SemaDecl.cpp revision e2c31ff0bc622e6fd7d47d7e08b53840f3be6c89
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/SourceManager.h"
26// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Lex/HeaderSearch.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32#include <functional>
33using namespace clang;
34
35/// getDeclName - Return a pretty name for the specified decl if possible, or
36/// an empty string if not.  This is used for pretty crash reporting.
37std::string Sema::getDeclName(DeclPtrTy d) {
38  Decl *D = d.getAs<Decl>();
39  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
40    return DN->getQualifiedNameAsString();
41  return "";
42}
43
44Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
45  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
46}
47
48/// \brief If the identifier refers to a type name within this scope,
49/// return the declaration of that type.
50///
51/// This routine performs ordinary name lookup of the identifier II
52/// within the given scope, with optional C++ scope specifier SS, to
53/// determine whether the name refers to a type. If so, returns an
54/// opaque pointer (actually a QualType) corresponding to that
55/// type. Otherwise, returns NULL.
56///
57/// If name lookup results in an ambiguity, this routine will complain
58/// and then return NULL.
59Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
60                                Scope *S, const CXXScopeSpec *SS) {
61  // C++ [temp.res]p3:
62  //   A qualified-id that refers to a type and in which the
63  //   nested-name-specifier depends on a template-parameter (14.6.2)
64  //   shall be prefixed by the keyword typename to indicate that the
65  //   qualified-id denotes a type, forming an
66  //   elaborated-type-specifier (7.1.5.3).
67  //
68  // We therefore do not perform any name lookup if the result would
69  // refer to a member of an unknown specialization.
70  if (SS && isUnknownSpecialization(*SS))
71    return 0;
72
73  LookupResult Result
74    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
75
76  NamedDecl *IIDecl = 0;
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      if (getLangOptions().CPlusPlus) {
128        // C++ [temp.local]p2:
129        //   Within the scope of a class template specialization or
130        //   partial specialization, when the injected-class-name is
131        //   not followed by a <, it is equivalent to the
132        //   injected-class-name followed by the template-argument s
133        //   of the class template specialization or partial
134        //   specialization enclosed in <>.
135        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
136          if (RD->isInjectedClassName())
137            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
138              T = Template->getInjectedClassNameType(Context);
139      }
140
141      if (T.isNull())
142        T = Context.getTypeDeclType(TD);
143    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
144      // Check whether we can use this interface.
145      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147      T = Context.getObjCInterfaceType(IDecl);
148    } else
149      return 0;
150
151    if (SS)
152      T = getQualifiedNameType(*SS, T);
153
154    return T.getAsOpaquePtr();
155  }
156
157  return 0;
158}
159
160/// isTagName() - This method is called *for error recovery purposes only*
161/// to determine if the specified name is a valid tag name ("struct foo").  If
162/// so, this returns the TST for the tag corresponding to it (TST_enum,
163/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
164/// where the user forgot to specify the tag.
165DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
166  // Do a tag name lookup in this scope.
167  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
168  if (R.getKind() == LookupResult::Found)
169    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
170      switch (TD->getTagKind()) {
171      case TagDecl::TK_struct: return DeclSpec::TST_struct;
172      case TagDecl::TK_union:  return DeclSpec::TST_union;
173      case TagDecl::TK_class:  return DeclSpec::TST_class;
174      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
175      }
176    }
177
178  return DeclSpec::TST_unspecified;
179}
180
181
182
183DeclContext *Sema::getContainingDC(DeclContext *DC) {
184  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
185    // A C++ out-of-line method will return to the file declaration context.
186    if (MD->isOutOfLineDefinition())
187      return MD->getLexicalDeclContext();
188
189    // A C++ inline method is parsed *after* the topmost class it was declared
190    // in is fully parsed (it's "complete").
191    // The parsing of a C++ inline method happens at the declaration context of
192    // the topmost (non-nested) class it is lexically declared in.
193    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
194    DC = MD->getParent();
195    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
196      DC = RD;
197
198    // Return the declaration context of the topmost class the inline method is
199    // declared in.
200    return DC;
201  }
202
203  if (isa<ObjCMethodDecl>(DC))
204    return Context.getTranslationUnitDecl();
205
206  return DC->getLexicalParent();
207}
208
209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
210  assert(getContainingDC(DC) == CurContext &&
211      "The next DeclContext should be lexically contained in the current one.");
212  CurContext = DC;
213  S->setEntity(DC);
214}
215
216void Sema::PopDeclContext() {
217  assert(CurContext && "DeclContext imbalance!");
218
219  CurContext = getContainingDC(CurContext);
220}
221
222/// \brief Determine whether we allow overloading of the function
223/// PrevDecl with another declaration.
224///
225/// This routine determines whether overloading is possible, not
226/// whether some new function is actually an overload. It will return
227/// true in C++ (where we can always provide overloads) or, as an
228/// extension, in C when the previous function is already an
229/// overloaded function declaration or has the "overloadable"
230/// attribute.
231static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
232  if (Context.getLangOptions().CPlusPlus)
233    return true;
234
235  if (isa<OverloadedFunctionDecl>(PrevDecl))
236    return true;
237
238  return PrevDecl->getAttr<OverloadableAttr>() != 0;
239}
240
241/// Add this decl to the scope shadowed decl chains.
242void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
243  // Move up the scope chain until we find the nearest enclosing
244  // non-transparent context. The declaration will be introduced into this
245  // scope.
246  while (S->getEntity() &&
247         ((DeclContext *)S->getEntity())->isTransparentContext())
248    S = S->getParent();
249
250  S->AddDecl(DeclPtrTy::make(D));
251
252  // Add scoped declarations into their context, so that they can be
253  // found later. Declarations without a context won't be inserted
254  // into any context.
255  CurContext->addDecl(Context, D);
256
257  // C++ [basic.scope]p4:
258  //   -- exactly one declaration shall declare a class name or
259  //   enumeration name that is not a typedef name and the other
260  //   declarations shall all refer to the same object or
261  //   enumerator, or all refer to functions and function templates;
262  //   in this case the class name or enumeration name is hidden.
263  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
264    // We are pushing the name of a tag (enum or class).
265    if (CurContext->getLookupContext()
266          == TD->getDeclContext()->getLookupContext()) {
267      // We're pushing the tag into the current context, which might
268      // require some reshuffling in the identifier resolver.
269      IdentifierResolver::iterator
270        I = IdResolver.begin(TD->getDeclName()),
271        IEnd = IdResolver.end();
272      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
273        NamedDecl *PrevDecl = *I;
274        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
275             PrevDecl = *I, ++I) {
276          if (TD->declarationReplaces(*I)) {
277            // This is a redeclaration. Remove it from the chain and
278            // break out, so that we'll add in the shadowed
279            // declaration.
280            S->RemoveDecl(DeclPtrTy::make(*I));
281            if (PrevDecl == *I) {
282              IdResolver.RemoveDecl(*I);
283              IdResolver.AddDecl(TD);
284              return;
285            } else {
286              IdResolver.RemoveDecl(*I);
287              break;
288            }
289          }
290        }
291
292        // There is already a declaration with the same name in the same
293        // scope, which is not a tag declaration. It must be found
294        // before we find the new declaration, so insert the new
295        // declaration at the end of the chain.
296        IdResolver.AddShadowedDecl(TD, PrevDecl);
297
298        return;
299      }
300    }
301  } else if (isa<FunctionDecl>(D) &&
302             AllowOverloadingOfFunction(D, Context)) {
303    // We are pushing the name of a function, which might be an
304    // overloaded name.
305    FunctionDecl *FD = cast<FunctionDecl>(D);
306    IdentifierResolver::iterator Redecl
307      = std::find_if(IdResolver.begin(FD->getDeclName()),
308                     IdResolver.end(),
309                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
310                                  FD));
311    if (Redecl != IdResolver.end() &&
312        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
313      // There is already a declaration of a function on our
314      // IdResolver chain. Replace it with this declaration.
315      S->RemoveDecl(DeclPtrTy::make(*Redecl));
316      IdResolver.RemoveDecl(*Redecl);
317    }
318  } else if (isa<ObjCInterfaceDecl>(D)) {
319    // We're pushing an Objective-C interface into the current
320    // context. If there is already an alias declaration, remove it first.
321    for (IdentifierResolver::iterator
322           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
323         I != IEnd; ++I) {
324      if (isa<ObjCCompatibleAliasDecl>(*I)) {
325        S->RemoveDecl(DeclPtrTy::make(*I));
326        IdResolver.RemoveDecl(*I);
327        break;
328      }
329    }
330  }
331
332  IdResolver.AddDecl(D);
333}
334
335void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
336  if (S->decl_empty()) return;
337  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
338	 "Scope shouldn't contain decls!");
339
340  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
341       I != E; ++I) {
342    Decl *TmpD = (*I).getAs<Decl>();
343    assert(TmpD && "This decl didn't get pushed??");
344
345    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
346    NamedDecl *D = cast<NamedDecl>(TmpD);
347
348    if (!D->getDeclName()) continue;
349
350    // Remove this name from our lexical scope.
351    IdResolver.RemoveDecl(D);
352  }
353}
354
355/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
356/// return 0 if one not found.
357ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
358  // The third "scope" argument is 0 since we aren't enabling lazy built-in
359  // creation from this context.
360  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
361
362  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
363}
364
365/// getNonFieldDeclScope - Retrieves the innermost scope, starting
366/// from S, where a non-field would be declared. This routine copes
367/// with the difference between C and C++ scoping rules in structs and
368/// unions. For example, the following code is well-formed in C but
369/// ill-formed in C++:
370/// @code
371/// struct S6 {
372///   enum { BAR } e;
373/// };
374///
375/// void test_S6() {
376///   struct S6 a;
377///   a.e = BAR;
378/// }
379/// @endcode
380/// For the declaration of BAR, this routine will return a different
381/// scope. The scope S will be the scope of the unnamed enumeration
382/// within S6. In C++, this routine will return the scope associated
383/// with S6, because the enumeration's scope is a transparent
384/// context but structures can contain non-field names. In C, this
385/// routine will return the translation unit scope, since the
386/// enumeration's scope is a transparent context and structures cannot
387/// contain non-field names.
388Scope *Sema::getNonFieldDeclScope(Scope *S) {
389  while (((S->getFlags() & Scope::DeclScope) == 0) ||
390         (S->getEntity() &&
391          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
392         (S->isClassScope() && !getLangOptions().CPlusPlus))
393    S = S->getParent();
394  return S;
395}
396
397void Sema::InitBuiltinVaListType() {
398  if (!Context.getBuiltinVaListType().isNull())
399    return;
400
401  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
402  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
403  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
404  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
405}
406
407/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
408/// file scope.  lazily create a decl for it. ForRedeclaration is true
409/// if we're creating this built-in in anticipation of redeclaring the
410/// built-in.
411NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
412                                     Scope *S, bool ForRedeclaration,
413                                     SourceLocation Loc) {
414  Builtin::ID BID = (Builtin::ID)bid;
415
416  if (Context.BuiltinInfo.hasVAListUse(BID))
417    InitBuiltinVaListType();
418
419  Builtin::Context::GetBuiltinTypeError Error;
420  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
421  switch (Error) {
422  case Builtin::Context::GE_None:
423    // Okay
424    break;
425
426  case Builtin::Context::GE_Missing_FILE:
427    if (ForRedeclaration)
428      Diag(Loc, diag::err_implicit_decl_requires_stdio)
429        << Context.BuiltinInfo.GetName(BID);
430    return 0;
431  }
432
433  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
434    Diag(Loc, diag::ext_implicit_lib_function_decl)
435      << Context.BuiltinInfo.GetName(BID)
436      << R;
437    if (Context.BuiltinInfo.getHeaderName(BID) &&
438        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
439          != Diagnostic::Ignored)
440      Diag(Loc, diag::note_please_include_header)
441        << Context.BuiltinInfo.getHeaderName(BID)
442        << Context.BuiltinInfo.GetName(BID);
443  }
444
445  FunctionDecl *New = FunctionDecl::Create(Context,
446                                           Context.getTranslationUnitDecl(),
447                                           Loc, II, R,
448                                           FunctionDecl::Extern, false,
449                                           /*hasPrototype=*/true);
450  New->setImplicit();
451
452  // Create Decl objects for each parameter, adding them to the
453  // FunctionDecl.
454  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
455    llvm::SmallVector<ParmVarDecl*, 16> Params;
456    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
457      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
458                                           FT->getArgType(i), VarDecl::None, 0));
459    New->setParams(Context, &Params[0], Params.size());
460  }
461
462  AddKnownFunctionAttributes(New);
463
464  // TUScope is the translation-unit scope to insert this function into.
465  // FIXME: This is hideous. We need to teach PushOnScopeChains to
466  // relate Scopes to DeclContexts, and probably eliminate CurContext
467  // entirely, but we're not there yet.
468  DeclContext *SavedContext = CurContext;
469  CurContext = Context.getTranslationUnitDecl();
470  PushOnScopeChains(New, TUScope);
471  CurContext = SavedContext;
472  return New;
473}
474
475/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
476/// everything from the standard library is defined.
477NamespaceDecl *Sema::GetStdNamespace() {
478  if (!StdNamespace) {
479    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
480    DeclContext *Global = Context.getTranslationUnitDecl();
481    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
482    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
483  }
484  return StdNamespace;
485}
486
487/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
488/// same name and scope as a previous declaration 'Old'.  Figure out
489/// how to resolve this situation, merging decls or emitting
490/// diagnostics as appropriate. If there was an error, set New to be invalid.
491///
492void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
493  // If either decl is known invalid already, set the new one to be invalid and
494  // don't bother doing any merging checks.
495  if (New->isInvalidDecl() || OldD->isInvalidDecl())
496    return New->setInvalidDecl();
497
498  bool objc_types = false;
499
500  // Allow multiple definitions for ObjC built-in typedefs.
501  // FIXME: Verify the underlying types are equivalent!
502  if (getLangOptions().ObjC1) {
503    const IdentifierInfo *TypeID = New->getIdentifier();
504    switch (TypeID->getLength()) {
505    default: break;
506    case 2:
507      if (!TypeID->isStr("id"))
508        break;
509      Context.setObjCIdType(Context.getTypeDeclType(New));
510      objc_types = true;
511      break;
512    case 5:
513      if (!TypeID->isStr("Class"))
514        break;
515      Context.setObjCClassType(Context.getTypeDeclType(New));
516      return;
517    case 3:
518      if (!TypeID->isStr("SEL"))
519        break;
520      Context.setObjCSelType(Context.getTypeDeclType(New));
521      return;
522    case 8:
523      if (!TypeID->isStr("Protocol"))
524        break;
525      Context.setObjCProtoType(New->getUnderlyingType());
526      return;
527    }
528    // Fall through - the typedef name was not a builtin type.
529  }
530  // Verify the old decl was also a type.
531  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
532  if (!Old) {
533    Diag(New->getLocation(), diag::err_redefinition_different_kind)
534      << New->getDeclName();
535    if (OldD->getLocation().isValid())
536      Diag(OldD->getLocation(), diag::note_previous_definition);
537    return New->setInvalidDecl();
538  }
539
540  // Determine the "old" type we'll use for checking and diagnostics.
541  QualType OldType;
542  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
543    OldType = OldTypedef->getUnderlyingType();
544  else
545    OldType = Context.getTypeDeclType(Old);
546
547  // If the typedef types are not identical, reject them in all languages and
548  // with any extensions enabled.
549
550  if (OldType != New->getUnderlyingType() &&
551      Context.getCanonicalType(OldType) !=
552      Context.getCanonicalType(New->getUnderlyingType())) {
553    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
554      << New->getUnderlyingType() << OldType;
555    if (Old->getLocation().isValid())
556      Diag(Old->getLocation(), diag::note_previous_definition);
557    return New->setInvalidDecl();
558  }
559
560  if (objc_types || getLangOptions().Microsoft)
561    return;
562
563  // C++ [dcl.typedef]p2:
564  //   In a given non-class scope, a typedef specifier can be used to
565  //   redefine the name of any type declared in that scope to refer
566  //   to the type to which it already refers.
567  if (getLangOptions().CPlusPlus) {
568    if (!isa<CXXRecordDecl>(CurContext))
569      return;
570    Diag(New->getLocation(), diag::err_redefinition)
571      << New->getDeclName();
572    Diag(Old->getLocation(), diag::note_previous_definition);
573    return New->setInvalidDecl();
574  }
575
576  // If we have a redefinition of a typedef in C, emit a warning.  This warning
577  // is normally mapped to an error, but can be controlled with
578  // -Wtypedef-redefinition.  If either the original was in a system header,
579  // don't emit this for compatibility with GCC.
580  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
581      Context.getSourceManager().isInSystemHeader(Old->getLocation()))
582    return;
583
584  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
585    << New->getDeclName();
586  Diag(Old->getLocation(), diag::note_previous_definition);
587  return;
588}
589
590/// DeclhasAttr - returns true if decl Declaration already has the target
591/// attribute.
592static bool DeclHasAttr(const Decl *decl, const Attr *target) {
593  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
594    if (attr->getKind() == target->getKind())
595      return true;
596
597  return false;
598}
599
600/// MergeAttributes - append attributes from the Old decl to the New one.
601static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
602  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
603    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
604      Attr *NewAttr = attr->clone(C);
605      NewAttr->setInherited(true);
606      New->addAttr(NewAttr);
607    }
608  }
609}
610
611/// Used in MergeFunctionDecl to keep track of function parameters in
612/// C.
613struct GNUCompatibleParamWarning {
614  ParmVarDecl *OldParm;
615  ParmVarDecl *NewParm;
616  QualType PromotedType;
617};
618
619/// MergeFunctionDecl - We just parsed a function 'New' from
620/// declarator D which has the same name and scope as a previous
621/// declaration 'Old'.  Figure out how to resolve this situation,
622/// merging decls or emitting diagnostics as appropriate.
623///
624/// In C++, New and Old must be declarations that are not
625/// overloaded. Use IsOverload to determine whether New and Old are
626/// overloaded, and to select the Old declaration that New should be
627/// merged with.
628///
629/// Returns true if there was an error, false otherwise.
630bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
631  assert(!isa<OverloadedFunctionDecl>(OldD) &&
632         "Cannot merge with an overloaded function declaration");
633
634  // Verify the old decl was also a function.
635  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
636  if (!Old) {
637    Diag(New->getLocation(), diag::err_redefinition_different_kind)
638      << New->getDeclName();
639    Diag(OldD->getLocation(), diag::note_previous_definition);
640    return true;
641  }
642
643  // Determine whether the previous declaration was a definition,
644  // implicit declaration, or a declaration.
645  diag::kind PrevDiag;
646  if (Old->isThisDeclarationADefinition())
647    PrevDiag = diag::note_previous_definition;
648  else if (Old->isImplicit())
649    PrevDiag = diag::note_previous_implicit_declaration;
650  else
651    PrevDiag = diag::note_previous_declaration;
652
653  QualType OldQType = Context.getCanonicalType(Old->getType());
654  QualType NewQType = Context.getCanonicalType(New->getType());
655
656  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
657      New->getStorageClass() == FunctionDecl::Static &&
658      Old->getStorageClass() != FunctionDecl::Static) {
659    Diag(New->getLocation(), diag::err_static_non_static)
660      << New;
661    Diag(Old->getLocation(), PrevDiag);
662    return true;
663  }
664
665  if (getLangOptions().CPlusPlus) {
666    // (C++98 13.1p2):
667    //   Certain function declarations cannot be overloaded:
668    //     -- Function declarations that differ only in the return type
669    //        cannot be overloaded.
670    QualType OldReturnType
671      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
672    QualType NewReturnType
673      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
674    if (OldReturnType != NewReturnType) {
675      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
676      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
677      return true;
678    }
679
680    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
681    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
682    if (OldMethod && NewMethod &&
683        OldMethod->getLexicalDeclContext() ==
684          NewMethod->getLexicalDeclContext()) {
685      //    -- Member function declarations with the same name and the
686      //       same parameter types cannot be overloaded if any of them
687      //       is a static member function declaration.
688      if (OldMethod->isStatic() || NewMethod->isStatic()) {
689        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
690        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
691        return true;
692      }
693
694      // C++ [class.mem]p1:
695      //   [...] A member shall not be declared twice in the
696      //   member-specification, except that a nested class or member
697      //   class template can be declared and then later defined.
698      unsigned NewDiag;
699      if (isa<CXXConstructorDecl>(OldMethod))
700        NewDiag = diag::err_constructor_redeclared;
701      else if (isa<CXXDestructorDecl>(NewMethod))
702        NewDiag = diag::err_destructor_redeclared;
703      else if (isa<CXXConversionDecl>(NewMethod))
704        NewDiag = diag::err_conv_function_redeclared;
705      else
706        NewDiag = diag::err_member_redeclared;
707
708      Diag(New->getLocation(), NewDiag);
709      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
710    }
711
712    // (C++98 8.3.5p3):
713    //   All declarations for a function shall agree exactly in both the
714    //   return type and the parameter-type-list.
715    if (OldQType == NewQType)
716      return MergeCompatibleFunctionDecls(New, Old);
717
718    // Fall through for conflicting redeclarations and redefinitions.
719  }
720
721  // C: Function types need to be compatible, not identical. This handles
722  // duplicate function decls like "void f(int); void f(enum X);" properly.
723  if (!getLangOptions().CPlusPlus &&
724      Context.typesAreCompatible(OldQType, NewQType)) {
725    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
726    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
727    const FunctionProtoType *OldProto = 0;
728    if (isa<FunctionNoProtoType>(NewFuncType) &&
729        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
730      // The old declaration provided a function prototype, but the
731      // new declaration does not. Merge in the prototype.
732      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
733                                                 OldProto->arg_type_end());
734      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
735                                         &ParamTypes[0], ParamTypes.size(),
736                                         OldProto->isVariadic(),
737                                         OldProto->getTypeQuals());
738      New->setType(NewQType);
739      New->setHasInheritedPrototype();
740
741      // Synthesize a parameter for each argument type.
742      llvm::SmallVector<ParmVarDecl*, 16> Params;
743      for (FunctionProtoType::arg_type_iterator
744             ParamType = OldProto->arg_type_begin(),
745             ParamEnd = OldProto->arg_type_end();
746           ParamType != ParamEnd; ++ParamType) {
747        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
748                                                 SourceLocation(), 0,
749                                                 *ParamType, VarDecl::None,
750                                                 0);
751        Param->setImplicit();
752        Params.push_back(Param);
753      }
754
755      New->setParams(Context, &Params[0], Params.size());
756    }
757
758    return MergeCompatibleFunctionDecls(New, Old);
759  }
760
761  // GNU C permits a K&R definition to follow a prototype declaration
762  // if the declared types of the parameters in the K&R definition
763  // match the types in the prototype declaration, even when the
764  // promoted types of the parameters from the K&R definition differ
765  // from the types in the prototype. GCC then keeps the types from
766  // the prototype.
767  if (!getLangOptions().CPlusPlus &&
768      Old->hasPrototype() && !New->hasPrototype() &&
769      New->getType()->getAsFunctionProtoType() &&
770      Old->getNumParams() == New->getNumParams()) {
771    llvm::SmallVector<QualType, 16> ArgTypes;
772    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
773    const FunctionProtoType *OldProto
774      = Old->getType()->getAsFunctionProtoType();
775    const FunctionProtoType *NewProto
776      = New->getType()->getAsFunctionProtoType();
777
778    // Determine whether this is the GNU C extension.
779    bool GNUCompatible =
780      Context.typesAreCompatible(OldProto->getResultType(),
781                                 NewProto->getResultType()) &&
782      (OldProto->isVariadic() == NewProto->isVariadic());
783    for (unsigned Idx = 0, End = Old->getNumParams();
784         GNUCompatible && Idx != End; ++Idx) {
785      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
786      ParmVarDecl *NewParm = New->getParamDecl(Idx);
787      if (Context.typesAreCompatible(OldParm->getType(),
788                                     NewProto->getArgType(Idx))) {
789        ArgTypes.push_back(NewParm->getType());
790      } else if (Context.typesAreCompatible(OldParm->getType(),
791                                            NewParm->getType())) {
792        GNUCompatibleParamWarning Warn
793          = { OldParm, NewParm, NewProto->getArgType(Idx) };
794        Warnings.push_back(Warn);
795        ArgTypes.push_back(NewParm->getType());
796      } else
797        GNUCompatible = false;
798    }
799
800    if (GNUCompatible) {
801      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
802        Diag(Warnings[Warn].NewParm->getLocation(),
803             diag::ext_param_promoted_not_compatible_with_prototype)
804          << Warnings[Warn].PromotedType
805          << Warnings[Warn].OldParm->getType();
806        Diag(Warnings[Warn].OldParm->getLocation(),
807             diag::note_previous_declaration);
808      }
809
810      New->setType(Context.getFunctionType(NewProto->getResultType(),
811                                           &ArgTypes[0], ArgTypes.size(),
812                                           NewProto->isVariadic(),
813                                           NewProto->getTypeQuals()));
814      return MergeCompatibleFunctionDecls(New, Old);
815    }
816
817    // Fall through to diagnose conflicting types.
818  }
819
820  // A function that has already been declared has been redeclared or defined
821  // with a different type- show appropriate diagnostic
822  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
823    // The user has declared a builtin function with an incompatible
824    // signature.
825    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
826      // The function the user is redeclaring is a library-defined
827      // function like 'malloc' or 'printf'. Warn about the
828      // redeclaration, then pretend that we don't know about this
829      // library built-in.
830      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
831      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
832        << Old << Old->getType();
833      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
834      Old->setInvalidDecl();
835      return false;
836    }
837
838    PrevDiag = diag::note_previous_builtin_declaration;
839  }
840
841  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
842  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
843  return true;
844}
845
846/// \brief Completes the merge of two function declarations that are
847/// known to be compatible.
848///
849/// This routine handles the merging of attributes and other
850/// properties of function declarations form the old declaration to
851/// the new declaration, once we know that New is in fact a
852/// redeclaration of Old.
853///
854/// \returns false
855bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
856  // Merge the attributes
857  MergeAttributes(New, Old, Context);
858
859  // Merge the storage class.
860  if (Old->getStorageClass() != FunctionDecl::Extern)
861    New->setStorageClass(Old->getStorageClass());
862
863  // Merge "inline"
864  if (Old->isInline())
865    New->setInline(true);
866
867  // If this function declaration by itself qualifies as a C99 inline
868  // definition (C99 6.7.4p6), but the previous definition did not,
869  // then the function is not a C99 inline definition.
870  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
871    New->setC99InlineDefinition(false);
872  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
873    // Mark all preceding definitions as not being C99 inline definitions.
874    for (const FunctionDecl *Prev = Old; Prev;
875         Prev = Prev->getPreviousDeclaration())
876      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
877  }
878
879  // Merge "pure" flag.
880  if (Old->isPure())
881    New->setPure();
882
883  // Merge the "deleted" flag.
884  if (Old->isDeleted())
885    New->setDeleted();
886
887  if (getLangOptions().CPlusPlus)
888    return MergeCXXFunctionDecl(New, Old);
889
890  return false;
891}
892
893/// MergeVarDecl - We just parsed a variable 'New' which has the same name
894/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
895/// situation, merging decls or emitting diagnostics as appropriate.
896///
897/// Tentative definition rules (C99 6.9.2p2) are checked by
898/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
899/// definitions here, since the initializer hasn't been attached.
900///
901void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
902  // If either decl is invalid, make sure the new one is marked invalid and
903  // don't do any other checking.
904  if (New->isInvalidDecl() || OldD->isInvalidDecl())
905    return New->setInvalidDecl();
906
907  // Verify the old decl was also a variable.
908  VarDecl *Old = dyn_cast<VarDecl>(OldD);
909  if (!Old) {
910    Diag(New->getLocation(), diag::err_redefinition_different_kind)
911      << New->getDeclName();
912    Diag(OldD->getLocation(), diag::note_previous_definition);
913    return New->setInvalidDecl();
914  }
915
916  MergeAttributes(New, Old, Context);
917
918  // Merge the types
919  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
920  if (MergedT.isNull()) {
921    Diag(New->getLocation(), diag::err_redefinition_different_type)
922      << New->getDeclName();
923    Diag(Old->getLocation(), diag::note_previous_definition);
924    return New->setInvalidDecl();
925  }
926  New->setType(MergedT);
927
928  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
929  if (New->getStorageClass() == VarDecl::Static &&
930      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
931    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
932    Diag(Old->getLocation(), diag::note_previous_definition);
933    return New->setInvalidDecl();
934  }
935  // C99 6.2.2p4:
936  //   For an identifier declared with the storage-class specifier
937  //   extern in a scope in which a prior declaration of that
938  //   identifier is visible,23) if the prior declaration specifies
939  //   internal or external linkage, the linkage of the identifier at
940  //   the later declaration is the same as the linkage specified at
941  //   the prior declaration. If no prior declaration is visible, or
942  //   if the prior declaration specifies no linkage, then the
943  //   identifier has external linkage.
944  if (New->hasExternalStorage() && Old->hasLinkage())
945    /* Okay */;
946  else if (New->getStorageClass() != VarDecl::Static &&
947           Old->getStorageClass() == VarDecl::Static) {
948    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
949    Diag(Old->getLocation(), diag::note_previous_definition);
950    return New->setInvalidDecl();
951  }
952
953  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
954
955  // FIXME: The test for external storage here seems wrong? We still
956  // need to check for mismatches.
957  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
958      // Don't complain about out-of-line definitions of static members.
959      !(Old->getLexicalDeclContext()->isRecord() &&
960        !New->getLexicalDeclContext()->isRecord())) {
961    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
962    Diag(Old->getLocation(), diag::note_previous_definition);
963    return New->setInvalidDecl();
964  }
965
966  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
967    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
968    Diag(Old->getLocation(), diag::note_previous_definition);
969  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
970    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
971    Diag(Old->getLocation(), diag::note_previous_definition);
972  }
973
974  // Keep a chain of previous declarations.
975  New->setPreviousDeclaration(Old);
976}
977
978/// CheckParmsForFunctionDef - Check that the parameters of the given
979/// function are appropriate for the definition of a function. This
980/// takes care of any checks that cannot be performed on the
981/// declaration itself, e.g., that the types of each of the function
982/// parameters are complete.
983bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
984  bool HasInvalidParm = false;
985  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
986    ParmVarDecl *Param = FD->getParamDecl(p);
987
988    // C99 6.7.5.3p4: the parameters in a parameter type list in a
989    // function declarator that is part of a function definition of
990    // that function shall not have incomplete type.
991    //
992    // This is also C++ [dcl.fct]p6.
993    if (!Param->isInvalidDecl() &&
994        RequireCompleteType(Param->getLocation(), Param->getType(),
995                               diag::err_typecheck_decl_incomplete_type)) {
996      Param->setInvalidDecl();
997      HasInvalidParm = true;
998    }
999
1000    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1001    // declaration of each parameter shall include an identifier.
1002    if (Param->getIdentifier() == 0 &&
1003        !Param->isImplicit() &&
1004        !getLangOptions().CPlusPlus)
1005      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1006  }
1007
1008  return HasInvalidParm;
1009}
1010
1011/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1012/// no declarator (e.g. "struct foo;") is parsed.
1013Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1014  // FIXME: Error on auto/register at file scope
1015  // FIXME: Error on inline/virtual/explicit
1016  // FIXME: Error on invalid restrict
1017  // FIXME: Warn on useless __thread
1018  // FIXME: Warn on useless const/volatile
1019  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1020  // FIXME: Warn on useless attributes
1021  TagDecl *Tag = 0;
1022  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1023      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1024      DS.getTypeSpecType() == DeclSpec::TST_union ||
1025      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1026    if (!DS.getTypeRep()) // We probably had an error
1027      return DeclPtrTy();
1028
1029    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1030  }
1031
1032  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1033    if (!Record->getDeclName() && Record->isDefinition() &&
1034        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1035      if (getLangOptions().CPlusPlus ||
1036          Record->getDeclContext()->isRecord())
1037        return BuildAnonymousStructOrUnion(S, DS, Record);
1038
1039      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1040        << DS.getSourceRange();
1041    }
1042
1043    // Microsoft allows unnamed struct/union fields. Don't complain
1044    // about them.
1045    // FIXME: Should we support Microsoft's extensions in this area?
1046    if (Record->getDeclName() && getLangOptions().Microsoft)
1047      return DeclPtrTy::make(Tag);
1048  }
1049
1050  if (!DS.isMissingDeclaratorOk() &&
1051      DS.getTypeSpecType() != DeclSpec::TST_error) {
1052    // Warn about typedefs of enums without names, since this is an
1053    // extension in both Microsoft an GNU.
1054    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1055        Tag && isa<EnumDecl>(Tag)) {
1056      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1057        << DS.getSourceRange();
1058      return DeclPtrTy::make(Tag);
1059    }
1060
1061    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1062      << DS.getSourceRange();
1063    return DeclPtrTy();
1064  }
1065
1066  return DeclPtrTy::make(Tag);
1067}
1068
1069/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1070/// anonymous struct or union AnonRecord into the owning context Owner
1071/// and scope S. This routine will be invoked just after we realize
1072/// that an unnamed union or struct is actually an anonymous union or
1073/// struct, e.g.,
1074///
1075/// @code
1076/// union {
1077///   int i;
1078///   float f;
1079/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1080///    // f into the surrounding scope.x
1081/// @endcode
1082///
1083/// This routine is recursive, injecting the names of nested anonymous
1084/// structs/unions into the owning context and scope as well.
1085bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1086                                               RecordDecl *AnonRecord) {
1087  bool Invalid = false;
1088  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1089                               FEnd = AnonRecord->field_end(Context);
1090       F != FEnd; ++F) {
1091    if ((*F)->getDeclName()) {
1092      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1093                                                LookupOrdinaryName, true);
1094      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1095        // C++ [class.union]p2:
1096        //   The names of the members of an anonymous union shall be
1097        //   distinct from the names of any other entity in the
1098        //   scope in which the anonymous union is declared.
1099        unsigned diagKind
1100          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1101                                 : diag::err_anonymous_struct_member_redecl;
1102        Diag((*F)->getLocation(), diagKind)
1103          << (*F)->getDeclName();
1104        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1105        Invalid = true;
1106      } else {
1107        // C++ [class.union]p2:
1108        //   For the purpose of name lookup, after the anonymous union
1109        //   definition, the members of the anonymous union are
1110        //   considered to have been defined in the scope in which the
1111        //   anonymous union is declared.
1112        Owner->makeDeclVisibleInContext(Context, *F);
1113        S->AddDecl(DeclPtrTy::make(*F));
1114        IdResolver.AddDecl(*F);
1115      }
1116    } else if (const RecordType *InnerRecordType
1117                 = (*F)->getType()->getAsRecordType()) {
1118      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1119      if (InnerRecord->isAnonymousStructOrUnion())
1120        Invalid = Invalid ||
1121          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1122    }
1123  }
1124
1125  return Invalid;
1126}
1127
1128/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1129/// anonymous structure or union. Anonymous unions are a C++ feature
1130/// (C++ [class.union]) and a GNU C extension; anonymous structures
1131/// are a GNU C and GNU C++ extension.
1132Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1133                                                  RecordDecl *Record) {
1134  DeclContext *Owner = Record->getDeclContext();
1135
1136  // Diagnose whether this anonymous struct/union is an extension.
1137  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1138    Diag(Record->getLocation(), diag::ext_anonymous_union);
1139  else if (!Record->isUnion())
1140    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1141
1142  // C and C++ require different kinds of checks for anonymous
1143  // structs/unions.
1144  bool Invalid = false;
1145  if (getLangOptions().CPlusPlus) {
1146    const char* PrevSpec = 0;
1147    // C++ [class.union]p3:
1148    //   Anonymous unions declared in a named namespace or in the
1149    //   global namespace shall be declared static.
1150    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1151        (isa<TranslationUnitDecl>(Owner) ||
1152         (isa<NamespaceDecl>(Owner) &&
1153          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1154      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1155      Invalid = true;
1156
1157      // Recover by adding 'static'.
1158      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1159    }
1160    // C++ [class.union]p3:
1161    //   A storage class is not allowed in a declaration of an
1162    //   anonymous union in a class scope.
1163    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1164             isa<RecordDecl>(Owner)) {
1165      Diag(DS.getStorageClassSpecLoc(),
1166           diag::err_anonymous_union_with_storage_spec);
1167      Invalid = true;
1168
1169      // Recover by removing the storage specifier.
1170      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1171                             PrevSpec);
1172    }
1173
1174    // C++ [class.union]p2:
1175    //   The member-specification of an anonymous union shall only
1176    //   define non-static data members. [Note: nested types and
1177    //   functions cannot be declared within an anonymous union. ]
1178    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1179                                 MemEnd = Record->decls_end(Context);
1180         Mem != MemEnd; ++Mem) {
1181      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1182        // C++ [class.union]p3:
1183        //   An anonymous union shall not have private or protected
1184        //   members (clause 11).
1185        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1186          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1187            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1188          Invalid = true;
1189        }
1190      } else if ((*Mem)->isImplicit()) {
1191        // Any implicit members are fine.
1192      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1193        // This is a type that showed up in an
1194        // elaborated-type-specifier inside the anonymous struct or
1195        // union, but which actually declares a type outside of the
1196        // anonymous struct or union. It's okay.
1197      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1198        if (!MemRecord->isAnonymousStructOrUnion() &&
1199            MemRecord->getDeclName()) {
1200          // This is a nested type declaration.
1201          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1202            << (int)Record->isUnion();
1203          Invalid = true;
1204        }
1205      } else {
1206        // We have something that isn't a non-static data
1207        // member. Complain about it.
1208        unsigned DK = diag::err_anonymous_record_bad_member;
1209        if (isa<TypeDecl>(*Mem))
1210          DK = diag::err_anonymous_record_with_type;
1211        else if (isa<FunctionDecl>(*Mem))
1212          DK = diag::err_anonymous_record_with_function;
1213        else if (isa<VarDecl>(*Mem))
1214          DK = diag::err_anonymous_record_with_static;
1215        Diag((*Mem)->getLocation(), DK)
1216            << (int)Record->isUnion();
1217          Invalid = true;
1218      }
1219    }
1220  }
1221
1222  if (!Record->isUnion() && !Owner->isRecord()) {
1223    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1224      << (int)getLangOptions().CPlusPlus;
1225    Invalid = true;
1226  }
1227
1228  // Create a declaration for this anonymous struct/union.
1229  NamedDecl *Anon = 0;
1230  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1231    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1232                             /*IdentifierInfo=*/0,
1233                             Context.getTypeDeclType(Record),
1234                             /*BitWidth=*/0, /*Mutable=*/false);
1235    Anon->setAccess(AS_public);
1236    if (getLangOptions().CPlusPlus)
1237      FieldCollector->Add(cast<FieldDecl>(Anon));
1238  } else {
1239    VarDecl::StorageClass SC;
1240    switch (DS.getStorageClassSpec()) {
1241    default: assert(0 && "Unknown storage class!");
1242    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1243    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1244    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1245    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1246    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1247    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1248    case DeclSpec::SCS_mutable:
1249      // mutable can only appear on non-static class members, so it's always
1250      // an error here
1251      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1252      Invalid = true;
1253      SC = VarDecl::None;
1254      break;
1255    }
1256
1257    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1258                           /*IdentifierInfo=*/0,
1259                           Context.getTypeDeclType(Record),
1260                           SC, DS.getSourceRange().getBegin());
1261  }
1262  Anon->setImplicit();
1263
1264  // Add the anonymous struct/union object to the current
1265  // context. We'll be referencing this object when we refer to one of
1266  // its members.
1267  Owner->addDecl(Context, Anon);
1268
1269  // Inject the members of the anonymous struct/union into the owning
1270  // context and into the identifier resolver chain for name lookup
1271  // purposes.
1272  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1273    Invalid = true;
1274
1275  // Mark this as an anonymous struct/union type. Note that we do not
1276  // do this until after we have already checked and injected the
1277  // members of this anonymous struct/union type, because otherwise
1278  // the members could be injected twice: once by DeclContext when it
1279  // builds its lookup table, and once by
1280  // InjectAnonymousStructOrUnionMembers.
1281  Record->setAnonymousStructOrUnion(true);
1282
1283  if (Invalid)
1284    Anon->setInvalidDecl();
1285
1286  return DeclPtrTy::make(Anon);
1287}
1288
1289
1290/// GetNameForDeclarator - Determine the full declaration name for the
1291/// given Declarator.
1292DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1293  switch (D.getKind()) {
1294  case Declarator::DK_Abstract:
1295    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1296    return DeclarationName();
1297
1298  case Declarator::DK_Normal:
1299    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1300    return DeclarationName(D.getIdentifier());
1301
1302  case Declarator::DK_Constructor: {
1303    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1304    Ty = Context.getCanonicalType(Ty);
1305    return Context.DeclarationNames.getCXXConstructorName(Ty);
1306  }
1307
1308  case Declarator::DK_Destructor: {
1309    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1310    Ty = Context.getCanonicalType(Ty);
1311    return Context.DeclarationNames.getCXXDestructorName(Ty);
1312  }
1313
1314  case Declarator::DK_Conversion: {
1315    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1316    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1317    Ty = Context.getCanonicalType(Ty);
1318    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1319  }
1320
1321  case Declarator::DK_Operator:
1322    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1323    return Context.DeclarationNames.getCXXOperatorName(
1324                                                D.getOverloadedOperator());
1325  }
1326
1327  assert(false && "Unknown name kind");
1328  return DeclarationName();
1329}
1330
1331/// isNearlyMatchingFunction - Determine whether the C++ functions
1332/// Declaration and Definition are "nearly" matching. This heuristic
1333/// is used to improve diagnostics in the case where an out-of-line
1334/// function definition doesn't match any declaration within
1335/// the class or namespace.
1336static bool isNearlyMatchingFunction(ASTContext &Context,
1337                                     FunctionDecl *Declaration,
1338                                     FunctionDecl *Definition) {
1339  if (Declaration->param_size() != Definition->param_size())
1340    return false;
1341  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1342    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1343    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1344
1345    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1346    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1347    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1348      return false;
1349  }
1350
1351  return true;
1352}
1353
1354Sema::DeclPtrTy
1355Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1356  DeclarationName Name = GetNameForDeclarator(D);
1357
1358  // All of these full declarators require an identifier.  If it doesn't have
1359  // one, the ParsedFreeStandingDeclSpec action should be used.
1360  if (!Name) {
1361    if (!D.isInvalidType())  // Reject this if we think it is valid.
1362      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1363           diag::err_declarator_need_ident)
1364        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1365    return DeclPtrTy();
1366  }
1367
1368  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1369  // we find one that is.
1370  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1371         (S->getFlags() & Scope::TemplateParamScope) != 0)
1372    S = S->getParent();
1373
1374  DeclContext *DC;
1375  NamedDecl *PrevDecl;
1376  NamedDecl *New;
1377
1378  QualType R = GetTypeForDeclarator(D, S);
1379
1380  // See if this is a redefinition of a variable in the same scope.
1381  if (D.getCXXScopeSpec().isInvalid()) {
1382    DC = CurContext;
1383    PrevDecl = 0;
1384    D.setInvalidType();
1385  } else if (!D.getCXXScopeSpec().isSet()) {
1386    LookupNameKind NameKind = LookupOrdinaryName;
1387
1388    // If the declaration we're planning to build will be a function
1389    // or object with linkage, then look for another declaration with
1390    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1391    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1392      /* Do nothing*/;
1393    else if (R->isFunctionType()) {
1394      if (CurContext->isFunctionOrMethod())
1395        NameKind = LookupRedeclarationWithLinkage;
1396    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1397      NameKind = LookupRedeclarationWithLinkage;
1398
1399    DC = CurContext;
1400    PrevDecl = LookupName(S, Name, NameKind, true,
1401                          D.getDeclSpec().getStorageClassSpec() !=
1402                            DeclSpec::SCS_static,
1403                          D.getIdentifierLoc());
1404  } else { // Something like "int foo::x;"
1405    DC = computeDeclContext(D.getCXXScopeSpec());
1406    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1407    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1408
1409    // C++ 7.3.1.2p2:
1410    // Members (including explicit specializations of templates) of a named
1411    // namespace can also be defined outside that namespace by explicit
1412    // qualification of the name being defined, provided that the entity being
1413    // defined was already declared in the namespace and the definition appears
1414    // after the point of declaration in a namespace that encloses the
1415    // declarations namespace.
1416    //
1417    // Note that we only check the context at this point. We don't yet
1418    // have enough information to make sure that PrevDecl is actually
1419    // the declaration we want to match. For example, given:
1420    //
1421    //   class X {
1422    //     void f();
1423    //     void f(float);
1424    //   };
1425    //
1426    //   void X::f(int) { } // ill-formed
1427    //
1428    // In this case, PrevDecl will point to the overload set
1429    // containing the two f's declared in X, but neither of them
1430    // matches.
1431
1432    // First check whether we named the global scope.
1433    if (isa<TranslationUnitDecl>(DC)) {
1434      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1435        << Name << D.getCXXScopeSpec().getRange();
1436    } else if (!CurContext->Encloses(DC)) {
1437      // The qualifying scope doesn't enclose the original declaration.
1438      // Emit diagnostic based on current scope.
1439      SourceLocation L = D.getIdentifierLoc();
1440      SourceRange R = D.getCXXScopeSpec().getRange();
1441      if (isa<FunctionDecl>(CurContext))
1442        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1443      else
1444        Diag(L, diag::err_invalid_declarator_scope)
1445          << Name << cast<NamedDecl>(DC) << R;
1446      D.setInvalidType();
1447    }
1448  }
1449
1450  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1451    // Maybe we will complain about the shadowed template parameter.
1452    if (!D.isInvalidType())
1453      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1454        D.setInvalidType();
1455
1456    // Just pretend that we didn't see the previous declaration.
1457    PrevDecl = 0;
1458  }
1459
1460  // In C++, the previous declaration we find might be a tag type
1461  // (class or enum). In this case, the new declaration will hide the
1462  // tag type. Note that this does does not apply if we're declaring a
1463  // typedef (C++ [dcl.typedef]p4).
1464  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1465      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1466    PrevDecl = 0;
1467
1468  bool Redeclaration = false;
1469  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1470    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1471  } else if (R->isFunctionType()) {
1472    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1473                                  IsFunctionDefinition, Redeclaration);
1474  } else {
1475    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1476  }
1477
1478  if (New == 0)
1479    return DeclPtrTy();
1480
1481  // If this has an identifier and is not an invalid redeclaration,
1482  // add it to the scope stack.
1483  if (Name && !(Redeclaration && New->isInvalidDecl()))
1484    PushOnScopeChains(New, S);
1485
1486  return DeclPtrTy::make(New);
1487}
1488
1489/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1490/// types into constant array types in certain situations which would otherwise
1491/// be errors (for GCC compatibility).
1492static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1493                                                    ASTContext &Context,
1494                                                    bool &SizeIsNegative) {
1495  // This method tries to turn a variable array into a constant
1496  // array even when the size isn't an ICE.  This is necessary
1497  // for compatibility with code that depends on gcc's buggy
1498  // constant expression folding, like struct {char x[(int)(char*)2];}
1499  SizeIsNegative = false;
1500
1501  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1502    QualType Pointee = PTy->getPointeeType();
1503    QualType FixedType =
1504        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1505    if (FixedType.isNull()) return FixedType;
1506    FixedType = Context.getPointerType(FixedType);
1507    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1508    return FixedType;
1509  }
1510
1511  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1512  if (!VLATy)
1513    return QualType();
1514  // FIXME: We should probably handle this case
1515  if (VLATy->getElementType()->isVariablyModifiedType())
1516    return QualType();
1517
1518  Expr::EvalResult EvalResult;
1519  if (!VLATy->getSizeExpr() ||
1520      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1521      !EvalResult.Val.isInt())
1522    return QualType();
1523
1524  llvm::APSInt &Res = EvalResult.Val.getInt();
1525  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1526    return Context.getConstantArrayType(VLATy->getElementType(),
1527                                        Res, ArrayType::Normal, 0);
1528
1529  SizeIsNegative = true;
1530  return QualType();
1531}
1532
1533/// \brief Register the given locally-scoped external C declaration so
1534/// that it can be found later for redeclarations
1535void
1536Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1537                                       Scope *S) {
1538  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1539         "Decl is not a locally-scoped decl!");
1540  // Note that we have a locally-scoped external with this name.
1541  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1542
1543  if (!PrevDecl)
1544    return;
1545
1546  // If there was a previous declaration of this variable, it may be
1547  // in our identifier chain. Update the identifier chain with the new
1548  // declaration.
1549  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1550    // The previous declaration was found on the identifer resolver
1551    // chain, so remove it from its scope.
1552    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1553      S = S->getParent();
1554
1555    if (S)
1556      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1557  }
1558}
1559
1560/// \brief Diagnose function specifiers on a declaration of an identifier that
1561/// does not identify a function.
1562void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1563  // FIXME: We should probably indicate the identifier in question to avoid
1564  // confusion for constructs like "inline int a(), b;"
1565  if (D.getDeclSpec().isInlineSpecified())
1566    Diag(D.getDeclSpec().getInlineSpecLoc(),
1567         diag::err_inline_non_function);
1568
1569  if (D.getDeclSpec().isVirtualSpecified())
1570    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1571         diag::err_virtual_non_function);
1572
1573  if (D.getDeclSpec().isExplicitSpecified())
1574    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1575         diag::err_explicit_non_function);
1576}
1577
1578NamedDecl*
1579Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1580                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1581  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1582  if (D.getCXXScopeSpec().isSet()) {
1583    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1584      << D.getCXXScopeSpec().getRange();
1585    D.setInvalidType();
1586    // Pretend we didn't see the scope specifier.
1587    DC = 0;
1588  }
1589
1590  if (getLangOptions().CPlusPlus) {
1591    // Check that there are no default arguments (C++ only).
1592    CheckExtraCXXDefaultArguments(D);
1593  }
1594
1595  DiagnoseFunctionSpecifiers(D);
1596
1597  if (D.getDeclSpec().isThreadSpecified())
1598    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1599
1600  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1601  if (!NewTD) return 0;
1602
1603  if (D.isInvalidType())
1604    NewTD->setInvalidDecl();
1605
1606  // Handle attributes prior to checking for duplicates in MergeVarDecl
1607  ProcessDeclAttributes(NewTD, D);
1608  // Merge the decl with the existing one if appropriate. If the decl is
1609  // in an outer scope, it isn't the same thing.
1610  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1611    Redeclaration = true;
1612    MergeTypeDefDecl(NewTD, PrevDecl);
1613  }
1614
1615  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1616  // then it shall have block scope.
1617  QualType T = NewTD->getUnderlyingType();
1618  if (T->isVariablyModifiedType()) {
1619    CurFunctionNeedsScopeChecking = true;
1620
1621    if (S->getFnParent() == 0) {
1622      bool SizeIsNegative;
1623      QualType FixedTy =
1624          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1625      if (!FixedTy.isNull()) {
1626        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1627        NewTD->setUnderlyingType(FixedTy);
1628      } else {
1629        if (SizeIsNegative)
1630          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1631        else if (T->isVariableArrayType())
1632          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1633        else
1634          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1635        NewTD->setInvalidDecl();
1636      }
1637    }
1638  }
1639  return NewTD;
1640}
1641
1642/// \brief Determines whether the given declaration is an out-of-scope
1643/// previous declaration.
1644///
1645/// This routine should be invoked when name lookup has found a
1646/// previous declaration (PrevDecl) that is not in the scope where a
1647/// new declaration by the same name is being introduced. If the new
1648/// declaration occurs in a local scope, previous declarations with
1649/// linkage may still be considered previous declarations (C99
1650/// 6.2.2p4-5, C++ [basic.link]p6).
1651///
1652/// \param PrevDecl the previous declaration found by name
1653/// lookup
1654///
1655/// \param DC the context in which the new declaration is being
1656/// declared.
1657///
1658/// \returns true if PrevDecl is an out-of-scope previous declaration
1659/// for a new delcaration with the same name.
1660static bool
1661isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1662                                ASTContext &Context) {
1663  if (!PrevDecl)
1664    return 0;
1665
1666  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1667  // case we need to check each of the overloaded functions.
1668  if (!PrevDecl->hasLinkage())
1669    return false;
1670
1671  if (Context.getLangOptions().CPlusPlus) {
1672    // C++ [basic.link]p6:
1673    //   If there is a visible declaration of an entity with linkage
1674    //   having the same name and type, ignoring entities declared
1675    //   outside the innermost enclosing namespace scope, the block
1676    //   scope declaration declares that same entity and receives the
1677    //   linkage of the previous declaration.
1678    DeclContext *OuterContext = DC->getLookupContext();
1679    if (!OuterContext->isFunctionOrMethod())
1680      // This rule only applies to block-scope declarations.
1681      return false;
1682    else {
1683      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1684      if (PrevOuterContext->isRecord())
1685        // We found a member function: ignore it.
1686        return false;
1687      else {
1688        // Find the innermost enclosing namespace for the new and
1689        // previous declarations.
1690        while (!OuterContext->isFileContext())
1691          OuterContext = OuterContext->getParent();
1692        while (!PrevOuterContext->isFileContext())
1693          PrevOuterContext = PrevOuterContext->getParent();
1694
1695        // The previous declaration is in a different namespace, so it
1696        // isn't the same function.
1697        if (OuterContext->getPrimaryContext() !=
1698            PrevOuterContext->getPrimaryContext())
1699          return false;
1700      }
1701    }
1702  }
1703
1704  return true;
1705}
1706
1707NamedDecl*
1708Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1709                              QualType R,NamedDecl* PrevDecl,
1710                              bool &Redeclaration) {
1711  DeclarationName Name = GetNameForDeclarator(D);
1712
1713  // Check that there are no default arguments (C++ only).
1714  if (getLangOptions().CPlusPlus)
1715    CheckExtraCXXDefaultArguments(D);
1716
1717  VarDecl *NewVD;
1718  VarDecl::StorageClass SC;
1719  switch (D.getDeclSpec().getStorageClassSpec()) {
1720  default: assert(0 && "Unknown storage class!");
1721  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1722  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1723  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1724  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1725  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1726  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1727  case DeclSpec::SCS_mutable:
1728    // mutable can only appear on non-static class members, so it's always
1729    // an error here
1730    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1731    D.setInvalidType();
1732    SC = VarDecl::None;
1733    break;
1734  }
1735
1736  IdentifierInfo *II = Name.getAsIdentifierInfo();
1737  if (!II) {
1738    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1739      << Name.getAsString();
1740    return 0;
1741  }
1742
1743  DiagnoseFunctionSpecifiers(D);
1744
1745  if (!DC->isRecord() && S->getFnParent() == 0) {
1746    // C99 6.9p2: The storage-class specifiers auto and register shall not
1747    // appear in the declaration specifiers in an external declaration.
1748    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1749
1750      // If this is a register variable with an asm label specified, then this
1751      // is a GNU extension.
1752      if (SC == VarDecl::Register && D.getAsmLabel())
1753        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1754      else
1755        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1756      D.setInvalidType();
1757    }
1758  }
1759  if (DC->isRecord() && !CurContext->isRecord()) {
1760    // This is an out-of-line definition of a static data member.
1761    if (SC == VarDecl::Static) {
1762      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1763           diag::err_static_out_of_line)
1764        << CodeModificationHint::CreateRemoval(
1765                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1766    } else if (SC == VarDecl::None)
1767      SC = VarDecl::Static;
1768  }
1769
1770  // The variable can not
1771  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1772                          II, R, SC,
1773                          // FIXME: Move to DeclGroup...
1774                          D.getDeclSpec().getSourceRange().getBegin());
1775
1776  if (D.isInvalidType())
1777    NewVD->setInvalidDecl();
1778
1779  if (D.getDeclSpec().isThreadSpecified()) {
1780    if (NewVD->hasLocalStorage())
1781      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1782    else if (!Context.Target.isTLSSupported())
1783      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1784    else
1785      NewVD->setThreadSpecified(true);
1786  }
1787
1788  // Set the lexical context. If the declarator has a C++ scope specifier, the
1789  // lexical context will be different from the semantic context.
1790  NewVD->setLexicalDeclContext(CurContext);
1791
1792  // Handle attributes prior to checking for duplicates in MergeVarDecl
1793  ProcessDeclAttributes(NewVD, D);
1794
1795  // Handle GNU asm-label extension (encoded as an attribute).
1796  if (Expr *E = (Expr*) D.getAsmLabel()) {
1797    // The parser guarantees this is a string.
1798    StringLiteral *SE = cast<StringLiteral>(E);
1799    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1800                                                        SE->getByteLength())));
1801  }
1802
1803  // If name lookup finds a previous declaration that is not in the
1804  // same scope as the new declaration, this may still be an
1805  // acceptable redeclaration.
1806  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1807      !(NewVD->hasLinkage() &&
1808        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1809    PrevDecl = 0;
1810
1811  // Merge the decl with the existing one if appropriate.
1812  if (PrevDecl) {
1813    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1814      // The user tried to define a non-static data member
1815      // out-of-line (C++ [dcl.meaning]p1).
1816      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1817        << D.getCXXScopeSpec().getRange();
1818      PrevDecl = 0;
1819      NewVD->setInvalidDecl();
1820    }
1821  } else if (D.getCXXScopeSpec().isSet()) {
1822    // No previous declaration in the qualifying scope.
1823    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1824      << Name << D.getCXXScopeSpec().getRange();
1825    NewVD->setInvalidDecl();
1826  }
1827
1828  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1829
1830  // If this is a locally-scoped extern C variable, update the map of
1831  // such variables.
1832  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1833      !NewVD->isInvalidDecl())
1834    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1835
1836  return NewVD;
1837}
1838
1839/// \brief Perform semantic checking on a newly-created variable
1840/// declaration.
1841///
1842/// This routine performs all of the type-checking required for a
1843/// variable declaration once it has been built. It is used both to
1844/// check variables after they have been parsed and their declarators
1845/// have been translated into a declaration, and to check variables
1846/// that have been instantiated from a template.
1847///
1848/// Sets NewVD->isInvalidDecl() if an error was encountered.
1849void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1850                                    bool &Redeclaration) {
1851  // If the decl is already known invalid, don't check it.
1852  if (NewVD->isInvalidDecl())
1853    return;
1854
1855  QualType T = NewVD->getType();
1856
1857  if (T->isObjCInterfaceType()) {
1858    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1859    return NewVD->setInvalidDecl();
1860  }
1861
1862  // The variable can not have an abstract class type.
1863  if (RequireNonAbstractType(NewVD->getLocation(), T,
1864                             diag::err_abstract_type_in_decl,
1865                             AbstractVariableType))
1866    return NewVD->setInvalidDecl();
1867
1868  // Emit an error if an address space was applied to decl with local storage.
1869  // This includes arrays of objects with address space qualifiers, but not
1870  // automatic variables that point to other address spaces.
1871  // ISO/IEC TR 18037 S5.1.2
1872  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1873    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1874    return NewVD->setInvalidDecl();
1875  }
1876
1877  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1878      && !NewVD->hasAttr<BlocksAttr>())
1879    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1880
1881  bool isVM = T->isVariablyModifiedType();
1882  if (isVM || NewVD->hasAttr<CleanupAttr>())
1883    CurFunctionNeedsScopeChecking = true;
1884
1885  if ((isVM && NewVD->hasLinkage()) ||
1886      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1887    bool SizeIsNegative;
1888    QualType FixedTy =
1889        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1890
1891    if (FixedTy.isNull() && T->isVariableArrayType()) {
1892      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1893      // FIXME: This won't give the correct result for
1894      // int a[10][n];
1895      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1896
1897      if (NewVD->isFileVarDecl())
1898        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1899        << SizeRange;
1900      else if (NewVD->getStorageClass() == VarDecl::Static)
1901        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1902        << SizeRange;
1903      else
1904        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1905        << SizeRange;
1906      return NewVD->setInvalidDecl();
1907    }
1908
1909    if (FixedTy.isNull()) {
1910      if (NewVD->isFileVarDecl())
1911        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1912      else
1913        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1914      return NewVD->setInvalidDecl();
1915    }
1916
1917    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1918    NewVD->setType(FixedTy);
1919  }
1920
1921  if (!PrevDecl && NewVD->isExternC(Context)) {
1922    // Since we did not find anything by this name and we're declaring
1923    // an extern "C" variable, look for a non-visible extern "C"
1924    // declaration with the same name.
1925    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1926      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1927    if (Pos != LocallyScopedExternalDecls.end())
1928      PrevDecl = Pos->second;
1929  }
1930
1931  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
1932    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1933      << T;
1934    return NewVD->setInvalidDecl();
1935  }
1936
1937  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
1938    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
1939    return NewVD->setInvalidDecl();
1940  }
1941
1942  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
1943    Diag(NewVD->getLocation(), diag::err_block_on_vm);
1944    return NewVD->setInvalidDecl();
1945  }
1946
1947  if (PrevDecl) {
1948    Redeclaration = true;
1949    MergeVarDecl(NewVD, PrevDecl);
1950  }
1951}
1952
1953NamedDecl*
1954Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1955                              QualType R, NamedDecl* PrevDecl,
1956                              bool IsFunctionDefinition, bool &Redeclaration) {
1957  assert(R.getTypePtr()->isFunctionType());
1958
1959  DeclarationName Name = GetNameForDeclarator(D);
1960  FunctionDecl::StorageClass SC = FunctionDecl::None;
1961  switch (D.getDeclSpec().getStorageClassSpec()) {
1962  default: assert(0 && "Unknown storage class!");
1963  case DeclSpec::SCS_auto:
1964  case DeclSpec::SCS_register:
1965  case DeclSpec::SCS_mutable:
1966    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1967         diag::err_typecheck_sclass_func);
1968    D.setInvalidType();
1969    break;
1970  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1971  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1972  case DeclSpec::SCS_static: {
1973    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1974      // C99 6.7.1p5:
1975      //   The declaration of an identifier for a function that has
1976      //   block scope shall have no explicit storage-class specifier
1977      //   other than extern
1978      // See also (C++ [dcl.stc]p4).
1979      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1980           diag::err_static_block_func);
1981      SC = FunctionDecl::None;
1982    } else
1983      SC = FunctionDecl::Static;
1984    break;
1985  }
1986  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1987  }
1988
1989  if (D.getDeclSpec().isThreadSpecified())
1990    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1991
1992  bool isInline = D.getDeclSpec().isInlineSpecified();
1993  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1994  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1995
1996  // Check that the return type is not an abstract class type.
1997  // For record types, this is done by the AbstractClassUsageDiagnoser once
1998  // the class has been completely parsed.
1999  if (!DC->isRecord() &&
2000      RequireNonAbstractType(D.getIdentifierLoc(),
2001                             R->getAsFunctionType()->getResultType(),
2002                             diag::err_abstract_type_in_decl,
2003                             AbstractReturnType))
2004    D.setInvalidType();
2005
2006  // Do not allow returning a objc interface by-value.
2007  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2008    Diag(D.getIdentifierLoc(),
2009         diag::err_object_cannot_be_passed_returned_by_value) << 0
2010      << R->getAsFunctionType()->getResultType();
2011    D.setInvalidType();
2012  }
2013
2014  bool isVirtualOkay = false;
2015  FunctionDecl *NewFD;
2016  if (D.getKind() == Declarator::DK_Constructor) {
2017    // This is a C++ constructor declaration.
2018    assert(DC->isRecord() &&
2019           "Constructors can only be declared in a member context");
2020
2021    R = CheckConstructorDeclarator(D, R, SC);
2022
2023    // Create the new declaration
2024    NewFD = CXXConstructorDecl::Create(Context,
2025                                       cast<CXXRecordDecl>(DC),
2026                                       D.getIdentifierLoc(), Name, R,
2027                                       isExplicit, isInline,
2028                                       /*isImplicitlyDeclared=*/false);
2029  } else if (D.getKind() == Declarator::DK_Destructor) {
2030    // This is a C++ destructor declaration.
2031    if (DC->isRecord()) {
2032      R = CheckDestructorDeclarator(D, SC);
2033
2034      NewFD = CXXDestructorDecl::Create(Context,
2035                                        cast<CXXRecordDecl>(DC),
2036                                        D.getIdentifierLoc(), Name, R,
2037                                        isInline,
2038                                        /*isImplicitlyDeclared=*/false);
2039
2040      isVirtualOkay = true;
2041    } else {
2042      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2043
2044      // Create a FunctionDecl to satisfy the function definition parsing
2045      // code path.
2046      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2047                                   Name, R, SC, isInline,
2048                                   /*hasPrototype=*/true,
2049                                   // FIXME: Move to DeclGroup...
2050                                   D.getDeclSpec().getSourceRange().getBegin());
2051      D.setInvalidType();
2052    }
2053  } else if (D.getKind() == Declarator::DK_Conversion) {
2054    if (!DC->isRecord()) {
2055      Diag(D.getIdentifierLoc(),
2056           diag::err_conv_function_not_member);
2057      return 0;
2058    }
2059
2060    CheckConversionDeclarator(D, R, SC);
2061    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2062                                      D.getIdentifierLoc(), Name, R,
2063                                      isInline, isExplicit);
2064
2065    isVirtualOkay = true;
2066  } else if (DC->isRecord()) {
2067    // If the of the function is the same as the name of the record, then this
2068    // must be an invalid constructor that has a return type.
2069    // (The parser checks for a return type and makes the declarator a
2070    // constructor if it has no return type).
2071    // must have an invalid constructor that has a return type
2072    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2073      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2074        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2075        << SourceRange(D.getIdentifierLoc());
2076      return 0;
2077    }
2078
2079    // This is a C++ method declaration.
2080    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2081                                  D.getIdentifierLoc(), Name, R,
2082                                  (SC == FunctionDecl::Static), isInline);
2083
2084    isVirtualOkay = (SC != FunctionDecl::Static);
2085  } else {
2086    // Determine whether the function was written with a
2087    // prototype. This true when:
2088    //   - we're in C++ (where every function has a prototype),
2089    //   - there is a prototype in the declarator, or
2090    //   - the type R of the function is some kind of typedef or other reference
2091    //     to a type name (which eventually refers to a function type).
2092    bool HasPrototype =
2093       getLangOptions().CPlusPlus ||
2094       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2095       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2096
2097    NewFD = FunctionDecl::Create(Context, DC,
2098                                 D.getIdentifierLoc(),
2099                                 Name, R, SC, isInline, HasPrototype,
2100                                 // FIXME: Move to DeclGroup...
2101                                 D.getDeclSpec().getSourceRange().getBegin());
2102  }
2103
2104  if (D.isInvalidType())
2105    NewFD->setInvalidDecl();
2106
2107  // Set the lexical context. If the declarator has a C++
2108  // scope specifier, the lexical context will be different
2109  // from the semantic context.
2110  NewFD->setLexicalDeclContext(CurContext);
2111
2112  // C++ [dcl.fct.spec]p5:
2113  //   The virtual specifier shall only be used in declarations of
2114  //   nonstatic class member functions that appear within a
2115  //   member-specification of a class declaration; see 10.3.
2116  //
2117  if (isVirtual && !NewFD->isInvalidDecl()) {
2118    if (!isVirtualOkay) {
2119       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2120           diag::err_virtual_non_function);
2121    } else if (!CurContext->isRecord()) {
2122      // 'virtual' was specified outside of the class.
2123      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2124        << CodeModificationHint::CreateRemoval(
2125                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2126    } else {
2127      // Okay: Add virtual to the method.
2128      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2129      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2130      CurClass->setAggregate(false);
2131      CurClass->setPOD(false);
2132      CurClass->setPolymorphic(true);
2133      CurClass->setHasTrivialConstructor(false);
2134    }
2135  }
2136
2137  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2138    // Look for virtual methods in base classes that this method might override.
2139
2140    BasePaths Paths;
2141    // FIXME: This will not include hidden member functions.
2142    if (LookupInBases(cast<CXXRecordDecl>(DC),
2143                      MemberLookupCriteria(Name, LookupMemberName,
2144                                           // FIXME: Shouldn't IDNS_Member be
2145                                           // enough here?
2146                                           Decl::IDNS_Member |
2147                                           Decl::IDNS_Ordinary), Paths)) {
2148      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2149           E = Paths.found_decls_end(); I != E; ++I) {
2150        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2151          OverloadedFunctionDecl::function_iterator MatchedDecl;
2152          // FIXME: Is this OK? Should it be done by LookupInBases?
2153          if (IsOverload(NewMD, OldMD, MatchedDecl))
2154            continue;
2155          if (!OldMD->isVirtual())
2156            continue;
2157
2158          if (!CheckOverridingFunctionReturnType(NewMD, OldMD)) {
2159            // FIXME: Add OldMD to the list of methods NewMD overrides.
2160          }
2161
2162        }
2163      }
2164
2165    }
2166
2167  }
2168
2169  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2170      !CurContext->isRecord()) {
2171    // C++ [class.static]p1:
2172    //   A data or function member of a class may be declared static
2173    //   in a class definition, in which case it is a static member of
2174    //   the class.
2175
2176    // Complain about the 'static' specifier if it's on an out-of-line
2177    // member function definition.
2178    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2179         diag::err_static_out_of_line)
2180      << CodeModificationHint::CreateRemoval(
2181                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2182  }
2183
2184  // Handle GNU asm-label extension (encoded as an attribute).
2185  if (Expr *E = (Expr*) D.getAsmLabel()) {
2186    // The parser guarantees this is a string.
2187    StringLiteral *SE = cast<StringLiteral>(E);
2188    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2189                                                        SE->getByteLength())));
2190  }
2191
2192  // Copy the parameter declarations from the declarator D to the function
2193  // declaration NewFD, if they are available.  First scavenge them into Params.
2194  llvm::SmallVector<ParmVarDecl*, 16> Params;
2195  if (D.getNumTypeObjects() > 0) {
2196    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2197
2198    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2199    // function that takes no arguments, not a function that takes a
2200    // single void argument.
2201    // We let through "const void" here because Sema::GetTypeForDeclarator
2202    // already checks for that case.
2203    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2204        FTI.ArgInfo[0].Param &&
2205        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2206      // Empty arg list, don't push any params.
2207      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2208
2209      // In C++, the empty parameter-type-list must be spelled "void"; a
2210      // typedef of void is not permitted.
2211      if (getLangOptions().CPlusPlus &&
2212          Param->getType().getUnqualifiedType() != Context.VoidTy)
2213        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2214      // FIXME: Leaks decl?
2215    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2216      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2217        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2218    }
2219
2220  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2221    // When we're declaring a function with a typedef, typeof, etc as in the
2222    // following example, we'll need to synthesize (unnamed)
2223    // parameters for use in the declaration.
2224    //
2225    // @code
2226    // typedef void fn(int);
2227    // fn f;
2228    // @endcode
2229
2230    // Synthesize a parameter for each argument type.
2231    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2232         AE = FT->arg_type_end(); AI != AE; ++AI) {
2233      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2234                                               SourceLocation(), 0,
2235                                               *AI, VarDecl::None, 0);
2236      Param->setImplicit();
2237      Params.push_back(Param);
2238    }
2239  } else {
2240    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2241           "Should not need args for typedef of non-prototype fn");
2242  }
2243  // Finally, we know we have the right number of parameters, install them.
2244  NewFD->setParams(Context, &Params[0], Params.size());
2245
2246
2247
2248  // If name lookup finds a previous declaration that is not in the
2249  // same scope as the new declaration, this may still be an
2250  // acceptable redeclaration.
2251  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2252      !(NewFD->hasLinkage() &&
2253        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2254    PrevDecl = 0;
2255
2256  // Perform semantic checking on the function declaration.
2257  bool OverloadableAttrRequired = false; // FIXME: HACK!
2258  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2259                           /*FIXME:*/OverloadableAttrRequired);
2260
2261  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2262    // An out-of-line member function declaration must also be a
2263    // definition (C++ [dcl.meaning]p1).
2264    if (!IsFunctionDefinition) {
2265      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2266        << D.getCXXScopeSpec().getRange();
2267      NewFD->setInvalidDecl();
2268    } else if (!Redeclaration) {
2269      // The user tried to provide an out-of-line definition for a
2270      // function that is a member of a class or namespace, but there
2271      // was no such member function declared (C++ [class.mfct]p2,
2272      // C++ [namespace.memdef]p2). For example:
2273      //
2274      // class X {
2275      //   void f() const;
2276      // };
2277      //
2278      // void X::f() { } // ill-formed
2279      //
2280      // Complain about this problem, and attempt to suggest close
2281      // matches (e.g., those that differ only in cv-qualifiers and
2282      // whether the parameter types are references).
2283      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2284        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2285      NewFD->setInvalidDecl();
2286
2287      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2288                                              true);
2289      assert(!Prev.isAmbiguous() &&
2290             "Cannot have an ambiguity in previous-declaration lookup");
2291      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2292           Func != FuncEnd; ++Func) {
2293        if (isa<FunctionDecl>(*Func) &&
2294            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2295          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2296      }
2297
2298      PrevDecl = 0;
2299    }
2300  }
2301
2302  // Handle attributes. We need to have merged decls when handling attributes
2303  // (for example to check for conflicts, etc).
2304  // FIXME: This needs to happen before we merge declarations. Then,
2305  // let attribute merging cope with attribute conflicts.
2306  ProcessDeclAttributes(NewFD, D);
2307  AddKnownFunctionAttributes(NewFD);
2308
2309  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2310    // If a function name is overloadable in C, then every function
2311    // with that name must be marked "overloadable".
2312    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2313      << Redeclaration << NewFD;
2314    if (PrevDecl)
2315      Diag(PrevDecl->getLocation(),
2316           diag::note_attribute_overloadable_prev_overload);
2317    NewFD->addAttr(::new (Context) OverloadableAttr());
2318  }
2319
2320  // If this is a locally-scoped extern C function, update the
2321  // map of such names.
2322  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2323      && !NewFD->isInvalidDecl())
2324    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2325
2326  return NewFD;
2327}
2328
2329/// \brief Perform semantic checking of a new function declaration.
2330///
2331/// Performs semantic analysis of the new function declaration
2332/// NewFD. This routine performs all semantic checking that does not
2333/// require the actual declarator involved in the declaration, and is
2334/// used both for the declaration of functions as they are parsed
2335/// (called via ActOnDeclarator) and for the declaration of functions
2336/// that have been instantiated via C++ template instantiation (called
2337/// via InstantiateDecl).
2338///
2339/// This sets NewFD->isInvalidDecl() to true if there was an error.
2340void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2341                                    bool &Redeclaration,
2342                                    bool &OverloadableAttrRequired) {
2343  // If NewFD is already known erroneous, don't do any of this checking.
2344  if (NewFD->isInvalidDecl())
2345    return;
2346
2347  // Semantic checking for this function declaration (in isolation).
2348  if (getLangOptions().CPlusPlus) {
2349    // C++-specific checks.
2350    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2351      CheckConstructor(Constructor);
2352    } else if (isa<CXXDestructorDecl>(NewFD)) {
2353      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2354      Record->setUserDeclaredDestructor(true);
2355      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2356      // user-defined destructor.
2357      Record->setPOD(false);
2358
2359      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2360      // declared destructor.
2361      Record->setHasTrivialDestructor(false);
2362    } else if (CXXConversionDecl *Conversion
2363               = dyn_cast<CXXConversionDecl>(NewFD))
2364      ActOnConversionDeclarator(Conversion);
2365
2366    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2367    if (NewFD->isOverloadedOperator() &&
2368        CheckOverloadedOperatorDeclaration(NewFD))
2369      return NewFD->setInvalidDecl();
2370  }
2371
2372  // C99 6.7.4p6:
2373  //   [... ] For a function with external linkage, the following
2374  //   restrictions apply: [...] If all of the file scope declarations
2375  //   for a function in a translation unit include the inline
2376  //   function specifier without extern, then the definition in that
2377  //   translation unit is an inline definition. An inline definition
2378  //   does not provide an external definition for the function, and
2379  //   does not forbid an external definition in another translation
2380  //   unit.
2381  //
2382  // Here we determine whether this function, in isolation, would be a
2383  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2384  // previous declarations.
2385  if (NewFD->isInline() && getLangOptions().C99 &&
2386      NewFD->getStorageClass() == FunctionDecl::None &&
2387      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2388    NewFD->setC99InlineDefinition(true);
2389
2390  // Check for a previous declaration of this name.
2391  if (!PrevDecl && NewFD->isExternC(Context)) {
2392    // Since we did not find anything by this name and we're declaring
2393    // an extern "C" function, look for a non-visible extern "C"
2394    // declaration with the same name.
2395    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2396      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2397    if (Pos != LocallyScopedExternalDecls.end())
2398      PrevDecl = Pos->second;
2399  }
2400
2401  // Merge or overload the declaration with an existing declaration of
2402  // the same name, if appropriate.
2403  if (PrevDecl) {
2404    // Determine whether NewFD is an overload of PrevDecl or
2405    // a declaration that requires merging. If it's an overload,
2406    // there's no more work to do here; we'll just add the new
2407    // function to the scope.
2408    OverloadedFunctionDecl::function_iterator MatchedDecl;
2409
2410    if (!getLangOptions().CPlusPlus &&
2411        AllowOverloadingOfFunction(PrevDecl, Context)) {
2412      OverloadableAttrRequired = true;
2413
2414      // Functions marked "overloadable" must have a prototype (that
2415      // we can't get through declaration merging).
2416      if (!NewFD->getType()->getAsFunctionProtoType()) {
2417        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2418          << NewFD;
2419        Redeclaration = true;
2420
2421        // Turn this into a variadic function with no parameters.
2422        QualType R = Context.getFunctionType(
2423                       NewFD->getType()->getAsFunctionType()->getResultType(),
2424                       0, 0, true, 0);
2425        NewFD->setType(R);
2426        return NewFD->setInvalidDecl();
2427      }
2428    }
2429
2430    if (PrevDecl &&
2431        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2432         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2433      Redeclaration = true;
2434      Decl *OldDecl = PrevDecl;
2435
2436      // If PrevDecl was an overloaded function, extract the
2437      // FunctionDecl that matched.
2438      if (isa<OverloadedFunctionDecl>(PrevDecl))
2439        OldDecl = *MatchedDecl;
2440
2441      // NewFD and OldDecl represent declarations that need to be
2442      // merged.
2443      if (MergeFunctionDecl(NewFD, OldDecl))
2444        return NewFD->setInvalidDecl();
2445
2446      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2447    }
2448  }
2449
2450  // In C++, check default arguments now that we have merged decls. Unless
2451  // the lexical context is the class, because in this case this is done
2452  // during delayed parsing anyway.
2453  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2454    CheckCXXDefaultArguments(NewFD);
2455}
2456
2457bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2458  // FIXME: Need strict checking.  In C89, we need to check for
2459  // any assignment, increment, decrement, function-calls, or
2460  // commas outside of a sizeof.  In C99, it's the same list,
2461  // except that the aforementioned are allowed in unevaluated
2462  // expressions.  Everything else falls under the
2463  // "may accept other forms of constant expressions" exception.
2464  // (We never end up here for C++, so the constant expression
2465  // rules there don't matter.)
2466  if (Init->isConstantInitializer(Context))
2467    return false;
2468  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2469    << Init->getSourceRange();
2470  return true;
2471}
2472
2473void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2474  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2475}
2476
2477/// AddInitializerToDecl - Adds the initializer Init to the
2478/// declaration dcl. If DirectInit is true, this is C++ direct
2479/// initialization rather than copy initialization.
2480void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2481  Decl *RealDecl = dcl.getAs<Decl>();
2482  // If there is no declaration, there was an error parsing it.  Just ignore
2483  // the initializer.
2484  if (RealDecl == 0)
2485    return;
2486
2487  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2488    // With declarators parsed the way they are, the parser cannot
2489    // distinguish between a normal initializer and a pure-specifier.
2490    // Thus this grotesque test.
2491    IntegerLiteral *IL;
2492    Expr *Init = static_cast<Expr *>(init.get());
2493    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2494        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2495      if (Method->isVirtualAsWritten()) {
2496        Method->setPure();
2497
2498        // A class is abstract if at least one function is pure virtual.
2499        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2500      } else if (!Method->isInvalidDecl()) {
2501        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2502          << Method->getDeclName() << Init->getSourceRange();
2503        Method->setInvalidDecl();
2504      }
2505    } else {
2506      Diag(Method->getLocation(), diag::err_member_function_initialization)
2507        << Method->getDeclName() << Init->getSourceRange();
2508      Method->setInvalidDecl();
2509    }
2510    return;
2511  }
2512
2513  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2514  if (!VDecl) {
2515    if (getLangOptions().CPlusPlus &&
2516        RealDecl->getLexicalDeclContext()->isRecord() &&
2517        isa<NamedDecl>(RealDecl))
2518      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2519        << cast<NamedDecl>(RealDecl)->getDeclName();
2520    else
2521      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2522    RealDecl->setInvalidDecl();
2523    return;
2524  }
2525
2526  if (!VDecl->getType()->isArrayType() &&
2527      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2528                          diag::err_typecheck_decl_incomplete_type)) {
2529    RealDecl->setInvalidDecl();
2530    return;
2531  }
2532
2533  const VarDecl *Def = 0;
2534  if (VDecl->getDefinition(Def)) {
2535    Diag(VDecl->getLocation(), diag::err_redefinition)
2536      << VDecl->getDeclName();
2537    Diag(Def->getLocation(), diag::note_previous_definition);
2538    VDecl->setInvalidDecl();
2539    return;
2540  }
2541
2542  // Take ownership of the expression, now that we're sure we have somewhere
2543  // to put it.
2544  Expr *Init = init.takeAs<Expr>();
2545  assert(Init && "missing initializer");
2546
2547  // Get the decls type and save a reference for later, since
2548  // CheckInitializerTypes may change it.
2549  QualType DclT = VDecl->getType(), SavT = DclT;
2550  if (VDecl->isBlockVarDecl()) {
2551    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2552      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2553      VDecl->setInvalidDecl();
2554    } else if (!VDecl->isInvalidDecl()) {
2555      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2556                                VDecl->getDeclName(), DirectInit))
2557        VDecl->setInvalidDecl();
2558
2559      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2560      // Don't check invalid declarations to avoid emitting useless diagnostics.
2561      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2562        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2563          CheckForConstantInitializer(Init, DclT);
2564      }
2565    }
2566  } else if (VDecl->isStaticDataMember() &&
2567             VDecl->getLexicalDeclContext()->isRecord()) {
2568    // This is an in-class initialization for a static data member, e.g.,
2569    //
2570    // struct S {
2571    //   static const int value = 17;
2572    // };
2573
2574    // Attach the initializer
2575    VDecl->setInit(Init);
2576
2577    // C++ [class.mem]p4:
2578    //   A member-declarator can contain a constant-initializer only
2579    //   if it declares a static member (9.4) of const integral or
2580    //   const enumeration type, see 9.4.2.
2581    QualType T = VDecl->getType();
2582    if (!T->isDependentType() &&
2583        (!Context.getCanonicalType(T).isConstQualified() ||
2584         !T->isIntegralType())) {
2585      Diag(VDecl->getLocation(), diag::err_member_initialization)
2586        << VDecl->getDeclName() << Init->getSourceRange();
2587      VDecl->setInvalidDecl();
2588    } else {
2589      // C++ [class.static.data]p4:
2590      //   If a static data member is of const integral or const
2591      //   enumeration type, its declaration in the class definition
2592      //   can specify a constant-initializer which shall be an
2593      //   integral constant expression (5.19).
2594      if (!Init->isTypeDependent() &&
2595          !Init->getType()->isIntegralType()) {
2596        // We have a non-dependent, non-integral or enumeration type.
2597        Diag(Init->getSourceRange().getBegin(),
2598             diag::err_in_class_initializer_non_integral_type)
2599          << Init->getType() << Init->getSourceRange();
2600        VDecl->setInvalidDecl();
2601      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2602        // Check whether the expression is a constant expression.
2603        llvm::APSInt Value;
2604        SourceLocation Loc;
2605        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2606          Diag(Loc, diag::err_in_class_initializer_non_constant)
2607            << Init->getSourceRange();
2608          VDecl->setInvalidDecl();
2609        } else if (!VDecl->getType()->isDependentType())
2610          ImpCastExprToType(Init, VDecl->getType());
2611      }
2612    }
2613  } else if (VDecl->isFileVarDecl()) {
2614    if (VDecl->getStorageClass() == VarDecl::Extern)
2615      Diag(VDecl->getLocation(), diag::warn_extern_init);
2616    if (!VDecl->isInvalidDecl())
2617      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2618                                VDecl->getDeclName(), DirectInit))
2619        VDecl->setInvalidDecl();
2620
2621    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2622    // Don't check invalid declarations to avoid emitting useless diagnostics.
2623    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2624      // C99 6.7.8p4. All file scoped initializers need to be constant.
2625      CheckForConstantInitializer(Init, DclT);
2626    }
2627  }
2628  // If the type changed, it means we had an incomplete type that was
2629  // completed by the initializer. For example:
2630  //   int ary[] = { 1, 3, 5 };
2631  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2632  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2633    VDecl->setType(DclT);
2634    Init->setType(DclT);
2635  }
2636
2637  // Attach the initializer to the decl.
2638  VDecl->setInit(Init);
2639
2640  // If the previous declaration of VDecl was a tentative definition,
2641  // remove it from the set of tentative definitions.
2642  if (VDecl->getPreviousDeclaration() &&
2643      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2644    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2645      = TentativeDefinitions.find(VDecl->getDeclName());
2646    assert(Pos != TentativeDefinitions.end() &&
2647           "Unrecorded tentative definition?");
2648    TentativeDefinitions.erase(Pos);
2649  }
2650
2651  return;
2652}
2653
2654void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2655  Decl *RealDecl = dcl.getAs<Decl>();
2656
2657  // If there is no declaration, there was an error parsing it. Just ignore it.
2658  if (RealDecl == 0)
2659    return;
2660
2661  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2662    QualType Type = Var->getType();
2663
2664    // Record tentative definitions.
2665    if (Var->isTentativeDefinition(Context))
2666      TentativeDefinitions[Var->getDeclName()] = Var;
2667
2668    // C++ [dcl.init.ref]p3:
2669    //   The initializer can be omitted for a reference only in a
2670    //   parameter declaration (8.3.5), in the declaration of a
2671    //   function return type, in the declaration of a class member
2672    //   within its class declaration (9.2), and where the extern
2673    //   specifier is explicitly used.
2674    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2675      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2676        << Var->getDeclName()
2677        << SourceRange(Var->getLocation(), Var->getLocation());
2678      Var->setInvalidDecl();
2679      return;
2680    }
2681
2682    // C++ [dcl.init]p9:
2683    //
2684    //   If no initializer is specified for an object, and the object
2685    //   is of (possibly cv-qualified) non-POD class type (or array
2686    //   thereof), the object shall be default-initialized; if the
2687    //   object is of const-qualified type, the underlying class type
2688    //   shall have a user-declared default constructor.
2689    if (getLangOptions().CPlusPlus) {
2690      QualType InitType = Type;
2691      if (const ArrayType *Array = Context.getAsArrayType(Type))
2692        InitType = Array->getElementType();
2693      if (!Var->hasExternalStorage() && InitType->isRecordType()) {
2694        CXXRecordDecl *RD =
2695          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2696        CXXConstructorDecl *Constructor = 0;
2697        if (!RequireCompleteType(Var->getLocation(), InitType,
2698                                    diag::err_invalid_incomplete_type_use))
2699          Constructor
2700            = PerformInitializationByConstructor(InitType, 0, 0,
2701                                                 Var->getLocation(),
2702                                               SourceRange(Var->getLocation(),
2703                                                           Var->getLocation()),
2704                                                 Var->getDeclName(),
2705                                                 IK_Default);
2706        if (!Constructor)
2707          Var->setInvalidDecl();
2708        else if (!RD->hasTrivialConstructor())
2709          InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2710      }
2711    }
2712
2713#if 0
2714    // FIXME: Temporarily disabled because we are not properly parsing
2715    // linkage specifications on declarations, e.g.,
2716    //
2717    //   extern "C" const CGPoint CGPointerZero;
2718    //
2719    // C++ [dcl.init]p9:
2720    //
2721    //     If no initializer is specified for an object, and the
2722    //     object is of (possibly cv-qualified) non-POD class type (or
2723    //     array thereof), the object shall be default-initialized; if
2724    //     the object is of const-qualified type, the underlying class
2725    //     type shall have a user-declared default
2726    //     constructor. Otherwise, if no initializer is specified for
2727    //     an object, the object and its subobjects, if any, have an
2728    //     indeterminate initial value; if the object or any of its
2729    //     subobjects are of const-qualified type, the program is
2730    //     ill-formed.
2731    //
2732    // This isn't technically an error in C, so we don't diagnose it.
2733    //
2734    // FIXME: Actually perform the POD/user-defined default
2735    // constructor check.
2736    if (getLangOptions().CPlusPlus &&
2737        Context.getCanonicalType(Type).isConstQualified() &&
2738        !Var->hasExternalStorage())
2739      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2740        << Var->getName()
2741        << SourceRange(Var->getLocation(), Var->getLocation());
2742#endif
2743  }
2744}
2745
2746Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2747                                                   unsigned NumDecls) {
2748  llvm::SmallVector<Decl*, 8> Decls;
2749
2750  for (unsigned i = 0; i != NumDecls; ++i)
2751    if (Decl *D = Group[i].getAs<Decl>())
2752      Decls.push_back(D);
2753
2754  // Perform semantic analysis that depends on having fully processed both
2755  // the declarator and initializer.
2756  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2757    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2758    if (!IDecl)
2759      continue;
2760    QualType T = IDecl->getType();
2761
2762    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2763    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2764    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2765      if (!IDecl->isInvalidDecl() &&
2766          RequireCompleteType(IDecl->getLocation(), T,
2767                              diag::err_typecheck_decl_incomplete_type))
2768        IDecl->setInvalidDecl();
2769    }
2770    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2771    // object that has file scope without an initializer, and without a
2772    // storage-class specifier or with the storage-class specifier "static",
2773    // constitutes a tentative definition. Note: A tentative definition with
2774    // external linkage is valid (C99 6.2.2p5).
2775    if (IDecl->isTentativeDefinition(Context)) {
2776      QualType CheckType = T;
2777      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2778
2779      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2780      if (ArrayT) {
2781        CheckType = ArrayT->getElementType();
2782        DiagID = diag::err_illegal_decl_array_incomplete_type;
2783      }
2784
2785      if (IDecl->isInvalidDecl()) {
2786        // Do nothing with invalid declarations
2787      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2788                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2789        // C99 6.9.2p3: If the declaration of an identifier for an object is
2790        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2791        // declared type shall not be an incomplete type.
2792        IDecl->setInvalidDecl();
2793      }
2794    }
2795  }
2796  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2797                                                   &Decls[0], Decls.size()));
2798}
2799
2800
2801/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2802/// to introduce parameters into function prototype scope.
2803Sema::DeclPtrTy
2804Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2805  const DeclSpec &DS = D.getDeclSpec();
2806
2807  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2808  VarDecl::StorageClass StorageClass = VarDecl::None;
2809  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2810    StorageClass = VarDecl::Register;
2811  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2812    Diag(DS.getStorageClassSpecLoc(),
2813         diag::err_invalid_storage_class_in_func_decl);
2814    D.getMutableDeclSpec().ClearStorageClassSpecs();
2815  }
2816
2817  if (D.getDeclSpec().isThreadSpecified())
2818    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2819
2820  DiagnoseFunctionSpecifiers(D);
2821
2822  // Check that there are no default arguments inside the type of this
2823  // parameter (C++ only).
2824  if (getLangOptions().CPlusPlus)
2825    CheckExtraCXXDefaultArguments(D);
2826
2827  QualType parmDeclType = GetTypeForDeclarator(D, S);
2828
2829  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2830  // Can this happen for params?  We already checked that they don't conflict
2831  // among each other.  Here they can only shadow globals, which is ok.
2832  IdentifierInfo *II = D.getIdentifier();
2833  if (II) {
2834    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2835      if (PrevDecl->isTemplateParameter()) {
2836        // Maybe we will complain about the shadowed template parameter.
2837        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2838        // Just pretend that we didn't see the previous declaration.
2839        PrevDecl = 0;
2840      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2841        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2842
2843        // Recover by removing the name
2844        II = 0;
2845        D.SetIdentifier(0, D.getIdentifierLoc());
2846      }
2847    }
2848  }
2849
2850  // Parameters can not be abstract class types.
2851  // For record types, this is done by the AbstractClassUsageDiagnoser once
2852  // the class has been completely parsed.
2853  if (!CurContext->isRecord() &&
2854      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2855                             diag::err_abstract_type_in_decl,
2856                             AbstractParamType))
2857    D.setInvalidType(true);
2858
2859  QualType T = adjustParameterType(parmDeclType);
2860
2861  ParmVarDecl *New;
2862  if (T == parmDeclType) // parameter type did not need adjustment
2863    New = ParmVarDecl::Create(Context, CurContext,
2864                              D.getIdentifierLoc(), II,
2865                              parmDeclType, StorageClass,
2866                              0);
2867  else // keep track of both the adjusted and unadjusted types
2868    New = OriginalParmVarDecl::Create(Context, CurContext,
2869                                      D.getIdentifierLoc(), II, T,
2870                                      parmDeclType, StorageClass, 0);
2871
2872  if (D.isInvalidType())
2873    New->setInvalidDecl();
2874
2875  // Parameter declarators cannot be interface types. All ObjC objects are
2876  // passed by reference.
2877  if (T->isObjCInterfaceType()) {
2878    Diag(D.getIdentifierLoc(),
2879         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2880    New->setInvalidDecl();
2881  }
2882
2883  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2884  if (D.getCXXScopeSpec().isSet()) {
2885    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2886      << D.getCXXScopeSpec().getRange();
2887    New->setInvalidDecl();
2888  }
2889
2890  // Add the parameter declaration into this scope.
2891  S->AddDecl(DeclPtrTy::make(New));
2892  if (II)
2893    IdResolver.AddDecl(New);
2894
2895  ProcessDeclAttributes(New, D);
2896
2897  if (New->hasAttr<BlocksAttr>()) {
2898    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2899  }
2900  return DeclPtrTy::make(New);
2901}
2902
2903void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2904                                           SourceLocation LocAfterDecls) {
2905  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2906         "Not a function declarator!");
2907  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2908
2909  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2910  // for a K&R function.
2911  if (!FTI.hasPrototype) {
2912    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2913      --i;
2914      if (FTI.ArgInfo[i].Param == 0) {
2915        std::string Code = "  int ";
2916        Code += FTI.ArgInfo[i].Ident->getName();
2917        Code += ";\n";
2918        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2919          << FTI.ArgInfo[i].Ident
2920          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2921
2922        // Implicitly declare the argument as type 'int' for lack of a better
2923        // type.
2924        DeclSpec DS;
2925        const char* PrevSpec; // unused
2926        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2927                           PrevSpec);
2928        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2929        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2930        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2931      }
2932    }
2933  }
2934}
2935
2936Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2937                                              Declarator &D) {
2938  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2939  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2940         "Not a function declarator!");
2941  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2942
2943  if (FTI.hasPrototype) {
2944    // FIXME: Diagnose arguments without names in C.
2945  }
2946
2947  Scope *ParentScope = FnBodyScope->getParent();
2948
2949  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2950  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2951}
2952
2953Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2954  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2955
2956  CurFunctionNeedsScopeChecking = false;
2957
2958  // See if this is a redefinition.
2959  const FunctionDecl *Definition;
2960  if (FD->getBody(Context, Definition)) {
2961    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2962    Diag(Definition->getLocation(), diag::note_previous_definition);
2963  }
2964
2965  // Builtin functions cannot be defined.
2966  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2967    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2968      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2969      FD->setInvalidDecl();
2970    }
2971  }
2972
2973  // The return type of a function definition must be complete
2974  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2975  QualType ResultType = FD->getResultType();
2976  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2977      !FD->isInvalidDecl() &&
2978      RequireCompleteType(FD->getLocation(), ResultType,
2979                          diag::err_func_def_incomplete_result))
2980    FD->setInvalidDecl();
2981
2982  // GNU warning -Wmissing-prototypes:
2983  //   Warn if a global function is defined without a previous
2984  //   prototype declaration. This warning is issued even if the
2985  //   definition itself provides a prototype. The aim is to detect
2986  //   global functions that fail to be declared in header files.
2987  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
2988      !FD->isMain()) {
2989    bool MissingPrototype = true;
2990    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2991         Prev; Prev = Prev->getPreviousDeclaration()) {
2992      // Ignore any declarations that occur in function or method
2993      // scope, because they aren't visible from the header.
2994      if (Prev->getDeclContext()->isFunctionOrMethod())
2995        continue;
2996
2997      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2998      break;
2999    }
3000
3001    if (MissingPrototype)
3002      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3003  }
3004
3005  if (FnBodyScope)
3006    PushDeclContext(FnBodyScope, FD);
3007
3008  // Check the validity of our function parameters
3009  CheckParmsForFunctionDef(FD);
3010
3011  // Introduce our parameters into the function scope
3012  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3013    ParmVarDecl *Param = FD->getParamDecl(p);
3014    Param->setOwningFunction(FD);
3015
3016    // If this has an identifier, add it to the scope stack.
3017    if (Param->getIdentifier() && FnBodyScope)
3018      PushOnScopeChains(Param, FnBodyScope);
3019  }
3020
3021  // Checking attributes of current function definition
3022  // dllimport attribute.
3023  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
3024    // dllimport attribute cannot be applied to definition.
3025    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3026      Diag(FD->getLocation(),
3027           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3028        << "dllimport";
3029      FD->setInvalidDecl();
3030      return DeclPtrTy::make(FD);
3031    } else {
3032      // If a symbol previously declared dllimport is later defined, the
3033      // attribute is ignored in subsequent references, and a warning is
3034      // emitted.
3035      Diag(FD->getLocation(),
3036           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3037        << FD->getNameAsCString() << "dllimport";
3038    }
3039  }
3040  return DeclPtrTy::make(FD);
3041}
3042
3043Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3044  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3045}
3046
3047Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3048                                              bool IsInstantiation) {
3049  Decl *dcl = D.getAs<Decl>();
3050  Stmt *Body = BodyArg.takeAs<Stmt>();
3051  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3052    FD->setBody(Body);
3053    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3054  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3055    assert(MD == getCurMethodDecl() && "Method parsing confused");
3056    MD->setBody(Body);
3057  } else {
3058    Body->Destroy(Context);
3059    return DeclPtrTy();
3060  }
3061  if (!IsInstantiation)
3062    PopDeclContext();
3063
3064  // Verify and clean out per-function state.
3065
3066  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3067
3068  // Check goto/label use.
3069  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3070       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3071    LabelStmt *L = I->second;
3072
3073    // Verify that we have no forward references left.  If so, there was a goto
3074    // or address of a label taken, but no definition of it.  Label fwd
3075    // definitions are indicated with a null substmt.
3076    if (L->getSubStmt() != 0)
3077      continue;
3078
3079    // Emit error.
3080    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3081
3082    // At this point, we have gotos that use the bogus label.  Stitch it into
3083    // the function body so that they aren't leaked and that the AST is well
3084    // formed.
3085    if (Body == 0) {
3086      // The whole function wasn't parsed correctly, just delete this.
3087      L->Destroy(Context);
3088      continue;
3089    }
3090
3091    // Otherwise, the body is valid: we want to stitch the label decl into the
3092    // function somewhere so that it is properly owned and so that the goto
3093    // has a valid target.  Do this by creating a new compound stmt with the
3094    // label in it.
3095
3096    // Give the label a sub-statement.
3097    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3098
3099    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3100                               cast<CXXTryStmt>(Body)->getTryBlock() :
3101                               cast<CompoundStmt>(Body);
3102    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3103    Elements.push_back(L);
3104    Compound->setStmts(Context, &Elements[0], Elements.size());
3105  }
3106  FunctionLabelMap.clear();
3107
3108  if (!Body) return D;
3109
3110  // Verify that that gotos and switch cases don't jump into scopes illegally.
3111  if (CurFunctionNeedsScopeChecking)
3112    DiagnoseInvalidJumps(Body);
3113
3114  // C++ constructors that have function-try-blocks can't have return statements
3115  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
3116  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3117    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3118
3119  return D;
3120}
3121
3122/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3123/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3124NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3125                                          IdentifierInfo &II, Scope *S) {
3126  // Before we produce a declaration for an implicitly defined
3127  // function, see whether there was a locally-scoped declaration of
3128  // this name as a function or variable. If so, use that
3129  // (non-visible) declaration, and complain about it.
3130  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3131    = LocallyScopedExternalDecls.find(&II);
3132  if (Pos != LocallyScopedExternalDecls.end()) {
3133    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3134    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3135    return Pos->second;
3136  }
3137
3138  // Extension in C99.  Legal in C90, but warn about it.
3139  if (getLangOptions().C99)
3140    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3141  else
3142    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3143
3144  // FIXME: handle stuff like:
3145  // void foo() { extern float X(); }
3146  // void bar() { X(); }  <-- implicit decl for X in another scope.
3147
3148  // Set a Declarator for the implicit definition: int foo();
3149  const char *Dummy;
3150  DeclSpec DS;
3151  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3152  Error = Error; // Silence warning.
3153  assert(!Error && "Error setting up implicit decl!");
3154  Declarator D(DS, Declarator::BlockContext);
3155  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3156                                             0, 0, false, false, 0, 0, Loc, D),
3157                SourceLocation());
3158  D.SetIdentifier(&II, Loc);
3159
3160  // Insert this function into translation-unit scope.
3161
3162  DeclContext *PrevDC = CurContext;
3163  CurContext = Context.getTranslationUnitDecl();
3164
3165  FunctionDecl *FD =
3166 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3167  FD->setImplicit();
3168
3169  CurContext = PrevDC;
3170
3171  AddKnownFunctionAttributes(FD);
3172
3173  return FD;
3174}
3175
3176/// \brief Adds any function attributes that we know a priori based on
3177/// the declaration of this function.
3178///
3179/// These attributes can apply both to implicitly-declared builtins
3180/// (like __builtin___printf_chk) or to library-declared functions
3181/// like NSLog or printf.
3182void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3183  if (FD->isInvalidDecl())
3184    return;
3185
3186  // If this is a built-in function, map its builtin attributes to
3187  // actual attributes.
3188  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3189    // Handle printf-formatting attributes.
3190    unsigned FormatIdx;
3191    bool HasVAListArg;
3192    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3193      if (!FD->getAttr<FormatAttr>())
3194        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3195                                               FormatIdx + 2));
3196    }
3197
3198    // Mark const if we don't care about errno and that is the only
3199    // thing preventing the function from being const. This allows
3200    // IRgen to use LLVM intrinsics for such functions.
3201    if (!getLangOptions().MathErrno &&
3202        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3203      if (!FD->getAttr<ConstAttr>())
3204        FD->addAttr(::new (Context) ConstAttr());
3205    }
3206  }
3207
3208  IdentifierInfo *Name = FD->getIdentifier();
3209  if (!Name)
3210    return;
3211  if ((!getLangOptions().CPlusPlus &&
3212       FD->getDeclContext()->isTranslationUnit()) ||
3213      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3214       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3215       LinkageSpecDecl::lang_c)) {
3216    // Okay: this could be a libc/libm/Objective-C function we know
3217    // about.
3218  } else
3219    return;
3220
3221  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3222    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3223      // FIXME: We known better than our headers.
3224      const_cast<FormatAttr *>(Format)->setType("printf");
3225    } else
3226      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3227  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3228    if (!FD->getAttr<FormatAttr>())
3229      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3230  }
3231}
3232
3233TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3234  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3235  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3236
3237  // Scope manipulation handled by caller.
3238  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3239                                           D.getIdentifierLoc(),
3240                                           D.getIdentifier(),
3241                                           T);
3242
3243  if (TagType *TT = dyn_cast<TagType>(T)) {
3244    TagDecl *TD = TT->getDecl();
3245
3246    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3247    // keep track of the TypedefDecl.
3248    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3249      TD->setTypedefForAnonDecl(NewTD);
3250  }
3251
3252  if (D.isInvalidType())
3253    NewTD->setInvalidDecl();
3254  return NewTD;
3255}
3256
3257
3258/// \brief Determine whether a tag with a given kind is acceptable
3259/// as a redeclaration of the given tag declaration.
3260///
3261/// \returns true if the new tag kind is acceptable, false otherwise.
3262bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3263                                        TagDecl::TagKind NewTag,
3264                                        SourceLocation NewTagLoc,
3265                                        const IdentifierInfo &Name) {
3266  // C++ [dcl.type.elab]p3:
3267  //   The class-key or enum keyword present in the
3268  //   elaborated-type-specifier shall agree in kind with the
3269  //   declaration to which the name in theelaborated-type-specifier
3270  //   refers. This rule also applies to the form of
3271  //   elaborated-type-specifier that declares a class-name or
3272  //   friend class since it can be construed as referring to the
3273  //   definition of the class. Thus, in any
3274  //   elaborated-type-specifier, the enum keyword shall be used to
3275  //   refer to an enumeration (7.2), the union class-keyshall be
3276  //   used to refer to a union (clause 9), and either the class or
3277  //   struct class-key shall be used to refer to a class (clause 9)
3278  //   declared using the class or struct class-key.
3279  TagDecl::TagKind OldTag = Previous->getTagKind();
3280  if (OldTag == NewTag)
3281    return true;
3282
3283  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3284      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3285    // Warn about the struct/class tag mismatch.
3286    bool isTemplate = false;
3287    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3288      isTemplate = Record->getDescribedClassTemplate();
3289
3290    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3291      << (NewTag == TagDecl::TK_class)
3292      << isTemplate << &Name
3293      << (OldTag == TagDecl::TK_class)
3294      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3295                              OldTag == TagDecl::TK_class? "class" : "struct");
3296    Diag(Previous->getLocation(), diag::note_previous_use);
3297    return true;
3298  }
3299  return false;
3300}
3301
3302/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3303/// former case, Name will be non-null.  In the later case, Name will be null.
3304/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3305/// reference/declaration/definition of a tag.
3306Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3307                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3308                               IdentifierInfo *Name, SourceLocation NameLoc,
3309                               AttributeList *Attr, AccessSpecifier AS) {
3310  // If this is not a definition, it must have a name.
3311  assert((Name != 0 || TK == TK_Definition) &&
3312         "Nameless record must be a definition!");
3313
3314  TagDecl::TagKind Kind;
3315  switch (TagSpec) {
3316  default: assert(0 && "Unknown tag type!");
3317  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3318  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3319  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3320  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3321  }
3322
3323  DeclContext *SearchDC = CurContext;
3324  DeclContext *DC = CurContext;
3325  NamedDecl *PrevDecl = 0;
3326
3327  bool Invalid = false;
3328
3329  if (Name && SS.isNotEmpty()) {
3330    // We have a nested-name tag ('struct foo::bar').
3331
3332    // Check for invalid 'foo::'.
3333    if (SS.isInvalid()) {
3334      Name = 0;
3335      goto CreateNewDecl;
3336    }
3337
3338    if (RequireCompleteDeclContext(SS))
3339      return DeclPtrTy::make((Decl *)0);
3340
3341    DC = computeDeclContext(SS);
3342    SearchDC = DC;
3343    // Look-up name inside 'foo::'.
3344    PrevDecl
3345      = dyn_cast_or_null<TagDecl>(
3346               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3347
3348    // A tag 'foo::bar' must already exist.
3349    if (PrevDecl == 0) {
3350      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3351      Name = 0;
3352      goto CreateNewDecl;
3353    }
3354  } else if (Name) {
3355    // If this is a named struct, check to see if there was a previous forward
3356    // declaration or definition.
3357    // FIXME: We're looking into outer scopes here, even when we
3358    // shouldn't be. Doing so can result in ambiguities that we
3359    // shouldn't be diagnosing.
3360    LookupResult R = LookupName(S, Name, LookupTagName,
3361                                /*RedeclarationOnly=*/(TK != TK_Reference));
3362    if (R.isAmbiguous()) {
3363      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3364      // FIXME: This is not best way to recover from case like:
3365      //
3366      // struct S s;
3367      //
3368      // causes needless "incomplete type" error later.
3369      Name = 0;
3370      PrevDecl = 0;
3371      Invalid = true;
3372    }
3373    else
3374      PrevDecl = R;
3375
3376    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3377      // FIXME: This makes sure that we ignore the contexts associated
3378      // with C structs, unions, and enums when looking for a matching
3379      // tag declaration or definition. See the similar lookup tweak
3380      // in Sema::LookupName; is there a better way to deal with this?
3381      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3382        SearchDC = SearchDC->getParent();
3383    }
3384  }
3385
3386  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3387    // Maybe we will complain about the shadowed template parameter.
3388    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3389    // Just pretend that we didn't see the previous declaration.
3390    PrevDecl = 0;
3391  }
3392
3393  if (PrevDecl) {
3394    // Check whether the previous declaration is usable.
3395    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3396
3397    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3398      // If this is a use of a previous tag, or if the tag is already declared
3399      // in the same scope (so that the definition/declaration completes or
3400      // rementions the tag), reuse the decl.
3401      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3402        // Make sure that this wasn't declared as an enum and now used as a
3403        // struct or something similar.
3404        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3405          bool SafeToContinue
3406            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3407               Kind != TagDecl::TK_enum);
3408          if (SafeToContinue)
3409            Diag(KWLoc, diag::err_use_with_wrong_tag)
3410              << Name
3411              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3412                                                  PrevTagDecl->getKindName());
3413          else
3414            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3415          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3416
3417          if (SafeToContinue)
3418            Kind = PrevTagDecl->getTagKind();
3419          else {
3420            // Recover by making this an anonymous redefinition.
3421            Name = 0;
3422            PrevDecl = 0;
3423            Invalid = true;
3424          }
3425        }
3426
3427        if (!Invalid) {
3428          // If this is a use, just return the declaration we found.
3429
3430          // FIXME: In the future, return a variant or some other clue
3431          // for the consumer of this Decl to know it doesn't own it.
3432          // For our current ASTs this shouldn't be a problem, but will
3433          // need to be changed with DeclGroups.
3434          if (TK == TK_Reference)
3435            return DeclPtrTy::make(PrevDecl);
3436
3437          // Diagnose attempts to redefine a tag.
3438          if (TK == TK_Definition) {
3439            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3440              Diag(NameLoc, diag::err_redefinition) << Name;
3441              Diag(Def->getLocation(), diag::note_previous_definition);
3442              // If this is a redefinition, recover by making this
3443              // struct be anonymous, which will make any later
3444              // references get the previous definition.
3445              Name = 0;
3446              PrevDecl = 0;
3447              Invalid = true;
3448            } else {
3449              // If the type is currently being defined, complain
3450              // about a nested redefinition.
3451              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3452              if (Tag->isBeingDefined()) {
3453                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3454                Diag(PrevTagDecl->getLocation(),
3455                     diag::note_previous_definition);
3456                Name = 0;
3457                PrevDecl = 0;
3458                Invalid = true;
3459              }
3460            }
3461
3462            // Okay, this is definition of a previously declared or referenced
3463            // tag PrevDecl. We're going to create a new Decl for it.
3464          }
3465        }
3466        // If we get here we have (another) forward declaration or we
3467        // have a definition.  Just create a new decl.
3468      } else {
3469        // If we get here, this is a definition of a new tag type in a nested
3470        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3471        // new decl/type.  We set PrevDecl to NULL so that the entities
3472        // have distinct types.
3473        PrevDecl = 0;
3474      }
3475      // If we get here, we're going to create a new Decl. If PrevDecl
3476      // is non-NULL, it's a definition of the tag declared by
3477      // PrevDecl. If it's NULL, we have a new definition.
3478    } else {
3479      // PrevDecl is a namespace, template, or anything else
3480      // that lives in the IDNS_Tag identifier namespace.
3481      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3482        // The tag name clashes with a namespace name, issue an error and
3483        // recover by making this tag be anonymous.
3484        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3485        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3486        Name = 0;
3487        PrevDecl = 0;
3488        Invalid = true;
3489      } else {
3490        // The existing declaration isn't relevant to us; we're in a
3491        // new scope, so clear out the previous declaration.
3492        PrevDecl = 0;
3493      }
3494    }
3495  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3496             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3497    // C++ [basic.scope.pdecl]p5:
3498    //   -- for an elaborated-type-specifier of the form
3499    //
3500    //          class-key identifier
3501    //
3502    //      if the elaborated-type-specifier is used in the
3503    //      decl-specifier-seq or parameter-declaration-clause of a
3504    //      function defined in namespace scope, the identifier is
3505    //      declared as a class-name in the namespace that contains
3506    //      the declaration; otherwise, except as a friend
3507    //      declaration, the identifier is declared in the smallest
3508    //      non-class, non-function-prototype scope that contains the
3509    //      declaration.
3510    //
3511    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3512    // C structs and unions.
3513    //
3514    // GNU C also supports this behavior as part of its incomplete
3515    // enum types extension, while GNU C++ does not.
3516    //
3517    // Find the context where we'll be declaring the tag.
3518    // FIXME: We would like to maintain the current DeclContext as the
3519    // lexical context,
3520    while (SearchDC->isRecord())
3521      SearchDC = SearchDC->getParent();
3522
3523    // Find the scope where we'll be declaring the tag.
3524    while (S->isClassScope() ||
3525           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3526           ((S->getFlags() & Scope::DeclScope) == 0) ||
3527           (S->getEntity() &&
3528            ((DeclContext *)S->getEntity())->isTransparentContext()))
3529      S = S->getParent();
3530  }
3531
3532CreateNewDecl:
3533
3534  // If there is an identifier, use the location of the identifier as the
3535  // location of the decl, otherwise use the location of the struct/union
3536  // keyword.
3537  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3538
3539  // Otherwise, create a new declaration. If there is a previous
3540  // declaration of the same entity, the two will be linked via
3541  // PrevDecl.
3542  TagDecl *New;
3543
3544  if (Kind == TagDecl::TK_enum) {
3545    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3546    // enum X { A, B, C } D;    D should chain to X.
3547    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3548                           cast_or_null<EnumDecl>(PrevDecl));
3549    // If this is an undefined enum, warn.
3550    if (TK != TK_Definition && !Invalid)  {
3551      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3552                                              : diag::ext_forward_ref_enum;
3553      Diag(Loc, DK);
3554    }
3555  } else {
3556    // struct/union/class
3557
3558    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3559    // struct X { int A; } D;    D should chain to X.
3560    if (getLangOptions().CPlusPlus)
3561      // FIXME: Look for a way to use RecordDecl for simple structs.
3562      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3563                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3564    else
3565      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3566                               cast_or_null<RecordDecl>(PrevDecl));
3567  }
3568
3569  if (Kind != TagDecl::TK_enum) {
3570    // Handle #pragma pack: if the #pragma pack stack has non-default
3571    // alignment, make up a packed attribute for this decl. These
3572    // attributes are checked when the ASTContext lays out the
3573    // structure.
3574    //
3575    // It is important for implementing the correct semantics that this
3576    // happen here (in act on tag decl). The #pragma pack stack is
3577    // maintained as a result of parser callbacks which can occur at
3578    // many points during the parsing of a struct declaration (because
3579    // the #pragma tokens are effectively skipped over during the
3580    // parsing of the struct).
3581    if (unsigned Alignment = getPragmaPackAlignment())
3582      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3583  }
3584
3585  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3586    // C++ [dcl.typedef]p3:
3587    //   [...] Similarly, in a given scope, a class or enumeration
3588    //   shall not be declared with the same name as a typedef-name
3589    //   that is declared in that scope and refers to a type other
3590    //   than the class or enumeration itself.
3591    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3592    TypedefDecl *PrevTypedef = 0;
3593    if (Lookup.getKind() == LookupResult::Found)
3594      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3595
3596    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3597        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3598          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3599      Diag(Loc, diag::err_tag_definition_of_typedef)
3600        << Context.getTypeDeclType(New)
3601        << PrevTypedef->getUnderlyingType();
3602      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3603      Invalid = true;
3604    }
3605  }
3606
3607  if (Invalid)
3608    New->setInvalidDecl();
3609
3610  if (Attr)
3611    ProcessDeclAttributeList(New, Attr);
3612
3613  // If we're declaring or defining a tag in function prototype scope
3614  // in C, note that this type can only be used within the function.
3615  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3616    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3617
3618  // Set the lexical context. If the tag has a C++ scope specifier, the
3619  // lexical context will be different from the semantic context.
3620  New->setLexicalDeclContext(CurContext);
3621
3622  // Set the access specifier.
3623  SetMemberAccessSpecifier(New, PrevDecl, AS);
3624
3625  if (TK == TK_Definition)
3626    New->startDefinition();
3627
3628  // If this has an identifier, add it to the scope stack.
3629  if (Name) {
3630    S = getNonFieldDeclScope(S);
3631    PushOnScopeChains(New, S);
3632  } else {
3633    CurContext->addDecl(Context, New);
3634  }
3635
3636  return DeclPtrTy::make(New);
3637}
3638
3639void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3640  AdjustDeclIfTemplate(TagD);
3641  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3642
3643  // Enter the tag context.
3644  PushDeclContext(S, Tag);
3645
3646  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3647    FieldCollector->StartClass();
3648
3649    if (Record->getIdentifier()) {
3650      // C++ [class]p2:
3651      //   [...] The class-name is also inserted into the scope of the
3652      //   class itself; this is known as the injected-class-name. For
3653      //   purposes of access checking, the injected-class-name is treated
3654      //   as if it were a public member name.
3655      CXXRecordDecl *InjectedClassName
3656        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3657                                CurContext, Record->getLocation(),
3658                                Record->getIdentifier(), Record);
3659      InjectedClassName->setImplicit();
3660      InjectedClassName->setAccess(AS_public);
3661      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3662        InjectedClassName->setDescribedClassTemplate(Template);
3663      PushOnScopeChains(InjectedClassName, S);
3664      assert(InjectedClassName->isInjectedClassName() &&
3665             "Broken injected-class-name");
3666    }
3667  }
3668}
3669
3670void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3671  AdjustDeclIfTemplate(TagD);
3672  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3673
3674  if (isa<CXXRecordDecl>(Tag))
3675    FieldCollector->FinishClass();
3676
3677  // Exit this scope of this tag's definition.
3678  PopDeclContext();
3679
3680  // Notify the consumer that we've defined a tag.
3681  Consumer.HandleTagDeclDefinition(Tag);
3682}
3683
3684// Note that FieldName may be null for anonymous bitfields.
3685bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3686                          QualType FieldTy, const Expr *BitWidth) {
3687
3688  // C99 6.7.2.1p4 - verify the field type.
3689  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3690  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3691    // Handle incomplete types with specific error.
3692    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3693      return true;
3694    if (FieldName)
3695      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3696        << FieldName << FieldTy << BitWidth->getSourceRange();
3697    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3698      << FieldTy << BitWidth->getSourceRange();
3699  }
3700
3701  // If the bit-width is type- or value-dependent, don't try to check
3702  // it now.
3703  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3704    return false;
3705
3706  llvm::APSInt Value;
3707  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3708    return true;
3709
3710  // Zero-width bitfield is ok for anonymous field.
3711  if (Value == 0 && FieldName)
3712    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3713
3714  if (Value.isSigned() && Value.isNegative()) {
3715    if (FieldName)
3716      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3717               << FieldName << Value.toString(10);
3718    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3719      << Value.toString(10);
3720  }
3721
3722  if (!FieldTy->isDependentType()) {
3723    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3724    if (Value.getZExtValue() > TypeSize) {
3725      if (FieldName)
3726        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3727          << FieldName << (unsigned)TypeSize;
3728      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3729        << (unsigned)TypeSize;
3730    }
3731  }
3732
3733  return false;
3734}
3735
3736/// ActOnField - Each field of a struct/union/class is passed into this in order
3737/// to create a FieldDecl object for it.
3738Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3739                                 SourceLocation DeclStart,
3740                                 Declarator &D, ExprTy *BitfieldWidth) {
3741  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3742                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3743                               AS_public);
3744  return DeclPtrTy::make(Res);
3745}
3746
3747/// HandleField - Analyze a field of a C struct or a C++ data member.
3748///
3749FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3750                             SourceLocation DeclStart,
3751                             Declarator &D, Expr *BitWidth,
3752                             AccessSpecifier AS) {
3753  IdentifierInfo *II = D.getIdentifier();
3754  SourceLocation Loc = DeclStart;
3755  if (II) Loc = D.getIdentifierLoc();
3756
3757  QualType T = GetTypeForDeclarator(D, S);
3758  if (getLangOptions().CPlusPlus)
3759    CheckExtraCXXDefaultArguments(D);
3760
3761  DiagnoseFunctionSpecifiers(D);
3762
3763  if (D.getDeclSpec().isThreadSpecified())
3764    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3765
3766  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3767  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3768    PrevDecl = 0;
3769
3770  FieldDecl *NewFD
3771    = CheckFieldDecl(II, T, Record, Loc,
3772               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3773                     BitWidth, AS, PrevDecl, &D);
3774  if (NewFD->isInvalidDecl() && PrevDecl) {
3775    // Don't introduce NewFD into scope; there's already something
3776    // with the same name in the same scope.
3777  } else if (II) {
3778    PushOnScopeChains(NewFD, S);
3779  } else
3780    Record->addDecl(Context, NewFD);
3781
3782  return NewFD;
3783}
3784
3785/// \brief Build a new FieldDecl and check its well-formedness.
3786///
3787/// This routine builds a new FieldDecl given the fields name, type,
3788/// record, etc. \p PrevDecl should refer to any previous declaration
3789/// with the same name and in the same scope as the field to be
3790/// created.
3791///
3792/// \returns a new FieldDecl.
3793///
3794/// \todo The Declarator argument is a hack. It will be removed once
3795FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3796                                RecordDecl *Record, SourceLocation Loc,
3797                                bool Mutable, Expr *BitWidth,
3798                                AccessSpecifier AS, NamedDecl *PrevDecl,
3799                                Declarator *D) {
3800  IdentifierInfo *II = Name.getAsIdentifierInfo();
3801  bool InvalidDecl = false;
3802  if (D) InvalidDecl = D->isInvalidType();
3803
3804  // If we receive a broken type, recover by assuming 'int' and
3805  // marking this declaration as invalid.
3806  if (T.isNull()) {
3807    InvalidDecl = true;
3808    T = Context.IntTy;
3809  }
3810
3811  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3812  // than a variably modified type.
3813  if (T->isVariablyModifiedType()) {
3814    bool SizeIsNegative;
3815    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3816                                                           SizeIsNegative);
3817    if (!FixedTy.isNull()) {
3818      Diag(Loc, diag::warn_illegal_constant_array_size);
3819      T = FixedTy;
3820    } else {
3821      if (SizeIsNegative)
3822        Diag(Loc, diag::err_typecheck_negative_array_size);
3823      else
3824        Diag(Loc, diag::err_typecheck_field_variable_size);
3825      T = Context.IntTy;
3826      InvalidDecl = true;
3827    }
3828  }
3829
3830  // Fields can not have abstract class types
3831  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3832                             AbstractFieldType))
3833    InvalidDecl = true;
3834
3835  // If this is declared as a bit-field, check the bit-field.
3836  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3837    InvalidDecl = true;
3838    DeleteExpr(BitWidth);
3839    BitWidth = 0;
3840  }
3841
3842  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3843                                       Mutable);
3844  if (InvalidDecl)
3845    NewFD->setInvalidDecl();
3846
3847  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3848    Diag(Loc, diag::err_duplicate_member) << II;
3849    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3850    NewFD->setInvalidDecl();
3851  }
3852
3853  if (getLangOptions().CPlusPlus && !T->isPODType())
3854    cast<CXXRecordDecl>(Record)->setPOD(false);
3855
3856  // FIXME: We need to pass in the attributes given an AST
3857  // representation, not a parser representation.
3858  if (D)
3859    ProcessDeclAttributes(NewFD, *D);
3860
3861  if (T.isObjCGCWeak())
3862    Diag(Loc, diag::warn_attribute_weak_on_field);
3863
3864  NewFD->setAccess(AS);
3865
3866  // C++ [dcl.init.aggr]p1:
3867  //   An aggregate is an array or a class (clause 9) with [...] no
3868  //   private or protected non-static data members (clause 11).
3869  // A POD must be an aggregate.
3870  if (getLangOptions().CPlusPlus &&
3871      (AS == AS_private || AS == AS_protected)) {
3872    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3873    CXXRecord->setAggregate(false);
3874    CXXRecord->setPOD(false);
3875  }
3876
3877  return NewFD;
3878}
3879
3880/// TranslateIvarVisibility - Translate visibility from a token ID to an
3881///  AST enum value.
3882static ObjCIvarDecl::AccessControl
3883TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3884  switch (ivarVisibility) {
3885  default: assert(0 && "Unknown visitibility kind");
3886  case tok::objc_private: return ObjCIvarDecl::Private;
3887  case tok::objc_public: return ObjCIvarDecl::Public;
3888  case tok::objc_protected: return ObjCIvarDecl::Protected;
3889  case tok::objc_package: return ObjCIvarDecl::Package;
3890  }
3891}
3892
3893/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3894/// in order to create an IvarDecl object for it.
3895Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3896                                SourceLocation DeclStart,
3897                                Declarator &D, ExprTy *BitfieldWidth,
3898                                tok::ObjCKeywordKind Visibility) {
3899
3900  IdentifierInfo *II = D.getIdentifier();
3901  Expr *BitWidth = (Expr*)BitfieldWidth;
3902  SourceLocation Loc = DeclStart;
3903  if (II) Loc = D.getIdentifierLoc();
3904
3905  // FIXME: Unnamed fields can be handled in various different ways, for
3906  // example, unnamed unions inject all members into the struct namespace!
3907
3908  QualType T = GetTypeForDeclarator(D, S);
3909
3910  if (BitWidth) {
3911    // 6.7.2.1p3, 6.7.2.1p4
3912    if (VerifyBitField(Loc, II, T, BitWidth)) {
3913      D.setInvalidType();
3914      DeleteExpr(BitWidth);
3915      BitWidth = 0;
3916    }
3917  } else {
3918    // Not a bitfield.
3919
3920    // validate II.
3921
3922  }
3923
3924  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3925  // than a variably modified type.
3926  if (T->isVariablyModifiedType()) {
3927    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3928    D.setInvalidType();
3929  }
3930
3931  // Get the visibility (access control) for this ivar.
3932  ObjCIvarDecl::AccessControl ac =
3933    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3934                                        : ObjCIvarDecl::None;
3935
3936  // Construct the decl.
3937  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3938                                             (Expr *)BitfieldWidth);
3939
3940  if (II) {
3941    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3942    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3943        && !isa<TagDecl>(PrevDecl)) {
3944      Diag(Loc, diag::err_duplicate_member) << II;
3945      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3946      NewID->setInvalidDecl();
3947    }
3948  }
3949
3950  // Process attributes attached to the ivar.
3951  ProcessDeclAttributes(NewID, D);
3952
3953  if (D.isInvalidType())
3954    NewID->setInvalidDecl();
3955
3956  if (II) {
3957    // FIXME: When interfaces are DeclContexts, we'll need to add
3958    // these to the interface.
3959    S->AddDecl(DeclPtrTy::make(NewID));
3960    IdResolver.AddDecl(NewID);
3961  }
3962
3963  return DeclPtrTy::make(NewID);
3964}
3965
3966void Sema::ActOnFields(Scope* S,
3967                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3968                       DeclPtrTy *Fields, unsigned NumFields,
3969                       SourceLocation LBrac, SourceLocation RBrac,
3970                       AttributeList *Attr) {
3971  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3972  assert(EnclosingDecl && "missing record or interface decl");
3973
3974  // If the decl this is being inserted into is invalid, then it may be a
3975  // redeclaration or some other bogus case.  Don't try to add fields to it.
3976  if (EnclosingDecl->isInvalidDecl()) {
3977    // FIXME: Deallocate fields?
3978    return;
3979  }
3980
3981
3982  // Verify that all the fields are okay.
3983  unsigned NumNamedMembers = 0;
3984  llvm::SmallVector<FieldDecl*, 32> RecFields;
3985
3986  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3987  for (unsigned i = 0; i != NumFields; ++i) {
3988    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3989
3990    // Get the type for the field.
3991    Type *FDTy = FD->getType().getTypePtr();
3992
3993    if (!FD->isAnonymousStructOrUnion()) {
3994      // Remember all fields written by the user.
3995      RecFields.push_back(FD);
3996    }
3997
3998    // If the field is already invalid for some reason, don't emit more
3999    // diagnostics about it.
4000    if (FD->isInvalidDecl())
4001      continue;
4002
4003    // C99 6.7.2.1p2:
4004    //   A structure or union shall not contain a member with
4005    //   incomplete or function type (hence, a structure shall not
4006    //   contain an instance of itself, but may contain a pointer to
4007    //   an instance of itself), except that the last member of a
4008    //   structure with more than one named member may have incomplete
4009    //   array type; such a structure (and any union containing,
4010    //   possibly recursively, a member that is such a structure)
4011    //   shall not be a member of a structure or an element of an
4012    //   array.
4013    if (FDTy->isFunctionType()) {
4014      // Field declared as a function.
4015      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4016        << FD->getDeclName();
4017      FD->setInvalidDecl();
4018      EnclosingDecl->setInvalidDecl();
4019      continue;
4020    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4021               Record && Record->isStruct()) {
4022      // Flexible array member.
4023      if (NumNamedMembers < 1) {
4024        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4025          << FD->getDeclName();
4026        FD->setInvalidDecl();
4027        EnclosingDecl->setInvalidDecl();
4028        continue;
4029      }
4030      // Okay, we have a legal flexible array member at the end of the struct.
4031      if (Record)
4032        Record->setHasFlexibleArrayMember(true);
4033    } else if (!FDTy->isDependentType() &&
4034               RequireCompleteType(FD->getLocation(), FD->getType(),
4035                                   diag::err_field_incomplete)) {
4036      // Incomplete type
4037      FD->setInvalidDecl();
4038      EnclosingDecl->setInvalidDecl();
4039      continue;
4040    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4041      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4042        // If this is a member of a union, then entire union becomes "flexible".
4043        if (Record && Record->isUnion()) {
4044          Record->setHasFlexibleArrayMember(true);
4045        } else {
4046          // If this is a struct/class and this is not the last element, reject
4047          // it.  Note that GCC supports variable sized arrays in the middle of
4048          // structures.
4049          if (i != NumFields-1)
4050            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4051              << FD->getDeclName() << FD->getType();
4052          else {
4053            // We support flexible arrays at the end of structs in
4054            // other structs as an extension.
4055            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4056              << FD->getDeclName();
4057            if (Record)
4058              Record->setHasFlexibleArrayMember(true);
4059          }
4060        }
4061      }
4062    } else if (FDTy->isObjCInterfaceType()) {
4063      /// A field cannot be an Objective-c object
4064      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4065      FD->setInvalidDecl();
4066      EnclosingDecl->setInvalidDecl();
4067      continue;
4068    }
4069    // Keep track of the number of named members.
4070    if (FD->getIdentifier())
4071      ++NumNamedMembers;
4072  }
4073
4074  // Okay, we successfully defined 'Record'.
4075  if (Record) {
4076    Record->completeDefinition(Context);
4077  } else {
4078    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
4079    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4080      ID->setIVarList(ClsFields, RecFields.size(), Context);
4081      ID->setLocEnd(RBrac);
4082
4083      // Must enforce the rule that ivars in the base classes may not be
4084      // duplicates.
4085      if (ID->getSuperClass()) {
4086        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4087             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4088          ObjCIvarDecl* Ivar = (*IVI);
4089
4090          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4091            ObjCIvarDecl* prevIvar =
4092              ID->getSuperClass()->lookupInstanceVariable(Context, II);
4093            if (prevIvar) {
4094              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4095              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4096            }
4097          }
4098        }
4099      }
4100    } else if (ObjCImplementationDecl *IMPDecl =
4101                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4102      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4103      for (unsigned I = 0, N = RecFields.size(); I != N; ++I) {
4104        // FIXME: Set the DeclContext correctly when we build the
4105        // declarations.
4106        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4107        IMPDecl->addDecl(Context, ClsFields[I]);
4108      }
4109      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4110    }
4111  }
4112
4113  if (Attr)
4114    ProcessDeclAttributeList(Record, Attr);
4115}
4116
4117EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4118                                          EnumConstantDecl *LastEnumConst,
4119                                          SourceLocation IdLoc,
4120                                          IdentifierInfo *Id,
4121                                          ExprArg val) {
4122  Expr *Val = (Expr *)val.get();
4123
4124  llvm::APSInt EnumVal(32);
4125  QualType EltTy;
4126  if (Val && !Val->isTypeDependent()) {
4127    // Make sure to promote the operand type to int.
4128    UsualUnaryConversions(Val);
4129    if (Val != val.get()) {
4130      val.release();
4131      val = Val;
4132    }
4133
4134    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4135    SourceLocation ExpLoc;
4136    if (!Val->isValueDependent() &&
4137        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4138      Val = 0;
4139    } else {
4140      EltTy = Val->getType();
4141    }
4142  }
4143
4144  if (!Val) {
4145    if (LastEnumConst) {
4146      // Assign the last value + 1.
4147      EnumVal = LastEnumConst->getInitVal();
4148      ++EnumVal;
4149
4150      // Check for overflow on increment.
4151      if (EnumVal < LastEnumConst->getInitVal())
4152        Diag(IdLoc, diag::warn_enum_value_overflow);
4153
4154      EltTy = LastEnumConst->getType();
4155    } else {
4156      // First value, set to zero.
4157      EltTy = Context.IntTy;
4158      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4159    }
4160  }
4161
4162  val.release();
4163  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4164                                  Val, EnumVal);
4165}
4166
4167
4168Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4169                                        DeclPtrTy lastEnumConst,
4170                                        SourceLocation IdLoc,
4171                                        IdentifierInfo *Id,
4172                                        SourceLocation EqualLoc, ExprTy *val) {
4173  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4174  EnumConstantDecl *LastEnumConst =
4175    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4176  Expr *Val = static_cast<Expr*>(val);
4177
4178  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4179  // we find one that is.
4180  S = getNonFieldDeclScope(S);
4181
4182  // Verify that there isn't already something declared with this name in this
4183  // scope.
4184  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4185  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4186    // Maybe we will complain about the shadowed template parameter.
4187    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4188    // Just pretend that we didn't see the previous declaration.
4189    PrevDecl = 0;
4190  }
4191
4192  if (PrevDecl) {
4193    // When in C++, we may get a TagDecl with the same name; in this case the
4194    // enum constant will 'hide' the tag.
4195    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4196           "Received TagDecl when not in C++!");
4197    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4198      if (isa<EnumConstantDecl>(PrevDecl))
4199        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4200      else
4201        Diag(IdLoc, diag::err_redefinition) << Id;
4202      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4203      if (Val) Val->Destroy(Context);
4204      return DeclPtrTy();
4205    }
4206  }
4207
4208  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4209                                            IdLoc, Id, Owned(Val));
4210
4211  // Register this decl in the current scope stack.
4212  if (New)
4213    PushOnScopeChains(New, S);
4214
4215  return DeclPtrTy::make(New);
4216}
4217
4218// FIXME: For consistency with ActOnFields(), we should have the parser
4219// pass in the source location for the left/right braces.
4220void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
4221                         DeclPtrTy *Elements, unsigned NumElements) {
4222  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4223  QualType EnumType = Context.getTypeDeclType(Enum);
4224
4225  // TODO: If the result value doesn't fit in an int, it must be a long or long
4226  // long value.  ISO C does not support this, but GCC does as an extension,
4227  // emit a warning.
4228  unsigned IntWidth = Context.Target.getIntWidth();
4229
4230  // Verify that all the values are okay, compute the size of the values, and
4231  // reverse the list.
4232  unsigned NumNegativeBits = 0;
4233  unsigned NumPositiveBits = 0;
4234
4235  // Keep track of whether all elements have type int.
4236  bool AllElementsInt = true;
4237
4238  for (unsigned i = 0; i != NumElements; ++i) {
4239    EnumConstantDecl *ECD =
4240      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4241    if (!ECD) continue;  // Already issued a diagnostic.
4242
4243    // If the enum value doesn't fit in an int, emit an extension warning.
4244    const llvm::APSInt &InitVal = ECD->getInitVal();
4245    assert(InitVal.getBitWidth() >= IntWidth &&
4246           "Should have promoted value to int");
4247    if (InitVal.getBitWidth() > IntWidth) {
4248      llvm::APSInt V(InitVal);
4249      V.trunc(IntWidth);
4250      V.extend(InitVal.getBitWidth());
4251      if (V != InitVal)
4252        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4253          << InitVal.toString(10);
4254    }
4255
4256    // Keep track of the size of positive and negative values.
4257    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4258      NumPositiveBits = std::max(NumPositiveBits,
4259                                 (unsigned)InitVal.getActiveBits());
4260    else
4261      NumNegativeBits = std::max(NumNegativeBits,
4262                                 (unsigned)InitVal.getMinSignedBits());
4263
4264    // Keep track of whether every enum element has type int (very commmon).
4265    if (AllElementsInt)
4266      AllElementsInt = ECD->getType() == Context.IntTy;
4267  }
4268
4269  // Figure out the type that should be used for this enum.
4270  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4271  QualType BestType;
4272  unsigned BestWidth;
4273
4274  if (NumNegativeBits) {
4275    // If there is a negative value, figure out the smallest integer type (of
4276    // int/long/longlong) that fits.
4277    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4278      BestType = Context.IntTy;
4279      BestWidth = IntWidth;
4280    } else {
4281      BestWidth = Context.Target.getLongWidth();
4282
4283      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4284        BestType = Context.LongTy;
4285      else {
4286        BestWidth = Context.Target.getLongLongWidth();
4287
4288        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4289          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4290        BestType = Context.LongLongTy;
4291      }
4292    }
4293  } else {
4294    // If there is no negative value, figure out which of uint, ulong, ulonglong
4295    // fits.
4296    if (NumPositiveBits <= IntWidth) {
4297      BestType = Context.UnsignedIntTy;
4298      BestWidth = IntWidth;
4299    } else if (NumPositiveBits <=
4300               (BestWidth = Context.Target.getLongWidth())) {
4301      BestType = Context.UnsignedLongTy;
4302    } else {
4303      BestWidth = Context.Target.getLongLongWidth();
4304      assert(NumPositiveBits <= BestWidth &&
4305             "How could an initializer get larger than ULL?");
4306      BestType = Context.UnsignedLongLongTy;
4307    }
4308  }
4309
4310  // Loop over all of the enumerator constants, changing their types to match
4311  // the type of the enum if needed.
4312  for (unsigned i = 0; i != NumElements; ++i) {
4313    EnumConstantDecl *ECD =
4314      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4315    if (!ECD) continue;  // Already issued a diagnostic.
4316
4317    // Standard C says the enumerators have int type, but we allow, as an
4318    // extension, the enumerators to be larger than int size.  If each
4319    // enumerator value fits in an int, type it as an int, otherwise type it the
4320    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4321    // that X has type 'int', not 'unsigned'.
4322    if (ECD->getType() == Context.IntTy) {
4323      // Make sure the init value is signed.
4324      llvm::APSInt IV = ECD->getInitVal();
4325      IV.setIsSigned(true);
4326      ECD->setInitVal(IV);
4327
4328      if (getLangOptions().CPlusPlus)
4329        // C++ [dcl.enum]p4: Following the closing brace of an
4330        // enum-specifier, each enumerator has the type of its
4331        // enumeration.
4332        ECD->setType(EnumType);
4333      continue;  // Already int type.
4334    }
4335
4336    // Determine whether the value fits into an int.
4337    llvm::APSInt InitVal = ECD->getInitVal();
4338    bool FitsInInt;
4339    if (InitVal.isUnsigned() || !InitVal.isNegative())
4340      FitsInInt = InitVal.getActiveBits() < IntWidth;
4341    else
4342      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4343
4344    // If it fits into an integer type, force it.  Otherwise force it to match
4345    // the enum decl type.
4346    QualType NewTy;
4347    unsigned NewWidth;
4348    bool NewSign;
4349    if (FitsInInt) {
4350      NewTy = Context.IntTy;
4351      NewWidth = IntWidth;
4352      NewSign = true;
4353    } else if (ECD->getType() == BestType) {
4354      // Already the right type!
4355      if (getLangOptions().CPlusPlus)
4356        // C++ [dcl.enum]p4: Following the closing brace of an
4357        // enum-specifier, each enumerator has the type of its
4358        // enumeration.
4359        ECD->setType(EnumType);
4360      continue;
4361    } else {
4362      NewTy = BestType;
4363      NewWidth = BestWidth;
4364      NewSign = BestType->isSignedIntegerType();
4365    }
4366
4367    // Adjust the APSInt value.
4368    InitVal.extOrTrunc(NewWidth);
4369    InitVal.setIsSigned(NewSign);
4370    ECD->setInitVal(InitVal);
4371
4372    // Adjust the Expr initializer and type.
4373    if (ECD->getInitExpr())
4374      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4375                                                      /*isLvalue=*/false));
4376    if (getLangOptions().CPlusPlus)
4377      // C++ [dcl.enum]p4: Following the closing brace of an
4378      // enum-specifier, each enumerator has the type of its
4379      // enumeration.
4380      ECD->setType(EnumType);
4381    else
4382      ECD->setType(NewTy);
4383  }
4384
4385  Enum->completeDefinition(Context, BestType);
4386}
4387
4388Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4389                                            ExprArg expr) {
4390  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4391
4392  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4393                                                  Loc, AsmString));
4394}
4395