second;
1913  }
1914
1915  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
1916    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1917      << T;
1918    return NewVD->setInvalidDecl();
1919  }
1920
1921  if (PrevDecl) {
1922    Redeclaration = true;
1923    MergeVarDecl(NewVD, PrevDecl);
1924  }
1925}
1926
1927NamedDecl*
1928Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1929                              QualType R, NamedDecl* PrevDecl,
1930                              bool IsFunctionDefinition, bool &Redeclaration) {
1931  assert(R.getTypePtr()->isFunctionType());
1932
1933  DeclarationName Name = GetNameForDeclarator(D);
1934  FunctionDecl::StorageClass SC = FunctionDecl::None;
1935  switch (D.getDeclSpec().getStorageClassSpec()) {
1936  default: assert(0 && "Unknown storage class!");
1937  case DeclSpec::SCS_auto:
1938  case DeclSpec::SCS_register:
1939  case DeclSpec::SCS_mutable:
1940    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1941         diag::err_typecheck_sclass_func);
1942    D.setInvalidType();
1943    break;
1944  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1945  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1946  case DeclSpec::SCS_static: {
1947    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1948      // C99 6.7.1p5:
1949      //   The declaration of an identifier for a function that has
1950      //   block scope shall have no explicit storage-class specifier
1951      //   other than extern
1952      // See also (C++ [dcl.stc]p4).
1953      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1954           diag::err_static_block_func);
1955      SC = FunctionDecl::None;
1956    } else
1957      SC = FunctionDecl::Static;
1958    break;
1959  }
1960  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1961  }
1962
1963  if (D.getDeclSpec().isThreadSpecified())
1964    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1965
1966  bool isInline = D.getDeclSpec().isInlineSpecified();
1967  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1968  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1969
1970  // Check that the return type is not an abstract class type.
1971  // For record types, this is done by the AbstractClassUsageDiagnoser once
1972  // the class has been completely parsed.
1973  if (!DC->isRecord() &&
1974      RequireNonAbstractType(D.getIdentifierLoc(),
1975                             R->getAsFunctionType()->getResultType(),
1976                             diag::err_abstract_type_in_decl,
1977                             AbstractReturnType))
1978    D.setInvalidType();
1979
1980  // Do not allow returning a objc interface by-value.
1981  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
1982    Diag(D.getIdentifierLoc(),
1983         diag::err_object_cannot_be_passed_returned_by_value) << 0
1984      << R->getAsFunctionType()->getResultType();
1985    D.setInvalidType();
1986  }
1987
1988  bool isVirtualOkay = false;
1989  FunctionDecl *NewFD;
1990  if (D.getKind() == Declarator::DK_Constructor) {
1991    // This is a C++ constructor declaration.
1992    assert(DC->isRecord() &&
1993           "Constructors can only be declared in a member context");
1994
1995    R = CheckConstructorDeclarator(D, R, SC);
1996
1997    // Create the new declaration
1998    NewFD = CXXConstructorDecl::Create(Context,
1999                                       cast<CXXRecordDecl>(DC),
2000                                       D.getIdentifierLoc(), Name, R,
2001                                       isExplicit, isInline,
2002                                       /*isImplicitlyDeclared=*/false);
2003  } else if (D.getKind() == Declarator::DK_Destructor) {
2004    // This is a C++ destructor declaration.
2005    if (DC->isRecord()) {
2006      R = CheckDestructorDeclarator(D, SC);
2007
2008      NewFD = CXXDestructorDecl::Create(Context,
2009                                        cast<CXXRecordDecl>(DC),
2010                                        D.getIdentifierLoc(), Name, R,
2011                                        isInline,
2012                                        /*isImplicitlyDeclared=*/false);
2013
2014      isVirtualOkay = true;
2015    } else {
2016      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2017
2018      // Create a FunctionDecl to satisfy the function definition parsing
2019      // code path.
2020      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2021                                   Name, R, SC, isInline,
2022                                   /*hasPrototype=*/true,
2023                                   // FIXME: Move to DeclGroup...
2024                                   D.getDeclSpec().getSourceRange().getBegin());
2025      D.setInvalidType();
2026    }
2027  } else if (D.getKind() == Declarator::DK_Conversion) {
2028    if (!DC->isRecord()) {
2029      Diag(D.getIdentifierLoc(),
2030           diag::err_conv_function_not_member);
2031      return 0;
2032    }
2033
2034    CheckConversionDeclarator(D, R, SC);
2035    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2036                                      D.getIdentifierLoc(), Name, R,
2037                                      isInline, isExplicit);
2038
2039    isVirtualOkay = true;
2040  } else if (DC->isRecord()) {
2041    // This is a C++ method declaration.
2042    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2043                                  D.getIdentifierLoc(), Name, R,
2044                                  (SC == FunctionDecl::Static), isInline);
2045
2046    isVirtualOkay = (SC != FunctionDecl::Static);
2047  } else {
2048    // Determine whether the function was written with a
2049    // prototype. This true when:
2050    //   - we're in C++ (where every function has a prototype),
2051    //   - there is a prototype in the declarator, or
2052    //   - the type R of the function is some kind of typedef or other reference
2053    //     to a type name (which eventually refers to a function type).
2054    bool HasPrototype =
2055       getLangOptions().CPlusPlus ||
2056       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2057       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2058
2059    NewFD = FunctionDecl::Create(Context, DC,
2060                                 D.getIdentifierLoc(),
2061                                 Name, R, SC, isInline, HasPrototype,
2062                                 // FIXME: Move to DeclGroup...
2063                                 D.getDeclSpec().getSourceRange().getBegin());
2064  }
2065
2066  if (D.isInvalidType())
2067    NewFD->setInvalidDecl();
2068
2069  // Set the lexical context. If the declarator has a C++
2070  // scope specifier, the lexical context will be different
2071  // from the semantic context.
2072  NewFD->setLexicalDeclContext(CurContext);
2073
2074  // C++ [dcl.fct.spec]p5:
2075  //   The virtual specifier shall only be used in declarations of
2076  //   nonstatic class member functions that appear within a
2077  //   member-specification of a class declaration; see 10.3.
2078  //
2079  // FIXME: Checking the 'virtual' specifier is not sufficient. A
2080  // function is also virtual if it overrides an already virtual
2081  // function. This is important to do here because it's part of the
2082  // declaration.
2083  if (isVirtual && !NewFD->isInvalidDecl()) {
2084    if (!isVirtualOkay) {
2085       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2086           diag::err_virtual_non_function);
2087    } else if (!CurContext->isRecord()) {
2088      // 'virtual' was specified outside of the class.
2089      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2090        << CodeModificationHint::CreateRemoval(
2091                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2092    } else {
2093      // Okay: Add virtual to the method.
2094      cast<CXXMethodDecl>(NewFD)->setVirtual();
2095      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2096      CurClass->setAggregate(false);
2097      CurClass->setPOD(false);
2098      CurClass->setPolymorphic(true);
2099      CurClass->setHasTrivialConstructor(false);
2100    }
2101  }
2102
2103  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2104      !CurContext->isRecord()) {
2105    // C++ [class.static]p1:
2106    //   A data or function member of a class may be declared static
2107    //   in a class definition, in which case it is a static member of
2108    //   the class.
2109
2110    // Complain about the 'static' specifier if it's on an out-of-line
2111    // member function definition.
2112    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2113         diag::err_static_out_of_line)
2114      << CodeModificationHint::CreateRemoval(
2115                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2116  }
2117
2118  // Handle GNU asm-label extension (encoded as an attribute).
2119  if (Expr *E = (Expr*) D.getAsmLabel()) {
2120    // The parser guarantees this is a string.
2121    StringLiteral *SE = cast<StringLiteral>(E);
2122    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2123                                                        SE->getByteLength())));
2124  }
2125
2126  // Copy the parameter declarations from the declarator D to the function
2127  // declaration NewFD, if they are available.  First scavenge them into Params.
2128  llvm::SmallVector<ParmVarDecl*, 16> Params;
2129  if (D.getNumTypeObjects() > 0) {
2130    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2131
2132    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2133    // function that takes no arguments, not a function that takes a
2134    // single void argument.
2135    // We let through "const void" here because Sema::GetTypeForDeclarator
2136    // already checks for that case.
2137    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2138        FTI.ArgInfo[0].Param &&
2139        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2140      // Empty arg list, don't push any params.
2141      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2142
2143      // In C++, the empty parameter-type-list must be spelled "void"; a
2144      // typedef of void is not permitted.
2145      if (getLangOptions().CPlusPlus &&
2146          Param->getType().getUnqualifiedType() != Context.VoidTy)
2147        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2148      // FIXME: Leaks decl?
2149    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2150      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2151        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2152    }
2153
2154  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2155    // When we're declaring a function with a typedef, typeof, etc as in the
2156    // following example, we'll need to synthesize (unnamed)
2157    // parameters for use in the declaration.
2158    //
2159    // @code
2160    // typedef void fn(int);
2161    // fn f;
2162    // @endcode
2163
2164    // Synthesize a parameter for each argument type.
2165    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2166         AE = FT->arg_type_end(); AI != AE; ++AI) {
2167      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2168                                               SourceLocation(), 0,
2169                                               *AI, VarDecl::None, 0);
2170      Param->setImplicit();
2171      Params.push_back(Param);
2172    }
2173  } else {
2174    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2175           "Should not need args for typedef of non-prototype fn");
2176  }
2177  // Finally, we know we have the right number of parameters, install them.
2178  NewFD->setParams(Context, &Params[0], Params.size());
2179
2180
2181
2182  // If name lookup finds a previous declaration that is not in the
2183  // same scope as the new declaration, this may still be an
2184  // acceptable redeclaration.
2185  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2186      !(NewFD->hasLinkage() &&
2187        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2188    PrevDecl = 0;
2189
2190  // FIXME: We need to determine whether the GNU inline attribute will
2191  // be applied to this function declaration, since it affects
2192  // declaration merging. This hack will go away when the FIXME below
2193  // is resolved, since we should be putting *all* attributes onto the
2194  // declaration now.
2195  for (const AttributeList *Attr = D.getDeclSpec().getAttributes();
2196       Attr; Attr = Attr->getNext()) {
2197    if (Attr->getKind() == AttributeList::AT_gnu_inline) {
2198      NewFD->addAttr(::new (Context) GNUInlineAttr());
2199      break;
2200    }
2201  }
2202
2203  // Perform semantic checking on the function declaration.
2204  bool OverloadableAttrRequired = false; // FIXME: HACK!
2205  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2206                           /*FIXME:*/OverloadableAttrRequired);
2207
2208  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2209    // An out-of-line member function declaration must also be a
2210    // definition (C++ [dcl.meaning]p1).
2211    if (!IsFunctionDefinition) {
2212      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2213        << D.getCXXScopeSpec().getRange();
2214      NewFD->setInvalidDecl();
2215    } else if (!Redeclaration) {
2216      // The user tried to provide an out-of-line definition for a
2217      // function that is a member of a class or namespace, but there
2218      // was no such member function declared (C++ [class.mfct]p2,
2219      // C++ [namespace.memdef]p2). For example:
2220      //
2221      // class X {
2222      //   void f() const;
2223      // };
2224      //
2225      // void X::f() { } // ill-formed
2226      //
2227      // Complain about this problem, and attempt to suggest close
2228      // matches (e.g., those that differ only in cv-qualifiers and
2229      // whether the parameter types are references).
2230      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2231        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2232      NewFD->setInvalidDecl();
2233
2234      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2235                                              true);
2236      assert(!Prev.isAmbiguous() &&
2237             "Cannot have an ambiguity in previous-declaration lookup");
2238      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2239           Func != FuncEnd; ++Func) {
2240        if (isa<FunctionDecl>(*Func) &&
2241            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2242          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2243      }
2244
2245      PrevDecl = 0;
2246    }
2247  }
2248
2249  // Handle attributes. We need to have merged decls when handling attributes
2250  // (for example to check for conflicts, etc).
2251  // FIXME: This needs to happen before we merge declarations. Then,
2252  // let attribute merging cope with attribute conflicts.
2253  ProcessDeclAttributes(NewFD, D);
2254  AddKnownFunctionAttributes(NewFD);
2255
2256  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2257    // If a function name is overloadable in C, then every function
2258    // with that name must be marked "overloadable".
2259    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2260      << Redeclaration << NewFD;
2261    if (PrevDecl)
2262      Diag(PrevDecl->getLocation(),
2263           diag::note_attribute_overloadable_prev_overload);
2264    NewFD->addAttr(::new (Context) OverloadableAttr());
2265  }
2266
2267  // If this is a locally-scoped extern C function, update the
2268  // map of such names.
2269  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2270      && !NewFD->isInvalidDecl())
2271    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2272
2273  return NewFD;
2274}
2275
2276/// \brief Perform semantic checking of a new function declaration.
2277///
2278/// Performs semantic analysis of the new function declaration
2279/// NewFD. This routine performs all semantic checking that does not
2280/// require the actual declarator involved in the declaration, and is
2281/// used both for the declaration of functions as they are parsed
2282/// (called via ActOnDeclarator) and for the declaration of functions
2283/// that have been instantiated via C++ template instantiation (called
2284/// via InstantiateDecl).
2285///
2286/// This sets NewFD->isInvalidDecl() to true if there was an error.
2287void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2288                                    bool &Redeclaration,
2289                                    bool &OverloadableAttrRequired) {
2290  // If NewFD is already known erroneous, don't do any of this checking.
2291  if (NewFD->isInvalidDecl())
2292    return;
2293
2294  // Semantic checking for this function declaration (in isolation).
2295  if (getLangOptions().CPlusPlus) {
2296    // C++-specific checks.
2297    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2298      CheckConstructor(Constructor);
2299    } else if (isa<CXXDestructorDecl>(NewFD)) {
2300      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2301      Record->setUserDeclaredDestructor(true);
2302      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2303      // user-defined destructor.
2304      Record->setPOD(false);
2305
2306      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2307      // declared destructor.
2308      Record->setHasTrivialDestructor(false);
2309    } else if (CXXConversionDecl *Conversion
2310               = dyn_cast<CXXConversionDecl>(NewFD))
2311      ActOnConversionDeclarator(Conversion);
2312
2313    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2314    if (NewFD->isOverloadedOperator() &&
2315        CheckOverloadedOperatorDeclaration(NewFD))
2316      return NewFD->setInvalidDecl();
2317  }
2318
2319  // C99 6.7.4p6:
2320  //   [... ] For a function with external linkage, the following
2321  //   restrictions apply: [...] If all of the file scope declarations
2322  //   for a function in a translation unit include the inline
2323  //   function specifier without extern, then the definition in that
2324  //   translation unit is an inline definition. An inline definition
2325  //   does not provide an external definition for the function, and
2326  //   does not forbid an external definition in another translation
2327  //   unit.
2328  //
2329  // Here we determine whether this function, in isolation, would be a
2330  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2331  // previous declarations.
2332  if (NewFD->isInline() &&
2333      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2334    bool GNUInline = NewFD->hasAttr<GNUInlineAttr>() ||
2335      (PrevDecl && PrevDecl->hasAttr<GNUInlineAttr>());
2336    if (GNUInline || (!getLangOptions().CPlusPlus && !getLangOptions().C99)) {
2337      // GNU "extern inline" is the same as "inline" in C99.
2338      if (NewFD->getStorageClass() == FunctionDecl::Extern)
2339        NewFD->setC99InlineDefinition(true);
2340    } else if (getLangOptions().C99 &&
2341               NewFD->getStorageClass() == FunctionDecl::None)
2342      NewFD->setC99InlineDefinition(true);
2343  }
2344
2345  // Check for a previous declaration of this name.
2346  if (!PrevDecl && NewFD->isExternC(Context)) {
2347    // Since we did not find anything by this name and we're declaring
2348    // an extern "C" function, look for a non-visible extern "C"
2349    // declaration with the same name.
2350    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2351      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2352    if (Pos != LocallyScopedExternalDecls.end())
2353      PrevDecl = Pos->second;
2354  }
2355
2356  // Merge or overload the declaration with an existing declaration of
2357  // the same name, if appropriate.
2358  if (PrevDecl) {
2359    // Determine whether NewFD is an overload of PrevDecl or
2360    // a declaration that requires merging. If it's an overload,
2361    // there's no more work to do here; we'll just add the new
2362    // function to the scope.
2363    OverloadedFunctionDecl::function_iterator MatchedDecl;
2364
2365    if (!getLangOptions().CPlusPlus &&
2366        AllowOverloadingOfFunction(PrevDecl, Context)) {
2367      OverloadableAttrRequired = true;
2368
2369      // Functions marked "overloadable" must have a prototype (that
2370      // we can't get through declaration merging).
2371      if (!NewFD->getType()->getAsFunctionProtoType()) {
2372        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2373          << NewFD;
2374        Redeclaration = true;
2375
2376        // Turn this into a variadic function with no parameters.
2377        QualType R = Context.getFunctionType(
2378                       NewFD->getType()->getAsFunctionType()->getResultType(),
2379                       0, 0, true, 0);
2380        NewFD->setType(R);
2381        return NewFD->setInvalidDecl();
2382      }
2383    }
2384
2385    if (PrevDecl &&
2386        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2387         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2388      Redeclaration = true;
2389      Decl *OldDecl = PrevDecl;
2390
2391      // If PrevDecl was an overloaded function, extract the
2392      // FunctionDecl that matched.
2393      if (isa<OverloadedFunctionDecl>(PrevDecl))
2394        OldDecl = *MatchedDecl;
2395
2396      // NewFD and OldDecl represent declarations that need to be
2397      // merged.
2398      if (MergeFunctionDecl(NewFD, OldDecl))
2399        return NewFD->setInvalidDecl();
2400
2401      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2402    }
2403  }
2404
2405  // In C++, check default arguments now that we have merged decls. Unless
2406  // the lexical context is the class, because in this case this is done
2407  // during delayed parsing anyway.
2408  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2409    CheckCXXDefaultArguments(NewFD);
2410}
2411
2412bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2413  // FIXME: Need strict checking.  In C89, we need to check for
2414  // any assignment, increment, decrement, function-calls, or
2415  // commas outside of a sizeof.  In C99, it's the same list,
2416  // except that the aforementioned are allowed in unevaluated
2417  // expressions.  Everything else falls under the
2418  // "may accept other forms of constant expressions" exception.
2419  // (We never end up here for C++, so the constant expression
2420  // rules there don't matter.)
2421  if (Init->isConstantInitializer(Context))
2422    return false;
2423  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2424    << Init->getSourceRange();
2425  return true;
2426}
2427
2428void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2429  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2430}
2431
2432/// AddInitializerToDecl - Adds the initializer Init to the
2433/// declaration dcl. If DirectInit is true, this is C++ direct
2434/// initialization rather than copy initialization.
2435void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2436  Decl *RealDecl = dcl.getAs<Decl>();
2437  // If there is no declaration, there was an error parsing it.  Just ignore
2438  // the initializer.
2439  if (RealDecl == 0)
2440    return;
2441
2442  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2443    // With declarators parsed the way they are, the parser cannot
2444    // distinguish between a normal initializer and a pure-specifier.
2445    // Thus this grotesque test.
2446    IntegerLiteral *IL;
2447    Expr *Init = static_cast<Expr *>(init.get());
2448    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2449        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2450      if (Method->isVirtual()) {
2451        Method->setPure();
2452
2453        // A class is abstract if at least one function is pure virtual.
2454        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2455      } else if (!Method->isInvalidDecl()) {
2456        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2457          << Method->getDeclName() << Init->getSourceRange();
2458        Method->setInvalidDecl();
2459      }
2460    } else {
2461      Diag(Method->getLocation(), diag::err_member_function_initialization)
2462        << Method->getDeclName() << Init->getSourceRange();
2463      Method->setInvalidDecl();
2464    }
2465    return;
2466  }
2467
2468  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2469  if (!VDecl) {
2470    if (getLangOptions().CPlusPlus &&
2471        RealDecl->getLexicalDeclContext()->isRecord() &&
2472        isa<NamedDecl>(RealDecl))
2473      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2474        << cast<NamedDecl>(RealDecl)->getDeclName();
2475    else
2476      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2477    RealDecl->setInvalidDecl();
2478    return;
2479  }
2480
2481  if (!VDecl->getType()->isArrayType() &&
2482      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2483                          diag::err_typecheck_decl_incomplete_type)) {
2484    RealDecl->setInvalidDecl();
2485    return;
2486  }
2487
2488  const VarDecl *Def = 0;
2489  if (VDecl->getDefinition(Def)) {
2490    Diag(VDecl->getLocation(), diag::err_redefinition)
2491      << VDecl->getDeclName();
2492    Diag(Def->getLocation(), diag::note_previous_definition);
2493    VDecl->setInvalidDecl();
2494    return;
2495  }
2496
2497  // Take ownership of the expression, now that we're sure we have somewhere
2498  // to put it.
2499  Expr *Init = static_cast<Expr *>(init.release());
2500  assert(Init && "missing initializer");
2501
2502  // Get the decls type and save a reference for later, since
2503  // CheckInitializerTypes may change it.
2504  QualType DclT = VDecl->getType(), SavT = DclT;
2505  if (VDecl->isBlockVarDecl()) {
2506    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2507      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2508      VDecl->setInvalidDecl();
2509    } else if (!VDecl->isInvalidDecl()) {
2510      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2511                                VDecl->getDeclName(), DirectInit))
2512        VDecl->setInvalidDecl();
2513
2514      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2515      // Don't check invalid declarations to avoid emitting useless diagnostics.
2516      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2517        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2518          CheckForConstantInitializer(Init, DclT);
2519      }
2520    }
2521  } else if (VDecl->isStaticDataMember() &&
2522             VDecl->getLexicalDeclContext()->isRecord()) {
2523    // This is an in-class initialization for a static data member, e.g.,
2524    //
2525    // struct S {
2526    //   static const int value = 17;
2527    // };
2528
2529    // Attach the initializer
2530    VDecl->setInit(Init);
2531
2532    // C++ [class.mem]p4:
2533    //   A member-declarator can contain a constant-initializer only
2534    //   if it declares a static member (9.4) of const integral or
2535    //   const enumeration type, see 9.4.2.
2536    QualType T = VDecl->getType();
2537    if (!T->isDependentType() &&
2538        (!Context.getCanonicalType(T).isConstQualified() ||
2539         !T->isIntegralType())) {
2540      Diag(VDecl->getLocation(), diag::err_member_initialization)
2541        << VDecl->getDeclName() << Init->getSourceRange();
2542      VDecl->setInvalidDecl();
2543    } else {
2544      // C++ [class.static.data]p4:
2545      //   If a static data member is of const integral or const
2546      //   enumeration type, its declaration in the class definition
2547      //   can specify a constant-initializer which shall be an
2548      //   integral constant expression (5.19).
2549      if (!Init->isTypeDependent() &&
2550          !Init->getType()->isIntegralType()) {
2551        // We have a non-dependent, non-integral or enumeration type.
2552        Diag(Init->getSourceRange().getBegin(),
2553             diag::err_in_class_initializer_non_integral_type)
2554          << Init->getType() << Init->getSourceRange();
2555        VDecl->setInvalidDecl();
2556      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2557        // Check whether the expression is a constant expression.
2558        llvm::APSInt Value;
2559        SourceLocation Loc;
2560        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2561          Diag(Loc, diag::err_in_class_initializer_non_constant)
2562            << Init->getSourceRange();
2563          VDecl->setInvalidDecl();
2564        } else if (!VDecl->getType()->isDependentType())
2565          ImpCastExprToType(Init, VDecl->getType());
2566      }
2567    }
2568  } else if (VDecl->isFileVarDecl()) {
2569    if (VDecl->getStorageClass() == VarDecl::Extern)
2570      Diag(VDecl->getLocation(), diag::warn_extern_init);
2571    if (!VDecl->isInvalidDecl())
2572      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2573                                VDecl->getDeclName(), DirectInit))
2574        VDecl->setInvalidDecl();
2575
2576    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2577    // Don't check invalid declarations to avoid emitting useless diagnostics.
2578    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2579      // C99 6.7.8p4. All file scoped initializers need to be constant.
2580      CheckForConstantInitializer(Init, DclT);
2581    }
2582  }
2583  // If the type changed, it means we had an incomplete type that was
2584  // completed by the initializer. For example:
2585  //   int ary[] = { 1, 3, 5 };
2586  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2587  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2588    VDecl->setType(DclT);
2589    Init->setType(DclT);
2590  }
2591
2592  // Attach the initializer to the decl.
2593  VDecl->setInit(Init);
2594
2595  // If the previous declaration of VDecl was a tentative definition,
2596  // remove it from the set of tentative definitions.
2597  if (VDecl->getPreviousDeclaration() &&
2598      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2599    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2600      = TentativeDefinitions.find(VDecl->getDeclName());
2601    assert(Pos != TentativeDefinitions.end() &&
2602           "Unrecorded tentative definition?");
2603    TentativeDefinitions.erase(Pos);
2604  }
2605
2606  return;
2607}
2608
2609void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2610  Decl *RealDecl = dcl.getAs<Decl>();
2611
2612  // If there is no declaration, there was an error parsing it. Just ignore it.
2613  if (RealDecl == 0)
2614    return;
2615
2616  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2617    QualType Type = Var->getType();
2618
2619    // Record tentative definitions.
2620    if (Var->isTentativeDefinition(Context))
2621      TentativeDefinitions[Var->getDeclName()] = Var;
2622
2623    // C++ [dcl.init.ref]p3:
2624    //   The initializer can be omitted for a reference only in a
2625    //   parameter declaration (8.3.5), in the declaration of a
2626    //   function return type, in the declaration of a class member
2627    //   within its class declaration (9.2), and where the extern
2628    //   specifier is explicitly used.
2629    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2630      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2631        << Var->getDeclName()
2632        << SourceRange(Var->getLocation(), Var->getLocation());
2633      Var->setInvalidDecl();
2634      return;
2635    }
2636
2637    // C++ [dcl.init]p9:
2638    //
2639    //   If no initializer is specified for an object, and the object
2640    //   is of (possibly cv-qualified) non-POD class type (or array
2641    //   thereof), the object shall be default-initialized; if the
2642    //   object is of const-qualified type, the underlying class type
2643    //   shall have a user-declared default constructor.
2644    if (getLangOptions().CPlusPlus) {
2645      QualType InitType = Type;
2646      if (const ArrayType *Array = Context.getAsArrayType(Type))
2647        InitType = Array->getElementType();
2648      if (!Var->hasExternalStorage() && InitType->isRecordType()) {
2649        CXXRecordDecl *RD =
2650          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2651        CXXConstructorDecl *Constructor = 0;
2652        if (!RequireCompleteType(Var->getLocation(), InitType,
2653                                    diag::err_invalid_incomplete_type_use))
2654          Constructor
2655            = PerformInitializationByConstructor(InitType, 0, 0,
2656                                                 Var->getLocation(),
2657                                               SourceRange(Var->getLocation(),
2658                                                           Var->getLocation()),
2659                                                 Var->getDeclName(),
2660                                                 IK_Default);
2661        if (!Constructor)
2662          Var->setInvalidDecl();
2663        else if (!RD->hasTrivialConstructor())
2664          InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2665      }
2666    }
2667
2668#if 0
2669    // FIXME: Temporarily disabled because we are not properly parsing
2670    // linkage specifications on declarations, e.g.,
2671    //
2672    //   extern "C" const CGPoint CGPointerZero;
2673    //
2674    // C++ [dcl.init]p9:
2675    //
2676    //     If no initializer is specified for an object, and the
2677    //     object is of (possibly cv-qualified) non-POD class type (or
2678    //     array thereof), the object shall be default-initialized; if
2679    //     the object is of const-qualified type, the underlying class
2680    //     type shall have a user-declared default
2681    //     constructor. Otherwise, if no initializer is specified for
2682    //     an object, the object and its subobjects, if any, have an
2683    //     indeterminate initial value; if the object or any of its
2684    //     subobjects are of const-qualified type, the program is
2685    //     ill-formed.
2686    //
2687    // This isn't technically an error in C, so we don't diagnose it.
2688    //
2689    // FIXME: Actually perform the POD/user-defined default
2690    // constructor check.
2691    if (getLangOptions().CPlusPlus &&
2692        Context.getCanonicalType(Type).isConstQualified() &&
2693        !Var->hasExternalStorage())
2694      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2695        << Var->getName()
2696        << SourceRange(Var->getLocation(), Var->getLocation());
2697#endif
2698  }
2699}
2700
2701Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2702                                                   unsigned NumDecls) {
2703  llvm::SmallVector<Decl*, 8> Decls;
2704
2705  for (unsigned i = 0; i != NumDecls; ++i)
2706    if (Decl *D = Group[i].getAs<Decl>())
2707      Decls.push_back(D);
2708
2709  // Perform semantic analysis that depends on having fully processed both
2710  // the declarator and initializer.
2711  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2712    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2713    if (!IDecl)
2714      continue;
2715    QualType T = IDecl->getType();
2716
2717    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2718    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2719    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2720      if (!IDecl->isInvalidDecl() &&
2721          RequireCompleteType(IDecl->getLocation(), T,
2722                              diag::err_typecheck_decl_incomplete_type))
2723        IDecl->setInvalidDecl();
2724    }
2725    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2726    // object that has file scope without an initializer, and without a
2727    // storage-class specifier or with the storage-class specifier "static",
2728    // constitutes a tentative definition. Note: A tentative definition with
2729    // external linkage is valid (C99 6.2.2p5).
2730    if (IDecl->isTentativeDefinition(Context)) {
2731      QualType CheckType = T;
2732      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2733
2734      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2735      if (ArrayT) {
2736        CheckType = ArrayT->getElementType();
2737        DiagID = diag::err_illegal_decl_array_incomplete_type;
2738      }
2739
2740      if (IDecl->isInvalidDecl()) {
2741        // Do nothing with invalid declarations
2742      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2743                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2744        // C99 6.9.2p3: If the declaration of an identifier for an object is
2745        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2746        // declared type shall not be an incomplete type.
2747        IDecl->setInvalidDecl();
2748      }
2749    }
2750  }
2751  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2752                                                   &Decls[0], Decls.size()));
2753}
2754
2755
2756/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2757/// to introduce parameters into function prototype scope.
2758Sema::DeclPtrTy
2759Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2760  const DeclSpec &DS = D.getDeclSpec();
2761
2762  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2763  VarDecl::StorageClass StorageClass = VarDecl::None;
2764  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2765    StorageClass = VarDecl::Register;
2766  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2767    Diag(DS.getStorageClassSpecLoc(),
2768         diag::err_invalid_storage_class_in_func_decl);
2769    D.getMutableDeclSpec().ClearStorageClassSpecs();
2770  }
2771
2772  if (D.getDeclSpec().isThreadSpecified())
2773    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2774
2775  DiagnoseFunctionSpecifiers(D);
2776
2777  // Check that there are no default arguments inside the type of this
2778  // parameter (C++ only).
2779  if (getLangOptions().CPlusPlus)
2780    CheckExtraCXXDefaultArguments(D);
2781
2782  QualType parmDeclType = GetTypeForDeclarator(D, S);
2783
2784  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2785  // Can this happen for params?  We already checked that they don't conflict
2786  // among each other.  Here they can only shadow globals, which is ok.
2787  IdentifierInfo *II = D.getIdentifier();
2788  if (II) {
2789    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2790      if (PrevDecl->isTemplateParameter()) {
2791        // Maybe we will complain about the shadowed template parameter.
2792        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2793        // Just pretend that we didn't see the previous declaration.
2794        PrevDecl = 0;
2795      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2796        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2797
2798        // Recover by removing the name
2799        II = 0;
2800        D.SetIdentifier(0, D.getIdentifierLoc());
2801      }
2802    }
2803  }
2804
2805  // Parameters can not be abstract class types.
2806  // For record types, this is done by the AbstractClassUsageDiagnoser once
2807  // the class has been completely parsed.
2808  if (!CurContext->isRecord() &&
2809      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2810                             diag::err_abstract_type_in_decl,
2811                             AbstractParamType))
2812    D.setInvalidType(true);
2813
2814  QualType T = adjustParameterType(parmDeclType);
2815
2816  ParmVarDecl *New;
2817  if (T == parmDeclType) // parameter type did not need adjustment
2818    New = ParmVarDecl::Create(Context, CurContext,
2819                              D.getIdentifierLoc(), II,
2820                              parmDeclType, StorageClass,
2821                              0);
2822  else // keep track of both the adjusted and unadjusted types
2823    New = OriginalParmVarDecl::Create(Context, CurContext,
2824                                      D.getIdentifierLoc(), II, T,
2825                                      parmDeclType, StorageClass, 0);
2826
2827  if (D.isInvalidType())
2828    New->setInvalidDecl();
2829
2830  // Parameter declarators cannot be interface types. All ObjC objects are
2831  // passed by reference.
2832  if (T->isObjCInterfaceType()) {
2833    Diag(D.getIdentifierLoc(),
2834         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2835    New->setInvalidDecl();
2836  }
2837
2838  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2839  if (D.getCXXScopeSpec().isSet()) {
2840    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2841      << D.getCXXScopeSpec().getRange();
2842    New->setInvalidDecl();
2843  }
2844
2845  // Add the parameter declaration into this scope.
2846  S->AddDecl(DeclPtrTy::make(New));
2847  if (II)
2848    IdResolver.AddDecl(New);
2849
2850  ProcessDeclAttributes(New, D);
2851  return DeclPtrTy::make(New);
2852}
2853
2854void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2855                                           SourceLocation LocAfterDecls) {
2856  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2857         "Not a function declarator!");
2858  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2859
2860  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2861  // for a K&R function.
2862  if (!FTI.hasPrototype) {
2863    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2864      --i;
2865      if (FTI.ArgInfo[i].Param == 0) {
2866        std::string Code = "  int ";
2867        Code += FTI.ArgInfo[i].Ident->getName();
2868        Code += ";\n";
2869        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2870          << FTI.ArgInfo[i].Ident
2871          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2872
2873        // Implicitly declare the argument as type 'int' for lack of a better
2874        // type.
2875        DeclSpec DS;
2876        const char* PrevSpec; // unused
2877        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2878                           PrevSpec);
2879        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2880        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2881        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2882      }
2883    }
2884  }
2885}
2886
2887Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2888                                              Declarator &D) {
2889  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2890  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2891         "Not a function declarator!");
2892  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2893
2894  if (FTI.hasPrototype) {
2895    // FIXME: Diagnose arguments without names in C.
2896  }
2897
2898  Scope *ParentScope = FnBodyScope->getParent();
2899
2900  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2901  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2902}
2903
2904Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2905  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2906
2907  CurFunctionNeedsScopeChecking = false;
2908
2909  // See if this is a redefinition.
2910  const FunctionDecl *Definition;
2911  if (FD->getBody(Context, Definition)) {
2912    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2913    Diag(Definition->getLocation(), diag::note_previous_definition);
2914  }
2915
2916  // Builtin functions cannot be defined.
2917  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2918    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2919      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2920      FD->setInvalidDecl();
2921    }
2922  }
2923
2924  // The return type of a function definition must be complete
2925  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2926  QualType ResultType = FD->getResultType();
2927  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2928      RequireCompleteType(FD->getLocation(), ResultType,
2929                          diag::err_func_def_incomplete_result))
2930    FD->setInvalidDecl();
2931
2932  // GNU warning -Wmissing-prototypes:
2933  //   Warn if a global function is defined without a previous
2934  //   prototype declaration. This warning is issued even if the
2935  //   definition itself provides a prototype. The aim is to detect
2936  //   global functions that fail to be declared in header files.
2937  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
2938      !FD->isMain()) {
2939    bool MissingPrototype = true;
2940    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2941         Prev; Prev = Prev->getPreviousDeclaration()) {
2942      // Ignore any declarations that occur in function or method
2943      // scope, because they aren't visible from the header.
2944      if (Prev->getDeclContext()->isFunctionOrMethod())
2945        continue;
2946
2947      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2948      break;
2949    }
2950
2951    if (MissingPrototype)
2952      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
2953  }
2954
2955  PushDeclContext(FnBodyScope, FD);
2956
2957  // Check the validity of our function parameters
2958  CheckParmsForFunctionDef(FD);
2959
2960  // Introduce our parameters into the function scope
2961  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2962    ParmVarDecl *Param = FD->getParamDecl(p);
2963    Param->setOwningFunction(FD);
2964
2965    // If this has an identifier, add it to the scope stack.
2966    if (Param->getIdentifier())
2967      PushOnScopeChains(Param, FnBodyScope);
2968  }
2969
2970  // Checking attributes of current function definition
2971  // dllimport attribute.
2972  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2973    // dllimport attribute cannot be applied to definition.
2974    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2975      Diag(FD->getLocation(),
2976           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2977        << "dllimport";
2978      FD->setInvalidDecl();
2979      return DeclPtrTy::make(FD);
2980    } else {
2981      // If a symbol previously declared dllimport is later defined, the
2982      // attribute is ignored in subsequent references, and a warning is
2983      // emitted.
2984      Diag(FD->getLocation(),
2985           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2986        << FD->getNameAsCString() << "dllimport";
2987    }
2988  }
2989  return DeclPtrTy::make(FD);
2990}
2991
2992
2993Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
2994  Decl *dcl = D.getAs<Decl>();
2995  Stmt *Body = BodyArg.takeAs<Stmt>();
2996  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2997    FD->setBody(Body);
2998    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2999  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3000    assert(MD == getCurMethodDecl() && "Method parsing confused");
3001    MD->setBody(Body);
3002  } else {
3003    Body->Destroy(Context);
3004    return DeclPtrTy();
3005  }
3006  PopDeclContext();
3007  // Verify and clean out per-function state.
3008
3009  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3010
3011  // Check goto/label use.
3012  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3013       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3014    LabelStmt *L = I->second;
3015
3016    // Verify that we have no forward references left.  If so, there was a goto
3017    // or address of a label taken, but no definition of it.  Label fwd
3018    // definitions are indicated with a null substmt.
3019    if (L->getSubStmt() != 0)
3020      continue;
3021
3022    // Emit error.
3023    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3024
3025    // At this point, we have gotos that use the bogus label.  Stitch it into
3026    // the function body so that they aren't leaked and that the AST is well
3027    // formed.
3028    if (Body == 0) {
3029      // The whole function wasn't parsed correctly, just delete this.
3030      L->Destroy(Context);
3031      continue;
3032    }
3033
3034    // Otherwise, the body is valid: we want to stitch the label decl into the
3035    // function somewhere so that it is properly owned and so that the goto
3036    // has a valid target.  Do this by creating a new compound stmt with the
3037    // label in it.
3038
3039    // Give the label a sub-statement.
3040    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3041
3042    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3043                               cast<CXXTryStmt>(Body)->getTryBlock() :
3044                               cast<CompoundStmt>(Body);
3045    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3046    Elements.push_back(L);
3047    Compound->setStmts(Context, &Elements[0], Elements.size());
3048  }
3049  FunctionLabelMap.clear();
3050
3051  if (!Body) return D;
3052
3053  // Verify that that gotos and switch cases don't jump into scopes illegally.
3054  if (CurFunctionNeedsScopeChecking)
3055    DiagnoseInvalidJumps(Body);
3056
3057  return D;
3058}
3059
3060/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3061/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3062NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3063                                          IdentifierInfo &II, Scope *S) {
3064  // Before we produce a declaration for an implicitly defined
3065  // function, see whether there was a locally-scoped declaration of
3066  // this name as a function or variable. If so, use that
3067  // (non-visible) declaration, and complain about it.
3068  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3069    = LocallyScopedExternalDecls.find(&II);
3070  if (Pos != LocallyScopedExternalDecls.end()) {
3071    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3072    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3073    return Pos->second;
3074  }
3075
3076  // Extension in C99.  Legal in C90, but warn about it.
3077  if (getLangOptions().C99)
3078    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3079  else
3080    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3081
3082  // FIXME: handle stuff like:
3083  // void foo() { extern float X(); }
3084  // void bar() { X(); }  <-- implicit decl for X in another scope.
3085
3086  // Set a Declarator for the implicit definition: int foo();
3087  const char *Dummy;
3088  DeclSpec DS;
3089  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3090  Error = Error; // Silence warning.
3091  assert(!Error && "Error setting up implicit decl!");
3092  Declarator D(DS, Declarator::BlockContext);
3093  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
3094                                             0, 0, 0, Loc, D),
3095                SourceLocation());
3096  D.SetIdentifier(&II, Loc);
3097
3098  // Insert this function into translation-unit scope.
3099
3100  DeclContext *PrevDC = CurContext;
3101  CurContext = Context.getTranslationUnitDecl();
3102
3103  FunctionDecl *FD =
3104 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3105  FD->setImplicit();
3106
3107  CurContext = PrevDC;
3108
3109  AddKnownFunctionAttributes(FD);
3110
3111  return FD;
3112}
3113
3114/// \brief Adds any function attributes that we know a priori based on
3115/// the declaration of this function.
3116///
3117/// These attributes can apply both to implicitly-declared builtins
3118/// (like __builtin___printf_chk) or to library-declared functions
3119/// like NSLog or printf.
3120void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3121  if (FD->isInvalidDecl())
3122    return;
3123
3124  // If this is a built-in function, map its builtin attributes to
3125  // actual attributes.
3126  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3127    // Handle printf-formatting attributes.
3128    unsigned FormatIdx;
3129    bool HasVAListArg;
3130    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3131      if (!FD->getAttr<FormatAttr>())
3132        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3133                                               FormatIdx + 2));
3134    }
3135
3136    // Mark const if we don't care about errno and that is the only
3137    // thing preventing the function from being const. This allows
3138    // IRgen to use LLVM intrinsics for such functions.
3139    if (!getLangOptions().MathErrno &&
3140        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3141      if (!FD->getAttr<ConstAttr>())
3142        FD->addAttr(::new (Context) ConstAttr());
3143    }
3144  }
3145
3146  IdentifierInfo *Name = FD->getIdentifier();
3147  if (!Name)
3148    return;
3149  if ((!getLangOptions().CPlusPlus &&
3150       FD->getDeclContext()->isTranslationUnit()) ||
3151      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3152       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3153       LinkageSpecDecl::lang_c)) {
3154    // Okay: this could be a libc/libm/Objective-C function we know
3155    // about.
3156  } else
3157    return;
3158
3159  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3160    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3161      // FIXME: We known better than our headers.
3162      const_cast<FormatAttr *>(Format)->setType("printf");
3163    } else
3164      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3165  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3166    if (!FD->getAttr<FormatAttr>())
3167      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3168  }
3169}
3170
3171TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3172  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3173  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3174
3175  // Scope manipulation handled by caller.
3176  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3177                                           D.getIdentifierLoc(),
3178                                           D.getIdentifier(),
3179                                           T);
3180
3181  if (TagType *TT = dyn_cast<TagType>(T)) {
3182    TagDecl *TD = TT->getDecl();
3183
3184    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3185    // keep track of the TypedefDecl.
3186    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3187      TD->setTypedefForAnonDecl(NewTD);
3188  }
3189
3190  if (D.isInvalidType())
3191    NewTD->setInvalidDecl();
3192  return NewTD;
3193}
3194
3195/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3196/// former case, Name will be non-null.  In the later case, Name will be null.
3197/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3198/// reference/declaration/definition of a tag.
3199Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3200                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3201                               IdentifierInfo *Name, SourceLocation NameLoc,
3202                               AttributeList *Attr, AccessSpecifier AS) {
3203  // If this is not a definition, it must have a name.
3204  assert((Name != 0 || TK == TK_Definition) &&
3205         "Nameless record must be a definition!");
3206
3207  TagDecl::TagKind Kind;
3208  switch (TagSpec) {
3209  default: assert(0 && "Unknown tag type!");
3210  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3211  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3212  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3213  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3214  }
3215
3216  DeclContext *SearchDC = CurContext;
3217  DeclContext *DC = CurContext;
3218  NamedDecl *PrevDecl = 0;
3219
3220  bool Invalid = false;
3221
3222  if (Name && SS.isNotEmpty()) {
3223    // We have a nested-name tag ('struct foo::bar').
3224
3225    // Check for invalid 'foo::'.
3226    if (SS.isInvalid()) {
3227      Name = 0;
3228      goto CreateNewDecl;
3229    }
3230
3231    // FIXME: RequireCompleteDeclContext(SS)?
3232    DC = computeDeclContext(SS);
3233    SearchDC = DC;
3234    // Look-up name inside 'foo::'.
3235    PrevDecl = dyn_cast_or_null<TagDecl>(
3236                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3237
3238    // A tag 'foo::bar' must already exist.
3239    if (PrevDecl == 0) {
3240      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3241      Name = 0;
3242      goto CreateNewDecl;
3243    }
3244  } else if (Name) {
3245    // If this is a named struct, check to see if there was a previous forward
3246    // declaration or definition.
3247    // FIXME: We're looking into outer scopes here, even when we
3248    // shouldn't be. Doing so can result in ambiguities that we
3249    // shouldn't be diagnosing.
3250    LookupResult R = LookupName(S, Name, LookupTagName,
3251                                /*RedeclarationOnly=*/(TK != TK_Reference));
3252    if (R.isAmbiguous()) {
3253      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3254      // FIXME: This is not best way to recover from case like:
3255      //
3256      // struct S s;
3257      //
3258      // causes needless "incomplete type" error later.
3259      Name = 0;
3260      PrevDecl = 0;
3261      Invalid = true;
3262    }
3263    else
3264      PrevDecl = R;
3265
3266    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3267      // FIXME: This makes sure that we ignore the contexts associated
3268      // with C structs, unions, and enums when looking for a matching
3269      // tag declaration or definition. See the similar lookup tweak
3270      // in Sema::LookupName; is there a better way to deal with this?
3271      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3272        SearchDC = SearchDC->getParent();
3273    }
3274  }
3275
3276  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3277    // Maybe we will complain about the shadowed template parameter.
3278    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3279    // Just pretend that we didn't see the previous declaration.
3280    PrevDecl = 0;
3281  }
3282
3283  if (PrevDecl) {
3284    // Check whether the previous declaration is usable.
3285    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3286
3287    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3288      // If this is a use of a previous tag, or if the tag is already declared
3289      // in the same scope (so that the definition/declaration completes or
3290      // rementions the tag), reuse the decl.
3291      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3292        // Make sure that this wasn't declared as an enum and now used as a
3293        // struct or something similar.
3294        if (PrevTagDecl->getTagKind() != Kind) {
3295          bool SafeToContinue
3296            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3297               Kind != TagDecl::TK_enum);
3298          if (SafeToContinue)
3299            Diag(KWLoc, diag::err_use_with_wrong_tag)
3300              << Name
3301              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3302                                                  PrevTagDecl->getKindName());
3303          else
3304            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3305          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3306
3307          if (SafeToContinue)
3308            Kind = PrevTagDecl->getTagKind();
3309          else {
3310            // Recover by making this an anonymous redefinition.
3311            Name = 0;
3312            PrevDecl = 0;
3313            Invalid = true;
3314          }
3315        }
3316
3317        if (!Invalid) {
3318          // If this is a use, just return the declaration we found.
3319
3320          // FIXME: In the future, return a variant or some other clue
3321          // for the consumer of this Decl to know it doesn't own it.
3322          // For our current ASTs this shouldn't be a problem, but will
3323          // need to be changed with DeclGroups.
3324          if (TK == TK_Reference)
3325            return DeclPtrTy::make(PrevDecl);
3326
3327          // Diagnose attempts to redefine a tag.
3328          if (TK == TK_Definition) {
3329            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3330              Diag(NameLoc, diag::err_redefinition) << Name;
3331              Diag(Def->getLocation(), diag::note_previous_definition);
3332              // If this is a redefinition, recover by making this
3333              // struct be anonymous, which will make any later
3334              // references get the previous definition.
3335              Name = 0;
3336              PrevDecl = 0;
3337              Invalid = true;
3338            } else {
3339              // If the type is currently being defined, complain
3340              // about a nested redefinition.
3341              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3342              if (Tag->isBeingDefined()) {
3343                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3344                Diag(PrevTagDecl->getLocation(),
3345                     diag::note_previous_definition);
3346                Name = 0;
3347                PrevDecl = 0;
3348                Invalid = true;
3349              }
3350            }
3351
3352            // Okay, this is definition of a previously declared or referenced
3353            // tag PrevDecl. We're going to create a new Decl for it.
3354          }
3355        }
3356        // If we get here we have (another) forward declaration or we
3357        // have a definition.  Just create a new decl.
3358      } else {
3359        // If we get here, this is a definition of a new tag type in a nested
3360        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3361        // new decl/type.  We set PrevDecl to NULL so that the entities
3362        // have distinct types.
3363        PrevDecl = 0;
3364      }
3365      // If we get here, we're going to create a new Decl. If PrevDecl
3366      // is non-NULL, it's a definition of the tag declared by
3367      // PrevDecl. If it's NULL, we have a new definition.
3368    } else {
3369      // PrevDecl is a namespace, template, or anything else
3370      // that lives in the IDNS_Tag identifier namespace.
3371      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3372        // The tag name clashes with a namespace name, issue an error and
3373        // recover by making this tag be anonymous.
3374        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3375        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3376        Name = 0;
3377        PrevDecl = 0;
3378        Invalid = true;
3379      } else {
3380        // The existing declaration isn't relevant to us; we're in a
3381        // new scope, so clear out the previous declaration.
3382        PrevDecl = 0;
3383      }
3384    }
3385  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3386             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3387    // C.scope.pdecl]p5:
3388    //   -- for an elaborated-type-specifier of the form
3389    //
3390    //          class-key identifier
3391    //
3392    //      if the elaborated-type-specifier is used in the
3393    //      decl-specifier-seq or parameter-declaration-clause of a
3394    //      function defined in namespace scope, the identifier is
3395    //      declared as a class-name in the namespace that contains
3396    //      the declaration; otherwise, except as a friend
3397    //      declaration, the identifier is declared in the smallest
3398    //      non-class, non-function-prototype scope that contains the
3399    //      declaration.
3400    //
3401    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3402    // C structs and unions.
3403    //
3404    // GNU C also supports this behavior as part of its incomplete
3405    // enum types extension, while GNU C++ does not.
3406    //
3407    // Find the context where we'll be declaring the tag.
3408    // FIXME: We would like to maintain the current DeclContext as the
3409    // lexical context,
3410    while (SearchDC->isRecord())
3411      SearchDC = SearchDC->getParent();
3412
3413    // Find the scope where we'll be declaring the tag.
3414    while (S->isClassScope() ||
3415           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3416           ((S->getFlags() & Scope::DeclScope) == 0) ||
3417           (S->getEntity() &&
3418            ((DeclContext *)S->getEntity())->isTransparentContext()))
3419      S = S->getParent();
3420  }
3421
3422CreateNewDecl:
3423
3424  // If there is an identifier, use the location of the identifier as the
3425  // location of the decl, otherwise use the location of the struct/union
3426  // keyword.
3427  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3428
3429  // Otherwise, create a new declaration. If there is a previous
3430  // declaration of the same entity, the two will be linked via
3431  // PrevDecl.
3432  TagDecl *New;
3433
3434  if (Kind == TagDecl::TK_enum) {
3435    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3436    // enum X { A, B, C } D;    D should chain to X.
3437    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3438                           cast_or_null<EnumDecl>(PrevDecl));
3439    // If this is an undefined enum, warn.
3440    if (TK != TK_Definition && !Invalid)  {
3441      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3442                                              : diag::ext_forward_ref_enum;
3443      Diag(Loc, DK);
3444    }
3445  } else {
3446    // struct/union/class
3447
3448    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3449    // struct X { int A; } D;    D should chain to X.
3450    if (getLangOptions().CPlusPlus)
3451      // FIXME: Look for a way to use RecordDecl for simple structs.
3452      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3453                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3454    else
3455      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3456                               cast_or_null<RecordDecl>(PrevDecl));
3457  }
3458
3459  if (Kind != TagDecl::TK_enum) {
3460    // Handle #pragma pack: if the #pragma pack stack has non-default
3461    // alignment, make up a packed attribute for this decl. These
3462    // attributes are checked when the ASTContext lays out the
3463    // structure.
3464    //
3465    // It is important for implementing the correct semantics that this
3466    // happen here (in act on tag decl). The #pragma pack stack is
3467    // maintained as a result of parser callbacks which can occur at
3468    // many points during the parsing of a struct declaration (because
3469    // the #pragma tokens are effectively skipped over during the
3470    // parsing of the struct).
3471    if (unsigned Alignment = getPragmaPackAlignment())
3472      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3473  }
3474
3475  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3476    // C++ [dcl.typedef]p3:
3477    //   [...] Similarly, in a given scope, a class or enumeration
3478    //   shall not be declared with the same name as a typedef-name
3479    //   that is declared in that scope and refers to a type other
3480    //   than the class or enumeration itself.
3481    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3482    TypedefDecl *PrevTypedef = 0;
3483    if (Lookup.getKind() == LookupResult::Found)
3484      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3485
3486    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3487        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3488          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3489      Diag(Loc, diag::err_tag_definition_of_typedef)
3490        << Context.getTypeDeclType(New)
3491        << PrevTypedef->getUnderlyingType();
3492      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3493      Invalid = true;
3494    }
3495  }
3496
3497  if (Invalid)
3498    New->setInvalidDecl();
3499
3500  if (Attr)
3501    ProcessDeclAttributeList(New, Attr);
3502
3503  // If we're declaring or defining a tag in function prototype scope
3504  // in C, note that this type can only be used within the function.
3505  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3506    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3507
3508  // Set the lexical context. If the tag has a C++ scope specifier, the
3509  // lexical context will be different from the semantic context.
3510  New->setLexicalDeclContext(CurContext);
3511
3512  // Set the access specifier.
3513  SetMemberAccessSpecifier(New, PrevDecl, AS);
3514
3515  if (TK == TK_Definition)
3516    New->startDefinition();
3517
3518  // If this has an identifier, add it to the scope stack.
3519  if (Name) {
3520    S = getNonFieldDeclScope(S);
3521    PushOnScopeChains(New, S);
3522  } else {
3523    CurContext->addDecl(Context, New);
3524  }
3525
3526  return DeclPtrTy::make(New);
3527}
3528
3529void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3530  AdjustDeclIfTemplate(TagD);
3531  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3532
3533  // Enter the tag context.
3534  PushDeclContext(S, Tag);
3535
3536  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3537    FieldCollector->StartClass();
3538
3539    if (Record->getIdentifier()) {
3540      // C++ [class]p2:
3541      //   [...] The class-name is also inserted into the scope of the
3542      //   class itself; this is known as the injected-class-name. For
3543      //   purposes of access checking, the injected-class-name is treated
3544      //   as if it were a public member name.
3545      CXXRecordDecl *InjectedClassName
3546        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3547                                CurContext, Record->getLocation(),
3548                                Record->getIdentifier(), Record);
3549      InjectedClassName->setImplicit();
3550      InjectedClassName->setAccess(AS_public);
3551      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3552        InjectedClassName->setDescribedClassTemplate(Template);
3553      PushOnScopeChains(InjectedClassName, S);
3554      assert(InjectedClassName->isInjectedClassName() &&
3555             "Broken injected-class-name");
3556    }
3557  }
3558}
3559
3560void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3561  AdjustDeclIfTemplate(TagD);
3562  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3563
3564  if (isa<CXXRecordDecl>(Tag))
3565    FieldCollector->FinishClass();
3566
3567  // Exit this scope of this tag's definition.
3568  PopDeclContext();
3569
3570  // Notify the consumer that we've defined a tag.
3571  Consumer.HandleTagDeclDefinition(Tag);
3572}
3573
3574// Note that FieldName may be null for anonymous bitfields.
3575bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3576                          QualType FieldTy, const Expr *BitWidth) {
3577
3578  // C99 6.7.2.1p4 - verify the field type.
3579  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3580  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3581    // Handle incomplete types with specific error.
3582    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3583      return true;
3584    if (FieldName)
3585      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3586        << FieldName << FieldTy << BitWidth->getSourceRange();
3587    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3588      << FieldTy << BitWidth->getSourceRange();
3589  }
3590
3591  // If the bit-width is type- or value-dependent, don't try to check
3592  // it now.
3593  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3594    return false;
3595
3596  llvm::APSInt Value;
3597  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3598    return true;
3599
3600  // Zero-width bitfield is ok for anonymous field.
3601  if (Value == 0 && FieldName)
3602    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3603
3604  if (Value.isSigned() && Value.isNegative()) {
3605    if (FieldName)
3606      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3607               << FieldName << Value.toString(10);
3608    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3609      << Value.toString(10);
3610  }
3611
3612  if (!FieldTy->isDependentType()) {
3613    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3614    if (Value.getZExtValue() > TypeSize) {
3615      if (FieldName)
3616        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3617          << FieldName << (unsigned)TypeSize;
3618      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3619        << (unsigned)TypeSize;
3620    }
3621  }
3622
3623  return false;
3624}
3625
3626/// ActOnField - Each field of a struct/union/class is passed into this in order
3627/// to create a FieldDecl object for it.
3628Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3629                                 SourceLocation DeclStart,
3630                                 Declarator &D, ExprTy *BitfieldWidth) {
3631  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3632                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3633                               AS_public);
3634  return DeclPtrTy::make(Res);
3635}
3636
3637/// HandleField - Analyze a field of a C struct or a C++ data member.
3638///
3639FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3640                             SourceLocation DeclStart,
3641                             Declarator &D, Expr *BitWidth,
3642                             AccessSpecifier AS) {
3643  IdentifierInfo *II = D.getIdentifier();
3644  SourceLocation Loc = DeclStart;
3645  if (II) Loc = D.getIdentifierLoc();
3646
3647  QualType T = GetTypeForDeclarator(D, S);
3648  if (getLangOptions().CPlusPlus)
3649    CheckExtraCXXDefaultArguments(D);
3650
3651  DiagnoseFunctionSpecifiers(D);
3652
3653  if (D.getDeclSpec().isThreadSpecified())
3654    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3655
3656  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3657  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3658    PrevDecl = 0;
3659
3660  FieldDecl *NewFD
3661    = CheckFieldDecl(II, T, Record, Loc,
3662               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3663                     BitWidth, AS, PrevDecl, &D);
3664  if (NewFD->isInvalidDecl() && PrevDecl) {
3665    // Don't introduce NewFD into scope; there's already something
3666    // with the same name in the same scope.
3667  } else if (II) {
3668    PushOnScopeChains(NewFD, S);
3669  } else
3670    Record->addDecl(Context, NewFD);
3671
3672  return NewFD;
3673}
3674
3675/// \brief Build a new FieldDecl and check its well-formedness.
3676///
3677/// This routine builds a new FieldDecl given the fields name, type,
3678/// record, etc. \p PrevDecl should refer to any previous declaration
3679/// with the same name and in the same scope as the field to be
3680/// created.
3681///
3682/// \returns a new FieldDecl.
3683///
3684/// \todo The Declarator argument is a hack. It will be removed once
3685FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3686                                RecordDecl *Record, SourceLocation Loc,
3687                                bool Mutable, Expr *BitWidth,
3688                                AccessSpecifier AS, NamedDecl *PrevDecl,
3689                                Declarator *D) {
3690  IdentifierInfo *II = Name.getAsIdentifierInfo();
3691  bool InvalidDecl = false;
3692  if (D) InvalidDecl = D->isInvalidType();
3693
3694  // If we receive a broken type, recover by assuming 'int' and
3695  // marking this declaration as invalid.
3696  if (T.isNull()) {
3697    InvalidDecl = true;
3698    T = Context.IntTy;
3699  }
3700
3701  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3702  // than a variably modified type.
3703  if (T->isVariablyModifiedType()) {
3704    bool SizeIsNegative;
3705    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3706                                                           SizeIsNegative);
3707    if (!FixedTy.isNull()) {
3708      Diag(Loc, diag::warn_illegal_constant_array_size);
3709      T = FixedTy;
3710    } else {
3711      if (SizeIsNegative)
3712        Diag(Loc, diag::err_typecheck_negative_array_size);
3713      else
3714        Diag(Loc, diag::err_typecheck_field_variable_size);
3715      T = Context.IntTy;
3716      InvalidDecl = true;
3717    }
3718  }
3719
3720  // Fields can not have abstract class types
3721  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3722                             AbstractFieldType))
3723    InvalidDecl = true;
3724
3725  // If this is declared as a bit-field, check the bit-field.
3726  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3727    InvalidDecl = true;
3728    DeleteExpr(BitWidth);
3729    BitWidth = 0;
3730  }
3731
3732  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3733                                       Mutable);
3734  if (InvalidDecl)
3735    NewFD->setInvalidDecl();
3736
3737  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3738    Diag(Loc, diag::err_duplicate_member) << II;
3739    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3740    NewFD->setInvalidDecl();
3741    Record->setInvalidDecl();
3742  }
3743
3744  if (getLangOptions().CPlusPlus && !T->isPODType())
3745    cast<CXXRecordDecl>(Record)->setPOD(false);
3746
3747  // FIXME: We need to pass in the attributes given an AST
3748  // representation, not a parser representation.
3749  if (D)
3750    ProcessDeclAttributes(NewFD, *D);
3751
3752  if (T.isObjCGCWeak())
3753    Diag(Loc, diag::warn_attribute_weak_on_field);
3754
3755  NewFD->setAccess(AS);
3756
3757  // C++ [dcl.init.aggr]p1:
3758  //   An aggregate is an array or a class (clause 9) with [...] no
3759  //   private or protected non-static data members (clause 11).
3760  // A POD must be an aggregate.
3761  if (getLangOptions().CPlusPlus &&
3762      (AS == AS_private || AS == AS_protected)) {
3763    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3764    CXXRecord->setAggregate(false);
3765    CXXRecord->setPOD(false);
3766  }
3767
3768  return NewFD;
3769}
3770
3771/// TranslateIvarVisibility - Translate visibility from a token ID to an
3772///  AST enum value.
3773static ObjCIvarDecl::AccessControl
3774TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3775  switch (ivarVisibility) {
3776  default: assert(0 && "Unknown visitibility kind");
3777  case tok::objc_private: return ObjCIvarDecl::Private;
3778  case tok::objc_public: return ObjCIvarDecl::Public;
3779  case tok::objc_protected: return ObjCIvarDecl::Protected;
3780  case tok::objc_package: return ObjCIvarDecl::Package;
3781  }
3782}
3783
3784/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3785/// in order to create an IvarDecl object for it.
3786Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3787                                SourceLocation DeclStart,
3788                                Declarator &D, ExprTy *BitfieldWidth,
3789                                tok::ObjCKeywordKind Visibility) {
3790
3791  IdentifierInfo *II = D.getIdentifier();
3792  Expr *BitWidth = (Expr*)BitfieldWidth;
3793  SourceLocation Loc = DeclStart;
3794  if (II) Loc = D.getIdentifierLoc();
3795
3796  // FIXME: Unnamed fields can be handled in various different ways, for
3797  // example, unnamed unions inject all members into the struct namespace!
3798
3799  QualType T = GetTypeForDeclarator(D, S);
3800
3801  if (BitWidth) {
3802    // 6.7.2.1p3, 6.7.2.1p4
3803    if (VerifyBitField(Loc, II, T, BitWidth)) {
3804      D.setInvalidType();
3805      DeleteExpr(BitWidth);
3806      BitWidth = 0;
3807    }
3808  } else {
3809    // Not a bitfield.
3810
3811    // validate II.
3812
3813  }
3814
3815  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3816  // than a variably modified type.
3817  if (T->isVariablyModifiedType()) {
3818    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3819    D.setInvalidType();
3820  }
3821
3822  // Get the visibility (access control) for this ivar.
3823  ObjCIvarDecl::AccessControl ac =
3824    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3825                                        : ObjCIvarDecl::None;
3826
3827  // Construct the decl.
3828  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3829                                             (Expr *)BitfieldWidth);
3830
3831  if (II) {
3832    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3833    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3834        && !isa<TagDecl>(PrevDecl)) {
3835      Diag(Loc, diag::err_duplicate_member) << II;
3836      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3837      NewID->setInvalidDecl();
3838    }
3839  }
3840
3841  // Process attributes attached to the ivar.
3842  ProcessDeclAttributes(NewID, D);
3843
3844  if (D.isInvalidType())
3845    NewID->setInvalidDecl();
3846
3847  if (II) {
3848    // FIXME: When interfaces are DeclContexts, we'll need to add
3849    // these to the interface.
3850    S->AddDecl(DeclPtrTy::make(NewID));
3851    IdResolver.AddDecl(NewID);
3852  }
3853
3854  return DeclPtrTy::make(NewID);
3855}
3856
3857void Sema::ActOnFields(Scope* S,
3858                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3859                       DeclPtrTy *Fields, unsigned NumFields,
3860                       SourceLocation LBrac, SourceLocation RBrac,
3861                       AttributeList *Attr) {
3862  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3863  assert(EnclosingDecl && "missing record or interface decl");
3864
3865  // If the decl this is being inserted into is invalid, then it may be a
3866  // redeclaration or some other bogus case.  Don't try to add fields to it.
3867  if (EnclosingDecl->isInvalidDecl()) {
3868    // FIXME: Deallocate fields?
3869    return;
3870  }
3871
3872
3873  // Verify that all the fields are okay.
3874  unsigned NumNamedMembers = 0;
3875  llvm::SmallVector<FieldDecl*, 32> RecFields;
3876
3877  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3878  for (unsigned i = 0; i != NumFields; ++i) {
3879    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3880
3881    // Get the type for the field.
3882    Type *FDTy = FD->getType().getTypePtr();
3883
3884    if (!FD->isAnonymousStructOrUnion()) {
3885      // Remember all fields written by the user.
3886      RecFields.push_back(FD);
3887    }
3888
3889    // If the field is already invalid for some reason, don't emit more
3890    // diagnostics about it.
3891    if (FD->isInvalidDecl())
3892      continue;
3893
3894    // C99 6.7.2.1p2:
3895    //   A structure or union shall not contain a member with
3896    //   incomplete or function type (hence, a structure shall not
3897    //   contain an instance of itself, but may contain a pointer to
3898    //   an instance of itself), except that the last member of a
3899    //   structure with more than one named member may have incomplete
3900    //   array type; such a structure (and any union containing,
3901    //   possibly recursively, a member that is such a structure)
3902    //   shall not be a member of a structure or an element of an
3903    //   array.
3904    if (FDTy->isFunctionType()) {
3905      // Field declared as a function.
3906      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3907        << FD->getDeclName();
3908      FD->setInvalidDecl();
3909      EnclosingDecl->setInvalidDecl();
3910      continue;
3911    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3912               Record && Record->isStruct()) {
3913      // Flexible array member.
3914      if (NumNamedMembers < 1) {
3915        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3916          << FD->getDeclName();
3917        FD->setInvalidDecl();
3918        EnclosingDecl->setInvalidDecl();
3919        continue;
3920      }
3921      // Okay, we have a legal flexible array member at the end of the struct.
3922      if (Record)
3923        Record->setHasFlexibleArrayMember(true);
3924    } else if (!FDTy->isDependentType() &&
3925               RequireCompleteType(FD->getLocation(), FD->getType(),
3926                                   diag::err_field_incomplete)) {
3927      // Incomplete type
3928      FD->setInvalidDecl();
3929      EnclosingDecl->setInvalidDecl();
3930      continue;
3931    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3932      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3933        // If this is a member of a union, then entire union becomes "flexible".
3934        if (Record && Record->isUnion()) {
3935          Record->setHasFlexibleArrayMember(true);
3936        } else {
3937          // If this is a struct/class and this is not the last element, reject
3938          // it.  Note that GCC supports variable sized arrays in the middle of
3939          // structures.
3940          if (i != NumFields-1)
3941            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3942              << FD->getDeclName() << FD->getType();
3943          else {
3944            // We support flexible arrays at the end of structs in
3945            // other structs as an extension.
3946            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3947              << FD->getDeclName();
3948            if (Record)
3949              Record->setHasFlexibleArrayMember(true);
3950          }
3951        }
3952      }
3953    } else if (FDTy->isObjCInterfaceType()) {
3954      /// A field cannot be an Objective-c object
3955      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3956      FD->setInvalidDecl();
3957      EnclosingDecl->setInvalidDecl();
3958      continue;
3959    }
3960    // Keep track of the number of named members.
3961    if (FD->getIdentifier())
3962      ++NumNamedMembers;
3963  }
3964
3965  // Okay, we successfully defined 'Record'.
3966  if (Record) {
3967    Record->completeDefinition(Context);
3968  } else {
3969    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3970    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3971      ID->setIVarList(ClsFields, RecFields.size(), Context);
3972      ID->setLocEnd(RBrac);
3973
3974      // Must enforce the rule that ivars in the base classes may not be
3975      // duplicates.
3976      if (ID->getSuperClass()) {
3977        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3978             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3979          ObjCIvarDecl* Ivar = (*IVI);
3980          IdentifierInfo *II = Ivar->getIdentifier();
3981          ObjCIvarDecl* prevIvar =
3982            ID->getSuperClass()->lookupInstanceVariable(Context, II);
3983          if (prevIvar) {
3984            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3985            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3986          }
3987        }
3988      }
3989    } else if (ObjCImplementationDecl *IMPDecl =
3990                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3991      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3992      for (unsigned I = 0, N = RecFields.size(); I != N; ++I) {
3993        // FIXME: Set the DeclContext correctly when we build the
3994        // declarations.
3995        ClsFields[I]->setLexicalDeclContext(IMPDecl);
3996        IMPDecl->addDecl(Context, ClsFields[I]);
3997      }
3998      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3999    }
4000  }
4001
4002  if (Attr)
4003    ProcessDeclAttributeList(Record, Attr);
4004}
4005
4006EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4007                                          EnumConstantDecl *LastEnumConst,
4008                                          SourceLocation IdLoc,
4009                                          IdentifierInfo *Id,
4010                                          ExprArg val) {
4011  Expr *Val = (Expr *)val.get();
4012
4013  llvm::APSInt EnumVal(32);
4014  QualType EltTy;
4015  if (Val && !Val->isTypeDependent()) {
4016    // Make sure to promote the operand type to int.
4017    UsualUnaryConversions(Val);
4018    if (Val != val.get()) {
4019      val.release();
4020      val = Val;
4021    }
4022
4023    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4024    SourceLocation ExpLoc;
4025    if (!Val->isValueDependent() &&
4026        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4027      Val = 0;
4028    } else {
4029      EltTy = Val->getType();
4030    }
4031  }
4032
4033  if (!Val) {
4034    if (LastEnumConst) {
4035      // Assign the last value + 1.
4036      EnumVal = LastEnumConst->getInitVal();
4037      ++EnumVal;
4038
4039      // Check for overflow on increment.
4040      if (EnumVal < LastEnumConst->getInitVal())
4041        Diag(IdLoc, diag::warn_enum_value_overflow);
4042
4043      EltTy = LastEnumConst->getType();
4044    } else {
4045      // First value, set to zero.
4046      EltTy = Context.IntTy;
4047      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4048    }
4049  }
4050
4051  val.release();
4052  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4053                                  Val, EnumVal);
4054}
4055
4056
4057Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4058                                        DeclPtrTy lastEnumConst,
4059                                        SourceLocation IdLoc,
4060                                        IdentifierInfo *Id,
4061                                        SourceLocation EqualLoc, ExprTy *val) {
4062  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4063  EnumConstantDecl *LastEnumConst =
4064    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4065  Expr *Val = static_cast<Expr*>(val);
4066
4067  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4068  // we find one that is.
4069  S = getNonFieldDeclScope(S);
4070
4071  // Verify that there isn't already something declared with this name in this
4072  // scope.
4073  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4074  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4075    // Maybe we will complain about the shadowed template parameter.
4076    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4077    // Just pretend that we didn't see the previous declaration.
4078    PrevDecl = 0;
4079  }
4080
4081  if (PrevDecl) {
4082    // When in C++, we may get a TagDecl with the same name; in this case the
4083    // enum constant will 'hide' the tag.
4084    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4085           "Received TagDecl when not in C++!");
4086    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4087      if (isa<EnumConstantDecl>(PrevDecl))
4088        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4089      else
4090        Diag(IdLoc, diag::err_redefinition) << Id;
4091      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4092      if (Val) Val->Destroy(Context);
4093      return DeclPtrTy();
4094    }
4095  }
4096
4097  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4098                                            IdLoc, Id, Owned(Val));
4099
4100  // Register this decl in the current scope stack.
4101  if (New)
4102    PushOnScopeChains(New, S);
4103
4104  return DeclPtrTy::make(New);
4105}
4106
4107// FIXME: For consistency with ActOnFields(), we should have the parser
4108// pass in the source location for the left/right braces.
4109void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
4110                         DeclPtrTy *Elements, unsigned NumElements) {
4111  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4112  QualType EnumType = Context.getTypeDeclType(Enum);
4113
4114  // TODO: If the result value doesn't fit in an int, it must be a long or long
4115  // long value.  ISO C does not support this, but GCC does as an extension,
4116  // emit a warning.
4117  unsigned IntWidth = Context.Target.getIntWidth();
4118
4119  // Verify that all the values are okay, compute the size of the values, and
4120  // reverse the list.
4121  unsigned NumNegativeBits = 0;
4122  unsigned NumPositiveBits = 0;
4123
4124  // Keep track of whether all elements have type int.
4125  bool AllElementsInt = true;
4126
4127  for (unsigned i = 0; i != NumElements; ++i) {
4128    EnumConstantDecl *ECD =
4129      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4130    if (!ECD) continue;  // Already issued a diagnostic.
4131
4132    // If the enum value doesn't fit in an int, emit an extension warning.
4133    const llvm::APSInt &InitVal = ECD->getInitVal();
4134    assert(InitVal.getBitWidth() >= IntWidth &&
4135           "Should have promoted value to int");
4136    if (InitVal.getBitWidth() > IntWidth) {
4137      llvm::APSInt V(InitVal);
4138      V.trunc(IntWidth);
4139      V.extend(InitVal.getBitWidth());
4140      if (V != InitVal)
4141        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4142          << InitVal.toString(10);
4143    }
4144
4145    // Keep track of the size of positive and negative values.
4146    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4147      NumPositiveBits = std::max(NumPositiveBits,
4148                                 (unsigned)InitVal.getActiveBits());
4149    else
4150      NumNegativeBits = std::max(NumNegativeBits,
4151                                 (unsigned)InitVal.getMinSignedBits());
4152
4153    // Keep track of whether every enum element has type int (very commmon).
4154    if (AllElementsInt)
4155      AllElementsInt = ECD->getType() == Context.IntTy;
4156  }
4157
4158  // Figure out the type that should be used for this enum.
4159  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4160  QualType BestType;
4161  unsigned BestWidth;
4162
4163  if (NumNegativeBits) {
4164    // If there is a negative value, figure out the smallest integer type (of
4165    // int/long/longlong) that fits.
4166    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4167      BestType = Context.IntTy;
4168      BestWidth = IntWidth;
4169    } else {
4170      BestWidth = Context.Target.getLongWidth();
4171
4172      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4173        BestType = Context.LongTy;
4174      else {
4175        BestWidth = Context.Target.getLongLongWidth();
4176
4177        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4178          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4179        BestType = Context.LongLongTy;
4180      }
4181    }
4182  } else {
4183    // If there is no negative value, figure out which of uint, ulong, ulonglong
4184    // fits.
4185    if (NumPositiveBits <= IntWidth) {
4186      BestType = Context.UnsignedIntTy;
4187      BestWidth = IntWidth;
4188    } else if (NumPositiveBits <=
4189               (BestWidth = Context.Target.getLongWidth())) {
4190      BestType = Context.UnsignedLongTy;
4191    } else {
4192      BestWidth = Context.Target.getLongLongWidth();
4193      assert(NumPositiveBits <= BestWidth &&
4194             "How could an initializer get larger than ULL?");
4195      BestType = Context.UnsignedLongLongTy;
4196    }
4197  }
4198
4199  // Loop over all of the enumerator constants, changing their types to match
4200  // the type of the enum if needed.
4201  for (unsigned i = 0; i != NumElements; ++i) {
4202    EnumConstantDecl *ECD =
4203      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4204    if (!ECD) continue;  // Already issued a diagnostic.
4205
4206    // Standard C says the enumerators have int type, but we allow, as an
4207    // extension, the enumerators to be larger than int size.  If each
4208    // enumerator value fits in an int, type it as an int, otherwise type it the
4209    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4210    // that X has type 'int', not 'unsigned'.
4211    if (ECD->getType() == Context.IntTy) {
4212      // Make sure the init value is signed.
4213      llvm::APSInt IV = ECD->getInitVal();
4214      IV.setIsSigned(true);
4215      ECD->setInitVal(IV);
4216
4217      if (getLangOptions().CPlusPlus)
4218        // C++ [dcl.enum]p4: Following the closing brace of an
4219        // enum-specifier, each enumerator has the type of its
4220        // enumeration.
4221        ECD->setType(EnumType);
4222      continue;  // Already int type.
4223    }
4224
4225    // Determine whether the value fits into an int.
4226    llvm::APSInt InitVal = ECD->getInitVal();
4227    bool FitsInInt;
4228    if (InitVal.isUnsigned() || !InitVal.isNegative())
4229      FitsInInt = InitVal.getActiveBits() < IntWidth;
4230    else
4231      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4232
4233    // If it fits into an integer type, force it.  Otherwise force it to match
4234    // the enum decl type.
4235    QualType NewTy;
4236    unsigned NewWidth;
4237    bool NewSign;
4238    if (FitsInInt) {
4239      NewTy = Context.IntTy;
4240      NewWidth = IntWidth;
4241      NewSign = true;
4242    } else if (ECD->getType() == BestType) {
4243      // Already the right type!
4244      if (getLangOptions().CPlusPlus)
4245        // C++ [dcl.enum]p4: Following the closing brace of an
4246        // enum-specifier, each enumerator has the type of its
4247        // enumeration.
4248        ECD->setType(EnumType);
4249      continue;
4250    } else {
4251      NewTy = BestType;
4252      NewWidth = BestWidth;
4253      NewSign = BestType->isSignedIntegerType();
4254    }
4255
4256    // Adjust the APSInt value.
4257    InitVal.extOrTrunc(NewWidth);
4258    InitVal.setIsSigned(NewSign);
4259    ECD->setInitVal(InitVal);
4260
4261    // Adjust the Expr initializer and type.
4262    if (ECD->getInitExpr())
4263      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4264                                                      /*isLvalue=*/false));
4265    if (getLangOptions().CPlusPlus)
4266      // C++ [dcl.enum]p4: Following the closing brace of an
4267      // enum-specifier, each enumerator has the type of its
4268      // enumeration.
4269      ECD->setType(EnumType);
4270    else
4271      ECD->setType(NewTy);
4272  }
4273
4274  Enum->completeDefinition(Context, BestType);
4275}
4276
4277Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4278                                            ExprArg expr) {
4279  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4280
4281  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4282                                                  Loc, AsmString));
4283}
4284
4285