SemaDecl.cpp revision d37b360bf9f954af119c9805fdc79ab9d30e06c6
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid) : AllowInvalidDecl(AllowInvalid) {
64    WantExpressionKeywords = false;
65    WantCXXNamedCasts = false;
66    WantRemainingKeywords = false;
67  }
68
69  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
70    if (NamedDecl *ND = candidate.getCorrectionDecl())
71      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
72          (AllowInvalidDecl || !ND->isInvalidDecl());
73    else
74      return candidate.isKeyword();
75  }
76
77 private:
78  bool AllowInvalidDecl;
79};
80
81}
82
83/// \brief If the identifier refers to a type name within this scope,
84/// return the declaration of that type.
85///
86/// This routine performs ordinary name lookup of the identifier II
87/// within the given scope, with optional C++ scope specifier SS, to
88/// determine whether the name refers to a type. If so, returns an
89/// opaque pointer (actually a QualType) corresponding to that
90/// type. Otherwise, returns NULL.
91///
92/// If name lookup results in an ambiguity, this routine will complain
93/// and then return NULL.
94ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
95                             Scope *S, CXXScopeSpec *SS,
96                             bool isClassName, bool HasTrailingDot,
97                             ParsedType ObjectTypePtr,
98                             bool IsCtorOrDtorName,
99                             bool WantNontrivialTypeSourceInfo,
100                             IdentifierInfo **CorrectedII) {
101  // Determine where we will perform name lookup.
102  DeclContext *LookupCtx = 0;
103  if (ObjectTypePtr) {
104    QualType ObjectType = ObjectTypePtr.get();
105    if (ObjectType->isRecordType())
106      LookupCtx = computeDeclContext(ObjectType);
107  } else if (SS && SS->isNotEmpty()) {
108    LookupCtx = computeDeclContext(*SS, false);
109
110    if (!LookupCtx) {
111      if (isDependentScopeSpecifier(*SS)) {
112        // C++ [temp.res]p3:
113        //   A qualified-id that refers to a type and in which the
114        //   nested-name-specifier depends on a template-parameter (14.6.2)
115        //   shall be prefixed by the keyword typename to indicate that the
116        //   qualified-id denotes a type, forming an
117        //   elaborated-type-specifier (7.1.5.3).
118        //
119        // We therefore do not perform any name lookup if the result would
120        // refer to a member of an unknown specialization.
121        if (!isClassName)
122          return ParsedType();
123
124        // We know from the grammar that this name refers to a type,
125        // so build a dependent node to describe the type.
126        if (WantNontrivialTypeSourceInfo)
127          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
128
129        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
130        QualType T =
131          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
132                            II, NameLoc);
133
134          return ParsedType::make(T);
135      }
136
137      return ParsedType();
138    }
139
140    if (!LookupCtx->isDependentContext() &&
141        RequireCompleteDeclContext(*SS, LookupCtx))
142      return ParsedType();
143  }
144
145  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
146  // lookup for class-names.
147  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
148                                      LookupOrdinaryName;
149  LookupResult Result(*this, &II, NameLoc, Kind);
150  if (LookupCtx) {
151    // Perform "qualified" name lookup into the declaration context we
152    // computed, which is either the type of the base of a member access
153    // expression or the declaration context associated with a prior
154    // nested-name-specifier.
155    LookupQualifiedName(Result, LookupCtx);
156
157    if (ObjectTypePtr && Result.empty()) {
158      // C++ [basic.lookup.classref]p3:
159      //   If the unqualified-id is ~type-name, the type-name is looked up
160      //   in the context of the entire postfix-expression. If the type T of
161      //   the object expression is of a class type C, the type-name is also
162      //   looked up in the scope of class C. At least one of the lookups shall
163      //   find a name that refers to (possibly cv-qualified) T.
164      LookupName(Result, S);
165    }
166  } else {
167    // Perform unqualified name lookup.
168    LookupName(Result, S);
169  }
170
171  NamedDecl *IIDecl = 0;
172  switch (Result.getResultKind()) {
173  case LookupResult::NotFound:
174  case LookupResult::NotFoundInCurrentInstantiation:
175    if (CorrectedII) {
176      TypeNameValidatorCCC Validator(true);
177      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
178                                              Kind, S, SS, Validator);
179      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
180      TemplateTy Template;
181      bool MemberOfUnknownSpecialization;
182      UnqualifiedId TemplateName;
183      TemplateName.setIdentifier(NewII, NameLoc);
184      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
185      CXXScopeSpec NewSS, *NewSSPtr = SS;
186      if (SS && NNS) {
187        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
188        NewSSPtr = &NewSS;
189      }
190      if (Correction && (NNS || NewII != &II) &&
191          // Ignore a correction to a template type as the to-be-corrected
192          // identifier is not a template (typo correction for template names
193          // is handled elsewhere).
194          !(getLangOptions().CPlusPlus && NewSSPtr &&
195            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
196                           false, Template, MemberOfUnknownSpecialization))) {
197        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
198                                    isClassName, HasTrailingDot, ObjectTypePtr,
199                                    IsCtorOrDtorName,
200                                    WantNontrivialTypeSourceInfo);
201        if (Ty) {
202          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
203          std::string CorrectedQuotedStr(
204              Correction.getQuoted(getLangOptions()));
205          Diag(NameLoc, diag::err_unknown_typename_suggest)
206              << Result.getLookupName() << CorrectedQuotedStr
207              << FixItHint::CreateReplacement(SourceRange(NameLoc),
208                                              CorrectedStr);
209          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
210            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
211              << CorrectedQuotedStr;
212
213          if (SS && NNS)
214            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
215          *CorrectedII = NewII;
216          return Ty;
217        }
218      }
219    }
220    // If typo correction failed or was not performed, fall through
221  case LookupResult::FoundOverloaded:
222  case LookupResult::FoundUnresolvedValue:
223    Result.suppressDiagnostics();
224    return ParsedType();
225
226  case LookupResult::Ambiguous:
227    // Recover from type-hiding ambiguities by hiding the type.  We'll
228    // do the lookup again when looking for an object, and we can
229    // diagnose the error then.  If we don't do this, then the error
230    // about hiding the type will be immediately followed by an error
231    // that only makes sense if the identifier was treated like a type.
232    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
233      Result.suppressDiagnostics();
234      return ParsedType();
235    }
236
237    // Look to see if we have a type anywhere in the list of results.
238    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
239         Res != ResEnd; ++Res) {
240      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
241        if (!IIDecl ||
242            (*Res)->getLocation().getRawEncoding() <
243              IIDecl->getLocation().getRawEncoding())
244          IIDecl = *Res;
245      }
246    }
247
248    if (!IIDecl) {
249      // None of the entities we found is a type, so there is no way
250      // to even assume that the result is a type. In this case, don't
251      // complain about the ambiguity. The parser will either try to
252      // perform this lookup again (e.g., as an object name), which
253      // will produce the ambiguity, or will complain that it expected
254      // a type name.
255      Result.suppressDiagnostics();
256      return ParsedType();
257    }
258
259    // We found a type within the ambiguous lookup; diagnose the
260    // ambiguity and then return that type. This might be the right
261    // answer, or it might not be, but it suppresses any attempt to
262    // perform the name lookup again.
263    break;
264
265  case LookupResult::Found:
266    IIDecl = Result.getFoundDecl();
267    break;
268  }
269
270  assert(IIDecl && "Didn't find decl");
271
272  QualType T;
273  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
274    DiagnoseUseOfDecl(IIDecl, NameLoc);
275
276    if (T.isNull())
277      T = Context.getTypeDeclType(TD);
278
279    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
280    // constructor or destructor name (in such a case, the scope specifier
281    // will be attached to the enclosing Expr or Decl node).
282    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
283      if (WantNontrivialTypeSourceInfo) {
284        // Construct a type with type-source information.
285        TypeLocBuilder Builder;
286        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
287
288        T = getElaboratedType(ETK_None, *SS, T);
289        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
290        ElabTL.setElaboratedKeywordLoc(SourceLocation());
291        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
292        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
293      } else {
294        T = getElaboratedType(ETK_None, *SS, T);
295      }
296    }
297  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
298    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
299    if (!HasTrailingDot)
300      T = Context.getObjCInterfaceType(IDecl);
301  }
302
303  if (T.isNull()) {
304    // If it's not plausibly a type, suppress diagnostics.
305    Result.suppressDiagnostics();
306    return ParsedType();
307  }
308  return ParsedType::make(T);
309}
310
311/// isTagName() - This method is called *for error recovery purposes only*
312/// to determine if the specified name is a valid tag name ("struct foo").  If
313/// so, this returns the TST for the tag corresponding to it (TST_enum,
314/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
315/// where the user forgot to specify the tag.
316DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
317  // Do a tag name lookup in this scope.
318  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
319  LookupName(R, S, false);
320  R.suppressDiagnostics();
321  if (R.getResultKind() == LookupResult::Found)
322    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
323      switch (TD->getTagKind()) {
324      case TTK_Struct: return DeclSpec::TST_struct;
325      case TTK_Union:  return DeclSpec::TST_union;
326      case TTK_Class:  return DeclSpec::TST_class;
327      case TTK_Enum:   return DeclSpec::TST_enum;
328      }
329    }
330
331  return DeclSpec::TST_unspecified;
332}
333
334/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
335/// if a CXXScopeSpec's type is equal to the type of one of the base classes
336/// then downgrade the missing typename error to a warning.
337/// This is needed for MSVC compatibility; Example:
338/// @code
339/// template<class T> class A {
340/// public:
341///   typedef int TYPE;
342/// };
343/// template<class T> class B : public A<T> {
344/// public:
345///   A<T>::TYPE a; // no typename required because A<T> is a base class.
346/// };
347/// @endcode
348bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
349  if (CurContext->isRecord()) {
350    const Type *Ty = SS->getScopeRep()->getAsType();
351
352    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
353    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
354          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
355      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
356        return true;
357    return S->isFunctionPrototypeScope();
358  }
359  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
360}
361
362bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
363                                   SourceLocation IILoc,
364                                   Scope *S,
365                                   CXXScopeSpec *SS,
366                                   ParsedType &SuggestedType) {
367  // We don't have anything to suggest (yet).
368  SuggestedType = ParsedType();
369
370  // There may have been a typo in the name of the type. Look up typo
371  // results, in case we have something that we can suggest.
372  TypeNameValidatorCCC Validator(false);
373  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
374                                             LookupOrdinaryName, S, SS,
375                                             Validator)) {
376    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
377    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
378
379    if (Corrected.isKeyword()) {
380      // We corrected to a keyword.
381      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
382      Diag(IILoc, diag::err_unknown_typename_suggest)
383        << &II << CorrectedQuotedStr;
384    } else {
385      NamedDecl *Result = Corrected.getCorrectionDecl();
386      // We found a similarly-named type or interface; suggest that.
387      if (!SS || !SS->isSet())
388        Diag(IILoc, diag::err_unknown_typename_suggest)
389          << &II << CorrectedQuotedStr
390          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
391      else if (DeclContext *DC = computeDeclContext(*SS, false))
392        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
393          << &II << DC << CorrectedQuotedStr << SS->getRange()
394          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
395      else
396        llvm_unreachable("could not have corrected a typo here");
397
398      Diag(Result->getLocation(), diag::note_previous_decl)
399        << CorrectedQuotedStr;
400
401      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
402                                  false, false, ParsedType(),
403                                  /*IsCtorOrDtorName=*/false,
404                                  /*NonTrivialTypeSourceInfo=*/true);
405    }
406    return true;
407  }
408
409  if (getLangOptions().CPlusPlus) {
410    // See if II is a class template that the user forgot to pass arguments to.
411    UnqualifiedId Name;
412    Name.setIdentifier(&II, IILoc);
413    CXXScopeSpec EmptySS;
414    TemplateTy TemplateResult;
415    bool MemberOfUnknownSpecialization;
416    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
417                       Name, ParsedType(), true, TemplateResult,
418                       MemberOfUnknownSpecialization) == TNK_Type_template) {
419      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
420      Diag(IILoc, diag::err_template_missing_args) << TplName;
421      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
422        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
423          << TplDecl->getTemplateParameters()->getSourceRange();
424      }
425      return true;
426    }
427  }
428
429  // FIXME: Should we move the logic that tries to recover from a missing tag
430  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
431
432  if (!SS || (!SS->isSet() && !SS->isInvalid()))
433    Diag(IILoc, diag::err_unknown_typename) << &II;
434  else if (DeclContext *DC = computeDeclContext(*SS, false))
435    Diag(IILoc, diag::err_typename_nested_not_found)
436      << &II << DC << SS->getRange();
437  else if (isDependentScopeSpecifier(*SS)) {
438    unsigned DiagID = diag::err_typename_missing;
439    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
440      DiagID = diag::warn_typename_missing;
441
442    Diag(SS->getRange().getBegin(), DiagID)
443      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
444      << SourceRange(SS->getRange().getBegin(), IILoc)
445      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
446    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
447                                                                         .get();
448  } else {
449    assert(SS && SS->isInvalid() &&
450           "Invalid scope specifier has already been diagnosed");
451  }
452
453  return true;
454}
455
456/// \brief Determine whether the given result set contains either a type name
457/// or
458static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
459  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
460                       NextToken.is(tok::less);
461
462  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
463    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
464      return true;
465
466    if (CheckTemplate && isa<TemplateDecl>(*I))
467      return true;
468  }
469
470  return false;
471}
472
473Sema::NameClassification Sema::ClassifyName(Scope *S,
474                                            CXXScopeSpec &SS,
475                                            IdentifierInfo *&Name,
476                                            SourceLocation NameLoc,
477                                            const Token &NextToken) {
478  DeclarationNameInfo NameInfo(Name, NameLoc);
479  ObjCMethodDecl *CurMethod = getCurMethodDecl();
480
481  if (NextToken.is(tok::coloncolon)) {
482    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
483                                QualType(), false, SS, 0, false);
484
485  }
486
487  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
488  LookupParsedName(Result, S, &SS, !CurMethod);
489
490  // Perform lookup for Objective-C instance variables (including automatically
491  // synthesized instance variables), if we're in an Objective-C method.
492  // FIXME: This lookup really, really needs to be folded in to the normal
493  // unqualified lookup mechanism.
494  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
495    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
496    if (E.get() || E.isInvalid())
497      return E;
498  }
499
500  bool SecondTry = false;
501  bool IsFilteredTemplateName = false;
502
503Corrected:
504  switch (Result.getResultKind()) {
505  case LookupResult::NotFound:
506    // If an unqualified-id is followed by a '(', then we have a function
507    // call.
508    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
509      // In C++, this is an ADL-only call.
510      // FIXME: Reference?
511      if (getLangOptions().CPlusPlus)
512        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
513
514      // C90 6.3.2.2:
515      //   If the expression that precedes the parenthesized argument list in a
516      //   function call consists solely of an identifier, and if no
517      //   declaration is visible for this identifier, the identifier is
518      //   implicitly declared exactly as if, in the innermost block containing
519      //   the function call, the declaration
520      //
521      //     extern int identifier ();
522      //
523      //   appeared.
524      //
525      // We also allow this in C99 as an extension.
526      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
527        Result.addDecl(D);
528        Result.resolveKind();
529        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
530      }
531    }
532
533    // In C, we first see whether there is a tag type by the same name, in
534    // which case it's likely that the user just forget to write "enum",
535    // "struct", or "union".
536    if (!getLangOptions().CPlusPlus && !SecondTry) {
537      Result.clear(LookupTagName);
538      LookupParsedName(Result, S, &SS);
539      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
540        const char *TagName = 0;
541        const char *FixItTagName = 0;
542        switch (Tag->getTagKind()) {
543          case TTK_Class:
544            TagName = "class";
545            FixItTagName = "class ";
546            break;
547
548          case TTK_Enum:
549            TagName = "enum";
550            FixItTagName = "enum ";
551            break;
552
553          case TTK_Struct:
554            TagName = "struct";
555            FixItTagName = "struct ";
556            break;
557
558          case TTK_Union:
559            TagName = "union";
560            FixItTagName = "union ";
561            break;
562        }
563
564        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
565          << Name << TagName << getLangOptions().CPlusPlus
566          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
567        break;
568      }
569
570      Result.clear(LookupOrdinaryName);
571    }
572
573    // Perform typo correction to determine if there is another name that is
574    // close to this name.
575    if (!SecondTry) {
576      SecondTry = true;
577      CorrectionCandidateCallback DefaultValidator;
578      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
579                                                 Result.getLookupKind(), S,
580                                                 &SS, DefaultValidator)) {
581        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
582        unsigned QualifiedDiag = diag::err_no_member_suggest;
583        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
584        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
585
586        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
587        NamedDecl *UnderlyingFirstDecl
588          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
589        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
590            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
591          UnqualifiedDiag = diag::err_no_template_suggest;
592          QualifiedDiag = diag::err_no_member_template_suggest;
593        } else if (UnderlyingFirstDecl &&
594                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
595                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
596                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
597           UnqualifiedDiag = diag::err_unknown_typename_suggest;
598           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
599         }
600
601        if (SS.isEmpty())
602          Diag(NameLoc, UnqualifiedDiag)
603            << Name << CorrectedQuotedStr
604            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
605        else
606          Diag(NameLoc, QualifiedDiag)
607            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
608            << SS.getRange()
609            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
610
611        // Update the name, so that the caller has the new name.
612        Name = Corrected.getCorrectionAsIdentifierInfo();
613
614        // Typo correction corrected to a keyword.
615        if (Corrected.isKeyword())
616          return Corrected.getCorrectionAsIdentifierInfo();
617
618        // Also update the LookupResult...
619        // FIXME: This should probably go away at some point
620        Result.clear();
621        Result.setLookupName(Corrected.getCorrection());
622        if (FirstDecl) {
623          Result.addDecl(FirstDecl);
624          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
625            << CorrectedQuotedStr;
626        }
627
628        // If we found an Objective-C instance variable, let
629        // LookupInObjCMethod build the appropriate expression to
630        // reference the ivar.
631        // FIXME: This is a gross hack.
632        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
633          Result.clear();
634          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
635          return move(E);
636        }
637
638        goto Corrected;
639      }
640    }
641
642    // We failed to correct; just fall through and let the parser deal with it.
643    Result.suppressDiagnostics();
644    return NameClassification::Unknown();
645
646  case LookupResult::NotFoundInCurrentInstantiation: {
647    // We performed name lookup into the current instantiation, and there were
648    // dependent bases, so we treat this result the same way as any other
649    // dependent nested-name-specifier.
650
651    // C++ [temp.res]p2:
652    //   A name used in a template declaration or definition and that is
653    //   dependent on a template-parameter is assumed not to name a type
654    //   unless the applicable name lookup finds a type name or the name is
655    //   qualified by the keyword typename.
656    //
657    // FIXME: If the next token is '<', we might want to ask the parser to
658    // perform some heroics to see if we actually have a
659    // template-argument-list, which would indicate a missing 'template'
660    // keyword here.
661    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
662                                     NameInfo, /*TemplateArgs=*/0);
663  }
664
665  case LookupResult::Found:
666  case LookupResult::FoundOverloaded:
667  case LookupResult::FoundUnresolvedValue:
668    break;
669
670  case LookupResult::Ambiguous:
671    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
672        hasAnyAcceptableTemplateNames(Result)) {
673      // C++ [temp.local]p3:
674      //   A lookup that finds an injected-class-name (10.2) can result in an
675      //   ambiguity in certain cases (for example, if it is found in more than
676      //   one base class). If all of the injected-class-names that are found
677      //   refer to specializations of the same class template, and if the name
678      //   is followed by a template-argument-list, the reference refers to the
679      //   class template itself and not a specialization thereof, and is not
680      //   ambiguous.
681      //
682      // This filtering can make an ambiguous result into an unambiguous one,
683      // so try again after filtering out template names.
684      FilterAcceptableTemplateNames(Result);
685      if (!Result.isAmbiguous()) {
686        IsFilteredTemplateName = true;
687        break;
688      }
689    }
690
691    // Diagnose the ambiguity and return an error.
692    return NameClassification::Error();
693  }
694
695  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
696      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
697    // C++ [temp.names]p3:
698    //   After name lookup (3.4) finds that a name is a template-name or that
699    //   an operator-function-id or a literal- operator-id refers to a set of
700    //   overloaded functions any member of which is a function template if
701    //   this is followed by a <, the < is always taken as the delimiter of a
702    //   template-argument-list and never as the less-than operator.
703    if (!IsFilteredTemplateName)
704      FilterAcceptableTemplateNames(Result);
705
706    if (!Result.empty()) {
707      bool IsFunctionTemplate;
708      TemplateName Template;
709      if (Result.end() - Result.begin() > 1) {
710        IsFunctionTemplate = true;
711        Template = Context.getOverloadedTemplateName(Result.begin(),
712                                                     Result.end());
713      } else {
714        TemplateDecl *TD
715          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
716        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
717
718        if (SS.isSet() && !SS.isInvalid())
719          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
720                                                    /*TemplateKeyword=*/false,
721                                                      TD);
722        else
723          Template = TemplateName(TD);
724      }
725
726      if (IsFunctionTemplate) {
727        // Function templates always go through overload resolution, at which
728        // point we'll perform the various checks (e.g., accessibility) we need
729        // to based on which function we selected.
730        Result.suppressDiagnostics();
731
732        return NameClassification::FunctionTemplate(Template);
733      }
734
735      return NameClassification::TypeTemplate(Template);
736    }
737  }
738
739  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
740  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
741    DiagnoseUseOfDecl(Type, NameLoc);
742    QualType T = Context.getTypeDeclType(Type);
743    return ParsedType::make(T);
744  }
745
746  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
747  if (!Class) {
748    // FIXME: It's unfortunate that we don't have a Type node for handling this.
749    if (ObjCCompatibleAliasDecl *Alias
750                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
751      Class = Alias->getClassInterface();
752  }
753
754  if (Class) {
755    DiagnoseUseOfDecl(Class, NameLoc);
756
757    if (NextToken.is(tok::period)) {
758      // Interface. <something> is parsed as a property reference expression.
759      // Just return "unknown" as a fall-through for now.
760      Result.suppressDiagnostics();
761      return NameClassification::Unknown();
762    }
763
764    QualType T = Context.getObjCInterfaceType(Class);
765    return ParsedType::make(T);
766  }
767
768  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
769    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
770
771  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
772  return BuildDeclarationNameExpr(SS, Result, ADL);
773}
774
775// Determines the context to return to after temporarily entering a
776// context.  This depends in an unnecessarily complicated way on the
777// exact ordering of callbacks from the parser.
778DeclContext *Sema::getContainingDC(DeclContext *DC) {
779
780  // Functions defined inline within classes aren't parsed until we've
781  // finished parsing the top-level class, so the top-level class is
782  // the context we'll need to return to.
783  if (isa<FunctionDecl>(DC)) {
784    DC = DC->getLexicalParent();
785
786    // A function not defined within a class will always return to its
787    // lexical context.
788    if (!isa<CXXRecordDecl>(DC))
789      return DC;
790
791    // A C++ inline method/friend is parsed *after* the topmost class
792    // it was declared in is fully parsed ("complete");  the topmost
793    // class is the context we need to return to.
794    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
795      DC = RD;
796
797    // Return the declaration context of the topmost class the inline method is
798    // declared in.
799    return DC;
800  }
801
802  return DC->getLexicalParent();
803}
804
805void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
806  assert(getContainingDC(DC) == CurContext &&
807      "The next DeclContext should be lexically contained in the current one.");
808  CurContext = DC;
809  S->setEntity(DC);
810}
811
812void Sema::PopDeclContext() {
813  assert(CurContext && "DeclContext imbalance!");
814
815  CurContext = getContainingDC(CurContext);
816  assert(CurContext && "Popped translation unit!");
817}
818
819/// EnterDeclaratorContext - Used when we must lookup names in the context
820/// of a declarator's nested name specifier.
821///
822void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
823  // C++0x [basic.lookup.unqual]p13:
824  //   A name used in the definition of a static data member of class
825  //   X (after the qualified-id of the static member) is looked up as
826  //   if the name was used in a member function of X.
827  // C++0x [basic.lookup.unqual]p14:
828  //   If a variable member of a namespace is defined outside of the
829  //   scope of its namespace then any name used in the definition of
830  //   the variable member (after the declarator-id) is looked up as
831  //   if the definition of the variable member occurred in its
832  //   namespace.
833  // Both of these imply that we should push a scope whose context
834  // is the semantic context of the declaration.  We can't use
835  // PushDeclContext here because that context is not necessarily
836  // lexically contained in the current context.  Fortunately,
837  // the containing scope should have the appropriate information.
838
839  assert(!S->getEntity() && "scope already has entity");
840
841#ifndef NDEBUG
842  Scope *Ancestor = S->getParent();
843  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
844  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
845#endif
846
847  CurContext = DC;
848  S->setEntity(DC);
849}
850
851void Sema::ExitDeclaratorContext(Scope *S) {
852  assert(S->getEntity() == CurContext && "Context imbalance!");
853
854  // Switch back to the lexical context.  The safety of this is
855  // enforced by an assert in EnterDeclaratorContext.
856  Scope *Ancestor = S->getParent();
857  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
858  CurContext = (DeclContext*) Ancestor->getEntity();
859
860  // We don't need to do anything with the scope, which is going to
861  // disappear.
862}
863
864
865void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
866  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
867  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
868    // We assume that the caller has already called
869    // ActOnReenterTemplateScope
870    FD = TFD->getTemplatedDecl();
871  }
872  if (!FD)
873    return;
874
875  PushDeclContext(S, FD);
876  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
877    ParmVarDecl *Param = FD->getParamDecl(P);
878    // If the parameter has an identifier, then add it to the scope
879    if (Param->getIdentifier()) {
880      S->AddDecl(Param);
881      IdResolver.AddDecl(Param);
882    }
883  }
884}
885
886
887/// \brief Determine whether we allow overloading of the function
888/// PrevDecl with another declaration.
889///
890/// This routine determines whether overloading is possible, not
891/// whether some new function is actually an overload. It will return
892/// true in C++ (where we can always provide overloads) or, as an
893/// extension, in C when the previous function is already an
894/// overloaded function declaration or has the "overloadable"
895/// attribute.
896static bool AllowOverloadingOfFunction(LookupResult &Previous,
897                                       ASTContext &Context) {
898  if (Context.getLangOptions().CPlusPlus)
899    return true;
900
901  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
902    return true;
903
904  return (Previous.getResultKind() == LookupResult::Found
905          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
906}
907
908/// Add this decl to the scope shadowed decl chains.
909void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
910  // Move up the scope chain until we find the nearest enclosing
911  // non-transparent context. The declaration will be introduced into this
912  // scope.
913  while (S->getEntity() &&
914         ((DeclContext *)S->getEntity())->isTransparentContext())
915    S = S->getParent();
916
917  // Add scoped declarations into their context, so that they can be
918  // found later. Declarations without a context won't be inserted
919  // into any context.
920  if (AddToContext)
921    CurContext->addDecl(D);
922
923  // Out-of-line definitions shouldn't be pushed into scope in C++.
924  // Out-of-line variable and function definitions shouldn't even in C.
925  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
926      D->isOutOfLine() &&
927      !D->getDeclContext()->getRedeclContext()->Equals(
928        D->getLexicalDeclContext()->getRedeclContext()))
929    return;
930
931  // Template instantiations should also not be pushed into scope.
932  if (isa<FunctionDecl>(D) &&
933      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
934    return;
935
936  // If this replaces anything in the current scope,
937  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
938                               IEnd = IdResolver.end();
939  for (; I != IEnd; ++I) {
940    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
941      S->RemoveDecl(*I);
942      IdResolver.RemoveDecl(*I);
943
944      // Should only need to replace one decl.
945      break;
946    }
947  }
948
949  S->AddDecl(D);
950
951  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
952    // Implicitly-generated labels may end up getting generated in an order that
953    // isn't strictly lexical, which breaks name lookup. Be careful to insert
954    // the label at the appropriate place in the identifier chain.
955    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
956      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
957      if (IDC == CurContext) {
958        if (!S->isDeclScope(*I))
959          continue;
960      } else if (IDC->Encloses(CurContext))
961        break;
962    }
963
964    IdResolver.InsertDeclAfter(I, D);
965  } else {
966    IdResolver.AddDecl(D);
967  }
968}
969
970void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
971  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
972    TUScope->AddDecl(D);
973}
974
975bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
976                         bool ExplicitInstantiationOrSpecialization) {
977  return IdResolver.isDeclInScope(D, Ctx, Context, S,
978                                  ExplicitInstantiationOrSpecialization);
979}
980
981Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
982  DeclContext *TargetDC = DC->getPrimaryContext();
983  do {
984    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
985      if (ScopeDC->getPrimaryContext() == TargetDC)
986        return S;
987  } while ((S = S->getParent()));
988
989  return 0;
990}
991
992static bool isOutOfScopePreviousDeclaration(NamedDecl *,
993                                            DeclContext*,
994                                            ASTContext&);
995
996/// Filters out lookup results that don't fall within the given scope
997/// as determined by isDeclInScope.
998void Sema::FilterLookupForScope(LookupResult &R,
999                                DeclContext *Ctx, Scope *S,
1000                                bool ConsiderLinkage,
1001                                bool ExplicitInstantiationOrSpecialization) {
1002  LookupResult::Filter F = R.makeFilter();
1003  while (F.hasNext()) {
1004    NamedDecl *D = F.next();
1005
1006    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1007      continue;
1008
1009    if (ConsiderLinkage &&
1010        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1011      continue;
1012
1013    F.erase();
1014  }
1015
1016  F.done();
1017}
1018
1019static bool isUsingDecl(NamedDecl *D) {
1020  return isa<UsingShadowDecl>(D) ||
1021         isa<UnresolvedUsingTypenameDecl>(D) ||
1022         isa<UnresolvedUsingValueDecl>(D);
1023}
1024
1025/// Removes using shadow declarations from the lookup results.
1026static void RemoveUsingDecls(LookupResult &R) {
1027  LookupResult::Filter F = R.makeFilter();
1028  while (F.hasNext())
1029    if (isUsingDecl(F.next()))
1030      F.erase();
1031
1032  F.done();
1033}
1034
1035/// \brief Check for this common pattern:
1036/// @code
1037/// class S {
1038///   S(const S&); // DO NOT IMPLEMENT
1039///   void operator=(const S&); // DO NOT IMPLEMENT
1040/// };
1041/// @endcode
1042static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1043  // FIXME: Should check for private access too but access is set after we get
1044  // the decl here.
1045  if (D->doesThisDeclarationHaveABody())
1046    return false;
1047
1048  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1049    return CD->isCopyConstructor();
1050  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1051    return Method->isCopyAssignmentOperator();
1052  return false;
1053}
1054
1055bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1056  assert(D);
1057
1058  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1059    return false;
1060
1061  // Ignore class templates.
1062  if (D->getDeclContext()->isDependentContext() ||
1063      D->getLexicalDeclContext()->isDependentContext())
1064    return false;
1065
1066  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1067    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1068      return false;
1069
1070    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1071      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1072        return false;
1073    } else {
1074      // 'static inline' functions are used in headers; don't warn.
1075      if (FD->getStorageClass() == SC_Static &&
1076          FD->isInlineSpecified())
1077        return false;
1078    }
1079
1080    if (FD->doesThisDeclarationHaveABody() &&
1081        Context.DeclMustBeEmitted(FD))
1082      return false;
1083  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1084    if (!VD->isFileVarDecl() ||
1085        VD->getType().isConstant(Context) ||
1086        Context.DeclMustBeEmitted(VD))
1087      return false;
1088
1089    if (VD->isStaticDataMember() &&
1090        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1091      return false;
1092
1093  } else {
1094    return false;
1095  }
1096
1097  // Only warn for unused decls internal to the translation unit.
1098  if (D->getLinkage() == ExternalLinkage)
1099    return false;
1100
1101  return true;
1102}
1103
1104void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1105  if (!D)
1106    return;
1107
1108  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1109    const FunctionDecl *First = FD->getFirstDeclaration();
1110    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1111      return; // First should already be in the vector.
1112  }
1113
1114  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1115    const VarDecl *First = VD->getFirstDeclaration();
1116    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1117      return; // First should already be in the vector.
1118  }
1119
1120   if (ShouldWarnIfUnusedFileScopedDecl(D))
1121     UnusedFileScopedDecls.push_back(D);
1122 }
1123
1124static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1125  if (D->isInvalidDecl())
1126    return false;
1127
1128  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1129    return false;
1130
1131  if (isa<LabelDecl>(D))
1132    return true;
1133
1134  // White-list anything that isn't a local variable.
1135  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1136      !D->getDeclContext()->isFunctionOrMethod())
1137    return false;
1138
1139  // Types of valid local variables should be complete, so this should succeed.
1140  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1141
1142    // White-list anything with an __attribute__((unused)) type.
1143    QualType Ty = VD->getType();
1144
1145    // Only look at the outermost level of typedef.
1146    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1147      if (TT->getDecl()->hasAttr<UnusedAttr>())
1148        return false;
1149    }
1150
1151    // If we failed to complete the type for some reason, or if the type is
1152    // dependent, don't diagnose the variable.
1153    if (Ty->isIncompleteType() || Ty->isDependentType())
1154      return false;
1155
1156    if (const TagType *TT = Ty->getAs<TagType>()) {
1157      const TagDecl *Tag = TT->getDecl();
1158      if (Tag->hasAttr<UnusedAttr>())
1159        return false;
1160
1161      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1162        if (!RD->hasTrivialDestructor())
1163          return false;
1164
1165        if (const Expr *Init = VD->getInit()) {
1166          const CXXConstructExpr *Construct =
1167            dyn_cast<CXXConstructExpr>(Init);
1168          if (Construct && !Construct->isElidable()) {
1169            CXXConstructorDecl *CD = Construct->getConstructor();
1170            if (!CD->isTrivial())
1171              return false;
1172          }
1173        }
1174      }
1175    }
1176
1177    // TODO: __attribute__((unused)) templates?
1178  }
1179
1180  return true;
1181}
1182
1183static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1184                                     FixItHint &Hint) {
1185  if (isa<LabelDecl>(D)) {
1186    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1187                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1188    if (AfterColon.isInvalid())
1189      return;
1190    Hint = FixItHint::CreateRemoval(CharSourceRange::
1191                                    getCharRange(D->getLocStart(), AfterColon));
1192  }
1193  return;
1194}
1195
1196/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1197/// unless they are marked attr(unused).
1198void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1199  FixItHint Hint;
1200  if (!ShouldDiagnoseUnusedDecl(D))
1201    return;
1202
1203  GenerateFixForUnusedDecl(D, Context, Hint);
1204
1205  unsigned DiagID;
1206  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1207    DiagID = diag::warn_unused_exception_param;
1208  else if (isa<LabelDecl>(D))
1209    DiagID = diag::warn_unused_label;
1210  else
1211    DiagID = diag::warn_unused_variable;
1212
1213  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1214}
1215
1216static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1217  // Verify that we have no forward references left.  If so, there was a goto
1218  // or address of a label taken, but no definition of it.  Label fwd
1219  // definitions are indicated with a null substmt.
1220  if (L->getStmt() == 0)
1221    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1222}
1223
1224void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1225  if (S->decl_empty()) return;
1226  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1227         "Scope shouldn't contain decls!");
1228
1229  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1230       I != E; ++I) {
1231    Decl *TmpD = (*I);
1232    assert(TmpD && "This decl didn't get pushed??");
1233
1234    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1235    NamedDecl *D = cast<NamedDecl>(TmpD);
1236
1237    if (!D->getDeclName()) continue;
1238
1239    // Diagnose unused variables in this scope.
1240    if (!S->hasErrorOccurred())
1241      DiagnoseUnusedDecl(D);
1242
1243    // If this was a forward reference to a label, verify it was defined.
1244    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1245      CheckPoppedLabel(LD, *this);
1246
1247    // Remove this name from our lexical scope.
1248    IdResolver.RemoveDecl(D);
1249  }
1250}
1251
1252/// \brief Look for an Objective-C class in the translation unit.
1253///
1254/// \param Id The name of the Objective-C class we're looking for. If
1255/// typo-correction fixes this name, the Id will be updated
1256/// to the fixed name.
1257///
1258/// \param IdLoc The location of the name in the translation unit.
1259///
1260/// \param TypoCorrection If true, this routine will attempt typo correction
1261/// if there is no class with the given name.
1262///
1263/// \returns The declaration of the named Objective-C class, or NULL if the
1264/// class could not be found.
1265ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1266                                              SourceLocation IdLoc,
1267                                              bool DoTypoCorrection) {
1268  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1269  // creation from this context.
1270  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1271
1272  if (!IDecl && DoTypoCorrection) {
1273    // Perform typo correction at the given location, but only if we
1274    // find an Objective-C class name.
1275    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1276    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1277                                       LookupOrdinaryName, TUScope, NULL,
1278                                       Validator)) {
1279      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1280      Diag(IdLoc, diag::err_undef_interface_suggest)
1281        << Id << IDecl->getDeclName()
1282        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1283      Diag(IDecl->getLocation(), diag::note_previous_decl)
1284        << IDecl->getDeclName();
1285
1286      Id = IDecl->getIdentifier();
1287    }
1288  }
1289  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1290  // This routine must always return a class definition, if any.
1291  if (Def && Def->getDefinition())
1292      Def = Def->getDefinition();
1293  return Def;
1294}
1295
1296/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1297/// from S, where a non-field would be declared. This routine copes
1298/// with the difference between C and C++ scoping rules in structs and
1299/// unions. For example, the following code is well-formed in C but
1300/// ill-formed in C++:
1301/// @code
1302/// struct S6 {
1303///   enum { BAR } e;
1304/// };
1305///
1306/// void test_S6() {
1307///   struct S6 a;
1308///   a.e = BAR;
1309/// }
1310/// @endcode
1311/// For the declaration of BAR, this routine will return a different
1312/// scope. The scope S will be the scope of the unnamed enumeration
1313/// within S6. In C++, this routine will return the scope associated
1314/// with S6, because the enumeration's scope is a transparent
1315/// context but structures can contain non-field names. In C, this
1316/// routine will return the translation unit scope, since the
1317/// enumeration's scope is a transparent context and structures cannot
1318/// contain non-field names.
1319Scope *Sema::getNonFieldDeclScope(Scope *S) {
1320  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1321         (S->getEntity() &&
1322          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1323         (S->isClassScope() && !getLangOptions().CPlusPlus))
1324    S = S->getParent();
1325  return S;
1326}
1327
1328/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1329/// file scope.  lazily create a decl for it. ForRedeclaration is true
1330/// if we're creating this built-in in anticipation of redeclaring the
1331/// built-in.
1332NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1333                                     Scope *S, bool ForRedeclaration,
1334                                     SourceLocation Loc) {
1335  Builtin::ID BID = (Builtin::ID)bid;
1336
1337  ASTContext::GetBuiltinTypeError Error;
1338  QualType R = Context.GetBuiltinType(BID, Error);
1339  switch (Error) {
1340  case ASTContext::GE_None:
1341    // Okay
1342    break;
1343
1344  case ASTContext::GE_Missing_stdio:
1345    if (ForRedeclaration)
1346      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1347        << Context.BuiltinInfo.GetName(BID);
1348    return 0;
1349
1350  case ASTContext::GE_Missing_setjmp:
1351    if (ForRedeclaration)
1352      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1353        << Context.BuiltinInfo.GetName(BID);
1354    return 0;
1355
1356  case ASTContext::GE_Missing_ucontext:
1357    if (ForRedeclaration)
1358      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1359        << Context.BuiltinInfo.GetName(BID);
1360    return 0;
1361  }
1362
1363  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1364    Diag(Loc, diag::ext_implicit_lib_function_decl)
1365      << Context.BuiltinInfo.GetName(BID)
1366      << R;
1367    if (Context.BuiltinInfo.getHeaderName(BID) &&
1368        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1369          != DiagnosticsEngine::Ignored)
1370      Diag(Loc, diag::note_please_include_header)
1371        << Context.BuiltinInfo.getHeaderName(BID)
1372        << Context.BuiltinInfo.GetName(BID);
1373  }
1374
1375  FunctionDecl *New = FunctionDecl::Create(Context,
1376                                           Context.getTranslationUnitDecl(),
1377                                           Loc, Loc, II, R, /*TInfo=*/0,
1378                                           SC_Extern,
1379                                           SC_None, false,
1380                                           /*hasPrototype=*/true);
1381  New->setImplicit();
1382
1383  // Create Decl objects for each parameter, adding them to the
1384  // FunctionDecl.
1385  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1386    SmallVector<ParmVarDecl*, 16> Params;
1387    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1388      ParmVarDecl *parm =
1389        ParmVarDecl::Create(Context, New, SourceLocation(),
1390                            SourceLocation(), 0,
1391                            FT->getArgType(i), /*TInfo=*/0,
1392                            SC_None, SC_None, 0);
1393      parm->setScopeInfo(0, i);
1394      Params.push_back(parm);
1395    }
1396    New->setParams(Params);
1397  }
1398
1399  AddKnownFunctionAttributes(New);
1400
1401  // TUScope is the translation-unit scope to insert this function into.
1402  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1403  // relate Scopes to DeclContexts, and probably eliminate CurContext
1404  // entirely, but we're not there yet.
1405  DeclContext *SavedContext = CurContext;
1406  CurContext = Context.getTranslationUnitDecl();
1407  PushOnScopeChains(New, TUScope);
1408  CurContext = SavedContext;
1409  return New;
1410}
1411
1412bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1413  QualType OldType;
1414  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1415    OldType = OldTypedef->getUnderlyingType();
1416  else
1417    OldType = Context.getTypeDeclType(Old);
1418  QualType NewType = New->getUnderlyingType();
1419
1420  if (NewType->isVariablyModifiedType()) {
1421    // Must not redefine a typedef with a variably-modified type.
1422    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1423    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1424      << Kind << NewType;
1425    if (Old->getLocation().isValid())
1426      Diag(Old->getLocation(), diag::note_previous_definition);
1427    New->setInvalidDecl();
1428    return true;
1429  }
1430
1431  if (OldType != NewType &&
1432      !OldType->isDependentType() &&
1433      !NewType->isDependentType() &&
1434      !Context.hasSameType(OldType, NewType)) {
1435    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1436    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1437      << Kind << NewType << OldType;
1438    if (Old->getLocation().isValid())
1439      Diag(Old->getLocation(), diag::note_previous_definition);
1440    New->setInvalidDecl();
1441    return true;
1442  }
1443  return false;
1444}
1445
1446/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1447/// same name and scope as a previous declaration 'Old'.  Figure out
1448/// how to resolve this situation, merging decls or emitting
1449/// diagnostics as appropriate. If there was an error, set New to be invalid.
1450///
1451void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1452  // If the new decl is known invalid already, don't bother doing any
1453  // merging checks.
1454  if (New->isInvalidDecl()) return;
1455
1456  // Allow multiple definitions for ObjC built-in typedefs.
1457  // FIXME: Verify the underlying types are equivalent!
1458  if (getLangOptions().ObjC1) {
1459    const IdentifierInfo *TypeID = New->getIdentifier();
1460    switch (TypeID->getLength()) {
1461    default: break;
1462    case 2:
1463      if (!TypeID->isStr("id"))
1464        break;
1465      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1466      // Install the built-in type for 'id', ignoring the current definition.
1467      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1468      return;
1469    case 5:
1470      if (!TypeID->isStr("Class"))
1471        break;
1472      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1473      // Install the built-in type for 'Class', ignoring the current definition.
1474      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1475      return;
1476    case 3:
1477      if (!TypeID->isStr("SEL"))
1478        break;
1479      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1480      // Install the built-in type for 'SEL', ignoring the current definition.
1481      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1482      return;
1483    }
1484    // Fall through - the typedef name was not a builtin type.
1485  }
1486
1487  // Verify the old decl was also a type.
1488  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1489  if (!Old) {
1490    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1491      << New->getDeclName();
1492
1493    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1494    if (OldD->getLocation().isValid())
1495      Diag(OldD->getLocation(), diag::note_previous_definition);
1496
1497    return New->setInvalidDecl();
1498  }
1499
1500  // If the old declaration is invalid, just give up here.
1501  if (Old->isInvalidDecl())
1502    return New->setInvalidDecl();
1503
1504  // If the typedef types are not identical, reject them in all languages and
1505  // with any extensions enabled.
1506  if (isIncompatibleTypedef(Old, New))
1507    return;
1508
1509  // The types match.  Link up the redeclaration chain if the old
1510  // declaration was a typedef.
1511  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1512    New->setPreviousDeclaration(Typedef);
1513
1514  if (getLangOptions().MicrosoftExt)
1515    return;
1516
1517  if (getLangOptions().CPlusPlus) {
1518    // C++ [dcl.typedef]p2:
1519    //   In a given non-class scope, a typedef specifier can be used to
1520    //   redefine the name of any type declared in that scope to refer
1521    //   to the type to which it already refers.
1522    if (!isa<CXXRecordDecl>(CurContext))
1523      return;
1524
1525    // C++0x [dcl.typedef]p4:
1526    //   In a given class scope, a typedef specifier can be used to redefine
1527    //   any class-name declared in that scope that is not also a typedef-name
1528    //   to refer to the type to which it already refers.
1529    //
1530    // This wording came in via DR424, which was a correction to the
1531    // wording in DR56, which accidentally banned code like:
1532    //
1533    //   struct S {
1534    //     typedef struct A { } A;
1535    //   };
1536    //
1537    // in the C++03 standard. We implement the C++0x semantics, which
1538    // allow the above but disallow
1539    //
1540    //   struct S {
1541    //     typedef int I;
1542    //     typedef int I;
1543    //   };
1544    //
1545    // since that was the intent of DR56.
1546    if (!isa<TypedefNameDecl>(Old))
1547      return;
1548
1549    Diag(New->getLocation(), diag::err_redefinition)
1550      << New->getDeclName();
1551    Diag(Old->getLocation(), diag::note_previous_definition);
1552    return New->setInvalidDecl();
1553  }
1554
1555  // Modules always permit redefinition of typedefs, as does C11.
1556  if (getLangOptions().Modules || getLangOptions().C11)
1557    return;
1558
1559  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1560  // is normally mapped to an error, but can be controlled with
1561  // -Wtypedef-redefinition.  If either the original or the redefinition is
1562  // in a system header, don't emit this for compatibility with GCC.
1563  if (getDiagnostics().getSuppressSystemWarnings() &&
1564      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1565       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1566    return;
1567
1568  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1569    << New->getDeclName();
1570  Diag(Old->getLocation(), diag::note_previous_definition);
1571  return;
1572}
1573
1574/// DeclhasAttr - returns true if decl Declaration already has the target
1575/// attribute.
1576static bool
1577DeclHasAttr(const Decl *D, const Attr *A) {
1578  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1579  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1580  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1581    if ((*i)->getKind() == A->getKind()) {
1582      if (Ann) {
1583        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1584          return true;
1585        continue;
1586      }
1587      // FIXME: Don't hardcode this check
1588      if (OA && isa<OwnershipAttr>(*i))
1589        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1590      return true;
1591    }
1592
1593  return false;
1594}
1595
1596/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1597void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1598                               bool MergeDeprecation) {
1599  if (!Old->hasAttrs())
1600    return;
1601
1602  bool foundAny = New->hasAttrs();
1603
1604  // Ensure that any moving of objects within the allocated map is done before
1605  // we process them.
1606  if (!foundAny) New->setAttrs(AttrVec());
1607
1608  for (specific_attr_iterator<InheritableAttr>
1609         i = Old->specific_attr_begin<InheritableAttr>(),
1610         e = Old->specific_attr_end<InheritableAttr>();
1611       i != e; ++i) {
1612    // Ignore deprecated/unavailable/availability attributes if requested.
1613    if (!MergeDeprecation &&
1614        (isa<DeprecatedAttr>(*i) ||
1615         isa<UnavailableAttr>(*i) ||
1616         isa<AvailabilityAttr>(*i)))
1617      continue;
1618
1619    if (!DeclHasAttr(New, *i)) {
1620      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
1621      newAttr->setInherited(true);
1622      New->addAttr(newAttr);
1623      foundAny = true;
1624    }
1625  }
1626
1627  if (!foundAny) New->dropAttrs();
1628}
1629
1630/// mergeParamDeclAttributes - Copy attributes from the old parameter
1631/// to the new one.
1632static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1633                                     const ParmVarDecl *oldDecl,
1634                                     ASTContext &C) {
1635  if (!oldDecl->hasAttrs())
1636    return;
1637
1638  bool foundAny = newDecl->hasAttrs();
1639
1640  // Ensure that any moving of objects within the allocated map is
1641  // done before we process them.
1642  if (!foundAny) newDecl->setAttrs(AttrVec());
1643
1644  for (specific_attr_iterator<InheritableParamAttr>
1645       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1646       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1647    if (!DeclHasAttr(newDecl, *i)) {
1648      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1649      newAttr->setInherited(true);
1650      newDecl->addAttr(newAttr);
1651      foundAny = true;
1652    }
1653  }
1654
1655  if (!foundAny) newDecl->dropAttrs();
1656}
1657
1658namespace {
1659
1660/// Used in MergeFunctionDecl to keep track of function parameters in
1661/// C.
1662struct GNUCompatibleParamWarning {
1663  ParmVarDecl *OldParm;
1664  ParmVarDecl *NewParm;
1665  QualType PromotedType;
1666};
1667
1668}
1669
1670/// getSpecialMember - get the special member enum for a method.
1671Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1672  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1673    if (Ctor->isDefaultConstructor())
1674      return Sema::CXXDefaultConstructor;
1675
1676    if (Ctor->isCopyConstructor())
1677      return Sema::CXXCopyConstructor;
1678
1679    if (Ctor->isMoveConstructor())
1680      return Sema::CXXMoveConstructor;
1681  } else if (isa<CXXDestructorDecl>(MD)) {
1682    return Sema::CXXDestructor;
1683  } else if (MD->isCopyAssignmentOperator()) {
1684    return Sema::CXXCopyAssignment;
1685  } else if (MD->isMoveAssignmentOperator()) {
1686    return Sema::CXXMoveAssignment;
1687  }
1688
1689  return Sema::CXXInvalid;
1690}
1691
1692/// canRedefineFunction - checks if a function can be redefined. Currently,
1693/// only extern inline functions can be redefined, and even then only in
1694/// GNU89 mode.
1695static bool canRedefineFunction(const FunctionDecl *FD,
1696                                const LangOptions& LangOpts) {
1697  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1698          !LangOpts.CPlusPlus &&
1699          FD->isInlineSpecified() &&
1700          FD->getStorageClass() == SC_Extern);
1701}
1702
1703/// MergeFunctionDecl - We just parsed a function 'New' from
1704/// declarator D which has the same name and scope as a previous
1705/// declaration 'Old'.  Figure out how to resolve this situation,
1706/// merging decls or emitting diagnostics as appropriate.
1707///
1708/// In C++, New and Old must be declarations that are not
1709/// overloaded. Use IsOverload to determine whether New and Old are
1710/// overloaded, and to select the Old declaration that New should be
1711/// merged with.
1712///
1713/// Returns true if there was an error, false otherwise.
1714bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1715  // Verify the old decl was also a function.
1716  FunctionDecl *Old = 0;
1717  if (FunctionTemplateDecl *OldFunctionTemplate
1718        = dyn_cast<FunctionTemplateDecl>(OldD))
1719    Old = OldFunctionTemplate->getTemplatedDecl();
1720  else
1721    Old = dyn_cast<FunctionDecl>(OldD);
1722  if (!Old) {
1723    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1724      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1725      Diag(Shadow->getTargetDecl()->getLocation(),
1726           diag::note_using_decl_target);
1727      Diag(Shadow->getUsingDecl()->getLocation(),
1728           diag::note_using_decl) << 0;
1729      return true;
1730    }
1731
1732    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1733      << New->getDeclName();
1734    Diag(OldD->getLocation(), diag::note_previous_definition);
1735    return true;
1736  }
1737
1738  // Determine whether the previous declaration was a definition,
1739  // implicit declaration, or a declaration.
1740  diag::kind PrevDiag;
1741  if (Old->isThisDeclarationADefinition())
1742    PrevDiag = diag::note_previous_definition;
1743  else if (Old->isImplicit())
1744    PrevDiag = diag::note_previous_implicit_declaration;
1745  else
1746    PrevDiag = diag::note_previous_declaration;
1747
1748  QualType OldQType = Context.getCanonicalType(Old->getType());
1749  QualType NewQType = Context.getCanonicalType(New->getType());
1750
1751  // Don't complain about this if we're in GNU89 mode and the old function
1752  // is an extern inline function.
1753  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1754      New->getStorageClass() == SC_Static &&
1755      Old->getStorageClass() != SC_Static &&
1756      !canRedefineFunction(Old, getLangOptions())) {
1757    if (getLangOptions().MicrosoftExt) {
1758      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1759      Diag(Old->getLocation(), PrevDiag);
1760    } else {
1761      Diag(New->getLocation(), diag::err_static_non_static) << New;
1762      Diag(Old->getLocation(), PrevDiag);
1763      return true;
1764    }
1765  }
1766
1767  // If a function is first declared with a calling convention, but is
1768  // later declared or defined without one, the second decl assumes the
1769  // calling convention of the first.
1770  //
1771  // For the new decl, we have to look at the NON-canonical type to tell the
1772  // difference between a function that really doesn't have a calling
1773  // convention and one that is declared cdecl. That's because in
1774  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1775  // because it is the default calling convention.
1776  //
1777  // Note also that we DO NOT return at this point, because we still have
1778  // other tests to run.
1779  const FunctionType *OldType = cast<FunctionType>(OldQType);
1780  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1781  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1782  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1783  bool RequiresAdjustment = false;
1784  if (OldTypeInfo.getCC() != CC_Default &&
1785      NewTypeInfo.getCC() == CC_Default) {
1786    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1787    RequiresAdjustment = true;
1788  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1789                                     NewTypeInfo.getCC())) {
1790    // Calling conventions really aren't compatible, so complain.
1791    Diag(New->getLocation(), diag::err_cconv_change)
1792      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1793      << (OldTypeInfo.getCC() == CC_Default)
1794      << (OldTypeInfo.getCC() == CC_Default ? "" :
1795          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1796    Diag(Old->getLocation(), diag::note_previous_declaration);
1797    return true;
1798  }
1799
1800  // FIXME: diagnose the other way around?
1801  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1802    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1803    RequiresAdjustment = true;
1804  }
1805
1806  // Merge regparm attribute.
1807  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1808      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1809    if (NewTypeInfo.getHasRegParm()) {
1810      Diag(New->getLocation(), diag::err_regparm_mismatch)
1811        << NewType->getRegParmType()
1812        << OldType->getRegParmType();
1813      Diag(Old->getLocation(), diag::note_previous_declaration);
1814      return true;
1815    }
1816
1817    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1818    RequiresAdjustment = true;
1819  }
1820
1821  // Merge ns_returns_retained attribute.
1822  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1823    if (NewTypeInfo.getProducesResult()) {
1824      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1825      Diag(Old->getLocation(), diag::note_previous_declaration);
1826      return true;
1827    }
1828
1829    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1830    RequiresAdjustment = true;
1831  }
1832
1833  if (RequiresAdjustment) {
1834    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1835    New->setType(QualType(NewType, 0));
1836    NewQType = Context.getCanonicalType(New->getType());
1837  }
1838
1839  if (getLangOptions().CPlusPlus) {
1840    // (C++98 13.1p2):
1841    //   Certain function declarations cannot be overloaded:
1842    //     -- Function declarations that differ only in the return type
1843    //        cannot be overloaded.
1844    QualType OldReturnType = OldType->getResultType();
1845    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1846    QualType ResQT;
1847    if (OldReturnType != NewReturnType) {
1848      if (NewReturnType->isObjCObjectPointerType()
1849          && OldReturnType->isObjCObjectPointerType())
1850        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1851      if (ResQT.isNull()) {
1852        if (New->isCXXClassMember() && New->isOutOfLine())
1853          Diag(New->getLocation(),
1854               diag::err_member_def_does_not_match_ret_type) << New;
1855        else
1856          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1857        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1858        return true;
1859      }
1860      else
1861        NewQType = ResQT;
1862    }
1863
1864    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1865    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1866    if (OldMethod && NewMethod) {
1867      // Preserve triviality.
1868      NewMethod->setTrivial(OldMethod->isTrivial());
1869
1870      // MSVC allows explicit template specialization at class scope:
1871      // 2 CXMethodDecls referring to the same function will be injected.
1872      // We don't want a redeclartion error.
1873      bool IsClassScopeExplicitSpecialization =
1874                              OldMethod->isFunctionTemplateSpecialization() &&
1875                              NewMethod->isFunctionTemplateSpecialization();
1876      bool isFriend = NewMethod->getFriendObjectKind();
1877
1878      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1879          !IsClassScopeExplicitSpecialization) {
1880        //    -- Member function declarations with the same name and the
1881        //       same parameter types cannot be overloaded if any of them
1882        //       is a static member function declaration.
1883        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1884          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1885          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1886          return true;
1887        }
1888
1889        // C++ [class.mem]p1:
1890        //   [...] A member shall not be declared twice in the
1891        //   member-specification, except that a nested class or member
1892        //   class template can be declared and then later defined.
1893        unsigned NewDiag;
1894        if (isa<CXXConstructorDecl>(OldMethod))
1895          NewDiag = diag::err_constructor_redeclared;
1896        else if (isa<CXXDestructorDecl>(NewMethod))
1897          NewDiag = diag::err_destructor_redeclared;
1898        else if (isa<CXXConversionDecl>(NewMethod))
1899          NewDiag = diag::err_conv_function_redeclared;
1900        else
1901          NewDiag = diag::err_member_redeclared;
1902
1903        Diag(New->getLocation(), NewDiag);
1904        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1905
1906      // Complain if this is an explicit declaration of a special
1907      // member that was initially declared implicitly.
1908      //
1909      // As an exception, it's okay to befriend such methods in order
1910      // to permit the implicit constructor/destructor/operator calls.
1911      } else if (OldMethod->isImplicit()) {
1912        if (isFriend) {
1913          NewMethod->setImplicit();
1914        } else {
1915          Diag(NewMethod->getLocation(),
1916               diag::err_definition_of_implicitly_declared_member)
1917            << New << getSpecialMember(OldMethod);
1918          return true;
1919        }
1920      } else if (OldMethod->isExplicitlyDefaulted()) {
1921        Diag(NewMethod->getLocation(),
1922             diag::err_definition_of_explicitly_defaulted_member)
1923          << getSpecialMember(OldMethod);
1924        return true;
1925      }
1926    }
1927
1928    // (C++98 8.3.5p3):
1929    //   All declarations for a function shall agree exactly in both the
1930    //   return type and the parameter-type-list.
1931    // We also want to respect all the extended bits except noreturn.
1932
1933    // noreturn should now match unless the old type info didn't have it.
1934    QualType OldQTypeForComparison = OldQType;
1935    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1936      assert(OldQType == QualType(OldType, 0));
1937      const FunctionType *OldTypeForComparison
1938        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1939      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1940      assert(OldQTypeForComparison.isCanonical());
1941    }
1942
1943    if (OldQTypeForComparison == NewQType)
1944      return MergeCompatibleFunctionDecls(New, Old);
1945
1946    // Fall through for conflicting redeclarations and redefinitions.
1947  }
1948
1949  // C: Function types need to be compatible, not identical. This handles
1950  // duplicate function decls like "void f(int); void f(enum X);" properly.
1951  if (!getLangOptions().CPlusPlus &&
1952      Context.typesAreCompatible(OldQType, NewQType)) {
1953    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1954    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1955    const FunctionProtoType *OldProto = 0;
1956    if (isa<FunctionNoProtoType>(NewFuncType) &&
1957        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1958      // The old declaration provided a function prototype, but the
1959      // new declaration does not. Merge in the prototype.
1960      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1961      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1962                                                 OldProto->arg_type_end());
1963      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1964                                         ParamTypes.data(), ParamTypes.size(),
1965                                         OldProto->getExtProtoInfo());
1966      New->setType(NewQType);
1967      New->setHasInheritedPrototype();
1968
1969      // Synthesize a parameter for each argument type.
1970      SmallVector<ParmVarDecl*, 16> Params;
1971      for (FunctionProtoType::arg_type_iterator
1972             ParamType = OldProto->arg_type_begin(),
1973             ParamEnd = OldProto->arg_type_end();
1974           ParamType != ParamEnd; ++ParamType) {
1975        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1976                                                 SourceLocation(),
1977                                                 SourceLocation(), 0,
1978                                                 *ParamType, /*TInfo=*/0,
1979                                                 SC_None, SC_None,
1980                                                 0);
1981        Param->setScopeInfo(0, Params.size());
1982        Param->setImplicit();
1983        Params.push_back(Param);
1984      }
1985
1986      New->setParams(Params);
1987    }
1988
1989    return MergeCompatibleFunctionDecls(New, Old);
1990  }
1991
1992  // GNU C permits a K&R definition to follow a prototype declaration
1993  // if the declared types of the parameters in the K&R definition
1994  // match the types in the prototype declaration, even when the
1995  // promoted types of the parameters from the K&R definition differ
1996  // from the types in the prototype. GCC then keeps the types from
1997  // the prototype.
1998  //
1999  // If a variadic prototype is followed by a non-variadic K&R definition,
2000  // the K&R definition becomes variadic.  This is sort of an edge case, but
2001  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2002  // C99 6.9.1p8.
2003  if (!getLangOptions().CPlusPlus &&
2004      Old->hasPrototype() && !New->hasPrototype() &&
2005      New->getType()->getAs<FunctionProtoType>() &&
2006      Old->getNumParams() == New->getNumParams()) {
2007    SmallVector<QualType, 16> ArgTypes;
2008    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2009    const FunctionProtoType *OldProto
2010      = Old->getType()->getAs<FunctionProtoType>();
2011    const FunctionProtoType *NewProto
2012      = New->getType()->getAs<FunctionProtoType>();
2013
2014    // Determine whether this is the GNU C extension.
2015    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2016                                               NewProto->getResultType());
2017    bool LooseCompatible = !MergedReturn.isNull();
2018    for (unsigned Idx = 0, End = Old->getNumParams();
2019         LooseCompatible && Idx != End; ++Idx) {
2020      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2021      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2022      if (Context.typesAreCompatible(OldParm->getType(),
2023                                     NewProto->getArgType(Idx))) {
2024        ArgTypes.push_back(NewParm->getType());
2025      } else if (Context.typesAreCompatible(OldParm->getType(),
2026                                            NewParm->getType(),
2027                                            /*CompareUnqualified=*/true)) {
2028        GNUCompatibleParamWarning Warn
2029          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2030        Warnings.push_back(Warn);
2031        ArgTypes.push_back(NewParm->getType());
2032      } else
2033        LooseCompatible = false;
2034    }
2035
2036    if (LooseCompatible) {
2037      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2038        Diag(Warnings[Warn].NewParm->getLocation(),
2039             diag::ext_param_promoted_not_compatible_with_prototype)
2040          << Warnings[Warn].PromotedType
2041          << Warnings[Warn].OldParm->getType();
2042        if (Warnings[Warn].OldParm->getLocation().isValid())
2043          Diag(Warnings[Warn].OldParm->getLocation(),
2044               diag::note_previous_declaration);
2045      }
2046
2047      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2048                                           ArgTypes.size(),
2049                                           OldProto->getExtProtoInfo()));
2050      return MergeCompatibleFunctionDecls(New, Old);
2051    }
2052
2053    // Fall through to diagnose conflicting types.
2054  }
2055
2056  // A function that has already been declared has been redeclared or defined
2057  // with a different type- show appropriate diagnostic
2058  if (unsigned BuiltinID = Old->getBuiltinID()) {
2059    // The user has declared a builtin function with an incompatible
2060    // signature.
2061    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2062      // The function the user is redeclaring is a library-defined
2063      // function like 'malloc' or 'printf'. Warn about the
2064      // redeclaration, then pretend that we don't know about this
2065      // library built-in.
2066      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2067      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2068        << Old << Old->getType();
2069      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2070      Old->setInvalidDecl();
2071      return false;
2072    }
2073
2074    PrevDiag = diag::note_previous_builtin_declaration;
2075  }
2076
2077  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2078  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2079  return true;
2080}
2081
2082/// \brief Completes the merge of two function declarations that are
2083/// known to be compatible.
2084///
2085/// This routine handles the merging of attributes and other
2086/// properties of function declarations form the old declaration to
2087/// the new declaration, once we know that New is in fact a
2088/// redeclaration of Old.
2089///
2090/// \returns false
2091bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2092  // Merge the attributes
2093  mergeDeclAttributes(New, Old);
2094
2095  // Merge the storage class.
2096  if (Old->getStorageClass() != SC_Extern &&
2097      Old->getStorageClass() != SC_None)
2098    New->setStorageClass(Old->getStorageClass());
2099
2100  // Merge "pure" flag.
2101  if (Old->isPure())
2102    New->setPure();
2103
2104  // Merge attributes from the parameters.  These can mismatch with K&R
2105  // declarations.
2106  if (New->getNumParams() == Old->getNumParams())
2107    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2108      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2109                               Context);
2110
2111  if (getLangOptions().CPlusPlus)
2112    return MergeCXXFunctionDecl(New, Old);
2113
2114  return false;
2115}
2116
2117
2118void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2119                                ObjCMethodDecl *oldMethod) {
2120  // We don't want to merge unavailable and deprecated attributes
2121  // except from interface to implementation.
2122  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2123
2124  // Merge the attributes.
2125  mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2126
2127  // Merge attributes from the parameters.
2128  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2129  for (ObjCMethodDecl::param_iterator
2130         ni = newMethod->param_begin(), ne = newMethod->param_end();
2131       ni != ne; ++ni, ++oi)
2132    mergeParamDeclAttributes(*ni, *oi, Context);
2133
2134  CheckObjCMethodOverride(newMethod, oldMethod, true);
2135}
2136
2137/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2138/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2139/// emitting diagnostics as appropriate.
2140///
2141/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2142/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2143/// check them before the initializer is attached.
2144///
2145void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2146  if (New->isInvalidDecl() || Old->isInvalidDecl())
2147    return;
2148
2149  QualType MergedT;
2150  if (getLangOptions().CPlusPlus) {
2151    AutoType *AT = New->getType()->getContainedAutoType();
2152    if (AT && !AT->isDeduced()) {
2153      // We don't know what the new type is until the initializer is attached.
2154      return;
2155    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2156      // These could still be something that needs exception specs checked.
2157      return MergeVarDeclExceptionSpecs(New, Old);
2158    }
2159    // C++ [basic.link]p10:
2160    //   [...] the types specified by all declarations referring to a given
2161    //   object or function shall be identical, except that declarations for an
2162    //   array object can specify array types that differ by the presence or
2163    //   absence of a major array bound (8.3.4).
2164    else if (Old->getType()->isIncompleteArrayType() &&
2165             New->getType()->isArrayType()) {
2166      CanQual<ArrayType> OldArray
2167        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2168      CanQual<ArrayType> NewArray
2169        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2170      if (OldArray->getElementType() == NewArray->getElementType())
2171        MergedT = New->getType();
2172    } else if (Old->getType()->isArrayType() &&
2173             New->getType()->isIncompleteArrayType()) {
2174      CanQual<ArrayType> OldArray
2175        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2176      CanQual<ArrayType> NewArray
2177        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2178      if (OldArray->getElementType() == NewArray->getElementType())
2179        MergedT = Old->getType();
2180    } else if (New->getType()->isObjCObjectPointerType()
2181               && Old->getType()->isObjCObjectPointerType()) {
2182        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2183                                                        Old->getType());
2184    }
2185  } else {
2186    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2187  }
2188  if (MergedT.isNull()) {
2189    Diag(New->getLocation(), diag::err_redefinition_different_type)
2190      << New->getDeclName();
2191    Diag(Old->getLocation(), diag::note_previous_definition);
2192    return New->setInvalidDecl();
2193  }
2194  New->setType(MergedT);
2195}
2196
2197/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2198/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2199/// situation, merging decls or emitting diagnostics as appropriate.
2200///
2201/// Tentative definition rules (C99 6.9.2p2) are checked by
2202/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2203/// definitions here, since the initializer hasn't been attached.
2204///
2205void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2206  // If the new decl is already invalid, don't do any other checking.
2207  if (New->isInvalidDecl())
2208    return;
2209
2210  // Verify the old decl was also a variable.
2211  VarDecl *Old = 0;
2212  if (!Previous.isSingleResult() ||
2213      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2214    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2215      << New->getDeclName();
2216    Diag(Previous.getRepresentativeDecl()->getLocation(),
2217         diag::note_previous_definition);
2218    return New->setInvalidDecl();
2219  }
2220
2221  // C++ [class.mem]p1:
2222  //   A member shall not be declared twice in the member-specification [...]
2223  //
2224  // Here, we need only consider static data members.
2225  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2226    Diag(New->getLocation(), diag::err_duplicate_member)
2227      << New->getIdentifier();
2228    Diag(Old->getLocation(), diag::note_previous_declaration);
2229    New->setInvalidDecl();
2230  }
2231
2232  mergeDeclAttributes(New, Old);
2233  // Warn if an already-declared variable is made a weak_import in a subsequent
2234  // declaration
2235  if (New->getAttr<WeakImportAttr>() &&
2236      Old->getStorageClass() == SC_None &&
2237      !Old->getAttr<WeakImportAttr>()) {
2238    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2239    Diag(Old->getLocation(), diag::note_previous_definition);
2240    // Remove weak_import attribute on new declaration.
2241    New->dropAttr<WeakImportAttr>();
2242  }
2243
2244  // Merge the types.
2245  MergeVarDeclTypes(New, Old);
2246  if (New->isInvalidDecl())
2247    return;
2248
2249  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2250  if (New->getStorageClass() == SC_Static &&
2251      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2252    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2253    Diag(Old->getLocation(), diag::note_previous_definition);
2254    return New->setInvalidDecl();
2255  }
2256  // C99 6.2.2p4:
2257  //   For an identifier declared with the storage-class specifier
2258  //   extern in a scope in which a prior declaration of that
2259  //   identifier is visible,23) if the prior declaration specifies
2260  //   internal or external linkage, the linkage of the identifier at
2261  //   the later declaration is the same as the linkage specified at
2262  //   the prior declaration. If no prior declaration is visible, or
2263  //   if the prior declaration specifies no linkage, then the
2264  //   identifier has external linkage.
2265  if (New->hasExternalStorage() && Old->hasLinkage())
2266    /* Okay */;
2267  else if (New->getStorageClass() != SC_Static &&
2268           Old->getStorageClass() == SC_Static) {
2269    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2270    Diag(Old->getLocation(), diag::note_previous_definition);
2271    return New->setInvalidDecl();
2272  }
2273
2274  // Check if extern is followed by non-extern and vice-versa.
2275  if (New->hasExternalStorage() &&
2276      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2277    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2278    Diag(Old->getLocation(), diag::note_previous_definition);
2279    return New->setInvalidDecl();
2280  }
2281  if (Old->hasExternalStorage() &&
2282      !New->hasLinkage() && New->isLocalVarDecl()) {
2283    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2284    Diag(Old->getLocation(), diag::note_previous_definition);
2285    return New->setInvalidDecl();
2286  }
2287
2288  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2289
2290  // FIXME: The test for external storage here seems wrong? We still
2291  // need to check for mismatches.
2292  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2293      // Don't complain about out-of-line definitions of static members.
2294      !(Old->getLexicalDeclContext()->isRecord() &&
2295        !New->getLexicalDeclContext()->isRecord())) {
2296    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2297    Diag(Old->getLocation(), diag::note_previous_definition);
2298    return New->setInvalidDecl();
2299  }
2300
2301  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2302    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2303    Diag(Old->getLocation(), diag::note_previous_definition);
2304  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2305    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2306    Diag(Old->getLocation(), diag::note_previous_definition);
2307  }
2308
2309  // C++ doesn't have tentative definitions, so go right ahead and check here.
2310  const VarDecl *Def;
2311  if (getLangOptions().CPlusPlus &&
2312      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2313      (Def = Old->getDefinition())) {
2314    Diag(New->getLocation(), diag::err_redefinition)
2315      << New->getDeclName();
2316    Diag(Def->getLocation(), diag::note_previous_definition);
2317    New->setInvalidDecl();
2318    return;
2319  }
2320  // c99 6.2.2 P4.
2321  // For an identifier declared with the storage-class specifier extern in a
2322  // scope in which a prior declaration of that identifier is visible, if
2323  // the prior declaration specifies internal or external linkage, the linkage
2324  // of the identifier at the later declaration is the same as the linkage
2325  // specified at the prior declaration.
2326  // FIXME. revisit this code.
2327  if (New->hasExternalStorage() &&
2328      Old->getLinkage() == InternalLinkage &&
2329      New->getDeclContext() == Old->getDeclContext())
2330    New->setStorageClass(Old->getStorageClass());
2331
2332  // Keep a chain of previous declarations.
2333  New->setPreviousDeclaration(Old);
2334
2335  // Inherit access appropriately.
2336  New->setAccess(Old->getAccess());
2337}
2338
2339/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2340/// no declarator (e.g. "struct foo;") is parsed.
2341Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2342                                       DeclSpec &DS) {
2343  return ParsedFreeStandingDeclSpec(S, AS, DS,
2344                                    MultiTemplateParamsArg(*this, 0, 0));
2345}
2346
2347/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2348/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2349/// parameters to cope with template friend declarations.
2350Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2351                                       DeclSpec &DS,
2352                                       MultiTemplateParamsArg TemplateParams) {
2353  Decl *TagD = 0;
2354  TagDecl *Tag = 0;
2355  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2356      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2357      DS.getTypeSpecType() == DeclSpec::TST_union ||
2358      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2359    TagD = DS.getRepAsDecl();
2360
2361    if (!TagD) // We probably had an error
2362      return 0;
2363
2364    // Note that the above type specs guarantee that the
2365    // type rep is a Decl, whereas in many of the others
2366    // it's a Type.
2367    if (isa<TagDecl>(TagD))
2368      Tag = cast<TagDecl>(TagD);
2369    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2370      Tag = CTD->getTemplatedDecl();
2371  }
2372
2373  if (Tag)
2374    Tag->setFreeStanding();
2375
2376  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2377    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2378    // or incomplete types shall not be restrict-qualified."
2379    if (TypeQuals & DeclSpec::TQ_restrict)
2380      Diag(DS.getRestrictSpecLoc(),
2381           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2382           << DS.getSourceRange();
2383  }
2384
2385  if (DS.isConstexprSpecified()) {
2386    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2387    // and definitions of functions and variables.
2388    if (Tag)
2389      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2390        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2391            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2392            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2393    else
2394      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2395    // Don't emit warnings after this error.
2396    return TagD;
2397  }
2398
2399  if (DS.isFriendSpecified()) {
2400    // If we're dealing with a decl but not a TagDecl, assume that
2401    // whatever routines created it handled the friendship aspect.
2402    if (TagD && !Tag)
2403      return 0;
2404    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2405  }
2406
2407  // Track whether we warned about the fact that there aren't any
2408  // declarators.
2409  bool emittedWarning = false;
2410
2411  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2412    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2413        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2414      if (getLangOptions().CPlusPlus ||
2415          Record->getDeclContext()->isRecord())
2416        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2417
2418      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2419        << DS.getSourceRange();
2420      emittedWarning = true;
2421    }
2422  }
2423
2424  // Check for Microsoft C extension: anonymous struct.
2425  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2426      CurContext->isRecord() &&
2427      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2428    // Handle 2 kinds of anonymous struct:
2429    //   struct STRUCT;
2430    // and
2431    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2432    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2433    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2434        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2435         DS.getRepAsType().get()->isStructureType())) {
2436      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2437        << DS.getSourceRange();
2438      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2439    }
2440  }
2441
2442  if (getLangOptions().CPlusPlus &&
2443      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2444    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2445      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2446          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2447        Diag(Enum->getLocation(), diag::ext_no_declarators)
2448          << DS.getSourceRange();
2449        emittedWarning = true;
2450      }
2451
2452  // Skip all the checks below if we have a type error.
2453  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2454
2455  if (!DS.isMissingDeclaratorOk()) {
2456    // Warn about typedefs of enums without names, since this is an
2457    // extension in both Microsoft and GNU.
2458    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2459        Tag && isa<EnumDecl>(Tag)) {
2460      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2461        << DS.getSourceRange();
2462      return Tag;
2463    }
2464
2465    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2466      << DS.getSourceRange();
2467    emittedWarning = true;
2468  }
2469
2470  // We're going to complain about a bunch of spurious specifiers;
2471  // only do this if we're declaring a tag, because otherwise we
2472  // should be getting diag::ext_no_declarators.
2473  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2474    return TagD;
2475
2476  // Note that a linkage-specification sets a storage class, but
2477  // 'extern "C" struct foo;' is actually valid and not theoretically
2478  // useless.
2479  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2480    if (!DS.isExternInLinkageSpec())
2481      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2482        << DeclSpec::getSpecifierName(scs);
2483
2484  if (DS.isThreadSpecified())
2485    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2486  if (DS.getTypeQualifiers()) {
2487    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2488      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2489    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2490      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2491    // Restrict is covered above.
2492  }
2493  if (DS.isInlineSpecified())
2494    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2495  if (DS.isVirtualSpecified())
2496    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2497  if (DS.isExplicitSpecified())
2498    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2499
2500  if (DS.isModulePrivateSpecified() &&
2501      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2502    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2503      << Tag->getTagKind()
2504      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2505
2506  // Warn about ignored type attributes, for example:
2507  // __attribute__((aligned)) struct A;
2508  // Attributes should be placed after tag to apply to type declaration.
2509  if (!DS.getAttributes().empty()) {
2510    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2511    if (TypeSpecType == DeclSpec::TST_class ||
2512        TypeSpecType == DeclSpec::TST_struct ||
2513        TypeSpecType == DeclSpec::TST_union ||
2514        TypeSpecType == DeclSpec::TST_enum) {
2515      AttributeList* attrs = DS.getAttributes().getList();
2516      while (attrs) {
2517        Diag(attrs->getScopeLoc(),
2518             diag::warn_declspec_attribute_ignored)
2519        << attrs->getName()
2520        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2521            TypeSpecType == DeclSpec::TST_struct ? 1 :
2522            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2523        attrs = attrs->getNext();
2524      }
2525    }
2526  }
2527
2528  return TagD;
2529}
2530
2531/// We are trying to inject an anonymous member into the given scope;
2532/// check if there's an existing declaration that can't be overloaded.
2533///
2534/// \return true if this is a forbidden redeclaration
2535static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2536                                         Scope *S,
2537                                         DeclContext *Owner,
2538                                         DeclarationName Name,
2539                                         SourceLocation NameLoc,
2540                                         unsigned diagnostic) {
2541  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2542                 Sema::ForRedeclaration);
2543  if (!SemaRef.LookupName(R, S)) return false;
2544
2545  if (R.getAsSingle<TagDecl>())
2546    return false;
2547
2548  // Pick a representative declaration.
2549  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2550  assert(PrevDecl && "Expected a non-null Decl");
2551
2552  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2553    return false;
2554
2555  SemaRef.Diag(NameLoc, diagnostic) << Name;
2556  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2557
2558  return true;
2559}
2560
2561/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2562/// anonymous struct or union AnonRecord into the owning context Owner
2563/// and scope S. This routine will be invoked just after we realize
2564/// that an unnamed union or struct is actually an anonymous union or
2565/// struct, e.g.,
2566///
2567/// @code
2568/// union {
2569///   int i;
2570///   float f;
2571/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2572///    // f into the surrounding scope.x
2573/// @endcode
2574///
2575/// This routine is recursive, injecting the names of nested anonymous
2576/// structs/unions into the owning context and scope as well.
2577static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2578                                                DeclContext *Owner,
2579                                                RecordDecl *AnonRecord,
2580                                                AccessSpecifier AS,
2581                              SmallVector<NamedDecl*, 2> &Chaining,
2582                                                      bool MSAnonStruct) {
2583  unsigned diagKind
2584    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2585                            : diag::err_anonymous_struct_member_redecl;
2586
2587  bool Invalid = false;
2588
2589  // Look every FieldDecl and IndirectFieldDecl with a name.
2590  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2591                               DEnd = AnonRecord->decls_end();
2592       D != DEnd; ++D) {
2593    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2594        cast<NamedDecl>(*D)->getDeclName()) {
2595      ValueDecl *VD = cast<ValueDecl>(*D);
2596      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2597                                       VD->getLocation(), diagKind)) {
2598        // C++ [class.union]p2:
2599        //   The names of the members of an anonymous union shall be
2600        //   distinct from the names of any other entity in the
2601        //   scope in which the anonymous union is declared.
2602        Invalid = true;
2603      } else {
2604        // C++ [class.union]p2:
2605        //   For the purpose of name lookup, after the anonymous union
2606        //   definition, the members of the anonymous union are
2607        //   considered to have been defined in the scope in which the
2608        //   anonymous union is declared.
2609        unsigned OldChainingSize = Chaining.size();
2610        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2611          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2612               PE = IF->chain_end(); PI != PE; ++PI)
2613            Chaining.push_back(*PI);
2614        else
2615          Chaining.push_back(VD);
2616
2617        assert(Chaining.size() >= 2);
2618        NamedDecl **NamedChain =
2619          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2620        for (unsigned i = 0; i < Chaining.size(); i++)
2621          NamedChain[i] = Chaining[i];
2622
2623        IndirectFieldDecl* IndirectField =
2624          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2625                                    VD->getIdentifier(), VD->getType(),
2626                                    NamedChain, Chaining.size());
2627
2628        IndirectField->setAccess(AS);
2629        IndirectField->setImplicit();
2630        SemaRef.PushOnScopeChains(IndirectField, S);
2631
2632        // That includes picking up the appropriate access specifier.
2633        if (AS != AS_none) IndirectField->setAccess(AS);
2634
2635        Chaining.resize(OldChainingSize);
2636      }
2637    }
2638  }
2639
2640  return Invalid;
2641}
2642
2643/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2644/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2645/// illegal input values are mapped to SC_None.
2646static StorageClass
2647StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2648  switch (StorageClassSpec) {
2649  case DeclSpec::SCS_unspecified:    return SC_None;
2650  case DeclSpec::SCS_extern:         return SC_Extern;
2651  case DeclSpec::SCS_static:         return SC_Static;
2652  case DeclSpec::SCS_auto:           return SC_Auto;
2653  case DeclSpec::SCS_register:       return SC_Register;
2654  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2655    // Illegal SCSs map to None: error reporting is up to the caller.
2656  case DeclSpec::SCS_mutable:        // Fall through.
2657  case DeclSpec::SCS_typedef:        return SC_None;
2658  }
2659  llvm_unreachable("unknown storage class specifier");
2660}
2661
2662/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2663/// a StorageClass. Any error reporting is up to the caller:
2664/// illegal input values are mapped to SC_None.
2665static StorageClass
2666StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2667  switch (StorageClassSpec) {
2668  case DeclSpec::SCS_unspecified:    return SC_None;
2669  case DeclSpec::SCS_extern:         return SC_Extern;
2670  case DeclSpec::SCS_static:         return SC_Static;
2671  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2672    // Illegal SCSs map to None: error reporting is up to the caller.
2673  case DeclSpec::SCS_auto:           // Fall through.
2674  case DeclSpec::SCS_mutable:        // Fall through.
2675  case DeclSpec::SCS_register:       // Fall through.
2676  case DeclSpec::SCS_typedef:        return SC_None;
2677  }
2678  llvm_unreachable("unknown storage class specifier");
2679}
2680
2681/// BuildAnonymousStructOrUnion - Handle the declaration of an
2682/// anonymous structure or union. Anonymous unions are a C++ feature
2683/// (C++ [class.union]) and a C11 feature; anonymous structures
2684/// are a C11 feature and GNU C++ extension.
2685Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2686                                             AccessSpecifier AS,
2687                                             RecordDecl *Record) {
2688  DeclContext *Owner = Record->getDeclContext();
2689
2690  // Diagnose whether this anonymous struct/union is an extension.
2691  if (Record->isUnion() && !getLangOptions().CPlusPlus && !getLangOptions().C11)
2692    Diag(Record->getLocation(), diag::ext_anonymous_union);
2693  else if (!Record->isUnion() && getLangOptions().CPlusPlus)
2694    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2695  else if (!Record->isUnion() && !getLangOptions().C11)
2696    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2697
2698  // C and C++ require different kinds of checks for anonymous
2699  // structs/unions.
2700  bool Invalid = false;
2701  if (getLangOptions().CPlusPlus) {
2702    const char* PrevSpec = 0;
2703    unsigned DiagID;
2704    if (Record->isUnion()) {
2705      // C++ [class.union]p6:
2706      //   Anonymous unions declared in a named namespace or in the
2707      //   global namespace shall be declared static.
2708      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2709          (isa<TranslationUnitDecl>(Owner) ||
2710           (isa<NamespaceDecl>(Owner) &&
2711            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2712        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2713          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2714
2715        // Recover by adding 'static'.
2716        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2717                               PrevSpec, DiagID);
2718      }
2719      // C++ [class.union]p6:
2720      //   A storage class is not allowed in a declaration of an
2721      //   anonymous union in a class scope.
2722      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2723               isa<RecordDecl>(Owner)) {
2724        Diag(DS.getStorageClassSpecLoc(),
2725             diag::err_anonymous_union_with_storage_spec)
2726          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2727
2728        // Recover by removing the storage specifier.
2729        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2730                               SourceLocation(),
2731                               PrevSpec, DiagID);
2732      }
2733    }
2734
2735    // Ignore const/volatile/restrict qualifiers.
2736    if (DS.getTypeQualifiers()) {
2737      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2738        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2739          << Record->isUnion() << 0
2740          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2741      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2742        Diag(DS.getVolatileSpecLoc(),
2743             diag::ext_anonymous_struct_union_qualified)
2744          << Record->isUnion() << 1
2745          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2746      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2747        Diag(DS.getRestrictSpecLoc(),
2748             diag::ext_anonymous_struct_union_qualified)
2749          << Record->isUnion() << 2
2750          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2751
2752      DS.ClearTypeQualifiers();
2753    }
2754
2755    // C++ [class.union]p2:
2756    //   The member-specification of an anonymous union shall only
2757    //   define non-static data members. [Note: nested types and
2758    //   functions cannot be declared within an anonymous union. ]
2759    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2760                                 MemEnd = Record->decls_end();
2761         Mem != MemEnd; ++Mem) {
2762      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2763        // C++ [class.union]p3:
2764        //   An anonymous union shall not have private or protected
2765        //   members (clause 11).
2766        assert(FD->getAccess() != AS_none);
2767        if (FD->getAccess() != AS_public) {
2768          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2769            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2770          Invalid = true;
2771        }
2772
2773        // C++ [class.union]p1
2774        //   An object of a class with a non-trivial constructor, a non-trivial
2775        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2776        //   assignment operator cannot be a member of a union, nor can an
2777        //   array of such objects.
2778        if (CheckNontrivialField(FD))
2779          Invalid = true;
2780      } else if ((*Mem)->isImplicit()) {
2781        // Any implicit members are fine.
2782      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2783        // This is a type that showed up in an
2784        // elaborated-type-specifier inside the anonymous struct or
2785        // union, but which actually declares a type outside of the
2786        // anonymous struct or union. It's okay.
2787      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2788        if (!MemRecord->isAnonymousStructOrUnion() &&
2789            MemRecord->getDeclName()) {
2790          // Visual C++ allows type definition in anonymous struct or union.
2791          if (getLangOptions().MicrosoftExt)
2792            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2793              << (int)Record->isUnion();
2794          else {
2795            // This is a nested type declaration.
2796            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2797              << (int)Record->isUnion();
2798            Invalid = true;
2799          }
2800        }
2801      } else if (isa<AccessSpecDecl>(*Mem)) {
2802        // Any access specifier is fine.
2803      } else {
2804        // We have something that isn't a non-static data
2805        // member. Complain about it.
2806        unsigned DK = diag::err_anonymous_record_bad_member;
2807        if (isa<TypeDecl>(*Mem))
2808          DK = diag::err_anonymous_record_with_type;
2809        else if (isa<FunctionDecl>(*Mem))
2810          DK = diag::err_anonymous_record_with_function;
2811        else if (isa<VarDecl>(*Mem))
2812          DK = diag::err_anonymous_record_with_static;
2813
2814        // Visual C++ allows type definition in anonymous struct or union.
2815        if (getLangOptions().MicrosoftExt &&
2816            DK == diag::err_anonymous_record_with_type)
2817          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2818            << (int)Record->isUnion();
2819        else {
2820          Diag((*Mem)->getLocation(), DK)
2821              << (int)Record->isUnion();
2822          Invalid = true;
2823        }
2824      }
2825    }
2826  }
2827
2828  if (!Record->isUnion() && !Owner->isRecord()) {
2829    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2830      << (int)getLangOptions().CPlusPlus;
2831    Invalid = true;
2832  }
2833
2834  // Mock up a declarator.
2835  Declarator Dc(DS, Declarator::MemberContext);
2836  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2837  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2838
2839  // Create a declaration for this anonymous struct/union.
2840  NamedDecl *Anon = 0;
2841  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2842    Anon = FieldDecl::Create(Context, OwningClass,
2843                             DS.getSourceRange().getBegin(),
2844                             Record->getLocation(),
2845                             /*IdentifierInfo=*/0,
2846                             Context.getTypeDeclType(Record),
2847                             TInfo,
2848                             /*BitWidth=*/0, /*Mutable=*/false,
2849                             /*HasInit=*/false);
2850    Anon->setAccess(AS);
2851    if (getLangOptions().CPlusPlus)
2852      FieldCollector->Add(cast<FieldDecl>(Anon));
2853  } else {
2854    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2855    assert(SCSpec != DeclSpec::SCS_typedef &&
2856           "Parser allowed 'typedef' as storage class VarDecl.");
2857    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2858    if (SCSpec == DeclSpec::SCS_mutable) {
2859      // mutable can only appear on non-static class members, so it's always
2860      // an error here
2861      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2862      Invalid = true;
2863      SC = SC_None;
2864    }
2865    SCSpec = DS.getStorageClassSpecAsWritten();
2866    VarDecl::StorageClass SCAsWritten
2867      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2868
2869    Anon = VarDecl::Create(Context, Owner,
2870                           DS.getSourceRange().getBegin(),
2871                           Record->getLocation(), /*IdentifierInfo=*/0,
2872                           Context.getTypeDeclType(Record),
2873                           TInfo, SC, SCAsWritten);
2874
2875    // Default-initialize the implicit variable. This initialization will be
2876    // trivial in almost all cases, except if a union member has an in-class
2877    // initializer:
2878    //   union { int n = 0; };
2879    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2880  }
2881  Anon->setImplicit();
2882
2883  // Add the anonymous struct/union object to the current
2884  // context. We'll be referencing this object when we refer to one of
2885  // its members.
2886  Owner->addDecl(Anon);
2887
2888  // Inject the members of the anonymous struct/union into the owning
2889  // context and into the identifier resolver chain for name lookup
2890  // purposes.
2891  SmallVector<NamedDecl*, 2> Chain;
2892  Chain.push_back(Anon);
2893
2894  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2895                                          Chain, false))
2896    Invalid = true;
2897
2898  // Mark this as an anonymous struct/union type. Note that we do not
2899  // do this until after we have already checked and injected the
2900  // members of this anonymous struct/union type, because otherwise
2901  // the members could be injected twice: once by DeclContext when it
2902  // builds its lookup table, and once by
2903  // InjectAnonymousStructOrUnionMembers.
2904  Record->setAnonymousStructOrUnion(true);
2905
2906  if (Invalid)
2907    Anon->setInvalidDecl();
2908
2909  return Anon;
2910}
2911
2912/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2913/// Microsoft C anonymous structure.
2914/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2915/// Example:
2916///
2917/// struct A { int a; };
2918/// struct B { struct A; int b; };
2919///
2920/// void foo() {
2921///   B var;
2922///   var.a = 3;
2923/// }
2924///
2925Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2926                                           RecordDecl *Record) {
2927
2928  // If there is no Record, get the record via the typedef.
2929  if (!Record)
2930    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2931
2932  // Mock up a declarator.
2933  Declarator Dc(DS, Declarator::TypeNameContext);
2934  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2935  assert(TInfo && "couldn't build declarator info for anonymous struct");
2936
2937  // Create a declaration for this anonymous struct.
2938  NamedDecl* Anon = FieldDecl::Create(Context,
2939                             cast<RecordDecl>(CurContext),
2940                             DS.getSourceRange().getBegin(),
2941                             DS.getSourceRange().getBegin(),
2942                             /*IdentifierInfo=*/0,
2943                             Context.getTypeDeclType(Record),
2944                             TInfo,
2945                             /*BitWidth=*/0, /*Mutable=*/false,
2946                             /*HasInit=*/false);
2947  Anon->setImplicit();
2948
2949  // Add the anonymous struct object to the current context.
2950  CurContext->addDecl(Anon);
2951
2952  // Inject the members of the anonymous struct into the current
2953  // context and into the identifier resolver chain for name lookup
2954  // purposes.
2955  SmallVector<NamedDecl*, 2> Chain;
2956  Chain.push_back(Anon);
2957
2958  RecordDecl *RecordDef = Record->getDefinition();
2959  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2960                                                        RecordDef, AS_none,
2961                                                        Chain, true))
2962    Anon->setInvalidDecl();
2963
2964  return Anon;
2965}
2966
2967/// GetNameForDeclarator - Determine the full declaration name for the
2968/// given Declarator.
2969DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2970  return GetNameFromUnqualifiedId(D.getName());
2971}
2972
2973/// \brief Retrieves the declaration name from a parsed unqualified-id.
2974DeclarationNameInfo
2975Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2976  DeclarationNameInfo NameInfo;
2977  NameInfo.setLoc(Name.StartLocation);
2978
2979  switch (Name.getKind()) {
2980
2981  case UnqualifiedId::IK_ImplicitSelfParam:
2982  case UnqualifiedId::IK_Identifier:
2983    NameInfo.setName(Name.Identifier);
2984    NameInfo.setLoc(Name.StartLocation);
2985    return NameInfo;
2986
2987  case UnqualifiedId::IK_OperatorFunctionId:
2988    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2989                                           Name.OperatorFunctionId.Operator));
2990    NameInfo.setLoc(Name.StartLocation);
2991    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2992      = Name.OperatorFunctionId.SymbolLocations[0];
2993    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2994      = Name.EndLocation.getRawEncoding();
2995    return NameInfo;
2996
2997  case UnqualifiedId::IK_LiteralOperatorId:
2998    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2999                                                           Name.Identifier));
3000    NameInfo.setLoc(Name.StartLocation);
3001    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3002    return NameInfo;
3003
3004  case UnqualifiedId::IK_ConversionFunctionId: {
3005    TypeSourceInfo *TInfo;
3006    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3007    if (Ty.isNull())
3008      return DeclarationNameInfo();
3009    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3010                                               Context.getCanonicalType(Ty)));
3011    NameInfo.setLoc(Name.StartLocation);
3012    NameInfo.setNamedTypeInfo(TInfo);
3013    return NameInfo;
3014  }
3015
3016  case UnqualifiedId::IK_ConstructorName: {
3017    TypeSourceInfo *TInfo;
3018    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3019    if (Ty.isNull())
3020      return DeclarationNameInfo();
3021    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3022                                              Context.getCanonicalType(Ty)));
3023    NameInfo.setLoc(Name.StartLocation);
3024    NameInfo.setNamedTypeInfo(TInfo);
3025    return NameInfo;
3026  }
3027
3028  case UnqualifiedId::IK_ConstructorTemplateId: {
3029    // In well-formed code, we can only have a constructor
3030    // template-id that refers to the current context, so go there
3031    // to find the actual type being constructed.
3032    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3033    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3034      return DeclarationNameInfo();
3035
3036    // Determine the type of the class being constructed.
3037    QualType CurClassType = Context.getTypeDeclType(CurClass);
3038
3039    // FIXME: Check two things: that the template-id names the same type as
3040    // CurClassType, and that the template-id does not occur when the name
3041    // was qualified.
3042
3043    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3044                                    Context.getCanonicalType(CurClassType)));
3045    NameInfo.setLoc(Name.StartLocation);
3046    // FIXME: should we retrieve TypeSourceInfo?
3047    NameInfo.setNamedTypeInfo(0);
3048    return NameInfo;
3049  }
3050
3051  case UnqualifiedId::IK_DestructorName: {
3052    TypeSourceInfo *TInfo;
3053    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3054    if (Ty.isNull())
3055      return DeclarationNameInfo();
3056    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3057                                              Context.getCanonicalType(Ty)));
3058    NameInfo.setLoc(Name.StartLocation);
3059    NameInfo.setNamedTypeInfo(TInfo);
3060    return NameInfo;
3061  }
3062
3063  case UnqualifiedId::IK_TemplateId: {
3064    TemplateName TName = Name.TemplateId->Template.get();
3065    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3066    return Context.getNameForTemplate(TName, TNameLoc);
3067  }
3068
3069  } // switch (Name.getKind())
3070
3071  llvm_unreachable("Unknown name kind");
3072}
3073
3074static QualType getCoreType(QualType Ty) {
3075  do {
3076    if (Ty->isPointerType() || Ty->isReferenceType())
3077      Ty = Ty->getPointeeType();
3078    else if (Ty->isArrayType())
3079      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3080    else
3081      return Ty.withoutLocalFastQualifiers();
3082  } while (true);
3083}
3084
3085/// hasSimilarParameters - Determine whether the C++ functions Declaration
3086/// and Definition have "nearly" matching parameters. This heuristic is
3087/// used to improve diagnostics in the case where an out-of-line function
3088/// definition doesn't match any declaration within the class or namespace.
3089/// Also sets Params to the list of indices to the parameters that differ
3090/// between the declaration and the definition. If hasSimilarParameters
3091/// returns true and Params is empty, then all of the parameters match.
3092static bool hasSimilarParameters(ASTContext &Context,
3093                                     FunctionDecl *Declaration,
3094                                     FunctionDecl *Definition,
3095                                     llvm::SmallVectorImpl<unsigned> &Params) {
3096  Params.clear();
3097  if (Declaration->param_size() != Definition->param_size())
3098    return false;
3099  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3100    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3101    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3102
3103    // The parameter types are identical
3104    if (Context.hasSameType(DefParamTy, DeclParamTy))
3105      continue;
3106
3107    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3108    QualType DefParamBaseTy = getCoreType(DefParamTy);
3109    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3110    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3111
3112    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3113        (DeclTyName && DeclTyName == DefTyName))
3114      Params.push_back(Idx);
3115    else  // The two parameters aren't even close
3116      return false;
3117  }
3118
3119  return true;
3120}
3121
3122/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3123/// declarator needs to be rebuilt in the current instantiation.
3124/// Any bits of declarator which appear before the name are valid for
3125/// consideration here.  That's specifically the type in the decl spec
3126/// and the base type in any member-pointer chunks.
3127static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3128                                                    DeclarationName Name) {
3129  // The types we specifically need to rebuild are:
3130  //   - typenames, typeofs, and decltypes
3131  //   - types which will become injected class names
3132  // Of course, we also need to rebuild any type referencing such a
3133  // type.  It's safest to just say "dependent", but we call out a
3134  // few cases here.
3135
3136  DeclSpec &DS = D.getMutableDeclSpec();
3137  switch (DS.getTypeSpecType()) {
3138  case DeclSpec::TST_typename:
3139  case DeclSpec::TST_typeofType:
3140  case DeclSpec::TST_decltype:
3141  case DeclSpec::TST_underlyingType:
3142  case DeclSpec::TST_atomic: {
3143    // Grab the type from the parser.
3144    TypeSourceInfo *TSI = 0;
3145    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3146    if (T.isNull() || !T->isDependentType()) break;
3147
3148    // Make sure there's a type source info.  This isn't really much
3149    // of a waste; most dependent types should have type source info
3150    // attached already.
3151    if (!TSI)
3152      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3153
3154    // Rebuild the type in the current instantiation.
3155    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3156    if (!TSI) return true;
3157
3158    // Store the new type back in the decl spec.
3159    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3160    DS.UpdateTypeRep(LocType);
3161    break;
3162  }
3163
3164  case DeclSpec::TST_typeofExpr: {
3165    Expr *E = DS.getRepAsExpr();
3166    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3167    if (Result.isInvalid()) return true;
3168    DS.UpdateExprRep(Result.get());
3169    break;
3170  }
3171
3172  default:
3173    // Nothing to do for these decl specs.
3174    break;
3175  }
3176
3177  // It doesn't matter what order we do this in.
3178  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3179    DeclaratorChunk &Chunk = D.getTypeObject(I);
3180
3181    // The only type information in the declarator which can come
3182    // before the declaration name is the base type of a member
3183    // pointer.
3184    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3185      continue;
3186
3187    // Rebuild the scope specifier in-place.
3188    CXXScopeSpec &SS = Chunk.Mem.Scope();
3189    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3190      return true;
3191  }
3192
3193  return false;
3194}
3195
3196Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3197  D.setFunctionDefinitionKind(FDK_Declaration);
3198  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3199
3200  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3201      Dcl->getDeclContext()->isFileContext())
3202    Dcl->setTopLevelDeclInObjCContainer();
3203
3204  return Dcl;
3205}
3206
3207/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3208///   If T is the name of a class, then each of the following shall have a
3209///   name different from T:
3210///     - every static data member of class T;
3211///     - every member function of class T
3212///     - every member of class T that is itself a type;
3213/// \returns true if the declaration name violates these rules.
3214bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3215                                   DeclarationNameInfo NameInfo) {
3216  DeclarationName Name = NameInfo.getName();
3217
3218  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3219    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3220      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3221      return true;
3222    }
3223
3224  return false;
3225}
3226
3227Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3228                             MultiTemplateParamsArg TemplateParamLists) {
3229  // TODO: consider using NameInfo for diagnostic.
3230  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3231  DeclarationName Name = NameInfo.getName();
3232
3233  // All of these full declarators require an identifier.  If it doesn't have
3234  // one, the ParsedFreeStandingDeclSpec action should be used.
3235  if (!Name) {
3236    if (!D.isInvalidType())  // Reject this if we think it is valid.
3237      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3238           diag::err_declarator_need_ident)
3239        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3240    return 0;
3241  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3242    return 0;
3243
3244  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3245  // we find one that is.
3246  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3247         (S->getFlags() & Scope::TemplateParamScope) != 0)
3248    S = S->getParent();
3249
3250  DeclContext *DC = CurContext;
3251  if (D.getCXXScopeSpec().isInvalid())
3252    D.setInvalidType();
3253  else if (D.getCXXScopeSpec().isSet()) {
3254    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3255                                        UPPC_DeclarationQualifier))
3256      return 0;
3257
3258    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3259    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3260    if (!DC) {
3261      // If we could not compute the declaration context, it's because the
3262      // declaration context is dependent but does not refer to a class,
3263      // class template, or class template partial specialization. Complain
3264      // and return early, to avoid the coming semantic disaster.
3265      Diag(D.getIdentifierLoc(),
3266           diag::err_template_qualified_declarator_no_match)
3267        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3268        << D.getCXXScopeSpec().getRange();
3269      return 0;
3270    }
3271    bool IsDependentContext = DC->isDependentContext();
3272
3273    if (!IsDependentContext &&
3274        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3275      return 0;
3276
3277    if (isa<CXXRecordDecl>(DC)) {
3278      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3279        Diag(D.getIdentifierLoc(),
3280             diag::err_member_def_undefined_record)
3281          << Name << DC << D.getCXXScopeSpec().getRange();
3282        D.setInvalidType();
3283      } else if (isa<CXXRecordDecl>(CurContext) &&
3284                 !D.getDeclSpec().isFriendSpecified()) {
3285        // The user provided a superfluous scope specifier inside a class
3286        // definition:
3287        //
3288        // class X {
3289        //   void X::f();
3290        // };
3291        if (CurContext->Equals(DC)) {
3292          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3293            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3294        } else {
3295          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3296            << Name << D.getCXXScopeSpec().getRange();
3297
3298          // C++ constructors and destructors with incorrect scopes can break
3299          // our AST invariants by having the wrong underlying types. If
3300          // that's the case, then drop this declaration entirely.
3301          if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3302               Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3303              !Context.hasSameType(Name.getCXXNameType(),
3304                 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
3305            return 0;
3306        }
3307
3308        // Pretend that this qualifier was not here.
3309        D.getCXXScopeSpec().clear();
3310      }
3311    }
3312
3313    // Check whether we need to rebuild the type of the given
3314    // declaration in the current instantiation.
3315    if (EnteringContext && IsDependentContext &&
3316        TemplateParamLists.size() != 0) {
3317      ContextRAII SavedContext(*this, DC);
3318      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3319        D.setInvalidType();
3320    }
3321  }
3322
3323  if (DiagnoseClassNameShadow(DC, NameInfo))
3324    // If this is a typedef, we'll end up spewing multiple diagnostics.
3325    // Just return early; it's safer.
3326    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3327      return 0;
3328
3329  NamedDecl *New;
3330
3331  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3332  QualType R = TInfo->getType();
3333
3334  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3335                                      UPPC_DeclarationType))
3336    D.setInvalidType();
3337
3338  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3339                        ForRedeclaration);
3340
3341  // See if this is a redefinition of a variable in the same scope.
3342  if (!D.getCXXScopeSpec().isSet()) {
3343    bool IsLinkageLookup = false;
3344
3345    // If the declaration we're planning to build will be a function
3346    // or object with linkage, then look for another declaration with
3347    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3348    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3349      /* Do nothing*/;
3350    else if (R->isFunctionType()) {
3351      if (CurContext->isFunctionOrMethod() ||
3352          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3353        IsLinkageLookup = true;
3354    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3355      IsLinkageLookup = true;
3356    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3357             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3358      IsLinkageLookup = true;
3359
3360    if (IsLinkageLookup)
3361      Previous.clear(LookupRedeclarationWithLinkage);
3362
3363    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3364  } else { // Something like "int foo::x;"
3365    LookupQualifiedName(Previous, DC);
3366
3367    // Don't consider using declarations as previous declarations for
3368    // out-of-line members.
3369    RemoveUsingDecls(Previous);
3370
3371    // C++ 7.3.1.2p2:
3372    // Members (including explicit specializations of templates) of a named
3373    // namespace can also be defined outside that namespace by explicit
3374    // qualification of the name being defined, provided that the entity being
3375    // defined was already declared in the namespace and the definition appears
3376    // after the point of declaration in a namespace that encloses the
3377    // declarations namespace.
3378    //
3379    // Note that we only check the context at this point. We don't yet
3380    // have enough information to make sure that PrevDecl is actually
3381    // the declaration we want to match. For example, given:
3382    //
3383    //   class X {
3384    //     void f();
3385    //     void f(float);
3386    //   };
3387    //
3388    //   void X::f(int) { } // ill-formed
3389    //
3390    // In this case, PrevDecl will point to the overload set
3391    // containing the two f's declared in X, but neither of them
3392    // matches.
3393
3394    // First check whether we named the global scope.
3395    if (isa<TranslationUnitDecl>(DC)) {
3396      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3397        << Name << D.getCXXScopeSpec().getRange();
3398    } else {
3399      DeclContext *Cur = CurContext;
3400      while (isa<LinkageSpecDecl>(Cur))
3401        Cur = Cur->getParent();
3402      if (!Cur->Encloses(DC)) {
3403        // The qualifying scope doesn't enclose the original declaration.
3404        // Emit diagnostic based on current scope.
3405        SourceLocation L = D.getIdentifierLoc();
3406        SourceRange R = D.getCXXScopeSpec().getRange();
3407        if (isa<FunctionDecl>(Cur))
3408          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3409        else
3410          Diag(L, diag::err_invalid_declarator_scope)
3411            << Name << cast<NamedDecl>(DC) << R;
3412        D.setInvalidType();
3413      }
3414
3415      // C++11 8.3p1:
3416      // ... "The nested-name-specifier of the qualified declarator-id shall
3417      // not begin with a decltype-specifer"
3418      NestedNameSpecifierLoc SpecLoc =
3419            D.getCXXScopeSpec().getWithLocInContext(Context);
3420      assert(SpecLoc && "A non-empty CXXScopeSpec should have a non-empty "
3421                        "NestedNameSpecifierLoc");
3422      while (SpecLoc.getPrefix())
3423        SpecLoc = SpecLoc.getPrefix();
3424      if (dyn_cast_or_null<DecltypeType>(
3425            SpecLoc.getNestedNameSpecifier()->getAsType()))
3426        Diag(SpecLoc.getBeginLoc(), diag::err_decltype_in_declarator)
3427          << SpecLoc.getTypeLoc().getSourceRange();
3428    }
3429  }
3430
3431  if (Previous.isSingleResult() &&
3432      Previous.getFoundDecl()->isTemplateParameter()) {
3433    // Maybe we will complain about the shadowed template parameter.
3434    if (!D.isInvalidType())
3435      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3436                                      Previous.getFoundDecl());
3437
3438    // Just pretend that we didn't see the previous declaration.
3439    Previous.clear();
3440  }
3441
3442  // In C++, the previous declaration we find might be a tag type
3443  // (class or enum). In this case, the new declaration will hide the
3444  // tag type. Note that this does does not apply if we're declaring a
3445  // typedef (C++ [dcl.typedef]p4).
3446  if (Previous.isSingleTagDecl() &&
3447      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3448    Previous.clear();
3449
3450  bool AddToScope = true;
3451  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3452    if (TemplateParamLists.size()) {
3453      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3454      return 0;
3455    }
3456
3457    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3458  } else if (R->isFunctionType()) {
3459    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3460                                  move(TemplateParamLists),
3461                                  AddToScope);
3462  } else {
3463    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3464                                  move(TemplateParamLists));
3465  }
3466
3467  if (New == 0)
3468    return 0;
3469
3470  // If this has an identifier and is not an invalid redeclaration or
3471  // function template specialization, add it to the scope stack.
3472  if (New->getDeclName() && AddToScope &&
3473       !(D.isRedeclaration() && New->isInvalidDecl()))
3474    PushOnScopeChains(New, S);
3475
3476  return New;
3477}
3478
3479/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3480/// types into constant array types in certain situations which would otherwise
3481/// be errors (for GCC compatibility).
3482static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3483                                                    ASTContext &Context,
3484                                                    bool &SizeIsNegative,
3485                                                    llvm::APSInt &Oversized) {
3486  // This method tries to turn a variable array into a constant
3487  // array even when the size isn't an ICE.  This is necessary
3488  // for compatibility with code that depends on gcc's buggy
3489  // constant expression folding, like struct {char x[(int)(char*)2];}
3490  SizeIsNegative = false;
3491  Oversized = 0;
3492
3493  if (T->isDependentType())
3494    return QualType();
3495
3496  QualifierCollector Qs;
3497  const Type *Ty = Qs.strip(T);
3498
3499  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3500    QualType Pointee = PTy->getPointeeType();
3501    QualType FixedType =
3502        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3503                                            Oversized);
3504    if (FixedType.isNull()) return FixedType;
3505    FixedType = Context.getPointerType(FixedType);
3506    return Qs.apply(Context, FixedType);
3507  }
3508  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3509    QualType Inner = PTy->getInnerType();
3510    QualType FixedType =
3511        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3512                                            Oversized);
3513    if (FixedType.isNull()) return FixedType;
3514    FixedType = Context.getParenType(FixedType);
3515    return Qs.apply(Context, FixedType);
3516  }
3517
3518  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3519  if (!VLATy)
3520    return QualType();
3521  // FIXME: We should probably handle this case
3522  if (VLATy->getElementType()->isVariablyModifiedType())
3523    return QualType();
3524
3525  llvm::APSInt Res;
3526  if (!VLATy->getSizeExpr() ||
3527      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3528    return QualType();
3529
3530  // Check whether the array size is negative.
3531  if (Res.isSigned() && Res.isNegative()) {
3532    SizeIsNegative = true;
3533    return QualType();
3534  }
3535
3536  // Check whether the array is too large to be addressed.
3537  unsigned ActiveSizeBits
3538    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3539                                              Res);
3540  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3541    Oversized = Res;
3542    return QualType();
3543  }
3544
3545  return Context.getConstantArrayType(VLATy->getElementType(),
3546                                      Res, ArrayType::Normal, 0);
3547}
3548
3549/// \brief Register the given locally-scoped external C declaration so
3550/// that it can be found later for redeclarations
3551void
3552Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3553                                       const LookupResult &Previous,
3554                                       Scope *S) {
3555  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3556         "Decl is not a locally-scoped decl!");
3557  // Note that we have a locally-scoped external with this name.
3558  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3559
3560  if (!Previous.isSingleResult())
3561    return;
3562
3563  NamedDecl *PrevDecl = Previous.getFoundDecl();
3564
3565  // If there was a previous declaration of this variable, it may be
3566  // in our identifier chain. Update the identifier chain with the new
3567  // declaration.
3568  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3569    // The previous declaration was found on the identifer resolver
3570    // chain, so remove it from its scope.
3571
3572    if (S->isDeclScope(PrevDecl)) {
3573      // Special case for redeclarations in the SAME scope.
3574      // Because this declaration is going to be added to the identifier chain
3575      // later, we should temporarily take it OFF the chain.
3576      IdResolver.RemoveDecl(ND);
3577
3578    } else {
3579      // Find the scope for the original declaration.
3580      while (S && !S->isDeclScope(PrevDecl))
3581        S = S->getParent();
3582    }
3583
3584    if (S)
3585      S->RemoveDecl(PrevDecl);
3586  }
3587}
3588
3589llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3590Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3591  if (ExternalSource) {
3592    // Load locally-scoped external decls from the external source.
3593    SmallVector<NamedDecl *, 4> Decls;
3594    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3595    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3596      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3597        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3598      if (Pos == LocallyScopedExternalDecls.end())
3599        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3600    }
3601  }
3602
3603  return LocallyScopedExternalDecls.find(Name);
3604}
3605
3606/// \brief Diagnose function specifiers on a declaration of an identifier that
3607/// does not identify a function.
3608void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3609  // FIXME: We should probably indicate the identifier in question to avoid
3610  // confusion for constructs like "inline int a(), b;"
3611  if (D.getDeclSpec().isInlineSpecified())
3612    Diag(D.getDeclSpec().getInlineSpecLoc(),
3613         diag::err_inline_non_function);
3614
3615  if (D.getDeclSpec().isVirtualSpecified())
3616    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3617         diag::err_virtual_non_function);
3618
3619  if (D.getDeclSpec().isExplicitSpecified())
3620    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3621         diag::err_explicit_non_function);
3622}
3623
3624NamedDecl*
3625Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3626                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3627  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3628  if (D.getCXXScopeSpec().isSet()) {
3629    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3630      << D.getCXXScopeSpec().getRange();
3631    D.setInvalidType();
3632    // Pretend we didn't see the scope specifier.
3633    DC = CurContext;
3634    Previous.clear();
3635  }
3636
3637  if (getLangOptions().CPlusPlus) {
3638    // Check that there are no default arguments (C++ only).
3639    CheckExtraCXXDefaultArguments(D);
3640  }
3641
3642  DiagnoseFunctionSpecifiers(D);
3643
3644  if (D.getDeclSpec().isThreadSpecified())
3645    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3646  if (D.getDeclSpec().isConstexprSpecified())
3647    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3648      << 1;
3649
3650  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3651    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3652      << D.getName().getSourceRange();
3653    return 0;
3654  }
3655
3656  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3657  if (!NewTD) return 0;
3658
3659  // Handle attributes prior to checking for duplicates in MergeVarDecl
3660  ProcessDeclAttributes(S, NewTD, D);
3661
3662  CheckTypedefForVariablyModifiedType(S, NewTD);
3663
3664  bool Redeclaration = D.isRedeclaration();
3665  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3666  D.setRedeclaration(Redeclaration);
3667  return ND;
3668}
3669
3670void
3671Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3672  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3673  // then it shall have block scope.
3674  // Note that variably modified types must be fixed before merging the decl so
3675  // that redeclarations will match.
3676  QualType T = NewTD->getUnderlyingType();
3677  if (T->isVariablyModifiedType()) {
3678    getCurFunction()->setHasBranchProtectedScope();
3679
3680    if (S->getFnParent() == 0) {
3681      bool SizeIsNegative;
3682      llvm::APSInt Oversized;
3683      QualType FixedTy =
3684          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3685                                              Oversized);
3686      if (!FixedTy.isNull()) {
3687        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3688        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3689      } else {
3690        if (SizeIsNegative)
3691          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3692        else if (T->isVariableArrayType())
3693          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3694        else if (Oversized.getBoolValue())
3695          Diag(NewTD->getLocation(), diag::err_array_too_large)
3696            << Oversized.toString(10);
3697        else
3698          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3699        NewTD->setInvalidDecl();
3700      }
3701    }
3702  }
3703}
3704
3705
3706/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3707/// declares a typedef-name, either using the 'typedef' type specifier or via
3708/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3709NamedDecl*
3710Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3711                           LookupResult &Previous, bool &Redeclaration) {
3712  // Merge the decl with the existing one if appropriate. If the decl is
3713  // in an outer scope, it isn't the same thing.
3714  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3715                       /*ExplicitInstantiationOrSpecialization=*/false);
3716  if (!Previous.empty()) {
3717    Redeclaration = true;
3718    MergeTypedefNameDecl(NewTD, Previous);
3719  }
3720
3721  // If this is the C FILE type, notify the AST context.
3722  if (IdentifierInfo *II = NewTD->getIdentifier())
3723    if (!NewTD->isInvalidDecl() &&
3724        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3725      if (II->isStr("FILE"))
3726        Context.setFILEDecl(NewTD);
3727      else if (II->isStr("jmp_buf"))
3728        Context.setjmp_bufDecl(NewTD);
3729      else if (II->isStr("sigjmp_buf"))
3730        Context.setsigjmp_bufDecl(NewTD);
3731      else if (II->isStr("ucontext_t"))
3732        Context.setucontext_tDecl(NewTD);
3733      else if (II->isStr("__builtin_va_list"))
3734        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3735    }
3736
3737  return NewTD;
3738}
3739
3740/// \brief Determines whether the given declaration is an out-of-scope
3741/// previous declaration.
3742///
3743/// This routine should be invoked when name lookup has found a
3744/// previous declaration (PrevDecl) that is not in the scope where a
3745/// new declaration by the same name is being introduced. If the new
3746/// declaration occurs in a local scope, previous declarations with
3747/// linkage may still be considered previous declarations (C99
3748/// 6.2.2p4-5, C++ [basic.link]p6).
3749///
3750/// \param PrevDecl the previous declaration found by name
3751/// lookup
3752///
3753/// \param DC the context in which the new declaration is being
3754/// declared.
3755///
3756/// \returns true if PrevDecl is an out-of-scope previous declaration
3757/// for a new delcaration with the same name.
3758static bool
3759isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3760                                ASTContext &Context) {
3761  if (!PrevDecl)
3762    return false;
3763
3764  if (!PrevDecl->hasLinkage())
3765    return false;
3766
3767  if (Context.getLangOptions().CPlusPlus) {
3768    // C++ [basic.link]p6:
3769    //   If there is a visible declaration of an entity with linkage
3770    //   having the same name and type, ignoring entities declared
3771    //   outside the innermost enclosing namespace scope, the block
3772    //   scope declaration declares that same entity and receives the
3773    //   linkage of the previous declaration.
3774    DeclContext *OuterContext = DC->getRedeclContext();
3775    if (!OuterContext->isFunctionOrMethod())
3776      // This rule only applies to block-scope declarations.
3777      return false;
3778
3779    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3780    if (PrevOuterContext->isRecord())
3781      // We found a member function: ignore it.
3782      return false;
3783
3784    // Find the innermost enclosing namespace for the new and
3785    // previous declarations.
3786    OuterContext = OuterContext->getEnclosingNamespaceContext();
3787    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3788
3789    // The previous declaration is in a different namespace, so it
3790    // isn't the same function.
3791    if (!OuterContext->Equals(PrevOuterContext))
3792      return false;
3793  }
3794
3795  return true;
3796}
3797
3798static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3799  CXXScopeSpec &SS = D.getCXXScopeSpec();
3800  if (!SS.isSet()) return;
3801  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3802}
3803
3804bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3805  QualType type = decl->getType();
3806  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3807  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3808    // Various kinds of declaration aren't allowed to be __autoreleasing.
3809    unsigned kind = -1U;
3810    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3811      if (var->hasAttr<BlocksAttr>())
3812        kind = 0; // __block
3813      else if (!var->hasLocalStorage())
3814        kind = 1; // global
3815    } else if (isa<ObjCIvarDecl>(decl)) {
3816      kind = 3; // ivar
3817    } else if (isa<FieldDecl>(decl)) {
3818      kind = 2; // field
3819    }
3820
3821    if (kind != -1U) {
3822      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3823        << kind;
3824    }
3825  } else if (lifetime == Qualifiers::OCL_None) {
3826    // Try to infer lifetime.
3827    if (!type->isObjCLifetimeType())
3828      return false;
3829
3830    lifetime = type->getObjCARCImplicitLifetime();
3831    type = Context.getLifetimeQualifiedType(type, lifetime);
3832    decl->setType(type);
3833  }
3834
3835  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3836    // Thread-local variables cannot have lifetime.
3837    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3838        var->isThreadSpecified()) {
3839      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3840        << var->getType();
3841      return true;
3842    }
3843  }
3844
3845  return false;
3846}
3847
3848NamedDecl*
3849Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3850                              TypeSourceInfo *TInfo, LookupResult &Previous,
3851                              MultiTemplateParamsArg TemplateParamLists) {
3852  QualType R = TInfo->getType();
3853  DeclarationName Name = GetNameForDeclarator(D).getName();
3854
3855  // Check that there are no default arguments (C++ only).
3856  if (getLangOptions().CPlusPlus)
3857    CheckExtraCXXDefaultArguments(D);
3858
3859  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3860  assert(SCSpec != DeclSpec::SCS_typedef &&
3861         "Parser allowed 'typedef' as storage class VarDecl.");
3862  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3863  if (SCSpec == DeclSpec::SCS_mutable) {
3864    // mutable can only appear on non-static class members, so it's always
3865    // an error here
3866    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3867    D.setInvalidType();
3868    SC = SC_None;
3869  }
3870  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3871  VarDecl::StorageClass SCAsWritten
3872    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3873
3874  IdentifierInfo *II = Name.getAsIdentifierInfo();
3875  if (!II) {
3876    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3877      << Name;
3878    return 0;
3879  }
3880
3881  DiagnoseFunctionSpecifiers(D);
3882
3883  if (!DC->isRecord() && S->getFnParent() == 0) {
3884    // C99 6.9p2: The storage-class specifiers auto and register shall not
3885    // appear in the declaration specifiers in an external declaration.
3886    if (SC == SC_Auto || SC == SC_Register) {
3887
3888      // If this is a register variable with an asm label specified, then this
3889      // is a GNU extension.
3890      if (SC == SC_Register && D.getAsmLabel())
3891        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3892      else
3893        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3894      D.setInvalidType();
3895    }
3896  }
3897
3898  if (getLangOptions().OpenCL) {
3899    // Set up the special work-group-local storage class for variables in the
3900    // OpenCL __local address space.
3901    if (R.getAddressSpace() == LangAS::opencl_local)
3902      SC = SC_OpenCLWorkGroupLocal;
3903  }
3904
3905  bool isExplicitSpecialization = false;
3906  VarDecl *NewVD;
3907  if (!getLangOptions().CPlusPlus) {
3908    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3909                            D.getIdentifierLoc(), II,
3910                            R, TInfo, SC, SCAsWritten);
3911
3912    if (D.isInvalidType())
3913      NewVD->setInvalidDecl();
3914  } else {
3915    if (DC->isRecord() && !CurContext->isRecord()) {
3916      // This is an out-of-line definition of a static data member.
3917      if (SC == SC_Static) {
3918        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3919             diag::err_static_out_of_line)
3920          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3921      } else if (SC == SC_None)
3922        SC = SC_Static;
3923    }
3924    if (SC == SC_Static) {
3925      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3926        if (RD->isLocalClass())
3927          Diag(D.getIdentifierLoc(),
3928               diag::err_static_data_member_not_allowed_in_local_class)
3929            << Name << RD->getDeclName();
3930
3931        // C++ [class.union]p1: If a union contains a static data member,
3932        // the program is ill-formed.
3933        //
3934        // We also disallow static data members in anonymous structs.
3935        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3936          Diag(D.getIdentifierLoc(),
3937               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3938            << Name << RD->isUnion();
3939      }
3940    }
3941
3942    // Match up the template parameter lists with the scope specifier, then
3943    // determine whether we have a template or a template specialization.
3944    isExplicitSpecialization = false;
3945    bool Invalid = false;
3946    if (TemplateParameterList *TemplateParams
3947        = MatchTemplateParametersToScopeSpecifier(
3948                                  D.getDeclSpec().getSourceRange().getBegin(),
3949                                                  D.getIdentifierLoc(),
3950                                                  D.getCXXScopeSpec(),
3951                                                  TemplateParamLists.get(),
3952                                                  TemplateParamLists.size(),
3953                                                  /*never a friend*/ false,
3954                                                  isExplicitSpecialization,
3955                                                  Invalid)) {
3956      if (TemplateParams->size() > 0) {
3957        // There is no such thing as a variable template.
3958        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3959          << II
3960          << SourceRange(TemplateParams->getTemplateLoc(),
3961                         TemplateParams->getRAngleLoc());
3962        return 0;
3963      } else {
3964        // There is an extraneous 'template<>' for this variable. Complain
3965        // about it, but allow the declaration of the variable.
3966        Diag(TemplateParams->getTemplateLoc(),
3967             diag::err_template_variable_noparams)
3968          << II
3969          << SourceRange(TemplateParams->getTemplateLoc(),
3970                         TemplateParams->getRAngleLoc());
3971      }
3972    }
3973
3974    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3975                            D.getIdentifierLoc(), II,
3976                            R, TInfo, SC, SCAsWritten);
3977
3978    // If this decl has an auto type in need of deduction, make a note of the
3979    // Decl so we can diagnose uses of it in its own initializer.
3980    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3981        R->getContainedAutoType())
3982      ParsingInitForAutoVars.insert(NewVD);
3983
3984    if (D.isInvalidType() || Invalid)
3985      NewVD->setInvalidDecl();
3986
3987    SetNestedNameSpecifier(NewVD, D);
3988
3989    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3990      NewVD->setTemplateParameterListsInfo(Context,
3991                                           TemplateParamLists.size(),
3992                                           TemplateParamLists.release());
3993    }
3994
3995    if (D.getDeclSpec().isConstexprSpecified())
3996      NewVD->setConstexpr(true);
3997  }
3998
3999  // Set the lexical context. If the declarator has a C++ scope specifier, the
4000  // lexical context will be different from the semantic context.
4001  NewVD->setLexicalDeclContext(CurContext);
4002
4003  if (D.getDeclSpec().isThreadSpecified()) {
4004    if (NewVD->hasLocalStorage())
4005      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4006    else if (!Context.getTargetInfo().isTLSSupported())
4007      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4008    else
4009      NewVD->setThreadSpecified(true);
4010  }
4011
4012  if (D.getDeclSpec().isModulePrivateSpecified()) {
4013    if (isExplicitSpecialization)
4014      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4015        << 2
4016        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4017    else if (NewVD->hasLocalStorage())
4018      Diag(NewVD->getLocation(), diag::err_module_private_local)
4019        << 0 << NewVD->getDeclName()
4020        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4021        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4022    else
4023      NewVD->setModulePrivate();
4024  }
4025
4026  // Handle attributes prior to checking for duplicates in MergeVarDecl
4027  ProcessDeclAttributes(S, NewVD, D);
4028
4029  // In auto-retain/release, infer strong retension for variables of
4030  // retainable type.
4031  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4032    NewVD->setInvalidDecl();
4033
4034  // Handle GNU asm-label extension (encoded as an attribute).
4035  if (Expr *E = (Expr*)D.getAsmLabel()) {
4036    // The parser guarantees this is a string.
4037    StringLiteral *SE = cast<StringLiteral>(E);
4038    StringRef Label = SE->getString();
4039    if (S->getFnParent() != 0) {
4040      switch (SC) {
4041      case SC_None:
4042      case SC_Auto:
4043        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4044        break;
4045      case SC_Register:
4046        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4047          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4048        break;
4049      case SC_Static:
4050      case SC_Extern:
4051      case SC_PrivateExtern:
4052      case SC_OpenCLWorkGroupLocal:
4053        break;
4054      }
4055    }
4056
4057    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4058                                                Context, Label));
4059  }
4060
4061  // Diagnose shadowed variables before filtering for scope.
4062  if (!D.getCXXScopeSpec().isSet())
4063    CheckShadow(S, NewVD, Previous);
4064
4065  // Don't consider existing declarations that are in a different
4066  // scope and are out-of-semantic-context declarations (if the new
4067  // declaration has linkage).
4068  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4069                       isExplicitSpecialization);
4070
4071  if (!getLangOptions().CPlusPlus) {
4072    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4073  } else {
4074    // Merge the decl with the existing one if appropriate.
4075    if (!Previous.empty()) {
4076      if (Previous.isSingleResult() &&
4077          isa<FieldDecl>(Previous.getFoundDecl()) &&
4078          D.getCXXScopeSpec().isSet()) {
4079        // The user tried to define a non-static data member
4080        // out-of-line (C++ [dcl.meaning]p1).
4081        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4082          << D.getCXXScopeSpec().getRange();
4083        Previous.clear();
4084        NewVD->setInvalidDecl();
4085      }
4086    } else if (D.getCXXScopeSpec().isSet()) {
4087      // No previous declaration in the qualifying scope.
4088      Diag(D.getIdentifierLoc(), diag::err_no_member)
4089        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4090        << D.getCXXScopeSpec().getRange();
4091      NewVD->setInvalidDecl();
4092    }
4093
4094    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4095
4096    // This is an explicit specialization of a static data member. Check it.
4097    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4098        CheckMemberSpecialization(NewVD, Previous))
4099      NewVD->setInvalidDecl();
4100  }
4101
4102  // attributes declared post-definition are currently ignored
4103  // FIXME: This should be handled in attribute merging, not
4104  // here.
4105  if (Previous.isSingleResult()) {
4106    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4107    if (Def && (Def = Def->getDefinition()) &&
4108        Def != NewVD && D.hasAttributes()) {
4109      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4110      Diag(Def->getLocation(), diag::note_previous_definition);
4111    }
4112  }
4113
4114  // If this is a locally-scoped extern C variable, update the map of
4115  // such variables.
4116  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4117      !NewVD->isInvalidDecl())
4118    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4119
4120  // If there's a #pragma GCC visibility in scope, and this isn't a class
4121  // member, set the visibility of this variable.
4122  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4123    AddPushedVisibilityAttribute(NewVD);
4124
4125  MarkUnusedFileScopedDecl(NewVD);
4126
4127  return NewVD;
4128}
4129
4130/// \brief Diagnose variable or built-in function shadowing.  Implements
4131/// -Wshadow.
4132///
4133/// This method is called whenever a VarDecl is added to a "useful"
4134/// scope.
4135///
4136/// \param S the scope in which the shadowing name is being declared
4137/// \param R the lookup of the name
4138///
4139void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4140  // Return if warning is ignored.
4141  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4142        DiagnosticsEngine::Ignored)
4143    return;
4144
4145  // Don't diagnose declarations at file scope.
4146  if (D->hasGlobalStorage())
4147    return;
4148
4149  DeclContext *NewDC = D->getDeclContext();
4150
4151  // Only diagnose if we're shadowing an unambiguous field or variable.
4152  if (R.getResultKind() != LookupResult::Found)
4153    return;
4154
4155  NamedDecl* ShadowedDecl = R.getFoundDecl();
4156  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4157    return;
4158
4159  // Fields are not shadowed by variables in C++ static methods.
4160  if (isa<FieldDecl>(ShadowedDecl))
4161    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4162      if (MD->isStatic())
4163        return;
4164
4165  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4166    if (shadowedVar->isExternC()) {
4167      // For shadowing external vars, make sure that we point to the global
4168      // declaration, not a locally scoped extern declaration.
4169      for (VarDecl::redecl_iterator
4170             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4171           I != E; ++I)
4172        if (I->isFileVarDecl()) {
4173          ShadowedDecl = *I;
4174          break;
4175        }
4176    }
4177
4178  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4179
4180  // Only warn about certain kinds of shadowing for class members.
4181  if (NewDC && NewDC->isRecord()) {
4182    // In particular, don't warn about shadowing non-class members.
4183    if (!OldDC->isRecord())
4184      return;
4185
4186    // TODO: should we warn about static data members shadowing
4187    // static data members from base classes?
4188
4189    // TODO: don't diagnose for inaccessible shadowed members.
4190    // This is hard to do perfectly because we might friend the
4191    // shadowing context, but that's just a false negative.
4192  }
4193
4194  // Determine what kind of declaration we're shadowing.
4195  unsigned Kind;
4196  if (isa<RecordDecl>(OldDC)) {
4197    if (isa<FieldDecl>(ShadowedDecl))
4198      Kind = 3; // field
4199    else
4200      Kind = 2; // static data member
4201  } else if (OldDC->isFileContext())
4202    Kind = 1; // global
4203  else
4204    Kind = 0; // local
4205
4206  DeclarationName Name = R.getLookupName();
4207
4208  // Emit warning and note.
4209  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4210  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4211}
4212
4213/// \brief Check -Wshadow without the advantage of a previous lookup.
4214void Sema::CheckShadow(Scope *S, VarDecl *D) {
4215  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4216        DiagnosticsEngine::Ignored)
4217    return;
4218
4219  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4220                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4221  LookupName(R, S);
4222  CheckShadow(S, D, R);
4223}
4224
4225/// \brief Perform semantic checking on a newly-created variable
4226/// declaration.
4227///
4228/// This routine performs all of the type-checking required for a
4229/// variable declaration once it has been built. It is used both to
4230/// check variables after they have been parsed and their declarators
4231/// have been translated into a declaration, and to check variables
4232/// that have been instantiated from a template.
4233///
4234/// Sets NewVD->isInvalidDecl() if an error was encountered.
4235///
4236/// Returns true if the variable declaration is a redeclaration.
4237bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4238                                    LookupResult &Previous) {
4239  // If the decl is already known invalid, don't check it.
4240  if (NewVD->isInvalidDecl())
4241    return false;
4242
4243  QualType T = NewVD->getType();
4244
4245  if (T->isObjCObjectType()) {
4246    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4247      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4248    T = Context.getObjCObjectPointerType(T);
4249    NewVD->setType(T);
4250  }
4251
4252  // Emit an error if an address space was applied to decl with local storage.
4253  // This includes arrays of objects with address space qualifiers, but not
4254  // automatic variables that point to other address spaces.
4255  // ISO/IEC TR 18037 S5.1.2
4256  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4257    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4258    NewVD->setInvalidDecl();
4259    return false;
4260  }
4261
4262  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4263      && !NewVD->hasAttr<BlocksAttr>()) {
4264    if (getLangOptions().getGC() != LangOptions::NonGC)
4265      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4266    else
4267      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4268  }
4269
4270  bool isVM = T->isVariablyModifiedType();
4271  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4272      NewVD->hasAttr<BlocksAttr>())
4273    getCurFunction()->setHasBranchProtectedScope();
4274
4275  if ((isVM && NewVD->hasLinkage()) ||
4276      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4277    bool SizeIsNegative;
4278    llvm::APSInt Oversized;
4279    QualType FixedTy =
4280        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4281                                            Oversized);
4282
4283    if (FixedTy.isNull() && T->isVariableArrayType()) {
4284      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4285      // FIXME: This won't give the correct result for
4286      // int a[10][n];
4287      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4288
4289      if (NewVD->isFileVarDecl())
4290        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4291        << SizeRange;
4292      else if (NewVD->getStorageClass() == SC_Static)
4293        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4294        << SizeRange;
4295      else
4296        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4297        << SizeRange;
4298      NewVD->setInvalidDecl();
4299      return false;
4300    }
4301
4302    if (FixedTy.isNull()) {
4303      if (NewVD->isFileVarDecl())
4304        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4305      else
4306        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4307      NewVD->setInvalidDecl();
4308      return false;
4309    }
4310
4311    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4312    NewVD->setType(FixedTy);
4313  }
4314
4315  if (Previous.empty() && NewVD->isExternC()) {
4316    // Since we did not find anything by this name and we're declaring
4317    // an extern "C" variable, look for a non-visible extern "C"
4318    // declaration with the same name.
4319    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4320      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4321    if (Pos != LocallyScopedExternalDecls.end())
4322      Previous.addDecl(Pos->second);
4323  }
4324
4325  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4326    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4327      << T;
4328    NewVD->setInvalidDecl();
4329    return false;
4330  }
4331
4332  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4333    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4334    NewVD->setInvalidDecl();
4335    return false;
4336  }
4337
4338  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4339    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4340    NewVD->setInvalidDecl();
4341    return false;
4342  }
4343
4344  if (!Previous.empty()) {
4345    MergeVarDecl(NewVD, Previous);
4346    return true;
4347  }
4348  return false;
4349}
4350
4351/// \brief Data used with FindOverriddenMethod
4352struct FindOverriddenMethodData {
4353  Sema *S;
4354  CXXMethodDecl *Method;
4355};
4356
4357/// \brief Member lookup function that determines whether a given C++
4358/// method overrides a method in a base class, to be used with
4359/// CXXRecordDecl::lookupInBases().
4360static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4361                                 CXXBasePath &Path,
4362                                 void *UserData) {
4363  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4364
4365  FindOverriddenMethodData *Data
4366    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4367
4368  DeclarationName Name = Data->Method->getDeclName();
4369
4370  // FIXME: Do we care about other names here too?
4371  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4372    // We really want to find the base class destructor here.
4373    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4374    CanQualType CT = Data->S->Context.getCanonicalType(T);
4375
4376    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4377  }
4378
4379  for (Path.Decls = BaseRecord->lookup(Name);
4380       Path.Decls.first != Path.Decls.second;
4381       ++Path.Decls.first) {
4382    NamedDecl *D = *Path.Decls.first;
4383    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4384      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4385        return true;
4386    }
4387  }
4388
4389  return false;
4390}
4391
4392/// AddOverriddenMethods - See if a method overrides any in the base classes,
4393/// and if so, check that it's a valid override and remember it.
4394bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4395  // Look for virtual methods in base classes that this method might override.
4396  CXXBasePaths Paths;
4397  FindOverriddenMethodData Data;
4398  Data.Method = MD;
4399  Data.S = this;
4400  bool AddedAny = false;
4401  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4402    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4403         E = Paths.found_decls_end(); I != E; ++I) {
4404      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4405        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4406        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4407            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4408            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4409          AddedAny = true;
4410        }
4411      }
4412    }
4413  }
4414
4415  return AddedAny;
4416}
4417
4418namespace {
4419  // Struct for holding all of the extra arguments needed by
4420  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4421  struct ActOnFDArgs {
4422    Scope *S;
4423    Declarator &D;
4424    MultiTemplateParamsArg TemplateParamLists;
4425    bool AddToScope;
4426  };
4427}
4428
4429namespace {
4430
4431// Callback to only accept typo corrections that have a non-zero edit distance.
4432class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4433 public:
4434  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4435    return candidate.getEditDistance() > 0;
4436  }
4437};
4438
4439}
4440
4441/// \brief Generate diagnostics for an invalid function redeclaration.
4442///
4443/// This routine handles generating the diagnostic messages for an invalid
4444/// function redeclaration, including finding possible similar declarations
4445/// or performing typo correction if there are no previous declarations with
4446/// the same name.
4447///
4448/// Returns a NamedDecl iff typo correction was performed and substituting in
4449/// the new declaration name does not cause new errors.
4450static NamedDecl* DiagnoseInvalidRedeclaration(
4451    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4452    ActOnFDArgs &ExtraArgs) {
4453  NamedDecl *Result = NULL;
4454  DeclarationName Name = NewFD->getDeclName();
4455  DeclContext *NewDC = NewFD->getDeclContext();
4456  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4457                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4458  llvm::SmallVector<unsigned, 1> MismatchedParams;
4459  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4460  TypoCorrection Correction;
4461  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4462                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4463  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4464                                  : diag::err_member_def_does_not_match;
4465
4466  NewFD->setInvalidDecl();
4467  SemaRef.LookupQualifiedName(Prev, NewDC);
4468  assert(!Prev.isAmbiguous() &&
4469         "Cannot have an ambiguity in previous-declaration lookup");
4470  DifferentNameValidatorCCC Validator;
4471  if (!Prev.empty()) {
4472    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4473         Func != FuncEnd; ++Func) {
4474      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4475      if (FD &&
4476          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4477        // Add 1 to the index so that 0 can mean the mismatch didn't
4478        // involve a parameter
4479        unsigned ParamNum =
4480            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4481        NearMatches.push_back(std::make_pair(FD, ParamNum));
4482      }
4483    }
4484  // If the qualified name lookup yielded nothing, try typo correction
4485  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4486                                         Prev.getLookupKind(), 0, 0,
4487                                         Validator, NewDC))) {
4488    // Trap errors.
4489    Sema::SFINAETrap Trap(SemaRef);
4490
4491    // Set up everything for the call to ActOnFunctionDeclarator
4492    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4493                              ExtraArgs.D.getIdentifierLoc());
4494    Previous.clear();
4495    Previous.setLookupName(Correction.getCorrection());
4496    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4497                                    CDeclEnd = Correction.end();
4498         CDecl != CDeclEnd; ++CDecl) {
4499      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4500      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4501                                     MismatchedParams)) {
4502        Previous.addDecl(FD);
4503      }
4504    }
4505    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4506    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4507    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4508    // eliminate the need for the parameter pack ExtraArgs.
4509    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4510                                             NewFD->getDeclContext(),
4511                                             NewFD->getTypeSourceInfo(),
4512                                             Previous,
4513                                             ExtraArgs.TemplateParamLists,
4514                                             ExtraArgs.AddToScope);
4515    if (Trap.hasErrorOccurred()) {
4516      // Pretend the typo correction never occurred
4517      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4518                                ExtraArgs.D.getIdentifierLoc());
4519      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4520      Previous.clear();
4521      Previous.setLookupName(Name);
4522      Result = NULL;
4523    } else {
4524      for (LookupResult::iterator Func = Previous.begin(),
4525                               FuncEnd = Previous.end();
4526           Func != FuncEnd; ++Func) {
4527        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4528          NearMatches.push_back(std::make_pair(FD, 0));
4529      }
4530    }
4531    if (NearMatches.empty()) {
4532      // Ignore the correction if it didn't yield any close FunctionDecl matches
4533      Correction = TypoCorrection();
4534    } else {
4535      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4536                             : diag::err_member_def_does_not_match_suggest;
4537    }
4538  }
4539
4540  if (Correction)
4541    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4542        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4543        << FixItHint::CreateReplacement(
4544            NewFD->getLocation(),
4545            Correction.getAsString(SemaRef.getLangOptions()));
4546  else
4547    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4548        << Name << NewDC << NewFD->getLocation();
4549
4550  bool NewFDisConst = false;
4551  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4552    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4553
4554  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4555       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4556       NearMatch != NearMatchEnd; ++NearMatch) {
4557    FunctionDecl *FD = NearMatch->first;
4558    bool FDisConst = false;
4559    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4560      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4561
4562    if (unsigned Idx = NearMatch->second) {
4563      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4564      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4565             diag::note_member_def_close_param_match)
4566          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4567    } else if (Correction) {
4568      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4569          << Correction.getQuoted(SemaRef.getLangOptions());
4570    } else if (FDisConst != NewFDisConst) {
4571      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4572          << NewFDisConst << FD->getSourceRange().getEnd();
4573    } else
4574      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4575  }
4576  return Result;
4577}
4578
4579static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4580                                                          Declarator &D) {
4581  switch (D.getDeclSpec().getStorageClassSpec()) {
4582  default: llvm_unreachable("Unknown storage class!");
4583  case DeclSpec::SCS_auto:
4584  case DeclSpec::SCS_register:
4585  case DeclSpec::SCS_mutable:
4586    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4587                 diag::err_typecheck_sclass_func);
4588    D.setInvalidType();
4589    break;
4590  case DeclSpec::SCS_unspecified: break;
4591  case DeclSpec::SCS_extern: return SC_Extern;
4592  case DeclSpec::SCS_static: {
4593    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4594      // C99 6.7.1p5:
4595      //   The declaration of an identifier for a function that has
4596      //   block scope shall have no explicit storage-class specifier
4597      //   other than extern
4598      // See also (C++ [dcl.stc]p4).
4599      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4600                   diag::err_static_block_func);
4601      break;
4602    } else
4603      return SC_Static;
4604  }
4605  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4606  }
4607
4608  // No explicit storage class has already been returned
4609  return SC_None;
4610}
4611
4612static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4613                                           DeclContext *DC, QualType &R,
4614                                           TypeSourceInfo *TInfo,
4615                                           FunctionDecl::StorageClass SC,
4616                                           bool &IsVirtualOkay) {
4617  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4618  DeclarationName Name = NameInfo.getName();
4619
4620  FunctionDecl *NewFD = 0;
4621  bool isInline = D.getDeclSpec().isInlineSpecified();
4622  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4623  FunctionDecl::StorageClass SCAsWritten
4624    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4625
4626  if (!SemaRef.getLangOptions().CPlusPlus) {
4627    // Determine whether the function was written with a
4628    // prototype. This true when:
4629    //   - there is a prototype in the declarator, or
4630    //   - the type R of the function is some kind of typedef or other reference
4631    //     to a type name (which eventually refers to a function type).
4632    bool HasPrototype =
4633      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4634      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4635
4636    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4637                                 D.getSourceRange().getBegin(), NameInfo, R,
4638                                 TInfo, SC, SCAsWritten, isInline,
4639                                 HasPrototype);
4640    if (D.isInvalidType())
4641      NewFD->setInvalidDecl();
4642
4643    // Set the lexical context.
4644    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4645
4646    return NewFD;
4647  }
4648
4649  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4650  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4651
4652  // Check that the return type is not an abstract class type.
4653  // For record types, this is done by the AbstractClassUsageDiagnoser once
4654  // the class has been completely parsed.
4655  if (!DC->isRecord() &&
4656      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4657                                     R->getAs<FunctionType>()->getResultType(),
4658                                     diag::err_abstract_type_in_decl,
4659                                     SemaRef.AbstractReturnType))
4660    D.setInvalidType();
4661
4662  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4663    // This is a C++ constructor declaration.
4664    assert(DC->isRecord() &&
4665           "Constructors can only be declared in a member context");
4666
4667    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4668    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4669                                      D.getSourceRange().getBegin(), NameInfo,
4670                                      R, TInfo, isExplicit, isInline,
4671                                      /*isImplicitlyDeclared=*/false,
4672                                      isConstexpr);
4673
4674  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4675    // This is a C++ destructor declaration.
4676    if (DC->isRecord()) {
4677      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4678      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4679      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4680                                        SemaRef.Context, Record,
4681                                        D.getSourceRange().getBegin(),
4682                                        NameInfo, R, TInfo, isInline,
4683                                        /*isImplicitlyDeclared=*/false);
4684
4685      // If the class is complete, then we now create the implicit exception
4686      // specification. If the class is incomplete or dependent, we can't do
4687      // it yet.
4688      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4689          Record->getDefinition() && !Record->isBeingDefined() &&
4690          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4691        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4692      }
4693
4694      IsVirtualOkay = true;
4695      return NewDD;
4696
4697    } else {
4698      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4699      D.setInvalidType();
4700
4701      // Create a FunctionDecl to satisfy the function definition parsing
4702      // code path.
4703      return FunctionDecl::Create(SemaRef.Context, DC,
4704                                  D.getSourceRange().getBegin(),
4705                                  D.getIdentifierLoc(), Name, R, TInfo,
4706                                  SC, SCAsWritten, isInline,
4707                                  /*hasPrototype=*/true, isConstexpr);
4708    }
4709
4710  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4711    if (!DC->isRecord()) {
4712      SemaRef.Diag(D.getIdentifierLoc(),
4713           diag::err_conv_function_not_member);
4714      return 0;
4715    }
4716
4717    SemaRef.CheckConversionDeclarator(D, R, SC);
4718    IsVirtualOkay = true;
4719    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4720                                     D.getSourceRange().getBegin(), NameInfo,
4721                                     R, TInfo, isInline, isExplicit,
4722                                     isConstexpr, SourceLocation());
4723
4724  } else if (DC->isRecord()) {
4725    // If the name of the function is the same as the name of the record,
4726    // then this must be an invalid constructor that has a return type.
4727    // (The parser checks for a return type and makes the declarator a
4728    // constructor if it has no return type).
4729    if (Name.getAsIdentifierInfo() &&
4730        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4731      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4732        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4733        << SourceRange(D.getIdentifierLoc());
4734      return 0;
4735    }
4736
4737    bool isStatic = SC == SC_Static;
4738
4739    // [class.free]p1:
4740    // Any allocation function for a class T is a static member
4741    // (even if not explicitly declared static).
4742    if (Name.getCXXOverloadedOperator() == OO_New ||
4743        Name.getCXXOverloadedOperator() == OO_Array_New)
4744      isStatic = true;
4745
4746    // [class.free]p6 Any deallocation function for a class X is a static member
4747    // (even if not explicitly declared static).
4748    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4749        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4750      isStatic = true;
4751
4752    IsVirtualOkay = !isStatic;
4753
4754    // This is a C++ method declaration.
4755    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4756                                 D.getSourceRange().getBegin(), NameInfo, R,
4757                                 TInfo, isStatic, SCAsWritten, isInline,
4758                                 isConstexpr, SourceLocation());
4759
4760  } else {
4761    // Determine whether the function was written with a
4762    // prototype. This true when:
4763    //   - we're in C++ (where every function has a prototype),
4764    return FunctionDecl::Create(SemaRef.Context, DC,
4765                                D.getSourceRange().getBegin(),
4766                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4767                                true/*HasPrototype*/, isConstexpr);
4768  }
4769}
4770
4771NamedDecl*
4772Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4773                              TypeSourceInfo *TInfo, LookupResult &Previous,
4774                              MultiTemplateParamsArg TemplateParamLists,
4775                              bool &AddToScope) {
4776  QualType R = TInfo->getType();
4777
4778  assert(R.getTypePtr()->isFunctionType());
4779
4780  // TODO: consider using NameInfo for diagnostic.
4781  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4782  DeclarationName Name = NameInfo.getName();
4783  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4784
4785  if (D.getDeclSpec().isThreadSpecified())
4786    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4787
4788  // Do not allow returning a objc interface by-value.
4789  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4790    Diag(D.getIdentifierLoc(),
4791         diag::err_object_cannot_be_passed_returned_by_value) << 0
4792    << R->getAs<FunctionType>()->getResultType()
4793    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4794
4795    QualType T = R->getAs<FunctionType>()->getResultType();
4796    T = Context.getObjCObjectPointerType(T);
4797    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4798      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4799      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4800                                  FPT->getNumArgs(), EPI);
4801    }
4802    else if (isa<FunctionNoProtoType>(R))
4803      R = Context.getFunctionNoProtoType(T);
4804  }
4805
4806  bool isFriend = false;
4807  FunctionTemplateDecl *FunctionTemplate = 0;
4808  bool isExplicitSpecialization = false;
4809  bool isFunctionTemplateSpecialization = false;
4810  bool isDependentClassScopeExplicitSpecialization = false;
4811  bool isVirtualOkay = false;
4812
4813  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4814                                              isVirtualOkay);
4815  if (!NewFD) return 0;
4816
4817  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4818    NewFD->setTopLevelDeclInObjCContainer();
4819
4820  if (getLangOptions().CPlusPlus) {
4821    bool isInline = D.getDeclSpec().isInlineSpecified();
4822    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4823    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4824    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4825    isFriend = D.getDeclSpec().isFriendSpecified();
4826    if (isFriend && !isInline && D.isFunctionDefinition()) {
4827      // C++ [class.friend]p5
4828      //   A function can be defined in a friend declaration of a
4829      //   class . . . . Such a function is implicitly inline.
4830      NewFD->setImplicitlyInline();
4831    }
4832
4833    SetNestedNameSpecifier(NewFD, D);
4834    isExplicitSpecialization = false;
4835    isFunctionTemplateSpecialization = false;
4836    if (D.isInvalidType())
4837      NewFD->setInvalidDecl();
4838
4839    // Set the lexical context. If the declarator has a C++
4840    // scope specifier, or is the object of a friend declaration, the
4841    // lexical context will be different from the semantic context.
4842    NewFD->setLexicalDeclContext(CurContext);
4843
4844    // Match up the template parameter lists with the scope specifier, then
4845    // determine whether we have a template or a template specialization.
4846    bool Invalid = false;
4847    if (TemplateParameterList *TemplateParams
4848          = MatchTemplateParametersToScopeSpecifier(
4849                                  D.getDeclSpec().getSourceRange().getBegin(),
4850                                  D.getIdentifierLoc(),
4851                                  D.getCXXScopeSpec(),
4852                                  TemplateParamLists.get(),
4853                                  TemplateParamLists.size(),
4854                                  isFriend,
4855                                  isExplicitSpecialization,
4856                                  Invalid)) {
4857      if (TemplateParams->size() > 0) {
4858        // This is a function template
4859
4860        // Check that we can declare a template here.
4861        if (CheckTemplateDeclScope(S, TemplateParams))
4862          return 0;
4863
4864        // A destructor cannot be a template.
4865        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4866          Diag(NewFD->getLocation(), diag::err_destructor_template);
4867          return 0;
4868        }
4869
4870        // If we're adding a template to a dependent context, we may need to
4871        // rebuilding some of the types used within the template parameter list,
4872        // now that we know what the current instantiation is.
4873        if (DC->isDependentContext()) {
4874          ContextRAII SavedContext(*this, DC);
4875          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4876            Invalid = true;
4877        }
4878
4879
4880        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4881                                                        NewFD->getLocation(),
4882                                                        Name, TemplateParams,
4883                                                        NewFD);
4884        FunctionTemplate->setLexicalDeclContext(CurContext);
4885        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4886
4887        // For source fidelity, store the other template param lists.
4888        if (TemplateParamLists.size() > 1) {
4889          NewFD->setTemplateParameterListsInfo(Context,
4890                                               TemplateParamLists.size() - 1,
4891                                               TemplateParamLists.release());
4892        }
4893      } else {
4894        // This is a function template specialization.
4895        isFunctionTemplateSpecialization = true;
4896        // For source fidelity, store all the template param lists.
4897        NewFD->setTemplateParameterListsInfo(Context,
4898                                             TemplateParamLists.size(),
4899                                             TemplateParamLists.release());
4900
4901        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4902        if (isFriend) {
4903          // We want to remove the "template<>", found here.
4904          SourceRange RemoveRange = TemplateParams->getSourceRange();
4905
4906          // If we remove the template<> and the name is not a
4907          // template-id, we're actually silently creating a problem:
4908          // the friend declaration will refer to an untemplated decl,
4909          // and clearly the user wants a template specialization.  So
4910          // we need to insert '<>' after the name.
4911          SourceLocation InsertLoc;
4912          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4913            InsertLoc = D.getName().getSourceRange().getEnd();
4914            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4915          }
4916
4917          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4918            << Name << RemoveRange
4919            << FixItHint::CreateRemoval(RemoveRange)
4920            << FixItHint::CreateInsertion(InsertLoc, "<>");
4921        }
4922      }
4923    }
4924    else {
4925      // All template param lists were matched against the scope specifier:
4926      // this is NOT (an explicit specialization of) a template.
4927      if (TemplateParamLists.size() > 0)
4928        // For source fidelity, store all the template param lists.
4929        NewFD->setTemplateParameterListsInfo(Context,
4930                                             TemplateParamLists.size(),
4931                                             TemplateParamLists.release());
4932    }
4933
4934    if (Invalid) {
4935      NewFD->setInvalidDecl();
4936      if (FunctionTemplate)
4937        FunctionTemplate->setInvalidDecl();
4938    }
4939
4940    // If we see "T var();" at block scope, where T is a class type, it is
4941    // probably an attempt to initialize a variable, not a function declaration.
4942    // We don't catch this case earlier, since there is no ambiguity here.
4943    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
4944        CurContext->isFunctionOrMethod() &&
4945        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
4946        D.getDeclSpec().getStorageClassSpecAsWritten()
4947          == DeclSpec::SCS_unspecified) {
4948      QualType T = R->getAs<FunctionType>()->getResultType();
4949      DeclaratorChunk &C = D.getTypeObject(0);
4950      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
4951          !C.Fun.TrailingReturnType &&
4952          C.Fun.getExceptionSpecType() == EST_None) {
4953        SourceRange ParenRange(C.Loc, C.EndLoc);
4954        Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
4955
4956        // If the declaration looks like:
4957        //   T var1,
4958        //   f();
4959        // and name lookup finds a function named 'f', then the ',' was
4960        // probably intended to be a ';'.
4961        if (!D.isFirstDeclarator() && D.getIdentifier()) {
4962          FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
4963          FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
4964          if (Comma.getFileID() != Name.getFileID() ||
4965              Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
4966            LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
4967                                LookupOrdinaryName);
4968            if (LookupName(Result, S))
4969              Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
4970                << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
4971          }
4972        }
4973        const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4974        // Empty parens mean value-initialization, and no parens mean default
4975        // initialization. These are equivalent if the default constructor is
4976        // user-provided, or if zero-initialization is a no-op.
4977        if (RD && RD->hasDefinition() &&
4978            (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
4979          Diag(C.Loc, diag::note_empty_parens_default_ctor)
4980            << FixItHint::CreateRemoval(ParenRange);
4981        else if (const char *Init = getFixItZeroInitializerForType(T))
4982          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
4983            << FixItHint::CreateReplacement(ParenRange, Init);
4984        else if (LangOpts.CPlusPlus0x)
4985          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
4986            << FixItHint::CreateReplacement(ParenRange, "{}");
4987      }
4988    }
4989
4990    // C++ [dcl.fct.spec]p5:
4991    //   The virtual specifier shall only be used in declarations of
4992    //   nonstatic class member functions that appear within a
4993    //   member-specification of a class declaration; see 10.3.
4994    //
4995    if (isVirtual && !NewFD->isInvalidDecl()) {
4996      if (!isVirtualOkay) {
4997        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4998             diag::err_virtual_non_function);
4999      } else if (!CurContext->isRecord()) {
5000        // 'virtual' was specified outside of the class.
5001        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5002             diag::err_virtual_out_of_class)
5003          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5004      } else if (NewFD->getDescribedFunctionTemplate()) {
5005        // C++ [temp.mem]p3:
5006        //  A member function template shall not be virtual.
5007        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5008             diag::err_virtual_member_function_template)
5009          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5010      } else {
5011        // Okay: Add virtual to the method.
5012        NewFD->setVirtualAsWritten(true);
5013      }
5014    }
5015
5016    // C++ [dcl.fct.spec]p3:
5017    //  The inline specifier shall not appear on a block scope function
5018    //  declaration.
5019    if (isInline && !NewFD->isInvalidDecl()) {
5020      if (CurContext->isFunctionOrMethod()) {
5021        // 'inline' is not allowed on block scope function declaration.
5022        Diag(D.getDeclSpec().getInlineSpecLoc(),
5023             diag::err_inline_declaration_block_scope) << Name
5024          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5025      }
5026    }
5027
5028    // C++ [dcl.fct.spec]p6:
5029    //  The explicit specifier shall be used only in the declaration of a
5030    //  constructor or conversion function within its class definition;
5031    //  see 12.3.1 and 12.3.2.
5032    if (isExplicit && !NewFD->isInvalidDecl()) {
5033      if (!CurContext->isRecord()) {
5034        // 'explicit' was specified outside of the class.
5035        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5036             diag::err_explicit_out_of_class)
5037          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5038      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5039                 !isa<CXXConversionDecl>(NewFD)) {
5040        // 'explicit' was specified on a function that wasn't a constructor
5041        // or conversion function.
5042        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5043             diag::err_explicit_non_ctor_or_conv_function)
5044          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5045      }
5046    }
5047
5048    if (isConstexpr) {
5049      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5050      // are implicitly inline.
5051      NewFD->setImplicitlyInline();
5052
5053      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5054      // be either constructors or to return a literal type. Therefore,
5055      // destructors cannot be declared constexpr.
5056      if (isa<CXXDestructorDecl>(NewFD))
5057        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5058    }
5059
5060    // If __module_private__ was specified, mark the function accordingly.
5061    if (D.getDeclSpec().isModulePrivateSpecified()) {
5062      if (isFunctionTemplateSpecialization) {
5063        SourceLocation ModulePrivateLoc
5064          = D.getDeclSpec().getModulePrivateSpecLoc();
5065        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5066          << 0
5067          << FixItHint::CreateRemoval(ModulePrivateLoc);
5068      } else {
5069        NewFD->setModulePrivate();
5070        if (FunctionTemplate)
5071          FunctionTemplate->setModulePrivate();
5072      }
5073    }
5074
5075    if (isFriend) {
5076      // For now, claim that the objects have no previous declaration.
5077      if (FunctionTemplate) {
5078        FunctionTemplate->setObjectOfFriendDecl(false);
5079        FunctionTemplate->setAccess(AS_public);
5080      }
5081      NewFD->setObjectOfFriendDecl(false);
5082      NewFD->setAccess(AS_public);
5083    }
5084
5085    // If a function is defined as defaulted or deleted, mark it as such now.
5086    switch (D.getFunctionDefinitionKind()) {
5087      case FDK_Declaration:
5088      case FDK_Definition:
5089        break;
5090
5091      case FDK_Defaulted:
5092        NewFD->setDefaulted();
5093        break;
5094
5095      case FDK_Deleted:
5096        NewFD->setDeletedAsWritten();
5097        break;
5098    }
5099
5100    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5101        D.isFunctionDefinition()) {
5102      // C++ [class.mfct]p2:
5103      //   A member function may be defined (8.4) in its class definition, in
5104      //   which case it is an inline member function (7.1.2)
5105      NewFD->setImplicitlyInline();
5106    }
5107
5108    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5109        !CurContext->isRecord()) {
5110      // C++ [class.static]p1:
5111      //   A data or function member of a class may be declared static
5112      //   in a class definition, in which case it is a static member of
5113      //   the class.
5114
5115      // Complain about the 'static' specifier if it's on an out-of-line
5116      // member function definition.
5117      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5118           diag::err_static_out_of_line)
5119        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5120    }
5121  }
5122
5123  // Filter out previous declarations that don't match the scope.
5124  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5125                       isExplicitSpecialization ||
5126                       isFunctionTemplateSpecialization);
5127
5128  // Handle GNU asm-label extension (encoded as an attribute).
5129  if (Expr *E = (Expr*) D.getAsmLabel()) {
5130    // The parser guarantees this is a string.
5131    StringLiteral *SE = cast<StringLiteral>(E);
5132    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5133                                                SE->getString()));
5134  }
5135
5136  // Copy the parameter declarations from the declarator D to the function
5137  // declaration NewFD, if they are available.  First scavenge them into Params.
5138  SmallVector<ParmVarDecl*, 16> Params;
5139  if (D.isFunctionDeclarator()) {
5140    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5141
5142    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5143    // function that takes no arguments, not a function that takes a
5144    // single void argument.
5145    // We let through "const void" here because Sema::GetTypeForDeclarator
5146    // already checks for that case.
5147    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5148        FTI.ArgInfo[0].Param &&
5149        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5150      // Empty arg list, don't push any params.
5151      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5152
5153      // In C++, the empty parameter-type-list must be spelled "void"; a
5154      // typedef of void is not permitted.
5155      if (getLangOptions().CPlusPlus &&
5156          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5157        bool IsTypeAlias = false;
5158        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5159          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5160        else if (const TemplateSpecializationType *TST =
5161                   Param->getType()->getAs<TemplateSpecializationType>())
5162          IsTypeAlias = TST->isTypeAlias();
5163        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5164          << IsTypeAlias;
5165      }
5166    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5167      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5168        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5169        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5170        Param->setDeclContext(NewFD);
5171        Params.push_back(Param);
5172
5173        if (Param->isInvalidDecl())
5174          NewFD->setInvalidDecl();
5175      }
5176    }
5177
5178  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5179    // When we're declaring a function with a typedef, typeof, etc as in the
5180    // following example, we'll need to synthesize (unnamed)
5181    // parameters for use in the declaration.
5182    //
5183    // @code
5184    // typedef void fn(int);
5185    // fn f;
5186    // @endcode
5187
5188    // Synthesize a parameter for each argument type.
5189    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5190         AE = FT->arg_type_end(); AI != AE; ++AI) {
5191      ParmVarDecl *Param =
5192        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5193      Param->setScopeInfo(0, Params.size());
5194      Params.push_back(Param);
5195    }
5196  } else {
5197    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5198           "Should not need args for typedef of non-prototype fn");
5199  }
5200
5201  // Finally, we know we have the right number of parameters, install them.
5202  NewFD->setParams(Params);
5203
5204  // Process the non-inheritable attributes on this declaration.
5205  ProcessDeclAttributes(S, NewFD, D,
5206                        /*NonInheritable=*/true, /*Inheritable=*/false);
5207
5208  if (!getLangOptions().CPlusPlus) {
5209    // Perform semantic checking on the function declaration.
5210    bool isExplicitSpecialization=false;
5211    if (!NewFD->isInvalidDecl()) {
5212      if (NewFD->getResultType()->isVariablyModifiedType()) {
5213        // Functions returning a variably modified type violate C99 6.7.5.2p2
5214        // because all functions have linkage.
5215        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5216        NewFD->setInvalidDecl();
5217      } else {
5218        if (NewFD->isMain())
5219          CheckMain(NewFD, D.getDeclSpec());
5220        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5221                                                    isExplicitSpecialization));
5222      }
5223    }
5224    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5225            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5226           "previous declaration set still overloaded");
5227  } else {
5228    // If the declarator is a template-id, translate the parser's template
5229    // argument list into our AST format.
5230    bool HasExplicitTemplateArgs = false;
5231    TemplateArgumentListInfo TemplateArgs;
5232    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5233      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5234      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5235      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5236      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5237                                         TemplateId->getTemplateArgs(),
5238                                         TemplateId->NumArgs);
5239      translateTemplateArguments(TemplateArgsPtr,
5240                                 TemplateArgs);
5241      TemplateArgsPtr.release();
5242
5243      HasExplicitTemplateArgs = true;
5244
5245      if (NewFD->isInvalidDecl()) {
5246        HasExplicitTemplateArgs = false;
5247      } else if (FunctionTemplate) {
5248        // Function template with explicit template arguments.
5249        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5250          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5251
5252        HasExplicitTemplateArgs = false;
5253      } else if (!isFunctionTemplateSpecialization &&
5254                 !D.getDeclSpec().isFriendSpecified()) {
5255        // We have encountered something that the user meant to be a
5256        // specialization (because it has explicitly-specified template
5257        // arguments) but that was not introduced with a "template<>" (or had
5258        // too few of them).
5259        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5260          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5261          << FixItHint::CreateInsertion(
5262                                    D.getDeclSpec().getSourceRange().getBegin(),
5263                                        "template<> ");
5264        isFunctionTemplateSpecialization = true;
5265      } else {
5266        // "friend void foo<>(int);" is an implicit specialization decl.
5267        isFunctionTemplateSpecialization = true;
5268      }
5269    } else if (isFriend && isFunctionTemplateSpecialization) {
5270      // This combination is only possible in a recovery case;  the user
5271      // wrote something like:
5272      //   template <> friend void foo(int);
5273      // which we're recovering from as if the user had written:
5274      //   friend void foo<>(int);
5275      // Go ahead and fake up a template id.
5276      HasExplicitTemplateArgs = true;
5277        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5278      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5279    }
5280
5281    // If it's a friend (and only if it's a friend), it's possible
5282    // that either the specialized function type or the specialized
5283    // template is dependent, and therefore matching will fail.  In
5284    // this case, don't check the specialization yet.
5285    bool InstantiationDependent = false;
5286    if (isFunctionTemplateSpecialization && isFriend &&
5287        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5288         TemplateSpecializationType::anyDependentTemplateArguments(
5289            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5290            InstantiationDependent))) {
5291      assert(HasExplicitTemplateArgs &&
5292             "friend function specialization without template args");
5293      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5294                                                       Previous))
5295        NewFD->setInvalidDecl();
5296    } else if (isFunctionTemplateSpecialization) {
5297      if (CurContext->isDependentContext() && CurContext->isRecord()
5298          && !isFriend) {
5299        isDependentClassScopeExplicitSpecialization = true;
5300        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5301          diag::ext_function_specialization_in_class :
5302          diag::err_function_specialization_in_class)
5303          << NewFD->getDeclName();
5304      } else if (CheckFunctionTemplateSpecialization(NewFD,
5305                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5306                                                     Previous))
5307        NewFD->setInvalidDecl();
5308
5309      // C++ [dcl.stc]p1:
5310      //   A storage-class-specifier shall not be specified in an explicit
5311      //   specialization (14.7.3)
5312      if (SC != SC_None) {
5313        if (SC != NewFD->getStorageClass())
5314          Diag(NewFD->getLocation(),
5315               diag::err_explicit_specialization_inconsistent_storage_class)
5316            << SC
5317            << FixItHint::CreateRemoval(
5318                                      D.getDeclSpec().getStorageClassSpecLoc());
5319
5320        else
5321          Diag(NewFD->getLocation(),
5322               diag::ext_explicit_specialization_storage_class)
5323            << FixItHint::CreateRemoval(
5324                                      D.getDeclSpec().getStorageClassSpecLoc());
5325      }
5326
5327    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5328      if (CheckMemberSpecialization(NewFD, Previous))
5329          NewFD->setInvalidDecl();
5330    }
5331
5332    // Perform semantic checking on the function declaration.
5333    if (!isDependentClassScopeExplicitSpecialization) {
5334      if (NewFD->isInvalidDecl()) {
5335        // If this is a class member, mark the class invalid immediately.
5336        // This avoids some consistency errors later.
5337        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5338          methodDecl->getParent()->setInvalidDecl();
5339      } else {
5340        if (NewFD->isMain())
5341          CheckMain(NewFD, D.getDeclSpec());
5342        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5343                                                    isExplicitSpecialization));
5344      }
5345    }
5346
5347    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5348            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5349           "previous declaration set still overloaded");
5350
5351    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5352        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5353      NewFD->setInvalidDecl();
5354
5355    NamedDecl *PrincipalDecl = (FunctionTemplate
5356                                ? cast<NamedDecl>(FunctionTemplate)
5357                                : NewFD);
5358
5359    if (isFriend && D.isRedeclaration()) {
5360      AccessSpecifier Access = AS_public;
5361      if (!NewFD->isInvalidDecl())
5362        Access = NewFD->getPreviousDecl()->getAccess();
5363
5364      NewFD->setAccess(Access);
5365      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5366
5367      PrincipalDecl->setObjectOfFriendDecl(true);
5368    }
5369
5370    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5371        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5372      PrincipalDecl->setNonMemberOperator();
5373
5374    // If we have a function template, check the template parameter
5375    // list. This will check and merge default template arguments.
5376    if (FunctionTemplate) {
5377      FunctionTemplateDecl *PrevTemplate =
5378                                     FunctionTemplate->getPreviousDecl();
5379      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5380                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5381                            D.getDeclSpec().isFriendSpecified()
5382                              ? (D.isFunctionDefinition()
5383                                   ? TPC_FriendFunctionTemplateDefinition
5384                                   : TPC_FriendFunctionTemplate)
5385                              : (D.getCXXScopeSpec().isSet() &&
5386                                 DC && DC->isRecord() &&
5387                                 DC->isDependentContext())
5388                                  ? TPC_ClassTemplateMember
5389                                  : TPC_FunctionTemplate);
5390    }
5391
5392    if (NewFD->isInvalidDecl()) {
5393      // Ignore all the rest of this.
5394    } else if (!D.isRedeclaration()) {
5395      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5396                                       AddToScope };
5397      // Fake up an access specifier if it's supposed to be a class member.
5398      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5399        NewFD->setAccess(AS_public);
5400
5401      // Qualified decls generally require a previous declaration.
5402      if (D.getCXXScopeSpec().isSet()) {
5403        // ...with the major exception of templated-scope or
5404        // dependent-scope friend declarations.
5405
5406        // TODO: we currently also suppress this check in dependent
5407        // contexts because (1) the parameter depth will be off when
5408        // matching friend templates and (2) we might actually be
5409        // selecting a friend based on a dependent factor.  But there
5410        // are situations where these conditions don't apply and we
5411        // can actually do this check immediately.
5412        if (isFriend &&
5413            (TemplateParamLists.size() ||
5414             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5415             CurContext->isDependentContext())) {
5416          // ignore these
5417        } else {
5418          // The user tried to provide an out-of-line definition for a
5419          // function that is a member of a class or namespace, but there
5420          // was no such member function declared (C++ [class.mfct]p2,
5421          // C++ [namespace.memdef]p2). For example:
5422          //
5423          // class X {
5424          //   void f() const;
5425          // };
5426          //
5427          // void X::f() { } // ill-formed
5428          //
5429          // Complain about this problem, and attempt to suggest close
5430          // matches (e.g., those that differ only in cv-qualifiers and
5431          // whether the parameter types are references).
5432
5433          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5434                                                               NewFD,
5435                                                               ExtraArgs)) {
5436            AddToScope = ExtraArgs.AddToScope;
5437            return Result;
5438          }
5439        }
5440
5441        // Unqualified local friend declarations are required to resolve
5442        // to something.
5443      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5444        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5445                                                             NewFD,
5446                                                             ExtraArgs)) {
5447          AddToScope = ExtraArgs.AddToScope;
5448          return Result;
5449        }
5450      }
5451
5452    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5453               !isFriend && !isFunctionTemplateSpecialization &&
5454               !isExplicitSpecialization) {
5455      // An out-of-line member function declaration must also be a
5456      // definition (C++ [dcl.meaning]p1).
5457      // Note that this is not the case for explicit specializations of
5458      // function templates or member functions of class templates, per
5459      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5460      // extension for compatibility with old SWIG code which likes to
5461      // generate them.
5462      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5463        << D.getCXXScopeSpec().getRange();
5464    }
5465  }
5466
5467
5468  // Handle attributes. We need to have merged decls when handling attributes
5469  // (for example to check for conflicts, etc).
5470  // FIXME: This needs to happen before we merge declarations. Then,
5471  // let attribute merging cope with attribute conflicts.
5472  ProcessDeclAttributes(S, NewFD, D,
5473                        /*NonInheritable=*/false, /*Inheritable=*/true);
5474
5475  // attributes declared post-definition are currently ignored
5476  // FIXME: This should happen during attribute merging
5477  if (D.isRedeclaration() && Previous.isSingleResult()) {
5478    const FunctionDecl *Def;
5479    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5480    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5481      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5482      Diag(Def->getLocation(), diag::note_previous_definition);
5483    }
5484  }
5485
5486  AddKnownFunctionAttributes(NewFD);
5487
5488  if (NewFD->hasAttr<OverloadableAttr>() &&
5489      !NewFD->getType()->getAs<FunctionProtoType>()) {
5490    Diag(NewFD->getLocation(),
5491         diag::err_attribute_overloadable_no_prototype)
5492      << NewFD;
5493
5494    // Turn this into a variadic function with no parameters.
5495    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5496    FunctionProtoType::ExtProtoInfo EPI;
5497    EPI.Variadic = true;
5498    EPI.ExtInfo = FT->getExtInfo();
5499
5500    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5501    NewFD->setType(R);
5502  }
5503
5504  // If there's a #pragma GCC visibility in scope, and this isn't a class
5505  // member, set the visibility of this function.
5506  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5507    AddPushedVisibilityAttribute(NewFD);
5508
5509  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5510  // marking the function.
5511  AddCFAuditedAttribute(NewFD);
5512
5513  // If this is a locally-scoped extern C function, update the
5514  // map of such names.
5515  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5516      && !NewFD->isInvalidDecl())
5517    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5518
5519  // Set this FunctionDecl's range up to the right paren.
5520  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5521
5522  if (getLangOptions().CPlusPlus) {
5523    if (FunctionTemplate) {
5524      if (NewFD->isInvalidDecl())
5525        FunctionTemplate->setInvalidDecl();
5526      return FunctionTemplate;
5527    }
5528  }
5529
5530  MarkUnusedFileScopedDecl(NewFD);
5531
5532  if (getLangOptions().CUDA)
5533    if (IdentifierInfo *II = NewFD->getIdentifier())
5534      if (!NewFD->isInvalidDecl() &&
5535          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5536        if (II->isStr("cudaConfigureCall")) {
5537          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5538            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5539
5540          Context.setcudaConfigureCallDecl(NewFD);
5541        }
5542      }
5543
5544  // Here we have an function template explicit specialization at class scope.
5545  // The actually specialization will be postponed to template instatiation
5546  // time via the ClassScopeFunctionSpecializationDecl node.
5547  if (isDependentClassScopeExplicitSpecialization) {
5548    ClassScopeFunctionSpecializationDecl *NewSpec =
5549                         ClassScopeFunctionSpecializationDecl::Create(
5550                                Context, CurContext,  SourceLocation(),
5551                                cast<CXXMethodDecl>(NewFD));
5552    CurContext->addDecl(NewSpec);
5553    AddToScope = false;
5554  }
5555
5556  return NewFD;
5557}
5558
5559/// \brief Perform semantic checking of a new function declaration.
5560///
5561/// Performs semantic analysis of the new function declaration
5562/// NewFD. This routine performs all semantic checking that does not
5563/// require the actual declarator involved in the declaration, and is
5564/// used both for the declaration of functions as they are parsed
5565/// (called via ActOnDeclarator) and for the declaration of functions
5566/// that have been instantiated via C++ template instantiation (called
5567/// via InstantiateDecl).
5568///
5569/// \param IsExplicitSpecialiation whether this new function declaration is
5570/// an explicit specialization of the previous declaration.
5571///
5572/// This sets NewFD->isInvalidDecl() to true if there was an error.
5573///
5574/// Returns true if the function declaration is a redeclaration.
5575bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5576                                    LookupResult &Previous,
5577                                    bool IsExplicitSpecialization) {
5578  assert(!NewFD->getResultType()->isVariablyModifiedType()
5579         && "Variably modified return types are not handled here");
5580
5581  // Check for a previous declaration of this name.
5582  if (Previous.empty() && NewFD->isExternC()) {
5583    // Since we did not find anything by this name and we're declaring
5584    // an extern "C" function, look for a non-visible extern "C"
5585    // declaration with the same name.
5586    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5587      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5588    if (Pos != LocallyScopedExternalDecls.end())
5589      Previous.addDecl(Pos->second);
5590  }
5591
5592  bool Redeclaration = false;
5593
5594  // Merge or overload the declaration with an existing declaration of
5595  // the same name, if appropriate.
5596  if (!Previous.empty()) {
5597    // Determine whether NewFD is an overload of PrevDecl or
5598    // a declaration that requires merging. If it's an overload,
5599    // there's no more work to do here; we'll just add the new
5600    // function to the scope.
5601
5602    NamedDecl *OldDecl = 0;
5603    if (!AllowOverloadingOfFunction(Previous, Context)) {
5604      Redeclaration = true;
5605      OldDecl = Previous.getFoundDecl();
5606    } else {
5607      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5608                            /*NewIsUsingDecl*/ false)) {
5609      case Ovl_Match:
5610        Redeclaration = true;
5611        break;
5612
5613      case Ovl_NonFunction:
5614        Redeclaration = true;
5615        break;
5616
5617      case Ovl_Overload:
5618        Redeclaration = false;
5619        break;
5620      }
5621
5622      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5623        // If a function name is overloadable in C, then every function
5624        // with that name must be marked "overloadable".
5625        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5626          << Redeclaration << NewFD;
5627        NamedDecl *OverloadedDecl = 0;
5628        if (Redeclaration)
5629          OverloadedDecl = OldDecl;
5630        else if (!Previous.empty())
5631          OverloadedDecl = Previous.getRepresentativeDecl();
5632        if (OverloadedDecl)
5633          Diag(OverloadedDecl->getLocation(),
5634               diag::note_attribute_overloadable_prev_overload);
5635        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5636                                                        Context));
5637      }
5638    }
5639
5640    if (Redeclaration) {
5641      // NewFD and OldDecl represent declarations that need to be
5642      // merged.
5643      if (MergeFunctionDecl(NewFD, OldDecl)) {
5644        NewFD->setInvalidDecl();
5645        return Redeclaration;
5646      }
5647
5648      Previous.clear();
5649      Previous.addDecl(OldDecl);
5650
5651      if (FunctionTemplateDecl *OldTemplateDecl
5652                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5653        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5654        FunctionTemplateDecl *NewTemplateDecl
5655          = NewFD->getDescribedFunctionTemplate();
5656        assert(NewTemplateDecl && "Template/non-template mismatch");
5657        if (CXXMethodDecl *Method
5658              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5659          Method->setAccess(OldTemplateDecl->getAccess());
5660          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5661        }
5662
5663        // If this is an explicit specialization of a member that is a function
5664        // template, mark it as a member specialization.
5665        if (IsExplicitSpecialization &&
5666            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5667          NewTemplateDecl->setMemberSpecialization();
5668          assert(OldTemplateDecl->isMemberSpecialization());
5669        }
5670
5671      } else {
5672        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5673          NewFD->setAccess(OldDecl->getAccess());
5674        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5675      }
5676    }
5677  }
5678
5679  // Semantic checking for this function declaration (in isolation).
5680  if (getLangOptions().CPlusPlus) {
5681    // C++-specific checks.
5682    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5683      CheckConstructor(Constructor);
5684    } else if (CXXDestructorDecl *Destructor =
5685                dyn_cast<CXXDestructorDecl>(NewFD)) {
5686      CXXRecordDecl *Record = Destructor->getParent();
5687      QualType ClassType = Context.getTypeDeclType(Record);
5688
5689      // FIXME: Shouldn't we be able to perform this check even when the class
5690      // type is dependent? Both gcc and edg can handle that.
5691      if (!ClassType->isDependentType()) {
5692        DeclarationName Name
5693          = Context.DeclarationNames.getCXXDestructorName(
5694                                        Context.getCanonicalType(ClassType));
5695        if (NewFD->getDeclName() != Name) {
5696          Diag(NewFD->getLocation(), diag::err_destructor_name);
5697          NewFD->setInvalidDecl();
5698          return Redeclaration;
5699        }
5700      }
5701    } else if (CXXConversionDecl *Conversion
5702               = dyn_cast<CXXConversionDecl>(NewFD)) {
5703      ActOnConversionDeclarator(Conversion);
5704    }
5705
5706    // Find any virtual functions that this function overrides.
5707    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5708      if (!Method->isFunctionTemplateSpecialization() &&
5709          !Method->getDescribedFunctionTemplate()) {
5710        if (AddOverriddenMethods(Method->getParent(), Method)) {
5711          // If the function was marked as "static", we have a problem.
5712          if (NewFD->getStorageClass() == SC_Static) {
5713            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5714              << NewFD->getDeclName();
5715            for (CXXMethodDecl::method_iterator
5716                      Overridden = Method->begin_overridden_methods(),
5717                   OverriddenEnd = Method->end_overridden_methods();
5718                 Overridden != OverriddenEnd;
5719                 ++Overridden) {
5720              Diag((*Overridden)->getLocation(),
5721                   diag::note_overridden_virtual_function);
5722            }
5723          }
5724        }
5725      }
5726    }
5727
5728    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5729    if (NewFD->isOverloadedOperator() &&
5730        CheckOverloadedOperatorDeclaration(NewFD)) {
5731      NewFD->setInvalidDecl();
5732      return Redeclaration;
5733    }
5734
5735    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5736    if (NewFD->getLiteralIdentifier() &&
5737        CheckLiteralOperatorDeclaration(NewFD)) {
5738      NewFD->setInvalidDecl();
5739      return Redeclaration;
5740    }
5741
5742    // In C++, check default arguments now that we have merged decls. Unless
5743    // the lexical context is the class, because in this case this is done
5744    // during delayed parsing anyway.
5745    if (!CurContext->isRecord())
5746      CheckCXXDefaultArguments(NewFD);
5747
5748    // If this function declares a builtin function, check the type of this
5749    // declaration against the expected type for the builtin.
5750    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5751      ASTContext::GetBuiltinTypeError Error;
5752      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5753      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5754        // The type of this function differs from the type of the builtin,
5755        // so forget about the builtin entirely.
5756        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5757      }
5758    }
5759
5760    // If this function is declared as being extern "C", then check to see if
5761    // the function returns a UDT (class, struct, or union type) that is not C
5762    // compatible, and if it does, warn the user.
5763    if (NewFD->isExternC()) {
5764      QualType R = NewFD->getResultType();
5765      if (!R.isPODType(Context) &&
5766          !R->isVoidType())
5767        Diag( NewFD->getLocation(), diag::warn_return_value_udt )
5768          << NewFD << R;
5769    }
5770  }
5771  return Redeclaration;
5772}
5773
5774void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5775  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
5776  //   static or constexpr is ill-formed.
5777  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5778  //   shall not appear in a declaration of main.
5779  // static main is not an error under C99, but we should warn about it.
5780  if (FD->getStorageClass() == SC_Static)
5781    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5782         ? diag::err_static_main : diag::warn_static_main)
5783      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5784  if (FD->isInlineSpecified())
5785    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5786      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5787  if (FD->isConstexpr()) {
5788    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
5789      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
5790    FD->setConstexpr(false);
5791  }
5792
5793  QualType T = FD->getType();
5794  assert(T->isFunctionType() && "function decl is not of function type");
5795  const FunctionType* FT = T->getAs<FunctionType>();
5796
5797  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5798    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5799    FD->setInvalidDecl(true);
5800  }
5801
5802  // Treat protoless main() as nullary.
5803  if (isa<FunctionNoProtoType>(FT)) return;
5804
5805  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5806  unsigned nparams = FTP->getNumArgs();
5807  assert(FD->getNumParams() == nparams);
5808
5809  bool HasExtraParameters = (nparams > 3);
5810
5811  // Darwin passes an undocumented fourth argument of type char**.  If
5812  // other platforms start sprouting these, the logic below will start
5813  // getting shifty.
5814  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5815    HasExtraParameters = false;
5816
5817  if (HasExtraParameters) {
5818    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5819    FD->setInvalidDecl(true);
5820    nparams = 3;
5821  }
5822
5823  // FIXME: a lot of the following diagnostics would be improved
5824  // if we had some location information about types.
5825
5826  QualType CharPP =
5827    Context.getPointerType(Context.getPointerType(Context.CharTy));
5828  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5829
5830  for (unsigned i = 0; i < nparams; ++i) {
5831    QualType AT = FTP->getArgType(i);
5832
5833    bool mismatch = true;
5834
5835    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5836      mismatch = false;
5837    else if (Expected[i] == CharPP) {
5838      // As an extension, the following forms are okay:
5839      //   char const **
5840      //   char const * const *
5841      //   char * const *
5842
5843      QualifierCollector qs;
5844      const PointerType* PT;
5845      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5846          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5847          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5848        qs.removeConst();
5849        mismatch = !qs.empty();
5850      }
5851    }
5852
5853    if (mismatch) {
5854      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5855      // TODO: suggest replacing given type with expected type
5856      FD->setInvalidDecl(true);
5857    }
5858  }
5859
5860  if (nparams == 1 && !FD->isInvalidDecl()) {
5861    Diag(FD->getLocation(), diag::warn_main_one_arg);
5862  }
5863
5864  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5865    Diag(FD->getLocation(), diag::err_main_template_decl);
5866    FD->setInvalidDecl();
5867  }
5868}
5869
5870bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5871  // FIXME: Need strict checking.  In C89, we need to check for
5872  // any assignment, increment, decrement, function-calls, or
5873  // commas outside of a sizeof.  In C99, it's the same list,
5874  // except that the aforementioned are allowed in unevaluated
5875  // expressions.  Everything else falls under the
5876  // "may accept other forms of constant expressions" exception.
5877  // (We never end up here for C++, so the constant expression
5878  // rules there don't matter.)
5879  if (Init->isConstantInitializer(Context, false))
5880    return false;
5881  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5882    << Init->getSourceRange();
5883  return true;
5884}
5885
5886namespace {
5887  // Visits an initialization expression to see if OrigDecl is evaluated in
5888  // its own initialization and throws a warning if it does.
5889  class SelfReferenceChecker
5890      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5891    Sema &S;
5892    Decl *OrigDecl;
5893    bool isRecordType;
5894    bool isPODType;
5895
5896  public:
5897    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5898
5899    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5900                                                    S(S), OrigDecl(OrigDecl) {
5901      isPODType = false;
5902      isRecordType = false;
5903      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5904        isPODType = VD->getType().isPODType(S.Context);
5905        isRecordType = VD->getType()->isRecordType();
5906      }
5907    }
5908
5909    void VisitExpr(Expr *E) {
5910      if (isa<ObjCMessageExpr>(*E)) return;
5911      if (isRecordType) {
5912        Expr *expr = E;
5913        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5914          ValueDecl *VD = ME->getMemberDecl();
5915          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5916          expr = ME->getBase();
5917        }
5918        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5919          HandleDeclRefExpr(DRE);
5920          return;
5921        }
5922      }
5923      Inherited::VisitExpr(E);
5924    }
5925
5926    void VisitMemberExpr(MemberExpr *E) {
5927      if (E->getType()->canDecayToPointerType()) return;
5928      if (isa<FieldDecl>(E->getMemberDecl()))
5929        if (DeclRefExpr *DRE
5930              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5931          HandleDeclRefExpr(DRE);
5932          return;
5933        }
5934      Inherited::VisitMemberExpr(E);
5935    }
5936
5937    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5938      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5939          (isRecordType && E->getCastKind() == CK_NoOp)) {
5940        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5941        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5942          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5943        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5944          HandleDeclRefExpr(DRE);
5945          return;
5946        }
5947      }
5948      Inherited::VisitImplicitCastExpr(E);
5949    }
5950
5951    void VisitUnaryOperator(UnaryOperator *E) {
5952      // For POD record types, addresses of its own members are well-defined.
5953      if (isRecordType && isPODType) return;
5954      Inherited::VisitUnaryOperator(E);
5955    }
5956
5957    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5958      Decl* ReferenceDecl = DRE->getDecl();
5959      if (OrigDecl != ReferenceDecl) return;
5960      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5961                          Sema::NotForRedeclaration);
5962      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5963                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5964                              << Result.getLookupName()
5965                              << OrigDecl->getLocation()
5966                              << DRE->getSourceRange());
5967    }
5968  };
5969}
5970
5971/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5972void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5973  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5974}
5975
5976/// AddInitializerToDecl - Adds the initializer Init to the
5977/// declaration dcl. If DirectInit is true, this is C++ direct
5978/// initialization rather than copy initialization.
5979void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5980                                bool DirectInit, bool TypeMayContainAuto) {
5981  // If there is no declaration, there was an error parsing it.  Just ignore
5982  // the initializer.
5983  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5984    return;
5985
5986  // Check for self-references within variable initializers.
5987  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5988    // Variables declared within a function/method body are handled
5989    // by a dataflow analysis.
5990    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5991      CheckSelfReference(RealDecl, Init);
5992  }
5993  else {
5994    CheckSelfReference(RealDecl, Init);
5995  }
5996
5997  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5998    // With declarators parsed the way they are, the parser cannot
5999    // distinguish between a normal initializer and a pure-specifier.
6000    // Thus this grotesque test.
6001    IntegerLiteral *IL;
6002    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6003        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6004      CheckPureMethod(Method, Init->getSourceRange());
6005    else {
6006      Diag(Method->getLocation(), diag::err_member_function_initialization)
6007        << Method->getDeclName() << Init->getSourceRange();
6008      Method->setInvalidDecl();
6009    }
6010    return;
6011  }
6012
6013  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6014  if (!VDecl) {
6015    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6016    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6017    RealDecl->setInvalidDecl();
6018    return;
6019  }
6020
6021  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6022  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6023    TypeSourceInfo *DeducedType = 0;
6024    if (DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType) ==
6025            DAR_Failed)
6026      DiagnoseAutoDeductionFailure(VDecl, Init);
6027    if (!DeducedType) {
6028      RealDecl->setInvalidDecl();
6029      return;
6030    }
6031    VDecl->setTypeSourceInfo(DeducedType);
6032    VDecl->setType(DeducedType->getType());
6033
6034    // In ARC, infer lifetime.
6035    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6036      VDecl->setInvalidDecl();
6037
6038    // If this is a redeclaration, check that the type we just deduced matches
6039    // the previously declared type.
6040    if (VarDecl *Old = VDecl->getPreviousDecl())
6041      MergeVarDeclTypes(VDecl, Old);
6042  }
6043
6044  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6045    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6046    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6047    VDecl->setInvalidDecl();
6048    return;
6049  }
6050
6051
6052  // A definition must end up with a complete type, which means it must be
6053  // complete with the restriction that an array type might be completed by the
6054  // initializer; note that later code assumes this restriction.
6055  QualType BaseDeclType = VDecl->getType();
6056  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6057    BaseDeclType = Array->getElementType();
6058  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6059                          diag::err_typecheck_decl_incomplete_type)) {
6060    RealDecl->setInvalidDecl();
6061    return;
6062  }
6063
6064  // The variable can not have an abstract class type.
6065  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6066                             diag::err_abstract_type_in_decl,
6067                             AbstractVariableType))
6068    VDecl->setInvalidDecl();
6069
6070  const VarDecl *Def;
6071  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6072    Diag(VDecl->getLocation(), diag::err_redefinition)
6073      << VDecl->getDeclName();
6074    Diag(Def->getLocation(), diag::note_previous_definition);
6075    VDecl->setInvalidDecl();
6076    return;
6077  }
6078
6079  const VarDecl* PrevInit = 0;
6080  if (getLangOptions().CPlusPlus) {
6081    // C++ [class.static.data]p4
6082    //   If a static data member is of const integral or const
6083    //   enumeration type, its declaration in the class definition can
6084    //   specify a constant-initializer which shall be an integral
6085    //   constant expression (5.19). In that case, the member can appear
6086    //   in integral constant expressions. The member shall still be
6087    //   defined in a namespace scope if it is used in the program and the
6088    //   namespace scope definition shall not contain an initializer.
6089    //
6090    // We already performed a redefinition check above, but for static
6091    // data members we also need to check whether there was an in-class
6092    // declaration with an initializer.
6093    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6094      Diag(VDecl->getLocation(), diag::err_redefinition)
6095        << VDecl->getDeclName();
6096      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6097      return;
6098    }
6099
6100    if (VDecl->hasLocalStorage())
6101      getCurFunction()->setHasBranchProtectedScope();
6102
6103    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6104      VDecl->setInvalidDecl();
6105      return;
6106    }
6107  }
6108
6109  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6110  // a kernel function cannot be initialized."
6111  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6112    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6113    VDecl->setInvalidDecl();
6114    return;
6115  }
6116
6117  // Get the decls type and save a reference for later, since
6118  // CheckInitializerTypes may change it.
6119  QualType DclT = VDecl->getType(), SavT = DclT;
6120
6121  // Perform the initialization.
6122  if (!VDecl->isInvalidDecl()) {
6123    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6124    InitializationKind Kind
6125      = DirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6126                                                      Init->getLocStart(),
6127                                                      Init->getLocEnd())
6128                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6129                                                    Init->getLocStart());
6130
6131    InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6132    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6133                                              MultiExprArg(*this, &Init, 1),
6134                                              &DclT);
6135    if (Result.isInvalid()) {
6136      VDecl->setInvalidDecl();
6137      return;
6138    }
6139
6140    Init = Result.takeAs<Expr>();
6141  }
6142
6143  // If the type changed, it means we had an incomplete type that was
6144  // completed by the initializer. For example:
6145  //   int ary[] = { 1, 3, 5 };
6146  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6147  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6148    VDecl->setType(DclT);
6149    Init->setType(DclT.getNonReferenceType());
6150  }
6151
6152  // Check any implicit conversions within the expression.
6153  CheckImplicitConversions(Init, VDecl->getLocation());
6154
6155  if (!VDecl->isInvalidDecl())
6156    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6157
6158  Init = MaybeCreateExprWithCleanups(Init);
6159  // Attach the initializer to the decl.
6160  VDecl->setInit(Init);
6161
6162  if (VDecl->isLocalVarDecl()) {
6163    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6164    // static storage duration shall be constant expressions or string literals.
6165    // C++ does not have this restriction.
6166    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl() &&
6167        VDecl->getStorageClass() == SC_Static)
6168      CheckForConstantInitializer(Init, DclT);
6169  } else if (VDecl->isStaticDataMember() &&
6170             VDecl->getLexicalDeclContext()->isRecord()) {
6171    // This is an in-class initialization for a static data member, e.g.,
6172    //
6173    // struct S {
6174    //   static const int value = 17;
6175    // };
6176
6177    // C++ [class.mem]p4:
6178    //   A member-declarator can contain a constant-initializer only
6179    //   if it declares a static member (9.4) of const integral or
6180    //   const enumeration type, see 9.4.2.
6181    //
6182    // C++11 [class.static.data]p3:
6183    //   If a non-volatile const static data member is of integral or
6184    //   enumeration type, its declaration in the class definition can
6185    //   specify a brace-or-equal-initializer in which every initalizer-clause
6186    //   that is an assignment-expression is a constant expression. A static
6187    //   data member of literal type can be declared in the class definition
6188    //   with the constexpr specifier; if so, its declaration shall specify a
6189    //   brace-or-equal-initializer in which every initializer-clause that is
6190    //   an assignment-expression is a constant expression.
6191
6192    // Do nothing on dependent types.
6193    if (DclT->isDependentType()) {
6194
6195    // Allow any 'static constexpr' members, whether or not they are of literal
6196    // type. We separately check that the initializer is a constant expression,
6197    // which implicitly requires the member to be of literal type.
6198    } else if (VDecl->isConstexpr()) {
6199
6200    // Require constness.
6201    } else if (!DclT.isConstQualified()) {
6202      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6203        << Init->getSourceRange();
6204      VDecl->setInvalidDecl();
6205
6206    // We allow integer constant expressions in all cases.
6207    } else if (DclT->isIntegralOrEnumerationType()) {
6208      // Check whether the expression is a constant expression.
6209      SourceLocation Loc;
6210      if (getLangOptions().CPlusPlus0x && DclT.isVolatileQualified())
6211        // In C++11, a non-constexpr const static data member with an
6212        // in-class initializer cannot be volatile.
6213        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6214      else if (Init->isValueDependent())
6215        ; // Nothing to check.
6216      else if (Init->isIntegerConstantExpr(Context, &Loc))
6217        ; // Ok, it's an ICE!
6218      else if (Init->isEvaluatable(Context)) {
6219        // If we can constant fold the initializer through heroics, accept it,
6220        // but report this as a use of an extension for -pedantic.
6221        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6222          << Init->getSourceRange();
6223      } else {
6224        // Otherwise, this is some crazy unknown case.  Report the issue at the
6225        // location provided by the isIntegerConstantExpr failed check.
6226        Diag(Loc, diag::err_in_class_initializer_non_constant)
6227          << Init->getSourceRange();
6228        VDecl->setInvalidDecl();
6229      }
6230
6231    // We allow foldable floating-point constants as an extension.
6232    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6233      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6234        << DclT << Init->getSourceRange();
6235      if (getLangOptions().CPlusPlus0x)
6236        Diag(VDecl->getLocation(),
6237             diag::note_in_class_initializer_float_type_constexpr)
6238          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6239
6240      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6241        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6242          << Init->getSourceRange();
6243        VDecl->setInvalidDecl();
6244      }
6245
6246    // Suggest adding 'constexpr' in C++11 for literal types.
6247    } else if (getLangOptions().CPlusPlus0x && DclT->isLiteralType()) {
6248      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6249        << DclT << Init->getSourceRange()
6250        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6251      VDecl->setConstexpr(true);
6252
6253    } else {
6254      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6255        << DclT << Init->getSourceRange();
6256      VDecl->setInvalidDecl();
6257    }
6258  } else if (VDecl->isFileVarDecl()) {
6259    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6260        (!getLangOptions().CPlusPlus ||
6261         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6262      Diag(VDecl->getLocation(), diag::warn_extern_init);
6263
6264    // C99 6.7.8p4. All file scoped initializers need to be constant.
6265    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl())
6266      CheckForConstantInitializer(Init, DclT);
6267  }
6268
6269  CheckCompleteVariableDeclaration(VDecl);
6270}
6271
6272/// ActOnInitializerError - Given that there was an error parsing an
6273/// initializer for the given declaration, try to return to some form
6274/// of sanity.
6275void Sema::ActOnInitializerError(Decl *D) {
6276  // Our main concern here is re-establishing invariants like "a
6277  // variable's type is either dependent or complete".
6278  if (!D || D->isInvalidDecl()) return;
6279
6280  VarDecl *VD = dyn_cast<VarDecl>(D);
6281  if (!VD) return;
6282
6283  // Auto types are meaningless if we can't make sense of the initializer.
6284  if (ParsingInitForAutoVars.count(D)) {
6285    D->setInvalidDecl();
6286    return;
6287  }
6288
6289  QualType Ty = VD->getType();
6290  if (Ty->isDependentType()) return;
6291
6292  // Require a complete type.
6293  if (RequireCompleteType(VD->getLocation(),
6294                          Context.getBaseElementType(Ty),
6295                          diag::err_typecheck_decl_incomplete_type)) {
6296    VD->setInvalidDecl();
6297    return;
6298  }
6299
6300  // Require an abstract type.
6301  if (RequireNonAbstractType(VD->getLocation(), Ty,
6302                             diag::err_abstract_type_in_decl,
6303                             AbstractVariableType)) {
6304    VD->setInvalidDecl();
6305    return;
6306  }
6307
6308  // Don't bother complaining about constructors or destructors,
6309  // though.
6310}
6311
6312void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6313                                  bool TypeMayContainAuto) {
6314  // If there is no declaration, there was an error parsing it. Just ignore it.
6315  if (RealDecl == 0)
6316    return;
6317
6318  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6319    QualType Type = Var->getType();
6320
6321    // C++11 [dcl.spec.auto]p3
6322    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6323      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6324        << Var->getDeclName() << Type;
6325      Var->setInvalidDecl();
6326      return;
6327    }
6328
6329    // C++11 [class.static.data]p3: A static data member can be declared with
6330    // the constexpr specifier; if so, its declaration shall specify
6331    // a brace-or-equal-initializer.
6332    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6333    // the definition of a variable [...] or the declaration of a static data
6334    // member.
6335    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6336      if (Var->isStaticDataMember())
6337        Diag(Var->getLocation(),
6338             diag::err_constexpr_static_mem_var_requires_init)
6339          << Var->getDeclName();
6340      else
6341        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6342      Var->setInvalidDecl();
6343      return;
6344    }
6345
6346    switch (Var->isThisDeclarationADefinition()) {
6347    case VarDecl::Definition:
6348      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6349        break;
6350
6351      // We have an out-of-line definition of a static data member
6352      // that has an in-class initializer, so we type-check this like
6353      // a declaration.
6354      //
6355      // Fall through
6356
6357    case VarDecl::DeclarationOnly:
6358      // It's only a declaration.
6359
6360      // Block scope. C99 6.7p7: If an identifier for an object is
6361      // declared with no linkage (C99 6.2.2p6), the type for the
6362      // object shall be complete.
6363      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6364          !Var->getLinkage() && !Var->isInvalidDecl() &&
6365          RequireCompleteType(Var->getLocation(), Type,
6366                              diag::err_typecheck_decl_incomplete_type))
6367        Var->setInvalidDecl();
6368
6369      // Make sure that the type is not abstract.
6370      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6371          RequireNonAbstractType(Var->getLocation(), Type,
6372                                 diag::err_abstract_type_in_decl,
6373                                 AbstractVariableType))
6374        Var->setInvalidDecl();
6375      return;
6376
6377    case VarDecl::TentativeDefinition:
6378      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6379      // object that has file scope without an initializer, and without a
6380      // storage-class specifier or with the storage-class specifier "static",
6381      // constitutes a tentative definition. Note: A tentative definition with
6382      // external linkage is valid (C99 6.2.2p5).
6383      if (!Var->isInvalidDecl()) {
6384        if (const IncompleteArrayType *ArrayT
6385                                    = Context.getAsIncompleteArrayType(Type)) {
6386          if (RequireCompleteType(Var->getLocation(),
6387                                  ArrayT->getElementType(),
6388                                  diag::err_illegal_decl_array_incomplete_type))
6389            Var->setInvalidDecl();
6390        } else if (Var->getStorageClass() == SC_Static) {
6391          // C99 6.9.2p3: If the declaration of an identifier for an object is
6392          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6393          // declared type shall not be an incomplete type.
6394          // NOTE: code such as the following
6395          //     static struct s;
6396          //     struct s { int a; };
6397          // is accepted by gcc. Hence here we issue a warning instead of
6398          // an error and we do not invalidate the static declaration.
6399          // NOTE: to avoid multiple warnings, only check the first declaration.
6400          if (Var->getPreviousDecl() == 0)
6401            RequireCompleteType(Var->getLocation(), Type,
6402                                diag::ext_typecheck_decl_incomplete_type);
6403        }
6404      }
6405
6406      // Record the tentative definition; we're done.
6407      if (!Var->isInvalidDecl())
6408        TentativeDefinitions.push_back(Var);
6409      return;
6410    }
6411
6412    // Provide a specific diagnostic for uninitialized variable
6413    // definitions with incomplete array type.
6414    if (Type->isIncompleteArrayType()) {
6415      Diag(Var->getLocation(),
6416           diag::err_typecheck_incomplete_array_needs_initializer);
6417      Var->setInvalidDecl();
6418      return;
6419    }
6420
6421    // Provide a specific diagnostic for uninitialized variable
6422    // definitions with reference type.
6423    if (Type->isReferenceType()) {
6424      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6425        << Var->getDeclName()
6426        << SourceRange(Var->getLocation(), Var->getLocation());
6427      Var->setInvalidDecl();
6428      return;
6429    }
6430
6431    // Do not attempt to type-check the default initializer for a
6432    // variable with dependent type.
6433    if (Type->isDependentType())
6434      return;
6435
6436    if (Var->isInvalidDecl())
6437      return;
6438
6439    if (RequireCompleteType(Var->getLocation(),
6440                            Context.getBaseElementType(Type),
6441                            diag::err_typecheck_decl_incomplete_type)) {
6442      Var->setInvalidDecl();
6443      return;
6444    }
6445
6446    // The variable can not have an abstract class type.
6447    if (RequireNonAbstractType(Var->getLocation(), Type,
6448                               diag::err_abstract_type_in_decl,
6449                               AbstractVariableType)) {
6450      Var->setInvalidDecl();
6451      return;
6452    }
6453
6454    // Check for jumps past the implicit initializer.  C++0x
6455    // clarifies that this applies to a "variable with automatic
6456    // storage duration", not a "local variable".
6457    // C++11 [stmt.dcl]p3
6458    //   A program that jumps from a point where a variable with automatic
6459    //   storage duration is not in scope to a point where it is in scope is
6460    //   ill-formed unless the variable has scalar type, class type with a
6461    //   trivial default constructor and a trivial destructor, a cv-qualified
6462    //   version of one of these types, or an array of one of the preceding
6463    //   types and is declared without an initializer.
6464    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6465      if (const RecordType *Record
6466            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6467        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6468        // Mark the function for further checking even if the looser rules of
6469        // C++11 do not require such checks, so that we can diagnose
6470        // incompatibilities with C++98.
6471        if (!CXXRecord->isPOD())
6472          getCurFunction()->setHasBranchProtectedScope();
6473      }
6474    }
6475
6476    // C++03 [dcl.init]p9:
6477    //   If no initializer is specified for an object, and the
6478    //   object is of (possibly cv-qualified) non-POD class type (or
6479    //   array thereof), the object shall be default-initialized; if
6480    //   the object is of const-qualified type, the underlying class
6481    //   type shall have a user-declared default
6482    //   constructor. Otherwise, if no initializer is specified for
6483    //   a non- static object, the object and its subobjects, if
6484    //   any, have an indeterminate initial value); if the object
6485    //   or any of its subobjects are of const-qualified type, the
6486    //   program is ill-formed.
6487    // C++0x [dcl.init]p11:
6488    //   If no initializer is specified for an object, the object is
6489    //   default-initialized; [...].
6490    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6491    InitializationKind Kind
6492      = InitializationKind::CreateDefault(Var->getLocation());
6493
6494    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6495    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6496                                      MultiExprArg(*this, 0, 0));
6497    if (Init.isInvalid())
6498      Var->setInvalidDecl();
6499    else if (Init.get())
6500      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6501
6502    CheckCompleteVariableDeclaration(Var);
6503  }
6504}
6505
6506void Sema::ActOnCXXForRangeDecl(Decl *D) {
6507  VarDecl *VD = dyn_cast<VarDecl>(D);
6508  if (!VD) {
6509    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6510    D->setInvalidDecl();
6511    return;
6512  }
6513
6514  VD->setCXXForRangeDecl(true);
6515
6516  // for-range-declaration cannot be given a storage class specifier.
6517  int Error = -1;
6518  switch (VD->getStorageClassAsWritten()) {
6519  case SC_None:
6520    break;
6521  case SC_Extern:
6522    Error = 0;
6523    break;
6524  case SC_Static:
6525    Error = 1;
6526    break;
6527  case SC_PrivateExtern:
6528    Error = 2;
6529    break;
6530  case SC_Auto:
6531    Error = 3;
6532    break;
6533  case SC_Register:
6534    Error = 4;
6535    break;
6536  case SC_OpenCLWorkGroupLocal:
6537    llvm_unreachable("Unexpected storage class");
6538  }
6539  if (VD->isConstexpr())
6540    Error = 5;
6541  if (Error != -1) {
6542    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6543      << VD->getDeclName() << Error;
6544    D->setInvalidDecl();
6545  }
6546}
6547
6548void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6549  if (var->isInvalidDecl()) return;
6550
6551  // In ARC, don't allow jumps past the implicit initialization of a
6552  // local retaining variable.
6553  if (getLangOptions().ObjCAutoRefCount &&
6554      var->hasLocalStorage()) {
6555    switch (var->getType().getObjCLifetime()) {
6556    case Qualifiers::OCL_None:
6557    case Qualifiers::OCL_ExplicitNone:
6558    case Qualifiers::OCL_Autoreleasing:
6559      break;
6560
6561    case Qualifiers::OCL_Weak:
6562    case Qualifiers::OCL_Strong:
6563      getCurFunction()->setHasBranchProtectedScope();
6564      break;
6565    }
6566  }
6567
6568  // All the following checks are C++ only.
6569  if (!getLangOptions().CPlusPlus) return;
6570
6571  QualType baseType = Context.getBaseElementType(var->getType());
6572  if (baseType->isDependentType()) return;
6573
6574  // __block variables might require us to capture a copy-initializer.
6575  if (var->hasAttr<BlocksAttr>()) {
6576    // It's currently invalid to ever have a __block variable with an
6577    // array type; should we diagnose that here?
6578
6579    // Regardless, we don't want to ignore array nesting when
6580    // constructing this copy.
6581    QualType type = var->getType();
6582
6583    if (type->isStructureOrClassType()) {
6584      SourceLocation poi = var->getLocation();
6585      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6586      ExprResult result =
6587        PerformCopyInitialization(
6588                        InitializedEntity::InitializeBlock(poi, type, false),
6589                                  poi, Owned(varRef));
6590      if (!result.isInvalid()) {
6591        result = MaybeCreateExprWithCleanups(result);
6592        Expr *init = result.takeAs<Expr>();
6593        Context.setBlockVarCopyInits(var, init);
6594      }
6595    }
6596  }
6597
6598  Expr *Init = var->getInit();
6599  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6600
6601  if (!var->getDeclContext()->isDependentContext() && Init) {
6602    if (IsGlobal && !var->isConstexpr() &&
6603        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6604                                            var->getLocation())
6605          != DiagnosticsEngine::Ignored &&
6606        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6607      Diag(var->getLocation(), diag::warn_global_constructor)
6608        << Init->getSourceRange();
6609
6610    if (var->isConstexpr()) {
6611      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6612      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6613        SourceLocation DiagLoc = var->getLocation();
6614        // If the note doesn't add any useful information other than a source
6615        // location, fold it into the primary diagnostic.
6616        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6617              diag::note_invalid_subexpr_in_const_expr) {
6618          DiagLoc = Notes[0].first;
6619          Notes.clear();
6620        }
6621        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6622          << var << Init->getSourceRange();
6623        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6624          Diag(Notes[I].first, Notes[I].second);
6625      }
6626    } else if (var->isUsableInConstantExpressions()) {
6627      // Check whether the initializer of a const variable of integral or
6628      // enumeration type is an ICE now, since we can't tell whether it was
6629      // initialized by a constant expression if we check later.
6630      var->checkInitIsICE();
6631    }
6632  }
6633
6634  // Require the destructor.
6635  if (const RecordType *recordType = baseType->getAs<RecordType>())
6636    FinalizeVarWithDestructor(var, recordType);
6637}
6638
6639/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6640/// any semantic actions necessary after any initializer has been attached.
6641void
6642Sema::FinalizeDeclaration(Decl *ThisDecl) {
6643  // Note that we are no longer parsing the initializer for this declaration.
6644  ParsingInitForAutoVars.erase(ThisDecl);
6645}
6646
6647Sema::DeclGroupPtrTy
6648Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6649                              Decl **Group, unsigned NumDecls) {
6650  SmallVector<Decl*, 8> Decls;
6651
6652  if (DS.isTypeSpecOwned())
6653    Decls.push_back(DS.getRepAsDecl());
6654
6655  for (unsigned i = 0; i != NumDecls; ++i)
6656    if (Decl *D = Group[i])
6657      Decls.push_back(D);
6658
6659  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6660                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6661}
6662
6663/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6664/// group, performing any necessary semantic checking.
6665Sema::DeclGroupPtrTy
6666Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6667                           bool TypeMayContainAuto) {
6668  // C++0x [dcl.spec.auto]p7:
6669  //   If the type deduced for the template parameter U is not the same in each
6670  //   deduction, the program is ill-formed.
6671  // FIXME: When initializer-list support is added, a distinction is needed
6672  // between the deduced type U and the deduced type which 'auto' stands for.
6673  //   auto a = 0, b = { 1, 2, 3 };
6674  // is legal because the deduced type U is 'int' in both cases.
6675  if (TypeMayContainAuto && NumDecls > 1) {
6676    QualType Deduced;
6677    CanQualType DeducedCanon;
6678    VarDecl *DeducedDecl = 0;
6679    for (unsigned i = 0; i != NumDecls; ++i) {
6680      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6681        AutoType *AT = D->getType()->getContainedAutoType();
6682        // Don't reissue diagnostics when instantiating a template.
6683        if (AT && D->isInvalidDecl())
6684          break;
6685        if (AT && AT->isDeduced()) {
6686          QualType U = AT->getDeducedType();
6687          CanQualType UCanon = Context.getCanonicalType(U);
6688          if (Deduced.isNull()) {
6689            Deduced = U;
6690            DeducedCanon = UCanon;
6691            DeducedDecl = D;
6692          } else if (DeducedCanon != UCanon) {
6693            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6694                 diag::err_auto_different_deductions)
6695              << Deduced << DeducedDecl->getDeclName()
6696              << U << D->getDeclName()
6697              << DeducedDecl->getInit()->getSourceRange()
6698              << D->getInit()->getSourceRange();
6699            D->setInvalidDecl();
6700            break;
6701          }
6702        }
6703      }
6704    }
6705  }
6706
6707  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6708}
6709
6710
6711/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6712/// to introduce parameters into function prototype scope.
6713Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6714  const DeclSpec &DS = D.getDeclSpec();
6715
6716  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6717  // C++03 [dcl.stc]p2 also permits 'auto'.
6718  VarDecl::StorageClass StorageClass = SC_None;
6719  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6720  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6721    StorageClass = SC_Register;
6722    StorageClassAsWritten = SC_Register;
6723  } else if (getLangOptions().CPlusPlus &&
6724             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6725    StorageClass = SC_Auto;
6726    StorageClassAsWritten = SC_Auto;
6727  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6728    Diag(DS.getStorageClassSpecLoc(),
6729         diag::err_invalid_storage_class_in_func_decl);
6730    D.getMutableDeclSpec().ClearStorageClassSpecs();
6731  }
6732
6733  if (D.getDeclSpec().isThreadSpecified())
6734    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6735  if (D.getDeclSpec().isConstexprSpecified())
6736    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6737      << 0;
6738
6739  DiagnoseFunctionSpecifiers(D);
6740
6741  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6742  QualType parmDeclType = TInfo->getType();
6743
6744  if (getLangOptions().CPlusPlus) {
6745    // Check that there are no default arguments inside the type of this
6746    // parameter.
6747    CheckExtraCXXDefaultArguments(D);
6748
6749    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6750    if (D.getCXXScopeSpec().isSet()) {
6751      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6752        << D.getCXXScopeSpec().getRange();
6753      D.getCXXScopeSpec().clear();
6754    }
6755  }
6756
6757  // Ensure we have a valid name
6758  IdentifierInfo *II = 0;
6759  if (D.hasName()) {
6760    II = D.getIdentifier();
6761    if (!II) {
6762      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6763        << GetNameForDeclarator(D).getName().getAsString();
6764      D.setInvalidType(true);
6765    }
6766  }
6767
6768  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6769  if (II) {
6770    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6771                   ForRedeclaration);
6772    LookupName(R, S);
6773    if (R.isSingleResult()) {
6774      NamedDecl *PrevDecl = R.getFoundDecl();
6775      if (PrevDecl->isTemplateParameter()) {
6776        // Maybe we will complain about the shadowed template parameter.
6777        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6778        // Just pretend that we didn't see the previous declaration.
6779        PrevDecl = 0;
6780      } else if (S->isDeclScope(PrevDecl)) {
6781        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6782        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6783
6784        // Recover by removing the name
6785        II = 0;
6786        D.SetIdentifier(0, D.getIdentifierLoc());
6787        D.setInvalidType(true);
6788      }
6789    }
6790  }
6791
6792  // Temporarily put parameter variables in the translation unit, not
6793  // the enclosing context.  This prevents them from accidentally
6794  // looking like class members in C++.
6795  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6796                                    D.getSourceRange().getBegin(),
6797                                    D.getIdentifierLoc(), II,
6798                                    parmDeclType, TInfo,
6799                                    StorageClass, StorageClassAsWritten);
6800
6801  if (D.isInvalidType())
6802    New->setInvalidDecl();
6803
6804  assert(S->isFunctionPrototypeScope());
6805  assert(S->getFunctionPrototypeDepth() >= 1);
6806  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6807                    S->getNextFunctionPrototypeIndex());
6808
6809  // Add the parameter declaration into this scope.
6810  S->AddDecl(New);
6811  if (II)
6812    IdResolver.AddDecl(New);
6813
6814  ProcessDeclAttributes(S, New, D);
6815
6816  if (D.getDeclSpec().isModulePrivateSpecified())
6817    Diag(New->getLocation(), diag::err_module_private_local)
6818      << 1 << New->getDeclName()
6819      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6820      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6821
6822  if (New->hasAttr<BlocksAttr>()) {
6823    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6824  }
6825  return New;
6826}
6827
6828/// \brief Synthesizes a variable for a parameter arising from a
6829/// typedef.
6830ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6831                                              SourceLocation Loc,
6832                                              QualType T) {
6833  /* FIXME: setting StartLoc == Loc.
6834     Would it be worth to modify callers so as to provide proper source
6835     location for the unnamed parameters, embedding the parameter's type? */
6836  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6837                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6838                                           SC_None, SC_None, 0);
6839  Param->setImplicit();
6840  return Param;
6841}
6842
6843void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6844                                    ParmVarDecl * const *ParamEnd) {
6845  // Don't diagnose unused-parameter errors in template instantiations; we
6846  // will already have done so in the template itself.
6847  if (!ActiveTemplateInstantiations.empty())
6848    return;
6849
6850  for (; Param != ParamEnd; ++Param) {
6851    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
6852        !(*Param)->hasAttr<UnusedAttr>()) {
6853      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6854        << (*Param)->getDeclName();
6855    }
6856  }
6857}
6858
6859void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6860                                                  ParmVarDecl * const *ParamEnd,
6861                                                  QualType ReturnTy,
6862                                                  NamedDecl *D) {
6863  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6864    return;
6865
6866  // Warn if the return value is pass-by-value and larger than the specified
6867  // threshold.
6868  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
6869    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6870    if (Size > LangOpts.NumLargeByValueCopy)
6871      Diag(D->getLocation(), diag::warn_return_value_size)
6872          << D->getDeclName() << Size;
6873  }
6874
6875  // Warn if any parameter is pass-by-value and larger than the specified
6876  // threshold.
6877  for (; Param != ParamEnd; ++Param) {
6878    QualType T = (*Param)->getType();
6879    if (T->isDependentType() || !T.isPODType(Context))
6880      continue;
6881    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6882    if (Size > LangOpts.NumLargeByValueCopy)
6883      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6884          << (*Param)->getDeclName() << Size;
6885  }
6886}
6887
6888ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6889                                  SourceLocation NameLoc, IdentifierInfo *Name,
6890                                  QualType T, TypeSourceInfo *TSInfo,
6891                                  VarDecl::StorageClass StorageClass,
6892                                  VarDecl::StorageClass StorageClassAsWritten) {
6893  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6894  if (getLangOptions().ObjCAutoRefCount &&
6895      T.getObjCLifetime() == Qualifiers::OCL_None &&
6896      T->isObjCLifetimeType()) {
6897
6898    Qualifiers::ObjCLifetime lifetime;
6899
6900    // Special cases for arrays:
6901    //   - if it's const, use __unsafe_unretained
6902    //   - otherwise, it's an error
6903    if (T->isArrayType()) {
6904      if (!T.isConstQualified()) {
6905        DelayedDiagnostics.add(
6906            sema::DelayedDiagnostic::makeForbiddenType(
6907            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6908      }
6909      lifetime = Qualifiers::OCL_ExplicitNone;
6910    } else {
6911      lifetime = T->getObjCARCImplicitLifetime();
6912    }
6913    T = Context.getLifetimeQualifiedType(T, lifetime);
6914  }
6915
6916  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6917                                         Context.getAdjustedParameterType(T),
6918                                         TSInfo,
6919                                         StorageClass, StorageClassAsWritten,
6920                                         0);
6921
6922  // Parameters can not be abstract class types.
6923  // For record types, this is done by the AbstractClassUsageDiagnoser once
6924  // the class has been completely parsed.
6925  if (!CurContext->isRecord() &&
6926      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6927                             AbstractParamType))
6928    New->setInvalidDecl();
6929
6930  // Parameter declarators cannot be interface types. All ObjC objects are
6931  // passed by reference.
6932  if (T->isObjCObjectType()) {
6933    Diag(NameLoc,
6934         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6935      << FixItHint::CreateInsertion(NameLoc, "*");
6936    T = Context.getObjCObjectPointerType(T);
6937    New->setType(T);
6938  }
6939
6940  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6941  // duration shall not be qualified by an address-space qualifier."
6942  // Since all parameters have automatic store duration, they can not have
6943  // an address space.
6944  if (T.getAddressSpace() != 0) {
6945    Diag(NameLoc, diag::err_arg_with_address_space);
6946    New->setInvalidDecl();
6947  }
6948
6949  return New;
6950}
6951
6952void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6953                                           SourceLocation LocAfterDecls) {
6954  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6955
6956  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6957  // for a K&R function.
6958  if (!FTI.hasPrototype) {
6959    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6960      --i;
6961      if (FTI.ArgInfo[i].Param == 0) {
6962        SmallString<256> Code;
6963        llvm::raw_svector_ostream(Code) << "  int "
6964                                        << FTI.ArgInfo[i].Ident->getName()
6965                                        << ";\n";
6966        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6967          << FTI.ArgInfo[i].Ident
6968          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6969
6970        // Implicitly declare the argument as type 'int' for lack of a better
6971        // type.
6972        AttributeFactory attrs;
6973        DeclSpec DS(attrs);
6974        const char* PrevSpec; // unused
6975        unsigned DiagID; // unused
6976        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6977                           PrevSpec, DiagID);
6978        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6979        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6980        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6981      }
6982    }
6983  }
6984}
6985
6986Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6987                                         Declarator &D) {
6988  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6989  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6990  Scope *ParentScope = FnBodyScope->getParent();
6991
6992  D.setFunctionDefinitionKind(FDK_Definition);
6993  Decl *DP = HandleDeclarator(ParentScope, D,
6994                              MultiTemplateParamsArg(*this));
6995  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6996}
6997
6998static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6999  // Don't warn about invalid declarations.
7000  if (FD->isInvalidDecl())
7001    return false;
7002
7003  // Or declarations that aren't global.
7004  if (!FD->isGlobal())
7005    return false;
7006
7007  // Don't warn about C++ member functions.
7008  if (isa<CXXMethodDecl>(FD))
7009    return false;
7010
7011  // Don't warn about 'main'.
7012  if (FD->isMain())
7013    return false;
7014
7015  // Don't warn about inline functions.
7016  if (FD->isInlined())
7017    return false;
7018
7019  // Don't warn about function templates.
7020  if (FD->getDescribedFunctionTemplate())
7021    return false;
7022
7023  // Don't warn about function template specializations.
7024  if (FD->isFunctionTemplateSpecialization())
7025    return false;
7026
7027  bool MissingPrototype = true;
7028  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7029       Prev; Prev = Prev->getPreviousDecl()) {
7030    // Ignore any declarations that occur in function or method
7031    // scope, because they aren't visible from the header.
7032    if (Prev->getDeclContext()->isFunctionOrMethod())
7033      continue;
7034
7035    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7036    break;
7037  }
7038
7039  return MissingPrototype;
7040}
7041
7042void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7043  // Don't complain if we're in GNU89 mode and the previous definition
7044  // was an extern inline function.
7045  const FunctionDecl *Definition;
7046  if (FD->isDefined(Definition) &&
7047      !canRedefineFunction(Definition, getLangOptions())) {
7048    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
7049        Definition->getStorageClass() == SC_Extern)
7050      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7051        << FD->getDeclName() << getLangOptions().CPlusPlus;
7052    else
7053      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7054    Diag(Definition->getLocation(), diag::note_previous_definition);
7055  }
7056}
7057
7058Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7059  // Clear the last template instantiation error context.
7060  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7061
7062  if (!D)
7063    return D;
7064  FunctionDecl *FD = 0;
7065
7066  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7067    FD = FunTmpl->getTemplatedDecl();
7068  else
7069    FD = cast<FunctionDecl>(D);
7070
7071  // Enter a new function scope
7072  PushFunctionScope();
7073
7074  // See if this is a redefinition.
7075  if (!FD->isLateTemplateParsed())
7076    CheckForFunctionRedefinition(FD);
7077
7078  // Builtin functions cannot be defined.
7079  if (unsigned BuiltinID = FD->getBuiltinID()) {
7080    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7081      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7082      FD->setInvalidDecl();
7083    }
7084  }
7085
7086  // The return type of a function definition must be complete
7087  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7088  QualType ResultType = FD->getResultType();
7089  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7090      !FD->isInvalidDecl() &&
7091      RequireCompleteType(FD->getLocation(), ResultType,
7092                          diag::err_func_def_incomplete_result))
7093    FD->setInvalidDecl();
7094
7095  // GNU warning -Wmissing-prototypes:
7096  //   Warn if a global function is defined without a previous
7097  //   prototype declaration. This warning is issued even if the
7098  //   definition itself provides a prototype. The aim is to detect
7099  //   global functions that fail to be declared in header files.
7100  if (ShouldWarnAboutMissingPrototype(FD))
7101    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7102
7103  if (FnBodyScope)
7104    PushDeclContext(FnBodyScope, FD);
7105
7106  // Check the validity of our function parameters
7107  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7108                           /*CheckParameterNames=*/true);
7109
7110  // Introduce our parameters into the function scope
7111  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7112    ParmVarDecl *Param = FD->getParamDecl(p);
7113    Param->setOwningFunction(FD);
7114
7115    // If this has an identifier, add it to the scope stack.
7116    if (Param->getIdentifier() && FnBodyScope) {
7117      CheckShadow(FnBodyScope, Param);
7118
7119      PushOnScopeChains(Param, FnBodyScope);
7120    }
7121  }
7122
7123  // Checking attributes of current function definition
7124  // dllimport attribute.
7125  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7126  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7127    // dllimport attribute cannot be directly applied to definition.
7128    // Microsoft accepts dllimport for functions defined within class scope.
7129    if (!DA->isInherited() &&
7130        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7131      Diag(FD->getLocation(),
7132           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7133        << "dllimport";
7134      FD->setInvalidDecl();
7135      return FD;
7136    }
7137
7138    // Visual C++ appears to not think this is an issue, so only issue
7139    // a warning when Microsoft extensions are disabled.
7140    if (!LangOpts.MicrosoftExt) {
7141      // If a symbol previously declared dllimport is later defined, the
7142      // attribute is ignored in subsequent references, and a warning is
7143      // emitted.
7144      Diag(FD->getLocation(),
7145           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7146        << FD->getName() << "dllimport";
7147    }
7148  }
7149  return FD;
7150}
7151
7152/// \brief Given the set of return statements within a function body,
7153/// compute the variables that are subject to the named return value
7154/// optimization.
7155///
7156/// Each of the variables that is subject to the named return value
7157/// optimization will be marked as NRVO variables in the AST, and any
7158/// return statement that has a marked NRVO variable as its NRVO candidate can
7159/// use the named return value optimization.
7160///
7161/// This function applies a very simplistic algorithm for NRVO: if every return
7162/// statement in the function has the same NRVO candidate, that candidate is
7163/// the NRVO variable.
7164///
7165/// FIXME: Employ a smarter algorithm that accounts for multiple return
7166/// statements and the lifetimes of the NRVO candidates. We should be able to
7167/// find a maximal set of NRVO variables.
7168void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7169  ReturnStmt **Returns = Scope->Returns.data();
7170
7171  const VarDecl *NRVOCandidate = 0;
7172  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7173    if (!Returns[I]->getNRVOCandidate())
7174      return;
7175
7176    if (!NRVOCandidate)
7177      NRVOCandidate = Returns[I]->getNRVOCandidate();
7178    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7179      return;
7180  }
7181
7182  if (NRVOCandidate)
7183    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7184}
7185
7186Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7187  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7188}
7189
7190Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7191                                    bool IsInstantiation) {
7192  FunctionDecl *FD = 0;
7193  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7194  if (FunTmpl)
7195    FD = FunTmpl->getTemplatedDecl();
7196  else
7197    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7198
7199  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7200  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7201
7202  if (FD) {
7203    FD->setBody(Body);
7204    if (FD->isMain()) {
7205      // C and C++ allow for main to automagically return 0.
7206      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7207      FD->setHasImplicitReturnZero(true);
7208      WP.disableCheckFallThrough();
7209    } else if (FD->hasAttr<NakedAttr>()) {
7210      // If the function is marked 'naked', don't complain about missing return
7211      // statements.
7212      WP.disableCheckFallThrough();
7213    }
7214
7215    // MSVC permits the use of pure specifier (=0) on function definition,
7216    // defined at class scope, warn about this non standard construct.
7217    if (getLangOptions().MicrosoftExt && FD->isPure())
7218      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7219
7220    if (!FD->isInvalidDecl()) {
7221      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7222      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7223                                             FD->getResultType(), FD);
7224
7225      // If this is a constructor, we need a vtable.
7226      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7227        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7228
7229      computeNRVO(Body, getCurFunction());
7230    }
7231
7232    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7233           "Function parsing confused");
7234  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7235    assert(MD == getCurMethodDecl() && "Method parsing confused");
7236    MD->setBody(Body);
7237    if (Body)
7238      MD->setEndLoc(Body->getLocEnd());
7239    if (!MD->isInvalidDecl()) {
7240      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7241      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7242                                             MD->getResultType(), MD);
7243
7244      if (Body)
7245        computeNRVO(Body, getCurFunction());
7246    }
7247    if (ObjCShouldCallSuperDealloc) {
7248      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7249      ObjCShouldCallSuperDealloc = false;
7250    }
7251    if (ObjCShouldCallSuperFinalize) {
7252      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7253      ObjCShouldCallSuperFinalize = false;
7254    }
7255  } else {
7256    return 0;
7257  }
7258
7259  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7260         "ObjC methods, which should have been handled in the block above.");
7261  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7262         "ObjC methods, which should have been handled in the block above.");
7263
7264  // Verify and clean out per-function state.
7265  if (Body) {
7266    // C++ constructors that have function-try-blocks can't have return
7267    // statements in the handlers of that block. (C++ [except.handle]p14)
7268    // Verify this.
7269    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7270      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7271
7272    // Verify that gotos and switch cases don't jump into scopes illegally.
7273    if (getCurFunction()->NeedsScopeChecking() &&
7274        !dcl->isInvalidDecl() &&
7275        !hasAnyUnrecoverableErrorsInThisFunction())
7276      DiagnoseInvalidJumps(Body);
7277
7278    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7279      if (!Destructor->getParent()->isDependentType())
7280        CheckDestructor(Destructor);
7281
7282      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7283                                             Destructor->getParent());
7284    }
7285
7286    // If any errors have occurred, clear out any temporaries that may have
7287    // been leftover. This ensures that these temporaries won't be picked up for
7288    // deletion in some later function.
7289    if (PP.getDiagnostics().hasErrorOccurred() ||
7290        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7291      DiscardCleanupsInEvaluationContext();
7292    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7293      // Since the body is valid, issue any analysis-based warnings that are
7294      // enabled.
7295      ActivePolicy = &WP;
7296    }
7297
7298    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7299        !CheckConstexprFunctionBody(FD, Body, IsInstantiation))
7300      FD->setInvalidDecl();
7301
7302    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7303    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7304    assert(MaybeODRUseExprs.empty() &&
7305           "Leftover expressions for odr-use checking");
7306  }
7307
7308  if (!IsInstantiation)
7309    PopDeclContext();
7310
7311  PopFunctionScopeInfo(ActivePolicy, dcl);
7312
7313  // If any errors have occurred, clear out any temporaries that may have
7314  // been leftover. This ensures that these temporaries won't be picked up for
7315  // deletion in some later function.
7316  if (getDiagnostics().hasErrorOccurred()) {
7317    DiscardCleanupsInEvaluationContext();
7318  }
7319
7320  return dcl;
7321}
7322
7323
7324/// When we finish delayed parsing of an attribute, we must attach it to the
7325/// relevant Decl.
7326void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7327                                       ParsedAttributes &Attrs) {
7328  // Always attach attributes to the underlying decl.
7329  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7330    D = TD->getTemplatedDecl();
7331  ProcessDeclAttributeList(S, D, Attrs.getList());
7332}
7333
7334
7335/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7336/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7337NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7338                                          IdentifierInfo &II, Scope *S) {
7339  // Before we produce a declaration for an implicitly defined
7340  // function, see whether there was a locally-scoped declaration of
7341  // this name as a function or variable. If so, use that
7342  // (non-visible) declaration, and complain about it.
7343  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7344    = findLocallyScopedExternalDecl(&II);
7345  if (Pos != LocallyScopedExternalDecls.end()) {
7346    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7347    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7348    return Pos->second;
7349  }
7350
7351  // Extension in C99.  Legal in C90, but warn about it.
7352  unsigned diag_id;
7353  if (II.getName().startswith("__builtin_"))
7354    diag_id = diag::warn_builtin_unknown;
7355  else if (getLangOptions().C99)
7356    diag_id = diag::ext_implicit_function_decl;
7357  else
7358    diag_id = diag::warn_implicit_function_decl;
7359  Diag(Loc, diag_id) << &II;
7360
7361  // Because typo correction is expensive, only do it if the implicit
7362  // function declaration is going to be treated as an error.
7363  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7364    TypoCorrection Corrected;
7365    DeclFilterCCC<FunctionDecl> Validator;
7366    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7367                                      LookupOrdinaryName, S, 0, Validator))) {
7368      std::string CorrectedStr = Corrected.getAsString(getLangOptions());
7369      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOptions());
7370      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7371
7372      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7373          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7374
7375      if (Func->getLocation().isValid()
7376          && !II.getName().startswith("__builtin_"))
7377        Diag(Func->getLocation(), diag::note_previous_decl)
7378            << CorrectedQuotedStr;
7379    }
7380  }
7381
7382  // Set a Declarator for the implicit definition: int foo();
7383  const char *Dummy;
7384  AttributeFactory attrFactory;
7385  DeclSpec DS(attrFactory);
7386  unsigned DiagID;
7387  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7388  (void)Error; // Silence warning.
7389  assert(!Error && "Error setting up implicit decl!");
7390  Declarator D(DS, Declarator::BlockContext);
7391  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7392                                             0, 0, true, SourceLocation(),
7393                                             SourceLocation(), SourceLocation(),
7394                                             SourceLocation(),
7395                                             EST_None, SourceLocation(),
7396                                             0, 0, 0, 0, Loc, Loc, D),
7397                DS.getAttributes(),
7398                SourceLocation());
7399  D.SetIdentifier(&II, Loc);
7400
7401  // Insert this function into translation-unit scope.
7402
7403  DeclContext *PrevDC = CurContext;
7404  CurContext = Context.getTranslationUnitDecl();
7405
7406  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7407  FD->setImplicit();
7408
7409  CurContext = PrevDC;
7410
7411  AddKnownFunctionAttributes(FD);
7412
7413  return FD;
7414}
7415
7416/// \brief Adds any function attributes that we know a priori based on
7417/// the declaration of this function.
7418///
7419/// These attributes can apply both to implicitly-declared builtins
7420/// (like __builtin___printf_chk) or to library-declared functions
7421/// like NSLog or printf.
7422///
7423/// We need to check for duplicate attributes both here and where user-written
7424/// attributes are applied to declarations.
7425void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7426  if (FD->isInvalidDecl())
7427    return;
7428
7429  // If this is a built-in function, map its builtin attributes to
7430  // actual attributes.
7431  if (unsigned BuiltinID = FD->getBuiltinID()) {
7432    // Handle printf-formatting attributes.
7433    unsigned FormatIdx;
7434    bool HasVAListArg;
7435    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7436      if (!FD->getAttr<FormatAttr>()) {
7437        const char *fmt = "printf";
7438        unsigned int NumParams = FD->getNumParams();
7439        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7440            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7441          fmt = "NSString";
7442        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7443                                               fmt, FormatIdx+1,
7444                                               HasVAListArg ? 0 : FormatIdx+2));
7445      }
7446    }
7447    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7448                                             HasVAListArg)) {
7449     if (!FD->getAttr<FormatAttr>())
7450       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7451                                              "scanf", FormatIdx+1,
7452                                              HasVAListArg ? 0 : FormatIdx+2));
7453    }
7454
7455    // Mark const if we don't care about errno and that is the only
7456    // thing preventing the function from being const. This allows
7457    // IRgen to use LLVM intrinsics for such functions.
7458    if (!getLangOptions().MathErrno &&
7459        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7460      if (!FD->getAttr<ConstAttr>())
7461        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7462    }
7463
7464    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7465        !FD->getAttr<ReturnsTwiceAttr>())
7466      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7467    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7468      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7469    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7470      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7471  }
7472
7473  IdentifierInfo *Name = FD->getIdentifier();
7474  if (!Name)
7475    return;
7476  if ((!getLangOptions().CPlusPlus &&
7477       FD->getDeclContext()->isTranslationUnit()) ||
7478      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7479       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7480       LinkageSpecDecl::lang_c)) {
7481    // Okay: this could be a libc/libm/Objective-C function we know
7482    // about.
7483  } else
7484    return;
7485
7486  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7487    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7488    // target-specific builtins, perhaps?
7489    if (!FD->getAttr<FormatAttr>())
7490      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7491                                             "printf", 2,
7492                                             Name->isStr("vasprintf") ? 0 : 3));
7493  }
7494}
7495
7496TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7497                                    TypeSourceInfo *TInfo) {
7498  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7499  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7500
7501  if (!TInfo) {
7502    assert(D.isInvalidType() && "no declarator info for valid type");
7503    TInfo = Context.getTrivialTypeSourceInfo(T);
7504  }
7505
7506  // Scope manipulation handled by caller.
7507  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7508                                           D.getSourceRange().getBegin(),
7509                                           D.getIdentifierLoc(),
7510                                           D.getIdentifier(),
7511                                           TInfo);
7512
7513  // Bail out immediately if we have an invalid declaration.
7514  if (D.isInvalidType()) {
7515    NewTD->setInvalidDecl();
7516    return NewTD;
7517  }
7518
7519  if (D.getDeclSpec().isModulePrivateSpecified()) {
7520    if (CurContext->isFunctionOrMethod())
7521      Diag(NewTD->getLocation(), diag::err_module_private_local)
7522        << 2 << NewTD->getDeclName()
7523        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7524        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7525    else
7526      NewTD->setModulePrivate();
7527  }
7528
7529  // C++ [dcl.typedef]p8:
7530  //   If the typedef declaration defines an unnamed class (or
7531  //   enum), the first typedef-name declared by the declaration
7532  //   to be that class type (or enum type) is used to denote the
7533  //   class type (or enum type) for linkage purposes only.
7534  // We need to check whether the type was declared in the declaration.
7535  switch (D.getDeclSpec().getTypeSpecType()) {
7536  case TST_enum:
7537  case TST_struct:
7538  case TST_union:
7539  case TST_class: {
7540    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7541
7542    // Do nothing if the tag is not anonymous or already has an
7543    // associated typedef (from an earlier typedef in this decl group).
7544    if (tagFromDeclSpec->getIdentifier()) break;
7545    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7546
7547    // A well-formed anonymous tag must always be a TUK_Definition.
7548    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7549
7550    // The type must match the tag exactly;  no qualifiers allowed.
7551    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7552      break;
7553
7554    // Otherwise, set this is the anon-decl typedef for the tag.
7555    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7556    break;
7557  }
7558
7559  default:
7560    break;
7561  }
7562
7563  return NewTD;
7564}
7565
7566
7567/// \brief Determine whether a tag with a given kind is acceptable
7568/// as a redeclaration of the given tag declaration.
7569///
7570/// \returns true if the new tag kind is acceptable, false otherwise.
7571bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7572                                        TagTypeKind NewTag, bool isDefinition,
7573                                        SourceLocation NewTagLoc,
7574                                        const IdentifierInfo &Name) {
7575  // C++ [dcl.type.elab]p3:
7576  //   The class-key or enum keyword present in the
7577  //   elaborated-type-specifier shall agree in kind with the
7578  //   declaration to which the name in the elaborated-type-specifier
7579  //   refers. This rule also applies to the form of
7580  //   elaborated-type-specifier that declares a class-name or
7581  //   friend class since it can be construed as referring to the
7582  //   definition of the class. Thus, in any
7583  //   elaborated-type-specifier, the enum keyword shall be used to
7584  //   refer to an enumeration (7.2), the union class-key shall be
7585  //   used to refer to a union (clause 9), and either the class or
7586  //   struct class-key shall be used to refer to a class (clause 9)
7587  //   declared using the class or struct class-key.
7588  TagTypeKind OldTag = Previous->getTagKind();
7589  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7590    if (OldTag == NewTag)
7591      return true;
7592
7593  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7594      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7595    // Warn about the struct/class tag mismatch.
7596    bool isTemplate = false;
7597    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7598      isTemplate = Record->getDescribedClassTemplate();
7599
7600    if (!ActiveTemplateInstantiations.empty()) {
7601      // In a template instantiation, do not offer fix-its for tag mismatches
7602      // since they usually mess up the template instead of fixing the problem.
7603      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7604        << (NewTag == TTK_Class) << isTemplate << &Name;
7605      return true;
7606    }
7607
7608    if (isDefinition) {
7609      // On definitions, check previous tags and issue a fix-it for each
7610      // one that doesn't match the current tag.
7611      if (Previous->getDefinition()) {
7612        // Don't suggest fix-its for redefinitions.
7613        return true;
7614      }
7615
7616      bool previousMismatch = false;
7617      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7618           E(Previous->redecls_end()); I != E; ++I) {
7619        if (I->getTagKind() != NewTag) {
7620          if (!previousMismatch) {
7621            previousMismatch = true;
7622            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7623              << (NewTag == TTK_Class) << isTemplate << &Name;
7624          }
7625          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7626            << (NewTag == TTK_Class)
7627            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7628                                            NewTag == TTK_Class?
7629                                            "class" : "struct");
7630        }
7631      }
7632      return true;
7633    }
7634
7635    // Check for a previous definition.  If current tag and definition
7636    // are same type, do nothing.  If no definition, but disagree with
7637    // with previous tag type, give a warning, but no fix-it.
7638    const TagDecl *Redecl = Previous->getDefinition() ?
7639                            Previous->getDefinition() : Previous;
7640    if (Redecl->getTagKind() == NewTag) {
7641      return true;
7642    }
7643
7644    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7645      << (NewTag == TTK_Class)
7646      << isTemplate << &Name;
7647    Diag(Redecl->getLocation(), diag::note_previous_use);
7648
7649    // If there is a previous defintion, suggest a fix-it.
7650    if (Previous->getDefinition()) {
7651        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7652          << (Redecl->getTagKind() == TTK_Class)
7653          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7654                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7655    }
7656
7657    return true;
7658  }
7659  return false;
7660}
7661
7662/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7663/// former case, Name will be non-null.  In the later case, Name will be null.
7664/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7665/// reference/declaration/definition of a tag.
7666Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7667                     SourceLocation KWLoc, CXXScopeSpec &SS,
7668                     IdentifierInfo *Name, SourceLocation NameLoc,
7669                     AttributeList *Attr, AccessSpecifier AS,
7670                     SourceLocation ModulePrivateLoc,
7671                     MultiTemplateParamsArg TemplateParameterLists,
7672                     bool &OwnedDecl, bool &IsDependent,
7673                     SourceLocation ScopedEnumKWLoc,
7674                     bool ScopedEnumUsesClassTag,
7675                     TypeResult UnderlyingType) {
7676  // If this is not a definition, it must have a name.
7677  assert((Name != 0 || TUK == TUK_Definition) &&
7678         "Nameless record must be a definition!");
7679  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7680
7681  OwnedDecl = false;
7682  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7683  bool ScopedEnum = ScopedEnumKWLoc.isValid();
7684
7685  // FIXME: Check explicit specializations more carefully.
7686  bool isExplicitSpecialization = false;
7687  bool Invalid = false;
7688
7689  // We only need to do this matching if we have template parameters
7690  // or a scope specifier, which also conveniently avoids this work
7691  // for non-C++ cases.
7692  if (TemplateParameterLists.size() > 0 ||
7693      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7694    if (TemplateParameterList *TemplateParams
7695          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7696                                                TemplateParameterLists.get(),
7697                                                TemplateParameterLists.size(),
7698                                                    TUK == TUK_Friend,
7699                                                    isExplicitSpecialization,
7700                                                    Invalid)) {
7701      if (TemplateParams->size() > 0) {
7702        // This is a declaration or definition of a class template (which may
7703        // be a member of another template).
7704
7705        if (Invalid)
7706          return 0;
7707
7708        OwnedDecl = false;
7709        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7710                                               SS, Name, NameLoc, Attr,
7711                                               TemplateParams, AS,
7712                                               ModulePrivateLoc,
7713                                           TemplateParameterLists.size() - 1,
7714                 (TemplateParameterList**) TemplateParameterLists.release());
7715        return Result.get();
7716      } else {
7717        // The "template<>" header is extraneous.
7718        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7719          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7720        isExplicitSpecialization = true;
7721      }
7722    }
7723  }
7724
7725  // Figure out the underlying type if this a enum declaration. We need to do
7726  // this early, because it's needed to detect if this is an incompatible
7727  // redeclaration.
7728  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7729
7730  if (Kind == TTK_Enum) {
7731    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7732      // No underlying type explicitly specified, or we failed to parse the
7733      // type, default to int.
7734      EnumUnderlying = Context.IntTy.getTypePtr();
7735    else if (UnderlyingType.get()) {
7736      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7737      // integral type; any cv-qualification is ignored.
7738      TypeSourceInfo *TI = 0;
7739      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7740      EnumUnderlying = TI;
7741
7742      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7743
7744      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7745        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7746          << T;
7747        // Recover by falling back to int.
7748        EnumUnderlying = Context.IntTy.getTypePtr();
7749      }
7750
7751      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7752                                          UPPC_FixedUnderlyingType))
7753        EnumUnderlying = Context.IntTy.getTypePtr();
7754
7755    } else if (getLangOptions().MicrosoftExt)
7756      // Microsoft enums are always of int type.
7757      EnumUnderlying = Context.IntTy.getTypePtr();
7758  }
7759
7760  DeclContext *SearchDC = CurContext;
7761  DeclContext *DC = CurContext;
7762  bool isStdBadAlloc = false;
7763
7764  RedeclarationKind Redecl = ForRedeclaration;
7765  if (TUK == TUK_Friend || TUK == TUK_Reference)
7766    Redecl = NotForRedeclaration;
7767
7768  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7769
7770  if (Name && SS.isNotEmpty()) {
7771    // We have a nested-name tag ('struct foo::bar').
7772
7773    // Check for invalid 'foo::'.
7774    if (SS.isInvalid()) {
7775      Name = 0;
7776      goto CreateNewDecl;
7777    }
7778
7779    // If this is a friend or a reference to a class in a dependent
7780    // context, don't try to make a decl for it.
7781    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7782      DC = computeDeclContext(SS, false);
7783      if (!DC) {
7784        IsDependent = true;
7785        return 0;
7786      }
7787    } else {
7788      DC = computeDeclContext(SS, true);
7789      if (!DC) {
7790        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7791          << SS.getRange();
7792        return 0;
7793      }
7794    }
7795
7796    if (RequireCompleteDeclContext(SS, DC))
7797      return 0;
7798
7799    SearchDC = DC;
7800    // Look-up name inside 'foo::'.
7801    LookupQualifiedName(Previous, DC);
7802
7803    if (Previous.isAmbiguous())
7804      return 0;
7805
7806    if (Previous.empty()) {
7807      // Name lookup did not find anything. However, if the
7808      // nested-name-specifier refers to the current instantiation,
7809      // and that current instantiation has any dependent base
7810      // classes, we might find something at instantiation time: treat
7811      // this as a dependent elaborated-type-specifier.
7812      // But this only makes any sense for reference-like lookups.
7813      if (Previous.wasNotFoundInCurrentInstantiation() &&
7814          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7815        IsDependent = true;
7816        return 0;
7817      }
7818
7819      // A tag 'foo::bar' must already exist.
7820      Diag(NameLoc, diag::err_not_tag_in_scope)
7821        << Kind << Name << DC << SS.getRange();
7822      Name = 0;
7823      Invalid = true;
7824      goto CreateNewDecl;
7825    }
7826  } else if (Name) {
7827    // If this is a named struct, check to see if there was a previous forward
7828    // declaration or definition.
7829    // FIXME: We're looking into outer scopes here, even when we
7830    // shouldn't be. Doing so can result in ambiguities that we
7831    // shouldn't be diagnosing.
7832    LookupName(Previous, S);
7833
7834    if (Previous.isAmbiguous() &&
7835        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7836      LookupResult::Filter F = Previous.makeFilter();
7837      while (F.hasNext()) {
7838        NamedDecl *ND = F.next();
7839        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7840          F.erase();
7841      }
7842      F.done();
7843    }
7844
7845    // Note:  there used to be some attempt at recovery here.
7846    if (Previous.isAmbiguous())
7847      return 0;
7848
7849    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7850      // FIXME: This makes sure that we ignore the contexts associated
7851      // with C structs, unions, and enums when looking for a matching
7852      // tag declaration or definition. See the similar lookup tweak
7853      // in Sema::LookupName; is there a better way to deal with this?
7854      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7855        SearchDC = SearchDC->getParent();
7856    }
7857  } else if (S->isFunctionPrototypeScope()) {
7858    // If this is an enum declaration in function prototype scope, set its
7859    // initial context to the translation unit.
7860    SearchDC = Context.getTranslationUnitDecl();
7861  }
7862
7863  if (Previous.isSingleResult() &&
7864      Previous.getFoundDecl()->isTemplateParameter()) {
7865    // Maybe we will complain about the shadowed template parameter.
7866    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7867    // Just pretend that we didn't see the previous declaration.
7868    Previous.clear();
7869  }
7870
7871  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7872      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7873    // This is a declaration of or a reference to "std::bad_alloc".
7874    isStdBadAlloc = true;
7875
7876    if (Previous.empty() && StdBadAlloc) {
7877      // std::bad_alloc has been implicitly declared (but made invisible to
7878      // name lookup). Fill in this implicit declaration as the previous
7879      // declaration, so that the declarations get chained appropriately.
7880      Previous.addDecl(getStdBadAlloc());
7881    }
7882  }
7883
7884  // If we didn't find a previous declaration, and this is a reference
7885  // (or friend reference), move to the correct scope.  In C++, we
7886  // also need to do a redeclaration lookup there, just in case
7887  // there's a shadow friend decl.
7888  if (Name && Previous.empty() &&
7889      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7890    if (Invalid) goto CreateNewDecl;
7891    assert(SS.isEmpty());
7892
7893    if (TUK == TUK_Reference) {
7894      // C++ [basic.scope.pdecl]p5:
7895      //   -- for an elaborated-type-specifier of the form
7896      //
7897      //          class-key identifier
7898      //
7899      //      if the elaborated-type-specifier is used in the
7900      //      decl-specifier-seq or parameter-declaration-clause of a
7901      //      function defined in namespace scope, the identifier is
7902      //      declared as a class-name in the namespace that contains
7903      //      the declaration; otherwise, except as a friend
7904      //      declaration, the identifier is declared in the smallest
7905      //      non-class, non-function-prototype scope that contains the
7906      //      declaration.
7907      //
7908      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7909      // C structs and unions.
7910      //
7911      // It is an error in C++ to declare (rather than define) an enum
7912      // type, including via an elaborated type specifier.  We'll
7913      // diagnose that later; for now, declare the enum in the same
7914      // scope as we would have picked for any other tag type.
7915      //
7916      // GNU C also supports this behavior as part of its incomplete
7917      // enum types extension, while GNU C++ does not.
7918      //
7919      // Find the context where we'll be declaring the tag.
7920      // FIXME: We would like to maintain the current DeclContext as the
7921      // lexical context,
7922      while (SearchDC->isRecord() || SearchDC->isTransparentContext() ||
7923             SearchDC->isObjCContainer())
7924        SearchDC = SearchDC->getParent();
7925
7926      // Find the scope where we'll be declaring the tag.
7927      while (S->isClassScope() ||
7928             (getLangOptions().CPlusPlus &&
7929              S->isFunctionPrototypeScope()) ||
7930             ((S->getFlags() & Scope::DeclScope) == 0) ||
7931             (S->getEntity() &&
7932              ((DeclContext *)S->getEntity())->isTransparentContext()))
7933        S = S->getParent();
7934    } else {
7935      assert(TUK == TUK_Friend);
7936      // C++ [namespace.memdef]p3:
7937      //   If a friend declaration in a non-local class first declares a
7938      //   class or function, the friend class or function is a member of
7939      //   the innermost enclosing namespace.
7940      SearchDC = SearchDC->getEnclosingNamespaceContext();
7941    }
7942
7943    // In C++, we need to do a redeclaration lookup to properly
7944    // diagnose some problems.
7945    if (getLangOptions().CPlusPlus) {
7946      Previous.setRedeclarationKind(ForRedeclaration);
7947      LookupQualifiedName(Previous, SearchDC);
7948    }
7949  }
7950
7951  if (!Previous.empty()) {
7952    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7953
7954    // It's okay to have a tag decl in the same scope as a typedef
7955    // which hides a tag decl in the same scope.  Finding this
7956    // insanity with a redeclaration lookup can only actually happen
7957    // in C++.
7958    //
7959    // This is also okay for elaborated-type-specifiers, which is
7960    // technically forbidden by the current standard but which is
7961    // okay according to the likely resolution of an open issue;
7962    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7963    if (getLangOptions().CPlusPlus) {
7964      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7965        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7966          TagDecl *Tag = TT->getDecl();
7967          if (Tag->getDeclName() == Name &&
7968              Tag->getDeclContext()->getRedeclContext()
7969                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7970            PrevDecl = Tag;
7971            Previous.clear();
7972            Previous.addDecl(Tag);
7973            Previous.resolveKind();
7974          }
7975        }
7976      }
7977    }
7978
7979    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7980      // If this is a use of a previous tag, or if the tag is already declared
7981      // in the same scope (so that the definition/declaration completes or
7982      // rementions the tag), reuse the decl.
7983      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7984          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7985        // Make sure that this wasn't declared as an enum and now used as a
7986        // struct or something similar.
7987        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7988                                          TUK == TUK_Definition, KWLoc,
7989                                          *Name)) {
7990          bool SafeToContinue
7991            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7992               Kind != TTK_Enum);
7993          if (SafeToContinue)
7994            Diag(KWLoc, diag::err_use_with_wrong_tag)
7995              << Name
7996              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7997                                              PrevTagDecl->getKindName());
7998          else
7999            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8000          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8001
8002          if (SafeToContinue)
8003            Kind = PrevTagDecl->getTagKind();
8004          else {
8005            // Recover by making this an anonymous redefinition.
8006            Name = 0;
8007            Previous.clear();
8008            Invalid = true;
8009          }
8010        }
8011
8012        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8013          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8014
8015          // If this is an elaborated-type-specifier for a scoped enumeration,
8016          // the 'class' keyword is not necessary and not permitted.
8017          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8018            if (ScopedEnum)
8019              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8020                << PrevEnum->isScoped()
8021                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8022            return PrevTagDecl;
8023          }
8024
8025          // All conflicts with previous declarations are recovered by
8026          // returning the previous declaration.
8027          if (ScopedEnum != PrevEnum->isScoped()) {
8028            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
8029              << PrevEnum->isScoped();
8030            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8031            return PrevTagDecl;
8032          }
8033          else if (EnumUnderlying && PrevEnum->isFixed()) {
8034            QualType T;
8035            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8036                T = TI->getType();
8037            else
8038                T = QualType(EnumUnderlying.get<const Type*>(), 0);
8039
8040            if (!Context.hasSameUnqualifiedType(T,
8041                                                PrevEnum->getIntegerType())) {
8042              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
8043                   diag::err_enum_redeclare_type_mismatch)
8044                << T
8045                << PrevEnum->getIntegerType();
8046              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8047              return PrevTagDecl;
8048            }
8049          }
8050          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
8051            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
8052              << PrevEnum->isFixed();
8053            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8054            return PrevTagDecl;
8055          }
8056        }
8057
8058        if (!Invalid) {
8059          // If this is a use, just return the declaration we found.
8060
8061          // FIXME: In the future, return a variant or some other clue
8062          // for the consumer of this Decl to know it doesn't own it.
8063          // For our current ASTs this shouldn't be a problem, but will
8064          // need to be changed with DeclGroups.
8065          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8066               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
8067            return PrevTagDecl;
8068
8069          // Diagnose attempts to redefine a tag.
8070          if (TUK == TUK_Definition) {
8071            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8072              // If we're defining a specialization and the previous definition
8073              // is from an implicit instantiation, don't emit an error
8074              // here; we'll catch this in the general case below.
8075              if (!isExplicitSpecialization ||
8076                  !isa<CXXRecordDecl>(Def) ||
8077                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
8078                                               == TSK_ExplicitSpecialization) {
8079                Diag(NameLoc, diag::err_redefinition) << Name;
8080                Diag(Def->getLocation(), diag::note_previous_definition);
8081                // If this is a redefinition, recover by making this
8082                // struct be anonymous, which will make any later
8083                // references get the previous definition.
8084                Name = 0;
8085                Previous.clear();
8086                Invalid = true;
8087              }
8088            } else {
8089              // If the type is currently being defined, complain
8090              // about a nested redefinition.
8091              const TagType *Tag
8092                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8093              if (Tag->isBeingDefined()) {
8094                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8095                Diag(PrevTagDecl->getLocation(),
8096                     diag::note_previous_definition);
8097                Name = 0;
8098                Previous.clear();
8099                Invalid = true;
8100              }
8101            }
8102
8103            // Okay, this is definition of a previously declared or referenced
8104            // tag PrevDecl. We're going to create a new Decl for it.
8105          }
8106        }
8107        // If we get here we have (another) forward declaration or we
8108        // have a definition.  Just create a new decl.
8109
8110      } else {
8111        // If we get here, this is a definition of a new tag type in a nested
8112        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8113        // new decl/type.  We set PrevDecl to NULL so that the entities
8114        // have distinct types.
8115        Previous.clear();
8116      }
8117      // If we get here, we're going to create a new Decl. If PrevDecl
8118      // is non-NULL, it's a definition of the tag declared by
8119      // PrevDecl. If it's NULL, we have a new definition.
8120
8121
8122    // Otherwise, PrevDecl is not a tag, but was found with tag
8123    // lookup.  This is only actually possible in C++, where a few
8124    // things like templates still live in the tag namespace.
8125    } else {
8126      // Use a better diagnostic if an elaborated-type-specifier
8127      // found the wrong kind of type on the first
8128      // (non-redeclaration) lookup.
8129      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8130          !Previous.isForRedeclaration()) {
8131        unsigned Kind = 0;
8132        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8133        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8134        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8135        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8136        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8137        Invalid = true;
8138
8139      // Otherwise, only diagnose if the declaration is in scope.
8140      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8141                                isExplicitSpecialization)) {
8142        // do nothing
8143
8144      // Diagnose implicit declarations introduced by elaborated types.
8145      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8146        unsigned Kind = 0;
8147        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8148        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8149        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8150        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8151        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8152        Invalid = true;
8153
8154      // Otherwise it's a declaration.  Call out a particularly common
8155      // case here.
8156      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8157        unsigned Kind = 0;
8158        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8159        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8160          << Name << Kind << TND->getUnderlyingType();
8161        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8162        Invalid = true;
8163
8164      // Otherwise, diagnose.
8165      } else {
8166        // The tag name clashes with something else in the target scope,
8167        // issue an error and recover by making this tag be anonymous.
8168        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8169        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8170        Name = 0;
8171        Invalid = true;
8172      }
8173
8174      // The existing declaration isn't relevant to us; we're in a
8175      // new scope, so clear out the previous declaration.
8176      Previous.clear();
8177    }
8178  }
8179
8180CreateNewDecl:
8181
8182  TagDecl *PrevDecl = 0;
8183  if (Previous.isSingleResult())
8184    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8185
8186  // If there is an identifier, use the location of the identifier as the
8187  // location of the decl, otherwise use the location of the struct/union
8188  // keyword.
8189  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8190
8191  // Otherwise, create a new declaration. If there is a previous
8192  // declaration of the same entity, the two will be linked via
8193  // PrevDecl.
8194  TagDecl *New;
8195
8196  bool IsForwardReference = false;
8197  if (Kind == TTK_Enum) {
8198    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8199    // enum X { A, B, C } D;    D should chain to X.
8200    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8201                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8202                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8203    // If this is an undefined enum, warn.
8204    if (TUK != TUK_Definition && !Invalid) {
8205      TagDecl *Def;
8206      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8207        // C++0x: 7.2p2: opaque-enum-declaration.
8208        // Conflicts are diagnosed above. Do nothing.
8209      }
8210      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8211        Diag(Loc, diag::ext_forward_ref_enum_def)
8212          << New;
8213        Diag(Def->getLocation(), diag::note_previous_definition);
8214      } else {
8215        unsigned DiagID = diag::ext_forward_ref_enum;
8216        if (getLangOptions().MicrosoftExt)
8217          DiagID = diag::ext_ms_forward_ref_enum;
8218        else if (getLangOptions().CPlusPlus)
8219          DiagID = diag::err_forward_ref_enum;
8220        Diag(Loc, DiagID);
8221
8222        // If this is a forward-declared reference to an enumeration, make a
8223        // note of it; we won't actually be introducing the declaration into
8224        // the declaration context.
8225        if (TUK == TUK_Reference)
8226          IsForwardReference = true;
8227      }
8228    }
8229
8230    if (EnumUnderlying) {
8231      EnumDecl *ED = cast<EnumDecl>(New);
8232      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8233        ED->setIntegerTypeSourceInfo(TI);
8234      else
8235        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8236      ED->setPromotionType(ED->getIntegerType());
8237    }
8238
8239  } else {
8240    // struct/union/class
8241
8242    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8243    // struct X { int A; } D;    D should chain to X.
8244    if (getLangOptions().CPlusPlus) {
8245      // FIXME: Look for a way to use RecordDecl for simple structs.
8246      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8247                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8248
8249      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8250        StdBadAlloc = cast<CXXRecordDecl>(New);
8251    } else
8252      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8253                               cast_or_null<RecordDecl>(PrevDecl));
8254  }
8255
8256  // Maybe add qualifier info.
8257  if (SS.isNotEmpty()) {
8258    if (SS.isSet()) {
8259      New->setQualifierInfo(SS.getWithLocInContext(Context));
8260      if (TemplateParameterLists.size() > 0) {
8261        New->setTemplateParameterListsInfo(Context,
8262                                           TemplateParameterLists.size(),
8263                    (TemplateParameterList**) TemplateParameterLists.release());
8264      }
8265    }
8266    else
8267      Invalid = true;
8268  }
8269
8270  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8271    // Add alignment attributes if necessary; these attributes are checked when
8272    // the ASTContext lays out the structure.
8273    //
8274    // It is important for implementing the correct semantics that this
8275    // happen here (in act on tag decl). The #pragma pack stack is
8276    // maintained as a result of parser callbacks which can occur at
8277    // many points during the parsing of a struct declaration (because
8278    // the #pragma tokens are effectively skipped over during the
8279    // parsing of the struct).
8280    AddAlignmentAttributesForRecord(RD);
8281
8282    AddMsStructLayoutForRecord(RD);
8283  }
8284
8285  if (ModulePrivateLoc.isValid()) {
8286    if (isExplicitSpecialization)
8287      Diag(New->getLocation(), diag::err_module_private_specialization)
8288        << 2
8289        << FixItHint::CreateRemoval(ModulePrivateLoc);
8290    // __module_private__ does not apply to local classes. However, we only
8291    // diagnose this as an error when the declaration specifiers are
8292    // freestanding. Here, we just ignore the __module_private__.
8293    else if (!SearchDC->isFunctionOrMethod())
8294      New->setModulePrivate();
8295  }
8296
8297  // If this is a specialization of a member class (of a class template),
8298  // check the specialization.
8299  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8300    Invalid = true;
8301
8302  if (Invalid)
8303    New->setInvalidDecl();
8304
8305  if (Attr)
8306    ProcessDeclAttributeList(S, New, Attr);
8307
8308  // If we're declaring or defining a tag in function prototype scope
8309  // in C, note that this type can only be used within the function.
8310  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8311    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8312
8313  // Set the lexical context. If the tag has a C++ scope specifier, the
8314  // lexical context will be different from the semantic context.
8315  New->setLexicalDeclContext(CurContext);
8316
8317  // Mark this as a friend decl if applicable.
8318  // In Microsoft mode, a friend declaration also acts as a forward
8319  // declaration so we always pass true to setObjectOfFriendDecl to make
8320  // the tag name visible.
8321  if (TUK == TUK_Friend)
8322    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8323                               getLangOptions().MicrosoftExt);
8324
8325  // Set the access specifier.
8326  if (!Invalid && SearchDC->isRecord())
8327    SetMemberAccessSpecifier(New, PrevDecl, AS);
8328
8329  if (TUK == TUK_Definition)
8330    New->startDefinition();
8331
8332  // If this has an identifier, add it to the scope stack.
8333  if (TUK == TUK_Friend) {
8334    // We might be replacing an existing declaration in the lookup tables;
8335    // if so, borrow its access specifier.
8336    if (PrevDecl)
8337      New->setAccess(PrevDecl->getAccess());
8338
8339    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8340    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8341    if (Name) // can be null along some error paths
8342      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8343        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8344  } else if (Name) {
8345    S = getNonFieldDeclScope(S);
8346    PushOnScopeChains(New, S, !IsForwardReference);
8347    if (IsForwardReference)
8348      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8349
8350  } else {
8351    CurContext->addDecl(New);
8352  }
8353
8354  // If this is the C FILE type, notify the AST context.
8355  if (IdentifierInfo *II = New->getIdentifier())
8356    if (!New->isInvalidDecl() &&
8357        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8358        II->isStr("FILE"))
8359      Context.setFILEDecl(New);
8360
8361  OwnedDecl = true;
8362  return New;
8363}
8364
8365void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8366  AdjustDeclIfTemplate(TagD);
8367  TagDecl *Tag = cast<TagDecl>(TagD);
8368
8369  // Enter the tag context.
8370  PushDeclContext(S, Tag);
8371}
8372
8373Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8374  assert(isa<ObjCContainerDecl>(IDecl) &&
8375         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8376  DeclContext *OCD = cast<DeclContext>(IDecl);
8377  assert(getContainingDC(OCD) == CurContext &&
8378      "The next DeclContext should be lexically contained in the current one.");
8379  CurContext = OCD;
8380  return IDecl;
8381}
8382
8383void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8384                                           SourceLocation FinalLoc,
8385                                           SourceLocation LBraceLoc) {
8386  AdjustDeclIfTemplate(TagD);
8387  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8388
8389  FieldCollector->StartClass();
8390
8391  if (!Record->getIdentifier())
8392    return;
8393
8394  if (FinalLoc.isValid())
8395    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8396
8397  // C++ [class]p2:
8398  //   [...] The class-name is also inserted into the scope of the
8399  //   class itself; this is known as the injected-class-name. For
8400  //   purposes of access checking, the injected-class-name is treated
8401  //   as if it were a public member name.
8402  CXXRecordDecl *InjectedClassName
8403    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8404                            Record->getLocStart(), Record->getLocation(),
8405                            Record->getIdentifier(),
8406                            /*PrevDecl=*/0,
8407                            /*DelayTypeCreation=*/true);
8408  Context.getTypeDeclType(InjectedClassName, Record);
8409  InjectedClassName->setImplicit();
8410  InjectedClassName->setAccess(AS_public);
8411  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8412      InjectedClassName->setDescribedClassTemplate(Template);
8413  PushOnScopeChains(InjectedClassName, S);
8414  assert(InjectedClassName->isInjectedClassName() &&
8415         "Broken injected-class-name");
8416}
8417
8418void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8419                                    SourceLocation RBraceLoc) {
8420  AdjustDeclIfTemplate(TagD);
8421  TagDecl *Tag = cast<TagDecl>(TagD);
8422  Tag->setRBraceLoc(RBraceLoc);
8423
8424  if (isa<CXXRecordDecl>(Tag))
8425    FieldCollector->FinishClass();
8426
8427  // Exit this scope of this tag's definition.
8428  PopDeclContext();
8429
8430  // Notify the consumer that we've defined a tag.
8431  Consumer.HandleTagDeclDefinition(Tag);
8432}
8433
8434void Sema::ActOnObjCContainerFinishDefinition() {
8435  // Exit this scope of this interface definition.
8436  PopDeclContext();
8437}
8438
8439void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8440  assert(DC == CurContext && "Mismatch of container contexts");
8441  OriginalLexicalContext = DC;
8442  ActOnObjCContainerFinishDefinition();
8443}
8444
8445void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8446  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8447  OriginalLexicalContext = 0;
8448}
8449
8450void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8451  AdjustDeclIfTemplate(TagD);
8452  TagDecl *Tag = cast<TagDecl>(TagD);
8453  Tag->setInvalidDecl();
8454
8455  // We're undoing ActOnTagStartDefinition here, not
8456  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8457  // the FieldCollector.
8458
8459  PopDeclContext();
8460}
8461
8462// Note that FieldName may be null for anonymous bitfields.
8463ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
8464                                IdentifierInfo *FieldName,
8465                                QualType FieldTy, Expr *BitWidth,
8466                                bool *ZeroWidth) {
8467  // Default to true; that shouldn't confuse checks for emptiness
8468  if (ZeroWidth)
8469    *ZeroWidth = true;
8470
8471  // C99 6.7.2.1p4 - verify the field type.
8472  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8473  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8474    // Handle incomplete types with specific error.
8475    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8476      return ExprError();
8477    if (FieldName)
8478      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8479        << FieldName << FieldTy << BitWidth->getSourceRange();
8480    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8481      << FieldTy << BitWidth->getSourceRange();
8482  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8483                                             UPPC_BitFieldWidth))
8484    return ExprError();
8485
8486  // If the bit-width is type- or value-dependent, don't try to check
8487  // it now.
8488  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8489    return Owned(BitWidth);
8490
8491  llvm::APSInt Value;
8492  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
8493  if (ICE.isInvalid())
8494    return ICE;
8495  BitWidth = ICE.take();
8496
8497  if (Value != 0 && ZeroWidth)
8498    *ZeroWidth = false;
8499
8500  // Zero-width bitfield is ok for anonymous field.
8501  if (Value == 0 && FieldName)
8502    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8503
8504  if (Value.isSigned() && Value.isNegative()) {
8505    if (FieldName)
8506      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8507               << FieldName << Value.toString(10);
8508    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8509      << Value.toString(10);
8510  }
8511
8512  if (!FieldTy->isDependentType()) {
8513    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8514    if (Value.getZExtValue() > TypeSize) {
8515      if (!getLangOptions().CPlusPlus) {
8516        if (FieldName)
8517          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8518            << FieldName << (unsigned)Value.getZExtValue()
8519            << (unsigned)TypeSize;
8520
8521        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8522          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8523      }
8524
8525      if (FieldName)
8526        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8527          << FieldName << (unsigned)Value.getZExtValue()
8528          << (unsigned)TypeSize;
8529      else
8530        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8531          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8532    }
8533  }
8534
8535  return Owned(BitWidth);
8536}
8537
8538/// ActOnField - Each field of a C struct/union is passed into this in order
8539/// to create a FieldDecl object for it.
8540Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8541                       Declarator &D, Expr *BitfieldWidth) {
8542  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8543                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8544                               /*HasInit=*/false, AS_public);
8545  return Res;
8546}
8547
8548/// HandleField - Analyze a field of a C struct or a C++ data member.
8549///
8550FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8551                             SourceLocation DeclStart,
8552                             Declarator &D, Expr *BitWidth, bool HasInit,
8553                             AccessSpecifier AS) {
8554  IdentifierInfo *II = D.getIdentifier();
8555  SourceLocation Loc = DeclStart;
8556  if (II) Loc = D.getIdentifierLoc();
8557
8558  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8559  QualType T = TInfo->getType();
8560  if (getLangOptions().CPlusPlus) {
8561    CheckExtraCXXDefaultArguments(D);
8562
8563    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8564                                        UPPC_DataMemberType)) {
8565      D.setInvalidType();
8566      T = Context.IntTy;
8567      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8568    }
8569  }
8570
8571  DiagnoseFunctionSpecifiers(D);
8572
8573  if (D.getDeclSpec().isThreadSpecified())
8574    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8575  if (D.getDeclSpec().isConstexprSpecified())
8576    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8577      << 2;
8578
8579  // Check to see if this name was declared as a member previously
8580  NamedDecl *PrevDecl = 0;
8581  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8582  LookupName(Previous, S);
8583  switch (Previous.getResultKind()) {
8584    case LookupResult::Found:
8585    case LookupResult::FoundUnresolvedValue:
8586      PrevDecl = Previous.getAsSingle<NamedDecl>();
8587      break;
8588
8589    case LookupResult::FoundOverloaded:
8590      PrevDecl = Previous.getRepresentativeDecl();
8591      break;
8592
8593    case LookupResult::NotFound:
8594    case LookupResult::NotFoundInCurrentInstantiation:
8595    case LookupResult::Ambiguous:
8596      break;
8597  }
8598  Previous.suppressDiagnostics();
8599
8600  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8601    // Maybe we will complain about the shadowed template parameter.
8602    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8603    // Just pretend that we didn't see the previous declaration.
8604    PrevDecl = 0;
8605  }
8606
8607  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8608    PrevDecl = 0;
8609
8610  bool Mutable
8611    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8612  SourceLocation TSSL = D.getSourceRange().getBegin();
8613  FieldDecl *NewFD
8614    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8615                     TSSL, AS, PrevDecl, &D);
8616
8617  if (NewFD->isInvalidDecl())
8618    Record->setInvalidDecl();
8619
8620  if (D.getDeclSpec().isModulePrivateSpecified())
8621    NewFD->setModulePrivate();
8622
8623  if (NewFD->isInvalidDecl() && PrevDecl) {
8624    // Don't introduce NewFD into scope; there's already something
8625    // with the same name in the same scope.
8626  } else if (II) {
8627    PushOnScopeChains(NewFD, S);
8628  } else
8629    Record->addDecl(NewFD);
8630
8631  return NewFD;
8632}
8633
8634/// \brief Build a new FieldDecl and check its well-formedness.
8635///
8636/// This routine builds a new FieldDecl given the fields name, type,
8637/// record, etc. \p PrevDecl should refer to any previous declaration
8638/// with the same name and in the same scope as the field to be
8639/// created.
8640///
8641/// \returns a new FieldDecl.
8642///
8643/// \todo The Declarator argument is a hack. It will be removed once
8644FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8645                                TypeSourceInfo *TInfo,
8646                                RecordDecl *Record, SourceLocation Loc,
8647                                bool Mutable, Expr *BitWidth, bool HasInit,
8648                                SourceLocation TSSL,
8649                                AccessSpecifier AS, NamedDecl *PrevDecl,
8650                                Declarator *D) {
8651  IdentifierInfo *II = Name.getAsIdentifierInfo();
8652  bool InvalidDecl = false;
8653  if (D) InvalidDecl = D->isInvalidType();
8654
8655  // If we receive a broken type, recover by assuming 'int' and
8656  // marking this declaration as invalid.
8657  if (T.isNull()) {
8658    InvalidDecl = true;
8659    T = Context.IntTy;
8660  }
8661
8662  QualType EltTy = Context.getBaseElementType(T);
8663  if (!EltTy->isDependentType() &&
8664      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8665    // Fields of incomplete type force their record to be invalid.
8666    Record->setInvalidDecl();
8667    InvalidDecl = true;
8668  }
8669
8670  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8671  // than a variably modified type.
8672  if (!InvalidDecl && T->isVariablyModifiedType()) {
8673    bool SizeIsNegative;
8674    llvm::APSInt Oversized;
8675    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8676                                                           SizeIsNegative,
8677                                                           Oversized);
8678    if (!FixedTy.isNull()) {
8679      Diag(Loc, diag::warn_illegal_constant_array_size);
8680      T = FixedTy;
8681    } else {
8682      if (SizeIsNegative)
8683        Diag(Loc, diag::err_typecheck_negative_array_size);
8684      else if (Oversized.getBoolValue())
8685        Diag(Loc, diag::err_array_too_large)
8686          << Oversized.toString(10);
8687      else
8688        Diag(Loc, diag::err_typecheck_field_variable_size);
8689      InvalidDecl = true;
8690    }
8691  }
8692
8693  // Fields can not have abstract class types
8694  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8695                                             diag::err_abstract_type_in_decl,
8696                                             AbstractFieldType))
8697    InvalidDecl = true;
8698
8699  bool ZeroWidth = false;
8700  // If this is declared as a bit-field, check the bit-field.
8701  if (!InvalidDecl && BitWidth) {
8702    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
8703    if (!BitWidth) {
8704      InvalidDecl = true;
8705      BitWidth = 0;
8706      ZeroWidth = false;
8707    }
8708  }
8709
8710  // Check that 'mutable' is consistent with the type of the declaration.
8711  if (!InvalidDecl && Mutable) {
8712    unsigned DiagID = 0;
8713    if (T->isReferenceType())
8714      DiagID = diag::err_mutable_reference;
8715    else if (T.isConstQualified())
8716      DiagID = diag::err_mutable_const;
8717
8718    if (DiagID) {
8719      SourceLocation ErrLoc = Loc;
8720      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8721        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8722      Diag(ErrLoc, DiagID);
8723      Mutable = false;
8724      InvalidDecl = true;
8725    }
8726  }
8727
8728  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8729                                       BitWidth, Mutable, HasInit);
8730  if (InvalidDecl)
8731    NewFD->setInvalidDecl();
8732
8733  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8734    Diag(Loc, diag::err_duplicate_member) << II;
8735    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8736    NewFD->setInvalidDecl();
8737  }
8738
8739  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8740    if (Record->isUnion()) {
8741      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8742        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8743        if (RDecl->getDefinition()) {
8744          // C++ [class.union]p1: An object of a class with a non-trivial
8745          // constructor, a non-trivial copy constructor, a non-trivial
8746          // destructor, or a non-trivial copy assignment operator
8747          // cannot be a member of a union, nor can an array of such
8748          // objects.
8749          if (CheckNontrivialField(NewFD))
8750            NewFD->setInvalidDecl();
8751        }
8752      }
8753
8754      // C++ [class.union]p1: If a union contains a member of reference type,
8755      // the program is ill-formed.
8756      if (EltTy->isReferenceType()) {
8757        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8758          << NewFD->getDeclName() << EltTy;
8759        NewFD->setInvalidDecl();
8760      }
8761    }
8762  }
8763
8764  // FIXME: We need to pass in the attributes given an AST
8765  // representation, not a parser representation.
8766  if (D)
8767    // FIXME: What to pass instead of TUScope?
8768    ProcessDeclAttributes(TUScope, NewFD, *D);
8769
8770  // In auto-retain/release, infer strong retension for fields of
8771  // retainable type.
8772  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8773    NewFD->setInvalidDecl();
8774
8775  if (T.isObjCGCWeak())
8776    Diag(Loc, diag::warn_attribute_weak_on_field);
8777
8778  NewFD->setAccess(AS);
8779  return NewFD;
8780}
8781
8782bool Sema::CheckNontrivialField(FieldDecl *FD) {
8783  assert(FD);
8784  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8785
8786  if (FD->isInvalidDecl())
8787    return true;
8788
8789  QualType EltTy = Context.getBaseElementType(FD->getType());
8790  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8791    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8792    if (RDecl->getDefinition()) {
8793      // We check for copy constructors before constructors
8794      // because otherwise we'll never get complaints about
8795      // copy constructors.
8796
8797      CXXSpecialMember member = CXXInvalid;
8798      if (!RDecl->hasTrivialCopyConstructor())
8799        member = CXXCopyConstructor;
8800      else if (!RDecl->hasTrivialDefaultConstructor())
8801        member = CXXDefaultConstructor;
8802      else if (!RDecl->hasTrivialCopyAssignment())
8803        member = CXXCopyAssignment;
8804      else if (!RDecl->hasTrivialDestructor())
8805        member = CXXDestructor;
8806
8807      if (member != CXXInvalid) {
8808        if (!getLangOptions().CPlusPlus0x &&
8809            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8810          // Objective-C++ ARC: it is an error to have a non-trivial field of
8811          // a union. However, system headers in Objective-C programs
8812          // occasionally have Objective-C lifetime objects within unions,
8813          // and rather than cause the program to fail, we make those
8814          // members unavailable.
8815          SourceLocation Loc = FD->getLocation();
8816          if (getSourceManager().isInSystemHeader(Loc)) {
8817            if (!FD->hasAttr<UnavailableAttr>())
8818              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8819                                  "this system field has retaining ownership"));
8820            return false;
8821          }
8822        }
8823
8824        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8825               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8826               diag::err_illegal_union_or_anon_struct_member)
8827          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8828        DiagnoseNontrivial(RT, member);
8829        return !getLangOptions().CPlusPlus0x;
8830      }
8831    }
8832  }
8833
8834  return false;
8835}
8836
8837/// DiagnoseNontrivial - Given that a class has a non-trivial
8838/// special member, figure out why.
8839void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8840  QualType QT(T, 0U);
8841  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8842
8843  // Check whether the member was user-declared.
8844  switch (member) {
8845  case CXXInvalid:
8846    break;
8847
8848  case CXXDefaultConstructor:
8849    if (RD->hasUserDeclaredConstructor()) {
8850      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8851      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8852        const FunctionDecl *body = 0;
8853        ci->hasBody(body);
8854        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8855          SourceLocation CtorLoc = ci->getLocation();
8856          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8857          return;
8858        }
8859      }
8860
8861      llvm_unreachable("found no user-declared constructors");
8862    }
8863    break;
8864
8865  case CXXCopyConstructor:
8866    if (RD->hasUserDeclaredCopyConstructor()) {
8867      SourceLocation CtorLoc =
8868        RD->getCopyConstructor(0)->getLocation();
8869      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8870      return;
8871    }
8872    break;
8873
8874  case CXXMoveConstructor:
8875    if (RD->hasUserDeclaredMoveConstructor()) {
8876      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8877      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8878      return;
8879    }
8880    break;
8881
8882  case CXXCopyAssignment:
8883    if (RD->hasUserDeclaredCopyAssignment()) {
8884      // FIXME: this should use the location of the copy
8885      // assignment, not the type.
8886      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8887      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8888      return;
8889    }
8890    break;
8891
8892  case CXXMoveAssignment:
8893    if (RD->hasUserDeclaredMoveAssignment()) {
8894      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8895      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8896      return;
8897    }
8898    break;
8899
8900  case CXXDestructor:
8901    if (RD->hasUserDeclaredDestructor()) {
8902      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8903      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8904      return;
8905    }
8906    break;
8907  }
8908
8909  typedef CXXRecordDecl::base_class_iterator base_iter;
8910
8911  // Virtual bases and members inhibit trivial copying/construction,
8912  // but not trivial destruction.
8913  if (member != CXXDestructor) {
8914    // Check for virtual bases.  vbases includes indirect virtual bases,
8915    // so we just iterate through the direct bases.
8916    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8917      if (bi->isVirtual()) {
8918        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8919        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8920        return;
8921      }
8922
8923    // Check for virtual methods.
8924    typedef CXXRecordDecl::method_iterator meth_iter;
8925    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8926         ++mi) {
8927      if (mi->isVirtual()) {
8928        SourceLocation MLoc = mi->getSourceRange().getBegin();
8929        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8930        return;
8931      }
8932    }
8933  }
8934
8935  bool (CXXRecordDecl::*hasTrivial)() const;
8936  switch (member) {
8937  case CXXDefaultConstructor:
8938    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8939  case CXXCopyConstructor:
8940    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8941  case CXXCopyAssignment:
8942    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8943  case CXXDestructor:
8944    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8945  default:
8946    llvm_unreachable("unexpected special member");
8947  }
8948
8949  // Check for nontrivial bases (and recurse).
8950  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8951    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8952    assert(BaseRT && "Don't know how to handle dependent bases");
8953    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8954    if (!(BaseRecTy->*hasTrivial)()) {
8955      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8956      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8957      DiagnoseNontrivial(BaseRT, member);
8958      return;
8959    }
8960  }
8961
8962  // Check for nontrivial members (and recurse).
8963  typedef RecordDecl::field_iterator field_iter;
8964  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8965       ++fi) {
8966    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8967    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8968      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8969
8970      if (!(EltRD->*hasTrivial)()) {
8971        SourceLocation FLoc = (*fi)->getLocation();
8972        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8973        DiagnoseNontrivial(EltRT, member);
8974        return;
8975      }
8976    }
8977
8978    if (EltTy->isObjCLifetimeType()) {
8979      switch (EltTy.getObjCLifetime()) {
8980      case Qualifiers::OCL_None:
8981      case Qualifiers::OCL_ExplicitNone:
8982        break;
8983
8984      case Qualifiers::OCL_Autoreleasing:
8985      case Qualifiers::OCL_Weak:
8986      case Qualifiers::OCL_Strong:
8987        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8988          << QT << EltTy.getObjCLifetime();
8989        return;
8990      }
8991    }
8992  }
8993
8994  llvm_unreachable("found no explanation for non-trivial member");
8995}
8996
8997/// TranslateIvarVisibility - Translate visibility from a token ID to an
8998///  AST enum value.
8999static ObjCIvarDecl::AccessControl
9000TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9001  switch (ivarVisibility) {
9002  default: llvm_unreachable("Unknown visitibility kind");
9003  case tok::objc_private: return ObjCIvarDecl::Private;
9004  case tok::objc_public: return ObjCIvarDecl::Public;
9005  case tok::objc_protected: return ObjCIvarDecl::Protected;
9006  case tok::objc_package: return ObjCIvarDecl::Package;
9007  }
9008}
9009
9010/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9011/// in order to create an IvarDecl object for it.
9012Decl *Sema::ActOnIvar(Scope *S,
9013                                SourceLocation DeclStart,
9014                                Declarator &D, Expr *BitfieldWidth,
9015                                tok::ObjCKeywordKind Visibility) {
9016
9017  IdentifierInfo *II = D.getIdentifier();
9018  Expr *BitWidth = (Expr*)BitfieldWidth;
9019  SourceLocation Loc = DeclStart;
9020  if (II) Loc = D.getIdentifierLoc();
9021
9022  // FIXME: Unnamed fields can be handled in various different ways, for
9023  // example, unnamed unions inject all members into the struct namespace!
9024
9025  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9026  QualType T = TInfo->getType();
9027
9028  if (BitWidth) {
9029    // 6.7.2.1p3, 6.7.2.1p4
9030    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9031    if (!BitWidth)
9032      D.setInvalidType();
9033  } else {
9034    // Not a bitfield.
9035
9036    // validate II.
9037
9038  }
9039  if (T->isReferenceType()) {
9040    Diag(Loc, diag::err_ivar_reference_type);
9041    D.setInvalidType();
9042  }
9043  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9044  // than a variably modified type.
9045  else if (T->isVariablyModifiedType()) {
9046    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9047    D.setInvalidType();
9048  }
9049
9050  // Get the visibility (access control) for this ivar.
9051  ObjCIvarDecl::AccessControl ac =
9052    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9053                                        : ObjCIvarDecl::None;
9054  // Must set ivar's DeclContext to its enclosing interface.
9055  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9056  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9057    return 0;
9058  ObjCContainerDecl *EnclosingContext;
9059  if (ObjCImplementationDecl *IMPDecl =
9060      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9061    if (!LangOpts.ObjCNonFragileABI2) {
9062    // Case of ivar declared in an implementation. Context is that of its class.
9063      EnclosingContext = IMPDecl->getClassInterface();
9064      assert(EnclosingContext && "Implementation has no class interface!");
9065    }
9066    else
9067      EnclosingContext = EnclosingDecl;
9068  } else {
9069    if (ObjCCategoryDecl *CDecl =
9070        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9071      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
9072        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9073        return 0;
9074      }
9075    }
9076    EnclosingContext = EnclosingDecl;
9077  }
9078
9079  // Construct the decl.
9080  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9081                                             DeclStart, Loc, II, T,
9082                                             TInfo, ac, (Expr *)BitfieldWidth);
9083
9084  if (II) {
9085    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9086                                           ForRedeclaration);
9087    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9088        && !isa<TagDecl>(PrevDecl)) {
9089      Diag(Loc, diag::err_duplicate_member) << II;
9090      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9091      NewID->setInvalidDecl();
9092    }
9093  }
9094
9095  // Process attributes attached to the ivar.
9096  ProcessDeclAttributes(S, NewID, D);
9097
9098  if (D.isInvalidType())
9099    NewID->setInvalidDecl();
9100
9101  // In ARC, infer 'retaining' for ivars of retainable type.
9102  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9103    NewID->setInvalidDecl();
9104
9105  if (D.getDeclSpec().isModulePrivateSpecified())
9106    NewID->setModulePrivate();
9107
9108  if (II) {
9109    // FIXME: When interfaces are DeclContexts, we'll need to add
9110    // these to the interface.
9111    S->AddDecl(NewID);
9112    IdResolver.AddDecl(NewID);
9113  }
9114
9115  return NewID;
9116}
9117
9118/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9119/// class and class extensions. For every class @interface and class
9120/// extension @interface, if the last ivar is a bitfield of any type,
9121/// then add an implicit `char :0` ivar to the end of that interface.
9122void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9123                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9124  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9125    return;
9126
9127  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9128  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9129
9130  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9131    return;
9132  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9133  if (!ID) {
9134    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9135      if (!CD->IsClassExtension())
9136        return;
9137    }
9138    // No need to add this to end of @implementation.
9139    else
9140      return;
9141  }
9142  // All conditions are met. Add a new bitfield to the tail end of ivars.
9143  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9144  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9145
9146  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9147                              DeclLoc, DeclLoc, 0,
9148                              Context.CharTy,
9149                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9150                                                               DeclLoc),
9151                              ObjCIvarDecl::Private, BW,
9152                              true);
9153  AllIvarDecls.push_back(Ivar);
9154}
9155
9156void Sema::ActOnFields(Scope* S,
9157                       SourceLocation RecLoc, Decl *EnclosingDecl,
9158                       llvm::ArrayRef<Decl *> Fields,
9159                       SourceLocation LBrac, SourceLocation RBrac,
9160                       AttributeList *Attr) {
9161  assert(EnclosingDecl && "missing record or interface decl");
9162
9163  // If the decl this is being inserted into is invalid, then it may be a
9164  // redeclaration or some other bogus case.  Don't try to add fields to it.
9165  if (EnclosingDecl->isInvalidDecl())
9166    return;
9167
9168  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9169
9170  // Start counting up the number of named members; make sure to include
9171  // members of anonymous structs and unions in the total.
9172  unsigned NumNamedMembers = 0;
9173  if (Record) {
9174    for (RecordDecl::decl_iterator i = Record->decls_begin(),
9175                                   e = Record->decls_end(); i != e; i++) {
9176      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9177        if (IFD->getDeclName())
9178          ++NumNamedMembers;
9179    }
9180  }
9181
9182  // Verify that all the fields are okay.
9183  SmallVector<FieldDecl*, 32> RecFields;
9184
9185  bool ARCErrReported = false;
9186  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9187       i != end; ++i) {
9188    FieldDecl *FD = cast<FieldDecl>(*i);
9189
9190    // Get the type for the field.
9191    const Type *FDTy = FD->getType().getTypePtr();
9192
9193    if (!FD->isAnonymousStructOrUnion()) {
9194      // Remember all fields written by the user.
9195      RecFields.push_back(FD);
9196    }
9197
9198    // If the field is already invalid for some reason, don't emit more
9199    // diagnostics about it.
9200    if (FD->isInvalidDecl()) {
9201      EnclosingDecl->setInvalidDecl();
9202      continue;
9203    }
9204
9205    // C99 6.7.2.1p2:
9206    //   A structure or union shall not contain a member with
9207    //   incomplete or function type (hence, a structure shall not
9208    //   contain an instance of itself, but may contain a pointer to
9209    //   an instance of itself), except that the last member of a
9210    //   structure with more than one named member may have incomplete
9211    //   array type; such a structure (and any union containing,
9212    //   possibly recursively, a member that is such a structure)
9213    //   shall not be a member of a structure or an element of an
9214    //   array.
9215    if (FDTy->isFunctionType()) {
9216      // Field declared as a function.
9217      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9218        << FD->getDeclName();
9219      FD->setInvalidDecl();
9220      EnclosingDecl->setInvalidDecl();
9221      continue;
9222    } else if (FDTy->isIncompleteArrayType() && Record &&
9223               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9224                ((getLangOptions().MicrosoftExt ||
9225                  getLangOptions().CPlusPlus) &&
9226                 (i + 1 == Fields.end() || Record->isUnion())))) {
9227      // Flexible array member.
9228      // Microsoft and g++ is more permissive regarding flexible array.
9229      // It will accept flexible array in union and also
9230      // as the sole element of a struct/class.
9231      if (getLangOptions().MicrosoftExt) {
9232        if (Record->isUnion())
9233          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9234            << FD->getDeclName();
9235        else if (Fields.size() == 1)
9236          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9237            << FD->getDeclName() << Record->getTagKind();
9238      } else if (getLangOptions().CPlusPlus) {
9239        if (Record->isUnion())
9240          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9241            << FD->getDeclName();
9242        else if (Fields.size() == 1)
9243          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9244            << FD->getDeclName() << Record->getTagKind();
9245      } else if (NumNamedMembers < 1) {
9246        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9247          << FD->getDeclName();
9248        FD->setInvalidDecl();
9249        EnclosingDecl->setInvalidDecl();
9250        continue;
9251      }
9252      if (!FD->getType()->isDependentType() &&
9253          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9254        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9255          << FD->getDeclName() << FD->getType();
9256        FD->setInvalidDecl();
9257        EnclosingDecl->setInvalidDecl();
9258        continue;
9259      }
9260      // Okay, we have a legal flexible array member at the end of the struct.
9261      if (Record)
9262        Record->setHasFlexibleArrayMember(true);
9263    } else if (!FDTy->isDependentType() &&
9264               RequireCompleteType(FD->getLocation(), FD->getType(),
9265                                   diag::err_field_incomplete)) {
9266      // Incomplete type
9267      FD->setInvalidDecl();
9268      EnclosingDecl->setInvalidDecl();
9269      continue;
9270    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9271      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9272        // If this is a member of a union, then entire union becomes "flexible".
9273        if (Record && Record->isUnion()) {
9274          Record->setHasFlexibleArrayMember(true);
9275        } else {
9276          // If this is a struct/class and this is not the last element, reject
9277          // it.  Note that GCC supports variable sized arrays in the middle of
9278          // structures.
9279          if (i + 1 != Fields.end())
9280            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9281              << FD->getDeclName() << FD->getType();
9282          else {
9283            // We support flexible arrays at the end of structs in
9284            // other structs as an extension.
9285            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9286              << FD->getDeclName();
9287            if (Record)
9288              Record->setHasFlexibleArrayMember(true);
9289          }
9290        }
9291      }
9292      if (Record && FDTTy->getDecl()->hasObjectMember())
9293        Record->setHasObjectMember(true);
9294    } else if (FDTy->isObjCObjectType()) {
9295      /// A field cannot be an Objective-c object
9296      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9297        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9298      QualType T = Context.getObjCObjectPointerType(FD->getType());
9299      FD->setType(T);
9300    }
9301    else if (!getLangOptions().CPlusPlus) {
9302      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9303        // It's an error in ARC if a field has lifetime.
9304        // We don't want to report this in a system header, though,
9305        // so we just make the field unavailable.
9306        // FIXME: that's really not sufficient; we need to make the type
9307        // itself invalid to, say, initialize or copy.
9308        QualType T = FD->getType();
9309        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9310        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9311          SourceLocation loc = FD->getLocation();
9312          if (getSourceManager().isInSystemHeader(loc)) {
9313            if (!FD->hasAttr<UnavailableAttr>()) {
9314              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9315                                "this system field has retaining ownership"));
9316            }
9317          } else {
9318            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9319              << T->isBlockPointerType();
9320          }
9321          ARCErrReported = true;
9322        }
9323      }
9324      else if (getLangOptions().ObjC1 &&
9325               getLangOptions().getGC() != LangOptions::NonGC &&
9326               Record && !Record->hasObjectMember()) {
9327        if (FD->getType()->isObjCObjectPointerType() ||
9328            FD->getType().isObjCGCStrong())
9329          Record->setHasObjectMember(true);
9330        else if (Context.getAsArrayType(FD->getType())) {
9331          QualType BaseType = Context.getBaseElementType(FD->getType());
9332          if (BaseType->isRecordType() &&
9333              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9334            Record->setHasObjectMember(true);
9335          else if (BaseType->isObjCObjectPointerType() ||
9336                   BaseType.isObjCGCStrong())
9337                 Record->setHasObjectMember(true);
9338        }
9339      }
9340    }
9341    // Keep track of the number of named members.
9342    if (FD->getIdentifier())
9343      ++NumNamedMembers;
9344  }
9345
9346  // Okay, we successfully defined 'Record'.
9347  if (Record) {
9348    bool Completed = false;
9349    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9350      if (!CXXRecord->isInvalidDecl()) {
9351        // Set access bits correctly on the directly-declared conversions.
9352        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9353        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9354             I != E; ++I)
9355          Convs->setAccess(I, (*I)->getAccess());
9356
9357        if (!CXXRecord->isDependentType()) {
9358          // Objective-C Automatic Reference Counting:
9359          //   If a class has a non-static data member of Objective-C pointer
9360          //   type (or array thereof), it is a non-POD type and its
9361          //   default constructor (if any), copy constructor, copy assignment
9362          //   operator, and destructor are non-trivial.
9363          //
9364          // This rule is also handled by CXXRecordDecl::completeDefinition().
9365          // However, here we check whether this particular class is only
9366          // non-POD because of the presence of an Objective-C pointer member.
9367          // If so, objects of this type cannot be shared between code compiled
9368          // with instant objects and code compiled with manual retain/release.
9369          if (getLangOptions().ObjCAutoRefCount &&
9370              CXXRecord->hasObjectMember() &&
9371              CXXRecord->getLinkage() == ExternalLinkage) {
9372            if (CXXRecord->isPOD()) {
9373              Diag(CXXRecord->getLocation(),
9374                   diag::warn_arc_non_pod_class_with_object_member)
9375               << CXXRecord;
9376            } else {
9377              // FIXME: Fix-Its would be nice here, but finding a good location
9378              // for them is going to be tricky.
9379              if (CXXRecord->hasTrivialCopyConstructor())
9380                Diag(CXXRecord->getLocation(),
9381                     diag::warn_arc_trivial_member_function_with_object_member)
9382                  << CXXRecord << 0;
9383              if (CXXRecord->hasTrivialCopyAssignment())
9384                Diag(CXXRecord->getLocation(),
9385                     diag::warn_arc_trivial_member_function_with_object_member)
9386                << CXXRecord << 1;
9387              if (CXXRecord->hasTrivialDestructor())
9388                Diag(CXXRecord->getLocation(),
9389                     diag::warn_arc_trivial_member_function_with_object_member)
9390                << CXXRecord << 2;
9391            }
9392          }
9393
9394          // Adjust user-defined destructor exception spec.
9395          if (getLangOptions().CPlusPlus0x &&
9396              CXXRecord->hasUserDeclaredDestructor())
9397            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9398
9399          // Add any implicitly-declared members to this class.
9400          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9401
9402          // If we have virtual base classes, we may end up finding multiple
9403          // final overriders for a given virtual function. Check for this
9404          // problem now.
9405          if (CXXRecord->getNumVBases()) {
9406            CXXFinalOverriderMap FinalOverriders;
9407            CXXRecord->getFinalOverriders(FinalOverriders);
9408
9409            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9410                                             MEnd = FinalOverriders.end();
9411                 M != MEnd; ++M) {
9412              for (OverridingMethods::iterator SO = M->second.begin(),
9413                                            SOEnd = M->second.end();
9414                   SO != SOEnd; ++SO) {
9415                assert(SO->second.size() > 0 &&
9416                       "Virtual function without overridding functions?");
9417                if (SO->second.size() == 1)
9418                  continue;
9419
9420                // C++ [class.virtual]p2:
9421                //   In a derived class, if a virtual member function of a base
9422                //   class subobject has more than one final overrider the
9423                //   program is ill-formed.
9424                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9425                  << (NamedDecl *)M->first << Record;
9426                Diag(M->first->getLocation(),
9427                     diag::note_overridden_virtual_function);
9428                for (OverridingMethods::overriding_iterator
9429                          OM = SO->second.begin(),
9430                       OMEnd = SO->second.end();
9431                     OM != OMEnd; ++OM)
9432                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9433                    << (NamedDecl *)M->first << OM->Method->getParent();
9434
9435                Record->setInvalidDecl();
9436              }
9437            }
9438            CXXRecord->completeDefinition(&FinalOverriders);
9439            Completed = true;
9440          }
9441        }
9442      }
9443    }
9444
9445    if (!Completed)
9446      Record->completeDefinition();
9447
9448    // Now that the record is complete, do any delayed exception spec checks
9449    // we were missing.
9450    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9451      const CXXDestructorDecl *Dtor =
9452              DelayedDestructorExceptionSpecChecks.back().first;
9453      if (Dtor->getParent() != Record)
9454        break;
9455
9456      assert(!Dtor->getParent()->isDependentType() &&
9457          "Should not ever add destructors of templates into the list.");
9458      CheckOverridingFunctionExceptionSpec(Dtor,
9459          DelayedDestructorExceptionSpecChecks.back().second);
9460      DelayedDestructorExceptionSpecChecks.pop_back();
9461    }
9462
9463  } else {
9464    ObjCIvarDecl **ClsFields =
9465      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9466    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9467      ID->setEndOfDefinitionLoc(RBrac);
9468      // Add ivar's to class's DeclContext.
9469      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9470        ClsFields[i]->setLexicalDeclContext(ID);
9471        ID->addDecl(ClsFields[i]);
9472      }
9473      // Must enforce the rule that ivars in the base classes may not be
9474      // duplicates.
9475      if (ID->getSuperClass())
9476        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9477    } else if (ObjCImplementationDecl *IMPDecl =
9478                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9479      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9480      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9481        // Ivar declared in @implementation never belongs to the implementation.
9482        // Only it is in implementation's lexical context.
9483        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9484      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9485    } else if (ObjCCategoryDecl *CDecl =
9486                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9487      // case of ivars in class extension; all other cases have been
9488      // reported as errors elsewhere.
9489      // FIXME. Class extension does not have a LocEnd field.
9490      // CDecl->setLocEnd(RBrac);
9491      // Add ivar's to class extension's DeclContext.
9492      // Diagnose redeclaration of private ivars.
9493      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9494      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9495        if (IDecl) {
9496          if (const ObjCIvarDecl *ClsIvar =
9497              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9498            Diag(ClsFields[i]->getLocation(),
9499                 diag::err_duplicate_ivar_declaration);
9500            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9501            continue;
9502          }
9503          for (const ObjCCategoryDecl *ClsExtDecl =
9504                IDecl->getFirstClassExtension();
9505               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9506            if (const ObjCIvarDecl *ClsExtIvar =
9507                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9508              Diag(ClsFields[i]->getLocation(),
9509                   diag::err_duplicate_ivar_declaration);
9510              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9511              continue;
9512            }
9513          }
9514        }
9515        ClsFields[i]->setLexicalDeclContext(CDecl);
9516        CDecl->addDecl(ClsFields[i]);
9517      }
9518    }
9519  }
9520
9521  if (Attr)
9522    ProcessDeclAttributeList(S, Record, Attr);
9523
9524  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9525  // set the visibility of this record.
9526  if (Record && !Record->getDeclContext()->isRecord())
9527    AddPushedVisibilityAttribute(Record);
9528}
9529
9530/// \brief Determine whether the given integral value is representable within
9531/// the given type T.
9532static bool isRepresentableIntegerValue(ASTContext &Context,
9533                                        llvm::APSInt &Value,
9534                                        QualType T) {
9535  assert(T->isIntegralType(Context) && "Integral type required!");
9536  unsigned BitWidth = Context.getIntWidth(T);
9537
9538  if (Value.isUnsigned() || Value.isNonNegative()) {
9539    if (T->isSignedIntegerOrEnumerationType())
9540      --BitWidth;
9541    return Value.getActiveBits() <= BitWidth;
9542  }
9543  return Value.getMinSignedBits() <= BitWidth;
9544}
9545
9546// \brief Given an integral type, return the next larger integral type
9547// (or a NULL type of no such type exists).
9548static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9549  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9550  // enum checking below.
9551  assert(T->isIntegralType(Context) && "Integral type required!");
9552  const unsigned NumTypes = 4;
9553  QualType SignedIntegralTypes[NumTypes] = {
9554    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9555  };
9556  QualType UnsignedIntegralTypes[NumTypes] = {
9557    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9558    Context.UnsignedLongLongTy
9559  };
9560
9561  unsigned BitWidth = Context.getTypeSize(T);
9562  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9563                                                        : UnsignedIntegralTypes;
9564  for (unsigned I = 0; I != NumTypes; ++I)
9565    if (Context.getTypeSize(Types[I]) > BitWidth)
9566      return Types[I];
9567
9568  return QualType();
9569}
9570
9571EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9572                                          EnumConstantDecl *LastEnumConst,
9573                                          SourceLocation IdLoc,
9574                                          IdentifierInfo *Id,
9575                                          Expr *Val) {
9576  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9577  llvm::APSInt EnumVal(IntWidth);
9578  QualType EltTy;
9579
9580  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9581    Val = 0;
9582
9583  if (Val)
9584    Val = DefaultLvalueConversion(Val).take();
9585
9586  if (Val) {
9587    if (Enum->isDependentType() || Val->isTypeDependent())
9588      EltTy = Context.DependentTy;
9589    else {
9590      SourceLocation ExpLoc;
9591      if (getLangOptions().CPlusPlus0x && Enum->isFixed() &&
9592          !getLangOptions().MicrosoftMode) {
9593        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
9594        // constant-expression in the enumerator-definition shall be a converted
9595        // constant expression of the underlying type.
9596        EltTy = Enum->getIntegerType();
9597        ExprResult Converted =
9598          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
9599                                           CCEK_Enumerator);
9600        if (Converted.isInvalid())
9601          Val = 0;
9602        else
9603          Val = Converted.take();
9604      } else if (!Val->isValueDependent() &&
9605                 !(Val = VerifyIntegerConstantExpression(Val,
9606                                                         &EnumVal).take())) {
9607        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9608      } else {
9609        if (Enum->isFixed()) {
9610          EltTy = Enum->getIntegerType();
9611
9612          // In Obj-C and Microsoft mode, require the enumeration value to be
9613          // representable in the underlying type of the enumeration. In C++11,
9614          // we perform a non-narrowing conversion as part of converted constant
9615          // expression checking.
9616          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9617            if (getLangOptions().MicrosoftExt) {
9618              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9619              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9620            } else
9621              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
9622          } else
9623            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9624        } else if (getLangOptions().CPlusPlus) {
9625          // C++11 [dcl.enum]p5:
9626          //   If the underlying type is not fixed, the type of each enumerator
9627          //   is the type of its initializing value:
9628          //     - If an initializer is specified for an enumerator, the
9629          //       initializing value has the same type as the expression.
9630          EltTy = Val->getType();
9631        } else {
9632          // C99 6.7.2.2p2:
9633          //   The expression that defines the value of an enumeration constant
9634          //   shall be an integer constant expression that has a value
9635          //   representable as an int.
9636
9637          // Complain if the value is not representable in an int.
9638          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9639            Diag(IdLoc, diag::ext_enum_value_not_int)
9640              << EnumVal.toString(10) << Val->getSourceRange()
9641              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9642          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9643            // Force the type of the expression to 'int'.
9644            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9645          }
9646          EltTy = Val->getType();
9647        }
9648      }
9649    }
9650  }
9651
9652  if (!Val) {
9653    if (Enum->isDependentType())
9654      EltTy = Context.DependentTy;
9655    else if (!LastEnumConst) {
9656      // C++0x [dcl.enum]p5:
9657      //   If the underlying type is not fixed, the type of each enumerator
9658      //   is the type of its initializing value:
9659      //     - If no initializer is specified for the first enumerator, the
9660      //       initializing value has an unspecified integral type.
9661      //
9662      // GCC uses 'int' for its unspecified integral type, as does
9663      // C99 6.7.2.2p3.
9664      if (Enum->isFixed()) {
9665        EltTy = Enum->getIntegerType();
9666      }
9667      else {
9668        EltTy = Context.IntTy;
9669      }
9670    } else {
9671      // Assign the last value + 1.
9672      EnumVal = LastEnumConst->getInitVal();
9673      ++EnumVal;
9674      EltTy = LastEnumConst->getType();
9675
9676      // Check for overflow on increment.
9677      if (EnumVal < LastEnumConst->getInitVal()) {
9678        // C++0x [dcl.enum]p5:
9679        //   If the underlying type is not fixed, the type of each enumerator
9680        //   is the type of its initializing value:
9681        //
9682        //     - Otherwise the type of the initializing value is the same as
9683        //       the type of the initializing value of the preceding enumerator
9684        //       unless the incremented value is not representable in that type,
9685        //       in which case the type is an unspecified integral type
9686        //       sufficient to contain the incremented value. If no such type
9687        //       exists, the program is ill-formed.
9688        QualType T = getNextLargerIntegralType(Context, EltTy);
9689        if (T.isNull() || Enum->isFixed()) {
9690          // There is no integral type larger enough to represent this
9691          // value. Complain, then allow the value to wrap around.
9692          EnumVal = LastEnumConst->getInitVal();
9693          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9694          ++EnumVal;
9695          if (Enum->isFixed())
9696            // When the underlying type is fixed, this is ill-formed.
9697            Diag(IdLoc, diag::err_enumerator_wrapped)
9698              << EnumVal.toString(10)
9699              << EltTy;
9700          else
9701            Diag(IdLoc, diag::warn_enumerator_too_large)
9702              << EnumVal.toString(10);
9703        } else {
9704          EltTy = T;
9705        }
9706
9707        // Retrieve the last enumerator's value, extent that type to the
9708        // type that is supposed to be large enough to represent the incremented
9709        // value, then increment.
9710        EnumVal = LastEnumConst->getInitVal();
9711        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9712        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9713        ++EnumVal;
9714
9715        // If we're not in C++, diagnose the overflow of enumerator values,
9716        // which in C99 means that the enumerator value is not representable in
9717        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9718        // permits enumerator values that are representable in some larger
9719        // integral type.
9720        if (!getLangOptions().CPlusPlus && !T.isNull())
9721          Diag(IdLoc, diag::warn_enum_value_overflow);
9722      } else if (!getLangOptions().CPlusPlus &&
9723                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9724        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9725        Diag(IdLoc, diag::ext_enum_value_not_int)
9726          << EnumVal.toString(10) << 1;
9727      }
9728    }
9729  }
9730
9731  if (!EltTy->isDependentType()) {
9732    // Make the enumerator value match the signedness and size of the
9733    // enumerator's type.
9734    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
9735    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9736  }
9737
9738  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9739                                  Val, EnumVal);
9740}
9741
9742
9743Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9744                              SourceLocation IdLoc, IdentifierInfo *Id,
9745                              AttributeList *Attr,
9746                              SourceLocation EqualLoc, Expr *Val) {
9747  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9748  EnumConstantDecl *LastEnumConst =
9749    cast_or_null<EnumConstantDecl>(lastEnumConst);
9750
9751  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9752  // we find one that is.
9753  S = getNonFieldDeclScope(S);
9754
9755  // Verify that there isn't already something declared with this name in this
9756  // scope.
9757  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9758                                         ForRedeclaration);
9759  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9760    // Maybe we will complain about the shadowed template parameter.
9761    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9762    // Just pretend that we didn't see the previous declaration.
9763    PrevDecl = 0;
9764  }
9765
9766  if (PrevDecl) {
9767    // When in C++, we may get a TagDecl with the same name; in this case the
9768    // enum constant will 'hide' the tag.
9769    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9770           "Received TagDecl when not in C++!");
9771    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9772      if (isa<EnumConstantDecl>(PrevDecl))
9773        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9774      else
9775        Diag(IdLoc, diag::err_redefinition) << Id;
9776      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9777      return 0;
9778    }
9779  }
9780
9781  // C++ [class.mem]p13:
9782  //   If T is the name of a class, then each of the following shall have a
9783  //   name different from T:
9784  //     - every enumerator of every member of class T that is an enumerated
9785  //       type
9786  if (CXXRecordDecl *Record
9787                      = dyn_cast<CXXRecordDecl>(
9788                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9789    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9790      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9791
9792  EnumConstantDecl *New =
9793    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9794
9795  if (New) {
9796    // Process attributes.
9797    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9798
9799    // Register this decl in the current scope stack.
9800    New->setAccess(TheEnumDecl->getAccess());
9801    PushOnScopeChains(New, S);
9802  }
9803
9804  return New;
9805}
9806
9807void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9808                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9809                         Decl **Elements, unsigned NumElements,
9810                         Scope *S, AttributeList *Attr) {
9811  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9812  QualType EnumType = Context.getTypeDeclType(Enum);
9813
9814  if (Attr)
9815    ProcessDeclAttributeList(S, Enum, Attr);
9816
9817  if (Enum->isDependentType()) {
9818    for (unsigned i = 0; i != NumElements; ++i) {
9819      EnumConstantDecl *ECD =
9820        cast_or_null<EnumConstantDecl>(Elements[i]);
9821      if (!ECD) continue;
9822
9823      ECD->setType(EnumType);
9824    }
9825
9826    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9827    return;
9828  }
9829
9830  // TODO: If the result value doesn't fit in an int, it must be a long or long
9831  // long value.  ISO C does not support this, but GCC does as an extension,
9832  // emit a warning.
9833  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9834  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9835  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9836
9837  // Verify that all the values are okay, compute the size of the values, and
9838  // reverse the list.
9839  unsigned NumNegativeBits = 0;
9840  unsigned NumPositiveBits = 0;
9841
9842  // Keep track of whether all elements have type int.
9843  bool AllElementsInt = true;
9844
9845  for (unsigned i = 0; i != NumElements; ++i) {
9846    EnumConstantDecl *ECD =
9847      cast_or_null<EnumConstantDecl>(Elements[i]);
9848    if (!ECD) continue;  // Already issued a diagnostic.
9849
9850    const llvm::APSInt &InitVal = ECD->getInitVal();
9851
9852    // Keep track of the size of positive and negative values.
9853    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9854      NumPositiveBits = std::max(NumPositiveBits,
9855                                 (unsigned)InitVal.getActiveBits());
9856    else
9857      NumNegativeBits = std::max(NumNegativeBits,
9858                                 (unsigned)InitVal.getMinSignedBits());
9859
9860    // Keep track of whether every enum element has type int (very commmon).
9861    if (AllElementsInt)
9862      AllElementsInt = ECD->getType() == Context.IntTy;
9863  }
9864
9865  // Figure out the type that should be used for this enum.
9866  QualType BestType;
9867  unsigned BestWidth;
9868
9869  // C++0x N3000 [conv.prom]p3:
9870  //   An rvalue of an unscoped enumeration type whose underlying
9871  //   type is not fixed can be converted to an rvalue of the first
9872  //   of the following types that can represent all the values of
9873  //   the enumeration: int, unsigned int, long int, unsigned long
9874  //   int, long long int, or unsigned long long int.
9875  // C99 6.4.4.3p2:
9876  //   An identifier declared as an enumeration constant has type int.
9877  // The C99 rule is modified by a gcc extension
9878  QualType BestPromotionType;
9879
9880  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9881  // -fshort-enums is the equivalent to specifying the packed attribute on all
9882  // enum definitions.
9883  if (LangOpts.ShortEnums)
9884    Packed = true;
9885
9886  if (Enum->isFixed()) {
9887    BestType = Enum->getIntegerType();
9888    if (BestType->isPromotableIntegerType())
9889      BestPromotionType = Context.getPromotedIntegerType(BestType);
9890    else
9891      BestPromotionType = BestType;
9892    // We don't need to set BestWidth, because BestType is going to be the type
9893    // of the enumerators, but we do anyway because otherwise some compilers
9894    // warn that it might be used uninitialized.
9895    BestWidth = CharWidth;
9896  }
9897  else if (NumNegativeBits) {
9898    // If there is a negative value, figure out the smallest integer type (of
9899    // int/long/longlong) that fits.
9900    // If it's packed, check also if it fits a char or a short.
9901    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9902      BestType = Context.SignedCharTy;
9903      BestWidth = CharWidth;
9904    } else if (Packed && NumNegativeBits <= ShortWidth &&
9905               NumPositiveBits < ShortWidth) {
9906      BestType = Context.ShortTy;
9907      BestWidth = ShortWidth;
9908    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9909      BestType = Context.IntTy;
9910      BestWidth = IntWidth;
9911    } else {
9912      BestWidth = Context.getTargetInfo().getLongWidth();
9913
9914      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9915        BestType = Context.LongTy;
9916      } else {
9917        BestWidth = Context.getTargetInfo().getLongLongWidth();
9918
9919        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9920          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9921        BestType = Context.LongLongTy;
9922      }
9923    }
9924    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9925  } else {
9926    // If there is no negative value, figure out the smallest type that fits
9927    // all of the enumerator values.
9928    // If it's packed, check also if it fits a char or a short.
9929    if (Packed && NumPositiveBits <= CharWidth) {
9930      BestType = Context.UnsignedCharTy;
9931      BestPromotionType = Context.IntTy;
9932      BestWidth = CharWidth;
9933    } else if (Packed && NumPositiveBits <= ShortWidth) {
9934      BestType = Context.UnsignedShortTy;
9935      BestPromotionType = Context.IntTy;
9936      BestWidth = ShortWidth;
9937    } else if (NumPositiveBits <= IntWidth) {
9938      BestType = Context.UnsignedIntTy;
9939      BestWidth = IntWidth;
9940      BestPromotionType
9941        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9942                           ? Context.UnsignedIntTy : Context.IntTy;
9943    } else if (NumPositiveBits <=
9944               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9945      BestType = Context.UnsignedLongTy;
9946      BestPromotionType
9947        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9948                           ? Context.UnsignedLongTy : Context.LongTy;
9949    } else {
9950      BestWidth = Context.getTargetInfo().getLongLongWidth();
9951      assert(NumPositiveBits <= BestWidth &&
9952             "How could an initializer get larger than ULL?");
9953      BestType = Context.UnsignedLongLongTy;
9954      BestPromotionType
9955        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9956                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9957    }
9958  }
9959
9960  // Loop over all of the enumerator constants, changing their types to match
9961  // the type of the enum if needed.
9962  for (unsigned i = 0; i != NumElements; ++i) {
9963    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9964    if (!ECD) continue;  // Already issued a diagnostic.
9965
9966    // Standard C says the enumerators have int type, but we allow, as an
9967    // extension, the enumerators to be larger than int size.  If each
9968    // enumerator value fits in an int, type it as an int, otherwise type it the
9969    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9970    // that X has type 'int', not 'unsigned'.
9971
9972    // Determine whether the value fits into an int.
9973    llvm::APSInt InitVal = ECD->getInitVal();
9974
9975    // If it fits into an integer type, force it.  Otherwise force it to match
9976    // the enum decl type.
9977    QualType NewTy;
9978    unsigned NewWidth;
9979    bool NewSign;
9980    if (!getLangOptions().CPlusPlus &&
9981        !Enum->isFixed() &&
9982        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9983      NewTy = Context.IntTy;
9984      NewWidth = IntWidth;
9985      NewSign = true;
9986    } else if (ECD->getType() == BestType) {
9987      // Already the right type!
9988      if (getLangOptions().CPlusPlus)
9989        // C++ [dcl.enum]p4: Following the closing brace of an
9990        // enum-specifier, each enumerator has the type of its
9991        // enumeration.
9992        ECD->setType(EnumType);
9993      continue;
9994    } else {
9995      NewTy = BestType;
9996      NewWidth = BestWidth;
9997      NewSign = BestType->isSignedIntegerOrEnumerationType();
9998    }
9999
10000    // Adjust the APSInt value.
10001    InitVal = InitVal.extOrTrunc(NewWidth);
10002    InitVal.setIsSigned(NewSign);
10003    ECD->setInitVal(InitVal);
10004
10005    // Adjust the Expr initializer and type.
10006    if (ECD->getInitExpr() &&
10007        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10008      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10009                                                CK_IntegralCast,
10010                                                ECD->getInitExpr(),
10011                                                /*base paths*/ 0,
10012                                                VK_RValue));
10013    if (getLangOptions().CPlusPlus)
10014      // C++ [dcl.enum]p4: Following the closing brace of an
10015      // enum-specifier, each enumerator has the type of its
10016      // enumeration.
10017      ECD->setType(EnumType);
10018    else
10019      ECD->setType(NewTy);
10020  }
10021
10022  Enum->completeDefinition(BestType, BestPromotionType,
10023                           NumPositiveBits, NumNegativeBits);
10024}
10025
10026Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10027                                  SourceLocation StartLoc,
10028                                  SourceLocation EndLoc) {
10029  StringLiteral *AsmString = cast<StringLiteral>(expr);
10030
10031  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10032                                                   AsmString, StartLoc,
10033                                                   EndLoc);
10034  CurContext->addDecl(New);
10035  return New;
10036}
10037
10038DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10039                                   SourceLocation ImportLoc,
10040                                   ModuleIdPath Path) {
10041  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10042                                                Module::AllVisible,
10043                                                /*IsIncludeDirective=*/false);
10044  if (!Mod)
10045    return true;
10046
10047  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10048  Module *ModCheck = Mod;
10049  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10050    // If we've run out of module parents, just drop the remaining identifiers.
10051    // We need the length to be consistent.
10052    if (!ModCheck)
10053      break;
10054    ModCheck = ModCheck->Parent;
10055
10056    IdentifierLocs.push_back(Path[I].second);
10057  }
10058
10059  ImportDecl *Import = ImportDecl::Create(Context,
10060                                          Context.getTranslationUnitDecl(),
10061                                          AtLoc.isValid()? AtLoc : ImportLoc,
10062                                          Mod, IdentifierLocs);
10063  Context.getTranslationUnitDecl()->addDecl(Import);
10064  return Import;
10065}
10066
10067void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10068                             SourceLocation PragmaLoc,
10069                             SourceLocation NameLoc) {
10070  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10071
10072  if (PrevDecl) {
10073    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10074  } else {
10075    (void)WeakUndeclaredIdentifiers.insert(
10076      std::pair<IdentifierInfo*,WeakInfo>
10077        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10078  }
10079}
10080
10081void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10082                                IdentifierInfo* AliasName,
10083                                SourceLocation PragmaLoc,
10084                                SourceLocation NameLoc,
10085                                SourceLocation AliasNameLoc) {
10086  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10087                                    LookupOrdinaryName);
10088  WeakInfo W = WeakInfo(Name, NameLoc);
10089
10090  if (PrevDecl) {
10091    if (!PrevDecl->hasAttr<AliasAttr>())
10092      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10093        DeclApplyPragmaWeak(TUScope, ND, W);
10094  } else {
10095    (void)WeakUndeclaredIdentifiers.insert(
10096      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10097  }
10098}
10099
10100Decl *Sema::getObjCDeclContext() const {
10101  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10102}
10103
10104AvailabilityResult Sema::getCurContextAvailability() const {
10105  const Decl *D = cast<Decl>(getCurLexicalContext());
10106  // A category implicitly has the availability of the interface.
10107  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10108    D = CatD->getClassInterface();
10109
10110  return D->getAvailability();
10111}
10112