SemaDecl.cpp revision fe2695eec167b28578825576863228f86b392f24
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414    if (E.get() || E.isInvalid())
415      return E;
416
417    // Synthesize ivars lazily.
418    if (getLangOptions().ObjCDefaultSynthProperties &&
419        getLangOptions().ObjCNonFragileABI2) {
420      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
421        if (const ObjCPropertyDecl *Property =
422                                          canSynthesizeProvisionalIvar(Name)) {
423          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
424          Diag(Property->getLocation(), diag::note_property_declare);
425        }
426
427        // FIXME: This is strange. Shouldn't we just take the ivar returned
428        // from SynthesizeProvisionalIvar and continue with that?
429        E = LookupInObjCMethod(Result, S, Name, true);
430        if (E.get() || E.isInvalid())
431          return E;
432      }
433    }
434  }
435
436  bool SecondTry = false;
437  bool IsFilteredTemplateName = false;
438
439Corrected:
440  switch (Result.getResultKind()) {
441  case LookupResult::NotFound:
442    // If an unqualified-id is followed by a '(', then we have a function
443    // call.
444    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
445      // In C++, this is an ADL-only call.
446      // FIXME: Reference?
447      if (getLangOptions().CPlusPlus)
448        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
449
450      // C90 6.3.2.2:
451      //   If the expression that precedes the parenthesized argument list in a
452      //   function call consists solely of an identifier, and if no
453      //   declaration is visible for this identifier, the identifier is
454      //   implicitly declared exactly as if, in the innermost block containing
455      //   the function call, the declaration
456      //
457      //     extern int identifier ();
458      //
459      //   appeared.
460      //
461      // We also allow this in C99 as an extension.
462      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
463        Result.addDecl(D);
464        Result.resolveKind();
465        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
466      }
467    }
468
469    // In C, we first see whether there is a tag type by the same name, in
470    // which case it's likely that the user just forget to write "enum",
471    // "struct", or "union".
472    if (!getLangOptions().CPlusPlus && !SecondTry) {
473      Result.clear(LookupTagName);
474      LookupParsedName(Result, S, &SS);
475      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
476        const char *TagName = 0;
477        const char *FixItTagName = 0;
478        switch (Tag->getTagKind()) {
479          case TTK_Class:
480            TagName = "class";
481            FixItTagName = "class ";
482            break;
483
484          case TTK_Enum:
485            TagName = "enum";
486            FixItTagName = "enum ";
487            break;
488
489          case TTK_Struct:
490            TagName = "struct";
491            FixItTagName = "struct ";
492            break;
493
494          case TTK_Union:
495            TagName = "union";
496            FixItTagName = "union ";
497            break;
498        }
499
500        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
501          << Name << TagName << getLangOptions().CPlusPlus
502          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
503        break;
504      }
505
506      Result.clear(LookupOrdinaryName);
507    }
508
509    // Perform typo correction to determine if there is another name that is
510    // close to this name.
511    if (!SecondTry) {
512      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
513        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
514        unsigned QualifiedDiag = diag::err_no_member_suggest;
515
516        NamedDecl *FirstDecl = Result.empty()? 0 : *Result.begin();
517        NamedDecl *UnderlyingFirstDecl
518          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
519        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
520            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
521          UnqualifiedDiag = diag::err_no_template_suggest;
522          QualifiedDiag = diag::err_no_member_template_suggest;
523        } else if (UnderlyingFirstDecl &&
524                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
525                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
526                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
527           UnqualifiedDiag = diag::err_unknown_typename_suggest;
528           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
529         }
530
531        if (SS.isEmpty())
532          Diag(NameLoc, UnqualifiedDiag)
533            << Name << Corrected
534            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
535        else
536          Diag(NameLoc, QualifiedDiag)
537            << Name << computeDeclContext(SS, false) << Corrected
538            << SS.getRange()
539            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
540
541        // Update the name, so that the caller has the new name.
542        Name = Corrected.getAsIdentifierInfo();
543
544        // Typo correction corrected to a keyword.
545        if (Result.empty())
546          return Corrected.getAsIdentifierInfo();
547
548        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549          << FirstDecl->getDeclName();
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  // ObjCMethodDecls are parsed (for some reason) outside the context
724  // of the class.
725  if (isa<ObjCMethodDecl>(DC))
726    return DC->getLexicalParent()->getLexicalParent();
727
728  return DC->getLexicalParent();
729}
730
731void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
732  assert(getContainingDC(DC) == CurContext &&
733      "The next DeclContext should be lexically contained in the current one.");
734  CurContext = DC;
735  S->setEntity(DC);
736}
737
738void Sema::PopDeclContext() {
739  assert(CurContext && "DeclContext imbalance!");
740
741  CurContext = getContainingDC(CurContext);
742  assert(CurContext && "Popped translation unit!");
743}
744
745/// EnterDeclaratorContext - Used when we must lookup names in the context
746/// of a declarator's nested name specifier.
747///
748void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
749  // C++0x [basic.lookup.unqual]p13:
750  //   A name used in the definition of a static data member of class
751  //   X (after the qualified-id of the static member) is looked up as
752  //   if the name was used in a member function of X.
753  // C++0x [basic.lookup.unqual]p14:
754  //   If a variable member of a namespace is defined outside of the
755  //   scope of its namespace then any name used in the definition of
756  //   the variable member (after the declarator-id) is looked up as
757  //   if the definition of the variable member occurred in its
758  //   namespace.
759  // Both of these imply that we should push a scope whose context
760  // is the semantic context of the declaration.  We can't use
761  // PushDeclContext here because that context is not necessarily
762  // lexically contained in the current context.  Fortunately,
763  // the containing scope should have the appropriate information.
764
765  assert(!S->getEntity() && "scope already has entity");
766
767#ifndef NDEBUG
768  Scope *Ancestor = S->getParent();
769  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
770  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
771#endif
772
773  CurContext = DC;
774  S->setEntity(DC);
775}
776
777void Sema::ExitDeclaratorContext(Scope *S) {
778  assert(S->getEntity() == CurContext && "Context imbalance!");
779
780  // Switch back to the lexical context.  The safety of this is
781  // enforced by an assert in EnterDeclaratorContext.
782  Scope *Ancestor = S->getParent();
783  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
784  CurContext = (DeclContext*) Ancestor->getEntity();
785
786  // We don't need to do anything with the scope, which is going to
787  // disappear.
788}
789
790/// \brief Determine whether we allow overloading of the function
791/// PrevDecl with another declaration.
792///
793/// This routine determines whether overloading is possible, not
794/// whether some new function is actually an overload. It will return
795/// true in C++ (where we can always provide overloads) or, as an
796/// extension, in C when the previous function is already an
797/// overloaded function declaration or has the "overloadable"
798/// attribute.
799static bool AllowOverloadingOfFunction(LookupResult &Previous,
800                                       ASTContext &Context) {
801  if (Context.getLangOptions().CPlusPlus)
802    return true;
803
804  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
805    return true;
806
807  return (Previous.getResultKind() == LookupResult::Found
808          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
809}
810
811/// Add this decl to the scope shadowed decl chains.
812void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
813  // Move up the scope chain until we find the nearest enclosing
814  // non-transparent context. The declaration will be introduced into this
815  // scope.
816  while (S->getEntity() &&
817         ((DeclContext *)S->getEntity())->isTransparentContext())
818    S = S->getParent();
819
820  // Add scoped declarations into their context, so that they can be
821  // found later. Declarations without a context won't be inserted
822  // into any context.
823  if (AddToContext)
824    CurContext->addDecl(D);
825
826  // Out-of-line definitions shouldn't be pushed into scope in C++.
827  // Out-of-line variable and function definitions shouldn't even in C.
828  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
829      D->isOutOfLine())
830    return;
831
832  // Template instantiations should also not be pushed into scope.
833  if (isa<FunctionDecl>(D) &&
834      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
835    return;
836
837  // If this replaces anything in the current scope,
838  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
839                               IEnd = IdResolver.end();
840  for (; I != IEnd; ++I) {
841    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
842      S->RemoveDecl(*I);
843      IdResolver.RemoveDecl(*I);
844
845      // Should only need to replace one decl.
846      break;
847    }
848  }
849
850  S->AddDecl(D);
851
852  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
853    // Implicitly-generated labels may end up getting generated in an order that
854    // isn't strictly lexical, which breaks name lookup. Be careful to insert
855    // the label at the appropriate place in the identifier chain.
856    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
857      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
858      if (IDC == CurContext) {
859        if (!S->isDeclScope(*I))
860          continue;
861      } else if (IDC->Encloses(CurContext))
862        break;
863    }
864
865    IdResolver.InsertDeclAfter(I, D);
866  } else {
867    IdResolver.AddDecl(D);
868  }
869}
870
871bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
872                         bool ExplicitInstantiationOrSpecialization) {
873  return IdResolver.isDeclInScope(D, Ctx, Context, S,
874                                  ExplicitInstantiationOrSpecialization);
875}
876
877Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
878  DeclContext *TargetDC = DC->getPrimaryContext();
879  do {
880    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
881      if (ScopeDC->getPrimaryContext() == TargetDC)
882        return S;
883  } while ((S = S->getParent()));
884
885  return 0;
886}
887
888static bool isOutOfScopePreviousDeclaration(NamedDecl *,
889                                            DeclContext*,
890                                            ASTContext&);
891
892/// Filters out lookup results that don't fall within the given scope
893/// as determined by isDeclInScope.
894void Sema::FilterLookupForScope(LookupResult &R,
895                                DeclContext *Ctx, Scope *S,
896                                bool ConsiderLinkage,
897                                bool ExplicitInstantiationOrSpecialization) {
898  LookupResult::Filter F = R.makeFilter();
899  while (F.hasNext()) {
900    NamedDecl *D = F.next();
901
902    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
903      continue;
904
905    if (ConsiderLinkage &&
906        isOutOfScopePreviousDeclaration(D, Ctx, Context))
907      continue;
908
909    F.erase();
910  }
911
912  F.done();
913}
914
915static bool isUsingDecl(NamedDecl *D) {
916  return isa<UsingShadowDecl>(D) ||
917         isa<UnresolvedUsingTypenameDecl>(D) ||
918         isa<UnresolvedUsingValueDecl>(D);
919}
920
921/// Removes using shadow declarations from the lookup results.
922static void RemoveUsingDecls(LookupResult &R) {
923  LookupResult::Filter F = R.makeFilter();
924  while (F.hasNext())
925    if (isUsingDecl(F.next()))
926      F.erase();
927
928  F.done();
929}
930
931/// \brief Check for this common pattern:
932/// @code
933/// class S {
934///   S(const S&); // DO NOT IMPLEMENT
935///   void operator=(const S&); // DO NOT IMPLEMENT
936/// };
937/// @endcode
938static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
939  // FIXME: Should check for private access too but access is set after we get
940  // the decl here.
941  if (D->isThisDeclarationADefinition())
942    return false;
943
944  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
945    return CD->isCopyConstructor();
946  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
947    return Method->isCopyAssignmentOperator();
948  return false;
949}
950
951bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
952  assert(D);
953
954  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
955    return false;
956
957  // Ignore class templates.
958  if (D->getDeclContext()->isDependentContext() ||
959      D->getLexicalDeclContext()->isDependentContext())
960    return false;
961
962  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
963    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
964      return false;
965
966    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
967      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
968        return false;
969    } else {
970      // 'static inline' functions are used in headers; don't warn.
971      if (FD->getStorageClass() == SC_Static &&
972          FD->isInlineSpecified())
973        return false;
974    }
975
976    if (FD->isThisDeclarationADefinition() &&
977        Context.DeclMustBeEmitted(FD))
978      return false;
979
980  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
981    if (!VD->isFileVarDecl() ||
982        VD->getType().isConstant(Context) ||
983        Context.DeclMustBeEmitted(VD))
984      return false;
985
986    if (VD->isStaticDataMember() &&
987        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
988      return false;
989
990  } else {
991    return false;
992  }
993
994  // Only warn for unused decls internal to the translation unit.
995  if (D->getLinkage() == ExternalLinkage)
996    return false;
997
998  return true;
999}
1000
1001void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1002  if (!D)
1003    return;
1004
1005  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1006    const FunctionDecl *First = FD->getFirstDeclaration();
1007    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1008      return; // First should already be in the vector.
1009  }
1010
1011  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1012    const VarDecl *First = VD->getFirstDeclaration();
1013    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1014      return; // First should already be in the vector.
1015  }
1016
1017   if (ShouldWarnIfUnusedFileScopedDecl(D))
1018     UnusedFileScopedDecls.push_back(D);
1019 }
1020
1021static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1022  if (D->isInvalidDecl())
1023    return false;
1024
1025  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1026    return false;
1027
1028  if (isa<LabelDecl>(D))
1029    return true;
1030
1031  // White-list anything that isn't a local variable.
1032  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1033      !D->getDeclContext()->isFunctionOrMethod())
1034    return false;
1035
1036  // Types of valid local variables should be complete, so this should succeed.
1037  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1038
1039    // White-list anything with an __attribute__((unused)) type.
1040    QualType Ty = VD->getType();
1041
1042    // Only look at the outermost level of typedef.
1043    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1044      if (TT->getDecl()->hasAttr<UnusedAttr>())
1045        return false;
1046    }
1047
1048    // If we failed to complete the type for some reason, or if the type is
1049    // dependent, don't diagnose the variable.
1050    if (Ty->isIncompleteType() || Ty->isDependentType())
1051      return false;
1052
1053    if (const TagType *TT = Ty->getAs<TagType>()) {
1054      const TagDecl *Tag = TT->getDecl();
1055      if (Tag->hasAttr<UnusedAttr>())
1056        return false;
1057
1058      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1059        // FIXME: Checking for the presence of a user-declared constructor
1060        // isn't completely accurate; we'd prefer to check that the initializer
1061        // has no side effects.
1062        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1063          return false;
1064      }
1065    }
1066
1067    // TODO: __attribute__((unused)) templates?
1068  }
1069
1070  return true;
1071}
1072
1073/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1074/// unless they are marked attr(unused).
1075void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1076  if (!ShouldDiagnoseUnusedDecl(D))
1077    return;
1078
1079  unsigned DiagID;
1080  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1081    DiagID = diag::warn_unused_exception_param;
1082  else if (isa<LabelDecl>(D))
1083    DiagID = diag::warn_unused_label;
1084  else
1085    DiagID = diag::warn_unused_variable;
1086
1087  Diag(D->getLocation(), DiagID) << D->getDeclName();
1088}
1089
1090static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1091  // Verify that we have no forward references left.  If so, there was a goto
1092  // or address of a label taken, but no definition of it.  Label fwd
1093  // definitions are indicated with a null substmt.
1094  if (L->getStmt() == 0)
1095    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1096}
1097
1098void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1099  if (S->decl_empty()) return;
1100  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1101         "Scope shouldn't contain decls!");
1102
1103  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1104       I != E; ++I) {
1105    Decl *TmpD = (*I);
1106    assert(TmpD && "This decl didn't get pushed??");
1107
1108    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1109    NamedDecl *D = cast<NamedDecl>(TmpD);
1110
1111    if (!D->getDeclName()) continue;
1112
1113    // Diagnose unused variables in this scope.
1114    if (!S->hasErrorOccurred())
1115      DiagnoseUnusedDecl(D);
1116
1117    // If this was a forward reference to a label, verify it was defined.
1118    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1119      CheckPoppedLabel(LD, *this);
1120
1121    // Remove this name from our lexical scope.
1122    IdResolver.RemoveDecl(D);
1123  }
1124}
1125
1126/// \brief Look for an Objective-C class in the translation unit.
1127///
1128/// \param Id The name of the Objective-C class we're looking for. If
1129/// typo-correction fixes this name, the Id will be updated
1130/// to the fixed name.
1131///
1132/// \param IdLoc The location of the name in the translation unit.
1133///
1134/// \param TypoCorrection If true, this routine will attempt typo correction
1135/// if there is no class with the given name.
1136///
1137/// \returns The declaration of the named Objective-C class, or NULL if the
1138/// class could not be found.
1139ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1140                                              SourceLocation IdLoc,
1141                                              bool TypoCorrection) {
1142  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1143  // creation from this context.
1144  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1145
1146  if (!IDecl && TypoCorrection) {
1147    // Perform typo correction at the given location, but only if we
1148    // find an Objective-C class name.
1149    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1150    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1151        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1152      Diag(IdLoc, diag::err_undef_interface_suggest)
1153        << Id << IDecl->getDeclName()
1154        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1155      Diag(IDecl->getLocation(), diag::note_previous_decl)
1156        << IDecl->getDeclName();
1157
1158      Id = IDecl->getIdentifier();
1159    }
1160  }
1161
1162  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1163}
1164
1165/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1166/// from S, where a non-field would be declared. This routine copes
1167/// with the difference between C and C++ scoping rules in structs and
1168/// unions. For example, the following code is well-formed in C but
1169/// ill-formed in C++:
1170/// @code
1171/// struct S6 {
1172///   enum { BAR } e;
1173/// };
1174///
1175/// void test_S6() {
1176///   struct S6 a;
1177///   a.e = BAR;
1178/// }
1179/// @endcode
1180/// For the declaration of BAR, this routine will return a different
1181/// scope. The scope S will be the scope of the unnamed enumeration
1182/// within S6. In C++, this routine will return the scope associated
1183/// with S6, because the enumeration's scope is a transparent
1184/// context but structures can contain non-field names. In C, this
1185/// routine will return the translation unit scope, since the
1186/// enumeration's scope is a transparent context and structures cannot
1187/// contain non-field names.
1188Scope *Sema::getNonFieldDeclScope(Scope *S) {
1189  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1190         (S->getEntity() &&
1191          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1192         (S->isClassScope() && !getLangOptions().CPlusPlus))
1193    S = S->getParent();
1194  return S;
1195}
1196
1197/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1198/// file scope.  lazily create a decl for it. ForRedeclaration is true
1199/// if we're creating this built-in in anticipation of redeclaring the
1200/// built-in.
1201NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1202                                     Scope *S, bool ForRedeclaration,
1203                                     SourceLocation Loc) {
1204  Builtin::ID BID = (Builtin::ID)bid;
1205
1206  ASTContext::GetBuiltinTypeError Error;
1207  QualType R = Context.GetBuiltinType(BID, Error);
1208  switch (Error) {
1209  case ASTContext::GE_None:
1210    // Okay
1211    break;
1212
1213  case ASTContext::GE_Missing_stdio:
1214    if (ForRedeclaration)
1215      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1216        << Context.BuiltinInfo.GetName(BID);
1217    return 0;
1218
1219  case ASTContext::GE_Missing_setjmp:
1220    if (ForRedeclaration)
1221      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1222        << Context.BuiltinInfo.GetName(BID);
1223    return 0;
1224  }
1225
1226  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1227    Diag(Loc, diag::ext_implicit_lib_function_decl)
1228      << Context.BuiltinInfo.GetName(BID)
1229      << R;
1230    if (Context.BuiltinInfo.getHeaderName(BID) &&
1231        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1232          != Diagnostic::Ignored)
1233      Diag(Loc, diag::note_please_include_header)
1234        << Context.BuiltinInfo.getHeaderName(BID)
1235        << Context.BuiltinInfo.GetName(BID);
1236  }
1237
1238  FunctionDecl *New = FunctionDecl::Create(Context,
1239                                           Context.getTranslationUnitDecl(),
1240                                           Loc, Loc, II, R, /*TInfo=*/0,
1241                                           SC_Extern,
1242                                           SC_None, false,
1243                                           /*hasPrototype=*/true);
1244  New->setImplicit();
1245
1246  // Create Decl objects for each parameter, adding them to the
1247  // FunctionDecl.
1248  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1249    llvm::SmallVector<ParmVarDecl*, 16> Params;
1250    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1251      ParmVarDecl *parm =
1252        ParmVarDecl::Create(Context, New, SourceLocation(),
1253                            SourceLocation(), 0,
1254                            FT->getArgType(i), /*TInfo=*/0,
1255                            SC_None, SC_None, 0);
1256      parm->setScopeInfo(0, i);
1257      Params.push_back(parm);
1258    }
1259    New->setParams(Params.data(), Params.size());
1260  }
1261
1262  AddKnownFunctionAttributes(New);
1263
1264  // TUScope is the translation-unit scope to insert this function into.
1265  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1266  // relate Scopes to DeclContexts, and probably eliminate CurContext
1267  // entirely, but we're not there yet.
1268  DeclContext *SavedContext = CurContext;
1269  CurContext = Context.getTranslationUnitDecl();
1270  PushOnScopeChains(New, TUScope);
1271  CurContext = SavedContext;
1272  return New;
1273}
1274
1275/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1276/// same name and scope as a previous declaration 'Old'.  Figure out
1277/// how to resolve this situation, merging decls or emitting
1278/// diagnostics as appropriate. If there was an error, set New to be invalid.
1279///
1280void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1281  // If the new decl is known invalid already, don't bother doing any
1282  // merging checks.
1283  if (New->isInvalidDecl()) return;
1284
1285  // Allow multiple definitions for ObjC built-in typedefs.
1286  // FIXME: Verify the underlying types are equivalent!
1287  if (getLangOptions().ObjC1) {
1288    const IdentifierInfo *TypeID = New->getIdentifier();
1289    switch (TypeID->getLength()) {
1290    default: break;
1291    case 2:
1292      if (!TypeID->isStr("id"))
1293        break;
1294      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1295      // Install the built-in type for 'id', ignoring the current definition.
1296      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1297      return;
1298    case 5:
1299      if (!TypeID->isStr("Class"))
1300        break;
1301      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1302      // Install the built-in type for 'Class', ignoring the current definition.
1303      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1304      return;
1305    case 3:
1306      if (!TypeID->isStr("SEL"))
1307        break;
1308      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1309      // Install the built-in type for 'SEL', ignoring the current definition.
1310      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1311      return;
1312    case 8:
1313      if (!TypeID->isStr("Protocol"))
1314        break;
1315      Context.setObjCProtoType(New->getUnderlyingType());
1316      return;
1317    }
1318    // Fall through - the typedef name was not a builtin type.
1319  }
1320
1321  // Verify the old decl was also a type.
1322  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1323  if (!Old) {
1324    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1325      << New->getDeclName();
1326
1327    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1328    if (OldD->getLocation().isValid())
1329      Diag(OldD->getLocation(), diag::note_previous_definition);
1330
1331    return New->setInvalidDecl();
1332  }
1333
1334  // If the old declaration is invalid, just give up here.
1335  if (Old->isInvalidDecl())
1336    return New->setInvalidDecl();
1337
1338  // Determine the "old" type we'll use for checking and diagnostics.
1339  QualType OldType;
1340  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1341    OldType = OldTypedef->getUnderlyingType();
1342  else
1343    OldType = Context.getTypeDeclType(Old);
1344
1345  // If the typedef types are not identical, reject them in all languages and
1346  // with any extensions enabled.
1347
1348  if (OldType != New->getUnderlyingType() &&
1349      Context.getCanonicalType(OldType) !=
1350      Context.getCanonicalType(New->getUnderlyingType())) {
1351    int Kind = 0;
1352    if (isa<TypeAliasDecl>(Old))
1353      Kind = 1;
1354    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1355      << Kind << New->getUnderlyingType() << OldType;
1356    if (Old->getLocation().isValid())
1357      Diag(Old->getLocation(), diag::note_previous_definition);
1358    return New->setInvalidDecl();
1359  }
1360
1361  // The types match.  Link up the redeclaration chain if the old
1362  // declaration was a typedef.
1363  // FIXME: this is a potential source of wierdness if the type
1364  // spellings don't match exactly.
1365  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1366    New->setPreviousDeclaration(Typedef);
1367
1368  if (getLangOptions().Microsoft)
1369    return;
1370
1371  if (getLangOptions().CPlusPlus) {
1372    // C++ [dcl.typedef]p2:
1373    //   In a given non-class scope, a typedef specifier can be used to
1374    //   redefine the name of any type declared in that scope to refer
1375    //   to the type to which it already refers.
1376    if (!isa<CXXRecordDecl>(CurContext))
1377      return;
1378
1379    // C++0x [dcl.typedef]p4:
1380    //   In a given class scope, a typedef specifier can be used to redefine
1381    //   any class-name declared in that scope that is not also a typedef-name
1382    //   to refer to the type to which it already refers.
1383    //
1384    // This wording came in via DR424, which was a correction to the
1385    // wording in DR56, which accidentally banned code like:
1386    //
1387    //   struct S {
1388    //     typedef struct A { } A;
1389    //   };
1390    //
1391    // in the C++03 standard. We implement the C++0x semantics, which
1392    // allow the above but disallow
1393    //
1394    //   struct S {
1395    //     typedef int I;
1396    //     typedef int I;
1397    //   };
1398    //
1399    // since that was the intent of DR56.
1400    if (!isa<TypedefNameDecl>(Old))
1401      return;
1402
1403    Diag(New->getLocation(), diag::err_redefinition)
1404      << New->getDeclName();
1405    Diag(Old->getLocation(), diag::note_previous_definition);
1406    return New->setInvalidDecl();
1407  }
1408
1409  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1410  // is normally mapped to an error, but can be controlled with
1411  // -Wtypedef-redefinition.  If either the original or the redefinition is
1412  // in a system header, don't emit this for compatibility with GCC.
1413  if (getDiagnostics().getSuppressSystemWarnings() &&
1414      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1415       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1416    return;
1417
1418  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1419    << New->getDeclName();
1420  Diag(Old->getLocation(), diag::note_previous_definition);
1421  return;
1422}
1423
1424/// DeclhasAttr - returns true if decl Declaration already has the target
1425/// attribute.
1426static bool
1427DeclHasAttr(const Decl *D, const Attr *A) {
1428  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1429  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1430    if ((*i)->getKind() == A->getKind()) {
1431      // FIXME: Don't hardcode this check
1432      if (OA && isa<OwnershipAttr>(*i))
1433        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1434      return true;
1435    }
1436
1437  return false;
1438}
1439
1440/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1441static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1442                                ASTContext &C) {
1443  if (!oldDecl->hasAttrs())
1444    return;
1445
1446  bool foundAny = newDecl->hasAttrs();
1447
1448  // Ensure that any moving of objects within the allocated map is done before
1449  // we process them.
1450  if (!foundAny) newDecl->setAttrs(AttrVec());
1451
1452  for (specific_attr_iterator<InheritableAttr>
1453       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1454       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1455    if (!DeclHasAttr(newDecl, *i)) {
1456      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1457      newAttr->setInherited(true);
1458      newDecl->addAttr(newAttr);
1459      foundAny = true;
1460    }
1461  }
1462
1463  if (!foundAny) newDecl->dropAttrs();
1464}
1465
1466/// mergeParamDeclAttributes - Copy attributes from the old parameter
1467/// to the new one.
1468static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1469                                     const ParmVarDecl *oldDecl,
1470                                     ASTContext &C) {
1471  if (!oldDecl->hasAttrs())
1472    return;
1473
1474  bool foundAny = newDecl->hasAttrs();
1475
1476  // Ensure that any moving of objects within the allocated map is
1477  // done before we process them.
1478  if (!foundAny) newDecl->setAttrs(AttrVec());
1479
1480  for (specific_attr_iterator<InheritableParamAttr>
1481       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1482       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1483    if (!DeclHasAttr(newDecl, *i)) {
1484      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1485      newAttr->setInherited(true);
1486      newDecl->addAttr(newAttr);
1487      foundAny = true;
1488    }
1489  }
1490
1491  if (!foundAny) newDecl->dropAttrs();
1492}
1493
1494namespace {
1495
1496/// Used in MergeFunctionDecl to keep track of function parameters in
1497/// C.
1498struct GNUCompatibleParamWarning {
1499  ParmVarDecl *OldParm;
1500  ParmVarDecl *NewParm;
1501  QualType PromotedType;
1502};
1503
1504}
1505
1506/// getSpecialMember - get the special member enum for a method.
1507Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1508  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1509    if (Ctor->isCopyConstructor())
1510      return Sema::CXXCopyConstructor;
1511
1512    return Sema::CXXConstructor;
1513  }
1514
1515  if (isa<CXXDestructorDecl>(MD))
1516    return Sema::CXXDestructor;
1517
1518  assert(MD->isCopyAssignmentOperator() &&
1519         "Must have copy assignment operator");
1520  return Sema::CXXCopyAssignment;
1521}
1522
1523/// canRedefineFunction - checks if a function can be redefined. Currently,
1524/// only extern inline functions can be redefined, and even then only in
1525/// GNU89 mode.
1526static bool canRedefineFunction(const FunctionDecl *FD,
1527                                const LangOptions& LangOpts) {
1528  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1529          FD->isInlineSpecified() &&
1530          FD->getStorageClass() == SC_Extern);
1531}
1532
1533/// MergeFunctionDecl - We just parsed a function 'New' from
1534/// declarator D which has the same name and scope as a previous
1535/// declaration 'Old'.  Figure out how to resolve this situation,
1536/// merging decls or emitting diagnostics as appropriate.
1537///
1538/// In C++, New and Old must be declarations that are not
1539/// overloaded. Use IsOverload to determine whether New and Old are
1540/// overloaded, and to select the Old declaration that New should be
1541/// merged with.
1542///
1543/// Returns true if there was an error, false otherwise.
1544bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1545  // Verify the old decl was also a function.
1546  FunctionDecl *Old = 0;
1547  if (FunctionTemplateDecl *OldFunctionTemplate
1548        = dyn_cast<FunctionTemplateDecl>(OldD))
1549    Old = OldFunctionTemplate->getTemplatedDecl();
1550  else
1551    Old = dyn_cast<FunctionDecl>(OldD);
1552  if (!Old) {
1553    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1554      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1555      Diag(Shadow->getTargetDecl()->getLocation(),
1556           diag::note_using_decl_target);
1557      Diag(Shadow->getUsingDecl()->getLocation(),
1558           diag::note_using_decl) << 0;
1559      return true;
1560    }
1561
1562    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1563      << New->getDeclName();
1564    Diag(OldD->getLocation(), diag::note_previous_definition);
1565    return true;
1566  }
1567
1568  // Determine whether the previous declaration was a definition,
1569  // implicit declaration, or a declaration.
1570  diag::kind PrevDiag;
1571  if (Old->isThisDeclarationADefinition())
1572    PrevDiag = diag::note_previous_definition;
1573  else if (Old->isImplicit())
1574    PrevDiag = diag::note_previous_implicit_declaration;
1575  else
1576    PrevDiag = diag::note_previous_declaration;
1577
1578  QualType OldQType = Context.getCanonicalType(Old->getType());
1579  QualType NewQType = Context.getCanonicalType(New->getType());
1580
1581  // Don't complain about this if we're in GNU89 mode and the old function
1582  // is an extern inline function.
1583  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1584      New->getStorageClass() == SC_Static &&
1585      Old->getStorageClass() != SC_Static &&
1586      !canRedefineFunction(Old, getLangOptions())) {
1587    if (getLangOptions().Microsoft) {
1588      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1589      Diag(Old->getLocation(), PrevDiag);
1590    } else {
1591      Diag(New->getLocation(), diag::err_static_non_static) << New;
1592      Diag(Old->getLocation(), PrevDiag);
1593      return true;
1594    }
1595  }
1596
1597  // If a function is first declared with a calling convention, but is
1598  // later declared or defined without one, the second decl assumes the
1599  // calling convention of the first.
1600  //
1601  // For the new decl, we have to look at the NON-canonical type to tell the
1602  // difference between a function that really doesn't have a calling
1603  // convention and one that is declared cdecl. That's because in
1604  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1605  // because it is the default calling convention.
1606  //
1607  // Note also that we DO NOT return at this point, because we still have
1608  // other tests to run.
1609  const FunctionType *OldType = cast<FunctionType>(OldQType);
1610  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1611  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1612  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1613  bool RequiresAdjustment = false;
1614  if (OldTypeInfo.getCC() != CC_Default &&
1615      NewTypeInfo.getCC() == CC_Default) {
1616    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1617    RequiresAdjustment = true;
1618  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1619                                     NewTypeInfo.getCC())) {
1620    // Calling conventions really aren't compatible, so complain.
1621    Diag(New->getLocation(), diag::err_cconv_change)
1622      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1623      << (OldTypeInfo.getCC() == CC_Default)
1624      << (OldTypeInfo.getCC() == CC_Default ? "" :
1625          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1626    Diag(Old->getLocation(), diag::note_previous_declaration);
1627    return true;
1628  }
1629
1630  // FIXME: diagnose the other way around?
1631  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1632    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1633    RequiresAdjustment = true;
1634  }
1635
1636  // Merge regparm attribute.
1637  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1638      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1639    if (NewTypeInfo.getHasRegParm()) {
1640      Diag(New->getLocation(), diag::err_regparm_mismatch)
1641        << NewType->getRegParmType()
1642        << OldType->getRegParmType();
1643      Diag(Old->getLocation(), diag::note_previous_declaration);
1644      return true;
1645    }
1646
1647    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1648    RequiresAdjustment = true;
1649  }
1650
1651  if (RequiresAdjustment) {
1652    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1653    New->setType(QualType(NewType, 0));
1654    NewQType = Context.getCanonicalType(New->getType());
1655  }
1656
1657  if (getLangOptions().CPlusPlus) {
1658    // (C++98 13.1p2):
1659    //   Certain function declarations cannot be overloaded:
1660    //     -- Function declarations that differ only in the return type
1661    //        cannot be overloaded.
1662    QualType OldReturnType = OldType->getResultType();
1663    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1664    QualType ResQT;
1665    if (OldReturnType != NewReturnType) {
1666      if (NewReturnType->isObjCObjectPointerType()
1667          && OldReturnType->isObjCObjectPointerType())
1668        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1669      if (ResQT.isNull()) {
1670        if (New->isCXXClassMember() && New->isOutOfLine())
1671          Diag(New->getLocation(),
1672               diag::err_member_def_does_not_match_ret_type) << New;
1673        else
1674          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1675        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1676        return true;
1677      }
1678      else
1679        NewQType = ResQT;
1680    }
1681
1682    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1683    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1684    if (OldMethod && NewMethod) {
1685      // Preserve triviality.
1686      NewMethod->setTrivial(OldMethod->isTrivial());
1687
1688      bool isFriend = NewMethod->getFriendObjectKind();
1689
1690      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1691        //    -- Member function declarations with the same name and the
1692        //       same parameter types cannot be overloaded if any of them
1693        //       is a static member function declaration.
1694        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1695          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1696          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1697          return true;
1698        }
1699
1700        // C++ [class.mem]p1:
1701        //   [...] A member shall not be declared twice in the
1702        //   member-specification, except that a nested class or member
1703        //   class template can be declared and then later defined.
1704        unsigned NewDiag;
1705        if (isa<CXXConstructorDecl>(OldMethod))
1706          NewDiag = diag::err_constructor_redeclared;
1707        else if (isa<CXXDestructorDecl>(NewMethod))
1708          NewDiag = diag::err_destructor_redeclared;
1709        else if (isa<CXXConversionDecl>(NewMethod))
1710          NewDiag = diag::err_conv_function_redeclared;
1711        else
1712          NewDiag = diag::err_member_redeclared;
1713
1714        Diag(New->getLocation(), NewDiag);
1715        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1716
1717      // Complain if this is an explicit declaration of a special
1718      // member that was initially declared implicitly.
1719      //
1720      // As an exception, it's okay to befriend such methods in order
1721      // to permit the implicit constructor/destructor/operator calls.
1722      } else if (OldMethod->isImplicit()) {
1723        if (isFriend) {
1724          NewMethod->setImplicit();
1725        } else {
1726          Diag(NewMethod->getLocation(),
1727               diag::err_definition_of_implicitly_declared_member)
1728            << New << getSpecialMember(OldMethod);
1729          return true;
1730        }
1731      }
1732    }
1733
1734    // (C++98 8.3.5p3):
1735    //   All declarations for a function shall agree exactly in both the
1736    //   return type and the parameter-type-list.
1737    // We also want to respect all the extended bits except noreturn.
1738
1739    // noreturn should now match unless the old type info didn't have it.
1740    QualType OldQTypeForComparison = OldQType;
1741    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1742      assert(OldQType == QualType(OldType, 0));
1743      const FunctionType *OldTypeForComparison
1744        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1745      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1746      assert(OldQTypeForComparison.isCanonical());
1747    }
1748
1749    if (OldQTypeForComparison == NewQType)
1750      return MergeCompatibleFunctionDecls(New, Old);
1751
1752    // Fall through for conflicting redeclarations and redefinitions.
1753  }
1754
1755  // C: Function types need to be compatible, not identical. This handles
1756  // duplicate function decls like "void f(int); void f(enum X);" properly.
1757  if (!getLangOptions().CPlusPlus &&
1758      Context.typesAreCompatible(OldQType, NewQType)) {
1759    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1760    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1761    const FunctionProtoType *OldProto = 0;
1762    if (isa<FunctionNoProtoType>(NewFuncType) &&
1763        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1764      // The old declaration provided a function prototype, but the
1765      // new declaration does not. Merge in the prototype.
1766      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1767      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1768                                                 OldProto->arg_type_end());
1769      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1770                                         ParamTypes.data(), ParamTypes.size(),
1771                                         OldProto->getExtProtoInfo());
1772      New->setType(NewQType);
1773      New->setHasInheritedPrototype();
1774
1775      // Synthesize a parameter for each argument type.
1776      llvm::SmallVector<ParmVarDecl*, 16> Params;
1777      for (FunctionProtoType::arg_type_iterator
1778             ParamType = OldProto->arg_type_begin(),
1779             ParamEnd = OldProto->arg_type_end();
1780           ParamType != ParamEnd; ++ParamType) {
1781        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1782                                                 SourceLocation(),
1783                                                 SourceLocation(), 0,
1784                                                 *ParamType, /*TInfo=*/0,
1785                                                 SC_None, SC_None,
1786                                                 0);
1787        Param->setScopeInfo(0, Params.size());
1788        Param->setImplicit();
1789        Params.push_back(Param);
1790      }
1791
1792      New->setParams(Params.data(), Params.size());
1793    }
1794
1795    return MergeCompatibleFunctionDecls(New, Old);
1796  }
1797
1798  // GNU C permits a K&R definition to follow a prototype declaration
1799  // if the declared types of the parameters in the K&R definition
1800  // match the types in the prototype declaration, even when the
1801  // promoted types of the parameters from the K&R definition differ
1802  // from the types in the prototype. GCC then keeps the types from
1803  // the prototype.
1804  //
1805  // If a variadic prototype is followed by a non-variadic K&R definition,
1806  // the K&R definition becomes variadic.  This is sort of an edge case, but
1807  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1808  // C99 6.9.1p8.
1809  if (!getLangOptions().CPlusPlus &&
1810      Old->hasPrototype() && !New->hasPrototype() &&
1811      New->getType()->getAs<FunctionProtoType>() &&
1812      Old->getNumParams() == New->getNumParams()) {
1813    llvm::SmallVector<QualType, 16> ArgTypes;
1814    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1815    const FunctionProtoType *OldProto
1816      = Old->getType()->getAs<FunctionProtoType>();
1817    const FunctionProtoType *NewProto
1818      = New->getType()->getAs<FunctionProtoType>();
1819
1820    // Determine whether this is the GNU C extension.
1821    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1822                                               NewProto->getResultType());
1823    bool LooseCompatible = !MergedReturn.isNull();
1824    for (unsigned Idx = 0, End = Old->getNumParams();
1825         LooseCompatible && Idx != End; ++Idx) {
1826      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1827      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1828      if (Context.typesAreCompatible(OldParm->getType(),
1829                                     NewProto->getArgType(Idx))) {
1830        ArgTypes.push_back(NewParm->getType());
1831      } else if (Context.typesAreCompatible(OldParm->getType(),
1832                                            NewParm->getType(),
1833                                            /*CompareUnqualified=*/true)) {
1834        GNUCompatibleParamWarning Warn
1835          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1836        Warnings.push_back(Warn);
1837        ArgTypes.push_back(NewParm->getType());
1838      } else
1839        LooseCompatible = false;
1840    }
1841
1842    if (LooseCompatible) {
1843      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1844        Diag(Warnings[Warn].NewParm->getLocation(),
1845             diag::ext_param_promoted_not_compatible_with_prototype)
1846          << Warnings[Warn].PromotedType
1847          << Warnings[Warn].OldParm->getType();
1848        if (Warnings[Warn].OldParm->getLocation().isValid())
1849          Diag(Warnings[Warn].OldParm->getLocation(),
1850               diag::note_previous_declaration);
1851      }
1852
1853      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1854                                           ArgTypes.size(),
1855                                           OldProto->getExtProtoInfo()));
1856      return MergeCompatibleFunctionDecls(New, Old);
1857    }
1858
1859    // Fall through to diagnose conflicting types.
1860  }
1861
1862  // A function that has already been declared has been redeclared or defined
1863  // with a different type- show appropriate diagnostic
1864  if (unsigned BuiltinID = Old->getBuiltinID()) {
1865    // The user has declared a builtin function with an incompatible
1866    // signature.
1867    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1868      // The function the user is redeclaring is a library-defined
1869      // function like 'malloc' or 'printf'. Warn about the
1870      // redeclaration, then pretend that we don't know about this
1871      // library built-in.
1872      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1873      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1874        << Old << Old->getType();
1875      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1876      Old->setInvalidDecl();
1877      return false;
1878    }
1879
1880    PrevDiag = diag::note_previous_builtin_declaration;
1881  }
1882
1883  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1884  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1885  return true;
1886}
1887
1888/// \brief Completes the merge of two function declarations that are
1889/// known to be compatible.
1890///
1891/// This routine handles the merging of attributes and other
1892/// properties of function declarations form the old declaration to
1893/// the new declaration, once we know that New is in fact a
1894/// redeclaration of Old.
1895///
1896/// \returns false
1897bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1898  // Merge the attributes
1899  mergeDeclAttributes(New, Old, Context);
1900
1901  // Merge the storage class.
1902  if (Old->getStorageClass() != SC_Extern &&
1903      Old->getStorageClass() != SC_None)
1904    New->setStorageClass(Old->getStorageClass());
1905
1906  // Merge "pure" flag.
1907  if (Old->isPure())
1908    New->setPure();
1909
1910  // Merge the "deleted" flag.
1911  if (Old->isDeleted())
1912    New->setDeleted();
1913
1914  // Merge attributes from the parameters.  These can mismatch with K&R
1915  // declarations.
1916  if (New->getNumParams() == Old->getNumParams())
1917    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1918      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1919                               Context);
1920
1921  if (getLangOptions().CPlusPlus)
1922    return MergeCXXFunctionDecl(New, Old);
1923
1924  return false;
1925}
1926
1927void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1928                                const ObjCMethodDecl *oldMethod) {
1929  // Merge the attributes.
1930  mergeDeclAttributes(newMethod, oldMethod, Context);
1931
1932  // Merge attributes from the parameters.
1933  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1934         ni = newMethod->param_begin(), ne = newMethod->param_end();
1935       ni != ne; ++ni, ++oi)
1936    mergeParamDeclAttributes(*ni, *oi, Context);
1937}
1938
1939/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1940/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1941/// emitting diagnostics as appropriate.
1942///
1943/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1944/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1945/// check them before the initializer is attached.
1946///
1947void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1948  if (New->isInvalidDecl() || Old->isInvalidDecl())
1949    return;
1950
1951  QualType MergedT;
1952  if (getLangOptions().CPlusPlus) {
1953    AutoType *AT = New->getType()->getContainedAutoType();
1954    if (AT && !AT->isDeduced()) {
1955      // We don't know what the new type is until the initializer is attached.
1956      return;
1957    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1958      // These could still be something that needs exception specs checked.
1959      return MergeVarDeclExceptionSpecs(New, Old);
1960    }
1961    // C++ [basic.link]p10:
1962    //   [...] the types specified by all declarations referring to a given
1963    //   object or function shall be identical, except that declarations for an
1964    //   array object can specify array types that differ by the presence or
1965    //   absence of a major array bound (8.3.4).
1966    else if (Old->getType()->isIncompleteArrayType() &&
1967             New->getType()->isArrayType()) {
1968      CanQual<ArrayType> OldArray
1969        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1970      CanQual<ArrayType> NewArray
1971        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1972      if (OldArray->getElementType() == NewArray->getElementType())
1973        MergedT = New->getType();
1974    } else if (Old->getType()->isArrayType() &&
1975             New->getType()->isIncompleteArrayType()) {
1976      CanQual<ArrayType> OldArray
1977        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1978      CanQual<ArrayType> NewArray
1979        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1980      if (OldArray->getElementType() == NewArray->getElementType())
1981        MergedT = Old->getType();
1982    } else if (New->getType()->isObjCObjectPointerType()
1983               && Old->getType()->isObjCObjectPointerType()) {
1984        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1985                                                        Old->getType());
1986    }
1987  } else {
1988    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1989  }
1990  if (MergedT.isNull()) {
1991    Diag(New->getLocation(), diag::err_redefinition_different_type)
1992      << New->getDeclName();
1993    Diag(Old->getLocation(), diag::note_previous_definition);
1994    return New->setInvalidDecl();
1995  }
1996  New->setType(MergedT);
1997}
1998
1999/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2000/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2001/// situation, merging decls or emitting diagnostics as appropriate.
2002///
2003/// Tentative definition rules (C99 6.9.2p2) are checked by
2004/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2005/// definitions here, since the initializer hasn't been attached.
2006///
2007void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2008  // If the new decl is already invalid, don't do any other checking.
2009  if (New->isInvalidDecl())
2010    return;
2011
2012  // Verify the old decl was also a variable.
2013  VarDecl *Old = 0;
2014  if (!Previous.isSingleResult() ||
2015      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2016    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2017      << New->getDeclName();
2018    Diag(Previous.getRepresentativeDecl()->getLocation(),
2019         diag::note_previous_definition);
2020    return New->setInvalidDecl();
2021  }
2022
2023  // C++ [class.mem]p1:
2024  //   A member shall not be declared twice in the member-specification [...]
2025  //
2026  // Here, we need only consider static data members.
2027  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2028    Diag(New->getLocation(), diag::err_duplicate_member)
2029      << New->getIdentifier();
2030    Diag(Old->getLocation(), diag::note_previous_declaration);
2031    New->setInvalidDecl();
2032  }
2033
2034  mergeDeclAttributes(New, Old, Context);
2035
2036  // Merge the types.
2037  MergeVarDeclTypes(New, Old);
2038  if (New->isInvalidDecl())
2039    return;
2040
2041  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2042  if (New->getStorageClass() == SC_Static &&
2043      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2044    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2045    Diag(Old->getLocation(), diag::note_previous_definition);
2046    return New->setInvalidDecl();
2047  }
2048  // C99 6.2.2p4:
2049  //   For an identifier declared with the storage-class specifier
2050  //   extern in a scope in which a prior declaration of that
2051  //   identifier is visible,23) if the prior declaration specifies
2052  //   internal or external linkage, the linkage of the identifier at
2053  //   the later declaration is the same as the linkage specified at
2054  //   the prior declaration. If no prior declaration is visible, or
2055  //   if the prior declaration specifies no linkage, then the
2056  //   identifier has external linkage.
2057  if (New->hasExternalStorage() && Old->hasLinkage())
2058    /* Okay */;
2059  else if (New->getStorageClass() != SC_Static &&
2060           Old->getStorageClass() == SC_Static) {
2061    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2062    Diag(Old->getLocation(), diag::note_previous_definition);
2063    return New->setInvalidDecl();
2064  }
2065
2066  // Check if extern is followed by non-extern and vice-versa.
2067  if (New->hasExternalStorage() &&
2068      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2069    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2070    Diag(Old->getLocation(), diag::note_previous_definition);
2071    return New->setInvalidDecl();
2072  }
2073  if (Old->hasExternalStorage() &&
2074      !New->hasLinkage() && New->isLocalVarDecl()) {
2075    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2076    Diag(Old->getLocation(), diag::note_previous_definition);
2077    return New->setInvalidDecl();
2078  }
2079
2080  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2081
2082  // FIXME: The test for external storage here seems wrong? We still
2083  // need to check for mismatches.
2084  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2085      // Don't complain about out-of-line definitions of static members.
2086      !(Old->getLexicalDeclContext()->isRecord() &&
2087        !New->getLexicalDeclContext()->isRecord())) {
2088    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2089    Diag(Old->getLocation(), diag::note_previous_definition);
2090    return New->setInvalidDecl();
2091  }
2092
2093  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2094    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2095    Diag(Old->getLocation(), diag::note_previous_definition);
2096  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2097    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2098    Diag(Old->getLocation(), diag::note_previous_definition);
2099  }
2100
2101  // C++ doesn't have tentative definitions, so go right ahead and check here.
2102  const VarDecl *Def;
2103  if (getLangOptions().CPlusPlus &&
2104      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2105      (Def = Old->getDefinition())) {
2106    Diag(New->getLocation(), diag::err_redefinition)
2107      << New->getDeclName();
2108    Diag(Def->getLocation(), diag::note_previous_definition);
2109    New->setInvalidDecl();
2110    return;
2111  }
2112  // c99 6.2.2 P4.
2113  // For an identifier declared with the storage-class specifier extern in a
2114  // scope in which a prior declaration of that identifier is visible, if
2115  // the prior declaration specifies internal or external linkage, the linkage
2116  // of the identifier at the later declaration is the same as the linkage
2117  // specified at the prior declaration.
2118  // FIXME. revisit this code.
2119  if (New->hasExternalStorage() &&
2120      Old->getLinkage() == InternalLinkage &&
2121      New->getDeclContext() == Old->getDeclContext())
2122    New->setStorageClass(Old->getStorageClass());
2123
2124  // Keep a chain of previous declarations.
2125  New->setPreviousDeclaration(Old);
2126
2127  // Inherit access appropriately.
2128  New->setAccess(Old->getAccess());
2129}
2130
2131/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2132/// no declarator (e.g. "struct foo;") is parsed.
2133Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2134                                       DeclSpec &DS) {
2135  return ParsedFreeStandingDeclSpec(S, AS, DS,
2136                                    MultiTemplateParamsArg(*this, 0, 0));
2137}
2138
2139/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2140/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2141/// parameters to cope with template friend declarations.
2142Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2143                                       DeclSpec &DS,
2144                                       MultiTemplateParamsArg TemplateParams) {
2145  Decl *TagD = 0;
2146  TagDecl *Tag = 0;
2147  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2148      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2149      DS.getTypeSpecType() == DeclSpec::TST_union ||
2150      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2151    TagD = DS.getRepAsDecl();
2152
2153    if (!TagD) // We probably had an error
2154      return 0;
2155
2156    // Note that the above type specs guarantee that the
2157    // type rep is a Decl, whereas in many of the others
2158    // it's a Type.
2159    Tag = dyn_cast<TagDecl>(TagD);
2160  }
2161
2162  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2163    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2164    // or incomplete types shall not be restrict-qualified."
2165    if (TypeQuals & DeclSpec::TQ_restrict)
2166      Diag(DS.getRestrictSpecLoc(),
2167           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2168           << DS.getSourceRange();
2169  }
2170
2171  if (DS.isFriendSpecified()) {
2172    // If we're dealing with a decl but not a TagDecl, assume that
2173    // whatever routines created it handled the friendship aspect.
2174    if (TagD && !Tag)
2175      return 0;
2176    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2177  }
2178
2179  // Track whether we warned about the fact that there aren't any
2180  // declarators.
2181  bool emittedWarning = false;
2182
2183  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2184    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2185
2186    if (!Record->getDeclName() && Record->isDefinition() &&
2187        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2188      if (getLangOptions().CPlusPlus ||
2189          Record->getDeclContext()->isRecord())
2190        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2191
2192      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2193        << DS.getSourceRange();
2194      emittedWarning = true;
2195    }
2196  }
2197
2198  // Check for Microsoft C extension: anonymous struct.
2199  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2200      CurContext->isRecord() &&
2201      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2202    // Handle 2 kinds of anonymous struct:
2203    //   struct STRUCT;
2204    // and
2205    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2206    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2207    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2208        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2209         DS.getRepAsType().get()->isStructureType())) {
2210      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2211        << DS.getSourceRange();
2212      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2213    }
2214  }
2215
2216  if (getLangOptions().CPlusPlus &&
2217      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2218    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2219      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2220          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2221        Diag(Enum->getLocation(), diag::ext_no_declarators)
2222          << DS.getSourceRange();
2223        emittedWarning = true;
2224      }
2225
2226  // Skip all the checks below if we have a type error.
2227  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2228
2229  if (!DS.isMissingDeclaratorOk()) {
2230    // Warn about typedefs of enums without names, since this is an
2231    // extension in both Microsoft and GNU.
2232    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2233        Tag && isa<EnumDecl>(Tag)) {
2234      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2235        << DS.getSourceRange();
2236      return Tag;
2237    }
2238
2239    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2240      << DS.getSourceRange();
2241    emittedWarning = true;
2242  }
2243
2244  // We're going to complain about a bunch of spurious specifiers;
2245  // only do this if we're declaring a tag, because otherwise we
2246  // should be getting diag::ext_no_declarators.
2247  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2248    return TagD;
2249
2250  // Note that a linkage-specification sets a storage class, but
2251  // 'extern "C" struct foo;' is actually valid and not theoretically
2252  // useless.
2253  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2254    if (!DS.isExternInLinkageSpec())
2255      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2256        << DeclSpec::getSpecifierName(scs);
2257
2258  if (DS.isThreadSpecified())
2259    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2260  if (DS.getTypeQualifiers()) {
2261    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2262      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2263    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2264      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2265    // Restrict is covered above.
2266  }
2267  if (DS.isInlineSpecified())
2268    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2269  if (DS.isVirtualSpecified())
2270    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2271  if (DS.isExplicitSpecified())
2272    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2273
2274  // FIXME: Warn on useless attributes
2275
2276  return TagD;
2277}
2278
2279/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2280/// builds a statement for it and returns it so it is evaluated.
2281StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2282  StmtResult R;
2283  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2284    Expr *Exp = DS.getRepAsExpr();
2285    QualType Ty = Exp->getType();
2286    if (Ty->isPointerType()) {
2287      do
2288        Ty = Ty->getAs<PointerType>()->getPointeeType();
2289      while (Ty->isPointerType());
2290    }
2291    if (Ty->isVariableArrayType()) {
2292      R = ActOnExprStmt(MakeFullExpr(Exp));
2293    }
2294  }
2295  return R;
2296}
2297
2298/// We are trying to inject an anonymous member into the given scope;
2299/// check if there's an existing declaration that can't be overloaded.
2300///
2301/// \return true if this is a forbidden redeclaration
2302static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2303                                         Scope *S,
2304                                         DeclContext *Owner,
2305                                         DeclarationName Name,
2306                                         SourceLocation NameLoc,
2307                                         unsigned diagnostic) {
2308  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2309                 Sema::ForRedeclaration);
2310  if (!SemaRef.LookupName(R, S)) return false;
2311
2312  if (R.getAsSingle<TagDecl>())
2313    return false;
2314
2315  // Pick a representative declaration.
2316  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2317  assert(PrevDecl && "Expected a non-null Decl");
2318
2319  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2320    return false;
2321
2322  SemaRef.Diag(NameLoc, diagnostic) << Name;
2323  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2324
2325  return true;
2326}
2327
2328/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2329/// anonymous struct or union AnonRecord into the owning context Owner
2330/// and scope S. This routine will be invoked just after we realize
2331/// that an unnamed union or struct is actually an anonymous union or
2332/// struct, e.g.,
2333///
2334/// @code
2335/// union {
2336///   int i;
2337///   float f;
2338/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2339///    // f into the surrounding scope.x
2340/// @endcode
2341///
2342/// This routine is recursive, injecting the names of nested anonymous
2343/// structs/unions into the owning context and scope as well.
2344static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2345                                                DeclContext *Owner,
2346                                                RecordDecl *AnonRecord,
2347                                                AccessSpecifier AS,
2348                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2349                                                      bool MSAnonStruct) {
2350  unsigned diagKind
2351    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2352                            : diag::err_anonymous_struct_member_redecl;
2353
2354  bool Invalid = false;
2355
2356  // Look every FieldDecl and IndirectFieldDecl with a name.
2357  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2358                               DEnd = AnonRecord->decls_end();
2359       D != DEnd; ++D) {
2360    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2361        cast<NamedDecl>(*D)->getDeclName()) {
2362      ValueDecl *VD = cast<ValueDecl>(*D);
2363      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2364                                       VD->getLocation(), diagKind)) {
2365        // C++ [class.union]p2:
2366        //   The names of the members of an anonymous union shall be
2367        //   distinct from the names of any other entity in the
2368        //   scope in which the anonymous union is declared.
2369        Invalid = true;
2370      } else {
2371        // C++ [class.union]p2:
2372        //   For the purpose of name lookup, after the anonymous union
2373        //   definition, the members of the anonymous union are
2374        //   considered to have been defined in the scope in which the
2375        //   anonymous union is declared.
2376        unsigned OldChainingSize = Chaining.size();
2377        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2378          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2379               PE = IF->chain_end(); PI != PE; ++PI)
2380            Chaining.push_back(*PI);
2381        else
2382          Chaining.push_back(VD);
2383
2384        assert(Chaining.size() >= 2);
2385        NamedDecl **NamedChain =
2386          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2387        for (unsigned i = 0; i < Chaining.size(); i++)
2388          NamedChain[i] = Chaining[i];
2389
2390        IndirectFieldDecl* IndirectField =
2391          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2392                                    VD->getIdentifier(), VD->getType(),
2393                                    NamedChain, Chaining.size());
2394
2395        IndirectField->setAccess(AS);
2396        IndirectField->setImplicit();
2397        SemaRef.PushOnScopeChains(IndirectField, S);
2398
2399        // That includes picking up the appropriate access specifier.
2400        if (AS != AS_none) IndirectField->setAccess(AS);
2401
2402        Chaining.resize(OldChainingSize);
2403      }
2404    }
2405  }
2406
2407  return Invalid;
2408}
2409
2410/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2411/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2412/// illegal input values are mapped to SC_None.
2413static StorageClass
2414StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2415  switch (StorageClassSpec) {
2416  case DeclSpec::SCS_unspecified:    return SC_None;
2417  case DeclSpec::SCS_extern:         return SC_Extern;
2418  case DeclSpec::SCS_static:         return SC_Static;
2419  case DeclSpec::SCS_auto:           return SC_Auto;
2420  case DeclSpec::SCS_register:       return SC_Register;
2421  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2422    // Illegal SCSs map to None: error reporting is up to the caller.
2423  case DeclSpec::SCS_mutable:        // Fall through.
2424  case DeclSpec::SCS_typedef:        return SC_None;
2425  }
2426  llvm_unreachable("unknown storage class specifier");
2427}
2428
2429/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2430/// a StorageClass. Any error reporting is up to the caller:
2431/// illegal input values are mapped to SC_None.
2432static StorageClass
2433StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2434  switch (StorageClassSpec) {
2435  case DeclSpec::SCS_unspecified:    return SC_None;
2436  case DeclSpec::SCS_extern:         return SC_Extern;
2437  case DeclSpec::SCS_static:         return SC_Static;
2438  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2439    // Illegal SCSs map to None: error reporting is up to the caller.
2440  case DeclSpec::SCS_auto:           // Fall through.
2441  case DeclSpec::SCS_mutable:        // Fall through.
2442  case DeclSpec::SCS_register:       // Fall through.
2443  case DeclSpec::SCS_typedef:        return SC_None;
2444  }
2445  llvm_unreachable("unknown storage class specifier");
2446}
2447
2448/// BuildAnonymousStructOrUnion - Handle the declaration of an
2449/// anonymous structure or union. Anonymous unions are a C++ feature
2450/// (C++ [class.union]) and a GNU C extension; anonymous structures
2451/// are a GNU C and GNU C++ extension.
2452Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2453                                             AccessSpecifier AS,
2454                                             RecordDecl *Record) {
2455  DeclContext *Owner = Record->getDeclContext();
2456
2457  // Diagnose whether this anonymous struct/union is an extension.
2458  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2459    Diag(Record->getLocation(), diag::ext_anonymous_union);
2460  else if (!Record->isUnion())
2461    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2462
2463  // C and C++ require different kinds of checks for anonymous
2464  // structs/unions.
2465  bool Invalid = false;
2466  if (getLangOptions().CPlusPlus) {
2467    const char* PrevSpec = 0;
2468    unsigned DiagID;
2469    // C++ [class.union]p3:
2470    //   Anonymous unions declared in a named namespace or in the
2471    //   global namespace shall be declared static.
2472    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2473        (isa<TranslationUnitDecl>(Owner) ||
2474         (isa<NamespaceDecl>(Owner) &&
2475          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2476      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2477      Invalid = true;
2478
2479      // Recover by adding 'static'.
2480      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2481                             PrevSpec, DiagID, getLangOptions());
2482    }
2483    // C++ [class.union]p3:
2484    //   A storage class is not allowed in a declaration of an
2485    //   anonymous union in a class scope.
2486    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2487             isa<RecordDecl>(Owner)) {
2488      Diag(DS.getStorageClassSpecLoc(),
2489           diag::err_anonymous_union_with_storage_spec);
2490      Invalid = true;
2491
2492      // Recover by removing the storage specifier.
2493      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2494                             PrevSpec, DiagID, getLangOptions());
2495    }
2496
2497    // C++ [class.union]p2:
2498    //   The member-specification of an anonymous union shall only
2499    //   define non-static data members. [Note: nested types and
2500    //   functions cannot be declared within an anonymous union. ]
2501    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2502                                 MemEnd = Record->decls_end();
2503         Mem != MemEnd; ++Mem) {
2504      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2505        // C++ [class.union]p3:
2506        //   An anonymous union shall not have private or protected
2507        //   members (clause 11).
2508        assert(FD->getAccess() != AS_none);
2509        if (FD->getAccess() != AS_public) {
2510          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2511            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2512          Invalid = true;
2513        }
2514
2515        if (CheckNontrivialField(FD))
2516          Invalid = true;
2517      } else if ((*Mem)->isImplicit()) {
2518        // Any implicit members are fine.
2519      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2520        // This is a type that showed up in an
2521        // elaborated-type-specifier inside the anonymous struct or
2522        // union, but which actually declares a type outside of the
2523        // anonymous struct or union. It's okay.
2524      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2525        if (!MemRecord->isAnonymousStructOrUnion() &&
2526            MemRecord->getDeclName()) {
2527          // Visual C++ allows type definition in anonymous struct or union.
2528          if (getLangOptions().Microsoft)
2529            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2530              << (int)Record->isUnion();
2531          else {
2532            // This is a nested type declaration.
2533            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2534              << (int)Record->isUnion();
2535            Invalid = true;
2536          }
2537        }
2538      } else if (isa<AccessSpecDecl>(*Mem)) {
2539        // Any access specifier is fine.
2540      } else {
2541        // We have something that isn't a non-static data
2542        // member. Complain about it.
2543        unsigned DK = diag::err_anonymous_record_bad_member;
2544        if (isa<TypeDecl>(*Mem))
2545          DK = diag::err_anonymous_record_with_type;
2546        else if (isa<FunctionDecl>(*Mem))
2547          DK = diag::err_anonymous_record_with_function;
2548        else if (isa<VarDecl>(*Mem))
2549          DK = diag::err_anonymous_record_with_static;
2550
2551        // Visual C++ allows type definition in anonymous struct or union.
2552        if (getLangOptions().Microsoft &&
2553            DK == diag::err_anonymous_record_with_type)
2554          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2555            << (int)Record->isUnion();
2556        else {
2557          Diag((*Mem)->getLocation(), DK)
2558              << (int)Record->isUnion();
2559          Invalid = true;
2560        }
2561      }
2562    }
2563  }
2564
2565  if (!Record->isUnion() && !Owner->isRecord()) {
2566    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2567      << (int)getLangOptions().CPlusPlus;
2568    Invalid = true;
2569  }
2570
2571  // Mock up a declarator.
2572  Declarator Dc(DS, Declarator::TypeNameContext);
2573  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2574  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2575
2576  // Create a declaration for this anonymous struct/union.
2577  NamedDecl *Anon = 0;
2578  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2579    Anon = FieldDecl::Create(Context, OwningClass,
2580                             DS.getSourceRange().getBegin(),
2581                             Record->getLocation(),
2582                             /*IdentifierInfo=*/0,
2583                             Context.getTypeDeclType(Record),
2584                             TInfo,
2585                             /*BitWidth=*/0, /*Mutable=*/false);
2586    Anon->setAccess(AS);
2587    if (getLangOptions().CPlusPlus)
2588      FieldCollector->Add(cast<FieldDecl>(Anon));
2589  } else {
2590    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2591    assert(SCSpec != DeclSpec::SCS_typedef &&
2592           "Parser allowed 'typedef' as storage class VarDecl.");
2593    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2594    if (SCSpec == DeclSpec::SCS_mutable) {
2595      // mutable can only appear on non-static class members, so it's always
2596      // an error here
2597      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2598      Invalid = true;
2599      SC = SC_None;
2600    }
2601    SCSpec = DS.getStorageClassSpecAsWritten();
2602    VarDecl::StorageClass SCAsWritten
2603      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2604
2605    Anon = VarDecl::Create(Context, Owner,
2606                           DS.getSourceRange().getBegin(),
2607                           Record->getLocation(), /*IdentifierInfo=*/0,
2608                           Context.getTypeDeclType(Record),
2609                           TInfo, SC, SCAsWritten);
2610  }
2611  Anon->setImplicit();
2612
2613  // Add the anonymous struct/union object to the current
2614  // context. We'll be referencing this object when we refer to one of
2615  // its members.
2616  Owner->addDecl(Anon);
2617
2618  // Inject the members of the anonymous struct/union into the owning
2619  // context and into the identifier resolver chain for name lookup
2620  // purposes.
2621  llvm::SmallVector<NamedDecl*, 2> Chain;
2622  Chain.push_back(Anon);
2623
2624  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2625                                          Chain, false))
2626    Invalid = true;
2627
2628  // Mark this as an anonymous struct/union type. Note that we do not
2629  // do this until after we have already checked and injected the
2630  // members of this anonymous struct/union type, because otherwise
2631  // the members could be injected twice: once by DeclContext when it
2632  // builds its lookup table, and once by
2633  // InjectAnonymousStructOrUnionMembers.
2634  Record->setAnonymousStructOrUnion(true);
2635
2636  if (Invalid)
2637    Anon->setInvalidDecl();
2638
2639  return Anon;
2640}
2641
2642/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2643/// Microsoft C anonymous structure.
2644/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2645/// Example:
2646///
2647/// struct A { int a; };
2648/// struct B { struct A; int b; };
2649///
2650/// void foo() {
2651///   B var;
2652///   var.a = 3;
2653/// }
2654///
2655Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2656                                           RecordDecl *Record) {
2657
2658  // If there is no Record, get the record via the typedef.
2659  if (!Record)
2660    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2661
2662  // Mock up a declarator.
2663  Declarator Dc(DS, Declarator::TypeNameContext);
2664  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2665  assert(TInfo && "couldn't build declarator info for anonymous struct");
2666
2667  // Create a declaration for this anonymous struct.
2668  NamedDecl* Anon = FieldDecl::Create(Context,
2669                             cast<RecordDecl>(CurContext),
2670                             DS.getSourceRange().getBegin(),
2671                             DS.getSourceRange().getBegin(),
2672                             /*IdentifierInfo=*/0,
2673                             Context.getTypeDeclType(Record),
2674                             TInfo,
2675                             /*BitWidth=*/0, /*Mutable=*/false);
2676  Anon->setImplicit();
2677
2678  // Add the anonymous struct object to the current context.
2679  CurContext->addDecl(Anon);
2680
2681  // Inject the members of the anonymous struct into the current
2682  // context and into the identifier resolver chain for name lookup
2683  // purposes.
2684  llvm::SmallVector<NamedDecl*, 2> Chain;
2685  Chain.push_back(Anon);
2686
2687  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2688                                          Record->getDefinition(),
2689                                          AS_none, Chain, true))
2690    Anon->setInvalidDecl();
2691
2692  return Anon;
2693}
2694
2695/// GetNameForDeclarator - Determine the full declaration name for the
2696/// given Declarator.
2697DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2698  return GetNameFromUnqualifiedId(D.getName());
2699}
2700
2701/// \brief Retrieves the declaration name from a parsed unqualified-id.
2702DeclarationNameInfo
2703Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2704  DeclarationNameInfo NameInfo;
2705  NameInfo.setLoc(Name.StartLocation);
2706
2707  switch (Name.getKind()) {
2708
2709  case UnqualifiedId::IK_Identifier:
2710    NameInfo.setName(Name.Identifier);
2711    NameInfo.setLoc(Name.StartLocation);
2712    return NameInfo;
2713
2714  case UnqualifiedId::IK_OperatorFunctionId:
2715    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2716                                           Name.OperatorFunctionId.Operator));
2717    NameInfo.setLoc(Name.StartLocation);
2718    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2719      = Name.OperatorFunctionId.SymbolLocations[0];
2720    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2721      = Name.EndLocation.getRawEncoding();
2722    return NameInfo;
2723
2724  case UnqualifiedId::IK_LiteralOperatorId:
2725    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2726                                                           Name.Identifier));
2727    NameInfo.setLoc(Name.StartLocation);
2728    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2729    return NameInfo;
2730
2731  case UnqualifiedId::IK_ConversionFunctionId: {
2732    TypeSourceInfo *TInfo;
2733    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2734    if (Ty.isNull())
2735      return DeclarationNameInfo();
2736    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2737                                               Context.getCanonicalType(Ty)));
2738    NameInfo.setLoc(Name.StartLocation);
2739    NameInfo.setNamedTypeInfo(TInfo);
2740    return NameInfo;
2741  }
2742
2743  case UnqualifiedId::IK_ConstructorName: {
2744    TypeSourceInfo *TInfo;
2745    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2746    if (Ty.isNull())
2747      return DeclarationNameInfo();
2748    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2749                                              Context.getCanonicalType(Ty)));
2750    NameInfo.setLoc(Name.StartLocation);
2751    NameInfo.setNamedTypeInfo(TInfo);
2752    return NameInfo;
2753  }
2754
2755  case UnqualifiedId::IK_ConstructorTemplateId: {
2756    // In well-formed code, we can only have a constructor
2757    // template-id that refers to the current context, so go there
2758    // to find the actual type being constructed.
2759    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2760    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2761      return DeclarationNameInfo();
2762
2763    // Determine the type of the class being constructed.
2764    QualType CurClassType = Context.getTypeDeclType(CurClass);
2765
2766    // FIXME: Check two things: that the template-id names the same type as
2767    // CurClassType, and that the template-id does not occur when the name
2768    // was qualified.
2769
2770    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2771                                    Context.getCanonicalType(CurClassType)));
2772    NameInfo.setLoc(Name.StartLocation);
2773    // FIXME: should we retrieve TypeSourceInfo?
2774    NameInfo.setNamedTypeInfo(0);
2775    return NameInfo;
2776  }
2777
2778  case UnqualifiedId::IK_DestructorName: {
2779    TypeSourceInfo *TInfo;
2780    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2781    if (Ty.isNull())
2782      return DeclarationNameInfo();
2783    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2784                                              Context.getCanonicalType(Ty)));
2785    NameInfo.setLoc(Name.StartLocation);
2786    NameInfo.setNamedTypeInfo(TInfo);
2787    return NameInfo;
2788  }
2789
2790  case UnqualifiedId::IK_TemplateId: {
2791    TemplateName TName = Name.TemplateId->Template.get();
2792    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2793    return Context.getNameForTemplate(TName, TNameLoc);
2794  }
2795
2796  } // switch (Name.getKind())
2797
2798  assert(false && "Unknown name kind");
2799  return DeclarationNameInfo();
2800}
2801
2802/// isNearlyMatchingFunction - Determine whether the C++ functions
2803/// Declaration and Definition are "nearly" matching. This heuristic
2804/// is used to improve diagnostics in the case where an out-of-line
2805/// function definition doesn't match any declaration within
2806/// the class or namespace.
2807static bool isNearlyMatchingFunction(ASTContext &Context,
2808                                     FunctionDecl *Declaration,
2809                                     FunctionDecl *Definition) {
2810  if (Declaration->param_size() != Definition->param_size())
2811    return false;
2812  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2813    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2814    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2815
2816    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2817                                        DefParamTy.getNonReferenceType()))
2818      return false;
2819  }
2820
2821  return true;
2822}
2823
2824/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2825/// declarator needs to be rebuilt in the current instantiation.
2826/// Any bits of declarator which appear before the name are valid for
2827/// consideration here.  That's specifically the type in the decl spec
2828/// and the base type in any member-pointer chunks.
2829static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2830                                                    DeclarationName Name) {
2831  // The types we specifically need to rebuild are:
2832  //   - typenames, typeofs, and decltypes
2833  //   - types which will become injected class names
2834  // Of course, we also need to rebuild any type referencing such a
2835  // type.  It's safest to just say "dependent", but we call out a
2836  // few cases here.
2837
2838  DeclSpec &DS = D.getMutableDeclSpec();
2839  switch (DS.getTypeSpecType()) {
2840  case DeclSpec::TST_typename:
2841  case DeclSpec::TST_typeofType:
2842  case DeclSpec::TST_decltype: {
2843    // Grab the type from the parser.
2844    TypeSourceInfo *TSI = 0;
2845    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2846    if (T.isNull() || !T->isDependentType()) break;
2847
2848    // Make sure there's a type source info.  This isn't really much
2849    // of a waste; most dependent types should have type source info
2850    // attached already.
2851    if (!TSI)
2852      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2853
2854    // Rebuild the type in the current instantiation.
2855    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2856    if (!TSI) return true;
2857
2858    // Store the new type back in the decl spec.
2859    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2860    DS.UpdateTypeRep(LocType);
2861    break;
2862  }
2863
2864  case DeclSpec::TST_typeofExpr: {
2865    Expr *E = DS.getRepAsExpr();
2866    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2867    if (Result.isInvalid()) return true;
2868    DS.UpdateExprRep(Result.get());
2869    break;
2870  }
2871
2872  default:
2873    // Nothing to do for these decl specs.
2874    break;
2875  }
2876
2877  // It doesn't matter what order we do this in.
2878  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2879    DeclaratorChunk &Chunk = D.getTypeObject(I);
2880
2881    // The only type information in the declarator which can come
2882    // before the declaration name is the base type of a member
2883    // pointer.
2884    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2885      continue;
2886
2887    // Rebuild the scope specifier in-place.
2888    CXXScopeSpec &SS = Chunk.Mem.Scope();
2889    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2890      return true;
2891  }
2892
2893  return false;
2894}
2895
2896Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2897  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2898}
2899
2900/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2901///   If T is the name of a class, then each of the following shall have a
2902///   name different from T:
2903///     - every static data member of class T;
2904///     - every member function of class T
2905///     - every member of class T that is itself a type;
2906/// \returns true if the declaration name violates these rules.
2907bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2908                                   DeclarationNameInfo NameInfo) {
2909  DeclarationName Name = NameInfo.getName();
2910
2911  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2912    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2913      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2914      return true;
2915    }
2916
2917  return false;
2918}
2919
2920Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2921                             MultiTemplateParamsArg TemplateParamLists,
2922                             bool IsFunctionDefinition,
2923                             SourceLocation DefLoc) {
2924  // TODO: consider using NameInfo for diagnostic.
2925  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2926  DeclarationName Name = NameInfo.getName();
2927
2928  // All of these full declarators require an identifier.  If it doesn't have
2929  // one, the ParsedFreeStandingDeclSpec action should be used.
2930  if (!Name) {
2931    if (!D.isInvalidType())  // Reject this if we think it is valid.
2932      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2933           diag::err_declarator_need_ident)
2934        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2935    return 0;
2936  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2937    return 0;
2938
2939  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2940  // we find one that is.
2941  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2942         (S->getFlags() & Scope::TemplateParamScope) != 0)
2943    S = S->getParent();
2944
2945  DeclContext *DC = CurContext;
2946  if (D.getCXXScopeSpec().isInvalid())
2947    D.setInvalidType();
2948  else if (D.getCXXScopeSpec().isSet()) {
2949    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2950                                        UPPC_DeclarationQualifier))
2951      return 0;
2952
2953    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2954    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2955    if (!DC) {
2956      // If we could not compute the declaration context, it's because the
2957      // declaration context is dependent but does not refer to a class,
2958      // class template, or class template partial specialization. Complain
2959      // and return early, to avoid the coming semantic disaster.
2960      Diag(D.getIdentifierLoc(),
2961           diag::err_template_qualified_declarator_no_match)
2962        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2963        << D.getCXXScopeSpec().getRange();
2964      return 0;
2965    }
2966    bool IsDependentContext = DC->isDependentContext();
2967
2968    if (!IsDependentContext &&
2969        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2970      return 0;
2971
2972    if (isa<CXXRecordDecl>(DC)) {
2973      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2974        Diag(D.getIdentifierLoc(),
2975             diag::err_member_def_undefined_record)
2976          << Name << DC << D.getCXXScopeSpec().getRange();
2977        D.setInvalidType();
2978      } else if (isa<CXXRecordDecl>(CurContext) &&
2979                 !D.getDeclSpec().isFriendSpecified()) {
2980        // The user provided a superfluous scope specifier inside a class
2981        // definition:
2982        //
2983        // class X {
2984        //   void X::f();
2985        // };
2986        if (CurContext->Equals(DC))
2987          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2988            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2989        else
2990          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2991            << Name << D.getCXXScopeSpec().getRange();
2992
2993        // Pretend that this qualifier was not here.
2994        D.getCXXScopeSpec().clear();
2995      }
2996    }
2997
2998    // Check whether we need to rebuild the type of the given
2999    // declaration in the current instantiation.
3000    if (EnteringContext && IsDependentContext &&
3001        TemplateParamLists.size() != 0) {
3002      ContextRAII SavedContext(*this, DC);
3003      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3004        D.setInvalidType();
3005    }
3006  }
3007
3008  if (DiagnoseClassNameShadow(DC, NameInfo))
3009    // If this is a typedef, we'll end up spewing multiple diagnostics.
3010    // Just return early; it's safer.
3011    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3012      return 0;
3013
3014  NamedDecl *New;
3015
3016  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3017  QualType R = TInfo->getType();
3018
3019  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3020                                      UPPC_DeclarationType))
3021    D.setInvalidType();
3022
3023  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3024                        ForRedeclaration);
3025
3026  // See if this is a redefinition of a variable in the same scope.
3027  if (!D.getCXXScopeSpec().isSet()) {
3028    bool IsLinkageLookup = false;
3029
3030    // If the declaration we're planning to build will be a function
3031    // or object with linkage, then look for another declaration with
3032    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3033    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3034      /* Do nothing*/;
3035    else if (R->isFunctionType()) {
3036      if (CurContext->isFunctionOrMethod() ||
3037          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3038        IsLinkageLookup = true;
3039    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3040      IsLinkageLookup = true;
3041    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3042             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3043      IsLinkageLookup = true;
3044
3045    if (IsLinkageLookup)
3046      Previous.clear(LookupRedeclarationWithLinkage);
3047
3048    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3049  } else { // Something like "int foo::x;"
3050    LookupQualifiedName(Previous, DC);
3051
3052    // Don't consider using declarations as previous declarations for
3053    // out-of-line members.
3054    RemoveUsingDecls(Previous);
3055
3056    // C++ 7.3.1.2p2:
3057    // Members (including explicit specializations of templates) of a named
3058    // namespace can also be defined outside that namespace by explicit
3059    // qualification of the name being defined, provided that the entity being
3060    // defined was already declared in the namespace and the definition appears
3061    // after the point of declaration in a namespace that encloses the
3062    // declarations namespace.
3063    //
3064    // Note that we only check the context at this point. We don't yet
3065    // have enough information to make sure that PrevDecl is actually
3066    // the declaration we want to match. For example, given:
3067    //
3068    //   class X {
3069    //     void f();
3070    //     void f(float);
3071    //   };
3072    //
3073    //   void X::f(int) { } // ill-formed
3074    //
3075    // In this case, PrevDecl will point to the overload set
3076    // containing the two f's declared in X, but neither of them
3077    // matches.
3078
3079    // First check whether we named the global scope.
3080    if (isa<TranslationUnitDecl>(DC)) {
3081      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3082        << Name << D.getCXXScopeSpec().getRange();
3083    } else {
3084      DeclContext *Cur = CurContext;
3085      while (isa<LinkageSpecDecl>(Cur))
3086        Cur = Cur->getParent();
3087      if (!Cur->Encloses(DC)) {
3088        // The qualifying scope doesn't enclose the original declaration.
3089        // Emit diagnostic based on current scope.
3090        SourceLocation L = D.getIdentifierLoc();
3091        SourceRange R = D.getCXXScopeSpec().getRange();
3092        if (isa<FunctionDecl>(Cur))
3093          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3094        else
3095          Diag(L, diag::err_invalid_declarator_scope)
3096            << Name << cast<NamedDecl>(DC) << R;
3097        D.setInvalidType();
3098      }
3099    }
3100  }
3101
3102  if (Previous.isSingleResult() &&
3103      Previous.getFoundDecl()->isTemplateParameter()) {
3104    // Maybe we will complain about the shadowed template parameter.
3105    if (!D.isInvalidType())
3106      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3107                                          Previous.getFoundDecl()))
3108        D.setInvalidType();
3109
3110    // Just pretend that we didn't see the previous declaration.
3111    Previous.clear();
3112  }
3113
3114  // In C++, the previous declaration we find might be a tag type
3115  // (class or enum). In this case, the new declaration will hide the
3116  // tag type. Note that this does does not apply if we're declaring a
3117  // typedef (C++ [dcl.typedef]p4).
3118  if (Previous.isSingleTagDecl() &&
3119      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3120    Previous.clear();
3121
3122  bool Redeclaration = false;
3123  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3124    if (DefLoc.isValid())
3125      Diag(DefLoc, diag::err_default_special_members);
3126
3127    if (TemplateParamLists.size()) {
3128      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3129      return 0;
3130    }
3131
3132    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3133  } else if (R->isFunctionType()) {
3134    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3135                                  move(TemplateParamLists),
3136                                  IsFunctionDefinition, Redeclaration, DefLoc);
3137  } else {
3138    assert(!DefLoc.isValid() && "We should have caught this in a caller");
3139    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3140                                  move(TemplateParamLists),
3141                                  Redeclaration);
3142  }
3143
3144  if (New == 0)
3145    return 0;
3146
3147  // If this has an identifier and is not an invalid redeclaration or
3148  // function template specialization, add it to the scope stack.
3149  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3150    PushOnScopeChains(New, S);
3151
3152  return New;
3153}
3154
3155/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3156/// types into constant array types in certain situations which would otherwise
3157/// be errors (for GCC compatibility).
3158static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3159                                                    ASTContext &Context,
3160                                                    bool &SizeIsNegative,
3161                                                    llvm::APSInt &Oversized) {
3162  // This method tries to turn a variable array into a constant
3163  // array even when the size isn't an ICE.  This is necessary
3164  // for compatibility with code that depends on gcc's buggy
3165  // constant expression folding, like struct {char x[(int)(char*)2];}
3166  SizeIsNegative = false;
3167  Oversized = 0;
3168
3169  if (T->isDependentType())
3170    return QualType();
3171
3172  QualifierCollector Qs;
3173  const Type *Ty = Qs.strip(T);
3174
3175  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3176    QualType Pointee = PTy->getPointeeType();
3177    QualType FixedType =
3178        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3179                                            Oversized);
3180    if (FixedType.isNull()) return FixedType;
3181    FixedType = Context.getPointerType(FixedType);
3182    return Qs.apply(Context, FixedType);
3183  }
3184  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3185    QualType Inner = PTy->getInnerType();
3186    QualType FixedType =
3187        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3188                                            Oversized);
3189    if (FixedType.isNull()) return FixedType;
3190    FixedType = Context.getParenType(FixedType);
3191    return Qs.apply(Context, FixedType);
3192  }
3193
3194  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3195  if (!VLATy)
3196    return QualType();
3197  // FIXME: We should probably handle this case
3198  if (VLATy->getElementType()->isVariablyModifiedType())
3199    return QualType();
3200
3201  Expr::EvalResult EvalResult;
3202  if (!VLATy->getSizeExpr() ||
3203      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3204      !EvalResult.Val.isInt())
3205    return QualType();
3206
3207  // Check whether the array size is negative.
3208  llvm::APSInt &Res = EvalResult.Val.getInt();
3209  if (Res.isSigned() && Res.isNegative()) {
3210    SizeIsNegative = true;
3211    return QualType();
3212  }
3213
3214  // Check whether the array is too large to be addressed.
3215  unsigned ActiveSizeBits
3216    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3217                                              Res);
3218  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3219    Oversized = Res;
3220    return QualType();
3221  }
3222
3223  return Context.getConstantArrayType(VLATy->getElementType(),
3224                                      Res, ArrayType::Normal, 0);
3225}
3226
3227/// \brief Register the given locally-scoped external C declaration so
3228/// that it can be found later for redeclarations
3229void
3230Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3231                                       const LookupResult &Previous,
3232                                       Scope *S) {
3233  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3234         "Decl is not a locally-scoped decl!");
3235  // Note that we have a locally-scoped external with this name.
3236  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3237
3238  if (!Previous.isSingleResult())
3239    return;
3240
3241  NamedDecl *PrevDecl = Previous.getFoundDecl();
3242
3243  // If there was a previous declaration of this variable, it may be
3244  // in our identifier chain. Update the identifier chain with the new
3245  // declaration.
3246  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3247    // The previous declaration was found on the identifer resolver
3248    // chain, so remove it from its scope.
3249    while (S && !S->isDeclScope(PrevDecl))
3250      S = S->getParent();
3251
3252    if (S)
3253      S->RemoveDecl(PrevDecl);
3254  }
3255}
3256
3257/// \brief Diagnose function specifiers on a declaration of an identifier that
3258/// does not identify a function.
3259void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3260  // FIXME: We should probably indicate the identifier in question to avoid
3261  // confusion for constructs like "inline int a(), b;"
3262  if (D.getDeclSpec().isInlineSpecified())
3263    Diag(D.getDeclSpec().getInlineSpecLoc(),
3264         diag::err_inline_non_function);
3265
3266  if (D.getDeclSpec().isVirtualSpecified())
3267    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3268         diag::err_virtual_non_function);
3269
3270  if (D.getDeclSpec().isExplicitSpecified())
3271    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3272         diag::err_explicit_non_function);
3273}
3274
3275NamedDecl*
3276Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3277                             QualType R,  TypeSourceInfo *TInfo,
3278                             LookupResult &Previous, bool &Redeclaration) {
3279  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3280  if (D.getCXXScopeSpec().isSet()) {
3281    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3282      << D.getCXXScopeSpec().getRange();
3283    D.setInvalidType();
3284    // Pretend we didn't see the scope specifier.
3285    DC = CurContext;
3286    Previous.clear();
3287  }
3288
3289  if (getLangOptions().CPlusPlus) {
3290    // Check that there are no default arguments (C++ only).
3291    CheckExtraCXXDefaultArguments(D);
3292  }
3293
3294  DiagnoseFunctionSpecifiers(D);
3295
3296  if (D.getDeclSpec().isThreadSpecified())
3297    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3298
3299  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3300    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3301      << D.getName().getSourceRange();
3302    return 0;
3303  }
3304
3305  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3306  if (!NewTD) return 0;
3307
3308  // Handle attributes prior to checking for duplicates in MergeVarDecl
3309  ProcessDeclAttributes(S, NewTD, D);
3310
3311  CheckTypedefForVariablyModifiedType(S, NewTD);
3312
3313  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3314}
3315
3316void
3317Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3318  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3319  // then it shall have block scope.
3320  // Note that variably modified types must be fixed before merging the decl so
3321  // that redeclarations will match.
3322  QualType T = NewTD->getUnderlyingType();
3323  if (T->isVariablyModifiedType()) {
3324    getCurFunction()->setHasBranchProtectedScope();
3325
3326    if (S->getFnParent() == 0) {
3327      bool SizeIsNegative;
3328      llvm::APSInt Oversized;
3329      QualType FixedTy =
3330          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3331                                              Oversized);
3332      if (!FixedTy.isNull()) {
3333        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3334        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3335      } else {
3336        if (SizeIsNegative)
3337          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3338        else if (T->isVariableArrayType())
3339          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3340        else if (Oversized.getBoolValue())
3341          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3342        else
3343          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3344        NewTD->setInvalidDecl();
3345      }
3346    }
3347  }
3348}
3349
3350
3351/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3352/// declares a typedef-name, either using the 'typedef' type specifier or via
3353/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3354NamedDecl*
3355Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3356                           LookupResult &Previous, bool &Redeclaration) {
3357  // Merge the decl with the existing one if appropriate. If the decl is
3358  // in an outer scope, it isn't the same thing.
3359  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3360                       /*ExplicitInstantiationOrSpecialization=*/false);
3361  if (!Previous.empty()) {
3362    Redeclaration = true;
3363    MergeTypedefNameDecl(NewTD, Previous);
3364  }
3365
3366  // If this is the C FILE type, notify the AST context.
3367  if (IdentifierInfo *II = NewTD->getIdentifier())
3368    if (!NewTD->isInvalidDecl() &&
3369        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3370      if (II->isStr("FILE"))
3371        Context.setFILEDecl(NewTD);
3372      else if (II->isStr("jmp_buf"))
3373        Context.setjmp_bufDecl(NewTD);
3374      else if (II->isStr("sigjmp_buf"))
3375        Context.setsigjmp_bufDecl(NewTD);
3376      else if (II->isStr("__builtin_va_list"))
3377        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3378    }
3379
3380  return NewTD;
3381}
3382
3383/// \brief Determines whether the given declaration is an out-of-scope
3384/// previous declaration.
3385///
3386/// This routine should be invoked when name lookup has found a
3387/// previous declaration (PrevDecl) that is not in the scope where a
3388/// new declaration by the same name is being introduced. If the new
3389/// declaration occurs in a local scope, previous declarations with
3390/// linkage may still be considered previous declarations (C99
3391/// 6.2.2p4-5, C++ [basic.link]p6).
3392///
3393/// \param PrevDecl the previous declaration found by name
3394/// lookup
3395///
3396/// \param DC the context in which the new declaration is being
3397/// declared.
3398///
3399/// \returns true if PrevDecl is an out-of-scope previous declaration
3400/// for a new delcaration with the same name.
3401static bool
3402isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3403                                ASTContext &Context) {
3404  if (!PrevDecl)
3405    return false;
3406
3407  if (!PrevDecl->hasLinkage())
3408    return false;
3409
3410  if (Context.getLangOptions().CPlusPlus) {
3411    // C++ [basic.link]p6:
3412    //   If there is a visible declaration of an entity with linkage
3413    //   having the same name and type, ignoring entities declared
3414    //   outside the innermost enclosing namespace scope, the block
3415    //   scope declaration declares that same entity and receives the
3416    //   linkage of the previous declaration.
3417    DeclContext *OuterContext = DC->getRedeclContext();
3418    if (!OuterContext->isFunctionOrMethod())
3419      // This rule only applies to block-scope declarations.
3420      return false;
3421
3422    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3423    if (PrevOuterContext->isRecord())
3424      // We found a member function: ignore it.
3425      return false;
3426
3427    // Find the innermost enclosing namespace for the new and
3428    // previous declarations.
3429    OuterContext = OuterContext->getEnclosingNamespaceContext();
3430    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3431
3432    // The previous declaration is in a different namespace, so it
3433    // isn't the same function.
3434    if (!OuterContext->Equals(PrevOuterContext))
3435      return false;
3436  }
3437
3438  return true;
3439}
3440
3441static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3442  CXXScopeSpec &SS = D.getCXXScopeSpec();
3443  if (!SS.isSet()) return;
3444  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3445}
3446
3447NamedDecl*
3448Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3449                              QualType R, TypeSourceInfo *TInfo,
3450                              LookupResult &Previous,
3451                              MultiTemplateParamsArg TemplateParamLists,
3452                              bool &Redeclaration) {
3453  DeclarationName Name = GetNameForDeclarator(D).getName();
3454
3455  // Check that there are no default arguments (C++ only).
3456  if (getLangOptions().CPlusPlus)
3457    CheckExtraCXXDefaultArguments(D);
3458
3459  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3460  assert(SCSpec != DeclSpec::SCS_typedef &&
3461         "Parser allowed 'typedef' as storage class VarDecl.");
3462  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3463  if (SCSpec == DeclSpec::SCS_mutable) {
3464    // mutable can only appear on non-static class members, so it's always
3465    // an error here
3466    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3467    D.setInvalidType();
3468    SC = SC_None;
3469  }
3470  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3471  VarDecl::StorageClass SCAsWritten
3472    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3473
3474  IdentifierInfo *II = Name.getAsIdentifierInfo();
3475  if (!II) {
3476    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3477      << Name.getAsString();
3478    return 0;
3479  }
3480
3481  DiagnoseFunctionSpecifiers(D);
3482
3483  if (!DC->isRecord() && S->getFnParent() == 0) {
3484    // C99 6.9p2: The storage-class specifiers auto and register shall not
3485    // appear in the declaration specifiers in an external declaration.
3486    if (SC == SC_Auto || SC == SC_Register) {
3487
3488      // If this is a register variable with an asm label specified, then this
3489      // is a GNU extension.
3490      if (SC == SC_Register && D.getAsmLabel())
3491        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3492      else
3493        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3494      D.setInvalidType();
3495    }
3496  }
3497
3498  bool isExplicitSpecialization = false;
3499  VarDecl *NewVD;
3500  if (!getLangOptions().CPlusPlus) {
3501    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3502                            D.getIdentifierLoc(), II,
3503                            R, TInfo, SC, SCAsWritten);
3504
3505    if (D.isInvalidType())
3506      NewVD->setInvalidDecl();
3507  } else {
3508    if (DC->isRecord() && !CurContext->isRecord()) {
3509      // This is an out-of-line definition of a static data member.
3510      if (SC == SC_Static) {
3511        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3512             diag::err_static_out_of_line)
3513          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3514      } else if (SC == SC_None)
3515        SC = SC_Static;
3516    }
3517    if (SC == SC_Static) {
3518      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3519        if (RD->isLocalClass())
3520          Diag(D.getIdentifierLoc(),
3521               diag::err_static_data_member_not_allowed_in_local_class)
3522            << Name << RD->getDeclName();
3523
3524        // C++ [class.union]p1: If a union contains a static data member,
3525        // the program is ill-formed.
3526        //
3527        // We also disallow static data members in anonymous structs.
3528        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3529          Diag(D.getIdentifierLoc(),
3530               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3531            << Name << RD->isUnion();
3532      }
3533    }
3534
3535    // Match up the template parameter lists with the scope specifier, then
3536    // determine whether we have a template or a template specialization.
3537    isExplicitSpecialization = false;
3538    bool Invalid = false;
3539    if (TemplateParameterList *TemplateParams
3540        = MatchTemplateParametersToScopeSpecifier(
3541                                                  D.getDeclSpec().getSourceRange().getBegin(),
3542                                                  D.getCXXScopeSpec(),
3543                                                  TemplateParamLists.get(),
3544                                                  TemplateParamLists.size(),
3545                                                  /*never a friend*/ false,
3546                                                  isExplicitSpecialization,
3547                                                  Invalid)) {
3548      if (TemplateParams->size() > 0) {
3549        // There is no such thing as a variable template.
3550        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3551          << II
3552          << SourceRange(TemplateParams->getTemplateLoc(),
3553                         TemplateParams->getRAngleLoc());
3554        return 0;
3555      } else {
3556        // There is an extraneous 'template<>' for this variable. Complain
3557        // about it, but allow the declaration of the variable.
3558        Diag(TemplateParams->getTemplateLoc(),
3559             diag::err_template_variable_noparams)
3560          << II
3561          << SourceRange(TemplateParams->getTemplateLoc(),
3562                         TemplateParams->getRAngleLoc());
3563        isExplicitSpecialization = true;
3564      }
3565    }
3566
3567    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3568                            D.getIdentifierLoc(), II,
3569                            R, TInfo, SC, SCAsWritten);
3570
3571    // If this decl has an auto type in need of deduction, make a note of the
3572    // Decl so we can diagnose uses of it in its own initializer.
3573    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3574        R->getContainedAutoType())
3575      ParsingInitForAutoVars.insert(NewVD);
3576
3577    if (D.isInvalidType() || Invalid)
3578      NewVD->setInvalidDecl();
3579
3580    SetNestedNameSpecifier(NewVD, D);
3581
3582    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3583      NewVD->setTemplateParameterListsInfo(Context,
3584                                           TemplateParamLists.size(),
3585                                           TemplateParamLists.release());
3586    }
3587  }
3588
3589  if (D.getDeclSpec().isThreadSpecified()) {
3590    if (NewVD->hasLocalStorage())
3591      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3592    else if (!Context.Target.isTLSSupported())
3593      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3594    else
3595      NewVD->setThreadSpecified(true);
3596  }
3597
3598  // Set the lexical context. If the declarator has a C++ scope specifier, the
3599  // lexical context will be different from the semantic context.
3600  NewVD->setLexicalDeclContext(CurContext);
3601
3602  // Handle attributes prior to checking for duplicates in MergeVarDecl
3603  ProcessDeclAttributes(S, NewVD, D);
3604
3605  // Handle GNU asm-label extension (encoded as an attribute).
3606  if (Expr *E = (Expr*)D.getAsmLabel()) {
3607    // The parser guarantees this is a string.
3608    StringLiteral *SE = cast<StringLiteral>(E);
3609    llvm::StringRef Label = SE->getString();
3610    if (S->getFnParent() != 0) {
3611      switch (SC) {
3612      case SC_None:
3613      case SC_Auto:
3614        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3615        break;
3616      case SC_Register:
3617        if (!Context.Target.isValidGCCRegisterName(Label))
3618          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3619        break;
3620      case SC_Static:
3621      case SC_Extern:
3622      case SC_PrivateExtern:
3623        break;
3624      }
3625    }
3626
3627    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3628                                                Context, Label));
3629  }
3630
3631  // Diagnose shadowed variables before filtering for scope.
3632  if (!D.getCXXScopeSpec().isSet())
3633    CheckShadow(S, NewVD, Previous);
3634
3635  // Don't consider existing declarations that are in a different
3636  // scope and are out-of-semantic-context declarations (if the new
3637  // declaration has linkage).
3638  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3639                       isExplicitSpecialization);
3640
3641  if (!getLangOptions().CPlusPlus)
3642    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3643  else {
3644    // Merge the decl with the existing one if appropriate.
3645    if (!Previous.empty()) {
3646      if (Previous.isSingleResult() &&
3647          isa<FieldDecl>(Previous.getFoundDecl()) &&
3648          D.getCXXScopeSpec().isSet()) {
3649        // The user tried to define a non-static data member
3650        // out-of-line (C++ [dcl.meaning]p1).
3651        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3652          << D.getCXXScopeSpec().getRange();
3653        Previous.clear();
3654        NewVD->setInvalidDecl();
3655      }
3656    } else if (D.getCXXScopeSpec().isSet()) {
3657      // No previous declaration in the qualifying scope.
3658      Diag(D.getIdentifierLoc(), diag::err_no_member)
3659        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3660        << D.getCXXScopeSpec().getRange();
3661      NewVD->setInvalidDecl();
3662    }
3663
3664    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3665
3666    // This is an explicit specialization of a static data member. Check it.
3667    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3668        CheckMemberSpecialization(NewVD, Previous))
3669      NewVD->setInvalidDecl();
3670  }
3671
3672  // attributes declared post-definition are currently ignored
3673  // FIXME: This should be handled in attribute merging, not
3674  // here.
3675  if (Previous.isSingleResult()) {
3676    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3677    if (Def && (Def = Def->getDefinition()) &&
3678        Def != NewVD && D.hasAttributes()) {
3679      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3680      Diag(Def->getLocation(), diag::note_previous_definition);
3681    }
3682  }
3683
3684  // If this is a locally-scoped extern C variable, update the map of
3685  // such variables.
3686  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3687      !NewVD->isInvalidDecl())
3688    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3689
3690  // If there's a #pragma GCC visibility in scope, and this isn't a class
3691  // member, set the visibility of this variable.
3692  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3693    AddPushedVisibilityAttribute(NewVD);
3694
3695  MarkUnusedFileScopedDecl(NewVD);
3696
3697  return NewVD;
3698}
3699
3700/// \brief Diagnose variable or built-in function shadowing.  Implements
3701/// -Wshadow.
3702///
3703/// This method is called whenever a VarDecl is added to a "useful"
3704/// scope.
3705///
3706/// \param S the scope in which the shadowing name is being declared
3707/// \param R the lookup of the name
3708///
3709void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3710  // Return if warning is ignored.
3711  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3712        Diagnostic::Ignored)
3713    return;
3714
3715  // Don't diagnose declarations at file scope.
3716  if (D->hasGlobalStorage())
3717    return;
3718
3719  DeclContext *NewDC = D->getDeclContext();
3720
3721  // Only diagnose if we're shadowing an unambiguous field or variable.
3722  if (R.getResultKind() != LookupResult::Found)
3723    return;
3724
3725  NamedDecl* ShadowedDecl = R.getFoundDecl();
3726  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3727    return;
3728
3729  // Fields are not shadowed by variables in C++ static methods.
3730  if (isa<FieldDecl>(ShadowedDecl))
3731    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3732      if (MD->isStatic())
3733        return;
3734
3735  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3736    if (shadowedVar->isExternC()) {
3737      // For shadowing external vars, make sure that we point to the global
3738      // declaration, not a locally scoped extern declaration.
3739      for (VarDecl::redecl_iterator
3740             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3741           I != E; ++I)
3742        if (I->isFileVarDecl()) {
3743          ShadowedDecl = *I;
3744          break;
3745        }
3746    }
3747
3748  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3749
3750  // Only warn about certain kinds of shadowing for class members.
3751  if (NewDC && NewDC->isRecord()) {
3752    // In particular, don't warn about shadowing non-class members.
3753    if (!OldDC->isRecord())
3754      return;
3755
3756    // TODO: should we warn about static data members shadowing
3757    // static data members from base classes?
3758
3759    // TODO: don't diagnose for inaccessible shadowed members.
3760    // This is hard to do perfectly because we might friend the
3761    // shadowing context, but that's just a false negative.
3762  }
3763
3764  // Determine what kind of declaration we're shadowing.
3765  unsigned Kind;
3766  if (isa<RecordDecl>(OldDC)) {
3767    if (isa<FieldDecl>(ShadowedDecl))
3768      Kind = 3; // field
3769    else
3770      Kind = 2; // static data member
3771  } else if (OldDC->isFileContext())
3772    Kind = 1; // global
3773  else
3774    Kind = 0; // local
3775
3776  DeclarationName Name = R.getLookupName();
3777
3778  // Emit warning and note.
3779  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3780  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3781}
3782
3783/// \brief Check -Wshadow without the advantage of a previous lookup.
3784void Sema::CheckShadow(Scope *S, VarDecl *D) {
3785  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3786        Diagnostic::Ignored)
3787    return;
3788
3789  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3790                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3791  LookupName(R, S);
3792  CheckShadow(S, D, R);
3793}
3794
3795/// \brief Perform semantic checking on a newly-created variable
3796/// declaration.
3797///
3798/// This routine performs all of the type-checking required for a
3799/// variable declaration once it has been built. It is used both to
3800/// check variables after they have been parsed and their declarators
3801/// have been translated into a declaration, and to check variables
3802/// that have been instantiated from a template.
3803///
3804/// Sets NewVD->isInvalidDecl() if an error was encountered.
3805void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3806                                    LookupResult &Previous,
3807                                    bool &Redeclaration) {
3808  // If the decl is already known invalid, don't check it.
3809  if (NewVD->isInvalidDecl())
3810    return;
3811
3812  QualType T = NewVD->getType();
3813
3814  if (T->isObjCObjectType()) {
3815    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3816    return NewVD->setInvalidDecl();
3817  }
3818
3819  // Emit an error if an address space was applied to decl with local storage.
3820  // This includes arrays of objects with address space qualifiers, but not
3821  // automatic variables that point to other address spaces.
3822  // ISO/IEC TR 18037 S5.1.2
3823  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3824    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3825    return NewVD->setInvalidDecl();
3826  }
3827
3828  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3829      && !NewVD->hasAttr<BlocksAttr>())
3830    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3831
3832  bool isVM = T->isVariablyModifiedType();
3833  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3834      NewVD->hasAttr<BlocksAttr>())
3835    getCurFunction()->setHasBranchProtectedScope();
3836
3837  if ((isVM && NewVD->hasLinkage()) ||
3838      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3839    bool SizeIsNegative;
3840    llvm::APSInt Oversized;
3841    QualType FixedTy =
3842        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3843                                            Oversized);
3844
3845    if (FixedTy.isNull() && T->isVariableArrayType()) {
3846      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3847      // FIXME: This won't give the correct result for
3848      // int a[10][n];
3849      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3850
3851      if (NewVD->isFileVarDecl())
3852        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3853        << SizeRange;
3854      else if (NewVD->getStorageClass() == SC_Static)
3855        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3856        << SizeRange;
3857      else
3858        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3859        << SizeRange;
3860      return NewVD->setInvalidDecl();
3861    }
3862
3863    if (FixedTy.isNull()) {
3864      if (NewVD->isFileVarDecl())
3865        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3866      else
3867        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3868      return NewVD->setInvalidDecl();
3869    }
3870
3871    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3872    NewVD->setType(FixedTy);
3873  }
3874
3875  if (Previous.empty() && NewVD->isExternC()) {
3876    // Since we did not find anything by this name and we're declaring
3877    // an extern "C" variable, look for a non-visible extern "C"
3878    // declaration with the same name.
3879    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3880      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3881    if (Pos != LocallyScopedExternalDecls.end())
3882      Previous.addDecl(Pos->second);
3883  }
3884
3885  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3886    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3887      << T;
3888    return NewVD->setInvalidDecl();
3889  }
3890
3891  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3892    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3893    return NewVD->setInvalidDecl();
3894  }
3895
3896  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3897    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3898    return NewVD->setInvalidDecl();
3899  }
3900
3901  // Function pointers and references cannot have qualified function type, only
3902  // function pointer-to-members can do that.
3903  QualType Pointee;
3904  unsigned PtrOrRef = 0;
3905  if (const PointerType *Ptr = T->getAs<PointerType>())
3906    Pointee = Ptr->getPointeeType();
3907  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3908    Pointee = Ref->getPointeeType();
3909    PtrOrRef = 1;
3910  }
3911  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3912      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3913    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3914        << PtrOrRef;
3915    return NewVD->setInvalidDecl();
3916  }
3917
3918  if (!Previous.empty()) {
3919    Redeclaration = true;
3920    MergeVarDecl(NewVD, Previous);
3921  }
3922}
3923
3924/// \brief Data used with FindOverriddenMethod
3925struct FindOverriddenMethodData {
3926  Sema *S;
3927  CXXMethodDecl *Method;
3928};
3929
3930/// \brief Member lookup function that determines whether a given C++
3931/// method overrides a method in a base class, to be used with
3932/// CXXRecordDecl::lookupInBases().
3933static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3934                                 CXXBasePath &Path,
3935                                 void *UserData) {
3936  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3937
3938  FindOverriddenMethodData *Data
3939    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3940
3941  DeclarationName Name = Data->Method->getDeclName();
3942
3943  // FIXME: Do we care about other names here too?
3944  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3945    // We really want to find the base class destructor here.
3946    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3947    CanQualType CT = Data->S->Context.getCanonicalType(T);
3948
3949    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3950  }
3951
3952  for (Path.Decls = BaseRecord->lookup(Name);
3953       Path.Decls.first != Path.Decls.second;
3954       ++Path.Decls.first) {
3955    NamedDecl *D = *Path.Decls.first;
3956    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3957      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3958        return true;
3959    }
3960  }
3961
3962  return false;
3963}
3964
3965/// AddOverriddenMethods - See if a method overrides any in the base classes,
3966/// and if so, check that it's a valid override and remember it.
3967bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3968  // Look for virtual methods in base classes that this method might override.
3969  CXXBasePaths Paths;
3970  FindOverriddenMethodData Data;
3971  Data.Method = MD;
3972  Data.S = this;
3973  bool AddedAny = false;
3974  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3975    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3976         E = Paths.found_decls_end(); I != E; ++I) {
3977      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3978        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3979            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3980            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3981          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3982          AddedAny = true;
3983        }
3984      }
3985    }
3986  }
3987
3988  return AddedAny;
3989}
3990
3991static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3992  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3993                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3994  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3995  assert(!Prev.isAmbiguous() &&
3996         "Cannot have an ambiguity in previous-declaration lookup");
3997  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3998       Func != FuncEnd; ++Func) {
3999    if (isa<FunctionDecl>(*Func) &&
4000        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
4001      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
4002  }
4003}
4004
4005NamedDecl*
4006Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4007                              QualType R, TypeSourceInfo *TInfo,
4008                              LookupResult &Previous,
4009                              MultiTemplateParamsArg TemplateParamLists,
4010                              bool IsFunctionDefinition, bool &Redeclaration,
4011                              SourceLocation DefLoc) {
4012  assert(R.getTypePtr()->isFunctionType());
4013
4014  // TODO: consider using NameInfo for diagnostic.
4015  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4016  DeclarationName Name = NameInfo.getName();
4017  FunctionDecl::StorageClass SC = SC_None;
4018  switch (D.getDeclSpec().getStorageClassSpec()) {
4019  default: assert(0 && "Unknown storage class!");
4020  case DeclSpec::SCS_auto:
4021  case DeclSpec::SCS_register:
4022  case DeclSpec::SCS_mutable:
4023    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4024         diag::err_typecheck_sclass_func);
4025    D.setInvalidType();
4026    break;
4027  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4028  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4029  case DeclSpec::SCS_static: {
4030    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4031      // C99 6.7.1p5:
4032      //   The declaration of an identifier for a function that has
4033      //   block scope shall have no explicit storage-class specifier
4034      //   other than extern
4035      // See also (C++ [dcl.stc]p4).
4036      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4037           diag::err_static_block_func);
4038      SC = SC_None;
4039    } else
4040      SC = SC_Static;
4041    break;
4042  }
4043  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4044  }
4045
4046  if (D.getDeclSpec().isThreadSpecified())
4047    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4048
4049  // Do not allow returning a objc interface by-value.
4050  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4051    Diag(D.getIdentifierLoc(),
4052         diag::err_object_cannot_be_passed_returned_by_value) << 0
4053    << R->getAs<FunctionType>()->getResultType();
4054    D.setInvalidType();
4055  }
4056
4057  FunctionDecl *NewFD;
4058  bool isInline = D.getDeclSpec().isInlineSpecified();
4059  bool isFriend = false;
4060  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4061  FunctionDecl::StorageClass SCAsWritten
4062    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4063  FunctionTemplateDecl *FunctionTemplate = 0;
4064  bool isExplicitSpecialization = false;
4065  bool isFunctionTemplateSpecialization = false;
4066
4067  if (!getLangOptions().CPlusPlus) {
4068    assert(!DefLoc.isValid() && "Defaulted functions are a C++ feature");
4069
4070    // Determine whether the function was written with a
4071    // prototype. This true when:
4072    //   - there is a prototype in the declarator, or
4073    //   - the type R of the function is some kind of typedef or other reference
4074    //     to a type name (which eventually refers to a function type).
4075    bool HasPrototype =
4076    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4077    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4078
4079    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4080                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4081                                 HasPrototype);
4082    if (D.isInvalidType())
4083      NewFD->setInvalidDecl();
4084
4085    // Set the lexical context.
4086    NewFD->setLexicalDeclContext(CurContext);
4087    // Filter out previous declarations that don't match the scope.
4088    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4089                         /*ExplicitInstantiationOrSpecialization=*/false);
4090  } else {
4091    isFriend = D.getDeclSpec().isFriendSpecified();
4092    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4093    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4094    bool isVirtualOkay = false;
4095
4096    // Check that the return type is not an abstract class type.
4097    // For record types, this is done by the AbstractClassUsageDiagnoser once
4098    // the class has been completely parsed.
4099    if (!DC->isRecord() &&
4100      RequireNonAbstractType(D.getIdentifierLoc(),
4101                             R->getAs<FunctionType>()->getResultType(),
4102                             diag::err_abstract_type_in_decl,
4103                             AbstractReturnType))
4104      D.setInvalidType();
4105
4106    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4107      // This is a C++ constructor declaration.
4108      assert(DC->isRecord() &&
4109             "Constructors can only be declared in a member context");
4110
4111      R = CheckConstructorDeclarator(D, R, SC);
4112
4113      // Create the new declaration
4114      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4115                                         Context,
4116                                         cast<CXXRecordDecl>(DC),
4117                                         D.getSourceRange().getBegin(),
4118                                         NameInfo, R, TInfo,
4119                                         isExplicit, isInline,
4120                                         /*isImplicitlyDeclared=*/false);
4121
4122      NewFD = NewCD;
4123
4124      if (DefLoc.isValid()) {
4125        if (NewCD->isDefaultConstructor() ||
4126            NewCD->isCopyOrMoveConstructor()) {
4127          NewFD->setDefaulted();
4128          NewFD->setExplicitlyDefaulted();
4129        } else {
4130          Diag(DefLoc, diag::err_default_special_members);
4131        }
4132      }
4133    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4134      // This is a C++ destructor declaration.
4135      if (DC->isRecord()) {
4136        R = CheckDestructorDeclarator(D, R, SC);
4137
4138        NewFD = CXXDestructorDecl::Create(Context,
4139                                          cast<CXXRecordDecl>(DC),
4140                                          D.getSourceRange().getBegin(),
4141                                          NameInfo, R, TInfo,
4142                                          isInline,
4143                                          /*isImplicitlyDeclared=*/false);
4144        isVirtualOkay = true;
4145
4146        if (DefLoc.isValid()) {
4147          NewFD->setDefaulted();
4148          NewFD->setExplicitlyDefaulted();
4149        }
4150      } else {
4151        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4152
4153        // Create a FunctionDecl to satisfy the function definition parsing
4154        // code path.
4155        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4156                                     D.getIdentifierLoc(), Name, R, TInfo,
4157                                     SC, SCAsWritten, isInline,
4158                                     /*hasPrototype=*/true);
4159        D.setInvalidType();
4160      }
4161    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4162      if (!DC->isRecord()) {
4163        Diag(D.getIdentifierLoc(),
4164             diag::err_conv_function_not_member);
4165        return 0;
4166      }
4167
4168      if (DefLoc.isValid())
4169        Diag(DefLoc, diag::err_default_special_members);
4170
4171      CheckConversionDeclarator(D, R, SC);
4172      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4173                                        D.getSourceRange().getBegin(),
4174                                        NameInfo, R, TInfo,
4175                                        isInline, isExplicit,
4176                                        SourceLocation());
4177
4178      isVirtualOkay = true;
4179    } else if (DC->isRecord()) {
4180      // If the of the function is the same as the name of the record, then this
4181      // must be an invalid constructor that has a return type.
4182      // (The parser checks for a return type and makes the declarator a
4183      // constructor if it has no return type).
4184      // must have an invalid constructor that has a return type
4185      if (Name.getAsIdentifierInfo() &&
4186          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4187        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4188          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4189          << SourceRange(D.getIdentifierLoc());
4190        return 0;
4191      }
4192
4193      bool isStatic = SC == SC_Static;
4194
4195      // [class.free]p1:
4196      // Any allocation function for a class T is a static member
4197      // (even if not explicitly declared static).
4198      if (Name.getCXXOverloadedOperator() == OO_New ||
4199          Name.getCXXOverloadedOperator() == OO_Array_New)
4200        isStatic = true;
4201
4202      // [class.free]p6 Any deallocation function for a class X is a static member
4203      // (even if not explicitly declared static).
4204      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4205          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4206        isStatic = true;
4207
4208      // This is a C++ method declaration.
4209      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4210                                               Context, cast<CXXRecordDecl>(DC),
4211                                               D.getSourceRange().getBegin(),
4212                                               NameInfo, R, TInfo,
4213                                               isStatic, SCAsWritten, isInline,
4214                                               SourceLocation());
4215      NewFD = NewMD;
4216
4217      isVirtualOkay = !isStatic;
4218
4219      if (DefLoc.isValid()) {
4220        if (NewMD->isCopyAssignmentOperator() /* ||
4221            NewMD->isMoveAssignmentOperator() */) {
4222          NewFD->setDefaulted();
4223          NewFD->setExplicitlyDefaulted();
4224        } else {
4225          Diag(DefLoc, diag::err_default_special_members);
4226        }
4227      }
4228    } else {
4229      if (DefLoc.isValid())
4230        Diag(DefLoc, diag::err_default_special_members);
4231
4232      // Determine whether the function was written with a
4233      // prototype. This true when:
4234      //   - we're in C++ (where every function has a prototype),
4235      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4236                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4237                                   true/*HasPrototype*/);
4238    }
4239
4240    if (isFriend && !isInline && IsFunctionDefinition) {
4241      // C++ [class.friend]p5
4242      //   A function can be defined in a friend declaration of a
4243      //   class . . . . Such a function is implicitly inline.
4244      NewFD->setImplicitlyInline();
4245    }
4246
4247    SetNestedNameSpecifier(NewFD, D);
4248    isExplicitSpecialization = false;
4249    isFunctionTemplateSpecialization = false;
4250    if (D.isInvalidType())
4251      NewFD->setInvalidDecl();
4252
4253    // Set the lexical context. If the declarator has a C++
4254    // scope specifier, or is the object of a friend declaration, the
4255    // lexical context will be different from the semantic context.
4256    NewFD->setLexicalDeclContext(CurContext);
4257
4258    // Match up the template parameter lists with the scope specifier, then
4259    // determine whether we have a template or a template specialization.
4260    bool Invalid = false;
4261    if (TemplateParameterList *TemplateParams
4262          = MatchTemplateParametersToScopeSpecifier(
4263                                  D.getDeclSpec().getSourceRange().getBegin(),
4264                                  D.getCXXScopeSpec(),
4265                                  TemplateParamLists.get(),
4266                                  TemplateParamLists.size(),
4267                                  isFriend,
4268                                  isExplicitSpecialization,
4269                                  Invalid)) {
4270      if (TemplateParams->size() > 0) {
4271        // This is a function template
4272
4273        // Check that we can declare a template here.
4274        if (CheckTemplateDeclScope(S, TemplateParams))
4275          return 0;
4276
4277        // A destructor cannot be a template.
4278        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4279          Diag(NewFD->getLocation(), diag::err_destructor_template);
4280          return 0;
4281        }
4282
4283        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4284                                                        NewFD->getLocation(),
4285                                                        Name, TemplateParams,
4286                                                        NewFD);
4287        FunctionTemplate->setLexicalDeclContext(CurContext);
4288        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4289
4290        // For source fidelity, store the other template param lists.
4291        if (TemplateParamLists.size() > 1) {
4292          NewFD->setTemplateParameterListsInfo(Context,
4293                                               TemplateParamLists.size() - 1,
4294                                               TemplateParamLists.release());
4295        }
4296      } else {
4297        // This is a function template specialization.
4298        isFunctionTemplateSpecialization = true;
4299        // For source fidelity, store all the template param lists.
4300        NewFD->setTemplateParameterListsInfo(Context,
4301                                             TemplateParamLists.size(),
4302                                             TemplateParamLists.release());
4303
4304        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4305        if (isFriend) {
4306          // We want to remove the "template<>", found here.
4307          SourceRange RemoveRange = TemplateParams->getSourceRange();
4308
4309          // If we remove the template<> and the name is not a
4310          // template-id, we're actually silently creating a problem:
4311          // the friend declaration will refer to an untemplated decl,
4312          // and clearly the user wants a template specialization.  So
4313          // we need to insert '<>' after the name.
4314          SourceLocation InsertLoc;
4315          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4316            InsertLoc = D.getName().getSourceRange().getEnd();
4317            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4318          }
4319
4320          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4321            << Name << RemoveRange
4322            << FixItHint::CreateRemoval(RemoveRange)
4323            << FixItHint::CreateInsertion(InsertLoc, "<>");
4324        }
4325      }
4326    }
4327    else {
4328      // All template param lists were matched against the scope specifier:
4329      // this is NOT (an explicit specialization of) a template.
4330      if (TemplateParamLists.size() > 0)
4331        // For source fidelity, store all the template param lists.
4332        NewFD->setTemplateParameterListsInfo(Context,
4333                                             TemplateParamLists.size(),
4334                                             TemplateParamLists.release());
4335    }
4336
4337    if (Invalid) {
4338      NewFD->setInvalidDecl();
4339      if (FunctionTemplate)
4340        FunctionTemplate->setInvalidDecl();
4341    }
4342
4343    // C++ [dcl.fct.spec]p5:
4344    //   The virtual specifier shall only be used in declarations of
4345    //   nonstatic class member functions that appear within a
4346    //   member-specification of a class declaration; see 10.3.
4347    //
4348    if (isVirtual && !NewFD->isInvalidDecl()) {
4349      if (!isVirtualOkay) {
4350        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4351             diag::err_virtual_non_function);
4352      } else if (!CurContext->isRecord()) {
4353        // 'virtual' was specified outside of the class.
4354        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4355             diag::err_virtual_out_of_class)
4356          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4357      } else if (NewFD->getDescribedFunctionTemplate()) {
4358        // C++ [temp.mem]p3:
4359        //  A member function template shall not be virtual.
4360        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4361             diag::err_virtual_member_function_template)
4362          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4363      } else {
4364        // Okay: Add virtual to the method.
4365        NewFD->setVirtualAsWritten(true);
4366      }
4367    }
4368
4369    // C++ [dcl.fct.spec]p3:
4370    //  The inline specifier shall not appear on a block scope function declaration.
4371    if (isInline && !NewFD->isInvalidDecl()) {
4372      if (CurContext->isFunctionOrMethod()) {
4373        // 'inline' is not allowed on block scope function declaration.
4374        Diag(D.getDeclSpec().getInlineSpecLoc(),
4375             diag::err_inline_declaration_block_scope) << Name
4376          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4377      }
4378    }
4379
4380    // C++ [dcl.fct.spec]p6:
4381    //  The explicit specifier shall be used only in the declaration of a
4382    //  constructor or conversion function within its class definition; see 12.3.1
4383    //  and 12.3.2.
4384    if (isExplicit && !NewFD->isInvalidDecl()) {
4385      if (!CurContext->isRecord()) {
4386        // 'explicit' was specified outside of the class.
4387        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4388             diag::err_explicit_out_of_class)
4389          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4390      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4391                 !isa<CXXConversionDecl>(NewFD)) {
4392        // 'explicit' was specified on a function that wasn't a constructor
4393        // or conversion function.
4394        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4395             diag::err_explicit_non_ctor_or_conv_function)
4396          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4397      }
4398    }
4399
4400    // Filter out previous declarations that don't match the scope.
4401    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4402                         isExplicitSpecialization ||
4403                         isFunctionTemplateSpecialization);
4404
4405    if (isFriend) {
4406      // For now, claim that the objects have no previous declaration.
4407      if (FunctionTemplate) {
4408        FunctionTemplate->setObjectOfFriendDecl(false);
4409        FunctionTemplate->setAccess(AS_public);
4410      }
4411      NewFD->setObjectOfFriendDecl(false);
4412      NewFD->setAccess(AS_public);
4413    }
4414
4415    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4416      // A method is implicitly inline if it's defined in its class
4417      // definition.
4418      NewFD->setImplicitlyInline();
4419    }
4420
4421    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4422        !CurContext->isRecord()) {
4423      // C++ [class.static]p1:
4424      //   A data or function member of a class may be declared static
4425      //   in a class definition, in which case it is a static member of
4426      //   the class.
4427
4428      // Complain about the 'static' specifier if it's on an out-of-line
4429      // member function definition.
4430      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4431           diag::err_static_out_of_line)
4432        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4433    }
4434  }
4435
4436  // Handle GNU asm-label extension (encoded as an attribute).
4437  if (Expr *E = (Expr*) D.getAsmLabel()) {
4438    // The parser guarantees this is a string.
4439    StringLiteral *SE = cast<StringLiteral>(E);
4440    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4441                                                SE->getString()));
4442  }
4443
4444  // Copy the parameter declarations from the declarator D to the function
4445  // declaration NewFD, if they are available.  First scavenge them into Params.
4446  llvm::SmallVector<ParmVarDecl*, 16> Params;
4447  if (D.isFunctionDeclarator()) {
4448    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4449
4450    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4451    // function that takes no arguments, not a function that takes a
4452    // single void argument.
4453    // We let through "const void" here because Sema::GetTypeForDeclarator
4454    // already checks for that case.
4455    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4456        FTI.ArgInfo[0].Param &&
4457        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4458      // Empty arg list, don't push any params.
4459      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4460
4461      // In C++, the empty parameter-type-list must be spelled "void"; a
4462      // typedef of void is not permitted.
4463      if (getLangOptions().CPlusPlus &&
4464          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4465        bool IsTypeAlias = false;
4466        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4467          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4468        else if (const TemplateSpecializationType *TST =
4469                   Param->getType()->getAs<TemplateSpecializationType>())
4470          IsTypeAlias = TST->isTypeAlias();
4471        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4472          << IsTypeAlias;
4473      }
4474    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4475      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4476        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4477        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4478        Param->setDeclContext(NewFD);
4479        Params.push_back(Param);
4480
4481        if (Param->isInvalidDecl())
4482          NewFD->setInvalidDecl();
4483      }
4484    }
4485
4486  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4487    // When we're declaring a function with a typedef, typeof, etc as in the
4488    // following example, we'll need to synthesize (unnamed)
4489    // parameters for use in the declaration.
4490    //
4491    // @code
4492    // typedef void fn(int);
4493    // fn f;
4494    // @endcode
4495
4496    // Synthesize a parameter for each argument type.
4497    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4498         AE = FT->arg_type_end(); AI != AE; ++AI) {
4499      ParmVarDecl *Param =
4500        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4501      Param->setScopeInfo(0, Params.size());
4502      Params.push_back(Param);
4503    }
4504  } else {
4505    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4506           "Should not need args for typedef of non-prototype fn");
4507  }
4508  // Finally, we know we have the right number of parameters, install them.
4509  NewFD->setParams(Params.data(), Params.size());
4510
4511  // Process the non-inheritable attributes on this declaration.
4512  ProcessDeclAttributes(S, NewFD, D,
4513                        /*NonInheritable=*/true, /*Inheritable=*/false);
4514
4515  if (!getLangOptions().CPlusPlus) {
4516    // Perform semantic checking on the function declaration.
4517    bool isExplctSpecialization=false;
4518    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4519                             Redeclaration);
4520    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4521            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4522           "previous declaration set still overloaded");
4523  } else {
4524    // If the declarator is a template-id, translate the parser's template
4525    // argument list into our AST format.
4526    bool HasExplicitTemplateArgs = false;
4527    TemplateArgumentListInfo TemplateArgs;
4528    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4529      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4530      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4531      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4532      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4533                                         TemplateId->getTemplateArgs(),
4534                                         TemplateId->NumArgs);
4535      translateTemplateArguments(TemplateArgsPtr,
4536                                 TemplateArgs);
4537      TemplateArgsPtr.release();
4538
4539      HasExplicitTemplateArgs = true;
4540
4541      if (FunctionTemplate) {
4542        // Function template with explicit template arguments.
4543        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4544          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4545
4546        HasExplicitTemplateArgs = false;
4547      } else if (!isFunctionTemplateSpecialization &&
4548                 !D.getDeclSpec().isFriendSpecified()) {
4549        // We have encountered something that the user meant to be a
4550        // specialization (because it has explicitly-specified template
4551        // arguments) but that was not introduced with a "template<>" (or had
4552        // too few of them).
4553        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4554          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4555          << FixItHint::CreateInsertion(
4556                                        D.getDeclSpec().getSourceRange().getBegin(),
4557                                                  "template<> ");
4558        isFunctionTemplateSpecialization = true;
4559      } else {
4560        // "friend void foo<>(int);" is an implicit specialization decl.
4561        isFunctionTemplateSpecialization = true;
4562      }
4563    } else if (isFriend && isFunctionTemplateSpecialization) {
4564      // This combination is only possible in a recovery case;  the user
4565      // wrote something like:
4566      //   template <> friend void foo(int);
4567      // which we're recovering from as if the user had written:
4568      //   friend void foo<>(int);
4569      // Go ahead and fake up a template id.
4570      HasExplicitTemplateArgs = true;
4571        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4572      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4573    }
4574
4575    // If it's a friend (and only if it's a friend), it's possible
4576    // that either the specialized function type or the specialized
4577    // template is dependent, and therefore matching will fail.  In
4578    // this case, don't check the specialization yet.
4579    if (isFunctionTemplateSpecialization && isFriend &&
4580        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4581      assert(HasExplicitTemplateArgs &&
4582             "friend function specialization without template args");
4583      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4584                                                       Previous))
4585        NewFD->setInvalidDecl();
4586    } else if (isFunctionTemplateSpecialization) {
4587      if (CurContext->isDependentContext() && CurContext->isRecord()
4588          && !isFriend) {
4589        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4590          << NewFD->getDeclName();
4591        NewFD->setInvalidDecl();
4592        return 0;
4593      } else if (CheckFunctionTemplateSpecialization(NewFD,
4594                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4595                                                     Previous))
4596        NewFD->setInvalidDecl();
4597    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4598      if (CheckMemberSpecialization(NewFD, Previous))
4599          NewFD->setInvalidDecl();
4600    }
4601
4602    // Perform semantic checking on the function declaration.
4603    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4604                             Redeclaration);
4605
4606    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4607            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4608           "previous declaration set still overloaded");
4609
4610    NamedDecl *PrincipalDecl = (FunctionTemplate
4611                                ? cast<NamedDecl>(FunctionTemplate)
4612                                : NewFD);
4613
4614    if (isFriend && Redeclaration) {
4615      AccessSpecifier Access = AS_public;
4616      if (!NewFD->isInvalidDecl())
4617        Access = NewFD->getPreviousDeclaration()->getAccess();
4618
4619      NewFD->setAccess(Access);
4620      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4621
4622      PrincipalDecl->setObjectOfFriendDecl(true);
4623    }
4624
4625    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4626        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4627      PrincipalDecl->setNonMemberOperator();
4628
4629    // If we have a function template, check the template parameter
4630    // list. This will check and merge default template arguments.
4631    if (FunctionTemplate) {
4632      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4633      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4634                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4635                            D.getDeclSpec().isFriendSpecified()
4636                              ? (IsFunctionDefinition
4637                                   ? TPC_FriendFunctionTemplateDefinition
4638                                   : TPC_FriendFunctionTemplate)
4639                              : (D.getCXXScopeSpec().isSet() &&
4640                                 DC && DC->isRecord() &&
4641                                 DC->isDependentContext())
4642                                  ? TPC_ClassTemplateMember
4643                                  : TPC_FunctionTemplate);
4644    }
4645
4646    if (NewFD->isInvalidDecl()) {
4647      // Ignore all the rest of this.
4648    } else if (!Redeclaration) {
4649      // Fake up an access specifier if it's supposed to be a class member.
4650      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4651        NewFD->setAccess(AS_public);
4652
4653      // Qualified decls generally require a previous declaration.
4654      if (D.getCXXScopeSpec().isSet()) {
4655        // ...with the major exception of templated-scope or
4656        // dependent-scope friend declarations.
4657
4658        // TODO: we currently also suppress this check in dependent
4659        // contexts because (1) the parameter depth will be off when
4660        // matching friend templates and (2) we might actually be
4661        // selecting a friend based on a dependent factor.  But there
4662        // are situations where these conditions don't apply and we
4663        // can actually do this check immediately.
4664        if (isFriend &&
4665            (TemplateParamLists.size() ||
4666             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4667             CurContext->isDependentContext())) {
4668              // ignore these
4669            } else {
4670              // The user tried to provide an out-of-line definition for a
4671              // function that is a member of a class or namespace, but there
4672              // was no such member function declared (C++ [class.mfct]p2,
4673              // C++ [namespace.memdef]p2). For example:
4674              //
4675              // class X {
4676              //   void f() const;
4677              // };
4678              //
4679              // void X::f() { } // ill-formed
4680              //
4681              // Complain about this problem, and attempt to suggest close
4682              // matches (e.g., those that differ only in cv-qualifiers and
4683              // whether the parameter types are references).
4684              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4685              << Name << DC << D.getCXXScopeSpec().getRange();
4686              NewFD->setInvalidDecl();
4687
4688              DiagnoseInvalidRedeclaration(*this, NewFD);
4689            }
4690
4691        // Unqualified local friend declarations are required to resolve
4692        // to something.
4693        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4694          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4695          NewFD->setInvalidDecl();
4696          DiagnoseInvalidRedeclaration(*this, NewFD);
4697        }
4698
4699    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4700               !isFriend && !isFunctionTemplateSpecialization &&
4701               !isExplicitSpecialization) {
4702      // An out-of-line member function declaration must also be a
4703      // definition (C++ [dcl.meaning]p1).
4704      // Note that this is not the case for explicit specializations of
4705      // function templates or member functions of class templates, per
4706      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4707      // for compatibility with old SWIG code which likes to generate them.
4708      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4709        << D.getCXXScopeSpec().getRange();
4710    }
4711  }
4712
4713
4714  // Handle attributes. We need to have merged decls when handling attributes
4715  // (for example to check for conflicts, etc).
4716  // FIXME: This needs to happen before we merge declarations. Then,
4717  // let attribute merging cope with attribute conflicts.
4718  ProcessDeclAttributes(S, NewFD, D,
4719                        /*NonInheritable=*/false, /*Inheritable=*/true);
4720
4721  // attributes declared post-definition are currently ignored
4722  // FIXME: This should happen during attribute merging
4723  if (Redeclaration && Previous.isSingleResult()) {
4724    const FunctionDecl *Def;
4725    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4726    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4727      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4728      Diag(Def->getLocation(), diag::note_previous_definition);
4729    }
4730  }
4731
4732  AddKnownFunctionAttributes(NewFD);
4733
4734  if (NewFD->hasAttr<OverloadableAttr>() &&
4735      !NewFD->getType()->getAs<FunctionProtoType>()) {
4736    Diag(NewFD->getLocation(),
4737         diag::err_attribute_overloadable_no_prototype)
4738      << NewFD;
4739
4740    // Turn this into a variadic function with no parameters.
4741    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4742    FunctionProtoType::ExtProtoInfo EPI;
4743    EPI.Variadic = true;
4744    EPI.ExtInfo = FT->getExtInfo();
4745
4746    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4747    NewFD->setType(R);
4748  }
4749
4750  // If there's a #pragma GCC visibility in scope, and this isn't a class
4751  // member, set the visibility of this function.
4752  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4753    AddPushedVisibilityAttribute(NewFD);
4754
4755  // If this is a locally-scoped extern C function, update the
4756  // map of such names.
4757  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4758      && !NewFD->isInvalidDecl())
4759    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4760
4761  // Set this FunctionDecl's range up to the right paren.
4762  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4763
4764  if (getLangOptions().CPlusPlus) {
4765    if (FunctionTemplate) {
4766      if (NewFD->isInvalidDecl())
4767        FunctionTemplate->setInvalidDecl();
4768      return FunctionTemplate;
4769    }
4770  }
4771
4772  MarkUnusedFileScopedDecl(NewFD);
4773
4774  if (getLangOptions().CUDA)
4775    if (IdentifierInfo *II = NewFD->getIdentifier())
4776      if (!NewFD->isInvalidDecl() &&
4777          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4778        if (II->isStr("cudaConfigureCall")) {
4779          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4780            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4781
4782          Context.setcudaConfigureCallDecl(NewFD);
4783        }
4784      }
4785
4786  return NewFD;
4787}
4788
4789/// \brief Perform semantic checking of a new function declaration.
4790///
4791/// Performs semantic analysis of the new function declaration
4792/// NewFD. This routine performs all semantic checking that does not
4793/// require the actual declarator involved in the declaration, and is
4794/// used both for the declaration of functions as they are parsed
4795/// (called via ActOnDeclarator) and for the declaration of functions
4796/// that have been instantiated via C++ template instantiation (called
4797/// via InstantiateDecl).
4798///
4799/// \param IsExplicitSpecialiation whether this new function declaration is
4800/// an explicit specialization of the previous declaration.
4801///
4802/// This sets NewFD->isInvalidDecl() to true if there was an error.
4803void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4804                                    LookupResult &Previous,
4805                                    bool IsExplicitSpecialization,
4806                                    bool &Redeclaration) {
4807  // If NewFD is already known erroneous, don't do any of this checking.
4808  if (NewFD->isInvalidDecl()) {
4809    // If this is a class member, mark the class invalid immediately.
4810    // This avoids some consistency errors later.
4811    if (isa<CXXMethodDecl>(NewFD))
4812      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4813
4814    return;
4815  }
4816
4817  if (NewFD->getResultType()->isVariablyModifiedType()) {
4818    // Functions returning a variably modified type violate C99 6.7.5.2p2
4819    // because all functions have linkage.
4820    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4821    return NewFD->setInvalidDecl();
4822  }
4823
4824  if (NewFD->isMain())
4825    CheckMain(NewFD);
4826
4827  // Check for a previous declaration of this name.
4828  if (Previous.empty() && NewFD->isExternC()) {
4829    // Since we did not find anything by this name and we're declaring
4830    // an extern "C" function, look for a non-visible extern "C"
4831    // declaration with the same name.
4832    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4833      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4834    if (Pos != LocallyScopedExternalDecls.end())
4835      Previous.addDecl(Pos->second);
4836  }
4837
4838  // Merge or overload the declaration with an existing declaration of
4839  // the same name, if appropriate.
4840  if (!Previous.empty()) {
4841    // Determine whether NewFD is an overload of PrevDecl or
4842    // a declaration that requires merging. If it's an overload,
4843    // there's no more work to do here; we'll just add the new
4844    // function to the scope.
4845
4846    NamedDecl *OldDecl = 0;
4847    if (!AllowOverloadingOfFunction(Previous, Context)) {
4848      Redeclaration = true;
4849      OldDecl = Previous.getFoundDecl();
4850    } else {
4851      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4852                            /*NewIsUsingDecl*/ false)) {
4853      case Ovl_Match:
4854        Redeclaration = true;
4855        break;
4856
4857      case Ovl_NonFunction:
4858        Redeclaration = true;
4859        break;
4860
4861      case Ovl_Overload:
4862        Redeclaration = false;
4863        break;
4864      }
4865
4866      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4867        // If a function name is overloadable in C, then every function
4868        // with that name must be marked "overloadable".
4869        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4870          << Redeclaration << NewFD;
4871        NamedDecl *OverloadedDecl = 0;
4872        if (Redeclaration)
4873          OverloadedDecl = OldDecl;
4874        else if (!Previous.empty())
4875          OverloadedDecl = Previous.getRepresentativeDecl();
4876        if (OverloadedDecl)
4877          Diag(OverloadedDecl->getLocation(),
4878               diag::note_attribute_overloadable_prev_overload);
4879        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4880                                                        Context));
4881      }
4882    }
4883
4884    if (Redeclaration) {
4885      // NewFD and OldDecl represent declarations that need to be
4886      // merged.
4887      if (MergeFunctionDecl(NewFD, OldDecl))
4888        return NewFD->setInvalidDecl();
4889
4890      Previous.clear();
4891      Previous.addDecl(OldDecl);
4892
4893      if (FunctionTemplateDecl *OldTemplateDecl
4894                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4895        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4896        FunctionTemplateDecl *NewTemplateDecl
4897          = NewFD->getDescribedFunctionTemplate();
4898        assert(NewTemplateDecl && "Template/non-template mismatch");
4899        if (CXXMethodDecl *Method
4900              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4901          Method->setAccess(OldTemplateDecl->getAccess());
4902          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4903        }
4904
4905        // If this is an explicit specialization of a member that is a function
4906        // template, mark it as a member specialization.
4907        if (IsExplicitSpecialization &&
4908            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4909          NewTemplateDecl->setMemberSpecialization();
4910          assert(OldTemplateDecl->isMemberSpecialization());
4911        }
4912      } else {
4913        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4914          NewFD->setAccess(OldDecl->getAccess());
4915        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4916      }
4917    }
4918  }
4919
4920  // Semantic checking for this function declaration (in isolation).
4921  if (getLangOptions().CPlusPlus) {
4922    // C++-specific checks.
4923    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4924      CheckConstructor(Constructor);
4925    } else if (CXXDestructorDecl *Destructor =
4926                dyn_cast<CXXDestructorDecl>(NewFD)) {
4927      CXXRecordDecl *Record = Destructor->getParent();
4928      QualType ClassType = Context.getTypeDeclType(Record);
4929
4930      // FIXME: Shouldn't we be able to perform this check even when the class
4931      // type is dependent? Both gcc and edg can handle that.
4932      if (!ClassType->isDependentType()) {
4933        DeclarationName Name
4934          = Context.DeclarationNames.getCXXDestructorName(
4935                                        Context.getCanonicalType(ClassType));
4936        if (NewFD->getDeclName() != Name) {
4937          Diag(NewFD->getLocation(), diag::err_destructor_name);
4938          return NewFD->setInvalidDecl();
4939        }
4940      }
4941    } else if (CXXConversionDecl *Conversion
4942               = dyn_cast<CXXConversionDecl>(NewFD)) {
4943      ActOnConversionDeclarator(Conversion);
4944    }
4945
4946    // Find any virtual functions that this function overrides.
4947    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4948      if (!Method->isFunctionTemplateSpecialization() &&
4949          !Method->getDescribedFunctionTemplate()) {
4950        if (AddOverriddenMethods(Method->getParent(), Method)) {
4951          // If the function was marked as "static", we have a problem.
4952          if (NewFD->getStorageClass() == SC_Static) {
4953            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4954              << NewFD->getDeclName();
4955            for (CXXMethodDecl::method_iterator
4956                      Overridden = Method->begin_overridden_methods(),
4957                   OverriddenEnd = Method->end_overridden_methods();
4958                 Overridden != OverriddenEnd;
4959                 ++Overridden) {
4960              Diag((*Overridden)->getLocation(),
4961                   diag::note_overridden_virtual_function);
4962            }
4963          }
4964        }
4965      }
4966    }
4967
4968    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4969    if (NewFD->isOverloadedOperator() &&
4970        CheckOverloadedOperatorDeclaration(NewFD))
4971      return NewFD->setInvalidDecl();
4972
4973    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4974    if (NewFD->getLiteralIdentifier() &&
4975        CheckLiteralOperatorDeclaration(NewFD))
4976      return NewFD->setInvalidDecl();
4977
4978    // In C++, check default arguments now that we have merged decls. Unless
4979    // the lexical context is the class, because in this case this is done
4980    // during delayed parsing anyway.
4981    if (!CurContext->isRecord())
4982      CheckCXXDefaultArguments(NewFD);
4983
4984    // If this function declares a builtin function, check the type of this
4985    // declaration against the expected type for the builtin.
4986    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4987      ASTContext::GetBuiltinTypeError Error;
4988      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4989      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4990        // The type of this function differs from the type of the builtin,
4991        // so forget about the builtin entirely.
4992        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4993      }
4994    }
4995  }
4996}
4997
4998void Sema::CheckMain(FunctionDecl* FD) {
4999  // C++ [basic.start.main]p3:  A program that declares main to be inline
5000  //   or static is ill-formed.
5001  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5002  //   shall not appear in a declaration of main.
5003  // static main is not an error under C99, but we should warn about it.
5004  bool isInline = FD->isInlineSpecified();
5005  bool isStatic = FD->getStorageClass() == SC_Static;
5006  if (isInline || isStatic) {
5007    unsigned diagID = diag::warn_unusual_main_decl;
5008    if (isInline || getLangOptions().CPlusPlus)
5009      diagID = diag::err_unusual_main_decl;
5010
5011    int which = isStatic + (isInline << 1) - 1;
5012    Diag(FD->getLocation(), diagID) << which;
5013  }
5014
5015  QualType T = FD->getType();
5016  assert(T->isFunctionType() && "function decl is not of function type");
5017  const FunctionType* FT = T->getAs<FunctionType>();
5018
5019  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5020    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5021    FD->setInvalidDecl(true);
5022  }
5023
5024  // Treat protoless main() as nullary.
5025  if (isa<FunctionNoProtoType>(FT)) return;
5026
5027  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5028  unsigned nparams = FTP->getNumArgs();
5029  assert(FD->getNumParams() == nparams);
5030
5031  bool HasExtraParameters = (nparams > 3);
5032
5033  // Darwin passes an undocumented fourth argument of type char**.  If
5034  // other platforms start sprouting these, the logic below will start
5035  // getting shifty.
5036  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5037    HasExtraParameters = false;
5038
5039  if (HasExtraParameters) {
5040    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5041    FD->setInvalidDecl(true);
5042    nparams = 3;
5043  }
5044
5045  // FIXME: a lot of the following diagnostics would be improved
5046  // if we had some location information about types.
5047
5048  QualType CharPP =
5049    Context.getPointerType(Context.getPointerType(Context.CharTy));
5050  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5051
5052  for (unsigned i = 0; i < nparams; ++i) {
5053    QualType AT = FTP->getArgType(i);
5054
5055    bool mismatch = true;
5056
5057    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5058      mismatch = false;
5059    else if (Expected[i] == CharPP) {
5060      // As an extension, the following forms are okay:
5061      //   char const **
5062      //   char const * const *
5063      //   char * const *
5064
5065      QualifierCollector qs;
5066      const PointerType* PT;
5067      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5068          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5069          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5070        qs.removeConst();
5071        mismatch = !qs.empty();
5072      }
5073    }
5074
5075    if (mismatch) {
5076      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5077      // TODO: suggest replacing given type with expected type
5078      FD->setInvalidDecl(true);
5079    }
5080  }
5081
5082  if (nparams == 1 && !FD->isInvalidDecl()) {
5083    Diag(FD->getLocation(), diag::warn_main_one_arg);
5084  }
5085
5086  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5087    Diag(FD->getLocation(), diag::err_main_template_decl);
5088    FD->setInvalidDecl();
5089  }
5090}
5091
5092bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5093  // FIXME: Need strict checking.  In C89, we need to check for
5094  // any assignment, increment, decrement, function-calls, or
5095  // commas outside of a sizeof.  In C99, it's the same list,
5096  // except that the aforementioned are allowed in unevaluated
5097  // expressions.  Everything else falls under the
5098  // "may accept other forms of constant expressions" exception.
5099  // (We never end up here for C++, so the constant expression
5100  // rules there don't matter.)
5101  if (Init->isConstantInitializer(Context, false))
5102    return false;
5103  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5104    << Init->getSourceRange();
5105  return true;
5106}
5107
5108namespace {
5109  // Visits an initialization expression to see if OrigDecl is evaluated in
5110  // its own initialization and throws a warning if it does.
5111  class SelfReferenceChecker
5112      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5113    Sema &S;
5114    Decl *OrigDecl;
5115
5116  public:
5117    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5118
5119    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5120                                                    S(S), OrigDecl(OrigDecl) { }
5121
5122    void VisitExpr(Expr *E) {
5123      if (isa<ObjCMessageExpr>(*E)) return;
5124      Inherited::VisitExpr(E);
5125    }
5126
5127    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5128      CheckForSelfReference(E);
5129      Inherited::VisitImplicitCastExpr(E);
5130    }
5131
5132    void CheckForSelfReference(ImplicitCastExpr *E) {
5133      if (E->getCastKind() != CK_LValueToRValue) return;
5134      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5135      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5136      if (!DRE) return;
5137      Decl* ReferenceDecl = DRE->getDecl();
5138      if (OrigDecl != ReferenceDecl) return;
5139      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5140                          Sema::NotForRedeclaration);
5141      S.Diag(SubExpr->getLocStart(), diag::warn_uninit_self_reference_in_init)
5142        << Result.getLookupName() << OrigDecl->getLocation()
5143        << SubExpr->getSourceRange();
5144    }
5145  };
5146}
5147
5148/// AddInitializerToDecl - Adds the initializer Init to the
5149/// declaration dcl. If DirectInit is true, this is C++ direct
5150/// initialization rather than copy initialization.
5151void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5152                                bool DirectInit, bool TypeMayContainAuto) {
5153  // If there is no declaration, there was an error parsing it.  Just ignore
5154  // the initializer.
5155  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5156    return;
5157
5158  // Check for self-references within variable initializers.
5159  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5160    // Variables declared within a function/method body are handled
5161    // by a dataflow analysis.
5162    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5163      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5164  }
5165  else {
5166    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5167  }
5168
5169  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5170    // With declarators parsed the way they are, the parser cannot
5171    // distinguish between a normal initializer and a pure-specifier.
5172    // Thus this grotesque test.
5173    IntegerLiteral *IL;
5174    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5175        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5176      CheckPureMethod(Method, Init->getSourceRange());
5177    else {
5178      Diag(Method->getLocation(), diag::err_member_function_initialization)
5179        << Method->getDeclName() << Init->getSourceRange();
5180      Method->setInvalidDecl();
5181    }
5182    return;
5183  }
5184
5185  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5186  if (!VDecl) {
5187    if (getLangOptions().CPlusPlus &&
5188        RealDecl->getLexicalDeclContext()->isRecord() &&
5189        isa<NamedDecl>(RealDecl))
5190      Diag(RealDecl->getLocation(), diag::err_member_initialization);
5191    else
5192      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5193    RealDecl->setInvalidDecl();
5194    return;
5195  }
5196
5197  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5198  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5199    TypeSourceInfo *DeducedType = 0;
5200    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5201      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5202        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5203        << Init->getSourceRange();
5204    if (!DeducedType) {
5205      RealDecl->setInvalidDecl();
5206      return;
5207    }
5208    VDecl->setTypeSourceInfo(DeducedType);
5209    VDecl->setType(DeducedType->getType());
5210
5211    // If this is a redeclaration, check that the type we just deduced matches
5212    // the previously declared type.
5213    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5214      MergeVarDeclTypes(VDecl, Old);
5215  }
5216
5217
5218  // A definition must end up with a complete type, which means it must be
5219  // complete with the restriction that an array type might be completed by the
5220  // initializer; note that later code assumes this restriction.
5221  QualType BaseDeclType = VDecl->getType();
5222  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5223    BaseDeclType = Array->getElementType();
5224  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5225                          diag::err_typecheck_decl_incomplete_type)) {
5226    RealDecl->setInvalidDecl();
5227    return;
5228  }
5229
5230  // The variable can not have an abstract class type.
5231  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5232                             diag::err_abstract_type_in_decl,
5233                             AbstractVariableType))
5234    VDecl->setInvalidDecl();
5235
5236  const VarDecl *Def;
5237  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5238    Diag(VDecl->getLocation(), diag::err_redefinition)
5239      << VDecl->getDeclName();
5240    Diag(Def->getLocation(), diag::note_previous_definition);
5241    VDecl->setInvalidDecl();
5242    return;
5243  }
5244
5245  const VarDecl* PrevInit = 0;
5246  if (getLangOptions().CPlusPlus) {
5247    // C++ [class.static.data]p4
5248    //   If a static data member is of const integral or const
5249    //   enumeration type, its declaration in the class definition can
5250    //   specify a constant-initializer which shall be an integral
5251    //   constant expression (5.19). In that case, the member can appear
5252    //   in integral constant expressions. The member shall still be
5253    //   defined in a namespace scope if it is used in the program and the
5254    //   namespace scope definition shall not contain an initializer.
5255    //
5256    // We already performed a redefinition check above, but for static
5257    // data members we also need to check whether there was an in-class
5258    // declaration with an initializer.
5259    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5260      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5261      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5262      return;
5263    }
5264
5265    if (VDecl->hasLocalStorage())
5266      getCurFunction()->setHasBranchProtectedScope();
5267
5268    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5269      VDecl->setInvalidDecl();
5270      return;
5271    }
5272  }
5273
5274  // Capture the variable that is being initialized and the style of
5275  // initialization.
5276  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5277
5278  // FIXME: Poor source location information.
5279  InitializationKind Kind
5280    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5281                                                   Init->getLocStart(),
5282                                                   Init->getLocEnd())
5283                : InitializationKind::CreateCopy(VDecl->getLocation(),
5284                                                 Init->getLocStart());
5285
5286  // Get the decls type and save a reference for later, since
5287  // CheckInitializerTypes may change it.
5288  QualType DclT = VDecl->getType(), SavT = DclT;
5289  if (VDecl->isLocalVarDecl()) {
5290    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5291      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5292      VDecl->setInvalidDecl();
5293    } else if (!VDecl->isInvalidDecl()) {
5294      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5295      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5296                                                MultiExprArg(*this, &Init, 1),
5297                                                &DclT);
5298      if (Result.isInvalid()) {
5299        VDecl->setInvalidDecl();
5300        return;
5301      }
5302
5303      Init = Result.takeAs<Expr>();
5304
5305      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5306      // Don't check invalid declarations to avoid emitting useless diagnostics.
5307      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5308        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5309          CheckForConstantInitializer(Init, DclT);
5310      }
5311    }
5312  } else if (VDecl->isStaticDataMember() &&
5313             VDecl->getLexicalDeclContext()->isRecord()) {
5314    // This is an in-class initialization for a static data member, e.g.,
5315    //
5316    // struct S {
5317    //   static const int value = 17;
5318    // };
5319
5320    // Try to perform the initialization regardless.
5321    if (!VDecl->isInvalidDecl()) {
5322      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5323      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5324                                          MultiExprArg(*this, &Init, 1),
5325                                          &DclT);
5326      if (Result.isInvalid()) {
5327        VDecl->setInvalidDecl();
5328        return;
5329      }
5330
5331      Init = Result.takeAs<Expr>();
5332    }
5333
5334    // C++ [class.mem]p4:
5335    //   A member-declarator can contain a constant-initializer only
5336    //   if it declares a static member (9.4) of const integral or
5337    //   const enumeration type, see 9.4.2.
5338    QualType T = VDecl->getType();
5339
5340    // Do nothing on dependent types.
5341    if (T->isDependentType()) {
5342
5343    // Require constness.
5344    } else if (!T.isConstQualified()) {
5345      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5346        << Init->getSourceRange();
5347      VDecl->setInvalidDecl();
5348
5349    // We allow integer constant expressions in all cases.
5350    } else if (T->isIntegralOrEnumerationType()) {
5351      if (!Init->isValueDependent()) {
5352        // Check whether the expression is a constant expression.
5353        llvm::APSInt Value;
5354        SourceLocation Loc;
5355        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
5356          Diag(Loc, diag::err_in_class_initializer_non_constant)
5357            << Init->getSourceRange();
5358          VDecl->setInvalidDecl();
5359        }
5360      }
5361
5362    // We allow floating-point constants as an extension in C++03, and
5363    // C++0x has far more complicated rules that we don't really
5364    // implement fully.
5365    } else {
5366      bool Allowed = false;
5367      if (getLangOptions().CPlusPlus0x) {
5368        Allowed = T->isLiteralType();
5369      } else if (T->isFloatingType()) { // also permits complex, which is ok
5370        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5371          << T << Init->getSourceRange();
5372        Allowed = true;
5373      }
5374
5375      if (!Allowed) {
5376        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5377          << T << Init->getSourceRange();
5378        VDecl->setInvalidDecl();
5379
5380      // TODO: there are probably expressions that pass here that shouldn't.
5381      } else if (!Init->isValueDependent() &&
5382                 !Init->isConstantInitializer(Context, false)) {
5383        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5384          << Init->getSourceRange();
5385        VDecl->setInvalidDecl();
5386      }
5387    }
5388  } else if (VDecl->isFileVarDecl()) {
5389    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5390        (!getLangOptions().CPlusPlus ||
5391         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5392      Diag(VDecl->getLocation(), diag::warn_extern_init);
5393    if (!VDecl->isInvalidDecl()) {
5394      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5395      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5396                                                MultiExprArg(*this, &Init, 1),
5397                                                &DclT);
5398      if (Result.isInvalid()) {
5399        VDecl->setInvalidDecl();
5400        return;
5401      }
5402
5403      Init = Result.takeAs<Expr>();
5404    }
5405
5406    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5407    // Don't check invalid declarations to avoid emitting useless diagnostics.
5408    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5409      // C99 6.7.8p4. All file scoped initializers need to be constant.
5410      CheckForConstantInitializer(Init, DclT);
5411    }
5412  }
5413  // If the type changed, it means we had an incomplete type that was
5414  // completed by the initializer. For example:
5415  //   int ary[] = { 1, 3, 5 };
5416  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5417  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5418    VDecl->setType(DclT);
5419    Init->setType(DclT);
5420  }
5421
5422
5423  // If this variable is a local declaration with record type, make sure it
5424  // doesn't have a flexible member initialization.  We only support this as a
5425  // global/static definition.
5426  if (VDecl->hasLocalStorage())
5427    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5428      if (RT->getDecl()->hasFlexibleArrayMember()) {
5429        // Check whether the initializer tries to initialize the flexible
5430        // array member itself to anything other than an empty initializer list.
5431        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5432          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5433                                         RT->getDecl()->field_end()) - 1;
5434          if (Index < ILE->getNumInits() &&
5435              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5436                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5437            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5438            VDecl->setInvalidDecl();
5439          }
5440        }
5441      }
5442
5443  // Check any implicit conversions within the expression.
5444  CheckImplicitConversions(Init, VDecl->getLocation());
5445
5446  Init = MaybeCreateExprWithCleanups(Init);
5447  // Attach the initializer to the decl.
5448  VDecl->setInit(Init);
5449
5450  CheckCompleteVariableDeclaration(VDecl);
5451}
5452
5453/// ActOnInitializerError - Given that there was an error parsing an
5454/// initializer for the given declaration, try to return to some form
5455/// of sanity.
5456void Sema::ActOnInitializerError(Decl *D) {
5457  // Our main concern here is re-establishing invariants like "a
5458  // variable's type is either dependent or complete".
5459  if (!D || D->isInvalidDecl()) return;
5460
5461  VarDecl *VD = dyn_cast<VarDecl>(D);
5462  if (!VD) return;
5463
5464  // Auto types are meaningless if we can't make sense of the initializer.
5465  if (ParsingInitForAutoVars.count(D)) {
5466    D->setInvalidDecl();
5467    return;
5468  }
5469
5470  QualType Ty = VD->getType();
5471  if (Ty->isDependentType()) return;
5472
5473  // Require a complete type.
5474  if (RequireCompleteType(VD->getLocation(),
5475                          Context.getBaseElementType(Ty),
5476                          diag::err_typecheck_decl_incomplete_type)) {
5477    VD->setInvalidDecl();
5478    return;
5479  }
5480
5481  // Require an abstract type.
5482  if (RequireNonAbstractType(VD->getLocation(), Ty,
5483                             diag::err_abstract_type_in_decl,
5484                             AbstractVariableType)) {
5485    VD->setInvalidDecl();
5486    return;
5487  }
5488
5489  // Don't bother complaining about constructors or destructors,
5490  // though.
5491}
5492
5493void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5494                                  bool TypeMayContainAuto) {
5495  // If there is no declaration, there was an error parsing it. Just ignore it.
5496  if (RealDecl == 0)
5497    return;
5498
5499  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5500    QualType Type = Var->getType();
5501
5502    // C++0x [dcl.spec.auto]p3
5503    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5504      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5505        << Var->getDeclName() << Type;
5506      Var->setInvalidDecl();
5507      return;
5508    }
5509
5510    switch (Var->isThisDeclarationADefinition()) {
5511    case VarDecl::Definition:
5512      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5513        break;
5514
5515      // We have an out-of-line definition of a static data member
5516      // that has an in-class initializer, so we type-check this like
5517      // a declaration.
5518      //
5519      // Fall through
5520
5521    case VarDecl::DeclarationOnly:
5522      // It's only a declaration.
5523
5524      // Block scope. C99 6.7p7: If an identifier for an object is
5525      // declared with no linkage (C99 6.2.2p6), the type for the
5526      // object shall be complete.
5527      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5528          !Var->getLinkage() && !Var->isInvalidDecl() &&
5529          RequireCompleteType(Var->getLocation(), Type,
5530                              diag::err_typecheck_decl_incomplete_type))
5531        Var->setInvalidDecl();
5532
5533      // Make sure that the type is not abstract.
5534      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5535          RequireNonAbstractType(Var->getLocation(), Type,
5536                                 diag::err_abstract_type_in_decl,
5537                                 AbstractVariableType))
5538        Var->setInvalidDecl();
5539      return;
5540
5541    case VarDecl::TentativeDefinition:
5542      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5543      // object that has file scope without an initializer, and without a
5544      // storage-class specifier or with the storage-class specifier "static",
5545      // constitutes a tentative definition. Note: A tentative definition with
5546      // external linkage is valid (C99 6.2.2p5).
5547      if (!Var->isInvalidDecl()) {
5548        if (const IncompleteArrayType *ArrayT
5549                                    = Context.getAsIncompleteArrayType(Type)) {
5550          if (RequireCompleteType(Var->getLocation(),
5551                                  ArrayT->getElementType(),
5552                                  diag::err_illegal_decl_array_incomplete_type))
5553            Var->setInvalidDecl();
5554        } else if (Var->getStorageClass() == SC_Static) {
5555          // C99 6.9.2p3: If the declaration of an identifier for an object is
5556          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5557          // declared type shall not be an incomplete type.
5558          // NOTE: code such as the following
5559          //     static struct s;
5560          //     struct s { int a; };
5561          // is accepted by gcc. Hence here we issue a warning instead of
5562          // an error and we do not invalidate the static declaration.
5563          // NOTE: to avoid multiple warnings, only check the first declaration.
5564          if (Var->getPreviousDeclaration() == 0)
5565            RequireCompleteType(Var->getLocation(), Type,
5566                                diag::ext_typecheck_decl_incomplete_type);
5567        }
5568      }
5569
5570      // Record the tentative definition; we're done.
5571      if (!Var->isInvalidDecl())
5572        TentativeDefinitions.push_back(Var);
5573      return;
5574    }
5575
5576    // Provide a specific diagnostic for uninitialized variable
5577    // definitions with incomplete array type.
5578    if (Type->isIncompleteArrayType()) {
5579      Diag(Var->getLocation(),
5580           diag::err_typecheck_incomplete_array_needs_initializer);
5581      Var->setInvalidDecl();
5582      return;
5583    }
5584
5585    // Provide a specific diagnostic for uninitialized variable
5586    // definitions with reference type.
5587    if (Type->isReferenceType()) {
5588      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5589        << Var->getDeclName()
5590        << SourceRange(Var->getLocation(), Var->getLocation());
5591      Var->setInvalidDecl();
5592      return;
5593    }
5594
5595    // Do not attempt to type-check the default initializer for a
5596    // variable with dependent type.
5597    if (Type->isDependentType())
5598      return;
5599
5600    if (Var->isInvalidDecl())
5601      return;
5602
5603    if (RequireCompleteType(Var->getLocation(),
5604                            Context.getBaseElementType(Type),
5605                            diag::err_typecheck_decl_incomplete_type)) {
5606      Var->setInvalidDecl();
5607      return;
5608    }
5609
5610    // The variable can not have an abstract class type.
5611    if (RequireNonAbstractType(Var->getLocation(), Type,
5612                               diag::err_abstract_type_in_decl,
5613                               AbstractVariableType)) {
5614      Var->setInvalidDecl();
5615      return;
5616    }
5617
5618    const RecordType *Record
5619      = Context.getBaseElementType(Type)->getAs<RecordType>();
5620    if (Record && getLangOptions().CPlusPlus &&
5621        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5622      // C++03 [dcl.init]p9:
5623      //   If no initializer is specified for an object, and the
5624      //   object is of (possibly cv-qualified) non-POD class type (or
5625      //   array thereof), the object shall be default-initialized; if
5626      //   the object is of const-qualified type, the underlying class
5627      //   type shall have a user-declared default
5628      //   constructor. Otherwise, if no initializer is specified for
5629      //   a non- static object, the object and its subobjects, if
5630      //   any, have an indeterminate initial value); if the object
5631      //   or any of its subobjects are of const-qualified type, the
5632      //   program is ill-formed.
5633    } else {
5634      // Check for jumps past the implicit initializer.  C++0x
5635      // clarifies that this applies to a "variable with automatic
5636      // storage duration", not a "local variable".
5637      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
5638        getCurFunction()->setHasBranchProtectedScope();
5639
5640      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5641      InitializationKind Kind
5642        = InitializationKind::CreateDefault(Var->getLocation());
5643
5644      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5645      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5646                                        MultiExprArg(*this, 0, 0));
5647      if (Init.isInvalid())
5648        Var->setInvalidDecl();
5649      else if (Init.get())
5650        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5651    }
5652
5653    CheckCompleteVariableDeclaration(Var);
5654  }
5655}
5656
5657void Sema::ActOnCXXForRangeDecl(Decl *D) {
5658  VarDecl *VD = dyn_cast<VarDecl>(D);
5659  if (!VD) {
5660    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5661    D->setInvalidDecl();
5662    return;
5663  }
5664
5665  VD->setCXXForRangeDecl(true);
5666
5667  // for-range-declaration cannot be given a storage class specifier.
5668  int Error = -1;
5669  switch (VD->getStorageClassAsWritten()) {
5670  case SC_None:
5671    break;
5672  case SC_Extern:
5673    Error = 0;
5674    break;
5675  case SC_Static:
5676    Error = 1;
5677    break;
5678  case SC_PrivateExtern:
5679    Error = 2;
5680    break;
5681  case SC_Auto:
5682    Error = 3;
5683    break;
5684  case SC_Register:
5685    Error = 4;
5686    break;
5687  }
5688  // FIXME: constexpr isn't allowed here.
5689  //if (DS.isConstexprSpecified())
5690  //  Error = 5;
5691  if (Error != -1) {
5692    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5693      << VD->getDeclName() << Error;
5694    D->setInvalidDecl();
5695  }
5696}
5697
5698void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5699  if (var->isInvalidDecl()) return;
5700
5701  // All the following checks are C++ only.
5702  if (!getLangOptions().CPlusPlus) return;
5703
5704  QualType baseType = Context.getBaseElementType(var->getType());
5705  if (baseType->isDependentType()) return;
5706
5707  // __block variables might require us to capture a copy-initializer.
5708  if (var->hasAttr<BlocksAttr>()) {
5709    // It's currently invalid to ever have a __block variable with an
5710    // array type; should we diagnose that here?
5711
5712    // Regardless, we don't want to ignore array nesting when
5713    // constructing this copy.
5714    QualType type = var->getType();
5715
5716    if (type->isStructureOrClassType()) {
5717      SourceLocation poi = var->getLocation();
5718      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5719      ExprResult result =
5720        PerformCopyInitialization(
5721                        InitializedEntity::InitializeBlock(poi, type, false),
5722                                  poi, Owned(varRef));
5723      if (!result.isInvalid()) {
5724        result = MaybeCreateExprWithCleanups(result);
5725        Expr *init = result.takeAs<Expr>();
5726        Context.setBlockVarCopyInits(var, init);
5727      }
5728    }
5729  }
5730
5731  // Check for global constructors.
5732  if (!var->getDeclContext()->isDependentContext() &&
5733      var->hasGlobalStorage() &&
5734      !var->isStaticLocal() &&
5735      var->getInit() &&
5736      !var->getInit()->isConstantInitializer(Context,
5737                                             baseType->isReferenceType()))
5738    Diag(var->getLocation(), diag::warn_global_constructor)
5739      << var->getInit()->getSourceRange();
5740
5741  // Require the destructor.
5742  if (const RecordType *recordType = baseType->getAs<RecordType>())
5743    FinalizeVarWithDestructor(var, recordType);
5744}
5745
5746/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5747/// any semantic actions necessary after any initializer has been attached.
5748void
5749Sema::FinalizeDeclaration(Decl *ThisDecl) {
5750  // Note that we are no longer parsing the initializer for this declaration.
5751  ParsingInitForAutoVars.erase(ThisDecl);
5752}
5753
5754Sema::DeclGroupPtrTy
5755Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5756                              Decl **Group, unsigned NumDecls) {
5757  llvm::SmallVector<Decl*, 8> Decls;
5758
5759  if (DS.isTypeSpecOwned())
5760    Decls.push_back(DS.getRepAsDecl());
5761
5762  for (unsigned i = 0; i != NumDecls; ++i)
5763    if (Decl *D = Group[i])
5764      Decls.push_back(D);
5765
5766  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5767                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5768}
5769
5770/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5771/// group, performing any necessary semantic checking.
5772Sema::DeclGroupPtrTy
5773Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5774                           bool TypeMayContainAuto) {
5775  // C++0x [dcl.spec.auto]p7:
5776  //   If the type deduced for the template parameter U is not the same in each
5777  //   deduction, the program is ill-formed.
5778  // FIXME: When initializer-list support is added, a distinction is needed
5779  // between the deduced type U and the deduced type which 'auto' stands for.
5780  //   auto a = 0, b = { 1, 2, 3 };
5781  // is legal because the deduced type U is 'int' in both cases.
5782  if (TypeMayContainAuto && NumDecls > 1) {
5783    QualType Deduced;
5784    CanQualType DeducedCanon;
5785    VarDecl *DeducedDecl = 0;
5786    for (unsigned i = 0; i != NumDecls; ++i) {
5787      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5788        AutoType *AT = D->getType()->getContainedAutoType();
5789        // Don't reissue diagnostics when instantiating a template.
5790        if (AT && D->isInvalidDecl())
5791          break;
5792        if (AT && AT->isDeduced()) {
5793          QualType U = AT->getDeducedType();
5794          CanQualType UCanon = Context.getCanonicalType(U);
5795          if (Deduced.isNull()) {
5796            Deduced = U;
5797            DeducedCanon = UCanon;
5798            DeducedDecl = D;
5799          } else if (DeducedCanon != UCanon) {
5800            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5801                 diag::err_auto_different_deductions)
5802              << Deduced << DeducedDecl->getDeclName()
5803              << U << D->getDeclName()
5804              << DeducedDecl->getInit()->getSourceRange()
5805              << D->getInit()->getSourceRange();
5806            D->setInvalidDecl();
5807            break;
5808          }
5809        }
5810      }
5811    }
5812  }
5813
5814  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5815}
5816
5817
5818/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5819/// to introduce parameters into function prototype scope.
5820Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5821  const DeclSpec &DS = D.getDeclSpec();
5822
5823  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5824  VarDecl::StorageClass StorageClass = SC_None;
5825  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5826  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5827    StorageClass = SC_Register;
5828    StorageClassAsWritten = SC_Register;
5829  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5830    Diag(DS.getStorageClassSpecLoc(),
5831         diag::err_invalid_storage_class_in_func_decl);
5832    D.getMutableDeclSpec().ClearStorageClassSpecs();
5833  }
5834
5835  if (D.getDeclSpec().isThreadSpecified())
5836    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5837
5838  DiagnoseFunctionSpecifiers(D);
5839
5840  TagDecl *OwnedDecl = 0;
5841  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5842  QualType parmDeclType = TInfo->getType();
5843
5844  if (getLangOptions().CPlusPlus) {
5845    // Check that there are no default arguments inside the type of this
5846    // parameter.
5847    CheckExtraCXXDefaultArguments(D);
5848
5849    if (OwnedDecl && OwnedDecl->isDefinition()) {
5850      // C++ [dcl.fct]p6:
5851      //   Types shall not be defined in return or parameter types.
5852      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5853        << Context.getTypeDeclType(OwnedDecl);
5854    }
5855
5856    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5857    if (D.getCXXScopeSpec().isSet()) {
5858      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5859        << D.getCXXScopeSpec().getRange();
5860      D.getCXXScopeSpec().clear();
5861    }
5862  }
5863
5864  // Ensure we have a valid name
5865  IdentifierInfo *II = 0;
5866  if (D.hasName()) {
5867    II = D.getIdentifier();
5868    if (!II) {
5869      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5870        << GetNameForDeclarator(D).getName().getAsString();
5871      D.setInvalidType(true);
5872    }
5873  }
5874
5875  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5876  if (II) {
5877    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5878                   ForRedeclaration);
5879    LookupName(R, S);
5880    if (R.isSingleResult()) {
5881      NamedDecl *PrevDecl = R.getFoundDecl();
5882      if (PrevDecl->isTemplateParameter()) {
5883        // Maybe we will complain about the shadowed template parameter.
5884        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5885        // Just pretend that we didn't see the previous declaration.
5886        PrevDecl = 0;
5887      } else if (S->isDeclScope(PrevDecl)) {
5888        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5889        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5890
5891        // Recover by removing the name
5892        II = 0;
5893        D.SetIdentifier(0, D.getIdentifierLoc());
5894        D.setInvalidType(true);
5895      }
5896    }
5897  }
5898
5899  // Temporarily put parameter variables in the translation unit, not
5900  // the enclosing context.  This prevents them from accidentally
5901  // looking like class members in C++.
5902  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5903                                    D.getSourceRange().getBegin(),
5904                                    D.getIdentifierLoc(), II,
5905                                    parmDeclType, TInfo,
5906                                    StorageClass, StorageClassAsWritten);
5907
5908  if (D.isInvalidType())
5909    New->setInvalidDecl();
5910
5911  assert(S->isFunctionPrototypeScope());
5912  assert(S->getFunctionPrototypeDepth() >= 1);
5913  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
5914                    S->getNextFunctionPrototypeIndex());
5915
5916  // Add the parameter declaration into this scope.
5917  S->AddDecl(New);
5918  if (II)
5919    IdResolver.AddDecl(New);
5920
5921  ProcessDeclAttributes(S, New, D);
5922
5923  if (New->hasAttr<BlocksAttr>()) {
5924    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5925  }
5926  return New;
5927}
5928
5929/// \brief Synthesizes a variable for a parameter arising from a
5930/// typedef.
5931ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5932                                              SourceLocation Loc,
5933                                              QualType T) {
5934  /* FIXME: setting StartLoc == Loc.
5935     Would it be worth to modify callers so as to provide proper source
5936     location for the unnamed parameters, embedding the parameter's type? */
5937  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5938                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5939                                           SC_None, SC_None, 0);
5940  Param->setImplicit();
5941  return Param;
5942}
5943
5944void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5945                                    ParmVarDecl * const *ParamEnd) {
5946  // Don't diagnose unused-parameter errors in template instantiations; we
5947  // will already have done so in the template itself.
5948  if (!ActiveTemplateInstantiations.empty())
5949    return;
5950
5951  for (; Param != ParamEnd; ++Param) {
5952    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5953        !(*Param)->hasAttr<UnusedAttr>()) {
5954      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5955        << (*Param)->getDeclName();
5956    }
5957  }
5958}
5959
5960void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5961                                                  ParmVarDecl * const *ParamEnd,
5962                                                  QualType ReturnTy,
5963                                                  NamedDecl *D) {
5964  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5965    return;
5966
5967  // Warn if the return value is pass-by-value and larger than the specified
5968  // threshold.
5969  if (ReturnTy->isPODType()) {
5970    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5971    if (Size > LangOpts.NumLargeByValueCopy)
5972      Diag(D->getLocation(), diag::warn_return_value_size)
5973          << D->getDeclName() << Size;
5974  }
5975
5976  // Warn if any parameter is pass-by-value and larger than the specified
5977  // threshold.
5978  for (; Param != ParamEnd; ++Param) {
5979    QualType T = (*Param)->getType();
5980    if (!T->isPODType())
5981      continue;
5982    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5983    if (Size > LangOpts.NumLargeByValueCopy)
5984      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5985          << (*Param)->getDeclName() << Size;
5986  }
5987}
5988
5989ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
5990                                  SourceLocation NameLoc, IdentifierInfo *Name,
5991                                  QualType T, TypeSourceInfo *TSInfo,
5992                                  VarDecl::StorageClass StorageClass,
5993                                  VarDecl::StorageClass StorageClassAsWritten) {
5994  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
5995                                         adjustParameterType(T), TSInfo,
5996                                         StorageClass, StorageClassAsWritten,
5997                                         0);
5998
5999  // Parameters can not be abstract class types.
6000  // For record types, this is done by the AbstractClassUsageDiagnoser once
6001  // the class has been completely parsed.
6002  if (!CurContext->isRecord() &&
6003      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6004                             AbstractParamType))
6005    New->setInvalidDecl();
6006
6007  // Parameter declarators cannot be interface types. All ObjC objects are
6008  // passed by reference.
6009  if (T->isObjCObjectType()) {
6010    Diag(NameLoc,
6011         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
6012    New->setInvalidDecl();
6013  }
6014
6015  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6016  // duration shall not be qualified by an address-space qualifier."
6017  // Since all parameters have automatic store duration, they can not have
6018  // an address space.
6019  if (T.getAddressSpace() != 0) {
6020    Diag(NameLoc, diag::err_arg_with_address_space);
6021    New->setInvalidDecl();
6022  }
6023
6024  return New;
6025}
6026
6027void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6028                                           SourceLocation LocAfterDecls) {
6029  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6030
6031  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6032  // for a K&R function.
6033  if (!FTI.hasPrototype) {
6034    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6035      --i;
6036      if (FTI.ArgInfo[i].Param == 0) {
6037        llvm::SmallString<256> Code;
6038        llvm::raw_svector_ostream(Code) << "  int "
6039                                        << FTI.ArgInfo[i].Ident->getName()
6040                                        << ";\n";
6041        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6042          << FTI.ArgInfo[i].Ident
6043          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6044
6045        // Implicitly declare the argument as type 'int' for lack of a better
6046        // type.
6047        AttributeFactory attrs;
6048        DeclSpec DS(attrs);
6049        const char* PrevSpec; // unused
6050        unsigned DiagID; // unused
6051        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6052                           PrevSpec, DiagID);
6053        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6054        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6055        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6056      }
6057    }
6058  }
6059}
6060
6061Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6062                                         Declarator &D) {
6063  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6064  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6065  Scope *ParentScope = FnBodyScope->getParent();
6066
6067  Decl *DP = HandleDeclarator(ParentScope, D,
6068                              MultiTemplateParamsArg(*this),
6069                              /*IsFunctionDefinition=*/true);
6070  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6071}
6072
6073static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6074  // Don't warn about invalid declarations.
6075  if (FD->isInvalidDecl())
6076    return false;
6077
6078  // Or declarations that aren't global.
6079  if (!FD->isGlobal())
6080    return false;
6081
6082  // Don't warn about C++ member functions.
6083  if (isa<CXXMethodDecl>(FD))
6084    return false;
6085
6086  // Don't warn about 'main'.
6087  if (FD->isMain())
6088    return false;
6089
6090  // Don't warn about inline functions.
6091  if (FD->isInlined())
6092    return false;
6093
6094  // Don't warn about function templates.
6095  if (FD->getDescribedFunctionTemplate())
6096    return false;
6097
6098  // Don't warn about function template specializations.
6099  if (FD->isFunctionTemplateSpecialization())
6100    return false;
6101
6102  bool MissingPrototype = true;
6103  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6104       Prev; Prev = Prev->getPreviousDeclaration()) {
6105    // Ignore any declarations that occur in function or method
6106    // scope, because they aren't visible from the header.
6107    if (Prev->getDeclContext()->isFunctionOrMethod())
6108      continue;
6109
6110    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6111    break;
6112  }
6113
6114  return MissingPrototype;
6115}
6116
6117void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6118  // Don't complain if we're in GNU89 mode and the previous definition
6119  // was an extern inline function.
6120  const FunctionDecl *Definition;
6121  if (FD->hasBody(Definition) &&
6122      !canRedefineFunction(Definition, getLangOptions())) {
6123    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6124        Definition->getStorageClass() == SC_Extern)
6125      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6126        << FD->getDeclName() << getLangOptions().CPlusPlus;
6127    else
6128      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6129    Diag(Definition->getLocation(), diag::note_previous_definition);
6130  }
6131}
6132
6133Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6134  // Clear the last template instantiation error context.
6135  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6136
6137  if (!D)
6138    return D;
6139  FunctionDecl *FD = 0;
6140
6141  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6142    FD = FunTmpl->getTemplatedDecl();
6143  else
6144    FD = cast<FunctionDecl>(D);
6145
6146  // Enter a new function scope
6147  PushFunctionScope();
6148
6149  // See if this is a redefinition.
6150  if (!FD->isLateTemplateParsed())
6151    CheckForFunctionRedefinition(FD);
6152
6153  // Builtin functions cannot be defined.
6154  if (unsigned BuiltinID = FD->getBuiltinID()) {
6155    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6156      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6157      FD->setInvalidDecl();
6158    }
6159  }
6160
6161  // The return type of a function definition must be complete
6162  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6163  QualType ResultType = FD->getResultType();
6164  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6165      !FD->isInvalidDecl() &&
6166      RequireCompleteType(FD->getLocation(), ResultType,
6167                          diag::err_func_def_incomplete_result))
6168    FD->setInvalidDecl();
6169
6170  // GNU warning -Wmissing-prototypes:
6171  //   Warn if a global function is defined without a previous
6172  //   prototype declaration. This warning is issued even if the
6173  //   definition itself provides a prototype. The aim is to detect
6174  //   global functions that fail to be declared in header files.
6175  if (ShouldWarnAboutMissingPrototype(FD))
6176    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6177
6178  if (FnBodyScope)
6179    PushDeclContext(FnBodyScope, FD);
6180
6181  // Check the validity of our function parameters
6182  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6183                           /*CheckParameterNames=*/true);
6184
6185  // Introduce our parameters into the function scope
6186  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6187    ParmVarDecl *Param = FD->getParamDecl(p);
6188    Param->setOwningFunction(FD);
6189
6190    // If this has an identifier, add it to the scope stack.
6191    if (Param->getIdentifier() && FnBodyScope) {
6192      CheckShadow(FnBodyScope, Param);
6193
6194      PushOnScopeChains(Param, FnBodyScope);
6195    }
6196  }
6197
6198  // Checking attributes of current function definition
6199  // dllimport attribute.
6200  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6201  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6202    // dllimport attribute cannot be directly applied to definition.
6203    // Microsoft accepts dllimport for functions defined within class scope.
6204    if (!DA->isInherited() &&
6205        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6206      Diag(FD->getLocation(),
6207           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6208        << "dllimport";
6209      FD->setInvalidDecl();
6210      return FD;
6211    }
6212
6213    // Visual C++ appears to not think this is an issue, so only issue
6214    // a warning when Microsoft extensions are disabled.
6215    if (!LangOpts.Microsoft) {
6216      // If a symbol previously declared dllimport is later defined, the
6217      // attribute is ignored in subsequent references, and a warning is
6218      // emitted.
6219      Diag(FD->getLocation(),
6220           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6221        << FD->getName() << "dllimport";
6222    }
6223  }
6224  return FD;
6225}
6226
6227/// \brief Given the set of return statements within a function body,
6228/// compute the variables that are subject to the named return value
6229/// optimization.
6230///
6231/// Each of the variables that is subject to the named return value
6232/// optimization will be marked as NRVO variables in the AST, and any
6233/// return statement that has a marked NRVO variable as its NRVO candidate can
6234/// use the named return value optimization.
6235///
6236/// This function applies a very simplistic algorithm for NRVO: if every return
6237/// statement in the function has the same NRVO candidate, that candidate is
6238/// the NRVO variable.
6239///
6240/// FIXME: Employ a smarter algorithm that accounts for multiple return
6241/// statements and the lifetimes of the NRVO candidates. We should be able to
6242/// find a maximal set of NRVO variables.
6243static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6244  ReturnStmt **Returns = Scope->Returns.data();
6245
6246  const VarDecl *NRVOCandidate = 0;
6247  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6248    if (!Returns[I]->getNRVOCandidate())
6249      return;
6250
6251    if (!NRVOCandidate)
6252      NRVOCandidate = Returns[I]->getNRVOCandidate();
6253    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6254      return;
6255  }
6256
6257  if (NRVOCandidate)
6258    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6259}
6260
6261Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6262  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6263}
6264
6265Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6266                                    bool IsInstantiation) {
6267  FunctionDecl *FD = 0;
6268  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6269  if (FunTmpl)
6270    FD = FunTmpl->getTemplatedDecl();
6271  else
6272    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6273
6274  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6275  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6276
6277  if (FD) {
6278    FD->setBody(Body);
6279    if (FD->isMain()) {
6280      // C and C++ allow for main to automagically return 0.
6281      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6282      FD->setHasImplicitReturnZero(true);
6283      WP.disableCheckFallThrough();
6284    }
6285
6286    if (!FD->isInvalidDecl()) {
6287      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6288      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6289                                             FD->getResultType(), FD);
6290
6291      // If this is a constructor, we need a vtable.
6292      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6293        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6294
6295      ComputeNRVO(Body, getCurFunction());
6296    }
6297
6298    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6299  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6300    assert(MD == getCurMethodDecl() && "Method parsing confused");
6301    MD->setBody(Body);
6302    if (Body)
6303      MD->setEndLoc(Body->getLocEnd());
6304    if (!MD->isInvalidDecl()) {
6305      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6306      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6307                                             MD->getResultType(), MD);
6308    }
6309  } else {
6310    return 0;
6311  }
6312
6313  // Verify and clean out per-function state.
6314  if (Body) {
6315    // C++ constructors that have function-try-blocks can't have return
6316    // statements in the handlers of that block. (C++ [except.handle]p14)
6317    // Verify this.
6318    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6319      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6320
6321    // Verify that that gotos and switch cases don't jump into scopes illegally.
6322    // Verify that that gotos and switch cases don't jump into scopes illegally.
6323    if (getCurFunction()->NeedsScopeChecking() &&
6324        !dcl->isInvalidDecl() &&
6325        !hasAnyErrorsInThisFunction())
6326      DiagnoseInvalidJumps(Body);
6327
6328    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6329      if (!Destructor->getParent()->isDependentType())
6330        CheckDestructor(Destructor);
6331
6332      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6333                                             Destructor->getParent());
6334    }
6335
6336    // If any errors have occurred, clear out any temporaries that may have
6337    // been leftover. This ensures that these temporaries won't be picked up for
6338    // deletion in some later function.
6339    if (PP.getDiagnostics().hasErrorOccurred() ||
6340        PP.getDiagnostics().getSuppressAllDiagnostics())
6341      ExprTemporaries.clear();
6342    else if (!isa<FunctionTemplateDecl>(dcl)) {
6343      // Since the body is valid, issue any analysis-based warnings that are
6344      // enabled.
6345      ActivePolicy = &WP;
6346    }
6347
6348    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6349  }
6350
6351  if (!IsInstantiation)
6352    PopDeclContext();
6353
6354  PopFunctionOrBlockScope(ActivePolicy, dcl);
6355
6356  // If any errors have occurred, clear out any temporaries that may have
6357  // been leftover. This ensures that these temporaries won't be picked up for
6358  // deletion in some later function.
6359  if (getDiagnostics().hasErrorOccurred())
6360    ExprTemporaries.clear();
6361
6362  return dcl;
6363}
6364
6365/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6366/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6367NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6368                                          IdentifierInfo &II, Scope *S) {
6369  // Before we produce a declaration for an implicitly defined
6370  // function, see whether there was a locally-scoped declaration of
6371  // this name as a function or variable. If so, use that
6372  // (non-visible) declaration, and complain about it.
6373  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6374    = LocallyScopedExternalDecls.find(&II);
6375  if (Pos != LocallyScopedExternalDecls.end()) {
6376    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6377    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6378    return Pos->second;
6379  }
6380
6381  // Extension in C99.  Legal in C90, but warn about it.
6382  if (II.getName().startswith("__builtin_"))
6383    Diag(Loc, diag::warn_builtin_unknown) << &II;
6384  else if (getLangOptions().C99)
6385    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6386  else
6387    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6388
6389  // Set a Declarator for the implicit definition: int foo();
6390  const char *Dummy;
6391  AttributeFactory attrFactory;
6392  DeclSpec DS(attrFactory);
6393  unsigned DiagID;
6394  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6395  (void)Error; // Silence warning.
6396  assert(!Error && "Error setting up implicit decl!");
6397  Declarator D(DS, Declarator::BlockContext);
6398  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6399                                             0, 0, true, SourceLocation(),
6400                                             EST_None, SourceLocation(),
6401                                             0, 0, 0, 0, Loc, Loc, D),
6402                DS.getAttributes(),
6403                SourceLocation());
6404  D.SetIdentifier(&II, Loc);
6405
6406  // Insert this function into translation-unit scope.
6407
6408  DeclContext *PrevDC = CurContext;
6409  CurContext = Context.getTranslationUnitDecl();
6410
6411  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6412  FD->setImplicit();
6413
6414  CurContext = PrevDC;
6415
6416  AddKnownFunctionAttributes(FD);
6417
6418  return FD;
6419}
6420
6421/// \brief Adds any function attributes that we know a priori based on
6422/// the declaration of this function.
6423///
6424/// These attributes can apply both to implicitly-declared builtins
6425/// (like __builtin___printf_chk) or to library-declared functions
6426/// like NSLog or printf.
6427void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6428  if (FD->isInvalidDecl())
6429    return;
6430
6431  // If this is a built-in function, map its builtin attributes to
6432  // actual attributes.
6433  if (unsigned BuiltinID = FD->getBuiltinID()) {
6434    // Handle printf-formatting attributes.
6435    unsigned FormatIdx;
6436    bool HasVAListArg;
6437    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6438      if (!FD->getAttr<FormatAttr>())
6439        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6440                                                "printf", FormatIdx+1,
6441                                               HasVAListArg ? 0 : FormatIdx+2));
6442    }
6443    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6444                                             HasVAListArg)) {
6445     if (!FD->getAttr<FormatAttr>())
6446       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6447                                              "scanf", FormatIdx+1,
6448                                              HasVAListArg ? 0 : FormatIdx+2));
6449    }
6450
6451    // Mark const if we don't care about errno and that is the only
6452    // thing preventing the function from being const. This allows
6453    // IRgen to use LLVM intrinsics for such functions.
6454    if (!getLangOptions().MathErrno &&
6455        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6456      if (!FD->getAttr<ConstAttr>())
6457        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6458    }
6459
6460    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6461      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6462    if (Context.BuiltinInfo.isConst(BuiltinID))
6463      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6464  }
6465
6466  IdentifierInfo *Name = FD->getIdentifier();
6467  if (!Name)
6468    return;
6469  if ((!getLangOptions().CPlusPlus &&
6470       FD->getDeclContext()->isTranslationUnit()) ||
6471      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6472       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6473       LinkageSpecDecl::lang_c)) {
6474    // Okay: this could be a libc/libm/Objective-C function we know
6475    // about.
6476  } else
6477    return;
6478
6479  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6480    // FIXME: NSLog and NSLogv should be target specific
6481    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6482      // FIXME: We known better than our headers.
6483      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6484    } else
6485      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6486                                             "printf", 1,
6487                                             Name->isStr("NSLogv") ? 0 : 2));
6488  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6489    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6490    // target-specific builtins, perhaps?
6491    if (!FD->getAttr<FormatAttr>())
6492      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6493                                             "printf", 2,
6494                                             Name->isStr("vasprintf") ? 0 : 3));
6495  }
6496}
6497
6498TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6499                                    TypeSourceInfo *TInfo) {
6500  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6501  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6502
6503  if (!TInfo) {
6504    assert(D.isInvalidType() && "no declarator info for valid type");
6505    TInfo = Context.getTrivialTypeSourceInfo(T);
6506  }
6507
6508  // Scope manipulation handled by caller.
6509  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6510                                           D.getSourceRange().getBegin(),
6511                                           D.getIdentifierLoc(),
6512                                           D.getIdentifier(),
6513                                           TInfo);
6514
6515  // Bail out immediately if we have an invalid declaration.
6516  if (D.isInvalidType()) {
6517    NewTD->setInvalidDecl();
6518    return NewTD;
6519  }
6520
6521  // C++ [dcl.typedef]p8:
6522  //   If the typedef declaration defines an unnamed class (or
6523  //   enum), the first typedef-name declared by the declaration
6524  //   to be that class type (or enum type) is used to denote the
6525  //   class type (or enum type) for linkage purposes only.
6526  // We need to check whether the type was declared in the declaration.
6527  switch (D.getDeclSpec().getTypeSpecType()) {
6528  case TST_enum:
6529  case TST_struct:
6530  case TST_union:
6531  case TST_class: {
6532    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6533
6534    // Do nothing if the tag is not anonymous or already has an
6535    // associated typedef (from an earlier typedef in this decl group).
6536    if (tagFromDeclSpec->getIdentifier()) break;
6537    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6538
6539    // A well-formed anonymous tag must always be a TUK_Definition.
6540    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6541
6542    // The type must match the tag exactly;  no qualifiers allowed.
6543    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6544      break;
6545
6546    // Otherwise, set this is the anon-decl typedef for the tag.
6547    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6548    break;
6549  }
6550
6551  default:
6552    break;
6553  }
6554
6555  return NewTD;
6556}
6557
6558
6559/// \brief Determine whether a tag with a given kind is acceptable
6560/// as a redeclaration of the given tag declaration.
6561///
6562/// \returns true if the new tag kind is acceptable, false otherwise.
6563bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6564                                        TagTypeKind NewTag,
6565                                        SourceLocation NewTagLoc,
6566                                        const IdentifierInfo &Name) {
6567  // C++ [dcl.type.elab]p3:
6568  //   The class-key or enum keyword present in the
6569  //   elaborated-type-specifier shall agree in kind with the
6570  //   declaration to which the name in the elaborated-type-specifier
6571  //   refers. This rule also applies to the form of
6572  //   elaborated-type-specifier that declares a class-name or
6573  //   friend class since it can be construed as referring to the
6574  //   definition of the class. Thus, in any
6575  //   elaborated-type-specifier, the enum keyword shall be used to
6576  //   refer to an enumeration (7.2), the union class-key shall be
6577  //   used to refer to a union (clause 9), and either the class or
6578  //   struct class-key shall be used to refer to a class (clause 9)
6579  //   declared using the class or struct class-key.
6580  TagTypeKind OldTag = Previous->getTagKind();
6581  if (OldTag == NewTag)
6582    return true;
6583
6584  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6585      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6586    // Warn about the struct/class tag mismatch.
6587    bool isTemplate = false;
6588    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6589      isTemplate = Record->getDescribedClassTemplate();
6590
6591    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6592      << (NewTag == TTK_Class)
6593      << isTemplate << &Name
6594      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6595                              OldTag == TTK_Class? "class" : "struct");
6596    Diag(Previous->getLocation(), diag::note_previous_use);
6597    return true;
6598  }
6599  return false;
6600}
6601
6602/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6603/// former case, Name will be non-null.  In the later case, Name will be null.
6604/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6605/// reference/declaration/definition of a tag.
6606Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6607                     SourceLocation KWLoc, CXXScopeSpec &SS,
6608                     IdentifierInfo *Name, SourceLocation NameLoc,
6609                     AttributeList *Attr, AccessSpecifier AS,
6610                     MultiTemplateParamsArg TemplateParameterLists,
6611                     bool &OwnedDecl, bool &IsDependent,
6612                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6613                     TypeResult UnderlyingType) {
6614  // If this is not a definition, it must have a name.
6615  assert((Name != 0 || TUK == TUK_Definition) &&
6616         "Nameless record must be a definition!");
6617  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6618
6619  OwnedDecl = false;
6620  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6621
6622  // FIXME: Check explicit specializations more carefully.
6623  bool isExplicitSpecialization = false;
6624  bool Invalid = false;
6625
6626  // We only need to do this matching if we have template parameters
6627  // or a scope specifier, which also conveniently avoids this work
6628  // for non-C++ cases.
6629  if (TemplateParameterLists.size() > 0 ||
6630      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6631    if (TemplateParameterList *TemplateParams
6632          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
6633                                                TemplateParameterLists.get(),
6634                                                TemplateParameterLists.size(),
6635                                                    TUK == TUK_Friend,
6636                                                    isExplicitSpecialization,
6637                                                    Invalid)) {
6638      if (TemplateParams->size() > 0) {
6639        // This is a declaration or definition of a class template (which may
6640        // be a member of another template).
6641
6642        if (Invalid)
6643          return 0;
6644
6645        OwnedDecl = false;
6646        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6647                                               SS, Name, NameLoc, Attr,
6648                                               TemplateParams, AS,
6649                                           TemplateParameterLists.size() - 1,
6650                 (TemplateParameterList**) TemplateParameterLists.release());
6651        return Result.get();
6652      } else {
6653        // The "template<>" header is extraneous.
6654        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6655          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6656        isExplicitSpecialization = true;
6657      }
6658    }
6659  }
6660
6661  // Figure out the underlying type if this a enum declaration. We need to do
6662  // this early, because it's needed to detect if this is an incompatible
6663  // redeclaration.
6664  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6665
6666  if (Kind == TTK_Enum) {
6667    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6668      // No underlying type explicitly specified, or we failed to parse the
6669      // type, default to int.
6670      EnumUnderlying = Context.IntTy.getTypePtr();
6671    else if (UnderlyingType.get()) {
6672      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6673      // integral type; any cv-qualification is ignored.
6674      TypeSourceInfo *TI = 0;
6675      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6676      EnumUnderlying = TI;
6677
6678      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6679
6680      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6681        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6682          << T;
6683        // Recover by falling back to int.
6684        EnumUnderlying = Context.IntTy.getTypePtr();
6685      }
6686
6687      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6688                                          UPPC_FixedUnderlyingType))
6689        EnumUnderlying = Context.IntTy.getTypePtr();
6690
6691    } else if (getLangOptions().Microsoft)
6692      // Microsoft enums are always of int type.
6693      EnumUnderlying = Context.IntTy.getTypePtr();
6694  }
6695
6696  DeclContext *SearchDC = CurContext;
6697  DeclContext *DC = CurContext;
6698  bool isStdBadAlloc = false;
6699
6700  RedeclarationKind Redecl = ForRedeclaration;
6701  if (TUK == TUK_Friend || TUK == TUK_Reference)
6702    Redecl = NotForRedeclaration;
6703
6704  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6705
6706  if (Name && SS.isNotEmpty()) {
6707    // We have a nested-name tag ('struct foo::bar').
6708
6709    // Check for invalid 'foo::'.
6710    if (SS.isInvalid()) {
6711      Name = 0;
6712      goto CreateNewDecl;
6713    }
6714
6715    // If this is a friend or a reference to a class in a dependent
6716    // context, don't try to make a decl for it.
6717    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6718      DC = computeDeclContext(SS, false);
6719      if (!DC) {
6720        IsDependent = true;
6721        return 0;
6722      }
6723    } else {
6724      DC = computeDeclContext(SS, true);
6725      if (!DC) {
6726        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6727          << SS.getRange();
6728        return 0;
6729      }
6730    }
6731
6732    if (RequireCompleteDeclContext(SS, DC))
6733      return 0;
6734
6735    SearchDC = DC;
6736    // Look-up name inside 'foo::'.
6737    LookupQualifiedName(Previous, DC);
6738
6739    if (Previous.isAmbiguous())
6740      return 0;
6741
6742    if (Previous.empty()) {
6743      // Name lookup did not find anything. However, if the
6744      // nested-name-specifier refers to the current instantiation,
6745      // and that current instantiation has any dependent base
6746      // classes, we might find something at instantiation time: treat
6747      // this as a dependent elaborated-type-specifier.
6748      // But this only makes any sense for reference-like lookups.
6749      if (Previous.wasNotFoundInCurrentInstantiation() &&
6750          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6751        IsDependent = true;
6752        return 0;
6753      }
6754
6755      // A tag 'foo::bar' must already exist.
6756      Diag(NameLoc, diag::err_not_tag_in_scope)
6757        << Kind << Name << DC << SS.getRange();
6758      Name = 0;
6759      Invalid = true;
6760      goto CreateNewDecl;
6761    }
6762  } else if (Name) {
6763    // If this is a named struct, check to see if there was a previous forward
6764    // declaration or definition.
6765    // FIXME: We're looking into outer scopes here, even when we
6766    // shouldn't be. Doing so can result in ambiguities that we
6767    // shouldn't be diagnosing.
6768    LookupName(Previous, S);
6769
6770    if (Previous.isAmbiguous() && TUK == TUK_Definition) {
6771      LookupResult::Filter F = Previous.makeFilter();
6772      while (F.hasNext()) {
6773        NamedDecl *ND = F.next();
6774        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
6775          F.erase();
6776      }
6777      F.done();
6778
6779      if (Previous.isAmbiguous())
6780        return 0;
6781    }
6782
6783    // Note:  there used to be some attempt at recovery here.
6784    if (Previous.isAmbiguous())
6785      return 0;
6786
6787    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6788      // FIXME: This makes sure that we ignore the contexts associated
6789      // with C structs, unions, and enums when looking for a matching
6790      // tag declaration or definition. See the similar lookup tweak
6791      // in Sema::LookupName; is there a better way to deal with this?
6792      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6793        SearchDC = SearchDC->getParent();
6794    }
6795  } else if (S->isFunctionPrototypeScope()) {
6796    // If this is an enum declaration in function prototype scope, set its
6797    // initial context to the translation unit.
6798    SearchDC = Context.getTranslationUnitDecl();
6799  }
6800
6801  if (Previous.isSingleResult() &&
6802      Previous.getFoundDecl()->isTemplateParameter()) {
6803    // Maybe we will complain about the shadowed template parameter.
6804    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6805    // Just pretend that we didn't see the previous declaration.
6806    Previous.clear();
6807  }
6808
6809  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6810      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6811    // This is a declaration of or a reference to "std::bad_alloc".
6812    isStdBadAlloc = true;
6813
6814    if (Previous.empty() && StdBadAlloc) {
6815      // std::bad_alloc has been implicitly declared (but made invisible to
6816      // name lookup). Fill in this implicit declaration as the previous
6817      // declaration, so that the declarations get chained appropriately.
6818      Previous.addDecl(getStdBadAlloc());
6819    }
6820  }
6821
6822  // If we didn't find a previous declaration, and this is a reference
6823  // (or friend reference), move to the correct scope.  In C++, we
6824  // also need to do a redeclaration lookup there, just in case
6825  // there's a shadow friend decl.
6826  if (Name && Previous.empty() &&
6827      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6828    if (Invalid) goto CreateNewDecl;
6829    assert(SS.isEmpty());
6830
6831    if (TUK == TUK_Reference) {
6832      // C++ [basic.scope.pdecl]p5:
6833      //   -- for an elaborated-type-specifier of the form
6834      //
6835      //          class-key identifier
6836      //
6837      //      if the elaborated-type-specifier is used in the
6838      //      decl-specifier-seq or parameter-declaration-clause of a
6839      //      function defined in namespace scope, the identifier is
6840      //      declared as a class-name in the namespace that contains
6841      //      the declaration; otherwise, except as a friend
6842      //      declaration, the identifier is declared in the smallest
6843      //      non-class, non-function-prototype scope that contains the
6844      //      declaration.
6845      //
6846      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6847      // C structs and unions.
6848      //
6849      // It is an error in C++ to declare (rather than define) an enum
6850      // type, including via an elaborated type specifier.  We'll
6851      // diagnose that later; for now, declare the enum in the same
6852      // scope as we would have picked for any other tag type.
6853      //
6854      // GNU C also supports this behavior as part of its incomplete
6855      // enum types extension, while GNU C++ does not.
6856      //
6857      // Find the context where we'll be declaring the tag.
6858      // FIXME: We would like to maintain the current DeclContext as the
6859      // lexical context,
6860      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6861        SearchDC = SearchDC->getParent();
6862
6863      // Find the scope where we'll be declaring the tag.
6864      while (S->isClassScope() ||
6865             (getLangOptions().CPlusPlus &&
6866              S->isFunctionPrototypeScope()) ||
6867             ((S->getFlags() & Scope::DeclScope) == 0) ||
6868             (S->getEntity() &&
6869              ((DeclContext *)S->getEntity())->isTransparentContext()))
6870        S = S->getParent();
6871    } else {
6872      assert(TUK == TUK_Friend);
6873      // C++ [namespace.memdef]p3:
6874      //   If a friend declaration in a non-local class first declares a
6875      //   class or function, the friend class or function is a member of
6876      //   the innermost enclosing namespace.
6877      SearchDC = SearchDC->getEnclosingNamespaceContext();
6878    }
6879
6880    // In C++, we need to do a redeclaration lookup to properly
6881    // diagnose some problems.
6882    if (getLangOptions().CPlusPlus) {
6883      Previous.setRedeclarationKind(ForRedeclaration);
6884      LookupQualifiedName(Previous, SearchDC);
6885    }
6886  }
6887
6888  if (!Previous.empty()) {
6889    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6890
6891    // It's okay to have a tag decl in the same scope as a typedef
6892    // which hides a tag decl in the same scope.  Finding this
6893    // insanity with a redeclaration lookup can only actually happen
6894    // in C++.
6895    //
6896    // This is also okay for elaborated-type-specifiers, which is
6897    // technically forbidden by the current standard but which is
6898    // okay according to the likely resolution of an open issue;
6899    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6900    if (getLangOptions().CPlusPlus) {
6901      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6902        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6903          TagDecl *Tag = TT->getDecl();
6904          if (Tag->getDeclName() == Name &&
6905              Tag->getDeclContext()->getRedeclContext()
6906                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6907            PrevDecl = Tag;
6908            Previous.clear();
6909            Previous.addDecl(Tag);
6910            Previous.resolveKind();
6911          }
6912        }
6913      }
6914    }
6915
6916    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6917      // If this is a use of a previous tag, or if the tag is already declared
6918      // in the same scope (so that the definition/declaration completes or
6919      // rementions the tag), reuse the decl.
6920      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6921          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6922        // Make sure that this wasn't declared as an enum and now used as a
6923        // struct or something similar.
6924        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6925          bool SafeToContinue
6926            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6927               Kind != TTK_Enum);
6928          if (SafeToContinue)
6929            Diag(KWLoc, diag::err_use_with_wrong_tag)
6930              << Name
6931              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6932                                              PrevTagDecl->getKindName());
6933          else
6934            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6935          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6936
6937          if (SafeToContinue)
6938            Kind = PrevTagDecl->getTagKind();
6939          else {
6940            // Recover by making this an anonymous redefinition.
6941            Name = 0;
6942            Previous.clear();
6943            Invalid = true;
6944          }
6945        }
6946
6947        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6948          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6949
6950          // All conflicts with previous declarations are recovered by
6951          // returning the previous declaration.
6952          if (ScopedEnum != PrevEnum->isScoped()) {
6953            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6954              << PrevEnum->isScoped();
6955            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6956            return PrevTagDecl;
6957          }
6958          else if (EnumUnderlying && PrevEnum->isFixed()) {
6959            QualType T;
6960            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6961                T = TI->getType();
6962            else
6963                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6964
6965            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6966              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6967                   diag::err_enum_redeclare_type_mismatch)
6968                << T
6969                << PrevEnum->getIntegerType();
6970              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6971              return PrevTagDecl;
6972            }
6973          }
6974          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6975            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6976              << PrevEnum->isFixed();
6977            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6978            return PrevTagDecl;
6979          }
6980        }
6981
6982        if (!Invalid) {
6983          // If this is a use, just return the declaration we found.
6984
6985          // FIXME: In the future, return a variant or some other clue
6986          // for the consumer of this Decl to know it doesn't own it.
6987          // For our current ASTs this shouldn't be a problem, but will
6988          // need to be changed with DeclGroups.
6989          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6990              TUK == TUK_Friend)
6991            return PrevTagDecl;
6992
6993          // Diagnose attempts to redefine a tag.
6994          if (TUK == TUK_Definition) {
6995            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6996              // If we're defining a specialization and the previous definition
6997              // is from an implicit instantiation, don't emit an error
6998              // here; we'll catch this in the general case below.
6999              if (!isExplicitSpecialization ||
7000                  !isa<CXXRecordDecl>(Def) ||
7001                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7002                                               == TSK_ExplicitSpecialization) {
7003                Diag(NameLoc, diag::err_redefinition) << Name;
7004                Diag(Def->getLocation(), diag::note_previous_definition);
7005                // If this is a redefinition, recover by making this
7006                // struct be anonymous, which will make any later
7007                // references get the previous definition.
7008                Name = 0;
7009                Previous.clear();
7010                Invalid = true;
7011              }
7012            } else {
7013              // If the type is currently being defined, complain
7014              // about a nested redefinition.
7015              const TagType *Tag
7016                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7017              if (Tag->isBeingDefined()) {
7018                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7019                Diag(PrevTagDecl->getLocation(),
7020                     diag::note_previous_definition);
7021                Name = 0;
7022                Previous.clear();
7023                Invalid = true;
7024              }
7025            }
7026
7027            // Okay, this is definition of a previously declared or referenced
7028            // tag PrevDecl. We're going to create a new Decl for it.
7029          }
7030        }
7031        // If we get here we have (another) forward declaration or we
7032        // have a definition.  Just create a new decl.
7033
7034      } else {
7035        // If we get here, this is a definition of a new tag type in a nested
7036        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7037        // new decl/type.  We set PrevDecl to NULL so that the entities
7038        // have distinct types.
7039        Previous.clear();
7040      }
7041      // If we get here, we're going to create a new Decl. If PrevDecl
7042      // is non-NULL, it's a definition of the tag declared by
7043      // PrevDecl. If it's NULL, we have a new definition.
7044
7045
7046    // Otherwise, PrevDecl is not a tag, but was found with tag
7047    // lookup.  This is only actually possible in C++, where a few
7048    // things like templates still live in the tag namespace.
7049    } else {
7050      assert(getLangOptions().CPlusPlus);
7051
7052      // Use a better diagnostic if an elaborated-type-specifier
7053      // found the wrong kind of type on the first
7054      // (non-redeclaration) lookup.
7055      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7056          !Previous.isForRedeclaration()) {
7057        unsigned Kind = 0;
7058        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7059        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7060        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7061        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7062        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7063        Invalid = true;
7064
7065      // Otherwise, only diagnose if the declaration is in scope.
7066      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7067                                isExplicitSpecialization)) {
7068        // do nothing
7069
7070      // Diagnose implicit declarations introduced by elaborated types.
7071      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7072        unsigned Kind = 0;
7073        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7074        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7075        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7076        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7077        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7078        Invalid = true;
7079
7080      // Otherwise it's a declaration.  Call out a particularly common
7081      // case here.
7082      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7083        unsigned Kind = 0;
7084        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7085        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7086          << Name << Kind << TND->getUnderlyingType();
7087        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7088        Invalid = true;
7089
7090      // Otherwise, diagnose.
7091      } else {
7092        // The tag name clashes with something else in the target scope,
7093        // issue an error and recover by making this tag be anonymous.
7094        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7095        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7096        Name = 0;
7097        Invalid = true;
7098      }
7099
7100      // The existing declaration isn't relevant to us; we're in a
7101      // new scope, so clear out the previous declaration.
7102      Previous.clear();
7103    }
7104  }
7105
7106CreateNewDecl:
7107
7108  TagDecl *PrevDecl = 0;
7109  if (Previous.isSingleResult())
7110    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7111
7112  // If there is an identifier, use the location of the identifier as the
7113  // location of the decl, otherwise use the location of the struct/union
7114  // keyword.
7115  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7116
7117  // Otherwise, create a new declaration. If there is a previous
7118  // declaration of the same entity, the two will be linked via
7119  // PrevDecl.
7120  TagDecl *New;
7121
7122  bool IsForwardReference = false;
7123  if (Kind == TTK_Enum) {
7124    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7125    // enum X { A, B, C } D;    D should chain to X.
7126    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7127                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7128                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7129    // If this is an undefined enum, warn.
7130    if (TUK != TUK_Definition && !Invalid) {
7131      TagDecl *Def;
7132      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7133        // C++0x: 7.2p2: opaque-enum-declaration.
7134        // Conflicts are diagnosed above. Do nothing.
7135      }
7136      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7137        Diag(Loc, diag::ext_forward_ref_enum_def)
7138          << New;
7139        Diag(Def->getLocation(), diag::note_previous_definition);
7140      } else {
7141        unsigned DiagID = diag::ext_forward_ref_enum;
7142        if (getLangOptions().Microsoft)
7143          DiagID = diag::ext_ms_forward_ref_enum;
7144        else if (getLangOptions().CPlusPlus)
7145          DiagID = diag::err_forward_ref_enum;
7146        Diag(Loc, DiagID);
7147
7148        // If this is a forward-declared reference to an enumeration, make a
7149        // note of it; we won't actually be introducing the declaration into
7150        // the declaration context.
7151        if (TUK == TUK_Reference)
7152          IsForwardReference = true;
7153      }
7154    }
7155
7156    if (EnumUnderlying) {
7157      EnumDecl *ED = cast<EnumDecl>(New);
7158      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7159        ED->setIntegerTypeSourceInfo(TI);
7160      else
7161        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7162      ED->setPromotionType(ED->getIntegerType());
7163    }
7164
7165  } else {
7166    // struct/union/class
7167
7168    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7169    // struct X { int A; } D;    D should chain to X.
7170    if (getLangOptions().CPlusPlus) {
7171      // FIXME: Look for a way to use RecordDecl for simple structs.
7172      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7173                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7174
7175      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7176        StdBadAlloc = cast<CXXRecordDecl>(New);
7177    } else
7178      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7179                               cast_or_null<RecordDecl>(PrevDecl));
7180  }
7181
7182  // Maybe add qualifier info.
7183  if (SS.isNotEmpty()) {
7184    if (SS.isSet()) {
7185      New->setQualifierInfo(SS.getWithLocInContext(Context));
7186      if (TemplateParameterLists.size() > 0) {
7187        New->setTemplateParameterListsInfo(Context,
7188                                           TemplateParameterLists.size(),
7189                    (TemplateParameterList**) TemplateParameterLists.release());
7190      }
7191    }
7192    else
7193      Invalid = true;
7194  }
7195
7196  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7197    // Add alignment attributes if necessary; these attributes are checked when
7198    // the ASTContext lays out the structure.
7199    //
7200    // It is important for implementing the correct semantics that this
7201    // happen here (in act on tag decl). The #pragma pack stack is
7202    // maintained as a result of parser callbacks which can occur at
7203    // many points during the parsing of a struct declaration (because
7204    // the #pragma tokens are effectively skipped over during the
7205    // parsing of the struct).
7206    AddAlignmentAttributesForRecord(RD);
7207
7208    AddMsStructLayoutForRecord(RD);
7209  }
7210
7211  // If this is a specialization of a member class (of a class template),
7212  // check the specialization.
7213  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7214    Invalid = true;
7215
7216  if (Invalid)
7217    New->setInvalidDecl();
7218
7219  if (Attr)
7220    ProcessDeclAttributeList(S, New, Attr);
7221
7222  // If we're declaring or defining a tag in function prototype scope
7223  // in C, note that this type can only be used within the function.
7224  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7225    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7226
7227  // Set the lexical context. If the tag has a C++ scope specifier, the
7228  // lexical context will be different from the semantic context.
7229  New->setLexicalDeclContext(CurContext);
7230
7231  // Mark this as a friend decl if applicable.
7232  if (TUK == TUK_Friend)
7233    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
7234
7235  // Set the access specifier.
7236  if (!Invalid && SearchDC->isRecord())
7237    SetMemberAccessSpecifier(New, PrevDecl, AS);
7238
7239  if (TUK == TUK_Definition)
7240    New->startDefinition();
7241
7242  // If this has an identifier, add it to the scope stack.
7243  if (TUK == TUK_Friend) {
7244    // We might be replacing an existing declaration in the lookup tables;
7245    // if so, borrow its access specifier.
7246    if (PrevDecl)
7247      New->setAccess(PrevDecl->getAccess());
7248
7249    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7250    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7251    if (Name) // can be null along some error paths
7252      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7253        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7254  } else if (Name) {
7255    S = getNonFieldDeclScope(S);
7256    PushOnScopeChains(New, S, !IsForwardReference);
7257    if (IsForwardReference)
7258      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7259
7260  } else {
7261    CurContext->addDecl(New);
7262  }
7263
7264  // If this is the C FILE type, notify the AST context.
7265  if (IdentifierInfo *II = New->getIdentifier())
7266    if (!New->isInvalidDecl() &&
7267        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7268        II->isStr("FILE"))
7269      Context.setFILEDecl(New);
7270
7271  OwnedDecl = true;
7272  return New;
7273}
7274
7275void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7276  AdjustDeclIfTemplate(TagD);
7277  TagDecl *Tag = cast<TagDecl>(TagD);
7278
7279  // Enter the tag context.
7280  PushDeclContext(S, Tag);
7281}
7282
7283void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7284                                           SourceLocation FinalLoc,
7285                                           SourceLocation LBraceLoc) {
7286  AdjustDeclIfTemplate(TagD);
7287  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7288
7289  FieldCollector->StartClass();
7290
7291  if (!Record->getIdentifier())
7292    return;
7293
7294  if (FinalLoc.isValid())
7295    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7296
7297  // C++ [class]p2:
7298  //   [...] The class-name is also inserted into the scope of the
7299  //   class itself; this is known as the injected-class-name. For
7300  //   purposes of access checking, the injected-class-name is treated
7301  //   as if it were a public member name.
7302  CXXRecordDecl *InjectedClassName
7303    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7304                            Record->getLocStart(), Record->getLocation(),
7305                            Record->getIdentifier(),
7306                            /*PrevDecl=*/0,
7307                            /*DelayTypeCreation=*/true);
7308  Context.getTypeDeclType(InjectedClassName, Record);
7309  InjectedClassName->setImplicit();
7310  InjectedClassName->setAccess(AS_public);
7311  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7312      InjectedClassName->setDescribedClassTemplate(Template);
7313  PushOnScopeChains(InjectedClassName, S);
7314  assert(InjectedClassName->isInjectedClassName() &&
7315         "Broken injected-class-name");
7316}
7317
7318void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7319                                    SourceLocation RBraceLoc) {
7320  AdjustDeclIfTemplate(TagD);
7321  TagDecl *Tag = cast<TagDecl>(TagD);
7322  Tag->setRBraceLoc(RBraceLoc);
7323
7324  if (isa<CXXRecordDecl>(Tag))
7325    FieldCollector->FinishClass();
7326
7327  // Exit this scope of this tag's definition.
7328  PopDeclContext();
7329
7330  // Notify the consumer that we've defined a tag.
7331  Consumer.HandleTagDeclDefinition(Tag);
7332}
7333
7334void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7335  AdjustDeclIfTemplate(TagD);
7336  TagDecl *Tag = cast<TagDecl>(TagD);
7337  Tag->setInvalidDecl();
7338
7339  // We're undoing ActOnTagStartDefinition here, not
7340  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7341  // the FieldCollector.
7342
7343  PopDeclContext();
7344}
7345
7346// Note that FieldName may be null for anonymous bitfields.
7347bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7348                          QualType FieldTy, const Expr *BitWidth,
7349                          bool *ZeroWidth) {
7350  // Default to true; that shouldn't confuse checks for emptiness
7351  if (ZeroWidth)
7352    *ZeroWidth = true;
7353
7354  // C99 6.7.2.1p4 - verify the field type.
7355  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7356  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7357    // Handle incomplete types with specific error.
7358    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7359      return true;
7360    if (FieldName)
7361      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7362        << FieldName << FieldTy << BitWidth->getSourceRange();
7363    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7364      << FieldTy << BitWidth->getSourceRange();
7365  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7366                                             UPPC_BitFieldWidth))
7367    return true;
7368
7369  // If the bit-width is type- or value-dependent, don't try to check
7370  // it now.
7371  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7372    return false;
7373
7374  llvm::APSInt Value;
7375  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7376    return true;
7377
7378  if (Value != 0 && ZeroWidth)
7379    *ZeroWidth = false;
7380
7381  // Zero-width bitfield is ok for anonymous field.
7382  if (Value == 0 && FieldName)
7383    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7384
7385  if (Value.isSigned() && Value.isNegative()) {
7386    if (FieldName)
7387      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7388               << FieldName << Value.toString(10);
7389    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7390      << Value.toString(10);
7391  }
7392
7393  if (!FieldTy->isDependentType()) {
7394    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7395    if (Value.getZExtValue() > TypeSize) {
7396      if (!getLangOptions().CPlusPlus) {
7397        if (FieldName)
7398          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7399            << FieldName << (unsigned)Value.getZExtValue()
7400            << (unsigned)TypeSize;
7401
7402        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7403          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7404      }
7405
7406      if (FieldName)
7407        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7408          << FieldName << (unsigned)Value.getZExtValue()
7409          << (unsigned)TypeSize;
7410      else
7411        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7412          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7413    }
7414  }
7415
7416  return false;
7417}
7418
7419/// ActOnField - Each field of a struct/union/class is passed into this in order
7420/// to create a FieldDecl object for it.
7421Decl *Sema::ActOnField(Scope *S, Decl *TagD,
7422                                 SourceLocation DeclStart,
7423                                 Declarator &D, ExprTy *BitfieldWidth) {
7424  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7425                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7426                               AS_public);
7427  return Res;
7428}
7429
7430/// HandleField - Analyze a field of a C struct or a C++ data member.
7431///
7432FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7433                             SourceLocation DeclStart,
7434                             Declarator &D, Expr *BitWidth,
7435                             AccessSpecifier AS) {
7436  IdentifierInfo *II = D.getIdentifier();
7437  SourceLocation Loc = DeclStart;
7438  if (II) Loc = D.getIdentifierLoc();
7439
7440  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7441  QualType T = TInfo->getType();
7442  if (getLangOptions().CPlusPlus) {
7443    CheckExtraCXXDefaultArguments(D);
7444
7445    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7446                                        UPPC_DataMemberType)) {
7447      D.setInvalidType();
7448      T = Context.IntTy;
7449      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7450    }
7451  }
7452
7453  DiagnoseFunctionSpecifiers(D);
7454
7455  if (D.getDeclSpec().isThreadSpecified())
7456    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7457
7458  // Check to see if this name was declared as a member previously
7459  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7460  LookupName(Previous, S);
7461  assert((Previous.empty() || Previous.isOverloadedResult() ||
7462          Previous.isSingleResult())
7463    && "Lookup of member name should be either overloaded, single or null");
7464
7465  // If the name is overloaded then get any declaration else get the single result
7466  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7467    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7468
7469  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7470    // Maybe we will complain about the shadowed template parameter.
7471    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7472    // Just pretend that we didn't see the previous declaration.
7473    PrevDecl = 0;
7474  }
7475
7476  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7477    PrevDecl = 0;
7478
7479  bool Mutable
7480    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7481  SourceLocation TSSL = D.getSourceRange().getBegin();
7482  FieldDecl *NewFD
7483    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
7484                     AS, PrevDecl, &D);
7485
7486  if (NewFD->isInvalidDecl())
7487    Record->setInvalidDecl();
7488
7489  if (NewFD->isInvalidDecl() && PrevDecl) {
7490    // Don't introduce NewFD into scope; there's already something
7491    // with the same name in the same scope.
7492  } else if (II) {
7493    PushOnScopeChains(NewFD, S);
7494  } else
7495    Record->addDecl(NewFD);
7496
7497  return NewFD;
7498}
7499
7500/// \brief Build a new FieldDecl and check its well-formedness.
7501///
7502/// This routine builds a new FieldDecl given the fields name, type,
7503/// record, etc. \p PrevDecl should refer to any previous declaration
7504/// with the same name and in the same scope as the field to be
7505/// created.
7506///
7507/// \returns a new FieldDecl.
7508///
7509/// \todo The Declarator argument is a hack. It will be removed once
7510FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7511                                TypeSourceInfo *TInfo,
7512                                RecordDecl *Record, SourceLocation Loc,
7513                                bool Mutable, Expr *BitWidth,
7514                                SourceLocation TSSL,
7515                                AccessSpecifier AS, NamedDecl *PrevDecl,
7516                                Declarator *D) {
7517  IdentifierInfo *II = Name.getAsIdentifierInfo();
7518  bool InvalidDecl = false;
7519  if (D) InvalidDecl = D->isInvalidType();
7520
7521  // If we receive a broken type, recover by assuming 'int' and
7522  // marking this declaration as invalid.
7523  if (T.isNull()) {
7524    InvalidDecl = true;
7525    T = Context.IntTy;
7526  }
7527
7528  QualType EltTy = Context.getBaseElementType(T);
7529  if (!EltTy->isDependentType() &&
7530      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7531    // Fields of incomplete type force their record to be invalid.
7532    Record->setInvalidDecl();
7533    InvalidDecl = true;
7534  }
7535
7536  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7537  // than a variably modified type.
7538  if (!InvalidDecl && T->isVariablyModifiedType()) {
7539    bool SizeIsNegative;
7540    llvm::APSInt Oversized;
7541    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7542                                                           SizeIsNegative,
7543                                                           Oversized);
7544    if (!FixedTy.isNull()) {
7545      Diag(Loc, diag::warn_illegal_constant_array_size);
7546      T = FixedTy;
7547    } else {
7548      if (SizeIsNegative)
7549        Diag(Loc, diag::err_typecheck_negative_array_size);
7550      else if (Oversized.getBoolValue())
7551        Diag(Loc, diag::err_array_too_large)
7552          << Oversized.toString(10);
7553      else
7554        Diag(Loc, diag::err_typecheck_field_variable_size);
7555      InvalidDecl = true;
7556    }
7557  }
7558
7559  // Fields can not have abstract class types
7560  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7561                                             diag::err_abstract_type_in_decl,
7562                                             AbstractFieldType))
7563    InvalidDecl = true;
7564
7565  bool ZeroWidth = false;
7566  // If this is declared as a bit-field, check the bit-field.
7567  if (!InvalidDecl && BitWidth &&
7568      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7569    InvalidDecl = true;
7570    BitWidth = 0;
7571    ZeroWidth = false;
7572  }
7573
7574  // Check that 'mutable' is consistent with the type of the declaration.
7575  if (!InvalidDecl && Mutable) {
7576    unsigned DiagID = 0;
7577    if (T->isReferenceType())
7578      DiagID = diag::err_mutable_reference;
7579    else if (T.isConstQualified())
7580      DiagID = diag::err_mutable_const;
7581
7582    if (DiagID) {
7583      SourceLocation ErrLoc = Loc;
7584      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7585        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7586      Diag(ErrLoc, DiagID);
7587      Mutable = false;
7588      InvalidDecl = true;
7589    }
7590  }
7591
7592  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7593                                       BitWidth, Mutable);
7594  if (InvalidDecl)
7595    NewFD->setInvalidDecl();
7596
7597  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7598    Diag(Loc, diag::err_duplicate_member) << II;
7599    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7600    NewFD->setInvalidDecl();
7601  }
7602
7603  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7604    if (Record->isUnion()) {
7605      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7606        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7607        if (RDecl->getDefinition()) {
7608          // C++ [class.union]p1: An object of a class with a non-trivial
7609          // constructor, a non-trivial copy constructor, a non-trivial
7610          // destructor, or a non-trivial copy assignment operator
7611          // cannot be a member of a union, nor can an array of such
7612          // objects.
7613          // TODO: C++0x alters this restriction significantly.
7614          if (CheckNontrivialField(NewFD))
7615            NewFD->setInvalidDecl();
7616        }
7617      }
7618
7619      // C++ [class.union]p1: If a union contains a member of reference type,
7620      // the program is ill-formed.
7621      if (EltTy->isReferenceType()) {
7622        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7623          << NewFD->getDeclName() << EltTy;
7624        NewFD->setInvalidDecl();
7625      }
7626    }
7627  }
7628
7629  // FIXME: We need to pass in the attributes given an AST
7630  // representation, not a parser representation.
7631  if (D)
7632    // FIXME: What to pass instead of TUScope?
7633    ProcessDeclAttributes(TUScope, NewFD, *D);
7634
7635  if (T.isObjCGCWeak())
7636    Diag(Loc, diag::warn_attribute_weak_on_field);
7637
7638  NewFD->setAccess(AS);
7639  return NewFD;
7640}
7641
7642bool Sema::CheckNontrivialField(FieldDecl *FD) {
7643  assert(FD);
7644  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7645
7646  if (FD->isInvalidDecl())
7647    return true;
7648
7649  QualType EltTy = Context.getBaseElementType(FD->getType());
7650  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7651    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7652    if (RDecl->getDefinition()) {
7653      // We check for copy constructors before constructors
7654      // because otherwise we'll never get complaints about
7655      // copy constructors.
7656
7657      CXXSpecialMember member = CXXInvalid;
7658      if (!RDecl->hasTrivialCopyConstructor())
7659        member = CXXCopyConstructor;
7660      else if (!RDecl->hasTrivialConstructor())
7661        member = CXXConstructor;
7662      else if (!RDecl->hasTrivialCopyAssignment())
7663        member = CXXCopyAssignment;
7664      else if (!RDecl->hasTrivialDestructor())
7665        member = CXXDestructor;
7666
7667      if (member != CXXInvalid) {
7668        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7669              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7670        DiagnoseNontrivial(RT, member);
7671        return true;
7672      }
7673    }
7674  }
7675
7676  return false;
7677}
7678
7679/// DiagnoseNontrivial - Given that a class has a non-trivial
7680/// special member, figure out why.
7681void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7682  QualType QT(T, 0U);
7683  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7684
7685  // Check whether the member was user-declared.
7686  switch (member) {
7687  case CXXInvalid:
7688    break;
7689
7690  case CXXConstructor:
7691    if (RD->hasUserDeclaredConstructor()) {
7692      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7693      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7694        const FunctionDecl *body = 0;
7695        ci->hasBody(body);
7696        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7697          SourceLocation CtorLoc = ci->getLocation();
7698          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7699          return;
7700        }
7701      }
7702
7703      assert(0 && "found no user-declared constructors");
7704      return;
7705    }
7706    break;
7707
7708  case CXXCopyConstructor:
7709    if (RD->hasUserDeclaredCopyConstructor()) {
7710      SourceLocation CtorLoc =
7711        RD->getCopyConstructor(Context, 0)->getLocation();
7712      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7713      return;
7714    }
7715    break;
7716
7717  case CXXCopyAssignment:
7718    if (RD->hasUserDeclaredCopyAssignment()) {
7719      // FIXME: this should use the location of the copy
7720      // assignment, not the type.
7721      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7722      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7723      return;
7724    }
7725    break;
7726
7727  case CXXDestructor:
7728    if (RD->hasUserDeclaredDestructor()) {
7729      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7730      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7731      return;
7732    }
7733    break;
7734  }
7735
7736  typedef CXXRecordDecl::base_class_iterator base_iter;
7737
7738  // Virtual bases and members inhibit trivial copying/construction,
7739  // but not trivial destruction.
7740  if (member != CXXDestructor) {
7741    // Check for virtual bases.  vbases includes indirect virtual bases,
7742    // so we just iterate through the direct bases.
7743    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7744      if (bi->isVirtual()) {
7745        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7746        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7747        return;
7748      }
7749
7750    // Check for virtual methods.
7751    typedef CXXRecordDecl::method_iterator meth_iter;
7752    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7753         ++mi) {
7754      if (mi->isVirtual()) {
7755        SourceLocation MLoc = mi->getSourceRange().getBegin();
7756        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7757        return;
7758      }
7759    }
7760  }
7761
7762  bool (CXXRecordDecl::*hasTrivial)() const;
7763  switch (member) {
7764  case CXXConstructor:
7765    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
7766  case CXXCopyConstructor:
7767    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7768  case CXXCopyAssignment:
7769    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7770  case CXXDestructor:
7771    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7772  default:
7773    assert(0 && "unexpected special member"); return;
7774  }
7775
7776  // Check for nontrivial bases (and recurse).
7777  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7778    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7779    assert(BaseRT && "Don't know how to handle dependent bases");
7780    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7781    if (!(BaseRecTy->*hasTrivial)()) {
7782      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7783      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7784      DiagnoseNontrivial(BaseRT, member);
7785      return;
7786    }
7787  }
7788
7789  // Check for nontrivial members (and recurse).
7790  typedef RecordDecl::field_iterator field_iter;
7791  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7792       ++fi) {
7793    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7794    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7795      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7796
7797      if (!(EltRD->*hasTrivial)()) {
7798        SourceLocation FLoc = (*fi)->getLocation();
7799        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7800        DiagnoseNontrivial(EltRT, member);
7801        return;
7802      }
7803    }
7804  }
7805
7806  assert(0 && "found no explanation for non-trivial member");
7807}
7808
7809/// TranslateIvarVisibility - Translate visibility from a token ID to an
7810///  AST enum value.
7811static ObjCIvarDecl::AccessControl
7812TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7813  switch (ivarVisibility) {
7814  default: assert(0 && "Unknown visitibility kind");
7815  case tok::objc_private: return ObjCIvarDecl::Private;
7816  case tok::objc_public: return ObjCIvarDecl::Public;
7817  case tok::objc_protected: return ObjCIvarDecl::Protected;
7818  case tok::objc_package: return ObjCIvarDecl::Package;
7819  }
7820}
7821
7822/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7823/// in order to create an IvarDecl object for it.
7824Decl *Sema::ActOnIvar(Scope *S,
7825                                SourceLocation DeclStart,
7826                                Decl *IntfDecl,
7827                                Declarator &D, ExprTy *BitfieldWidth,
7828                                tok::ObjCKeywordKind Visibility) {
7829
7830  IdentifierInfo *II = D.getIdentifier();
7831  Expr *BitWidth = (Expr*)BitfieldWidth;
7832  SourceLocation Loc = DeclStart;
7833  if (II) Loc = D.getIdentifierLoc();
7834
7835  // FIXME: Unnamed fields can be handled in various different ways, for
7836  // example, unnamed unions inject all members into the struct namespace!
7837
7838  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7839  QualType T = TInfo->getType();
7840
7841  if (BitWidth) {
7842    // 6.7.2.1p3, 6.7.2.1p4
7843    if (VerifyBitField(Loc, II, T, BitWidth)) {
7844      D.setInvalidType();
7845      BitWidth = 0;
7846    }
7847  } else {
7848    // Not a bitfield.
7849
7850    // validate II.
7851
7852  }
7853  if (T->isReferenceType()) {
7854    Diag(Loc, diag::err_ivar_reference_type);
7855    D.setInvalidType();
7856  }
7857  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7858  // than a variably modified type.
7859  else if (T->isVariablyModifiedType()) {
7860    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7861    D.setInvalidType();
7862  }
7863
7864  // Get the visibility (access control) for this ivar.
7865  ObjCIvarDecl::AccessControl ac =
7866    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7867                                        : ObjCIvarDecl::None;
7868  // Must set ivar's DeclContext to its enclosing interface.
7869  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7870  ObjCContainerDecl *EnclosingContext;
7871  if (ObjCImplementationDecl *IMPDecl =
7872      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7873    if (!LangOpts.ObjCNonFragileABI2) {
7874    // Case of ivar declared in an implementation. Context is that of its class.
7875      EnclosingContext = IMPDecl->getClassInterface();
7876      assert(EnclosingContext && "Implementation has no class interface!");
7877    }
7878    else
7879      EnclosingContext = EnclosingDecl;
7880  } else {
7881    if (ObjCCategoryDecl *CDecl =
7882        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7883      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7884        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7885        return 0;
7886      }
7887    }
7888    EnclosingContext = EnclosingDecl;
7889  }
7890
7891  // Construct the decl.
7892  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7893                                             DeclStart, Loc, II, T,
7894                                             TInfo, ac, (Expr *)BitfieldWidth);
7895
7896  if (II) {
7897    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7898                                           ForRedeclaration);
7899    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7900        && !isa<TagDecl>(PrevDecl)) {
7901      Diag(Loc, diag::err_duplicate_member) << II;
7902      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7903      NewID->setInvalidDecl();
7904    }
7905  }
7906
7907  // Process attributes attached to the ivar.
7908  ProcessDeclAttributes(S, NewID, D);
7909
7910  if (D.isInvalidType())
7911    NewID->setInvalidDecl();
7912
7913  if (II) {
7914    // FIXME: When interfaces are DeclContexts, we'll need to add
7915    // these to the interface.
7916    S->AddDecl(NewID);
7917    IdResolver.AddDecl(NewID);
7918  }
7919
7920  return NewID;
7921}
7922
7923/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7924/// class and class extensions. For every class @interface and class
7925/// extension @interface, if the last ivar is a bitfield of any type,
7926/// then add an implicit `char :0` ivar to the end of that interface.
7927void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7928                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7929  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7930    return;
7931
7932  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7933  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7934
7935  if (!Ivar->isBitField())
7936    return;
7937  uint64_t BitFieldSize =
7938    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7939  if (BitFieldSize == 0)
7940    return;
7941  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7942  if (!ID) {
7943    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7944      if (!CD->IsClassExtension())
7945        return;
7946    }
7947    // No need to add this to end of @implementation.
7948    else
7949      return;
7950  }
7951  // All conditions are met. Add a new bitfield to the tail end of ivars.
7952  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7953  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7954
7955  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7956                              DeclLoc, DeclLoc, 0,
7957                              Context.CharTy,
7958                              Context.CreateTypeSourceInfo(Context.CharTy),
7959                              ObjCIvarDecl::Private, BW,
7960                              true);
7961  AllIvarDecls.push_back(Ivar);
7962}
7963
7964void Sema::ActOnFields(Scope* S,
7965                       SourceLocation RecLoc, Decl *EnclosingDecl,
7966                       Decl **Fields, unsigned NumFields,
7967                       SourceLocation LBrac, SourceLocation RBrac,
7968                       AttributeList *Attr) {
7969  assert(EnclosingDecl && "missing record or interface decl");
7970
7971  // If the decl this is being inserted into is invalid, then it may be a
7972  // redeclaration or some other bogus case.  Don't try to add fields to it.
7973  if (EnclosingDecl->isInvalidDecl()) {
7974    // FIXME: Deallocate fields?
7975    return;
7976  }
7977
7978
7979  // Verify that all the fields are okay.
7980  unsigned NumNamedMembers = 0;
7981  llvm::SmallVector<FieldDecl*, 32> RecFields;
7982
7983  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7984  for (unsigned i = 0; i != NumFields; ++i) {
7985    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7986
7987    // Get the type for the field.
7988    const Type *FDTy = FD->getType().getTypePtr();
7989
7990    if (!FD->isAnonymousStructOrUnion()) {
7991      // Remember all fields written by the user.
7992      RecFields.push_back(FD);
7993    }
7994
7995    // If the field is already invalid for some reason, don't emit more
7996    // diagnostics about it.
7997    if (FD->isInvalidDecl()) {
7998      EnclosingDecl->setInvalidDecl();
7999      continue;
8000    }
8001
8002    // C99 6.7.2.1p2:
8003    //   A structure or union shall not contain a member with
8004    //   incomplete or function type (hence, a structure shall not
8005    //   contain an instance of itself, but may contain a pointer to
8006    //   an instance of itself), except that the last member of a
8007    //   structure with more than one named member may have incomplete
8008    //   array type; such a structure (and any union containing,
8009    //   possibly recursively, a member that is such a structure)
8010    //   shall not be a member of a structure or an element of an
8011    //   array.
8012    if (FDTy->isFunctionType()) {
8013      // Field declared as a function.
8014      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8015        << FD->getDeclName();
8016      FD->setInvalidDecl();
8017      EnclosingDecl->setInvalidDecl();
8018      continue;
8019    } else if (FDTy->isIncompleteArrayType() && Record &&
8020               ((i == NumFields - 1 && !Record->isUnion()) ||
8021                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8022                 (i == NumFields - 1 || Record->isUnion())))) {
8023      // Flexible array member.
8024      // Microsoft and g++ is more permissive regarding flexible array.
8025      // It will accept flexible array in union and also
8026      // as the sole element of a struct/class.
8027      if (getLangOptions().Microsoft) {
8028        if (Record->isUnion())
8029          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8030            << FD->getDeclName();
8031        else if (NumFields == 1)
8032          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8033            << FD->getDeclName() << Record->getTagKind();
8034      } else if (getLangOptions().CPlusPlus) {
8035        if (Record->isUnion())
8036          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8037            << FD->getDeclName();
8038        else if (NumFields == 1)
8039          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8040            << FD->getDeclName() << Record->getTagKind();
8041      } else if (NumNamedMembers < 1) {
8042        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8043          << FD->getDeclName();
8044        FD->setInvalidDecl();
8045        EnclosingDecl->setInvalidDecl();
8046        continue;
8047      }
8048      if (!FD->getType()->isDependentType() &&
8049          !Context.getBaseElementType(FD->getType())->isPODType()) {
8050        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8051          << FD->getDeclName() << FD->getType();
8052        FD->setInvalidDecl();
8053        EnclosingDecl->setInvalidDecl();
8054        continue;
8055      }
8056      // Okay, we have a legal flexible array member at the end of the struct.
8057      if (Record)
8058        Record->setHasFlexibleArrayMember(true);
8059    } else if (!FDTy->isDependentType() &&
8060               RequireCompleteType(FD->getLocation(), FD->getType(),
8061                                   diag::err_field_incomplete)) {
8062      // Incomplete type
8063      FD->setInvalidDecl();
8064      EnclosingDecl->setInvalidDecl();
8065      continue;
8066    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8067      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8068        // If this is a member of a union, then entire union becomes "flexible".
8069        if (Record && Record->isUnion()) {
8070          Record->setHasFlexibleArrayMember(true);
8071        } else {
8072          // If this is a struct/class and this is not the last element, reject
8073          // it.  Note that GCC supports variable sized arrays in the middle of
8074          // structures.
8075          if (i != NumFields-1)
8076            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8077              << FD->getDeclName() << FD->getType();
8078          else {
8079            // We support flexible arrays at the end of structs in
8080            // other structs as an extension.
8081            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8082              << FD->getDeclName();
8083            if (Record)
8084              Record->setHasFlexibleArrayMember(true);
8085          }
8086        }
8087      }
8088      if (Record && FDTTy->getDecl()->hasObjectMember())
8089        Record->setHasObjectMember(true);
8090    } else if (FDTy->isObjCObjectType()) {
8091      /// A field cannot be an Objective-c object
8092      Diag(FD->getLocation(), diag::err_statically_allocated_object);
8093      FD->setInvalidDecl();
8094      EnclosingDecl->setInvalidDecl();
8095      continue;
8096    } else if (getLangOptions().ObjC1 &&
8097               getLangOptions().getGCMode() != LangOptions::NonGC &&
8098               Record &&
8099               (FD->getType()->isObjCObjectPointerType() ||
8100                FD->getType().isObjCGCStrong()))
8101      Record->setHasObjectMember(true);
8102    else if (Context.getAsArrayType(FD->getType())) {
8103      QualType BaseType = Context.getBaseElementType(FD->getType());
8104      if (Record && BaseType->isRecordType() &&
8105          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8106        Record->setHasObjectMember(true);
8107    }
8108    // Keep track of the number of named members.
8109    if (FD->getIdentifier())
8110      ++NumNamedMembers;
8111  }
8112
8113  // Okay, we successfully defined 'Record'.
8114  if (Record) {
8115    bool Completed = false;
8116    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8117      if (!CXXRecord->isInvalidDecl()) {
8118        // Set access bits correctly on the directly-declared conversions.
8119        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8120        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8121             I != E; ++I)
8122          Convs->setAccess(I, (*I)->getAccess());
8123
8124        if (!CXXRecord->isDependentType()) {
8125          // Add any implicitly-declared members to this class.
8126          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8127
8128          // If we have virtual base classes, we may end up finding multiple
8129          // final overriders for a given virtual function. Check for this
8130          // problem now.
8131          if (CXXRecord->getNumVBases()) {
8132            CXXFinalOverriderMap FinalOverriders;
8133            CXXRecord->getFinalOverriders(FinalOverriders);
8134
8135            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8136                                             MEnd = FinalOverriders.end();
8137                 M != MEnd; ++M) {
8138              for (OverridingMethods::iterator SO = M->second.begin(),
8139                                            SOEnd = M->second.end();
8140                   SO != SOEnd; ++SO) {
8141                assert(SO->second.size() > 0 &&
8142                       "Virtual function without overridding functions?");
8143                if (SO->second.size() == 1)
8144                  continue;
8145
8146                // C++ [class.virtual]p2:
8147                //   In a derived class, if a virtual member function of a base
8148                //   class subobject has more than one final overrider the
8149                //   program is ill-formed.
8150                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8151                  << (NamedDecl *)M->first << Record;
8152                Diag(M->first->getLocation(),
8153                     diag::note_overridden_virtual_function);
8154                for (OverridingMethods::overriding_iterator
8155                          OM = SO->second.begin(),
8156                       OMEnd = SO->second.end();
8157                     OM != OMEnd; ++OM)
8158                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8159                    << (NamedDecl *)M->first << OM->Method->getParent();
8160
8161                Record->setInvalidDecl();
8162              }
8163            }
8164            CXXRecord->completeDefinition(&FinalOverriders);
8165            Completed = true;
8166          }
8167        }
8168      }
8169    }
8170
8171    if (!Completed)
8172      Record->completeDefinition();
8173  } else {
8174    ObjCIvarDecl **ClsFields =
8175      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8176    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8177      ID->setLocEnd(RBrac);
8178      // Add ivar's to class's DeclContext.
8179      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8180        ClsFields[i]->setLexicalDeclContext(ID);
8181        ID->addDecl(ClsFields[i]);
8182      }
8183      // Must enforce the rule that ivars in the base classes may not be
8184      // duplicates.
8185      if (ID->getSuperClass())
8186        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8187    } else if (ObjCImplementationDecl *IMPDecl =
8188                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8189      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8190      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8191        // Ivar declared in @implementation never belongs to the implementation.
8192        // Only it is in implementation's lexical context.
8193        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8194      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8195    } else if (ObjCCategoryDecl *CDecl =
8196                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8197      // case of ivars in class extension; all other cases have been
8198      // reported as errors elsewhere.
8199      // FIXME. Class extension does not have a LocEnd field.
8200      // CDecl->setLocEnd(RBrac);
8201      // Add ivar's to class extension's DeclContext.
8202      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8203        ClsFields[i]->setLexicalDeclContext(CDecl);
8204        CDecl->addDecl(ClsFields[i]);
8205      }
8206    }
8207  }
8208
8209  if (Attr)
8210    ProcessDeclAttributeList(S, Record, Attr);
8211
8212  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8213  // set the visibility of this record.
8214  if (Record && !Record->getDeclContext()->isRecord())
8215    AddPushedVisibilityAttribute(Record);
8216}
8217
8218/// \brief Determine whether the given integral value is representable within
8219/// the given type T.
8220static bool isRepresentableIntegerValue(ASTContext &Context,
8221                                        llvm::APSInt &Value,
8222                                        QualType T) {
8223  assert(T->isIntegralType(Context) && "Integral type required!");
8224  unsigned BitWidth = Context.getIntWidth(T);
8225
8226  if (Value.isUnsigned() || Value.isNonNegative()) {
8227    if (T->isSignedIntegerType())
8228      --BitWidth;
8229    return Value.getActiveBits() <= BitWidth;
8230  }
8231  return Value.getMinSignedBits() <= BitWidth;
8232}
8233
8234// \brief Given an integral type, return the next larger integral type
8235// (or a NULL type of no such type exists).
8236static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8237  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8238  // enum checking below.
8239  assert(T->isIntegralType(Context) && "Integral type required!");
8240  const unsigned NumTypes = 4;
8241  QualType SignedIntegralTypes[NumTypes] = {
8242    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8243  };
8244  QualType UnsignedIntegralTypes[NumTypes] = {
8245    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8246    Context.UnsignedLongLongTy
8247  };
8248
8249  unsigned BitWidth = Context.getTypeSize(T);
8250  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
8251                                            : UnsignedIntegralTypes;
8252  for (unsigned I = 0; I != NumTypes; ++I)
8253    if (Context.getTypeSize(Types[I]) > BitWidth)
8254      return Types[I];
8255
8256  return QualType();
8257}
8258
8259EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8260                                          EnumConstantDecl *LastEnumConst,
8261                                          SourceLocation IdLoc,
8262                                          IdentifierInfo *Id,
8263                                          Expr *Val) {
8264  unsigned IntWidth = Context.Target.getIntWidth();
8265  llvm::APSInt EnumVal(IntWidth);
8266  QualType EltTy;
8267
8268  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8269    Val = 0;
8270
8271  if (Val) {
8272    if (Enum->isDependentType() || Val->isTypeDependent())
8273      EltTy = Context.DependentTy;
8274    else {
8275      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8276      SourceLocation ExpLoc;
8277      if (!Val->isValueDependent() &&
8278          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8279        Val = 0;
8280      } else {
8281        if (!getLangOptions().CPlusPlus) {
8282          // C99 6.7.2.2p2:
8283          //   The expression that defines the value of an enumeration constant
8284          //   shall be an integer constant expression that has a value
8285          //   representable as an int.
8286
8287          // Complain if the value is not representable in an int.
8288          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8289            Diag(IdLoc, diag::ext_enum_value_not_int)
8290              << EnumVal.toString(10) << Val->getSourceRange()
8291              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8292          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8293            // Force the type of the expression to 'int'.
8294            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8295          }
8296        }
8297
8298        if (Enum->isFixed()) {
8299          EltTy = Enum->getIntegerType();
8300
8301          // C++0x [dcl.enum]p5:
8302          //   ... if the initializing value of an enumerator cannot be
8303          //   represented by the underlying type, the program is ill-formed.
8304          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8305            if (getLangOptions().Microsoft) {
8306              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8307              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8308            } else
8309              Diag(IdLoc, diag::err_enumerator_too_large)
8310                << EltTy;
8311          } else
8312            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8313        }
8314        else {
8315          // C++0x [dcl.enum]p5:
8316          //   If the underlying type is not fixed, the type of each enumerator
8317          //   is the type of its initializing value:
8318          //     - If an initializer is specified for an enumerator, the
8319          //       initializing value has the same type as the expression.
8320          EltTy = Val->getType();
8321        }
8322      }
8323    }
8324  }
8325
8326  if (!Val) {
8327    if (Enum->isDependentType())
8328      EltTy = Context.DependentTy;
8329    else if (!LastEnumConst) {
8330      // C++0x [dcl.enum]p5:
8331      //   If the underlying type is not fixed, the type of each enumerator
8332      //   is the type of its initializing value:
8333      //     - If no initializer is specified for the first enumerator, the
8334      //       initializing value has an unspecified integral type.
8335      //
8336      // GCC uses 'int' for its unspecified integral type, as does
8337      // C99 6.7.2.2p3.
8338      if (Enum->isFixed()) {
8339        EltTy = Enum->getIntegerType();
8340      }
8341      else {
8342        EltTy = Context.IntTy;
8343      }
8344    } else {
8345      // Assign the last value + 1.
8346      EnumVal = LastEnumConst->getInitVal();
8347      ++EnumVal;
8348      EltTy = LastEnumConst->getType();
8349
8350      // Check for overflow on increment.
8351      if (EnumVal < LastEnumConst->getInitVal()) {
8352        // C++0x [dcl.enum]p5:
8353        //   If the underlying type is not fixed, the type of each enumerator
8354        //   is the type of its initializing value:
8355        //
8356        //     - Otherwise the type of the initializing value is the same as
8357        //       the type of the initializing value of the preceding enumerator
8358        //       unless the incremented value is not representable in that type,
8359        //       in which case the type is an unspecified integral type
8360        //       sufficient to contain the incremented value. If no such type
8361        //       exists, the program is ill-formed.
8362        QualType T = getNextLargerIntegralType(Context, EltTy);
8363        if (T.isNull() || Enum->isFixed()) {
8364          // There is no integral type larger enough to represent this
8365          // value. Complain, then allow the value to wrap around.
8366          EnumVal = LastEnumConst->getInitVal();
8367          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8368          ++EnumVal;
8369          if (Enum->isFixed())
8370            // When the underlying type is fixed, this is ill-formed.
8371            Diag(IdLoc, diag::err_enumerator_wrapped)
8372              << EnumVal.toString(10)
8373              << EltTy;
8374          else
8375            Diag(IdLoc, diag::warn_enumerator_too_large)
8376              << EnumVal.toString(10);
8377        } else {
8378          EltTy = T;
8379        }
8380
8381        // Retrieve the last enumerator's value, extent that type to the
8382        // type that is supposed to be large enough to represent the incremented
8383        // value, then increment.
8384        EnumVal = LastEnumConst->getInitVal();
8385        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8386        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8387        ++EnumVal;
8388
8389        // If we're not in C++, diagnose the overflow of enumerator values,
8390        // which in C99 means that the enumerator value is not representable in
8391        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8392        // permits enumerator values that are representable in some larger
8393        // integral type.
8394        if (!getLangOptions().CPlusPlus && !T.isNull())
8395          Diag(IdLoc, diag::warn_enum_value_overflow);
8396      } else if (!getLangOptions().CPlusPlus &&
8397                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8398        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8399        Diag(IdLoc, diag::ext_enum_value_not_int)
8400          << EnumVal.toString(10) << 1;
8401      }
8402    }
8403  }
8404
8405  if (!EltTy->isDependentType()) {
8406    // Make the enumerator value match the signedness and size of the
8407    // enumerator's type.
8408    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8409    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8410  }
8411
8412  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8413                                  Val, EnumVal);
8414}
8415
8416
8417Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8418                              SourceLocation IdLoc, IdentifierInfo *Id,
8419                              AttributeList *Attr,
8420                              SourceLocation EqualLoc, ExprTy *val) {
8421  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8422  EnumConstantDecl *LastEnumConst =
8423    cast_or_null<EnumConstantDecl>(lastEnumConst);
8424  Expr *Val = static_cast<Expr*>(val);
8425
8426  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8427  // we find one that is.
8428  S = getNonFieldDeclScope(S);
8429
8430  // Verify that there isn't already something declared with this name in this
8431  // scope.
8432  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8433                                         ForRedeclaration);
8434  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8435    // Maybe we will complain about the shadowed template parameter.
8436    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8437    // Just pretend that we didn't see the previous declaration.
8438    PrevDecl = 0;
8439  }
8440
8441  if (PrevDecl) {
8442    // When in C++, we may get a TagDecl with the same name; in this case the
8443    // enum constant will 'hide' the tag.
8444    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8445           "Received TagDecl when not in C++!");
8446    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8447      if (isa<EnumConstantDecl>(PrevDecl))
8448        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8449      else
8450        Diag(IdLoc, diag::err_redefinition) << Id;
8451      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8452      return 0;
8453    }
8454  }
8455
8456  // C++ [class.mem]p13:
8457  //   If T is the name of a class, then each of the following shall have a
8458  //   name different from T:
8459  //     - every enumerator of every member of class T that is an enumerated
8460  //       type
8461  if (CXXRecordDecl *Record
8462                      = dyn_cast<CXXRecordDecl>(
8463                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8464    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8465      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8466
8467  EnumConstantDecl *New =
8468    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8469
8470  if (New) {
8471    // Process attributes.
8472    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8473
8474    // Register this decl in the current scope stack.
8475    New->setAccess(TheEnumDecl->getAccess());
8476    PushOnScopeChains(New, S);
8477  }
8478
8479  return New;
8480}
8481
8482void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8483                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8484                         Decl **Elements, unsigned NumElements,
8485                         Scope *S, AttributeList *Attr) {
8486  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8487  QualType EnumType = Context.getTypeDeclType(Enum);
8488
8489  if (Attr)
8490    ProcessDeclAttributeList(S, Enum, Attr);
8491
8492  if (Enum->isDependentType()) {
8493    for (unsigned i = 0; i != NumElements; ++i) {
8494      EnumConstantDecl *ECD =
8495        cast_or_null<EnumConstantDecl>(Elements[i]);
8496      if (!ECD) continue;
8497
8498      ECD->setType(EnumType);
8499    }
8500
8501    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8502    return;
8503  }
8504
8505  // TODO: If the result value doesn't fit in an int, it must be a long or long
8506  // long value.  ISO C does not support this, but GCC does as an extension,
8507  // emit a warning.
8508  unsigned IntWidth = Context.Target.getIntWidth();
8509  unsigned CharWidth = Context.Target.getCharWidth();
8510  unsigned ShortWidth = Context.Target.getShortWidth();
8511
8512  // Verify that all the values are okay, compute the size of the values, and
8513  // reverse the list.
8514  unsigned NumNegativeBits = 0;
8515  unsigned NumPositiveBits = 0;
8516
8517  // Keep track of whether all elements have type int.
8518  bool AllElementsInt = true;
8519
8520  for (unsigned i = 0; i != NumElements; ++i) {
8521    EnumConstantDecl *ECD =
8522      cast_or_null<EnumConstantDecl>(Elements[i]);
8523    if (!ECD) continue;  // Already issued a diagnostic.
8524
8525    const llvm::APSInt &InitVal = ECD->getInitVal();
8526
8527    // Keep track of the size of positive and negative values.
8528    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8529      NumPositiveBits = std::max(NumPositiveBits,
8530                                 (unsigned)InitVal.getActiveBits());
8531    else
8532      NumNegativeBits = std::max(NumNegativeBits,
8533                                 (unsigned)InitVal.getMinSignedBits());
8534
8535    // Keep track of whether every enum element has type int (very commmon).
8536    if (AllElementsInt)
8537      AllElementsInt = ECD->getType() == Context.IntTy;
8538  }
8539
8540  // Figure out the type that should be used for this enum.
8541  QualType BestType;
8542  unsigned BestWidth;
8543
8544  // C++0x N3000 [conv.prom]p3:
8545  //   An rvalue of an unscoped enumeration type whose underlying
8546  //   type is not fixed can be converted to an rvalue of the first
8547  //   of the following types that can represent all the values of
8548  //   the enumeration: int, unsigned int, long int, unsigned long
8549  //   int, long long int, or unsigned long long int.
8550  // C99 6.4.4.3p2:
8551  //   An identifier declared as an enumeration constant has type int.
8552  // The C99 rule is modified by a gcc extension
8553  QualType BestPromotionType;
8554
8555  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8556  // -fshort-enums is the equivalent to specifying the packed attribute on all
8557  // enum definitions.
8558  if (LangOpts.ShortEnums)
8559    Packed = true;
8560
8561  if (Enum->isFixed()) {
8562    BestType = BestPromotionType = Enum->getIntegerType();
8563    // We don't need to set BestWidth, because BestType is going to be the type
8564    // of the enumerators, but we do anyway because otherwise some compilers
8565    // warn that it might be used uninitialized.
8566    BestWidth = CharWidth;
8567  }
8568  else if (NumNegativeBits) {
8569    // If there is a negative value, figure out the smallest integer type (of
8570    // int/long/longlong) that fits.
8571    // If it's packed, check also if it fits a char or a short.
8572    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8573      BestType = Context.SignedCharTy;
8574      BestWidth = CharWidth;
8575    } else if (Packed && NumNegativeBits <= ShortWidth &&
8576               NumPositiveBits < ShortWidth) {
8577      BestType = Context.ShortTy;
8578      BestWidth = ShortWidth;
8579    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8580      BestType = Context.IntTy;
8581      BestWidth = IntWidth;
8582    } else {
8583      BestWidth = Context.Target.getLongWidth();
8584
8585      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8586        BestType = Context.LongTy;
8587      } else {
8588        BestWidth = Context.Target.getLongLongWidth();
8589
8590        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8591          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8592        BestType = Context.LongLongTy;
8593      }
8594    }
8595    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8596  } else {
8597    // If there is no negative value, figure out the smallest type that fits
8598    // all of the enumerator values.
8599    // If it's packed, check also if it fits a char or a short.
8600    if (Packed && NumPositiveBits <= CharWidth) {
8601      BestType = Context.UnsignedCharTy;
8602      BestPromotionType = Context.IntTy;
8603      BestWidth = CharWidth;
8604    } else if (Packed && NumPositiveBits <= ShortWidth) {
8605      BestType = Context.UnsignedShortTy;
8606      BestPromotionType = Context.IntTy;
8607      BestWidth = ShortWidth;
8608    } else if (NumPositiveBits <= IntWidth) {
8609      BestType = Context.UnsignedIntTy;
8610      BestWidth = IntWidth;
8611      BestPromotionType
8612        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8613                           ? Context.UnsignedIntTy : Context.IntTy;
8614    } else if (NumPositiveBits <=
8615               (BestWidth = Context.Target.getLongWidth())) {
8616      BestType = Context.UnsignedLongTy;
8617      BestPromotionType
8618        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8619                           ? Context.UnsignedLongTy : Context.LongTy;
8620    } else {
8621      BestWidth = Context.Target.getLongLongWidth();
8622      assert(NumPositiveBits <= BestWidth &&
8623             "How could an initializer get larger than ULL?");
8624      BestType = Context.UnsignedLongLongTy;
8625      BestPromotionType
8626        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8627                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8628    }
8629  }
8630
8631  // Loop over all of the enumerator constants, changing their types to match
8632  // the type of the enum if needed.
8633  for (unsigned i = 0; i != NumElements; ++i) {
8634    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8635    if (!ECD) continue;  // Already issued a diagnostic.
8636
8637    // Standard C says the enumerators have int type, but we allow, as an
8638    // extension, the enumerators to be larger than int size.  If each
8639    // enumerator value fits in an int, type it as an int, otherwise type it the
8640    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8641    // that X has type 'int', not 'unsigned'.
8642
8643    // Determine whether the value fits into an int.
8644    llvm::APSInt InitVal = ECD->getInitVal();
8645
8646    // If it fits into an integer type, force it.  Otherwise force it to match
8647    // the enum decl type.
8648    QualType NewTy;
8649    unsigned NewWidth;
8650    bool NewSign;
8651    if (!getLangOptions().CPlusPlus &&
8652        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8653      NewTy = Context.IntTy;
8654      NewWidth = IntWidth;
8655      NewSign = true;
8656    } else if (ECD->getType() == BestType) {
8657      // Already the right type!
8658      if (getLangOptions().CPlusPlus)
8659        // C++ [dcl.enum]p4: Following the closing brace of an
8660        // enum-specifier, each enumerator has the type of its
8661        // enumeration.
8662        ECD->setType(EnumType);
8663      continue;
8664    } else {
8665      NewTy = BestType;
8666      NewWidth = BestWidth;
8667      NewSign = BestType->isSignedIntegerType();
8668    }
8669
8670    // Adjust the APSInt value.
8671    InitVal = InitVal.extOrTrunc(NewWidth);
8672    InitVal.setIsSigned(NewSign);
8673    ECD->setInitVal(InitVal);
8674
8675    // Adjust the Expr initializer and type.
8676    if (ECD->getInitExpr() &&
8677	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8678      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8679                                                CK_IntegralCast,
8680                                                ECD->getInitExpr(),
8681                                                /*base paths*/ 0,
8682                                                VK_RValue));
8683    if (getLangOptions().CPlusPlus)
8684      // C++ [dcl.enum]p4: Following the closing brace of an
8685      // enum-specifier, each enumerator has the type of its
8686      // enumeration.
8687      ECD->setType(EnumType);
8688    else
8689      ECD->setType(NewTy);
8690  }
8691
8692  Enum->completeDefinition(BestType, BestPromotionType,
8693                           NumPositiveBits, NumNegativeBits);
8694}
8695
8696Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8697                                  SourceLocation StartLoc,
8698                                  SourceLocation EndLoc) {
8699  StringLiteral *AsmString = cast<StringLiteral>(expr);
8700
8701  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8702                                                   AsmString, StartLoc,
8703                                                   EndLoc);
8704  CurContext->addDecl(New);
8705  return New;
8706}
8707
8708void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8709                             SourceLocation PragmaLoc,
8710                             SourceLocation NameLoc) {
8711  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8712
8713  if (PrevDecl) {
8714    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8715  } else {
8716    (void)WeakUndeclaredIdentifiers.insert(
8717      std::pair<IdentifierInfo*,WeakInfo>
8718        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8719  }
8720}
8721
8722void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8723                                IdentifierInfo* AliasName,
8724                                SourceLocation PragmaLoc,
8725                                SourceLocation NameLoc,
8726                                SourceLocation AliasNameLoc) {
8727  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8728                                    LookupOrdinaryName);
8729  WeakInfo W = WeakInfo(Name, NameLoc);
8730
8731  if (PrevDecl) {
8732    if (!PrevDecl->hasAttr<AliasAttr>())
8733      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8734        DeclApplyPragmaWeak(TUScope, ND, W);
8735  } else {
8736    (void)WeakUndeclaredIdentifiers.insert(
8737      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8738  }
8739}
8740