SemaDeclObjC.cpp revision 1235b0ebb16618bf41a9e7234d5e2690faf97d37
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/ExternalSemaSource.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/Sema/DeclSpec.h"
23#include "llvm/ADT/DenseSet.h"
24
25using namespace clang;
26
27/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
28/// and user declared, in the method definition's AST.
29void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
30  assert(getCurMethodDecl() == 0 && "Method parsing confused");
31  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
32
33  // If we don't have a valid method decl, simply return.
34  if (!MDecl)
35    return;
36
37  // Allow the rest of sema to find private method decl implementations.
38  if (MDecl->isInstanceMethod())
39    AddInstanceMethodToGlobalPool(MDecl, true);
40  else
41    AddFactoryMethodToGlobalPool(MDecl, true);
42
43  // Allow all of Sema to see that we are entering a method definition.
44  PushDeclContext(FnBodyScope, MDecl);
45  PushFunctionScope();
46
47  // Create Decl objects for each parameter, entrring them in the scope for
48  // binding to their use.
49
50  // Insert the invisible arguments, self and _cmd!
51  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
52
53  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
54  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
55
56  // Introduce all of the other parameters into this scope.
57  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
58       E = MDecl->param_end(); PI != E; ++PI) {
59    ParmVarDecl *Param = (*PI);
60    if (!Param->isInvalidDecl() &&
61        RequireCompleteType(Param->getLocation(), Param->getType(),
62                            diag::err_typecheck_decl_incomplete_type))
63          Param->setInvalidDecl();
64    if ((*PI)->getIdentifier())
65      PushOnScopeChains(*PI, FnBodyScope);
66  }
67}
68
69Decl *Sema::
70ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
71                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
72                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
73                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
74                         const SourceLocation *ProtoLocs,
75                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
76  assert(ClassName && "Missing class identifier");
77
78  // Check for another declaration kind with the same name.
79  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
80                                         LookupOrdinaryName, ForRedeclaration);
81
82  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
83    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
84    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
85  }
86
87  ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
88  if (IDecl) {
89    // Class already seen. Is it a forward declaration?
90    if (!IDecl->isForwardDecl()) {
91      IDecl->setInvalidDecl();
92      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName();
93      Diag(IDecl->getLocation(), diag::note_previous_definition);
94
95      // Return the previous class interface.
96      // FIXME: don't leak the objects passed in!
97      return IDecl;
98    } else {
99      IDecl->setLocation(AtInterfaceLoc);
100      IDecl->setForwardDecl(false);
101      IDecl->setClassLoc(ClassLoc);
102      // If the forward decl was in a PCH, we need to write it again in a
103      // dependent AST file.
104      IDecl->setChangedSinceDeserialization(true);
105
106      // Since this ObjCInterfaceDecl was created by a forward declaration,
107      // we now add it to the DeclContext since it wasn't added before
108      // (see ActOnForwardClassDeclaration).
109      IDecl->setLexicalDeclContext(CurContext);
110      CurContext->addDecl(IDecl);
111
112      if (AttrList)
113        ProcessDeclAttributeList(TUScope, IDecl, AttrList);
114    }
115  } else {
116    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc,
117                                      ClassName, ClassLoc);
118    if (AttrList)
119      ProcessDeclAttributeList(TUScope, IDecl, AttrList);
120
121    PushOnScopeChains(IDecl, TUScope);
122  }
123
124  if (SuperName) {
125    // Check if a different kind of symbol declared in this scope.
126    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
127                                LookupOrdinaryName);
128
129    if (!PrevDecl) {
130      // Try to correct for a typo in the superclass name.
131      LookupResult R(*this, SuperName, SuperLoc, LookupOrdinaryName);
132      if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
133          (PrevDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
134        Diag(SuperLoc, diag::err_undef_superclass_suggest)
135          << SuperName << ClassName << PrevDecl->getDeclName();
136        Diag(PrevDecl->getLocation(), diag::note_previous_decl)
137          << PrevDecl->getDeclName();
138      }
139    }
140
141    if (PrevDecl == IDecl) {
142      Diag(SuperLoc, diag::err_recursive_superclass)
143        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
144      IDecl->setLocEnd(ClassLoc);
145    } else {
146      ObjCInterfaceDecl *SuperClassDecl =
147                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
148
149      // Diagnose classes that inherit from deprecated classes.
150      if (SuperClassDecl)
151        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
152
153      if (PrevDecl && SuperClassDecl == 0) {
154        // The previous declaration was not a class decl. Check if we have a
155        // typedef. If we do, get the underlying class type.
156        if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(PrevDecl)) {
157          QualType T = TDecl->getUnderlyingType();
158          if (T->isObjCObjectType()) {
159            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
160              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
161          }
162        }
163
164        // This handles the following case:
165        //
166        // typedef int SuperClass;
167        // @interface MyClass : SuperClass {} @end
168        //
169        if (!SuperClassDecl) {
170          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
171          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
172        }
173      }
174
175      if (!dyn_cast_or_null<TypedefDecl>(PrevDecl)) {
176        if (!SuperClassDecl)
177          Diag(SuperLoc, diag::err_undef_superclass)
178            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
179        else if (SuperClassDecl->isForwardDecl())
180          Diag(SuperLoc, diag::err_undef_superclass)
181            << SuperClassDecl->getDeclName() << ClassName
182            << SourceRange(AtInterfaceLoc, ClassLoc);
183      }
184      IDecl->setSuperClass(SuperClassDecl);
185      IDecl->setSuperClassLoc(SuperLoc);
186      IDecl->setLocEnd(SuperLoc);
187    }
188  } else { // we have a root class.
189    IDecl->setLocEnd(ClassLoc);
190  }
191
192  // Check then save referenced protocols.
193  if (NumProtoRefs) {
194    IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
195                           ProtoLocs, Context);
196    IDecl->setLocEnd(EndProtoLoc);
197  }
198
199  CheckObjCDeclScope(IDecl);
200  return IDecl;
201}
202
203/// ActOnCompatiblityAlias - this action is called after complete parsing of
204/// @compatibility_alias declaration. It sets up the alias relationships.
205Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
206                                        IdentifierInfo *AliasName,
207                                        SourceLocation AliasLocation,
208                                        IdentifierInfo *ClassName,
209                                        SourceLocation ClassLocation) {
210  // Look for previous declaration of alias name
211  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
212                                      LookupOrdinaryName, ForRedeclaration);
213  if (ADecl) {
214    if (isa<ObjCCompatibleAliasDecl>(ADecl))
215      Diag(AliasLocation, diag::warn_previous_alias_decl);
216    else
217      Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
218    Diag(ADecl->getLocation(), diag::note_previous_declaration);
219    return 0;
220  }
221  // Check for class declaration
222  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
223                                       LookupOrdinaryName, ForRedeclaration);
224  if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(CDeclU)) {
225    QualType T = TDecl->getUnderlyingType();
226    if (T->isObjCObjectType()) {
227      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
228        ClassName = IDecl->getIdentifier();
229        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
230                                  LookupOrdinaryName, ForRedeclaration);
231      }
232    }
233  }
234  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
235  if (CDecl == 0) {
236    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
237    if (CDeclU)
238      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
239    return 0;
240  }
241
242  // Everything checked out, instantiate a new alias declaration AST.
243  ObjCCompatibleAliasDecl *AliasDecl =
244    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
245
246  if (!CheckObjCDeclScope(AliasDecl))
247    PushOnScopeChains(AliasDecl, TUScope);
248
249  return AliasDecl;
250}
251
252void Sema::CheckForwardProtocolDeclarationForCircularDependency(
253  IdentifierInfo *PName,
254  SourceLocation &Ploc, SourceLocation PrevLoc,
255  const ObjCList<ObjCProtocolDecl> &PList) {
256  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
257       E = PList.end(); I != E; ++I) {
258
259    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
260                                                 Ploc)) {
261      if (PDecl->getIdentifier() == PName) {
262        Diag(Ploc, diag::err_protocol_has_circular_dependency);
263        Diag(PrevLoc, diag::note_previous_definition);
264      }
265      CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
266        PDecl->getLocation(), PDecl->getReferencedProtocols());
267    }
268  }
269}
270
271Decl *
272Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
273                                  IdentifierInfo *ProtocolName,
274                                  SourceLocation ProtocolLoc,
275                                  Decl * const *ProtoRefs,
276                                  unsigned NumProtoRefs,
277                                  const SourceLocation *ProtoLocs,
278                                  SourceLocation EndProtoLoc,
279                                  AttributeList *AttrList) {
280  // FIXME: Deal with AttrList.
281  assert(ProtocolName && "Missing protocol identifier");
282  ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc);
283  if (PDecl) {
284    // Protocol already seen. Better be a forward protocol declaration
285    if (!PDecl->isForwardDecl()) {
286      Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
287      Diag(PDecl->getLocation(), diag::note_previous_definition);
288      // Just return the protocol we already had.
289      // FIXME: don't leak the objects passed in!
290      return PDecl;
291    }
292    ObjCList<ObjCProtocolDecl> PList;
293    PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
294    CheckForwardProtocolDeclarationForCircularDependency(
295      ProtocolName, ProtocolLoc, PDecl->getLocation(), PList);
296
297    // Make sure the cached decl gets a valid start location.
298    PDecl->setLocation(AtProtoInterfaceLoc);
299    PDecl->setForwardDecl(false);
300    CurContext->addDecl(PDecl);
301    // Repeat in dependent AST files.
302    PDecl->setChangedSinceDeserialization(true);
303  } else {
304    PDecl = ObjCProtocolDecl::Create(Context, CurContext,
305                                     AtProtoInterfaceLoc,ProtocolName);
306    PushOnScopeChains(PDecl, TUScope);
307    PDecl->setForwardDecl(false);
308  }
309  if (AttrList)
310    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
311  if (NumProtoRefs) {
312    /// Check then save referenced protocols.
313    PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
314                           ProtoLocs, Context);
315    PDecl->setLocEnd(EndProtoLoc);
316  }
317
318  CheckObjCDeclScope(PDecl);
319  return PDecl;
320}
321
322/// FindProtocolDeclaration - This routine looks up protocols and
323/// issues an error if they are not declared. It returns list of
324/// protocol declarations in its 'Protocols' argument.
325void
326Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
327                              const IdentifierLocPair *ProtocolId,
328                              unsigned NumProtocols,
329                              llvm::SmallVectorImpl<Decl *> &Protocols) {
330  for (unsigned i = 0; i != NumProtocols; ++i) {
331    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
332                                             ProtocolId[i].second);
333    if (!PDecl) {
334      LookupResult R(*this, ProtocolId[i].first, ProtocolId[i].second,
335                     LookupObjCProtocolName);
336      if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
337          (PDecl = R.getAsSingle<ObjCProtocolDecl>())) {
338        Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
339          << ProtocolId[i].first << R.getLookupName();
340        Diag(PDecl->getLocation(), diag::note_previous_decl)
341          << PDecl->getDeclName();
342      }
343    }
344
345    if (!PDecl) {
346      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
347        << ProtocolId[i].first;
348      continue;
349    }
350
351    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
352
353    // If this is a forward declaration and we are supposed to warn in this
354    // case, do it.
355    if (WarnOnDeclarations && PDecl->isForwardDecl())
356      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
357        << ProtocolId[i].first;
358    Protocols.push_back(PDecl);
359  }
360}
361
362/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
363/// a class method in its extension.
364///
365void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
366                                            ObjCInterfaceDecl *ID) {
367  if (!ID)
368    return;  // Possibly due to previous error
369
370  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
371  for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
372       e =  ID->meth_end(); i != e; ++i) {
373    ObjCMethodDecl *MD = *i;
374    MethodMap[MD->getSelector()] = MD;
375  }
376
377  if (MethodMap.empty())
378    return;
379  for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
380       e =  CAT->meth_end(); i != e; ++i) {
381    ObjCMethodDecl *Method = *i;
382    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
383    if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
384      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
385            << Method->getDeclName();
386      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
387    }
388  }
389}
390
391/// ActOnForwardProtocolDeclaration - Handle @protocol foo;
392Decl *
393Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
394                                      const IdentifierLocPair *IdentList,
395                                      unsigned NumElts,
396                                      AttributeList *attrList) {
397  llvm::SmallVector<ObjCProtocolDecl*, 32> Protocols;
398  llvm::SmallVector<SourceLocation, 8> ProtoLocs;
399
400  for (unsigned i = 0; i != NumElts; ++i) {
401    IdentifierInfo *Ident = IdentList[i].first;
402    ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second);
403    bool isNew = false;
404    if (PDecl == 0) { // Not already seen?
405      PDecl = ObjCProtocolDecl::Create(Context, CurContext,
406                                       IdentList[i].second, Ident);
407      PushOnScopeChains(PDecl, TUScope, false);
408      isNew = true;
409    }
410    if (attrList) {
411      ProcessDeclAttributeList(TUScope, PDecl, attrList);
412      if (!isNew)
413        PDecl->setChangedSinceDeserialization(true);
414    }
415    Protocols.push_back(PDecl);
416    ProtoLocs.push_back(IdentList[i].second);
417  }
418
419  ObjCForwardProtocolDecl *PDecl =
420    ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc,
421                                    Protocols.data(), Protocols.size(),
422                                    ProtoLocs.data());
423  CurContext->addDecl(PDecl);
424  CheckObjCDeclScope(PDecl);
425  return PDecl;
426}
427
428Decl *Sema::
429ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
430                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
431                            IdentifierInfo *CategoryName,
432                            SourceLocation CategoryLoc,
433                            Decl * const *ProtoRefs,
434                            unsigned NumProtoRefs,
435                            const SourceLocation *ProtoLocs,
436                            SourceLocation EndProtoLoc) {
437  ObjCCategoryDecl *CDecl;
438  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
439
440  /// Check that class of this category is already completely declared.
441  if (!IDecl || IDecl->isForwardDecl()) {
442    // Create an invalid ObjCCategoryDecl to serve as context for
443    // the enclosing method declarations.  We mark the decl invalid
444    // to make it clear that this isn't a valid AST.
445    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
446                                     ClassLoc, CategoryLoc, CategoryName);
447    CDecl->setInvalidDecl();
448    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
449    return CDecl;
450  }
451
452  if (!CategoryName && IDecl->getImplementation()) {
453    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
454    Diag(IDecl->getImplementation()->getLocation(),
455          diag::note_implementation_declared);
456  }
457
458  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
459                                   ClassLoc, CategoryLoc, CategoryName);
460  // FIXME: PushOnScopeChains?
461  CurContext->addDecl(CDecl);
462
463  CDecl->setClassInterface(IDecl);
464  // Insert class extension to the list of class's categories.
465  if (!CategoryName)
466    CDecl->insertNextClassCategory();
467
468  // If the interface is deprecated, warn about it.
469  (void)DiagnoseUseOfDecl(IDecl, ClassLoc);
470
471  if (CategoryName) {
472    /// Check for duplicate interface declaration for this category
473    ObjCCategoryDecl *CDeclChain;
474    for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
475         CDeclChain = CDeclChain->getNextClassCategory()) {
476      if (CDeclChain->getIdentifier() == CategoryName) {
477        // Class extensions can be declared multiple times.
478        Diag(CategoryLoc, diag::warn_dup_category_def)
479          << ClassName << CategoryName;
480        Diag(CDeclChain->getLocation(), diag::note_previous_definition);
481        break;
482      }
483    }
484    if (!CDeclChain)
485      CDecl->insertNextClassCategory();
486  }
487
488  if (NumProtoRefs) {
489    CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
490                           ProtoLocs, Context);
491    // Protocols in the class extension belong to the class.
492    if (CDecl->IsClassExtension())
493     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
494                                            NumProtoRefs, Context);
495  }
496
497  CheckObjCDeclScope(CDecl);
498  return CDecl;
499}
500
501/// ActOnStartCategoryImplementation - Perform semantic checks on the
502/// category implementation declaration and build an ObjCCategoryImplDecl
503/// object.
504Decl *Sema::ActOnStartCategoryImplementation(
505                      SourceLocation AtCatImplLoc,
506                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
507                      IdentifierInfo *CatName, SourceLocation CatLoc) {
508  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
509  ObjCCategoryDecl *CatIDecl = 0;
510  if (IDecl) {
511    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
512    if (!CatIDecl) {
513      // Category @implementation with no corresponding @interface.
514      // Create and install one.
515      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(),
516                                          SourceLocation(), SourceLocation(),
517                                          CatName);
518      CatIDecl->setClassInterface(IDecl);
519      CatIDecl->insertNextClassCategory();
520    }
521  }
522
523  ObjCCategoryImplDecl *CDecl =
524    ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName,
525                                 IDecl);
526  /// Check that class of this category is already completely declared.
527  if (!IDecl || IDecl->isForwardDecl())
528    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
529
530  // FIXME: PushOnScopeChains?
531  CurContext->addDecl(CDecl);
532
533  /// Check that CatName, category name, is not used in another implementation.
534  if (CatIDecl) {
535    if (CatIDecl->getImplementation()) {
536      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
537        << CatName;
538      Diag(CatIDecl->getImplementation()->getLocation(),
539           diag::note_previous_definition);
540    } else
541      CatIDecl->setImplementation(CDecl);
542  }
543
544  CheckObjCDeclScope(CDecl);
545  return CDecl;
546}
547
548Decl *Sema::ActOnStartClassImplementation(
549                      SourceLocation AtClassImplLoc,
550                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
551                      IdentifierInfo *SuperClassname,
552                      SourceLocation SuperClassLoc) {
553  ObjCInterfaceDecl* IDecl = 0;
554  // Check for another declaration kind with the same name.
555  NamedDecl *PrevDecl
556    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
557                       ForRedeclaration);
558  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
559    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
560    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
561  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
562    // If this is a forward declaration of an interface, warn.
563    if (IDecl->isForwardDecl()) {
564      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
565      IDecl = 0;
566    }
567  } else {
568    // We did not find anything with the name ClassName; try to correct for
569    // typos in the class name.
570    LookupResult R(*this, ClassName, ClassLoc, LookupOrdinaryName);
571    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
572        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
573      // Suggest the (potentially) correct interface name. However, put the
574      // fix-it hint itself in a separate note, since changing the name in
575      // the warning would make the fix-it change semantics.However, don't
576      // provide a code-modification hint or use the typo name for recovery,
577      // because this is just a warning. The program may actually be correct.
578      Diag(ClassLoc, diag::warn_undef_interface_suggest)
579        << ClassName << R.getLookupName();
580      Diag(IDecl->getLocation(), diag::note_previous_decl)
581        << R.getLookupName()
582        << FixItHint::CreateReplacement(ClassLoc,
583                                        R.getLookupName().getAsString());
584      IDecl = 0;
585    } else {
586      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
587    }
588  }
589
590  // Check that super class name is valid class name
591  ObjCInterfaceDecl* SDecl = 0;
592  if (SuperClassname) {
593    // Check if a different kind of symbol declared in this scope.
594    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
595                                LookupOrdinaryName);
596    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
597      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
598        << SuperClassname;
599      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
600    } else {
601      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
602      if (!SDecl)
603        Diag(SuperClassLoc, diag::err_undef_superclass)
604          << SuperClassname << ClassName;
605      else if (IDecl && IDecl->getSuperClass() != SDecl) {
606        // This implementation and its interface do not have the same
607        // super class.
608        Diag(SuperClassLoc, diag::err_conflicting_super_class)
609          << SDecl->getDeclName();
610        Diag(SDecl->getLocation(), diag::note_previous_definition);
611      }
612    }
613  }
614
615  if (!IDecl) {
616    // Legacy case of @implementation with no corresponding @interface.
617    // Build, chain & install the interface decl into the identifier.
618
619    // FIXME: Do we support attributes on the @implementation? If so we should
620    // copy them over.
621    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
622                                      ClassName, ClassLoc, false, true);
623    IDecl->setSuperClass(SDecl);
624    IDecl->setLocEnd(ClassLoc);
625
626    PushOnScopeChains(IDecl, TUScope);
627  } else {
628    // Mark the interface as being completed, even if it was just as
629    //   @class ....;
630    // declaration; the user cannot reopen it.
631    IDecl->setForwardDecl(false);
632  }
633
634  ObjCImplementationDecl* IMPDecl =
635    ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc,
636                                   IDecl, SDecl);
637
638  if (CheckObjCDeclScope(IMPDecl))
639    return IMPDecl;
640
641  // Check that there is no duplicate implementation of this class.
642  if (IDecl->getImplementation()) {
643    // FIXME: Don't leak everything!
644    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
645    Diag(IDecl->getImplementation()->getLocation(),
646         diag::note_previous_definition);
647  } else { // add it to the list.
648    IDecl->setImplementation(IMPDecl);
649    PushOnScopeChains(IMPDecl, TUScope);
650  }
651  return IMPDecl;
652}
653
654void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
655                                    ObjCIvarDecl **ivars, unsigned numIvars,
656                                    SourceLocation RBrace) {
657  assert(ImpDecl && "missing implementation decl");
658  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
659  if (!IDecl)
660    return;
661  /// Check case of non-existing @interface decl.
662  /// (legacy objective-c @implementation decl without an @interface decl).
663  /// Add implementations's ivar to the synthesize class's ivar list.
664  if (IDecl->isImplicitInterfaceDecl()) {
665    IDecl->setLocEnd(RBrace);
666    // Add ivar's to class's DeclContext.
667    for (unsigned i = 0, e = numIvars; i != e; ++i) {
668      ivars[i]->setLexicalDeclContext(ImpDecl);
669      IDecl->makeDeclVisibleInContext(ivars[i], false);
670      ImpDecl->addDecl(ivars[i]);
671    }
672
673    return;
674  }
675  // If implementation has empty ivar list, just return.
676  if (numIvars == 0)
677    return;
678
679  assert(ivars && "missing @implementation ivars");
680  if (LangOpts.ObjCNonFragileABI2) {
681    if (ImpDecl->getSuperClass())
682      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
683    for (unsigned i = 0; i < numIvars; i++) {
684      ObjCIvarDecl* ImplIvar = ivars[i];
685      if (const ObjCIvarDecl *ClsIvar =
686            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
687        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
688        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
689        continue;
690      }
691      // Instance ivar to Implementation's DeclContext.
692      ImplIvar->setLexicalDeclContext(ImpDecl);
693      IDecl->makeDeclVisibleInContext(ImplIvar, false);
694      ImpDecl->addDecl(ImplIvar);
695    }
696    return;
697  }
698  // Check interface's Ivar list against those in the implementation.
699  // names and types must match.
700  //
701  unsigned j = 0;
702  ObjCInterfaceDecl::ivar_iterator
703    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
704  for (; numIvars > 0 && IVI != IVE; ++IVI) {
705    ObjCIvarDecl* ImplIvar = ivars[j++];
706    ObjCIvarDecl* ClsIvar = *IVI;
707    assert (ImplIvar && "missing implementation ivar");
708    assert (ClsIvar && "missing class ivar");
709
710    // First, make sure the types match.
711    if (Context.getCanonicalType(ImplIvar->getType()) !=
712        Context.getCanonicalType(ClsIvar->getType())) {
713      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
714        << ImplIvar->getIdentifier()
715        << ImplIvar->getType() << ClsIvar->getType();
716      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
717    } else if (ImplIvar->isBitField() && ClsIvar->isBitField()) {
718      Expr *ImplBitWidth = ImplIvar->getBitWidth();
719      Expr *ClsBitWidth = ClsIvar->getBitWidth();
720      if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() !=
721          ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) {
722        Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth)
723          << ImplIvar->getIdentifier();
724        Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition);
725      }
726    }
727    // Make sure the names are identical.
728    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
729      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
730        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
731      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
732    }
733    --numIvars;
734  }
735
736  if (numIvars > 0)
737    Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
738  else if (IVI != IVE)
739    Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
740}
741
742void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
743                               bool &IncompleteImpl, unsigned DiagID) {
744  if (!IncompleteImpl) {
745    Diag(ImpLoc, diag::warn_incomplete_impl);
746    IncompleteImpl = true;
747  }
748  Diag(method->getLocation(), DiagID)
749    << method->getDeclName();
750}
751
752/// Determines if type B can be substituted for type A.  Returns true if we can
753/// guarantee that anything that the user will do to an object of type A can
754/// also be done to an object of type B.  This is trivially true if the two
755/// types are the same, or if B is a subclass of A.  It becomes more complex
756/// in cases where protocols are involved.
757///
758/// Object types in Objective-C describe the minimum requirements for an
759/// object, rather than providing a complete description of a type.  For
760/// example, if A is a subclass of B, then B* may refer to an instance of A.
761/// The principle of substitutability means that we may use an instance of A
762/// anywhere that we may use an instance of B - it will implement all of the
763/// ivars of B and all of the methods of B.
764///
765/// This substitutability is important when type checking methods, because
766/// the implementation may have stricter type definitions than the interface.
767/// The interface specifies minimum requirements, but the implementation may
768/// have more accurate ones.  For example, a method may privately accept
769/// instances of B, but only publish that it accepts instances of A.  Any
770/// object passed to it will be type checked against B, and so will implicitly
771/// by a valid A*.  Similarly, a method may return a subclass of the class that
772/// it is declared as returning.
773///
774/// This is most important when considering subclassing.  A method in a
775/// subclass must accept any object as an argument that its superclass's
776/// implementation accepts.  It may, however, accept a more general type
777/// without breaking substitutability (i.e. you can still use the subclass
778/// anywhere that you can use the superclass, but not vice versa).  The
779/// converse requirement applies to return types: the return type for a
780/// subclass method must be a valid object of the kind that the superclass
781/// advertises, but it may be specified more accurately.  This avoids the need
782/// for explicit down-casting by callers.
783///
784/// Note: This is a stricter requirement than for assignment.
785static bool isObjCTypeSubstitutable(ASTContext &C, QualType A, QualType B, bool
786    rejectId=false) {
787  ObjCObjectPointerType *a = dyn_cast<ObjCObjectPointerType>(
788      C.getCanonicalType(A));
789  ObjCObjectPointerType *b = dyn_cast<ObjCObjectPointerType>(
790      C.getCanonicalType(B));
791  // Ignore non-ObjC types.
792  if (!(a && b))
793  {
794	  //a->dump(); b->dump();
795	  return false;
796  }
797  // A type is always substitutable for itself
798  if (C.hasSameType(A, B)) return true;
799
800  if (rejectId && C.isObjCIdType(B)) return false;
801
802  // If B is a qualified id, then A must also be a qualified id and it must
803  // implement all of the protocols in B.  It may not be a qualified class.
804  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
805  // stricter definition so it is not substitutable for id<A>.
806  if (B->isObjCQualifiedIdType()) {
807    return A->isObjCQualifiedIdType() &&
808      C.ObjCQualifiedIdTypesAreCompatible(A, B, false);
809  }
810
811  /*
812  // id is a special type that bypasses type checking completely.  We want a
813  // warning when it is used in one place but not another.
814  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
815
816
817  // If B is a qualified id, then A must also be a qualified id (which it isn't
818  // if we've got this far)
819  if (B->isObjCQualifiedIdType()) return false;
820  */
821
822  // Now we know that A and B are (potentially-qualified) class types.  The
823  // normal rules for assignment apply.
824  return C.canAssignObjCInterfaces(a, b);
825}
826
827void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
828                                       ObjCMethodDecl *IntfMethodDecl) {
829  if (!Context.hasSameType(IntfMethodDecl->getResultType(),
830                           ImpMethodDecl->getResultType())) {
831    // Allow non-matching return types as long as they don't violate the
832    // principle of substitutability.  Specifically, we permit return types
833    // that are subclasses of the declared return type, or that are
834    // more-qualified versions of the declared type.
835
836    // As a possibly-temporary adjustment, we still warn in the
837    // covariant case, just with a different diagnostic (mapped to
838    // nothing under certain circumstances).
839    unsigned DiagID = diag::warn_conflicting_ret_types;
840    if (isObjCTypeSubstitutable(Context, IntfMethodDecl->getResultType(),
841          ImpMethodDecl->getResultType()))
842      DiagID = diag::warn_covariant_ret_types;
843
844    Diag(ImpMethodDecl->getLocation(), DiagID)
845      << ImpMethodDecl->getDeclName() << IntfMethodDecl->getResultType()
846      << ImpMethodDecl->getResultType();
847    Diag(IntfMethodDecl->getLocation(), diag::note_previous_definition);
848  }
849
850  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
851       IF = IntfMethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
852       IM != EM; ++IM, ++IF) {
853    QualType ParmDeclTy = (*IF)->getType().getUnqualifiedType();
854    QualType ParmImpTy = (*IM)->getType().getUnqualifiedType();
855    if (Context.hasSameType(ParmDeclTy, ParmImpTy))
856      continue;
857
858    // Allow non-matching argument types as long as they don't violate the
859    // principle of substitutability.  Specifically, the implementation must
860    // accept any objects that the superclass accepts, however it may also
861    // accept others.
862
863    // As a possibly-temporary adjustment, we still warn in the
864    // contravariant case, just with a different diagnostic (mapped to
865    // nothing under certain circumstances).
866    unsigned DiagID = diag::warn_conflicting_param_types;
867    if (isObjCTypeSubstitutable(Context, ParmImpTy, ParmDeclTy, true))
868      DiagID = diag::warn_contravariant_param_types;
869
870    Diag((*IM)->getLocation(), DiagID)
871      << ImpMethodDecl->getDeclName() << (*IF)->getType()
872      << (*IM)->getType();
873    Diag((*IF)->getLocation(), diag::note_previous_definition);
874  }
875  if (ImpMethodDecl->isVariadic() != IntfMethodDecl->isVariadic()) {
876    Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_variadic);
877    Diag(IntfMethodDecl->getLocation(), diag::note_previous_declaration);
878  }
879}
880
881/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
882/// improve the efficiency of selector lookups and type checking by associating
883/// with each protocol / interface / category the flattened instance tables. If
884/// we used an immutable set to keep the table then it wouldn't add significant
885/// memory cost and it would be handy for lookups.
886
887/// CheckProtocolMethodDefs - This routine checks unimplemented methods
888/// Declared in protocol, and those referenced by it.
889void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
890                                   ObjCProtocolDecl *PDecl,
891                                   bool& IncompleteImpl,
892                                   const llvm::DenseSet<Selector> &InsMap,
893                                   const llvm::DenseSet<Selector> &ClsMap,
894                                   ObjCContainerDecl *CDecl) {
895  ObjCInterfaceDecl *IDecl;
896  if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl))
897    IDecl = C->getClassInterface();
898  else
899    IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
900  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
901
902  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
903  ObjCInterfaceDecl *NSIDecl = 0;
904  if (getLangOptions().NeXTRuntime) {
905    // check to see if class implements forwardInvocation method and objects
906    // of this class are derived from 'NSProxy' so that to forward requests
907    // from one object to another.
908    // Under such conditions, which means that every method possible is
909    // implemented in the class, we should not issue "Method definition not
910    // found" warnings.
911    // FIXME: Use a general GetUnarySelector method for this.
912    IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
913    Selector fISelector = Context.Selectors.getSelector(1, &II);
914    if (InsMap.count(fISelector))
915      // Is IDecl derived from 'NSProxy'? If so, no instance methods
916      // need be implemented in the implementation.
917      NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
918  }
919
920  // If a method lookup fails locally we still need to look and see if
921  // the method was implemented by a base class or an inherited
922  // protocol. This lookup is slow, but occurs rarely in correct code
923  // and otherwise would terminate in a warning.
924
925  // check unimplemented instance methods.
926  if (!NSIDecl)
927    for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
928         E = PDecl->instmeth_end(); I != E; ++I) {
929      ObjCMethodDecl *method = *I;
930      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
931          !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
932          (!Super ||
933           !Super->lookupInstanceMethod(method->getSelector()))) {
934            // Ugly, but necessary. Method declared in protcol might have
935            // have been synthesized due to a property declared in the class which
936            // uses the protocol.
937            ObjCMethodDecl *MethodInClass =
938            IDecl->lookupInstanceMethod(method->getSelector());
939            if (!MethodInClass || !MethodInClass->isSynthesized()) {
940              unsigned DIAG = diag::warn_unimplemented_protocol_method;
941              if (Diags.getDiagnosticLevel(DIAG) != Diagnostic::Ignored) {
942                WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
943                Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
944                  << PDecl->getDeclName();
945              }
946            }
947          }
948    }
949  // check unimplemented class methods
950  for (ObjCProtocolDecl::classmeth_iterator
951         I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
952       I != E; ++I) {
953    ObjCMethodDecl *method = *I;
954    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
955        !ClsMap.count(method->getSelector()) &&
956        (!Super || !Super->lookupClassMethod(method->getSelector()))) {
957      unsigned DIAG = diag::warn_unimplemented_protocol_method;
958      if (Diags.getDiagnosticLevel(DIAG) != Diagnostic::Ignored) {
959        WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
960        Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
961          PDecl->getDeclName();
962      }
963    }
964  }
965  // Check on this protocols's referenced protocols, recursively.
966  for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
967       E = PDecl->protocol_end(); PI != E; ++PI)
968    CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl);
969}
970
971/// MatchAllMethodDeclarations - Check methods declaraed in interface or
972/// or protocol against those declared in their implementations.
973///
974void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
975                                      const llvm::DenseSet<Selector> &ClsMap,
976                                      llvm::DenseSet<Selector> &InsMapSeen,
977                                      llvm::DenseSet<Selector> &ClsMapSeen,
978                                      ObjCImplDecl* IMPDecl,
979                                      ObjCContainerDecl* CDecl,
980                                      bool &IncompleteImpl,
981                                      bool ImmediateClass) {
982  // Check and see if instance methods in class interface have been
983  // implemented in the implementation class. If so, their types match.
984  for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
985       E = CDecl->instmeth_end(); I != E; ++I) {
986    if (InsMapSeen.count((*I)->getSelector()))
987        continue;
988    InsMapSeen.insert((*I)->getSelector());
989    if (!(*I)->isSynthesized() &&
990        !InsMap.count((*I)->getSelector())) {
991      if (ImmediateClass)
992        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
993                            diag::note_undef_method_impl);
994      continue;
995    } else {
996      ObjCMethodDecl *ImpMethodDecl =
997      IMPDecl->getInstanceMethod((*I)->getSelector());
998      ObjCMethodDecl *IntfMethodDecl =
999      CDecl->getInstanceMethod((*I)->getSelector());
1000      assert(IntfMethodDecl &&
1001             "IntfMethodDecl is null in ImplMethodsVsClassMethods");
1002      // ImpMethodDecl may be null as in a @dynamic property.
1003      if (ImpMethodDecl)
1004        WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl);
1005    }
1006  }
1007
1008  // Check and see if class methods in class interface have been
1009  // implemented in the implementation class. If so, their types match.
1010   for (ObjCInterfaceDecl::classmeth_iterator
1011       I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1012     if (ClsMapSeen.count((*I)->getSelector()))
1013       continue;
1014     ClsMapSeen.insert((*I)->getSelector());
1015    if (!ClsMap.count((*I)->getSelector())) {
1016      if (ImmediateClass)
1017        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1018                            diag::note_undef_method_impl);
1019    } else {
1020      ObjCMethodDecl *ImpMethodDecl =
1021        IMPDecl->getClassMethod((*I)->getSelector());
1022      ObjCMethodDecl *IntfMethodDecl =
1023        CDecl->getClassMethod((*I)->getSelector());
1024      WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl);
1025    }
1026  }
1027
1028  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1029    // Also methods in class extensions need be looked at next.
1030    for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
1031         ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
1032      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1033                                 IMPDecl,
1034                                 const_cast<ObjCCategoryDecl *>(ClsExtDecl),
1035                                 IncompleteImpl, false);
1036
1037    // Check for any implementation of a methods declared in protocol.
1038    for (ObjCInterfaceDecl::all_protocol_iterator
1039          PI = I->all_referenced_protocol_begin(),
1040          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1041      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1042                                 IMPDecl,
1043                                 (*PI), IncompleteImpl, false);
1044    if (I->getSuperClass())
1045      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1046                                 IMPDecl,
1047                                 I->getSuperClass(), IncompleteImpl, false);
1048  }
1049}
1050
1051void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1052                                     ObjCContainerDecl* CDecl,
1053                                     bool IncompleteImpl) {
1054  llvm::DenseSet<Selector> InsMap;
1055  // Check and see if instance methods in class interface have been
1056  // implemented in the implementation class.
1057  for (ObjCImplementationDecl::instmeth_iterator
1058         I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1059    InsMap.insert((*I)->getSelector());
1060
1061  // Check and see if properties declared in the interface have either 1)
1062  // an implementation or 2) there is a @synthesize/@dynamic implementation
1063  // of the property in the @implementation.
1064  if (isa<ObjCInterfaceDecl>(CDecl) && !LangOpts.ObjCNonFragileABI2)
1065    DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1066
1067  llvm::DenseSet<Selector> ClsMap;
1068  for (ObjCImplementationDecl::classmeth_iterator
1069       I = IMPDecl->classmeth_begin(),
1070       E = IMPDecl->classmeth_end(); I != E; ++I)
1071    ClsMap.insert((*I)->getSelector());
1072
1073  // Check for type conflict of methods declared in a class/protocol and
1074  // its implementation; if any.
1075  llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
1076  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1077                             IMPDecl, CDecl,
1078                             IncompleteImpl, true);
1079
1080  // Check the protocol list for unimplemented methods in the @implementation
1081  // class.
1082  // Check and see if class methods in class interface have been
1083  // implemented in the implementation class.
1084
1085  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1086    for (ObjCInterfaceDecl::all_protocol_iterator
1087          PI = I->all_referenced_protocol_begin(),
1088          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1089      CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1090                              InsMap, ClsMap, I);
1091    // Check class extensions (unnamed categories)
1092    for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
1093         Categories; Categories = Categories->getNextClassExtension())
1094      ImplMethodsVsClassMethods(S, IMPDecl,
1095                                const_cast<ObjCCategoryDecl*>(Categories),
1096                                IncompleteImpl);
1097  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1098    // For extended class, unimplemented methods in its protocols will
1099    // be reported in the primary class.
1100    if (!C->IsClassExtension()) {
1101      for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1102           E = C->protocol_end(); PI != E; ++PI)
1103        CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1104                                InsMap, ClsMap, CDecl);
1105      // Report unimplemented properties in the category as well.
1106      // When reporting on missing setter/getters, do not report when
1107      // setter/getter is implemented in category's primary class
1108      // implementation.
1109      if (ObjCInterfaceDecl *ID = C->getClassInterface())
1110        if (ObjCImplDecl *IMP = ID->getImplementation()) {
1111          for (ObjCImplementationDecl::instmeth_iterator
1112               I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
1113            InsMap.insert((*I)->getSelector());
1114        }
1115      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1116    }
1117  } else
1118    assert(false && "invalid ObjCContainerDecl type.");
1119}
1120
1121/// ActOnForwardClassDeclaration -
1122Decl *
1123Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1124                                   IdentifierInfo **IdentList,
1125                                   SourceLocation *IdentLocs,
1126                                   unsigned NumElts) {
1127  llvm::SmallVector<ObjCInterfaceDecl*, 32> Interfaces;
1128
1129  for (unsigned i = 0; i != NumElts; ++i) {
1130    // Check for another declaration kind with the same name.
1131    NamedDecl *PrevDecl
1132      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1133                         LookupOrdinaryName, ForRedeclaration);
1134    if (PrevDecl && PrevDecl->isTemplateParameter()) {
1135      // Maybe we will complain about the shadowed template parameter.
1136      DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
1137      // Just pretend that we didn't see the previous declaration.
1138      PrevDecl = 0;
1139    }
1140
1141    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1142      // GCC apparently allows the following idiom:
1143      //
1144      // typedef NSObject < XCElementTogglerP > XCElementToggler;
1145      // @class XCElementToggler;
1146      //
1147      // FIXME: Make an extension?
1148      TypedefDecl *TDD = dyn_cast<TypedefDecl>(PrevDecl);
1149      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1150        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1151        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1152      } else {
1153        // a forward class declaration matching a typedef name of a class refers
1154        // to the underlying class.
1155        if (const ObjCObjectType *OI =
1156              TDD->getUnderlyingType()->getAs<ObjCObjectType>())
1157          PrevDecl = OI->getInterface();
1158      }
1159    }
1160    ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1161    if (!IDecl) {  // Not already seen?  Make a forward decl.
1162      IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1163                                        IdentList[i], IdentLocs[i], true);
1164
1165      // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to
1166      // the current DeclContext.  This prevents clients that walk DeclContext
1167      // from seeing the imaginary ObjCInterfaceDecl until it is actually
1168      // declared later (if at all).  We also take care to explicitly make
1169      // sure this declaration is visible for name lookup.
1170      PushOnScopeChains(IDecl, TUScope, false);
1171      CurContext->makeDeclVisibleInContext(IDecl, true);
1172    }
1173
1174    Interfaces.push_back(IDecl);
1175  }
1176
1177  assert(Interfaces.size() == NumElts);
1178  ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc,
1179                                               Interfaces.data(), IdentLocs,
1180                                               Interfaces.size());
1181  CurContext->addDecl(CDecl);
1182  CheckObjCDeclScope(CDecl);
1183  return CDecl;
1184}
1185
1186
1187/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
1188/// returns true, or false, accordingly.
1189/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
1190bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
1191                                      const ObjCMethodDecl *PrevMethod,
1192                                      bool matchBasedOnSizeAndAlignment,
1193                                      bool matchBasedOnStrictEqulity) {
1194  QualType T1 = Context.getCanonicalType(Method->getResultType());
1195  QualType T2 = Context.getCanonicalType(PrevMethod->getResultType());
1196
1197  if (T1 != T2) {
1198    // The result types are different.
1199    if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity)
1200      return false;
1201    // Incomplete types don't have a size and alignment.
1202    if (T1->isIncompleteType() || T2->isIncompleteType())
1203      return false;
1204    // Check is based on size and alignment.
1205    if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
1206      return false;
1207  }
1208
1209  ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
1210       E = Method->param_end();
1211  ObjCMethodDecl::param_iterator PrevI = PrevMethod->param_begin();
1212
1213  for (; ParamI != E; ++ParamI, ++PrevI) {
1214    assert(PrevI != PrevMethod->param_end() && "Param mismatch");
1215    T1 = Context.getCanonicalType((*ParamI)->getType());
1216    T2 = Context.getCanonicalType((*PrevI)->getType());
1217    if (T1 != T2) {
1218      // The result types are different.
1219      if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity)
1220        return false;
1221      // Incomplete types don't have a size and alignment.
1222      if (T1->isIncompleteType() || T2->isIncompleteType())
1223        return false;
1224      // Check is based on size and alignment.
1225      if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
1226        return false;
1227    }
1228  }
1229  return true;
1230}
1231
1232/// \brief Read the contents of the method pool for a given selector from
1233/// external storage.
1234///
1235/// This routine should only be called once, when the method pool has no entry
1236/// for this selector.
1237Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) {
1238  assert(ExternalSource && "We need an external AST source");
1239  assert(MethodPool.find(Sel) == MethodPool.end() &&
1240         "Selector data already loaded into the method pool");
1241
1242  // Read the method list from the external source.
1243  GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel);
1244
1245  return MethodPool.insert(std::make_pair(Sel, Methods)).first;
1246}
1247
1248void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
1249                                 bool instance) {
1250  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
1251  if (Pos == MethodPool.end()) {
1252    if (ExternalSource)
1253      Pos = ReadMethodPool(Method->getSelector());
1254    else
1255      Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
1256                                             GlobalMethods())).first;
1257  }
1258  Method->setDefined(impl);
1259  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
1260  if (Entry.Method == 0) {
1261    // Haven't seen a method with this selector name yet - add it.
1262    Entry.Method = Method;
1263    Entry.Next = 0;
1264    return;
1265  }
1266
1267  // We've seen a method with this name, see if we have already seen this type
1268  // signature.
1269  for (ObjCMethodList *List = &Entry; List; List = List->Next)
1270    if (MatchTwoMethodDeclarations(Method, List->Method)) {
1271      List->Method->setDefined(impl);
1272      return;
1273    }
1274
1275  // We have a new signature for an existing method - add it.
1276  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
1277  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
1278  Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next);
1279}
1280
1281ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
1282                                               bool receiverIdOrClass,
1283                                               bool warn, bool instance) {
1284  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
1285  if (Pos == MethodPool.end()) {
1286    if (ExternalSource)
1287      Pos = ReadMethodPool(Sel);
1288    else
1289      return 0;
1290  }
1291
1292  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
1293
1294  bool strictSelectorMatch = receiverIdOrClass && warn &&
1295    (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl) !=
1296      Diagnostic::Ignored);
1297  if (warn && MethList.Method && MethList.Next) {
1298    bool issueWarning = false;
1299    if (strictSelectorMatch)
1300      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
1301        // This checks if the methods differ in type mismatch.
1302        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, false, true))
1303          issueWarning = true;
1304      }
1305
1306    if (!issueWarning)
1307      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
1308        // This checks if the methods differ by size & alignment.
1309        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, true))
1310          issueWarning = true;
1311      }
1312
1313    if (issueWarning) {
1314      if (strictSelectorMatch)
1315        Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
1316      else
1317        Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
1318      Diag(MethList.Method->getLocStart(), diag::note_using)
1319        << MethList.Method->getSourceRange();
1320      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
1321        Diag(Next->Method->getLocStart(), diag::note_also_found)
1322          << Next->Method->getSourceRange();
1323    }
1324  }
1325  return MethList.Method;
1326}
1327
1328ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
1329  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
1330  if (Pos == MethodPool.end())
1331    return 0;
1332
1333  GlobalMethods &Methods = Pos->second;
1334
1335  if (Methods.first.Method && Methods.first.Method->isDefined())
1336    return Methods.first.Method;
1337  if (Methods.second.Method && Methods.second.Method->isDefined())
1338    return Methods.second.Method;
1339  return 0;
1340}
1341
1342/// CompareMethodParamsInBaseAndSuper - This routine compares methods with
1343/// identical selector names in current and its super classes and issues
1344/// a warning if any of their argument types are incompatible.
1345void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
1346                                             ObjCMethodDecl *Method,
1347                                             bool IsInstance)  {
1348  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
1349  if (ID == 0) return;
1350
1351  while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
1352    ObjCMethodDecl *SuperMethodDecl =
1353        SD->lookupMethod(Method->getSelector(), IsInstance);
1354    if (SuperMethodDecl == 0) {
1355      ID = SD;
1356      continue;
1357    }
1358    ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
1359      E = Method->param_end();
1360    ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
1361    for (; ParamI != E; ++ParamI, ++PrevI) {
1362      // Number of parameters are the same and is guaranteed by selector match.
1363      assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
1364      QualType T1 = Context.getCanonicalType((*ParamI)->getType());
1365      QualType T2 = Context.getCanonicalType((*PrevI)->getType());
1366      // If type of arguement of method in this class does not match its
1367      // respective argument type in the super class method, issue warning;
1368      if (!Context.typesAreCompatible(T1, T2)) {
1369        Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
1370          << T1 << T2;
1371        Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
1372        return;
1373      }
1374    }
1375    ID = SD;
1376  }
1377}
1378
1379/// DiagnoseDuplicateIvars -
1380/// Check for duplicate ivars in the entire class at the start of
1381/// @implementation. This becomes necesssary because class extension can
1382/// add ivars to a class in random order which will not be known until
1383/// class's @implementation is seen.
1384void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
1385                                  ObjCInterfaceDecl *SID) {
1386  for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
1387       IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
1388    ObjCIvarDecl* Ivar = (*IVI);
1389    if (Ivar->isInvalidDecl())
1390      continue;
1391    if (IdentifierInfo *II = Ivar->getIdentifier()) {
1392      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
1393      if (prevIvar) {
1394        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
1395        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
1396        Ivar->setInvalidDecl();
1397      }
1398    }
1399  }
1400}
1401
1402// Note: For class/category implemenations, allMethods/allProperties is
1403// always null.
1404void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
1405                      Decl *ClassDecl,
1406                      Decl **allMethods, unsigned allNum,
1407                      Decl **allProperties, unsigned pNum,
1408                      DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
1409  // FIXME: If we don't have a ClassDecl, we have an error. We should consider
1410  // always passing in a decl. If the decl has an error, isInvalidDecl()
1411  // should be true.
1412  if (!ClassDecl)
1413    return;
1414
1415  bool isInterfaceDeclKind =
1416        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
1417         || isa<ObjCProtocolDecl>(ClassDecl);
1418  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
1419
1420  if (!isInterfaceDeclKind && AtEnd.isInvalid()) {
1421    // FIXME: This is wrong.  We shouldn't be pretending that there is
1422    //  an '@end' in the declaration.
1423    SourceLocation L = ClassDecl->getLocation();
1424    AtEnd.setBegin(L);
1425    AtEnd.setEnd(L);
1426    Diag(L, diag::warn_missing_atend);
1427  }
1428
1429  DeclContext *DC = dyn_cast<DeclContext>(ClassDecl);
1430
1431  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
1432  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
1433  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
1434
1435  for (unsigned i = 0; i < allNum; i++ ) {
1436    ObjCMethodDecl *Method =
1437      cast_or_null<ObjCMethodDecl>(allMethods[i]);
1438
1439    if (!Method) continue;  // Already issued a diagnostic.
1440    if (Method->isInstanceMethod()) {
1441      /// Check for instance method of the same name with incompatible types
1442      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
1443      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
1444                              : false;
1445      if ((isInterfaceDeclKind && PrevMethod && !match)
1446          || (checkIdenticalMethods && match)) {
1447          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1448            << Method->getDeclName();
1449          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1450      } else {
1451        DC->addDecl(Method);
1452        InsMap[Method->getSelector()] = Method;
1453        /// The following allows us to typecheck messages to "id".
1454        AddInstanceMethodToGlobalPool(Method);
1455        // verify that the instance method conforms to the same definition of
1456        // parent methods if it shadows one.
1457        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
1458      }
1459    } else {
1460      /// Check for class method of the same name with incompatible types
1461      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
1462      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
1463                              : false;
1464      if ((isInterfaceDeclKind && PrevMethod && !match)
1465          || (checkIdenticalMethods && match)) {
1466        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1467          << Method->getDeclName();
1468        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1469      } else {
1470        DC->addDecl(Method);
1471        ClsMap[Method->getSelector()] = Method;
1472        /// The following allows us to typecheck messages to "Class".
1473        AddFactoryMethodToGlobalPool(Method);
1474        // verify that the class method conforms to the same definition of
1475        // parent methods if it shadows one.
1476        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
1477      }
1478    }
1479  }
1480  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
1481    // Compares properties declared in this class to those of its
1482    // super class.
1483    ComparePropertiesInBaseAndSuper(I);
1484    CompareProperties(I, I);
1485  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
1486    // Categories are used to extend the class by declaring new methods.
1487    // By the same token, they are also used to add new properties. No
1488    // need to compare the added property to those in the class.
1489
1490    // Compare protocol properties with those in category
1491    CompareProperties(C, C);
1492    if (C->IsClassExtension())
1493      DiagnoseClassExtensionDupMethods(C, C->getClassInterface());
1494  }
1495  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
1496    if (CDecl->getIdentifier())
1497      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
1498      // user-defined setter/getter. It also synthesizes setter/getter methods
1499      // and adds them to the DeclContext and global method pools.
1500      for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
1501                                            E = CDecl->prop_end();
1502           I != E; ++I)
1503        ProcessPropertyDecl(*I, CDecl);
1504    CDecl->setAtEndRange(AtEnd);
1505  }
1506  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
1507    IC->setAtEndRange(AtEnd);
1508    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
1509      if (LangOpts.ObjCNonFragileABI2)
1510        DefaultSynthesizeProperties(S, IC, IDecl);
1511      ImplMethodsVsClassMethods(S, IC, IDecl);
1512      AtomicPropertySetterGetterRules(IC, IDecl);
1513
1514      if (LangOpts.ObjCNonFragileABI2)
1515        while (IDecl->getSuperClass()) {
1516          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
1517          IDecl = IDecl->getSuperClass();
1518        }
1519    }
1520    SetIvarInitializers(IC);
1521  } else if (ObjCCategoryImplDecl* CatImplClass =
1522                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
1523    CatImplClass->setAtEndRange(AtEnd);
1524
1525    // Find category interface decl and then check that all methods declared
1526    // in this interface are implemented in the category @implementation.
1527    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
1528      for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
1529           Categories; Categories = Categories->getNextClassCategory()) {
1530        if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
1531          ImplMethodsVsClassMethods(S, CatImplClass, Categories);
1532          break;
1533        }
1534      }
1535    }
1536  }
1537  if (isInterfaceDeclKind) {
1538    // Reject invalid vardecls.
1539    for (unsigned i = 0; i != tuvNum; i++) {
1540      DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
1541      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
1542        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
1543          if (!VDecl->hasExternalStorage())
1544            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
1545        }
1546    }
1547  }
1548}
1549
1550
1551/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
1552/// objective-c's type qualifier from the parser version of the same info.
1553static Decl::ObjCDeclQualifier
1554CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
1555  Decl::ObjCDeclQualifier ret = Decl::OBJC_TQ_None;
1556  if (PQTVal & ObjCDeclSpec::DQ_In)
1557    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_In);
1558  if (PQTVal & ObjCDeclSpec::DQ_Inout)
1559    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Inout);
1560  if (PQTVal & ObjCDeclSpec::DQ_Out)
1561    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Out);
1562  if (PQTVal & ObjCDeclSpec::DQ_Bycopy)
1563    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Bycopy);
1564  if (PQTVal & ObjCDeclSpec::DQ_Byref)
1565    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Byref);
1566  if (PQTVal & ObjCDeclSpec::DQ_Oneway)
1567    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Oneway);
1568
1569  return ret;
1570}
1571
1572static inline
1573bool containsInvalidMethodImplAttribute(const AttrVec &A) {
1574  // The 'ibaction' attribute is allowed on method definitions because of
1575  // how the IBAction macro is used on both method declarations and definitions.
1576  // If the method definitions contains any other attributes, return true.
1577  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
1578    if ((*i)->getKind() != attr::IBAction)
1579      return true;
1580  return false;
1581}
1582
1583Decl *Sema::ActOnMethodDeclaration(
1584    SourceLocation MethodLoc, SourceLocation EndLoc,
1585    tok::TokenKind MethodType, Decl *ClassDecl,
1586    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
1587    Selector Sel,
1588    // optional arguments. The number of types/arguments is obtained
1589    // from the Sel.getNumArgs().
1590    ObjCArgInfo *ArgInfo,
1591    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
1592    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
1593    bool isVariadic) {
1594  // Make sure we can establish a context for the method.
1595  if (!ClassDecl) {
1596    Diag(MethodLoc, diag::error_missing_method_context);
1597    getCurFunction()->LabelMap.clear();
1598    return 0;
1599  }
1600  QualType resultDeclType;
1601
1602  TypeSourceInfo *ResultTInfo = 0;
1603  if (ReturnType) {
1604    resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
1605
1606    // Methods cannot return interface types. All ObjC objects are
1607    // passed by reference.
1608    if (resultDeclType->isObjCObjectType()) {
1609      Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
1610        << 0 << resultDeclType;
1611      return 0;
1612    }
1613  } else // get the type for "id".
1614    resultDeclType = Context.getObjCIdType();
1615
1616  ObjCMethodDecl* ObjCMethod =
1617    ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType,
1618                           ResultTInfo,
1619                           cast<DeclContext>(ClassDecl),
1620                           MethodType == tok::minus, isVariadic,
1621                           false, false,
1622                           MethodDeclKind == tok::objc_optional ?
1623                           ObjCMethodDecl::Optional :
1624                           ObjCMethodDecl::Required);
1625
1626  llvm::SmallVector<ParmVarDecl*, 16> Params;
1627
1628  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
1629    QualType ArgType;
1630    TypeSourceInfo *DI;
1631
1632    if (ArgInfo[i].Type == 0) {
1633      ArgType = Context.getObjCIdType();
1634      DI = 0;
1635    } else {
1636      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
1637      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
1638      ArgType = adjustParameterType(ArgType);
1639    }
1640
1641    ParmVarDecl* Param
1642      = ParmVarDecl::Create(Context, ObjCMethod, ArgInfo[i].NameLoc,
1643                            ArgInfo[i].Name, ArgType, DI,
1644                            SC_None, SC_None, 0);
1645
1646    if (ArgType->isObjCObjectType()) {
1647      Diag(ArgInfo[i].NameLoc,
1648           diag::err_object_cannot_be_passed_returned_by_value)
1649        << 1 << ArgType;
1650      Param->setInvalidDecl();
1651    }
1652
1653    Param->setObjCDeclQualifier(
1654      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
1655
1656    // Apply the attributes to the parameter.
1657    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
1658
1659    Params.push_back(Param);
1660  }
1661
1662  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
1663    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
1664    QualType ArgType = Param->getType();
1665    if (ArgType.isNull())
1666      ArgType = Context.getObjCIdType();
1667    else
1668      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
1669      ArgType = adjustParameterType(ArgType);
1670    if (ArgType->isObjCObjectType()) {
1671      Diag(Param->getLocation(),
1672           diag::err_object_cannot_be_passed_returned_by_value)
1673      << 1 << ArgType;
1674      Param->setInvalidDecl();
1675    }
1676    Param->setDeclContext(ObjCMethod);
1677    if (Param->getDeclName())
1678      IdResolver.RemoveDecl(Param);
1679    Params.push_back(Param);
1680  }
1681
1682  ObjCMethod->setMethodParams(Context, Params.data(), Params.size(),
1683                              Sel.getNumArgs());
1684  ObjCMethod->setObjCDeclQualifier(
1685    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
1686  const ObjCMethodDecl *PrevMethod = 0;
1687
1688  if (AttrList)
1689    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
1690
1691  const ObjCMethodDecl *InterfaceMD = 0;
1692
1693  // For implementations (which can be very "coarse grain"), we add the
1694  // method now. This allows the AST to implement lookup methods that work
1695  // incrementally (without waiting until we parse the @end). It also allows
1696  // us to flag multiple declaration errors as they occur.
1697  if (ObjCImplementationDecl *ImpDecl =
1698        dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
1699    if (MethodType == tok::minus) {
1700      PrevMethod = ImpDecl->getInstanceMethod(Sel);
1701      ImpDecl->addInstanceMethod(ObjCMethod);
1702    } else {
1703      PrevMethod = ImpDecl->getClassMethod(Sel);
1704      ImpDecl->addClassMethod(ObjCMethod);
1705    }
1706    InterfaceMD = ImpDecl->getClassInterface()->getMethod(Sel,
1707                                                   MethodType == tok::minus);
1708    if (ObjCMethod->hasAttrs() &&
1709        containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
1710      Diag(EndLoc, diag::warn_attribute_method_def);
1711  } else if (ObjCCategoryImplDecl *CatImpDecl =
1712             dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
1713    if (MethodType == tok::minus) {
1714      PrevMethod = CatImpDecl->getInstanceMethod(Sel);
1715      CatImpDecl->addInstanceMethod(ObjCMethod);
1716    } else {
1717      PrevMethod = CatImpDecl->getClassMethod(Sel);
1718      CatImpDecl->addClassMethod(ObjCMethod);
1719    }
1720    if (ObjCMethod->hasAttrs() &&
1721        containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
1722      Diag(EndLoc, diag::warn_attribute_method_def);
1723  }
1724  if (PrevMethod) {
1725    // You can never have two method definitions with the same name.
1726    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
1727      << ObjCMethod->getDeclName();
1728    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1729  }
1730
1731  // If the interface declared this method, and it was deprecated there,
1732  // mark it deprecated here.
1733  if (InterfaceMD)
1734   if (Attr *DA = InterfaceMD->getAttr<DeprecatedAttr>()) {
1735    StringLiteral *SE = StringLiteral::CreateEmpty(Context, 1);
1736    ObjCMethod->addAttr(::new (Context)
1737                        DeprecatedAttr(DA->getLocation(),
1738                                       Context,
1739                                       SE->getString()));
1740   }
1741
1742  return ObjCMethod;
1743}
1744
1745bool Sema::CheckObjCDeclScope(Decl *D) {
1746  if (isa<TranslationUnitDecl>(CurContext->getRedeclContext()))
1747    return false;
1748
1749  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
1750  D->setInvalidDecl();
1751
1752  return true;
1753}
1754
1755/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
1756/// instance variables of ClassName into Decls.
1757void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
1758                     IdentifierInfo *ClassName,
1759                     llvm::SmallVectorImpl<Decl*> &Decls) {
1760  // Check that ClassName is a valid class
1761  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
1762  if (!Class) {
1763    Diag(DeclStart, diag::err_undef_interface) << ClassName;
1764    return;
1765  }
1766  if (LangOpts.ObjCNonFragileABI) {
1767    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
1768    return;
1769  }
1770
1771  // Collect the instance variables
1772  llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
1773  Context.DeepCollectObjCIvars(Class, true, Ivars);
1774  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
1775  for (unsigned i = 0; i < Ivars.size(); i++) {
1776    FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
1777    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
1778    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, ID->getLocation(),
1779                                           ID->getIdentifier(), ID->getType(),
1780                                           ID->getBitWidth());
1781    Decls.push_back(FD);
1782  }
1783
1784  // Introduce all of these fields into the appropriate scope.
1785  for (llvm::SmallVectorImpl<Decl*>::iterator D = Decls.begin();
1786       D != Decls.end(); ++D) {
1787    FieldDecl *FD = cast<FieldDecl>(*D);
1788    if (getLangOptions().CPlusPlus)
1789      PushOnScopeChains(cast<FieldDecl>(FD), S);
1790    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
1791      Record->addDecl(FD);
1792  }
1793}
1794
1795/// \brief Build a type-check a new Objective-C exception variable declaration.
1796VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo,
1797                                      QualType T,
1798                                      IdentifierInfo *Name,
1799                                      SourceLocation NameLoc,
1800                                      bool Invalid) {
1801  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
1802  // duration shall not be qualified by an address-space qualifier."
1803  // Since all parameters have automatic store duration, they can not have
1804  // an address space.
1805  if (T.getAddressSpace() != 0) {
1806    Diag(NameLoc, diag::err_arg_with_address_space);
1807    Invalid = true;
1808  }
1809
1810  // An @catch parameter must be an unqualified object pointer type;
1811  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
1812  if (Invalid) {
1813    // Don't do any further checking.
1814  } else if (T->isDependentType()) {
1815    // Okay: we don't know what this type will instantiate to.
1816  } else if (!T->isObjCObjectPointerType()) {
1817    Invalid = true;
1818    Diag(NameLoc ,diag::err_catch_param_not_objc_type);
1819  } else if (T->isObjCQualifiedIdType()) {
1820    Invalid = true;
1821    Diag(NameLoc, diag::err_illegal_qualifiers_on_catch_parm);
1822  }
1823
1824  VarDecl *New = VarDecl::Create(Context, CurContext, NameLoc, Name, T, TInfo,
1825                                 SC_None, SC_None);
1826  New->setExceptionVariable(true);
1827
1828  if (Invalid)
1829    New->setInvalidDecl();
1830  return New;
1831}
1832
1833Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
1834  const DeclSpec &DS = D.getDeclSpec();
1835
1836  // We allow the "register" storage class on exception variables because
1837  // GCC did, but we drop it completely. Any other storage class is an error.
1838  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1839    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
1840      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
1841  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1842    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
1843      << DS.getStorageClassSpec();
1844  }
1845  if (D.getDeclSpec().isThreadSpecified())
1846    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1847  D.getMutableDeclSpec().ClearStorageClassSpecs();
1848
1849  DiagnoseFunctionSpecifiers(D);
1850
1851  // Check that there are no default arguments inside the type of this
1852  // exception object (C++ only).
1853  if (getLangOptions().CPlusPlus)
1854    CheckExtraCXXDefaultArguments(D);
1855
1856  TagDecl *OwnedDecl = 0;
1857  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
1858  QualType ExceptionType = TInfo->getType();
1859
1860  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
1861    // Objective-C++: Types shall not be defined in exception types.
1862    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
1863      << Context.getTypeDeclType(OwnedDecl);
1864  }
1865
1866  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, D.getIdentifier(),
1867                                        D.getIdentifierLoc(),
1868                                        D.isInvalidType());
1869
1870  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
1871  if (D.getCXXScopeSpec().isSet()) {
1872    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
1873      << D.getCXXScopeSpec().getRange();
1874    New->setInvalidDecl();
1875  }
1876
1877  // Add the parameter declaration into this scope.
1878  S->AddDecl(New);
1879  if (D.getIdentifier())
1880    IdResolver.AddDecl(New);
1881
1882  ProcessDeclAttributes(S, New, D);
1883
1884  if (New->hasAttr<BlocksAttr>())
1885    Diag(New->getLocation(), diag::err_block_on_nonlocal);
1886  return New;
1887}
1888
1889/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
1890/// initialization.
1891void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
1892                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
1893  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
1894       Iv= Iv->getNextIvar()) {
1895    QualType QT = Context.getBaseElementType(Iv->getType());
1896    if (QT->isRecordType())
1897      Ivars.push_back(Iv);
1898  }
1899}
1900
1901void ObjCImplementationDecl::setIvarInitializers(ASTContext &C,
1902                                    CXXBaseOrMemberInitializer ** initializers,
1903                                                 unsigned numInitializers) {
1904  if (numInitializers > 0) {
1905    NumIvarInitializers = numInitializers;
1906    CXXBaseOrMemberInitializer **ivarInitializers =
1907    new (C) CXXBaseOrMemberInitializer*[NumIvarInitializers];
1908    memcpy(ivarInitializers, initializers,
1909           numInitializers * sizeof(CXXBaseOrMemberInitializer*));
1910    IvarInitializers = ivarInitializers;
1911  }
1912}
1913
1914void Sema::DiagnoseUseOfUnimplementedSelectors() {
1915  if (ReferencedSelectors.empty())
1916    return;
1917  for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
1918        ReferencedSelectors.begin(),
1919       E = ReferencedSelectors.end(); S != E; ++S) {
1920    Selector Sel = (*S).first;
1921    if (!LookupImplementedMethodInGlobalPool(Sel))
1922      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
1923  }
1924  return;
1925}
1926