SemaDecl.cpp revision f01fdff97b245caac98100d232c760b4d0531411
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/StmtCXX.h"
22#include "clang/Parse/DeclSpec.h"
23#include "clang/Basic/TargetInfo.h"
24#include "clang/Basic/SourceManager.h"
25// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
26#include "clang/Lex/Preprocessor.h"
27#include "clang/Lex/HeaderSearch.h"
28#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/STLExtras.h"
30#include <algorithm>
31#include <functional>
32using namespace clang;
33
34/// getDeclName - Return a pretty name for the specified decl if possible, or
35/// an empty string if not.  This is used for pretty crash reporting.
36std::string Sema::getDeclName(DeclPtrTy d) {
37  Decl *D = d.getAs<Decl>();
38  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
39    return DN->getQualifiedNameAsString();
40  return "";
41}
42
43Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
44  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
45}
46
47/// \brief If the identifier refers to a type name within this scope,
48/// return the declaration of that type.
49///
50/// This routine performs ordinary name lookup of the identifier II
51/// within the given scope, with optional C++ scope specifier SS, to
52/// determine whether the name refers to a type. If so, returns an
53/// opaque pointer (actually a QualType) corresponding to that
54/// type. Otherwise, returns NULL.
55///
56/// If name lookup results in an ambiguity, this routine will complain
57/// and then return NULL.
58Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
59                                Scope *S, const CXXScopeSpec *SS) {
60  // C++ [temp.res]p3:
61  //   A qualified-id that refers to a type and in which the
62  //   nested-name-specifier depends on a template-parameter (14.6.2)
63  //   shall be prefixed by the keyword typename to indicate that the
64  //   qualified-id denotes a type, forming an
65  //   elaborated-type-specifier (7.1.5.3).
66  //
67  // We therefore do not perform any name lookup up SS is a dependent
68  // scope name. FIXME: we will need to perform a special kind of
69  // lookup if the scope specifier names a member of the current
70  // instantiation.
71  if (SS && isDependentScopeSpecifier(*SS))
72    return 0;
73
74  NamedDecl *IIDecl = 0;
75  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
76                                         false, false);
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      T = Context.getTypeDeclType(TD);
128    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
129      // Check whether we can use this interface.
130      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
131
132      T = Context.getObjCInterfaceType(IDecl);
133    } else
134      return 0;
135
136    if (SS)
137      T = getQualifiedNameType(*SS, T);
138
139    return T.getAsOpaquePtr();
140  }
141
142  return 0;
143}
144
145/// isTagName() - This method is called *for error recovery purposes only*
146/// to determine if the specified name is a valid tag name ("struct foo").  If
147/// so, this returns the TST for the tag corresponding to it (TST_enum,
148/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
149/// where the user forgot to specify the tag.
150DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
151  // Do a tag name lookup in this scope.
152  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
153  if (R.getKind() == LookupResult::Found)
154    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
155      switch (TD->getTagKind()) {
156      case TagDecl::TK_struct: return DeclSpec::TST_struct;
157      case TagDecl::TK_union:  return DeclSpec::TST_union;
158      case TagDecl::TK_class:  return DeclSpec::TST_class;
159      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
160      }
161    }
162
163  return DeclSpec::TST_unspecified;
164}
165
166
167
168DeclContext *Sema::getContainingDC(DeclContext *DC) {
169  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
170    // A C++ out-of-line method will return to the file declaration context.
171    if (MD->isOutOfLineDefinition())
172      return MD->getLexicalDeclContext();
173
174    // A C++ inline method is parsed *after* the topmost class it was declared
175    // in is fully parsed (it's "complete").
176    // The parsing of a C++ inline method happens at the declaration context of
177    // the topmost (non-nested) class it is lexically declared in.
178    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
179    DC = MD->getParent();
180    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
181      DC = RD;
182
183    // Return the declaration context of the topmost class the inline method is
184    // declared in.
185    return DC;
186  }
187
188  if (isa<ObjCMethodDecl>(DC))
189    return Context.getTranslationUnitDecl();
190
191  return DC->getLexicalParent();
192}
193
194void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
195  assert(getContainingDC(DC) == CurContext &&
196      "The next DeclContext should be lexically contained in the current one.");
197  CurContext = DC;
198  S->setEntity(DC);
199}
200
201void Sema::PopDeclContext() {
202  assert(CurContext && "DeclContext imbalance!");
203
204  CurContext = getContainingDC(CurContext);
205}
206
207/// \brief Determine whether we allow overloading of the function
208/// PrevDecl with another declaration.
209///
210/// This routine determines whether overloading is possible, not
211/// whether some new function is actually an overload. It will return
212/// true in C++ (where we can always provide overloads) or, as an
213/// extension, in C when the previous function is already an
214/// overloaded function declaration or has the "overloadable"
215/// attribute.
216static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
217  if (Context.getLangOptions().CPlusPlus)
218    return true;
219
220  if (isa<OverloadedFunctionDecl>(PrevDecl))
221    return true;
222
223  return PrevDecl->getAttr<OverloadableAttr>() != 0;
224}
225
226/// Add this decl to the scope shadowed decl chains.
227void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
228  // Move up the scope chain until we find the nearest enclosing
229  // non-transparent context. The declaration will be introduced into this
230  // scope.
231  while (S->getEntity() &&
232         ((DeclContext *)S->getEntity())->isTransparentContext())
233    S = S->getParent();
234
235  S->AddDecl(DeclPtrTy::make(D));
236
237  // Add scoped declarations into their context, so that they can be
238  // found later. Declarations without a context won't be inserted
239  // into any context.
240  CurContext->addDecl(Context, D);
241
242  // C++ [basic.scope]p4:
243  //   -- exactly one declaration shall declare a class name or
244  //   enumeration name that is not a typedef name and the other
245  //   declarations shall all refer to the same object or
246  //   enumerator, or all refer to functions and function templates;
247  //   in this case the class name or enumeration name is hidden.
248  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
249    // We are pushing the name of a tag (enum or class).
250    if (CurContext->getLookupContext()
251          == TD->getDeclContext()->getLookupContext()) {
252      // We're pushing the tag into the current context, which might
253      // require some reshuffling in the identifier resolver.
254      IdentifierResolver::iterator
255        I = IdResolver.begin(TD->getDeclName()),
256        IEnd = IdResolver.end();
257      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
258        NamedDecl *PrevDecl = *I;
259        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
260             PrevDecl = *I, ++I) {
261          if (TD->declarationReplaces(*I)) {
262            // This is a redeclaration. Remove it from the chain and
263            // break out, so that we'll add in the shadowed
264            // declaration.
265            S->RemoveDecl(DeclPtrTy::make(*I));
266            if (PrevDecl == *I) {
267              IdResolver.RemoveDecl(*I);
268              IdResolver.AddDecl(TD);
269              return;
270            } else {
271              IdResolver.RemoveDecl(*I);
272              break;
273            }
274          }
275        }
276
277        // There is already a declaration with the same name in the same
278        // scope, which is not a tag declaration. It must be found
279        // before we find the new declaration, so insert the new
280        // declaration at the end of the chain.
281        IdResolver.AddShadowedDecl(TD, PrevDecl);
282
283        return;
284      }
285    }
286  } else if (isa<FunctionDecl>(D) &&
287             AllowOverloadingOfFunction(D, Context)) {
288    // We are pushing the name of a function, which might be an
289    // overloaded name.
290    FunctionDecl *FD = cast<FunctionDecl>(D);
291    IdentifierResolver::iterator Redecl
292      = std::find_if(IdResolver.begin(FD->getDeclName()),
293                     IdResolver.end(),
294                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
295                                  FD));
296    if (Redecl != IdResolver.end() &&
297        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
298      // There is already a declaration of a function on our
299      // IdResolver chain. Replace it with this declaration.
300      S->RemoveDecl(DeclPtrTy::make(*Redecl));
301      IdResolver.RemoveDecl(*Redecl);
302    }
303  } else if (isa<ObjCInterfaceDecl>(D)) {
304    // We're pushing an Objective-C interface into the current
305    // context. If there is already an alias declaration, remove it first.
306    for (IdentifierResolver::iterator
307           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
308         I != IEnd; ++I) {
309      if (isa<ObjCCompatibleAliasDecl>(*I)) {
310        S->RemoveDecl(DeclPtrTy::make(*I));
311        IdResolver.RemoveDecl(*I);
312        break;
313      }
314    }
315  }
316
317  IdResolver.AddDecl(D);
318}
319
320void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
321  if (S->decl_empty()) return;
322  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
323	 "Scope shouldn't contain decls!");
324
325  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
326       I != E; ++I) {
327    Decl *TmpD = (*I).getAs<Decl>();
328    assert(TmpD && "This decl didn't get pushed??");
329
330    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
331    NamedDecl *D = cast<NamedDecl>(TmpD);
332
333    if (!D->getDeclName()) continue;
334
335    // Remove this name from our lexical scope.
336    IdResolver.RemoveDecl(D);
337  }
338}
339
340/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
341/// return 0 if one not found.
342ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
343  // The third "scope" argument is 0 since we aren't enabling lazy built-in
344  // creation from this context.
345  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
346
347  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
348}
349
350/// getNonFieldDeclScope - Retrieves the innermost scope, starting
351/// from S, where a non-field would be declared. This routine copes
352/// with the difference between C and C++ scoping rules in structs and
353/// unions. For example, the following code is well-formed in C but
354/// ill-formed in C++:
355/// @code
356/// struct S6 {
357///   enum { BAR } e;
358/// };
359///
360/// void test_S6() {
361///   struct S6 a;
362///   a.e = BAR;
363/// }
364/// @endcode
365/// For the declaration of BAR, this routine will return a different
366/// scope. The scope S will be the scope of the unnamed enumeration
367/// within S6. In C++, this routine will return the scope associated
368/// with S6, because the enumeration's scope is a transparent
369/// context but structures can contain non-field names. In C, this
370/// routine will return the translation unit scope, since the
371/// enumeration's scope is a transparent context and structures cannot
372/// contain non-field names.
373Scope *Sema::getNonFieldDeclScope(Scope *S) {
374  while (((S->getFlags() & Scope::DeclScope) == 0) ||
375         (S->getEntity() &&
376          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
377         (S->isClassScope() && !getLangOptions().CPlusPlus))
378    S = S->getParent();
379  return S;
380}
381
382void Sema::InitBuiltinVaListType() {
383  if (!Context.getBuiltinVaListType().isNull())
384    return;
385
386  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
387  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
388  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
389  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
390}
391
392/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
393/// file scope.  lazily create a decl for it. ForRedeclaration is true
394/// if we're creating this built-in in anticipation of redeclaring the
395/// built-in.
396NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
397                                     Scope *S, bool ForRedeclaration,
398                                     SourceLocation Loc) {
399  Builtin::ID BID = (Builtin::ID)bid;
400
401  if (Context.BuiltinInfo.hasVAListUse(BID))
402    InitBuiltinVaListType();
403
404  Builtin::Context::GetBuiltinTypeError Error;
405  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
406  switch (Error) {
407  case Builtin::Context::GE_None:
408    // Okay
409    break;
410
411  case Builtin::Context::GE_Missing_FILE:
412    if (ForRedeclaration)
413      Diag(Loc, diag::err_implicit_decl_requires_stdio)
414        << Context.BuiltinInfo.GetName(BID);
415    return 0;
416  }
417
418  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
419    Diag(Loc, diag::ext_implicit_lib_function_decl)
420      << Context.BuiltinInfo.GetName(BID)
421      << R;
422    if (Context.BuiltinInfo.getHeaderName(BID) &&
423        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
424          != Diagnostic::Ignored)
425      Diag(Loc, diag::note_please_include_header)
426        << Context.BuiltinInfo.getHeaderName(BID)
427        << Context.BuiltinInfo.GetName(BID);
428  }
429
430  FunctionDecl *New = FunctionDecl::Create(Context,
431                                           Context.getTranslationUnitDecl(),
432                                           Loc, II, R,
433                                           FunctionDecl::Extern, false,
434                                           /*hasPrototype=*/true);
435  New->setImplicit();
436
437  // Create Decl objects for each parameter, adding them to the
438  // FunctionDecl.
439  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
440    llvm::SmallVector<ParmVarDecl*, 16> Params;
441    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
442      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
443                                           FT->getArgType(i), VarDecl::None, 0));
444    New->setParams(Context, &Params[0], Params.size());
445  }
446
447  AddKnownFunctionAttributes(New);
448
449  // TUScope is the translation-unit scope to insert this function into.
450  // FIXME: This is hideous. We need to teach PushOnScopeChains to
451  // relate Scopes to DeclContexts, and probably eliminate CurContext
452  // entirely, but we're not there yet.
453  DeclContext *SavedContext = CurContext;
454  CurContext = Context.getTranslationUnitDecl();
455  PushOnScopeChains(New, TUScope);
456  CurContext = SavedContext;
457  return New;
458}
459
460/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
461/// everything from the standard library is defined.
462NamespaceDecl *Sema::GetStdNamespace() {
463  if (!StdNamespace) {
464    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
465    DeclContext *Global = Context.getTranslationUnitDecl();
466    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
467    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
468  }
469  return StdNamespace;
470}
471
472/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
473/// same name and scope as a previous declaration 'Old'.  Figure out
474/// how to resolve this situation, merging decls or emitting
475/// diagnostics as appropriate. If there was an error, set New to be invalid.
476///
477void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
478  // If either decl is known invalid already, set the new one to be invalid and
479  // don't bother doing any merging checks.
480  if (New->isInvalidDecl() || OldD->isInvalidDecl())
481    return New->setInvalidDecl();
482
483  bool objc_types = false;
484
485  // Allow multiple definitions for ObjC built-in typedefs.
486  // FIXME: Verify the underlying types are equivalent!
487  if (getLangOptions().ObjC1) {
488    const IdentifierInfo *TypeID = New->getIdentifier();
489    switch (TypeID->getLength()) {
490    default: break;
491    case 2:
492      if (!TypeID->isStr("id"))
493        break;
494      Context.setObjCIdType(Context.getTypeDeclType(New));
495      objc_types = true;
496      break;
497    case 5:
498      if (!TypeID->isStr("Class"))
499        break;
500      Context.setObjCClassType(Context.getTypeDeclType(New));
501      return;
502    case 3:
503      if (!TypeID->isStr("SEL"))
504        break;
505      Context.setObjCSelType(Context.getTypeDeclType(New));
506      return;
507    case 8:
508      if (!TypeID->isStr("Protocol"))
509        break;
510      Context.setObjCProtoType(New->getUnderlyingType());
511      return;
512    }
513    // Fall through - the typedef name was not a builtin type.
514  }
515  // Verify the old decl was also a type.
516  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
517  if (!Old) {
518    Diag(New->getLocation(), diag::err_redefinition_different_kind)
519      << New->getDeclName();
520    if (OldD->getLocation().isValid())
521      Diag(OldD->getLocation(), diag::note_previous_definition);
522    return New->setInvalidDecl();
523  }
524
525  // Determine the "old" type we'll use for checking and diagnostics.
526  QualType OldType;
527  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
528    OldType = OldTypedef->getUnderlyingType();
529  else
530    OldType = Context.getTypeDeclType(Old);
531
532  // If the typedef types are not identical, reject them in all languages and
533  // with any extensions enabled.
534
535  if (OldType != New->getUnderlyingType() &&
536      Context.getCanonicalType(OldType) !=
537      Context.getCanonicalType(New->getUnderlyingType())) {
538    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
539      << New->getUnderlyingType() << OldType;
540    if (Old->getLocation().isValid())
541      Diag(Old->getLocation(), diag::note_previous_definition);
542    return New->setInvalidDecl();
543  }
544
545  if (objc_types || getLangOptions().Microsoft)
546    return;
547
548  // C++ [dcl.typedef]p2:
549  //   In a given non-class scope, a typedef specifier can be used to
550  //   redefine the name of any type declared in that scope to refer
551  //   to the type to which it already refers.
552  if (getLangOptions().CPlusPlus) {
553    if (!isa<CXXRecordDecl>(CurContext))
554      return;
555    Diag(New->getLocation(), diag::err_redefinition)
556      << New->getDeclName();
557    Diag(Old->getLocation(), diag::note_previous_definition);
558    return New->setInvalidDecl();
559  }
560
561  // If we have a redefinition of a typedef in C, emit a warning.  This warning
562  // is normally mapped to an error, but can be controlled with
563  // -Wtypedef-redefinition.  If either the original was in a system header,
564  // don't emit this for compatibility with GCC.
565  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
566      Context.getSourceManager().isInSystemHeader(Old->getLocation()))
567    return;
568
569  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
570    << New->getDeclName();
571  Diag(Old->getLocation(), diag::note_previous_definition);
572  return;
573}
574
575/// DeclhasAttr - returns true if decl Declaration already has the target
576/// attribute.
577static bool DeclHasAttr(const Decl *decl, const Attr *target) {
578  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
579    if (attr->getKind() == target->getKind())
580      return true;
581
582  return false;
583}
584
585/// MergeAttributes - append attributes from the Old decl to the New one.
586static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
587  Attr *attr = const_cast<Attr*>(Old->getAttrs());
588
589  while (attr) {
590    Attr *tmp = attr;
591    attr = attr->getNext();
592
593    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
594      tmp->setInherited(true);
595      New->addAttr(tmp);
596    } else {
597      tmp->setNext(0);
598      tmp->Destroy(C);
599    }
600  }
601
602  Old->invalidateAttrs();
603}
604
605/// Used in MergeFunctionDecl to keep track of function parameters in
606/// C.
607struct GNUCompatibleParamWarning {
608  ParmVarDecl *OldParm;
609  ParmVarDecl *NewParm;
610  QualType PromotedType;
611};
612
613/// MergeFunctionDecl - We just parsed a function 'New' from
614/// declarator D which has the same name and scope as a previous
615/// declaration 'Old'.  Figure out how to resolve this situation,
616/// merging decls or emitting diagnostics as appropriate.
617///
618/// In C++, New and Old must be declarations that are not
619/// overloaded. Use IsOverload to determine whether New and Old are
620/// overloaded, and to select the Old declaration that New should be
621/// merged with.
622///
623/// Returns true if there was an error, false otherwise.
624bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
625  assert(!isa<OverloadedFunctionDecl>(OldD) &&
626         "Cannot merge with an overloaded function declaration");
627
628  // Verify the old decl was also a function.
629  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
630  if (!Old) {
631    Diag(New->getLocation(), diag::err_redefinition_different_kind)
632      << New->getDeclName();
633    Diag(OldD->getLocation(), diag::note_previous_definition);
634    return true;
635  }
636
637  // Determine whether the previous declaration was a definition,
638  // implicit declaration, or a declaration.
639  diag::kind PrevDiag;
640  if (Old->isThisDeclarationADefinition())
641    PrevDiag = diag::note_previous_definition;
642  else if (Old->isImplicit())
643    PrevDiag = diag::note_previous_implicit_declaration;
644  else
645    PrevDiag = diag::note_previous_declaration;
646
647  QualType OldQType = Context.getCanonicalType(Old->getType());
648  QualType NewQType = Context.getCanonicalType(New->getType());
649
650  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
651      New->getStorageClass() == FunctionDecl::Static &&
652      Old->getStorageClass() != FunctionDecl::Static) {
653    Diag(New->getLocation(), diag::err_static_non_static)
654      << New;
655    Diag(Old->getLocation(), PrevDiag);
656    return true;
657  }
658
659  if (getLangOptions().CPlusPlus) {
660    // (C++98 13.1p2):
661    //   Certain function declarations cannot be overloaded:
662    //     -- Function declarations that differ only in the return type
663    //        cannot be overloaded.
664    QualType OldReturnType
665      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
666    QualType NewReturnType
667      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
668    if (OldReturnType != NewReturnType) {
669      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
670      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
671      return true;
672    }
673
674    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
675    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
676    if (OldMethod && NewMethod &&
677        OldMethod->getLexicalDeclContext() ==
678          NewMethod->getLexicalDeclContext()) {
679      //    -- Member function declarations with the same name and the
680      //       same parameter types cannot be overloaded if any of them
681      //       is a static member function declaration.
682      if (OldMethod->isStatic() || NewMethod->isStatic()) {
683        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
684        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
685        return true;
686      }
687
688      // C++ [class.mem]p1:
689      //   [...] A member shall not be declared twice in the
690      //   member-specification, except that a nested class or member
691      //   class template can be declared and then later defined.
692      unsigned NewDiag;
693      if (isa<CXXConstructorDecl>(OldMethod))
694        NewDiag = diag::err_constructor_redeclared;
695      else if (isa<CXXDestructorDecl>(NewMethod))
696        NewDiag = diag::err_destructor_redeclared;
697      else if (isa<CXXConversionDecl>(NewMethod))
698        NewDiag = diag::err_conv_function_redeclared;
699      else
700        NewDiag = diag::err_member_redeclared;
701
702      Diag(New->getLocation(), NewDiag);
703      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
704    }
705
706    // (C++98 8.3.5p3):
707    //   All declarations for a function shall agree exactly in both the
708    //   return type and the parameter-type-list.
709    if (OldQType == NewQType)
710      return MergeCompatibleFunctionDecls(New, Old);
711
712    // Fall through for conflicting redeclarations and redefinitions.
713  }
714
715  // C: Function types need to be compatible, not identical. This handles
716  // duplicate function decls like "void f(int); void f(enum X);" properly.
717  if (!getLangOptions().CPlusPlus &&
718      Context.typesAreCompatible(OldQType, NewQType)) {
719    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
720    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
721    const FunctionProtoType *OldProto = 0;
722    if (isa<FunctionNoProtoType>(NewFuncType) &&
723        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
724      // The old declaration provided a function prototype, but the
725      // new declaration does not. Merge in the prototype.
726      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
727                                                 OldProto->arg_type_end());
728      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
729                                         &ParamTypes[0], ParamTypes.size(),
730                                         OldProto->isVariadic(),
731                                         OldProto->getTypeQuals());
732      New->setType(NewQType);
733      New->setInheritedPrototype();
734
735      // Synthesize a parameter for each argument type.
736      llvm::SmallVector<ParmVarDecl*, 16> Params;
737      for (FunctionProtoType::arg_type_iterator
738             ParamType = OldProto->arg_type_begin(),
739             ParamEnd = OldProto->arg_type_end();
740           ParamType != ParamEnd; ++ParamType) {
741        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
742                                                 SourceLocation(), 0,
743                                                 *ParamType, VarDecl::None,
744                                                 0);
745        Param->setImplicit();
746        Params.push_back(Param);
747      }
748
749      New->setParams(Context, &Params[0], Params.size());
750    }
751
752    return MergeCompatibleFunctionDecls(New, Old);
753  }
754
755  // GNU C permits a K&R definition to follow a prototype declaration
756  // if the declared types of the parameters in the K&R definition
757  // match the types in the prototype declaration, even when the
758  // promoted types of the parameters from the K&R definition differ
759  // from the types in the prototype. GCC then keeps the types from
760  // the prototype.
761  if (!getLangOptions().CPlusPlus &&
762      Old->hasPrototype() && !New->hasPrototype() &&
763      New->getType()->getAsFunctionProtoType() &&
764      Old->getNumParams() == New->getNumParams()) {
765    llvm::SmallVector<QualType, 16> ArgTypes;
766    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
767    const FunctionProtoType *OldProto
768      = Old->getType()->getAsFunctionProtoType();
769    const FunctionProtoType *NewProto
770      = New->getType()->getAsFunctionProtoType();
771
772    // Determine whether this is the GNU C extension.
773    bool GNUCompatible =
774      Context.typesAreCompatible(OldProto->getResultType(),
775                                 NewProto->getResultType()) &&
776      (OldProto->isVariadic() == NewProto->isVariadic());
777    for (unsigned Idx = 0, End = Old->getNumParams();
778         GNUCompatible && Idx != End; ++Idx) {
779      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
780      ParmVarDecl *NewParm = New->getParamDecl(Idx);
781      if (Context.typesAreCompatible(OldParm->getType(),
782                                     NewProto->getArgType(Idx))) {
783        ArgTypes.push_back(NewParm->getType());
784      } else if (Context.typesAreCompatible(OldParm->getType(),
785                                            NewParm->getType())) {
786        GNUCompatibleParamWarning Warn
787          = { OldParm, NewParm, NewProto->getArgType(Idx) };
788        Warnings.push_back(Warn);
789        ArgTypes.push_back(NewParm->getType());
790      } else
791        GNUCompatible = false;
792    }
793
794    if (GNUCompatible) {
795      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
796        Diag(Warnings[Warn].NewParm->getLocation(),
797             diag::ext_param_promoted_not_compatible_with_prototype)
798          << Warnings[Warn].PromotedType
799          << Warnings[Warn].OldParm->getType();
800        Diag(Warnings[Warn].OldParm->getLocation(),
801             diag::note_previous_declaration);
802      }
803
804      New->setType(Context.getFunctionType(NewProto->getResultType(),
805                                           &ArgTypes[0], ArgTypes.size(),
806                                           NewProto->isVariadic(),
807                                           NewProto->getTypeQuals()));
808      return MergeCompatibleFunctionDecls(New, Old);
809    }
810
811    // Fall through to diagnose conflicting types.
812  }
813
814  // A function that has already been declared has been redeclared or defined
815  // with a different type- show appropriate diagnostic
816  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
817    // The user has declared a builtin function with an incompatible
818    // signature.
819    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
820      // The function the user is redeclaring is a library-defined
821      // function like 'malloc' or 'printf'. Warn about the
822      // redeclaration, then pretend that we don't know about this
823      // library built-in.
824      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
825      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
826        << Old << Old->getType();
827      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
828      Old->setInvalidDecl();
829      return false;
830    }
831
832    PrevDiag = diag::note_previous_builtin_declaration;
833  }
834
835  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
836  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
837  return true;
838}
839
840/// \brief Completes the merge of two function declarations that are
841/// known to be compatible.
842///
843/// This routine handles the merging of attributes and other
844/// properties of function declarations form the old declaration to
845/// the new declaration, once we know that New is in fact a
846/// redeclaration of Old.
847///
848/// \returns false
849bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
850  // Merge the attributes
851  MergeAttributes(New, Old, Context);
852
853  // Merge the storage class.
854  New->setStorageClass(Old->getStorageClass());
855
856  // Merge "inline"
857  if (Old->isInline())
858    New->setInline(true);
859
860  // If this function declaration by itself qualifies as a C99 inline
861  // definition (C99 6.7.4p6), but the previous definition did not,
862  // then the function is not a C99 inline definition.
863  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
864    New->setC99InlineDefinition(false);
865  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
866    // Mark all preceding definitions as not being C99 inline definitions.
867    for (const FunctionDecl *Prev = Old; Prev;
868         Prev = Prev->getPreviousDeclaration())
869      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
870  }
871
872  // Merge "pure" flag.
873  if (Old->isPure())
874    New->setPure();
875
876  // Merge the "deleted" flag.
877  if (Old->isDeleted())
878    New->setDeleted();
879
880  if (getLangOptions().CPlusPlus)
881    return MergeCXXFunctionDecl(New, Old);
882
883  return false;
884}
885
886/// MergeVarDecl - We just parsed a variable 'New' which has the same name
887/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
888/// situation, merging decls or emitting diagnostics as appropriate.
889///
890/// Tentative definition rules (C99 6.9.2p2) are checked by
891/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
892/// definitions here, since the initializer hasn't been attached.
893///
894void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
895  // If either decl is invalid, make sure the new one is marked invalid and
896  // don't do any other checking.
897  if (New->isInvalidDecl() || OldD->isInvalidDecl())
898    return New->setInvalidDecl();
899
900  // Verify the old decl was also a variable.
901  VarDecl *Old = dyn_cast<VarDecl>(OldD);
902  if (!Old) {
903    Diag(New->getLocation(), diag::err_redefinition_different_kind)
904      << New->getDeclName();
905    Diag(OldD->getLocation(), diag::note_previous_definition);
906    return New->setInvalidDecl();
907  }
908
909  MergeAttributes(New, Old, Context);
910
911  // Merge the types
912  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
913  if (MergedT.isNull()) {
914    Diag(New->getLocation(), diag::err_redefinition_different_type)
915      << New->getDeclName();
916    Diag(Old->getLocation(), diag::note_previous_definition);
917    return New->setInvalidDecl();
918  }
919  New->setType(MergedT);
920
921  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
922  if (New->getStorageClass() == VarDecl::Static &&
923      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
924    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
925    Diag(Old->getLocation(), diag::note_previous_definition);
926    return New->setInvalidDecl();
927  }
928  // C99 6.2.2p4:
929  //   For an identifier declared with the storage-class specifier
930  //   extern in a scope in which a prior declaration of that
931  //   identifier is visible,23) if the prior declaration specifies
932  //   internal or external linkage, the linkage of the identifier at
933  //   the later declaration is the same as the linkage specified at
934  //   the prior declaration. If no prior declaration is visible, or
935  //   if the prior declaration specifies no linkage, then the
936  //   identifier has external linkage.
937  if (New->hasExternalStorage() && Old->hasLinkage())
938    /* Okay */;
939  else if (New->getStorageClass() != VarDecl::Static &&
940           Old->getStorageClass() == VarDecl::Static) {
941    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
942    Diag(Old->getLocation(), diag::note_previous_definition);
943    return New->setInvalidDecl();
944  }
945
946  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
947
948  // FIXME: The test for external storage here seems wrong? We still
949  // need to check for mismatches.
950  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
951      // Don't complain about out-of-line definitions of static members.
952      !(Old->getLexicalDeclContext()->isRecord() &&
953        !New->getLexicalDeclContext()->isRecord())) {
954    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
955    Diag(Old->getLocation(), diag::note_previous_definition);
956    return New->setInvalidDecl();
957  }
958
959  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
960    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
961    Diag(Old->getLocation(), diag::note_previous_definition);
962  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
963    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
964    Diag(Old->getLocation(), diag::note_previous_definition);
965  }
966
967  // Keep a chain of previous declarations.
968  New->setPreviousDeclaration(Old);
969}
970
971/// CheckParmsForFunctionDef - Check that the parameters of the given
972/// function are appropriate for the definition of a function. This
973/// takes care of any checks that cannot be performed on the
974/// declaration itself, e.g., that the types of each of the function
975/// parameters are complete.
976bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
977  bool HasInvalidParm = false;
978  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
979    ParmVarDecl *Param = FD->getParamDecl(p);
980
981    // C99 6.7.5.3p4: the parameters in a parameter type list in a
982    // function declarator that is part of a function definition of
983    // that function shall not have incomplete type.
984    //
985    // This is also C++ [dcl.fct]p6.
986    if (!Param->isInvalidDecl() &&
987        RequireCompleteType(Param->getLocation(), Param->getType(),
988                               diag::err_typecheck_decl_incomplete_type)) {
989      Param->setInvalidDecl();
990      HasInvalidParm = true;
991    }
992
993    // C99 6.9.1p5: If the declarator includes a parameter type list, the
994    // declaration of each parameter shall include an identifier.
995    if (Param->getIdentifier() == 0 &&
996        !Param->isImplicit() &&
997        !getLangOptions().CPlusPlus)
998      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
999  }
1000
1001  return HasInvalidParm;
1002}
1003
1004/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1005/// no declarator (e.g. "struct foo;") is parsed.
1006Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1007  // FIXME: Error on auto/register at file scope
1008  // FIXME: Error on inline/virtual/explicit
1009  // FIXME: Error on invalid restrict
1010  // FIXME: Warn on useless __thread
1011  // FIXME: Warn on useless const/volatile
1012  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1013  // FIXME: Warn on useless attributes
1014
1015  TagDecl *Tag = 0;
1016  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1017      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1018      DS.getTypeSpecType() == DeclSpec::TST_union ||
1019      DS.getTypeSpecType() == DeclSpec::TST_enum)
1020    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1021
1022  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1023    if (!Record->getDeclName() && Record->isDefinition() &&
1024        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1025      if (getLangOptions().CPlusPlus ||
1026          Record->getDeclContext()->isRecord())
1027        return BuildAnonymousStructOrUnion(S, DS, Record);
1028
1029      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1030        << DS.getSourceRange();
1031    }
1032
1033    // Microsoft allows unnamed struct/union fields. Don't complain
1034    // about them.
1035    // FIXME: Should we support Microsoft's extensions in this area?
1036    if (Record->getDeclName() && getLangOptions().Microsoft)
1037      return DeclPtrTy::make(Tag);
1038  }
1039
1040  if (!DS.isMissingDeclaratorOk() &&
1041      DS.getTypeSpecType() != DeclSpec::TST_error) {
1042    // Warn about typedefs of enums without names, since this is an
1043    // extension in both Microsoft an GNU.
1044    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1045        Tag && isa<EnumDecl>(Tag)) {
1046      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1047        << DS.getSourceRange();
1048      return DeclPtrTy::make(Tag);
1049    }
1050
1051    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1052      << DS.getSourceRange();
1053    return DeclPtrTy();
1054  }
1055
1056  return DeclPtrTy::make(Tag);
1057}
1058
1059/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1060/// anonymous struct or union AnonRecord into the owning context Owner
1061/// and scope S. This routine will be invoked just after we realize
1062/// that an unnamed union or struct is actually an anonymous union or
1063/// struct, e.g.,
1064///
1065/// @code
1066/// union {
1067///   int i;
1068///   float f;
1069/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1070///    // f into the surrounding scope.x
1071/// @endcode
1072///
1073/// This routine is recursive, injecting the names of nested anonymous
1074/// structs/unions into the owning context and scope as well.
1075bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1076                                               RecordDecl *AnonRecord) {
1077  bool Invalid = false;
1078  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1079                               FEnd = AnonRecord->field_end(Context);
1080       F != FEnd; ++F) {
1081    if ((*F)->getDeclName()) {
1082      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1083                                                LookupOrdinaryName, true);
1084      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1085        // C++ [class.union]p2:
1086        //   The names of the members of an anonymous union shall be
1087        //   distinct from the names of any other entity in the
1088        //   scope in which the anonymous union is declared.
1089        unsigned diagKind
1090          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1091                                 : diag::err_anonymous_struct_member_redecl;
1092        Diag((*F)->getLocation(), diagKind)
1093          << (*F)->getDeclName();
1094        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1095        Invalid = true;
1096      } else {
1097        // C++ [class.union]p2:
1098        //   For the purpose of name lookup, after the anonymous union
1099        //   definition, the members of the anonymous union are
1100        //   considered to have been defined in the scope in which the
1101        //   anonymous union is declared.
1102        Owner->makeDeclVisibleInContext(Context, *F);
1103        S->AddDecl(DeclPtrTy::make(*F));
1104        IdResolver.AddDecl(*F);
1105      }
1106    } else if (const RecordType *InnerRecordType
1107                 = (*F)->getType()->getAsRecordType()) {
1108      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1109      if (InnerRecord->isAnonymousStructOrUnion())
1110        Invalid = Invalid ||
1111          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1112    }
1113  }
1114
1115  return Invalid;
1116}
1117
1118/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1119/// anonymous structure or union. Anonymous unions are a C++ feature
1120/// (C++ [class.union]) and a GNU C extension; anonymous structures
1121/// are a GNU C and GNU C++ extension.
1122Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1123                                                  RecordDecl *Record) {
1124  DeclContext *Owner = Record->getDeclContext();
1125
1126  // Diagnose whether this anonymous struct/union is an extension.
1127  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1128    Diag(Record->getLocation(), diag::ext_anonymous_union);
1129  else if (!Record->isUnion())
1130    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1131
1132  // C and C++ require different kinds of checks for anonymous
1133  // structs/unions.
1134  bool Invalid = false;
1135  if (getLangOptions().CPlusPlus) {
1136    const char* PrevSpec = 0;
1137    // C++ [class.union]p3:
1138    //   Anonymous unions declared in a named namespace or in the
1139    //   global namespace shall be declared static.
1140    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1141        (isa<TranslationUnitDecl>(Owner) ||
1142         (isa<NamespaceDecl>(Owner) &&
1143          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1144      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1145      Invalid = true;
1146
1147      // Recover by adding 'static'.
1148      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1149    }
1150    // C++ [class.union]p3:
1151    //   A storage class is not allowed in a declaration of an
1152    //   anonymous union in a class scope.
1153    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1154             isa<RecordDecl>(Owner)) {
1155      Diag(DS.getStorageClassSpecLoc(),
1156           diag::err_anonymous_union_with_storage_spec);
1157      Invalid = true;
1158
1159      // Recover by removing the storage specifier.
1160      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1161                             PrevSpec);
1162    }
1163
1164    // C++ [class.union]p2:
1165    //   The member-specification of an anonymous union shall only
1166    //   define non-static data members. [Note: nested types and
1167    //   functions cannot be declared within an anonymous union. ]
1168    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1169                                 MemEnd = Record->decls_end(Context);
1170         Mem != MemEnd; ++Mem) {
1171      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1172        // C++ [class.union]p3:
1173        //   An anonymous union shall not have private or protected
1174        //   members (clause 11).
1175        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1176          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1177            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1178          Invalid = true;
1179        }
1180      } else if ((*Mem)->isImplicit()) {
1181        // Any implicit members are fine.
1182      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1183        // This is a type that showed up in an
1184        // elaborated-type-specifier inside the anonymous struct or
1185        // union, but which actually declares a type outside of the
1186        // anonymous struct or union. It's okay.
1187      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1188        if (!MemRecord->isAnonymousStructOrUnion() &&
1189            MemRecord->getDeclName()) {
1190          // This is a nested type declaration.
1191          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1192            << (int)Record->isUnion();
1193          Invalid = true;
1194        }
1195      } else {
1196        // We have something that isn't a non-static data
1197        // member. Complain about it.
1198        unsigned DK = diag::err_anonymous_record_bad_member;
1199        if (isa<TypeDecl>(*Mem))
1200          DK = diag::err_anonymous_record_with_type;
1201        else if (isa<FunctionDecl>(*Mem))
1202          DK = diag::err_anonymous_record_with_function;
1203        else if (isa<VarDecl>(*Mem))
1204          DK = diag::err_anonymous_record_with_static;
1205        Diag((*Mem)->getLocation(), DK)
1206            << (int)Record->isUnion();
1207          Invalid = true;
1208      }
1209    }
1210  }
1211
1212  if (!Record->isUnion() && !Owner->isRecord()) {
1213    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1214      << (int)getLangOptions().CPlusPlus;
1215    Invalid = true;
1216  }
1217
1218  // Create a declaration for this anonymous struct/union.
1219  NamedDecl *Anon = 0;
1220  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1221    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1222                             /*IdentifierInfo=*/0,
1223                             Context.getTypeDeclType(Record),
1224                             /*BitWidth=*/0, /*Mutable=*/false);
1225    Anon->setAccess(AS_public);
1226    if (getLangOptions().CPlusPlus)
1227      FieldCollector->Add(cast<FieldDecl>(Anon));
1228  } else {
1229    VarDecl::StorageClass SC;
1230    switch (DS.getStorageClassSpec()) {
1231    default: assert(0 && "Unknown storage class!");
1232    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1233    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1234    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1235    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1236    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1237    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1238    case DeclSpec::SCS_mutable:
1239      // mutable can only appear on non-static class members, so it's always
1240      // an error here
1241      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1242      Invalid = true;
1243      SC = VarDecl::None;
1244      break;
1245    }
1246
1247    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1248                           /*IdentifierInfo=*/0,
1249                           Context.getTypeDeclType(Record),
1250                           SC, DS.getSourceRange().getBegin());
1251  }
1252  Anon->setImplicit();
1253
1254  // Add the anonymous struct/union object to the current
1255  // context. We'll be referencing this object when we refer to one of
1256  // its members.
1257  Owner->addDecl(Context, Anon);
1258
1259  // Inject the members of the anonymous struct/union into the owning
1260  // context and into the identifier resolver chain for name lookup
1261  // purposes.
1262  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1263    Invalid = true;
1264
1265  // Mark this as an anonymous struct/union type. Note that we do not
1266  // do this until after we have already checked and injected the
1267  // members of this anonymous struct/union type, because otherwise
1268  // the members could be injected twice: once by DeclContext when it
1269  // builds its lookup table, and once by
1270  // InjectAnonymousStructOrUnionMembers.
1271  Record->setAnonymousStructOrUnion(true);
1272
1273  if (Invalid)
1274    Anon->setInvalidDecl();
1275
1276  return DeclPtrTy::make(Anon);
1277}
1278
1279
1280/// GetNameForDeclarator - Determine the full declaration name for the
1281/// given Declarator.
1282DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1283  switch (D.getKind()) {
1284  case Declarator::DK_Abstract:
1285    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1286    return DeclarationName();
1287
1288  case Declarator::DK_Normal:
1289    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1290    return DeclarationName(D.getIdentifier());
1291
1292  case Declarator::DK_Constructor: {
1293    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1294    Ty = Context.getCanonicalType(Ty);
1295    return Context.DeclarationNames.getCXXConstructorName(Ty);
1296  }
1297
1298  case Declarator::DK_Destructor: {
1299    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1300    Ty = Context.getCanonicalType(Ty);
1301    return Context.DeclarationNames.getCXXDestructorName(Ty);
1302  }
1303
1304  case Declarator::DK_Conversion: {
1305    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1306    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1307    Ty = Context.getCanonicalType(Ty);
1308    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1309  }
1310
1311  case Declarator::DK_Operator:
1312    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1313    return Context.DeclarationNames.getCXXOperatorName(
1314                                                D.getOverloadedOperator());
1315  }
1316
1317  assert(false && "Unknown name kind");
1318  return DeclarationName();
1319}
1320
1321/// isNearlyMatchingFunction - Determine whether the C++ functions
1322/// Declaration and Definition are "nearly" matching. This heuristic
1323/// is used to improve diagnostics in the case where an out-of-line
1324/// function definition doesn't match any declaration within
1325/// the class or namespace.
1326static bool isNearlyMatchingFunction(ASTContext &Context,
1327                                     FunctionDecl *Declaration,
1328                                     FunctionDecl *Definition) {
1329  if (Declaration->param_size() != Definition->param_size())
1330    return false;
1331  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1332    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1333    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1334
1335    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1336    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1337    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1338      return false;
1339  }
1340
1341  return true;
1342}
1343
1344Sema::DeclPtrTy
1345Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1346  DeclarationName Name = GetNameForDeclarator(D);
1347
1348  // All of these full declarators require an identifier.  If it doesn't have
1349  // one, the ParsedFreeStandingDeclSpec action should be used.
1350  if (!Name) {
1351    if (!D.isInvalidType())  // Reject this if we think it is valid.
1352      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1353           diag::err_declarator_need_ident)
1354        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1355    return DeclPtrTy();
1356  }
1357
1358  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1359  // we find one that is.
1360  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1361         (S->getFlags() & Scope::TemplateParamScope) != 0)
1362    S = S->getParent();
1363
1364  DeclContext *DC;
1365  NamedDecl *PrevDecl;
1366  NamedDecl *New;
1367
1368  QualType R = GetTypeForDeclarator(D, S);
1369
1370  // See if this is a redefinition of a variable in the same scope.
1371  if (D.getCXXScopeSpec().isInvalid()) {
1372    DC = CurContext;
1373    PrevDecl = 0;
1374    D.setInvalidType();
1375  } else if (!D.getCXXScopeSpec().isSet()) {
1376    LookupNameKind NameKind = LookupOrdinaryName;
1377
1378    // If the declaration we're planning to build will be a function
1379    // or object with linkage, then look for another declaration with
1380    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1381    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1382      /* Do nothing*/;
1383    else if (R->isFunctionType()) {
1384      if (CurContext->isFunctionOrMethod())
1385        NameKind = LookupRedeclarationWithLinkage;
1386    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1387      NameKind = LookupRedeclarationWithLinkage;
1388
1389    DC = CurContext;
1390    PrevDecl = LookupName(S, Name, NameKind, true,
1391                          D.getDeclSpec().getStorageClassSpec() !=
1392                            DeclSpec::SCS_static,
1393                          D.getIdentifierLoc());
1394  } else { // Something like "int foo::x;"
1395    DC = computeDeclContext(D.getCXXScopeSpec());
1396    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1397    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1398
1399    // C++ 7.3.1.2p2:
1400    // Members (including explicit specializations of templates) of a named
1401    // namespace can also be defined outside that namespace by explicit
1402    // qualification of the name being defined, provided that the entity being
1403    // defined was already declared in the namespace and the definition appears
1404    // after the point of declaration in a namespace that encloses the
1405    // declarations namespace.
1406    //
1407    // Note that we only check the context at this point. We don't yet
1408    // have enough information to make sure that PrevDecl is actually
1409    // the declaration we want to match. For example, given:
1410    //
1411    //   class X {
1412    //     void f();
1413    //     void f(float);
1414    //   };
1415    //
1416    //   void X::f(int) { } // ill-formed
1417    //
1418    // In this case, PrevDecl will point to the overload set
1419    // containing the two f's declared in X, but neither of them
1420    // matches.
1421
1422    // First check whether we named the global scope.
1423    if (isa<TranslationUnitDecl>(DC)) {
1424      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1425        << Name << D.getCXXScopeSpec().getRange();
1426    } else if (!CurContext->Encloses(DC)) {
1427      // The qualifying scope doesn't enclose the original declaration.
1428      // Emit diagnostic based on current scope.
1429      SourceLocation L = D.getIdentifierLoc();
1430      SourceRange R = D.getCXXScopeSpec().getRange();
1431      if (isa<FunctionDecl>(CurContext))
1432        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1433      else
1434        Diag(L, diag::err_invalid_declarator_scope)
1435          << Name << cast<NamedDecl>(DC) << R;
1436      D.setInvalidType();
1437    }
1438  }
1439
1440  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1441    // Maybe we will complain about the shadowed template parameter.
1442    if (!D.isInvalidType())
1443      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1444        D.setInvalidType();
1445
1446    // Just pretend that we didn't see the previous declaration.
1447    PrevDecl = 0;
1448  }
1449
1450  // In C++, the previous declaration we find might be a tag type
1451  // (class or enum). In this case, the new declaration will hide the
1452  // tag type. Note that this does does not apply if we're declaring a
1453  // typedef (C++ [dcl.typedef]p4).
1454  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1455      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1456    PrevDecl = 0;
1457
1458  bool Redeclaration = false;
1459  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1460    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1461  } else if (R->isFunctionType()) {
1462    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1463                                  IsFunctionDefinition, Redeclaration);
1464  } else {
1465    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1466  }
1467
1468  if (New == 0)
1469    return DeclPtrTy();
1470
1471  // If this has an identifier and is not an invalid redeclaration,
1472  // add it to the scope stack.
1473  if (Name && !(Redeclaration && New->isInvalidDecl()))
1474    PushOnScopeChains(New, S);
1475
1476  return DeclPtrTy::make(New);
1477}
1478
1479/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1480/// types into constant array types in certain situations which would otherwise
1481/// be errors (for GCC compatibility).
1482static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1483                                                    ASTContext &Context,
1484                                                    bool &SizeIsNegative) {
1485  // This method tries to turn a variable array into a constant
1486  // array even when the size isn't an ICE.  This is necessary
1487  // for compatibility with code that depends on gcc's buggy
1488  // constant expression folding, like struct {char x[(int)(char*)2];}
1489  SizeIsNegative = false;
1490
1491  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1492    QualType Pointee = PTy->getPointeeType();
1493    QualType FixedType =
1494        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1495    if (FixedType.isNull()) return FixedType;
1496    FixedType = Context.getPointerType(FixedType);
1497    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1498    return FixedType;
1499  }
1500
1501  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1502  if (!VLATy)
1503    return QualType();
1504  // FIXME: We should probably handle this case
1505  if (VLATy->getElementType()->isVariablyModifiedType())
1506    return QualType();
1507
1508  Expr::EvalResult EvalResult;
1509  if (!VLATy->getSizeExpr() ||
1510      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1511      !EvalResult.Val.isInt())
1512    return QualType();
1513
1514  llvm::APSInt &Res = EvalResult.Val.getInt();
1515  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1516    return Context.getConstantArrayType(VLATy->getElementType(),
1517                                        Res, ArrayType::Normal, 0);
1518
1519  SizeIsNegative = true;
1520  return QualType();
1521}
1522
1523/// \brief Register the given locally-scoped external C declaration so
1524/// that it can be found later for redeclarations
1525void
1526Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1527                                       Scope *S) {
1528  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1529         "Decl is not a locally-scoped decl!");
1530  // Note that we have a locally-scoped external with this name.
1531  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1532
1533  if (!PrevDecl)
1534    return;
1535
1536  // If there was a previous declaration of this variable, it may be
1537  // in our identifier chain. Update the identifier chain with the new
1538  // declaration.
1539  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1540    // The previous declaration was found on the identifer resolver
1541    // chain, so remove it from its scope.
1542    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1543      S = S->getParent();
1544
1545    if (S)
1546      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1547  }
1548}
1549
1550/// \brief Diagnose function specifiers on a declaration of an identifier that
1551/// does not identify a function.
1552void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1553  // FIXME: We should probably indicate the identifier in question to avoid
1554  // confusion for constructs like "inline int a(), b;"
1555  if (D.getDeclSpec().isInlineSpecified())
1556    Diag(D.getDeclSpec().getInlineSpecLoc(),
1557         diag::err_inline_non_function);
1558
1559  if (D.getDeclSpec().isVirtualSpecified())
1560    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1561         diag::err_virtual_non_function);
1562
1563  if (D.getDeclSpec().isExplicitSpecified())
1564    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1565         diag::err_explicit_non_function);
1566}
1567
1568NamedDecl*
1569Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1570                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1571  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1572  if (D.getCXXScopeSpec().isSet()) {
1573    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1574      << D.getCXXScopeSpec().getRange();
1575    D.setInvalidType();
1576    // Pretend we didn't see the scope specifier.
1577    DC = 0;
1578  }
1579
1580  if (getLangOptions().CPlusPlus) {
1581    // Check that there are no default arguments (C++ only).
1582    CheckExtraCXXDefaultArguments(D);
1583  }
1584
1585  DiagnoseFunctionSpecifiers(D);
1586
1587  if (D.getDeclSpec().isThreadSpecified())
1588    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1589
1590  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1591  if (!NewTD) return 0;
1592
1593  if (D.isInvalidType())
1594    NewTD->setInvalidDecl();
1595
1596  // Handle attributes prior to checking for duplicates in MergeVarDecl
1597  ProcessDeclAttributes(NewTD, D);
1598  // Merge the decl with the existing one if appropriate. If the decl is
1599  // in an outer scope, it isn't the same thing.
1600  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1601    Redeclaration = true;
1602    MergeTypeDefDecl(NewTD, PrevDecl);
1603  }
1604
1605  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1606  // then it shall have block scope.
1607  QualType T = NewTD->getUnderlyingType();
1608  if (T->isVariablyModifiedType()) {
1609    CurFunctionNeedsScopeChecking = true;
1610
1611    if (S->getFnParent() == 0) {
1612      bool SizeIsNegative;
1613      QualType FixedTy =
1614          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1615      if (!FixedTy.isNull()) {
1616        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1617        NewTD->setUnderlyingType(FixedTy);
1618      } else {
1619        if (SizeIsNegative)
1620          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1621        else if (T->isVariableArrayType())
1622          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1623        else
1624          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1625        NewTD->setInvalidDecl();
1626      }
1627    }
1628  }
1629  return NewTD;
1630}
1631
1632/// \brief Determines whether the given declaration is an out-of-scope
1633/// previous declaration.
1634///
1635/// This routine should be invoked when name lookup has found a
1636/// previous declaration (PrevDecl) that is not in the scope where a
1637/// new declaration by the same name is being introduced. If the new
1638/// declaration occurs in a local scope, previous declarations with
1639/// linkage may still be considered previous declarations (C99
1640/// 6.2.2p4-5, C++ [basic.link]p6).
1641///
1642/// \param PrevDecl the previous declaration found by name
1643/// lookup
1644///
1645/// \param DC the context in which the new declaration is being
1646/// declared.
1647///
1648/// \returns true if PrevDecl is an out-of-scope previous declaration
1649/// for a new delcaration with the same name.
1650static bool
1651isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1652                                ASTContext &Context) {
1653  if (!PrevDecl)
1654    return 0;
1655
1656  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1657  // case we need to check each of the overloaded functions.
1658  if (!PrevDecl->hasLinkage())
1659    return false;
1660
1661  if (Context.getLangOptions().CPlusPlus) {
1662    // C++ [basic.link]p6:
1663    //   If there is a visible declaration of an entity with linkage
1664    //   having the same name and type, ignoring entities declared
1665    //   outside the innermost enclosing namespace scope, the block
1666    //   scope declaration declares that same entity and receives the
1667    //   linkage of the previous declaration.
1668    DeclContext *OuterContext = DC->getLookupContext();
1669    if (!OuterContext->isFunctionOrMethod())
1670      // This rule only applies to block-scope declarations.
1671      return false;
1672    else {
1673      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1674      if (PrevOuterContext->isRecord())
1675        // We found a member function: ignore it.
1676        return false;
1677      else {
1678        // Find the innermost enclosing namespace for the new and
1679        // previous declarations.
1680        while (!OuterContext->isFileContext())
1681          OuterContext = OuterContext->getParent();
1682        while (!PrevOuterContext->isFileContext())
1683          PrevOuterContext = PrevOuterContext->getParent();
1684
1685        // The previous declaration is in a different namespace, so it
1686        // isn't the same function.
1687        if (OuterContext->getPrimaryContext() !=
1688            PrevOuterContext->getPrimaryContext())
1689          return false;
1690      }
1691    }
1692  }
1693
1694  return true;
1695}
1696
1697NamedDecl*
1698Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1699                              QualType R,NamedDecl* PrevDecl,
1700                              bool &Redeclaration) {
1701  DeclarationName Name = GetNameForDeclarator(D);
1702
1703  // Check that there are no default arguments (C++ only).
1704  if (getLangOptions().CPlusPlus)
1705    CheckExtraCXXDefaultArguments(D);
1706
1707  VarDecl *NewVD;
1708  VarDecl::StorageClass SC;
1709  switch (D.getDeclSpec().getStorageClassSpec()) {
1710  default: assert(0 && "Unknown storage class!");
1711  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1712  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1713  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1714  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1715  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1716  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1717  case DeclSpec::SCS_mutable:
1718    // mutable can only appear on non-static class members, so it's always
1719    // an error here
1720    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1721    D.setInvalidType();
1722    SC = VarDecl::None;
1723    break;
1724  }
1725
1726  IdentifierInfo *II = Name.getAsIdentifierInfo();
1727  if (!II) {
1728    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1729      << Name.getAsString();
1730    return 0;
1731  }
1732
1733  DiagnoseFunctionSpecifiers(D);
1734
1735  if (!DC->isRecord() && S->getFnParent() == 0) {
1736    // C99 6.9p2: The storage-class specifiers auto and register shall not
1737    // appear in the declaration specifiers in an external declaration.
1738    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1739      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1740      D.setInvalidType();
1741    }
1742  }
1743  if (DC->isRecord() && !CurContext->isRecord()) {
1744    // This is an out-of-line definition of a static data member.
1745    if (SC == VarDecl::Static) {
1746      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1747           diag::err_static_out_of_line)
1748        << CodeModificationHint::CreateRemoval(
1749                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1750    } else if (SC == VarDecl::None)
1751      SC = VarDecl::Static;
1752  }
1753
1754  // The variable can not
1755  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1756                          II, R, SC,
1757                          // FIXME: Move to DeclGroup...
1758                          D.getDeclSpec().getSourceRange().getBegin());
1759
1760  if (D.isInvalidType())
1761    NewVD->setInvalidDecl();
1762
1763  if (D.getDeclSpec().isThreadSpecified()) {
1764    if (NewVD->hasLocalStorage())
1765      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1766    else if (!Context.Target.isTLSSupported())
1767      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1768    else
1769      NewVD->setThreadSpecified(true);
1770  }
1771
1772  // Set the lexical context. If the declarator has a C++ scope specifier, the
1773  // lexical context will be different from the semantic context.
1774  NewVD->setLexicalDeclContext(CurContext);
1775
1776  // Handle attributes prior to checking for duplicates in MergeVarDecl
1777  ProcessDeclAttributes(NewVD, D);
1778
1779  // Handle GNU asm-label extension (encoded as an attribute).
1780  if (Expr *E = (Expr*) D.getAsmLabel()) {
1781    // The parser guarantees this is a string.
1782    StringLiteral *SE = cast<StringLiteral>(E);
1783    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1784                                                        SE->getByteLength())));
1785  }
1786
1787  // If name lookup finds a previous declaration that is not in the
1788  // same scope as the new declaration, this may still be an
1789  // acceptable redeclaration.
1790  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1791      !(NewVD->hasLinkage() &&
1792        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1793    PrevDecl = 0;
1794
1795  // Merge the decl with the existing one if appropriate.
1796  if (PrevDecl) {
1797    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1798      // The user tried to define a non-static data member
1799      // out-of-line (C++ [dcl.meaning]p1).
1800      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1801        << D.getCXXScopeSpec().getRange();
1802      PrevDecl = 0;
1803      NewVD->setInvalidDecl();
1804    }
1805  } else if (D.getCXXScopeSpec().isSet()) {
1806    // No previous declaration in the qualifying scope.
1807    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1808      << Name << D.getCXXScopeSpec().getRange();
1809    NewVD->setInvalidDecl();
1810  }
1811
1812  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1813
1814  // If this is a locally-scoped extern C variable, update the map of
1815  // such variables.
1816  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1817      !NewVD->isInvalidDecl())
1818    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1819
1820  return NewVD;
1821}
1822
1823/// \brief Perform semantic checking on a newly-created variable
1824/// declaration.
1825///
1826/// This routine performs all of the type-checking required for a
1827/// variable declaration once it has been build. It is used both to
1828/// check variables after they have been parsed and their declarators
1829/// have been translated into a declaration, and to check
1830///
1831/// Sets NewVD->isInvalidDecl() if an error was encountered.
1832void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1833                                    bool &Redeclaration) {
1834  // If the decl is already known invalid, don't check it.
1835  if (NewVD->isInvalidDecl())
1836    return;
1837
1838  QualType T = NewVD->getType();
1839
1840  if (T->isObjCInterfaceType()) {
1841    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1842    return NewVD->setInvalidDecl();
1843  }
1844
1845  // The variable can not have an abstract class type.
1846  if (RequireNonAbstractType(NewVD->getLocation(), T,
1847                             diag::err_abstract_type_in_decl,
1848                             AbstractVariableType))
1849    return NewVD->setInvalidDecl();
1850
1851  // Emit an error if an address space was applied to decl with local storage.
1852  // This includes arrays of objects with address space qualifiers, but not
1853  // automatic variables that point to other address spaces.
1854  // ISO/IEC TR 18037 S5.1.2
1855  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1856    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1857    return NewVD->setInvalidDecl();
1858  }
1859
1860  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1861      && !NewVD->hasAttr<BlocksAttr>())
1862    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1863
1864  bool isVM = T->isVariablyModifiedType();
1865  if (isVM || NewVD->hasAttr<CleanupAttr>())
1866    CurFunctionNeedsScopeChecking = true;
1867
1868  if ((isVM && NewVD->hasLinkage()) ||
1869      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1870    bool SizeIsNegative;
1871    QualType FixedTy =
1872        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1873
1874    if (FixedTy.isNull() && T->isVariableArrayType()) {
1875      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1876      // FIXME: This won't give the correct result for
1877      // int a[10][n];
1878      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1879
1880      if (NewVD->isFileVarDecl())
1881        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1882        << SizeRange;
1883      else if (NewVD->getStorageClass() == VarDecl::Static)
1884        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1885        << SizeRange;
1886      else
1887        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1888        << SizeRange;
1889      return NewVD->setInvalidDecl();
1890    }
1891
1892    if (FixedTy.isNull()) {
1893      if (NewVD->isFileVarDecl())
1894        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1895      else
1896        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1897      return NewVD->setInvalidDecl();
1898    }
1899
1900    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1901    NewVD->setType(FixedTy);
1902  }
1903
1904  if (!PrevDecl && NewVD->isExternC(Context)) {
1905    // Since we did not find anything by this name and we're declaring
1906    // an extern "C" variable, look for a non-visible extern "C"
1907    // declaration with the same name.
1908    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1909      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1910    if (Pos != LocallyScopedExternalDecls.end())
1911      PrevDecl = Pos->second;
1912  }
1913
1914  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
1915    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1916      << T;
1917    return NewVD->setInvalidDecl();
1918  }
1919
1920  if (PrevDecl) {
1921    Redeclaration = true;
1922    MergeVarDecl(NewVD, PrevDecl);
1923  }
1924}
1925
1926NamedDecl*
1927Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1928                              QualType R, NamedDecl* PrevDecl,
1929                              bool IsFunctionDefinition, bool &Redeclaration) {
1930  assert(R.getTypePtr()->isFunctionType());
1931
1932  DeclarationName Name = GetNameForDeclarator(D);
1933  FunctionDecl::StorageClass SC = FunctionDecl::None;
1934  switch (D.getDeclSpec().getStorageClassSpec()) {
1935  default: assert(0 && "Unknown storage class!");
1936  case DeclSpec::SCS_auto:
1937  case DeclSpec::SCS_register:
1938  case DeclSpec::SCS_mutable:
1939    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1940         diag::err_typecheck_sclass_func);
1941    D.setInvalidType();
1942    break;
1943  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1944  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1945  case DeclSpec::SCS_static: {
1946    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1947      // C99 6.7.1p5:
1948      //   The declaration of an identifier for a function that has
1949      //   block scope shall have no explicit storage-class specifier
1950      //   other than extern
1951      // See also (C++ [dcl.stc]p4).
1952      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1953           diag::err_static_block_func);
1954      SC = FunctionDecl::None;
1955    } else
1956      SC = FunctionDecl::Static;
1957    break;
1958  }
1959  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1960  }
1961
1962  if (D.getDeclSpec().isThreadSpecified())
1963    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1964
1965  bool isInline = D.getDeclSpec().isInlineSpecified();
1966  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1967  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1968
1969  // Check that the return type is not an abstract class type.
1970  // For record types, this is done by the AbstractClassUsageDiagnoser once
1971  // the class has been completely parsed.
1972  if (!DC->isRecord() &&
1973      RequireNonAbstractType(D.getIdentifierLoc(),
1974                             R->getAsFunctionType()->getResultType(),
1975                             diag::err_abstract_type_in_decl,
1976                             AbstractReturnType))
1977    D.setInvalidType();
1978
1979  // Do not allow returning a objc interface by-value.
1980  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
1981    Diag(D.getIdentifierLoc(),
1982         diag::err_object_cannot_be_passed_returned_by_value) << 0
1983      << R->getAsFunctionType()->getResultType();
1984    D.setInvalidType();
1985  }
1986
1987  bool isVirtualOkay = false;
1988  FunctionDecl *NewFD;
1989  if (D.getKind() == Declarator::DK_Constructor) {
1990    // This is a C++ constructor declaration.
1991    assert(DC->isRecord() &&
1992           "Constructors can only be declared in a member context");
1993
1994    R = CheckConstructorDeclarator(D, R, SC);
1995
1996    // Create the new declaration
1997    NewFD = CXXConstructorDecl::Create(Context,
1998                                       cast<CXXRecordDecl>(DC),
1999                                       D.getIdentifierLoc(), Name, R,
2000                                       isExplicit, isInline,
2001                                       /*isImplicitlyDeclared=*/false);
2002  } else if (D.getKind() == Declarator::DK_Destructor) {
2003    // This is a C++ destructor declaration.
2004    if (DC->isRecord()) {
2005      R = CheckDestructorDeclarator(D, SC);
2006
2007      NewFD = CXXDestructorDecl::Create(Context,
2008                                        cast<CXXRecordDecl>(DC),
2009                                        D.getIdentifierLoc(), Name, R,
2010                                        isInline,
2011                                        /*isImplicitlyDeclared=*/false);
2012
2013      isVirtualOkay = true;
2014    } else {
2015      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2016
2017      // Create a FunctionDecl to satisfy the function definition parsing
2018      // code path.
2019      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2020                                   Name, R, SC, isInline,
2021                                   /*hasPrototype=*/true,
2022                                   // FIXME: Move to DeclGroup...
2023                                   D.getDeclSpec().getSourceRange().getBegin());
2024      D.setInvalidType();
2025    }
2026  } else if (D.getKind() == Declarator::DK_Conversion) {
2027    if (!DC->isRecord()) {
2028      Diag(D.getIdentifierLoc(),
2029           diag::err_conv_function_not_member);
2030      return 0;
2031    }
2032
2033    CheckConversionDeclarator(D, R, SC);
2034    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2035                                      D.getIdentifierLoc(), Name, R,
2036                                      isInline, isExplicit);
2037
2038    isVirtualOkay = true;
2039  } else if (DC->isRecord()) {
2040    // This is a C++ method declaration.
2041    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2042                                  D.getIdentifierLoc(), Name, R,
2043                                  (SC == FunctionDecl::Static), isInline);
2044
2045    isVirtualOkay = (SC != FunctionDecl::Static);
2046  } else {
2047    // Determine whether the function was written with a
2048    // prototype. This true when:
2049    //   - we're in C++ (where every function has a prototype),
2050    //   - there is a prototype in the declarator, or
2051    //   - the type R of the function is some kind of typedef or other reference
2052    //     to a type name (which eventually refers to a function type).
2053    bool HasPrototype =
2054       getLangOptions().CPlusPlus ||
2055       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2056       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2057
2058    NewFD = FunctionDecl::Create(Context, DC,
2059                                 D.getIdentifierLoc(),
2060                                 Name, R, SC, isInline, HasPrototype,
2061                                 // FIXME: Move to DeclGroup...
2062                                 D.getDeclSpec().getSourceRange().getBegin());
2063  }
2064
2065  if (D.isInvalidType())
2066    NewFD->setInvalidDecl();
2067
2068  // Set the lexical context. If the declarator has a C++
2069  // scope specifier, the lexical context will be different
2070  // from the semantic context.
2071  NewFD->setLexicalDeclContext(CurContext);
2072
2073  // C++ [dcl.fct.spec]p5:
2074  //   The virtual specifier shall only be used in declarations of
2075  //   nonstatic class member functions that appear within a
2076  //   member-specification of a class declaration; see 10.3.
2077  //
2078  // FIXME: Checking the 'virtual' specifier is not sufficient. A
2079  // function is also virtual if it overrides an already virtual
2080  // function. This is important to do here because it's part of the
2081  // declaration.
2082  if (isVirtual && !NewFD->isInvalidDecl()) {
2083    if (!isVirtualOkay) {
2084       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2085           diag::err_virtual_non_function);
2086    } else if (!CurContext->isRecord()) {
2087      // 'virtual' was specified outside of the class.
2088      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2089        << CodeModificationHint::CreateRemoval(
2090                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2091    } else {
2092      // Okay: Add virtual to the method.
2093      cast<CXXMethodDecl>(NewFD)->setVirtual();
2094      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2095      CurClass->setAggregate(false);
2096      CurClass->setPOD(false);
2097      CurClass->setPolymorphic(true);
2098      CurClass->setHasTrivialConstructor(false);
2099    }
2100  }
2101
2102  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2103      !CurContext->isRecord()) {
2104    // C++ [class.static]p1:
2105    //   A data or function member of a class may be declared static
2106    //   in a class definition, in which case it is a static member of
2107    //   the class.
2108
2109    // Complain about the 'static' specifier if it's on an out-of-line
2110    // member function definition.
2111    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2112         diag::err_static_out_of_line)
2113      << CodeModificationHint::CreateRemoval(
2114                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2115  }
2116
2117  // Handle GNU asm-label extension (encoded as an attribute).
2118  if (Expr *E = (Expr*) D.getAsmLabel()) {
2119    // The parser guarantees this is a string.
2120    StringLiteral *SE = cast<StringLiteral>(E);
2121    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2122                                                        SE->getByteLength())));
2123  }
2124
2125  // Copy the parameter declarations from the declarator D to the function
2126  // declaration NewFD, if they are available.  First scavenge them into Params.
2127  llvm::SmallVector<ParmVarDecl*, 16> Params;
2128  if (D.getNumTypeObjects() > 0) {
2129    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2130
2131    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2132    // function that takes no arguments, not a function that takes a
2133    // single void argument.
2134    // We let through "const void" here because Sema::GetTypeForDeclarator
2135    // already checks for that case.
2136    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2137        FTI.ArgInfo[0].Param &&
2138        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2139      // Empty arg list, don't push any params.
2140      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2141
2142      // In C++, the empty parameter-type-list must be spelled "void"; a
2143      // typedef of void is not permitted.
2144      if (getLangOptions().CPlusPlus &&
2145          Param->getType().getUnqualifiedType() != Context.VoidTy)
2146        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2147      // FIXME: Leaks decl?
2148    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2149      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2150        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2151    }
2152
2153  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2154    // When we're declaring a function with a typedef, typeof, etc as in the
2155    // following example, we'll need to synthesize (unnamed)
2156    // parameters for use in the declaration.
2157    //
2158    // @code
2159    // typedef void fn(int);
2160    // fn f;
2161    // @endcode
2162
2163    // Synthesize a parameter for each argument type.
2164    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2165         AE = FT->arg_type_end(); AI != AE; ++AI) {
2166      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2167                                               SourceLocation(), 0,
2168                                               *AI, VarDecl::None, 0);
2169      Param->setImplicit();
2170      Params.push_back(Param);
2171    }
2172  } else {
2173    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2174           "Should not need args for typedef of non-prototype fn");
2175  }
2176  // Finally, we know we have the right number of parameters, install them.
2177  NewFD->setParams(Context, &Params[0], Params.size());
2178
2179
2180
2181  // If name lookup finds a previous declaration that is not in the
2182  // same scope as the new declaration, this may still be an
2183  // acceptable redeclaration.
2184  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2185      !(NewFD->hasLinkage() &&
2186        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2187    PrevDecl = 0;
2188
2189  // FIXME: We need to determine whether the GNU inline attribute will
2190  // be applied to this function declaration, since it affects
2191  // declaration merging. This hack will go away when the FIXME below
2192  // is resolved, since we should be putting *all* attributes onto the
2193  // declaration now.
2194  for (const AttributeList *Attr = D.getDeclSpec().getAttributes();
2195       Attr; Attr = Attr->getNext()) {
2196    if (Attr->getKind() == AttributeList::AT_gnu_inline) {
2197      NewFD->addAttr(::new (Context) GNUInlineAttr());
2198      break;
2199    }
2200  }
2201
2202  // Perform semantic checking on the function declaration.
2203  bool OverloadableAttrRequired = false; // FIXME: HACK!
2204  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2205                           /*FIXME:*/OverloadableAttrRequired);
2206
2207  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2208    // An out-of-line member function declaration must also be a
2209    // definition (C++ [dcl.meaning]p1).
2210    if (!IsFunctionDefinition) {
2211      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2212        << D.getCXXScopeSpec().getRange();
2213      NewFD->setInvalidDecl();
2214    } else if (!Redeclaration) {
2215      // The user tried to provide an out-of-line definition for a
2216      // function that is a member of a class or namespace, but there
2217      // was no such member function declared (C++ [class.mfct]p2,
2218      // C++ [namespace.memdef]p2). For example:
2219      //
2220      // class X {
2221      //   void f() const;
2222      // };
2223      //
2224      // void X::f() { } // ill-formed
2225      //
2226      // Complain about this problem, and attempt to suggest close
2227      // matches (e.g., those that differ only in cv-qualifiers and
2228      // whether the parameter types are references).
2229      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2230        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2231      NewFD->setInvalidDecl();
2232
2233      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2234                                              true);
2235      assert(!Prev.isAmbiguous() &&
2236             "Cannot have an ambiguity in previous-declaration lookup");
2237      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2238           Func != FuncEnd; ++Func) {
2239        if (isa<FunctionDecl>(*Func) &&
2240            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2241          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2242      }
2243
2244      PrevDecl = 0;
2245    }
2246  }
2247
2248  // Handle attributes. We need to have merged decls when handling attributes
2249  // (for example to check for conflicts, etc).
2250  // FIXME: This needs to happen before we merge declarations. Then,
2251  // let attribute merging cope with attribute conflicts.
2252  ProcessDeclAttributes(NewFD, D);
2253  AddKnownFunctionAttributes(NewFD);
2254
2255  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2256    // If a function name is overloadable in C, then every function
2257    // with that name must be marked "overloadable".
2258    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2259      << Redeclaration << NewFD;
2260    if (PrevDecl)
2261      Diag(PrevDecl->getLocation(),
2262           diag::note_attribute_overloadable_prev_overload);
2263    NewFD->addAttr(::new (Context) OverloadableAttr());
2264  }
2265
2266  // If this is a locally-scoped extern C function, update the
2267  // map of such names.
2268  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2269      && !NewFD->isInvalidDecl())
2270    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2271
2272  return NewFD;
2273}
2274
2275/// \brief Perform semantic checking of a new function declaration.
2276///
2277/// Performs semantic analysis of the new function declaration
2278/// NewFD. This routine performs all semantic checking that does not
2279/// require the actual declarator involved in the declaration, and is
2280/// used both for the declaration of functions as they are parsed
2281/// (called via ActOnDeclarator) and for the declaration of functions
2282/// that have been instantiated via C++ template instantiation (called
2283/// via InstantiateDecl).
2284///
2285/// This sets NewFD->isInvalidDecl() to true if there was an error.
2286void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2287                                    bool &Redeclaration,
2288                                    bool &OverloadableAttrRequired) {
2289  // If NewFD is already known erroneous, don't do any of this checking.
2290  if (NewFD->isInvalidDecl())
2291    return;
2292
2293  // Semantic checking for this function declaration (in isolation).
2294  if (getLangOptions().CPlusPlus) {
2295    // C++-specific checks.
2296    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2297      CheckConstructor(Constructor);
2298    } else if (isa<CXXDestructorDecl>(NewFD)) {
2299      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2300      Record->setUserDeclaredDestructor(true);
2301      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2302      // user-defined destructor.
2303      Record->setPOD(false);
2304
2305      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2306      // declared destructor.
2307      Record->setHasTrivialDestructor(false);
2308    } else if (CXXConversionDecl *Conversion
2309               = dyn_cast<CXXConversionDecl>(NewFD))
2310      ActOnConversionDeclarator(Conversion);
2311
2312    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2313    if (NewFD->isOverloadedOperator() &&
2314        CheckOverloadedOperatorDeclaration(NewFD))
2315      return NewFD->setInvalidDecl();
2316  }
2317
2318  // C99 6.7.4p6:
2319  //   [... ] For a function with external linkage, the following
2320  //   restrictions apply: [...] If all of the file scope declarations
2321  //   for a function in a translation unit include the inline
2322  //   function specifier without extern, then the definition in that
2323  //   translation unit is an inline definition. An inline definition
2324  //   does not provide an external definition for the function, and
2325  //   does not forbid an external definition in another translation
2326  //   unit.
2327  //
2328  // Here we determine whether this function, in isolation, would be a
2329  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2330  // previous declarations.
2331  if (NewFD->isInline() &&
2332      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2333    bool GNUInline = NewFD->hasAttr<GNUInlineAttr>() ||
2334      (PrevDecl && PrevDecl->hasAttr<GNUInlineAttr>());
2335    if (GNUInline || (!getLangOptions().CPlusPlus && !getLangOptions().C99)) {
2336      // GNU "extern inline" is the same as "inline" in C99.
2337      if (NewFD->getStorageClass() == FunctionDecl::Extern)
2338        NewFD->setC99InlineDefinition(true);
2339    } else if (getLangOptions().C99 &&
2340               NewFD->getStorageClass() == FunctionDecl::None)
2341      NewFD->setC99InlineDefinition(true);
2342  }
2343
2344  // Check for a previous declaration of this name.
2345  if (!PrevDecl && NewFD->isExternC(Context)) {
2346    // Since we did not find anything by this name and we're declaring
2347    // an extern "C" function, look for a non-visible extern "C"
2348    // declaration with the same name.
2349    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2350      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2351    if (Pos != LocallyScopedExternalDecls.end())
2352      PrevDecl = Pos->second;
2353  }
2354
2355  // Merge or overload the declaration with an existing declaration of
2356  // the same name, if appropriate.
2357  if (PrevDecl) {
2358    // Determine whether NewFD is an overload of PrevDecl or
2359    // a declaration that requires merging. If it's an overload,
2360    // there's no more work to do here; we'll just add the new
2361    // function to the scope.
2362    OverloadedFunctionDecl::function_iterator MatchedDecl;
2363
2364    if (!getLangOptions().CPlusPlus &&
2365        AllowOverloadingOfFunction(PrevDecl, Context)) {
2366      OverloadableAttrRequired = true;
2367
2368      // Functions marked "overloadable" must have a prototype (that
2369      // we can't get through declaration merging).
2370      if (!NewFD->getType()->getAsFunctionProtoType()) {
2371        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2372          << NewFD;
2373        Redeclaration = true;
2374
2375        // Turn this into a variadic function with no parameters.
2376        QualType R = Context.getFunctionType(
2377                       NewFD->getType()->getAsFunctionType()->getResultType(),
2378                       0, 0, true, 0);
2379        NewFD->setType(R);
2380        return NewFD->setInvalidDecl();
2381      }
2382    }
2383
2384    if (PrevDecl &&
2385        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2386         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2387      Redeclaration = true;
2388      Decl *OldDecl = PrevDecl;
2389
2390      // If PrevDecl was an overloaded function, extract the
2391      // FunctionDecl that matched.
2392      if (isa<OverloadedFunctionDecl>(PrevDecl))
2393        OldDecl = *MatchedDecl;
2394
2395      // NewFD and OldDecl represent declarations that need to be
2396      // merged.
2397      if (MergeFunctionDecl(NewFD, OldDecl))
2398        return NewFD->setInvalidDecl();
2399
2400      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2401    }
2402  }
2403
2404  // In C++, check default arguments now that we have merged decls. Unless
2405  // the lexical context is the class, because in this case this is done
2406  // during delayed parsing anyway.
2407  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2408    CheckCXXDefaultArguments(NewFD);
2409}
2410
2411bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2412  // FIXME: Need strict checking.  In C89, we need to check for
2413  // any assignment, increment, decrement, function-calls, or
2414  // commas outside of a sizeof.  In C99, it's the same list,
2415  // except that the aforementioned are allowed in unevaluated
2416  // expressions.  Everything else falls under the
2417  // "may accept other forms of constant expressions" exception.
2418  // (We never end up here for C++, so the constant expression
2419  // rules there don't matter.)
2420  if (Init->isConstantInitializer(Context))
2421    return false;
2422  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2423    << Init->getSourceRange();
2424  return true;
2425}
2426
2427void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2428  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2429}
2430
2431/// AddInitializerToDecl - Adds the initializer Init to the
2432/// declaration dcl. If DirectInit is true, this is C++ direct
2433/// initialization rather than copy initialization.
2434void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2435  Decl *RealDecl = dcl.getAs<Decl>();
2436  // If there is no declaration, there was an error parsing it.  Just ignore
2437  // the initializer.
2438  if (RealDecl == 0)
2439    return;
2440
2441  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2442    // With declarators parsed the way they are, the parser cannot
2443    // distinguish between a normal initializer and a pure-specifier.
2444    // Thus this grotesque test.
2445    IntegerLiteral *IL;
2446    Expr *Init = static_cast<Expr *>(init.get());
2447    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2448        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2449      if (Method->isVirtual()) {
2450        Method->setPure();
2451
2452        // A class is abstract if at least one function is pure virtual.
2453        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2454      } else if (!Method->isInvalidDecl()) {
2455        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2456          << Method->getDeclName() << Init->getSourceRange();
2457        Method->setInvalidDecl();
2458      }
2459    } else {
2460      Diag(Method->getLocation(), diag::err_member_function_initialization)
2461        << Method->getDeclName() << Init->getSourceRange();
2462      Method->setInvalidDecl();
2463    }
2464    return;
2465  }
2466
2467  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2468  if (!VDecl) {
2469    if (getLangOptions().CPlusPlus &&
2470        RealDecl->getLexicalDeclContext()->isRecord() &&
2471        isa<NamedDecl>(RealDecl))
2472      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2473        << cast<NamedDecl>(RealDecl)->getDeclName();
2474    else
2475      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2476    RealDecl->setInvalidDecl();
2477    return;
2478  }
2479
2480  if (!VDecl->getType()->isArrayType() &&
2481      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2482                          diag::err_typecheck_decl_incomplete_type)) {
2483    RealDecl->setInvalidDecl();
2484    return;
2485  }
2486
2487  const VarDecl *Def = 0;
2488  if (VDecl->getDefinition(Def)) {
2489    Diag(VDecl->getLocation(), diag::err_redefinition)
2490      << VDecl->getDeclName();
2491    Diag(Def->getLocation(), diag::note_previous_definition);
2492    VDecl->setInvalidDecl();
2493    return;
2494  }
2495
2496  // Take ownership of the expression, now that we're sure we have somewhere
2497  // to put it.
2498  Expr *Init = static_cast<Expr *>(init.release());
2499  assert(Init && "missing initializer");
2500
2501  // Get the decls type and save a reference for later, since
2502  // CheckInitializerTypes may change it.
2503  QualType DclT = VDecl->getType(), SavT = DclT;
2504  if (VDecl->isBlockVarDecl()) {
2505    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2506      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2507      VDecl->setInvalidDecl();
2508    } else if (!VDecl->isInvalidDecl()) {
2509      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2510                                VDecl->getDeclName(), DirectInit))
2511        VDecl->setInvalidDecl();
2512
2513      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2514      // Don't check invalid declarations to avoid emitting useless diagnostics.
2515      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2516        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2517          CheckForConstantInitializer(Init, DclT);
2518      }
2519    }
2520  } else if (VDecl->isStaticDataMember() &&
2521             VDecl->getLexicalDeclContext()->isRecord()) {
2522    // This is an in-class initialization for a static data member, e.g.,
2523    //
2524    // struct S {
2525    //   static const int value = 17;
2526    // };
2527
2528    // Attach the initializer
2529    VDecl->setInit(Init);
2530
2531    // C++ [class.mem]p4:
2532    //   A member-declarator can contain a constant-initializer only
2533    //   if it declares a static member (9.4) of const integral or
2534    //   const enumeration type, see 9.4.2.
2535    QualType T = VDecl->getType();
2536    if (!T->isDependentType() &&
2537        (!Context.getCanonicalType(T).isConstQualified() ||
2538         !T->isIntegralType())) {
2539      Diag(VDecl->getLocation(), diag::err_member_initialization)
2540        << VDecl->getDeclName() << Init->getSourceRange();
2541      VDecl->setInvalidDecl();
2542    } else {
2543      // C++ [class.static.data]p4:
2544      //   If a static data member is of const integral or const
2545      //   enumeration type, its declaration in the class definition
2546      //   can specify a constant-initializer which shall be an
2547      //   integral constant expression (5.19).
2548      if (!Init->isTypeDependent() &&
2549          !Init->getType()->isIntegralType()) {
2550        // We have a non-dependent, non-integral or enumeration type.
2551        Diag(Init->getSourceRange().getBegin(),
2552             diag::err_in_class_initializer_non_integral_type)
2553          << Init->getType() << Init->getSourceRange();
2554        VDecl->setInvalidDecl();
2555      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2556        // Check whether the expression is a constant expression.
2557        llvm::APSInt Value;
2558        SourceLocation Loc;
2559        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2560          Diag(Loc, diag::err_in_class_initializer_non_constant)
2561            << Init->getSourceRange();
2562          VDecl->setInvalidDecl();
2563        } else if (!VDecl->getType()->isDependentType())
2564          ImpCastExprToType(Init, VDecl->getType());
2565      }
2566    }
2567  } else if (VDecl->isFileVarDecl()) {
2568    if (VDecl->getStorageClass() == VarDecl::Extern)
2569      Diag(VDecl->getLocation(), diag::warn_extern_init);
2570    if (!VDecl->isInvalidDecl())
2571      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2572                                VDecl->getDeclName(), DirectInit))
2573        VDecl->setInvalidDecl();
2574
2575    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2576    // Don't check invalid declarations to avoid emitting useless diagnostics.
2577    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2578      // C99 6.7.8p4. All file scoped initializers need to be constant.
2579      CheckForConstantInitializer(Init, DclT);
2580    }
2581  }
2582  // If the type changed, it means we had an incomplete type that was
2583  // completed by the initializer. For example:
2584  //   int ary[] = { 1, 3, 5 };
2585  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2586  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2587    VDecl->setType(DclT);
2588    Init->setType(DclT);
2589  }
2590
2591  // Attach the initializer to the decl.
2592  VDecl->setInit(Init);
2593
2594  // If the previous declaration of VDecl was a tentative definition,
2595  // remove it from the set of tentative definitions.
2596  if (VDecl->getPreviousDeclaration() &&
2597      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2598    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2599      = TentativeDefinitions.find(VDecl->getDeclName());
2600    assert(Pos != TentativeDefinitions.end() &&
2601           "Unrecorded tentative definition?");
2602    TentativeDefinitions.erase(Pos);
2603  }
2604
2605  return;
2606}
2607
2608void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2609  Decl *RealDecl = dcl.getAs<Decl>();
2610
2611  // If there is no declaration, there was an error parsing it. Just ignore it.
2612  if (RealDecl == 0)
2613    return;
2614
2615  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2616    QualType Type = Var->getType();
2617
2618    // Record tentative definitions.
2619    if (Var->isTentativeDefinition(Context))
2620      TentativeDefinitions[Var->getDeclName()] = Var;
2621
2622    // C++ [dcl.init.ref]p3:
2623    //   The initializer can be omitted for a reference only in a
2624    //   parameter declaration (8.3.5), in the declaration of a
2625    //   function return type, in the declaration of a class member
2626    //   within its class declaration (9.2), and where the extern
2627    //   specifier is explicitly used.
2628    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2629      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2630        << Var->getDeclName()
2631        << SourceRange(Var->getLocation(), Var->getLocation());
2632      Var->setInvalidDecl();
2633      return;
2634    }
2635
2636    // C++ [dcl.init]p9:
2637    //
2638    //   If no initializer is specified for an object, and the object
2639    //   is of (possibly cv-qualified) non-POD class type (or array
2640    //   thereof), the object shall be default-initialized; if the
2641    //   object is of const-qualified type, the underlying class type
2642    //   shall have a user-declared default constructor.
2643    if (getLangOptions().CPlusPlus) {
2644      QualType InitType = Type;
2645      if (const ArrayType *Array = Context.getAsArrayType(Type))
2646        InitType = Array->getElementType();
2647      if (!Var->hasExternalStorage() && InitType->isRecordType()) {
2648        CXXRecordDecl *RD =
2649          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2650        CXXConstructorDecl *Constructor = 0;
2651        if (!RequireCompleteType(Var->getLocation(), InitType,
2652                                    diag::err_invalid_incomplete_type_use))
2653          Constructor
2654            = PerformInitializationByConstructor(InitType, 0, 0,
2655                                                 Var->getLocation(),
2656                                               SourceRange(Var->getLocation(),
2657                                                           Var->getLocation()),
2658                                                 Var->getDeclName(),
2659                                                 IK_Default);
2660        if (!Constructor)
2661          Var->setInvalidDecl();
2662        else if (!RD->hasTrivialConstructor())
2663          InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2664      }
2665    }
2666
2667#if 0
2668    // FIXME: Temporarily disabled because we are not properly parsing
2669    // linkage specifications on declarations, e.g.,
2670    //
2671    //   extern "C" const CGPoint CGPointerZero;
2672    //
2673    // C++ [dcl.init]p9:
2674    //
2675    //     If no initializer is specified for an object, and the
2676    //     object is of (possibly cv-qualified) non-POD class type (or
2677    //     array thereof), the object shall be default-initialized; if
2678    //     the object is of const-qualified type, the underlying class
2679    //     type shall have a user-declared default
2680    //     constructor. Otherwise, if no initializer is specified for
2681    //     an object, the object and its subobjects, if any, have an
2682    //     indeterminate initial value; if the object or any of its
2683    //     subobjects are of const-qualified type, the program is
2684    //     ill-formed.
2685    //
2686    // This isn't technically an error in C, so we don't diagnose it.
2687    //
2688    // FIXME: Actually perform the POD/user-defined default
2689    // constructor check.
2690    if (getLangOptions().CPlusPlus &&
2691        Context.getCanonicalType(Type).isConstQualified() &&
2692        !Var->hasExternalStorage())
2693      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2694        << Var->getName()
2695        << SourceRange(Var->getLocation(), Var->getLocation());
2696#endif
2697  }
2698}
2699
2700Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2701                                                   unsigned NumDecls) {
2702  llvm::SmallVector<Decl*, 8> Decls;
2703
2704  for (unsigned i = 0; i != NumDecls; ++i)
2705    if (Decl *D = Group[i].getAs<Decl>())
2706      Decls.push_back(D);
2707
2708  // Perform semantic analysis that depends on having fully processed both
2709  // the declarator and initializer.
2710  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2711    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2712    if (!IDecl)
2713      continue;
2714    QualType T = IDecl->getType();
2715
2716    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2717    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2718    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2719      if (!IDecl->isInvalidDecl() &&
2720          RequireCompleteType(IDecl->getLocation(), T,
2721                              diag::err_typecheck_decl_incomplete_type))
2722        IDecl->setInvalidDecl();
2723    }
2724    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2725    // object that has file scope without an initializer, and without a
2726    // storage-class specifier or with the storage-class specifier "static",
2727    // constitutes a tentative definition. Note: A tentative definition with
2728    // external linkage is valid (C99 6.2.2p5).
2729    if (IDecl->isTentativeDefinition(Context)) {
2730      QualType CheckType = T;
2731      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2732
2733      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2734      if (ArrayT) {
2735        CheckType = ArrayT->getElementType();
2736        DiagID = diag::err_illegal_decl_array_incomplete_type;
2737      }
2738
2739      if (IDecl->isInvalidDecl()) {
2740        // Do nothing with invalid declarations
2741      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2742                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2743        // C99 6.9.2p3: If the declaration of an identifier for an object is
2744        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2745        // declared type shall not be an incomplete type.
2746        IDecl->setInvalidDecl();
2747      }
2748    }
2749  }
2750  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2751                                                   &Decls[0], Decls.size()));
2752}
2753
2754
2755/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2756/// to introduce parameters into function prototype scope.
2757Sema::DeclPtrTy
2758Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2759  const DeclSpec &DS = D.getDeclSpec();
2760
2761  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2762  VarDecl::StorageClass StorageClass = VarDecl::None;
2763  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2764    StorageClass = VarDecl::Register;
2765  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2766    Diag(DS.getStorageClassSpecLoc(),
2767         diag::err_invalid_storage_class_in_func_decl);
2768    D.getMutableDeclSpec().ClearStorageClassSpecs();
2769  }
2770
2771  if (D.getDeclSpec().isThreadSpecified())
2772    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2773
2774  DiagnoseFunctionSpecifiers(D);
2775
2776  // Check that there are no default arguments inside the type of this
2777  // parameter (C++ only).
2778  if (getLangOptions().CPlusPlus)
2779    CheckExtraCXXDefaultArguments(D);
2780
2781  QualType parmDeclType = GetTypeForDeclarator(D, S);
2782
2783  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2784  // Can this happen for params?  We already checked that they don't conflict
2785  // among each other.  Here they can only shadow globals, which is ok.
2786  IdentifierInfo *II = D.getIdentifier();
2787  if (II) {
2788    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2789      if (PrevDecl->isTemplateParameter()) {
2790        // Maybe we will complain about the shadowed template parameter.
2791        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2792        // Just pretend that we didn't see the previous declaration.
2793        PrevDecl = 0;
2794      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2795        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2796
2797        // Recover by removing the name
2798        II = 0;
2799        D.SetIdentifier(0, D.getIdentifierLoc());
2800      }
2801    }
2802  }
2803
2804  // Parameters can not be abstract class types.
2805  // For record types, this is done by the AbstractClassUsageDiagnoser once
2806  // the class has been completely parsed.
2807  if (!CurContext->isRecord() &&
2808      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2809                             diag::err_abstract_type_in_decl,
2810                             AbstractParamType))
2811    D.setInvalidType(true);
2812
2813  QualType T = adjustParameterType(parmDeclType);
2814
2815  ParmVarDecl *New;
2816  if (T == parmDeclType) // parameter type did not need adjustment
2817    New = ParmVarDecl::Create(Context, CurContext,
2818                              D.getIdentifierLoc(), II,
2819                              parmDeclType, StorageClass,
2820                              0);
2821  else // keep track of both the adjusted and unadjusted types
2822    New = OriginalParmVarDecl::Create(Context, CurContext,
2823                                      D.getIdentifierLoc(), II, T,
2824                                      parmDeclType, StorageClass, 0);
2825
2826  if (D.isInvalidType())
2827    New->setInvalidDecl();
2828
2829  // Parameter declarators cannot be interface types. All ObjC objects are
2830  // passed by reference.
2831  if (T->isObjCInterfaceType()) {
2832    Diag(D.getIdentifierLoc(),
2833         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2834    New->setInvalidDecl();
2835  }
2836
2837  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2838  if (D.getCXXScopeSpec().isSet()) {
2839    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2840      << D.getCXXScopeSpec().getRange();
2841    New->setInvalidDecl();
2842  }
2843
2844  // Add the parameter declaration into this scope.
2845  S->AddDecl(DeclPtrTy::make(New));
2846  if (II)
2847    IdResolver.AddDecl(New);
2848
2849  ProcessDeclAttributes(New, D);
2850  return DeclPtrTy::make(New);
2851}
2852
2853void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2854                                           SourceLocation LocAfterDecls) {
2855  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2856         "Not a function declarator!");
2857  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2858
2859  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2860  // for a K&R function.
2861  if (!FTI.hasPrototype) {
2862    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2863      --i;
2864      if (FTI.ArgInfo[i].Param == 0) {
2865        std::string Code = "  int ";
2866        Code += FTI.ArgInfo[i].Ident->getName();
2867        Code += ";\n";
2868        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2869          << FTI.ArgInfo[i].Ident
2870          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2871
2872        // Implicitly declare the argument as type 'int' for lack of a better
2873        // type.
2874        DeclSpec DS;
2875        const char* PrevSpec; // unused
2876        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2877                           PrevSpec);
2878        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2879        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2880        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2881      }
2882    }
2883  }
2884}
2885
2886Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2887                                              Declarator &D) {
2888  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2889  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2890         "Not a function declarator!");
2891  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2892
2893  if (FTI.hasPrototype) {
2894    // FIXME: Diagnose arguments without names in C.
2895  }
2896
2897  Scope *ParentScope = FnBodyScope->getParent();
2898
2899  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2900  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2901}
2902
2903Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2904  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2905
2906  CurFunctionNeedsScopeChecking = false;
2907
2908  // See if this is a redefinition.
2909  const FunctionDecl *Definition;
2910  if (FD->getBody(Context, Definition)) {
2911    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2912    Diag(Definition->getLocation(), diag::note_previous_definition);
2913  }
2914
2915  // Builtin functions cannot be defined.
2916  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2917    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2918      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2919      FD->setInvalidDecl();
2920    }
2921  }
2922
2923  // The return type of a function definition must be complete
2924  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2925  QualType ResultType = FD->getResultType();
2926  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2927      RequireCompleteType(FD->getLocation(), ResultType,
2928                          diag::err_func_def_incomplete_result))
2929    FD->setInvalidDecl();
2930
2931  // GNU warning -Wmissing-prototypes:
2932  //   Warn if a global function is defined without a previous
2933  //   prototype declaration. This warning is issued even if the
2934  //   definition itself provides a prototype. The aim is to detect
2935  //   global functions that fail to be declared in header files.
2936  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
2937      !FD->isMain()) {
2938    bool MissingPrototype = true;
2939    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2940         Prev; Prev = Prev->getPreviousDeclaration()) {
2941      // Ignore any declarations that occur in function or method
2942      // scope, because they aren't visible from the header.
2943      if (Prev->getDeclContext()->isFunctionOrMethod())
2944        continue;
2945
2946      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2947      break;
2948    }
2949
2950    if (MissingPrototype)
2951      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
2952  }
2953
2954  PushDeclContext(FnBodyScope, FD);
2955
2956  // Check the validity of our function parameters
2957  CheckParmsForFunctionDef(FD);
2958
2959  // Introduce our parameters into the function scope
2960  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2961    ParmVarDecl *Param = FD->getParamDecl(p);
2962    Param->setOwningFunction(FD);
2963
2964    // If this has an identifier, add it to the scope stack.
2965    if (Param->getIdentifier())
2966      PushOnScopeChains(Param, FnBodyScope);
2967  }
2968
2969  // Checking attributes of current function definition
2970  // dllimport attribute.
2971  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2972    // dllimport attribute cannot be applied to definition.
2973    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2974      Diag(FD->getLocation(),
2975           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2976        << "dllimport";
2977      FD->setInvalidDecl();
2978      return DeclPtrTy::make(FD);
2979    } else {
2980      // If a symbol previously declared dllimport is later defined, the
2981      // attribute is ignored in subsequent references, and a warning is
2982      // emitted.
2983      Diag(FD->getLocation(),
2984           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2985        << FD->getNameAsCString() << "dllimport";
2986    }
2987  }
2988  return DeclPtrTy::make(FD);
2989}
2990
2991
2992Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
2993  Decl *dcl = D.getAs<Decl>();
2994  Stmt *Body = BodyArg.takeAs<Stmt>();
2995  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2996    FD->setBody(Body);
2997    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2998  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2999    assert(MD == getCurMethodDecl() && "Method parsing confused");
3000    MD->setBody(Body);
3001  } else {
3002    Body->Destroy(Context);
3003    return DeclPtrTy();
3004  }
3005  PopDeclContext();
3006  // Verify and clean out per-function state.
3007
3008  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3009
3010  // Check goto/label use.
3011  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3012       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3013    LabelStmt *L = I->second;
3014
3015    // Verify that we have no forward references left.  If so, there was a goto
3016    // or address of a label taken, but no definition of it.  Label fwd
3017    // definitions are indicated with a null substmt.
3018    if (L->getSubStmt() != 0)
3019      continue;
3020
3021    // Emit error.
3022    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3023
3024    // At this point, we have gotos that use the bogus label.  Stitch it into
3025    // the function body so that they aren't leaked and that the AST is well
3026    // formed.
3027    if (Body == 0) {
3028      // The whole function wasn't parsed correctly, just delete this.
3029      L->Destroy(Context);
3030      continue;
3031    }
3032
3033    // Otherwise, the body is valid: we want to stitch the label decl into the
3034    // function somewhere so that it is properly owned and so that the goto
3035    // has a valid target.  Do this by creating a new compound stmt with the
3036    // label in it.
3037
3038    // Give the label a sub-statement.
3039    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3040
3041    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3042                               cast<CXXTryStmt>(Body)->getTryBlock() :
3043                               cast<CompoundStmt>(Body);
3044    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3045    Elements.push_back(L);
3046    Compound->setStmts(Context, &Elements[0], Elements.size());
3047  }
3048  FunctionLabelMap.clear();
3049
3050  if (!Body) return D;
3051
3052  // Verify that that gotos and switch cases don't jump into scopes illegally.
3053  if (CurFunctionNeedsScopeChecking)
3054    DiagnoseInvalidJumps(Body);
3055
3056  // C++ constructors that have function-try-blocks can't have return statements
3057  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
3058  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3059    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3060
3061  return D;
3062}
3063
3064/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3065/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3066NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3067                                          IdentifierInfo &II, Scope *S) {
3068  // Before we produce a declaration for an implicitly defined
3069  // function, see whether there was a locally-scoped declaration of
3070  // this name as a function or variable. If so, use that
3071  // (non-visible) declaration, and complain about it.
3072  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3073    = LocallyScopedExternalDecls.find(&II);
3074  if (Pos != LocallyScopedExternalDecls.end()) {
3075    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3076    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3077    return Pos->second;
3078  }
3079
3080  // Extension in C99.  Legal in C90, but warn about it.
3081  if (getLangOptions().C99)
3082    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3083  else
3084    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3085
3086  // FIXME: handle stuff like:
3087  // void foo() { extern float X(); }
3088  // void bar() { X(); }  <-- implicit decl for X in another scope.
3089
3090  // Set a Declarator for the implicit definition: int foo();
3091  const char *Dummy;
3092  DeclSpec DS;
3093  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3094  Error = Error; // Silence warning.
3095  assert(!Error && "Error setting up implicit decl!");
3096  Declarator D(DS, Declarator::BlockContext);
3097  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
3098                                             0, 0, 0, Loc, D),
3099                SourceLocation());
3100  D.SetIdentifier(&II, Loc);
3101
3102  // Insert this function into translation-unit scope.
3103
3104  DeclContext *PrevDC = CurContext;
3105  CurContext = Context.getTranslationUnitDecl();
3106
3107  FunctionDecl *FD =
3108 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3109  FD->setImplicit();
3110
3111  CurContext = PrevDC;
3112
3113  AddKnownFunctionAttributes(FD);
3114
3115  return FD;
3116}
3117
3118/// \brief Adds any function attributes that we know a priori based on
3119/// the declaration of this function.
3120///
3121/// These attributes can apply both to implicitly-declared builtins
3122/// (like __builtin___printf_chk) or to library-declared functions
3123/// like NSLog or printf.
3124void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3125  if (FD->isInvalidDecl())
3126    return;
3127
3128  // If this is a built-in function, map its builtin attributes to
3129  // actual attributes.
3130  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3131    // Handle printf-formatting attributes.
3132    unsigned FormatIdx;
3133    bool HasVAListArg;
3134    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3135      if (!FD->getAttr<FormatAttr>())
3136        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3137                                               FormatIdx + 2));
3138    }
3139
3140    // Mark const if we don't care about errno and that is the only
3141    // thing preventing the function from being const. This allows
3142    // IRgen to use LLVM intrinsics for such functions.
3143    if (!getLangOptions().MathErrno &&
3144        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3145      if (!FD->getAttr<ConstAttr>())
3146        FD->addAttr(::new (Context) ConstAttr());
3147    }
3148  }
3149
3150  IdentifierInfo *Name = FD->getIdentifier();
3151  if (!Name)
3152    return;
3153  if ((!getLangOptions().CPlusPlus &&
3154       FD->getDeclContext()->isTranslationUnit()) ||
3155      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3156       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3157       LinkageSpecDecl::lang_c)) {
3158    // Okay: this could be a libc/libm/Objective-C function we know
3159    // about.
3160  } else
3161    return;
3162
3163  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3164    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3165      // FIXME: We known better than our headers.
3166      const_cast<FormatAttr *>(Format)->setType("printf");
3167    } else
3168      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3169  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3170    if (!FD->getAttr<FormatAttr>())
3171      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3172  }
3173}
3174
3175TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3176  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3177  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3178
3179  // Scope manipulation handled by caller.
3180  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3181                                           D.getIdentifierLoc(),
3182                                           D.getIdentifier(),
3183                                           T);
3184
3185  if (TagType *TT = dyn_cast<TagType>(T)) {
3186    TagDecl *TD = TT->getDecl();
3187
3188    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3189    // keep track of the TypedefDecl.
3190    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3191      TD->setTypedefForAnonDecl(NewTD);
3192  }
3193
3194  if (D.isInvalidType())
3195    NewTD->setInvalidDecl();
3196  return NewTD;
3197}
3198
3199/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3200/// former case, Name will be non-null.  In the later case, Name will be null.
3201/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3202/// reference/declaration/definition of a tag.
3203Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3204                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3205                               IdentifierInfo *Name, SourceLocation NameLoc,
3206                               AttributeList *Attr, AccessSpecifier AS) {
3207  // If this is not a definition, it must have a name.
3208  assert((Name != 0 || TK == TK_Definition) &&
3209         "Nameless record must be a definition!");
3210
3211  TagDecl::TagKind Kind;
3212  switch (TagSpec) {
3213  default: assert(0 && "Unknown tag type!");
3214  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3215  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3216  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3217  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3218  }
3219
3220  DeclContext *SearchDC = CurContext;
3221  DeclContext *DC = CurContext;
3222  NamedDecl *PrevDecl = 0;
3223
3224  bool Invalid = false;
3225
3226  if (Name && SS.isNotEmpty()) {
3227    // We have a nested-name tag ('struct foo::bar').
3228
3229    // Check for invalid 'foo::'.
3230    if (SS.isInvalid()) {
3231      Name = 0;
3232      goto CreateNewDecl;
3233    }
3234
3235    // FIXME: RequireCompleteDeclContext(SS)?
3236    DC = computeDeclContext(SS);
3237    SearchDC = DC;
3238    // Look-up name inside 'foo::'.
3239    PrevDecl = dyn_cast_or_null<TagDecl>(
3240                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3241
3242    // A tag 'foo::bar' must already exist.
3243    if (PrevDecl == 0) {
3244      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3245      Name = 0;
3246      goto CreateNewDecl;
3247    }
3248  } else if (Name) {
3249    // If this is a named struct, check to see if there was a previous forward
3250    // declaration or definition.
3251    // FIXME: We're looking into outer scopes here, even when we
3252    // shouldn't be. Doing so can result in ambiguities that we
3253    // shouldn't be diagnosing.
3254    LookupResult R = LookupName(S, Name, LookupTagName,
3255                                /*RedeclarationOnly=*/(TK != TK_Reference));
3256    if (R.isAmbiguous()) {
3257      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3258      // FIXME: This is not best way to recover from case like:
3259      //
3260      // struct S s;
3261      //
3262      // causes needless "incomplete type" error later.
3263      Name = 0;
3264      PrevDecl = 0;
3265      Invalid = true;
3266    }
3267    else
3268      PrevDecl = R;
3269
3270    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3271      // FIXME: This makes sure that we ignore the contexts associated
3272      // with C structs, unions, and enums when looking for a matching
3273      // tag declaration or definition. See the similar lookup tweak
3274      // in Sema::LookupName; is there a better way to deal with this?
3275      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3276        SearchDC = SearchDC->getParent();
3277    }
3278  }
3279
3280  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3281    // Maybe we will complain about the shadowed template parameter.
3282    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3283    // Just pretend that we didn't see the previous declaration.
3284    PrevDecl = 0;
3285  }
3286
3287  if (PrevDecl) {
3288    // Check whether the previous declaration is usable.
3289    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3290
3291    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3292      // If this is a use of a previous tag, or if the tag is already declared
3293      // in the same scope (so that the definition/declaration completes or
3294      // rementions the tag), reuse the decl.
3295      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3296        // Make sure that this wasn't declared as an enum and now used as a
3297        // struct or something similar.
3298        if (PrevTagDecl->getTagKind() != Kind) {
3299          bool SafeToContinue
3300            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3301               Kind != TagDecl::TK_enum);
3302          if (SafeToContinue)
3303            Diag(KWLoc, diag::err_use_with_wrong_tag)
3304              << Name
3305              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3306                                                  PrevTagDecl->getKindName());
3307          else
3308            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3309          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3310
3311          if (SafeToContinue)
3312            Kind = PrevTagDecl->getTagKind();
3313          else {
3314            // Recover by making this an anonymous redefinition.
3315            Name = 0;
3316            PrevDecl = 0;
3317            Invalid = true;
3318          }
3319        }
3320
3321        if (!Invalid) {
3322          // If this is a use, just return the declaration we found.
3323
3324          // FIXME: In the future, return a variant or some other clue
3325          // for the consumer of this Decl to know it doesn't own it.
3326          // For our current ASTs this shouldn't be a problem, but will
3327          // need to be changed with DeclGroups.
3328          if (TK == TK_Reference)
3329            return DeclPtrTy::make(PrevDecl);
3330
3331          // Diagnose attempts to redefine a tag.
3332          if (TK == TK_Definition) {
3333            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3334              Diag(NameLoc, diag::err_redefinition) << Name;
3335              Diag(Def->getLocation(), diag::note_previous_definition);
3336              // If this is a redefinition, recover by making this
3337              // struct be anonymous, which will make any later
3338              // references get the previous definition.
3339              Name = 0;
3340              PrevDecl = 0;
3341              Invalid = true;
3342            } else {
3343              // If the type is currently being defined, complain
3344              // about a nested redefinition.
3345              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3346              if (Tag->isBeingDefined()) {
3347                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3348                Diag(PrevTagDecl->getLocation(),
3349                     diag::note_previous_definition);
3350                Name = 0;
3351                PrevDecl = 0;
3352                Invalid = true;
3353              }
3354            }
3355
3356            // Okay, this is definition of a previously declared or referenced
3357            // tag PrevDecl. We're going to create a new Decl for it.
3358          }
3359        }
3360        // If we get here we have (another) forward declaration or we
3361        // have a definition.  Just create a new decl.
3362      } else {
3363        // If we get here, this is a definition of a new tag type in a nested
3364        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3365        // new decl/type.  We set PrevDecl to NULL so that the entities
3366        // have distinct types.
3367        PrevDecl = 0;
3368      }
3369      // If we get here, we're going to create a new Decl. If PrevDecl
3370      // is non-NULL, it's a definition of the tag declared by
3371      // PrevDecl. If it's NULL, we have a new definition.
3372    } else {
3373      // PrevDecl is a namespace, template, or anything else
3374      // that lives in the IDNS_Tag identifier namespace.
3375      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3376        // The tag name clashes with a namespace name, issue an error and
3377        // recover by making this tag be anonymous.
3378        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3379        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3380        Name = 0;
3381        PrevDecl = 0;
3382        Invalid = true;
3383      } else {
3384        // The existing declaration isn't relevant to us; we're in a
3385        // new scope, so clear out the previous declaration.
3386        PrevDecl = 0;
3387      }
3388    }
3389  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3390             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3391    // C.scope.pdecl]p5:
3392    //   -- for an elaborated-type-specifier of the form
3393    //
3394    //          class-key identifier
3395    //
3396    //      if the elaborated-type-specifier is used in the
3397    //      decl-specifier-seq or parameter-declaration-clause of a
3398    //      function defined in namespace scope, the identifier is
3399    //      declared as a class-name in the namespace that contains
3400    //      the declaration; otherwise, except as a friend
3401    //      declaration, the identifier is declared in the smallest
3402    //      non-class, non-function-prototype scope that contains the
3403    //      declaration.
3404    //
3405    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3406    // C structs and unions.
3407    //
3408    // GNU C also supports this behavior as part of its incomplete
3409    // enum types extension, while GNU C++ does not.
3410    //
3411    // Find the context where we'll be declaring the tag.
3412    // FIXME: We would like to maintain the current DeclContext as the
3413    // lexical context,
3414    while (SearchDC->isRecord())
3415      SearchDC = SearchDC->getParent();
3416
3417    // Find the scope where we'll be declaring the tag.
3418    while (S->isClassScope() ||
3419           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3420           ((S->getFlags() & Scope::DeclScope) == 0) ||
3421           (S->getEntity() &&
3422            ((DeclContext *)S->getEntity())->isTransparentContext()))
3423      S = S->getParent();
3424  }
3425
3426CreateNewDecl:
3427
3428  // If there is an identifier, use the location of the identifier as the
3429  // location of the decl, otherwise use the location of the struct/union
3430  // keyword.
3431  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3432
3433  // Otherwise, create a new declaration. If there is a previous
3434  // declaration of the same entity, the two will be linked via
3435  // PrevDecl.
3436  TagDecl *New;
3437
3438  if (Kind == TagDecl::TK_enum) {
3439    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3440    // enum X { A, B, C } D;    D should chain to X.
3441    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3442                           cast_or_null<EnumDecl>(PrevDecl));
3443    // If this is an undefined enum, warn.
3444    if (TK != TK_Definition && !Invalid)  {
3445      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3446                                              : diag::ext_forward_ref_enum;
3447      Diag(Loc, DK);
3448    }
3449  } else {
3450    // struct/union/class
3451
3452    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3453    // struct X { int A; } D;    D should chain to X.
3454    if (getLangOptions().CPlusPlus)
3455      // FIXME: Look for a way to use RecordDecl for simple structs.
3456      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3457                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3458    else
3459      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3460                               cast_or_null<RecordDecl>(PrevDecl));
3461  }
3462
3463  if (Kind != TagDecl::TK_enum) {
3464    // Handle #pragma pack: if the #pragma pack stack has non-default
3465    // alignment, make up a packed attribute for this decl. These
3466    // attributes are checked when the ASTContext lays out the
3467    // structure.
3468    //
3469    // It is important for implementing the correct semantics that this
3470    // happen here (in act on tag decl). The #pragma pack stack is
3471    // maintained as a result of parser callbacks which can occur at
3472    // many points during the parsing of a struct declaration (because
3473    // the #pragma tokens are effectively skipped over during the
3474    // parsing of the struct).
3475    if (unsigned Alignment = getPragmaPackAlignment())
3476      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3477  }
3478
3479  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3480    // C++ [dcl.typedef]p3:
3481    //   [...] Similarly, in a given scope, a class or enumeration
3482    //   shall not be declared with the same name as a typedef-name
3483    //   that is declared in that scope and refers to a type other
3484    //   than the class or enumeration itself.
3485    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3486    TypedefDecl *PrevTypedef = 0;
3487    if (Lookup.getKind() == LookupResult::Found)
3488      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3489
3490    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3491        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3492          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3493      Diag(Loc, diag::err_tag_definition_of_typedef)
3494        << Context.getTypeDeclType(New)
3495        << PrevTypedef->getUnderlyingType();
3496      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3497      Invalid = true;
3498    }
3499  }
3500
3501  if (Invalid)
3502    New->setInvalidDecl();
3503
3504  if (Attr)
3505    ProcessDeclAttributeList(New, Attr);
3506
3507  // If we're declaring or defining a tag in function prototype scope
3508  // in C, note that this type can only be used within the function.
3509  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3510    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3511
3512  // Set the lexical context. If the tag has a C++ scope specifier, the
3513  // lexical context will be different from the semantic context.
3514  New->setLexicalDeclContext(CurContext);
3515
3516  // Set the access specifier.
3517  SetMemberAccessSpecifier(New, PrevDecl, AS);
3518
3519  if (TK == TK_Definition)
3520    New->startDefinition();
3521
3522  // If this has an identifier, add it to the scope stack.
3523  if (Name) {
3524    S = getNonFieldDeclScope(S);
3525    PushOnScopeChains(New, S);
3526  } else {
3527    CurContext->addDecl(Context, New);
3528  }
3529
3530  return DeclPtrTy::make(New);
3531}
3532
3533void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3534  AdjustDeclIfTemplate(TagD);
3535  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3536
3537  // Enter the tag context.
3538  PushDeclContext(S, Tag);
3539
3540  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3541    FieldCollector->StartClass();
3542
3543    if (Record->getIdentifier()) {
3544      // C++ [class]p2:
3545      //   [...] The class-name is also inserted into the scope of the
3546      //   class itself; this is known as the injected-class-name. For
3547      //   purposes of access checking, the injected-class-name is treated
3548      //   as if it were a public member name.
3549      CXXRecordDecl *InjectedClassName
3550        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3551                                CurContext, Record->getLocation(),
3552                                Record->getIdentifier(), Record);
3553      InjectedClassName->setImplicit();
3554      InjectedClassName->setAccess(AS_public);
3555      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3556        InjectedClassName->setDescribedClassTemplate(Template);
3557      PushOnScopeChains(InjectedClassName, S);
3558      assert(InjectedClassName->isInjectedClassName() &&
3559             "Broken injected-class-name");
3560    }
3561  }
3562}
3563
3564void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3565  AdjustDeclIfTemplate(TagD);
3566  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3567
3568  if (isa<CXXRecordDecl>(Tag))
3569    FieldCollector->FinishClass();
3570
3571  // Exit this scope of this tag's definition.
3572  PopDeclContext();
3573
3574  // Notify the consumer that we've defined a tag.
3575  Consumer.HandleTagDeclDefinition(Tag);
3576}
3577
3578// Note that FieldName may be null for anonymous bitfields.
3579bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3580                          QualType FieldTy, const Expr *BitWidth) {
3581
3582  // C99 6.7.2.1p4 - verify the field type.
3583  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3584  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3585    // Handle incomplete types with specific error.
3586    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3587      return true;
3588    if (FieldName)
3589      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3590        << FieldName << FieldTy << BitWidth->getSourceRange();
3591    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3592      << FieldTy << BitWidth->getSourceRange();
3593  }
3594
3595  // If the bit-width is type- or value-dependent, don't try to check
3596  // it now.
3597  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3598    return false;
3599
3600  llvm::APSInt Value;
3601  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3602    return true;
3603
3604  // Zero-width bitfield is ok for anonymous field.
3605  if (Value == 0 && FieldName)
3606    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3607
3608  if (Value.isSigned() && Value.isNegative()) {
3609    if (FieldName)
3610      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3611               << FieldName << Value.toString(10);
3612    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3613      << Value.toString(10);
3614  }
3615
3616  if (!FieldTy->isDependentType()) {
3617    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3618    if (Value.getZExtValue() > TypeSize) {
3619      if (FieldName)
3620        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3621          << FieldName << (unsigned)TypeSize;
3622      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3623        << (unsigned)TypeSize;
3624    }
3625  }
3626
3627  return false;
3628}
3629
3630/// ActOnField - Each field of a struct/union/class is passed into this in order
3631/// to create a FieldDecl object for it.
3632Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3633                                 SourceLocation DeclStart,
3634                                 Declarator &D, ExprTy *BitfieldWidth) {
3635  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3636                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3637                               AS_public);
3638  return DeclPtrTy::make(Res);
3639}
3640
3641/// HandleField - Analyze a field of a C struct or a C++ data member.
3642///
3643FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3644                             SourceLocation DeclStart,
3645                             Declarator &D, Expr *BitWidth,
3646                             AccessSpecifier AS) {
3647  IdentifierInfo *II = D.getIdentifier();
3648  SourceLocation Loc = DeclStart;
3649  if (II) Loc = D.getIdentifierLoc();
3650
3651  QualType T = GetTypeForDeclarator(D, S);
3652  if (getLangOptions().CPlusPlus)
3653    CheckExtraCXXDefaultArguments(D);
3654
3655  DiagnoseFunctionSpecifiers(D);
3656
3657  if (D.getDeclSpec().isThreadSpecified())
3658    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3659
3660  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3661  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3662    PrevDecl = 0;
3663
3664  FieldDecl *NewFD
3665    = CheckFieldDecl(II, T, Record, Loc,
3666               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3667                     BitWidth, AS, PrevDecl, &D);
3668  if (NewFD->isInvalidDecl() && PrevDecl) {
3669    // Don't introduce NewFD into scope; there's already something
3670    // with the same name in the same scope.
3671  } else if (II) {
3672    PushOnScopeChains(NewFD, S);
3673  } else
3674    Record->addDecl(Context, NewFD);
3675
3676  return NewFD;
3677}
3678
3679/// \brief Build a new FieldDecl and check its well-formedness.
3680///
3681/// This routine builds a new FieldDecl given the fields name, type,
3682/// record, etc. \p PrevDecl should refer to any previous declaration
3683/// with the same name and in the same scope as the field to be
3684/// created.
3685///
3686/// \returns a new FieldDecl.
3687///
3688/// \todo The Declarator argument is a hack. It will be removed once
3689FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3690                                RecordDecl *Record, SourceLocation Loc,
3691                                bool Mutable, Expr *BitWidth,
3692                                AccessSpecifier AS, NamedDecl *PrevDecl,
3693                                Declarator *D) {
3694  IdentifierInfo *II = Name.getAsIdentifierInfo();
3695  bool InvalidDecl = false;
3696  if (D) InvalidDecl = D->isInvalidType();
3697
3698  // If we receive a broken type, recover by assuming 'int' and
3699  // marking this declaration as invalid.
3700  if (T.isNull()) {
3701    InvalidDecl = true;
3702    T = Context.IntTy;
3703  }
3704
3705  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3706  // than a variably modified type.
3707  if (T->isVariablyModifiedType()) {
3708    bool SizeIsNegative;
3709    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3710                                                           SizeIsNegative);
3711    if (!FixedTy.isNull()) {
3712      Diag(Loc, diag::warn_illegal_constant_array_size);
3713      T = FixedTy;
3714    } else {
3715      if (SizeIsNegative)
3716        Diag(Loc, diag::err_typecheck_negative_array_size);
3717      else
3718        Diag(Loc, diag::err_typecheck_field_variable_size);
3719      T = Context.IntTy;
3720      InvalidDecl = true;
3721    }
3722  }
3723
3724  // Fields can not have abstract class types
3725  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3726                             AbstractFieldType))
3727    InvalidDecl = true;
3728
3729  // If this is declared as a bit-field, check the bit-field.
3730  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3731    InvalidDecl = true;
3732    DeleteExpr(BitWidth);
3733    BitWidth = 0;
3734  }
3735
3736  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3737                                       Mutable);
3738  if (InvalidDecl)
3739    NewFD->setInvalidDecl();
3740
3741  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3742    Diag(Loc, diag::err_duplicate_member) << II;
3743    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3744    NewFD->setInvalidDecl();
3745    Record->setInvalidDecl();
3746  }
3747
3748  if (getLangOptions().CPlusPlus && !T->isPODType())
3749    cast<CXXRecordDecl>(Record)->setPOD(false);
3750
3751  // FIXME: We need to pass in the attributes given an AST
3752  // representation, not a parser representation.
3753  if (D)
3754    ProcessDeclAttributes(NewFD, *D);
3755
3756  if (T.isObjCGCWeak())
3757    Diag(Loc, diag::warn_attribute_weak_on_field);
3758
3759  NewFD->setAccess(AS);
3760
3761  // C++ [dcl.init.aggr]p1:
3762  //   An aggregate is an array or a class (clause 9) with [...] no
3763  //   private or protected non-static data members (clause 11).
3764  // A POD must be an aggregate.
3765  if (getLangOptions().CPlusPlus &&
3766      (AS == AS_private || AS == AS_protected)) {
3767    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3768    CXXRecord->setAggregate(false);
3769    CXXRecord->setPOD(false);
3770  }
3771
3772  return NewFD;
3773}
3774
3775/// TranslateIvarVisibility - Translate visibility from a token ID to an
3776///  AST enum value.
3777static ObjCIvarDecl::AccessControl
3778TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3779  switch (ivarVisibility) {
3780  default: assert(0 && "Unknown visitibility kind");
3781  case tok::objc_private: return ObjCIvarDecl::Private;
3782  case tok::objc_public: return ObjCIvarDecl::Public;
3783  case tok::objc_protected: return ObjCIvarDecl::Protected;
3784  case tok::objc_package: return ObjCIvarDecl::Package;
3785  }
3786}
3787
3788/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3789/// in order to create an IvarDecl object for it.
3790Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3791                                SourceLocation DeclStart,
3792                                Declarator &D, ExprTy *BitfieldWidth,
3793                                tok::ObjCKeywordKind Visibility) {
3794
3795  IdentifierInfo *II = D.getIdentifier();
3796  Expr *BitWidth = (Expr*)BitfieldWidth;
3797  SourceLocation Loc = DeclStart;
3798  if (II) Loc = D.getIdentifierLoc();
3799
3800  // FIXME: Unnamed fields can be handled in various different ways, for
3801  // example, unnamed unions inject all members into the struct namespace!
3802
3803  QualType T = GetTypeForDeclarator(D, S);
3804
3805  if (BitWidth) {
3806    // 6.7.2.1p3, 6.7.2.1p4
3807    if (VerifyBitField(Loc, II, T, BitWidth)) {
3808      D.setInvalidType();
3809      DeleteExpr(BitWidth);
3810      BitWidth = 0;
3811    }
3812  } else {
3813    // Not a bitfield.
3814
3815    // validate II.
3816
3817  }
3818
3819  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3820  // than a variably modified type.
3821  if (T->isVariablyModifiedType()) {
3822    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3823    D.setInvalidType();
3824  }
3825
3826  // Get the visibility (access control) for this ivar.
3827  ObjCIvarDecl::AccessControl ac =
3828    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3829                                        : ObjCIvarDecl::None;
3830
3831  // Construct the decl.
3832  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3833                                             (Expr *)BitfieldWidth);
3834
3835  if (II) {
3836    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3837    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3838        && !isa<TagDecl>(PrevDecl)) {
3839      Diag(Loc, diag::err_duplicate_member) << II;
3840      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3841      NewID->setInvalidDecl();
3842    }
3843  }
3844
3845  // Process attributes attached to the ivar.
3846  ProcessDeclAttributes(NewID, D);
3847
3848  if (D.isInvalidType())
3849    NewID->setInvalidDecl();
3850
3851  if (II) {
3852    // FIXME: When interfaces are DeclContexts, we'll need to add
3853    // these to the interface.
3854    S->AddDecl(DeclPtrTy::make(NewID));
3855    IdResolver.AddDecl(NewID);
3856  }
3857
3858  return DeclPtrTy::make(NewID);
3859}
3860
3861void Sema::ActOnFields(Scope* S,
3862                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3863                       DeclPtrTy *Fields, unsigned NumFields,
3864                       SourceLocation LBrac, SourceLocation RBrac,
3865                       AttributeList *Attr) {
3866  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3867  assert(EnclosingDecl && "missing record or interface decl");
3868
3869  // If the decl this is being inserted into is invalid, then it may be a
3870  // redeclaration or some other bogus case.  Don't try to add fields to it.
3871  if (EnclosingDecl->isInvalidDecl()) {
3872    // FIXME: Deallocate fields?
3873    return;
3874  }
3875
3876
3877  // Verify that all the fields are okay.
3878  unsigned NumNamedMembers = 0;
3879  llvm::SmallVector<FieldDecl*, 32> RecFields;
3880
3881  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3882  for (unsigned i = 0; i != NumFields; ++i) {
3883    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3884
3885    // Get the type for the field.
3886    Type *FDTy = FD->getType().getTypePtr();
3887
3888    if (!FD->isAnonymousStructOrUnion()) {
3889      // Remember all fields written by the user.
3890      RecFields.push_back(FD);
3891    }
3892
3893    // If the field is already invalid for some reason, don't emit more
3894    // diagnostics about it.
3895    if (FD->isInvalidDecl())
3896      continue;
3897
3898    // C99 6.7.2.1p2:
3899    //   A structure or union shall not contain a member with
3900    //   incomplete or function type (hence, a structure shall not
3901    //   contain an instance of itself, but may contain a pointer to
3902    //   an instance of itself), except that the last member of a
3903    //   structure with more than one named member may have incomplete
3904    //   array type; such a structure (and any union containing,
3905    //   possibly recursively, a member that is such a structure)
3906    //   shall not be a member of a structure or an element of an
3907    //   array.
3908    if (FDTy->isFunctionType()) {
3909      // Field declared as a function.
3910      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3911        << FD->getDeclName();
3912      FD->setInvalidDecl();
3913      EnclosingDecl->setInvalidDecl();
3914      continue;
3915    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3916               Record && Record->isStruct()) {
3917      // Flexible array member.
3918      if (NumNamedMembers < 1) {
3919        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3920          << FD->getDeclName();
3921        FD->setInvalidDecl();
3922        EnclosingDecl->setInvalidDecl();
3923        continue;
3924      }
3925      // Okay, we have a legal flexible array member at the end of the struct.
3926      if (Record)
3927        Record->setHasFlexibleArrayMember(true);
3928    } else if (!FDTy->isDependentType() &&
3929               RequireCompleteType(FD->getLocation(), FD->getType(),
3930                                   diag::err_field_incomplete)) {
3931      // Incomplete type
3932      FD->setInvalidDecl();
3933      EnclosingDecl->setInvalidDecl();
3934      continue;
3935    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3936      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3937        // If this is a member of a union, then entire union becomes "flexible".
3938        if (Record && Record->isUnion()) {
3939          Record->setHasFlexibleArrayMember(true);
3940        } else {
3941          // If this is a struct/class and this is not the last element, reject
3942          // it.  Note that GCC supports variable sized arrays in the middle of
3943          // structures.
3944          if (i != NumFields-1)
3945            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3946              << FD->getDeclName() << FD->getType();
3947          else {
3948            // We support flexible arrays at the end of structs in
3949            // other structs as an extension.
3950            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3951              << FD->getDeclName();
3952            if (Record)
3953              Record->setHasFlexibleArrayMember(true);
3954          }
3955        }
3956      }
3957    } else if (FDTy->isObjCInterfaceType()) {
3958      /// A field cannot be an Objective-c object
3959      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3960      FD->setInvalidDecl();
3961      EnclosingDecl->setInvalidDecl();
3962      continue;
3963    }
3964    // Keep track of the number of named members.
3965    if (FD->getIdentifier())
3966      ++NumNamedMembers;
3967  }
3968
3969  // Okay, we successfully defined 'Record'.
3970  if (Record) {
3971    Record->completeDefinition(Context);
3972  } else {
3973    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3974    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3975      ID->setIVarList(ClsFields, RecFields.size(), Context);
3976      ID->setLocEnd(RBrac);
3977
3978      // Must enforce the rule that ivars in the base classes may not be
3979      // duplicates.
3980      if (ID->getSuperClass()) {
3981        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3982             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3983          ObjCIvarDecl* Ivar = (*IVI);
3984          IdentifierInfo *II = Ivar->getIdentifier();
3985          ObjCIvarDecl* prevIvar =
3986            ID->getSuperClass()->lookupInstanceVariable(Context, II);
3987          if (prevIvar) {
3988            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3989            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3990          }
3991        }
3992      }
3993    } else if (ObjCImplementationDecl *IMPDecl =
3994                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3995      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3996      for (unsigned I = 0, N = RecFields.size(); I != N; ++I) {
3997        // FIXME: Set the DeclContext correctly when we build the
3998        // declarations.
3999        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4000        IMPDecl->addDecl(Context, ClsFields[I]);
4001      }
4002      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4003    }
4004  }
4005
4006  if (Attr)
4007    ProcessDeclAttributeList(Record, Attr);
4008}
4009
4010EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4011                                          EnumConstantDecl *LastEnumConst,
4012                                          SourceLocation IdLoc,
4013                                          IdentifierInfo *Id,
4014                                          ExprArg val) {
4015  Expr *Val = (Expr *)val.get();
4016
4017  llvm::APSInt EnumVal(32);
4018  QualType EltTy;
4019  if (Val && !Val->isTypeDependent()) {
4020    // Make sure to promote the operand type to int.
4021    UsualUnaryConversions(Val);
4022    if (Val != val.get()) {
4023      val.release();
4024      val = Val;
4025    }
4026
4027    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4028    SourceLocation ExpLoc;
4029    if (!Val->isValueDependent() &&
4030        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4031      Val = 0;
4032    } else {
4033      EltTy = Val->getType();
4034    }
4035  }
4036
4037  if (!Val) {
4038    if (LastEnumConst) {
4039      // Assign the last value + 1.
4040      EnumVal = LastEnumConst->getInitVal();
4041      ++EnumVal;
4042
4043      // Check for overflow on increment.
4044      if (EnumVal < LastEnumConst->getInitVal())
4045        Diag(IdLoc, diag::warn_enum_value_overflow);
4046
4047      EltTy = LastEnumConst->getType();
4048    } else {
4049      // First value, set to zero.
4050      EltTy = Context.IntTy;
4051      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4052    }
4053  }
4054
4055  val.release();
4056  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4057                                  Val, EnumVal);
4058}
4059
4060
4061Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4062                                        DeclPtrTy lastEnumConst,
4063                                        SourceLocation IdLoc,
4064                                        IdentifierInfo *Id,
4065                                        SourceLocation EqualLoc, ExprTy *val) {
4066  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4067  EnumConstantDecl *LastEnumConst =
4068    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4069  Expr *Val = static_cast<Expr*>(val);
4070
4071  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4072  // we find one that is.
4073  S = getNonFieldDeclScope(S);
4074
4075  // Verify that there isn't already something declared with this name in this
4076  // scope.
4077  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4078  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4079    // Maybe we will complain about the shadowed template parameter.
4080    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4081    // Just pretend that we didn't see the previous declaration.
4082    PrevDecl = 0;
4083  }
4084
4085  if (PrevDecl) {
4086    // When in C++, we may get a TagDecl with the same name; in this case the
4087    // enum constant will 'hide' the tag.
4088    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4089           "Received TagDecl when not in C++!");
4090    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4091      if (isa<EnumConstantDecl>(PrevDecl))
4092        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4093      else
4094        Diag(IdLoc, diag::err_redefinition) << Id;
4095      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4096      if (Val) Val->Destroy(Context);
4097      return DeclPtrTy();
4098    }
4099  }
4100
4101  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4102                                            IdLoc, Id, Owned(Val));
4103
4104  // Register this decl in the current scope stack.
4105  if (New)
4106    PushOnScopeChains(New, S);
4107
4108  return DeclPtrTy::make(New);
4109}
4110
4111// FIXME: For consistency with ActOnFields(), we should have the parser
4112// pass in the source location for the left/right braces.
4113void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
4114                         DeclPtrTy *Elements, unsigned NumElements) {
4115  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4116  QualType EnumType = Context.getTypeDeclType(Enum);
4117
4118  // TODO: If the result value doesn't fit in an int, it must be a long or long
4119  // long value.  ISO C does not support this, but GCC does as an extension,
4120  // emit a warning.
4121  unsigned IntWidth = Context.Target.getIntWidth();
4122
4123  // Verify that all the values are okay, compute the size of the values, and
4124  // reverse the list.
4125  unsigned NumNegativeBits = 0;
4126  unsigned NumPositiveBits = 0;
4127
4128  // Keep track of whether all elements have type int.
4129  bool AllElementsInt = true;
4130
4131  for (unsigned i = 0; i != NumElements; ++i) {
4132    EnumConstantDecl *ECD =
4133      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4134    if (!ECD) continue;  // Already issued a diagnostic.
4135
4136    // If the enum value doesn't fit in an int, emit an extension warning.
4137    const llvm::APSInt &InitVal = ECD->getInitVal();
4138    assert(InitVal.getBitWidth() >= IntWidth &&
4139           "Should have promoted value to int");
4140    if (InitVal.getBitWidth() > IntWidth) {
4141      llvm::APSInt V(InitVal);
4142      V.trunc(IntWidth);
4143      V.extend(InitVal.getBitWidth());
4144      if (V != InitVal)
4145        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4146          << InitVal.toString(10);
4147    }
4148
4149    // Keep track of the size of positive and negative values.
4150    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4151      NumPositiveBits = std::max(NumPositiveBits,
4152                                 (unsigned)InitVal.getActiveBits());
4153    else
4154      NumNegativeBits = std::max(NumNegativeBits,
4155                                 (unsigned)InitVal.getMinSignedBits());
4156
4157    // Keep track of whether every enum element has type int (very commmon).
4158    if (AllElementsInt)
4159      AllElementsInt = ECD->getType() == Context.IntTy;
4160  }
4161
4162  // Figure out the type that should be used for this enum.
4163  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4164  QualType BestType;
4165  unsigned BestWidth;
4166
4167  if (NumNegativeBits) {
4168    // If there is a negative value, figure out the smallest integer type (of
4169    // int/long/longlong) that fits.
4170    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4171      BestType = Context.IntTy;
4172      BestWidth = IntWidth;
4173    } else {
4174      BestWidth = Context.Target.getLongWidth();
4175
4176      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4177        BestType = Context.LongTy;
4178      else {
4179        BestWidth = Context.Target.getLongLongWidth();
4180
4181        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4182          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4183        BestType = Context.LongLongTy;
4184      }
4185    }
4186  } else {
4187    // If there is no negative value, figure out which of uint, ulong, ulonglong
4188    // fits.
4189    if (NumPositiveBits <= IntWidth) {
4190      BestType = Context.UnsignedIntTy;
4191      BestWidth = IntWidth;
4192    } else if (NumPositiveBits <=
4193               (BestWidth = Context.Target.getLongWidth())) {
4194      BestType = Context.UnsignedLongTy;
4195    } else {
4196      BestWidth = Context.Target.getLongLongWidth();
4197      assert(NumPositiveBits <= BestWidth &&
4198             "How could an initializer get larger than ULL?");
4199      BestType = Context.UnsignedLongLongTy;
4200    }
4201  }
4202
4203  // Loop over all of the enumerator constants, changing their types to match
4204  // the type of the enum if needed.
4205  for (unsigned i = 0; i != NumElements; ++i) {
4206    EnumConstantDecl *ECD =
4207      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4208    if (!ECD) continue;  // Already issued a diagnostic.
4209
4210    // Standard C says the enumerators have int type, but we allow, as an
4211    // extension, the enumerators to be larger than int size.  If each
4212    // enumerator value fits in an int, type it as an int, otherwise type it the
4213    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4214    // that X has type 'int', not 'unsigned'.
4215    if (ECD->getType() == Context.IntTy) {
4216      // Make sure the init value is signed.
4217      llvm::APSInt IV = ECD->getInitVal();
4218      IV.setIsSigned(true);
4219      ECD->setInitVal(IV);
4220
4221      if (getLangOptions().CPlusPlus)
4222        // C++ [dcl.enum]p4: Following the closing brace of an
4223        // enum-specifier, each enumerator has the type of its
4224        // enumeration.
4225        ECD->setType(EnumType);
4226      continue;  // Already int type.
4227    }
4228
4229    // Determine whether the value fits into an int.
4230    llvm::APSInt InitVal = ECD->getInitVal();
4231    bool FitsInInt;
4232    if (InitVal.isUnsigned() || !InitVal.isNegative())
4233      FitsInInt = InitVal.getActiveBits() < IntWidth;
4234    else
4235      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4236
4237    // If it fits into an integer type, force it.  Otherwise force it to match
4238    // the enum decl type.
4239    QualType NewTy;
4240    unsigned NewWidth;
4241    bool NewSign;
4242    if (FitsInInt) {
4243      NewTy = Context.IntTy;
4244      NewWidth = IntWidth;
4245      NewSign = true;
4246    } else if (ECD->getType() == BestType) {
4247      // Already the right type!
4248      if (getLangOptions().CPlusPlus)
4249        // C++ [dcl.enum]p4: Following the closing brace of an
4250        // enum-specifier, each enumerator has the type of its
4251        // enumeration.
4252        ECD->setType(EnumType);
4253      continue;
4254    } else {
4255      NewTy = BestType;
4256      NewWidth = BestWidth;
4257      NewSign = BestType->isSignedIntegerType();
4258    }
4259
4260    // Adjust the APSInt value.
4261    InitVal.extOrTrunc(NewWidth);
4262    InitVal.setIsSigned(NewSign);
4263    ECD->setInitVal(InitVal);
4264
4265    // Adjust the Expr initializer and type.
4266    if (ECD->getInitExpr())
4267      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4268                                                      /*isLvalue=*/false));
4269    if (getLangOptions().CPlusPlus)
4270      // C++ [dcl.enum]p4: Following the closing brace of an
4271      // enum-specifier, each enumerator has the type of its
4272      // enumeration.
4273      ECD->setType(EnumType);
4274    else
4275      ECD->setType(NewTy);
4276  }
4277
4278  Enum->completeDefinition(Context, BestType);
4279}
4280
4281Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4282                                            ExprArg expr) {
4283  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4284
4285  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4286                                                  Loc, AsmString));
4287}
4288
4289