SemaDeclObjC.cpp revision 375bb1413c041055262c8a416f20d10474a5eda9
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/ExternalSemaSource.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ASTMutationListener.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Sema/DeclSpec.h"
27#include "llvm/ADT/DenseSet.h"
28
29using namespace clang;
30
31/// Check whether the given method, which must be in the 'init'
32/// family, is a valid member of that family.
33///
34/// \param receiverTypeIfCall - if null, check this as if declaring it;
35///   if non-null, check this as if making a call to it with the given
36///   receiver type
37///
38/// \return true to indicate that there was an error and appropriate
39///   actions were taken
40bool Sema::checkInitMethod(ObjCMethodDecl *method,
41                           QualType receiverTypeIfCall) {
42  if (method->isInvalidDecl()) return true;
43
44  // This castAs is safe: methods that don't return an object
45  // pointer won't be inferred as inits and will reject an explicit
46  // objc_method_family(init).
47
48  // We ignore protocols here.  Should we?  What about Class?
49
50  const ObjCObjectType *result = method->getResultType()
51    ->castAs<ObjCObjectPointerType>()->getObjectType();
52
53  if (result->isObjCId()) {
54    return false;
55  } else if (result->isObjCClass()) {
56    // fall through: always an error
57  } else {
58    ObjCInterfaceDecl *resultClass = result->getInterface();
59    assert(resultClass && "unexpected object type!");
60
61    // It's okay for the result type to still be a forward declaration
62    // if we're checking an interface declaration.
63    if (!resultClass->hasDefinition()) {
64      if (receiverTypeIfCall.isNull() &&
65          !isa<ObjCImplementationDecl>(method->getDeclContext()))
66        return false;
67
68    // Otherwise, we try to compare class types.
69    } else {
70      // If this method was declared in a protocol, we can't check
71      // anything unless we have a receiver type that's an interface.
72      const ObjCInterfaceDecl *receiverClass = 0;
73      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
74        if (receiverTypeIfCall.isNull())
75          return false;
76
77        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
78          ->getInterfaceDecl();
79
80        // This can be null for calls to e.g. id<Foo>.
81        if (!receiverClass) return false;
82      } else {
83        receiverClass = method->getClassInterface();
84        assert(receiverClass && "method not associated with a class!");
85      }
86
87      // If either class is a subclass of the other, it's fine.
88      if (receiverClass->isSuperClassOf(resultClass) ||
89          resultClass->isSuperClassOf(receiverClass))
90        return false;
91    }
92  }
93
94  SourceLocation loc = method->getLocation();
95
96  // If we're in a system header, and this is not a call, just make
97  // the method unusable.
98  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
99    method->addAttr(new (Context) UnavailableAttr(loc, Context,
100                "init method returns a type unrelated to its receiver type"));
101    return true;
102  }
103
104  // Otherwise, it's an error.
105  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
106  method->setInvalidDecl();
107  return true;
108}
109
110void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
111                                   const ObjCMethodDecl *Overridden,
112                                   bool IsImplementation) {
113  if (Overridden->hasRelatedResultType() &&
114      !NewMethod->hasRelatedResultType()) {
115    // This can only happen when the method follows a naming convention that
116    // implies a related result type, and the original (overridden) method has
117    // a suitable return type, but the new (overriding) method does not have
118    // a suitable return type.
119    QualType ResultType = NewMethod->getResultType();
120    SourceRange ResultTypeRange;
121    if (const TypeSourceInfo *ResultTypeInfo
122                                        = NewMethod->getResultTypeSourceInfo())
123      ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
124
125    // Figure out which class this method is part of, if any.
126    ObjCInterfaceDecl *CurrentClass
127      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
128    if (!CurrentClass) {
129      DeclContext *DC = NewMethod->getDeclContext();
130      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
131        CurrentClass = Cat->getClassInterface();
132      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
133        CurrentClass = Impl->getClassInterface();
134      else if (ObjCCategoryImplDecl *CatImpl
135               = dyn_cast<ObjCCategoryImplDecl>(DC))
136        CurrentClass = CatImpl->getClassInterface();
137    }
138
139    if (CurrentClass) {
140      Diag(NewMethod->getLocation(),
141           diag::warn_related_result_type_compatibility_class)
142        << Context.getObjCInterfaceType(CurrentClass)
143        << ResultType
144        << ResultTypeRange;
145    } else {
146      Diag(NewMethod->getLocation(),
147           diag::warn_related_result_type_compatibility_protocol)
148        << ResultType
149        << ResultTypeRange;
150    }
151
152    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
153      Diag(Overridden->getLocation(),
154           diag::note_related_result_type_overridden_family)
155        << Family;
156    else
157      Diag(Overridden->getLocation(),
158           diag::note_related_result_type_overridden);
159  }
160  if (getLangOptions().ObjCAutoRefCount) {
161    if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
162         Overridden->hasAttr<NSReturnsRetainedAttr>())) {
163        Diag(NewMethod->getLocation(),
164             diag::err_nsreturns_retained_attribute_mismatch) << 1;
165        Diag(Overridden->getLocation(), diag::note_previous_decl)
166        << "method";
167    }
168    if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
169              Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
170        Diag(NewMethod->getLocation(),
171             diag::err_nsreturns_retained_attribute_mismatch) << 0;
172        Diag(Overridden->getLocation(), diag::note_previous_decl)
173        << "method";
174    }
175    ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin();
176    for (ObjCMethodDecl::param_iterator
177           ni = NewMethod->param_begin(), ne = NewMethod->param_end();
178         ni != ne; ++ni, ++oi) {
179      const ParmVarDecl *oldDecl = (*oi);
180      ParmVarDecl *newDecl = (*ni);
181      if (newDecl->hasAttr<NSConsumedAttr>() !=
182          oldDecl->hasAttr<NSConsumedAttr>()) {
183        Diag(newDecl->getLocation(),
184             diag::err_nsconsumed_attribute_mismatch);
185        Diag(oldDecl->getLocation(), diag::note_previous_decl)
186          << "parameter";
187      }
188    }
189  }
190}
191
192/// \brief Check a method declaration for compatibility with the Objective-C
193/// ARC conventions.
194static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) {
195  ObjCMethodFamily family = method->getMethodFamily();
196  switch (family) {
197  case OMF_None:
198  case OMF_dealloc:
199  case OMF_finalize:
200  case OMF_retain:
201  case OMF_release:
202  case OMF_autorelease:
203  case OMF_retainCount:
204  case OMF_self:
205  case OMF_performSelector:
206    return false;
207
208  case OMF_init:
209    // If the method doesn't obey the init rules, don't bother annotating it.
210    if (S.checkInitMethod(method, QualType()))
211      return true;
212
213    method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(),
214                                                       S.Context));
215
216    // Don't add a second copy of this attribute, but otherwise don't
217    // let it be suppressed.
218    if (method->hasAttr<NSReturnsRetainedAttr>())
219      return false;
220    break;
221
222  case OMF_alloc:
223  case OMF_copy:
224  case OMF_mutableCopy:
225  case OMF_new:
226    if (method->hasAttr<NSReturnsRetainedAttr>() ||
227        method->hasAttr<NSReturnsNotRetainedAttr>() ||
228        method->hasAttr<NSReturnsAutoreleasedAttr>())
229      return false;
230    break;
231  }
232
233  method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(),
234                                                        S.Context));
235  return false;
236}
237
238static void DiagnoseObjCImplementedDeprecations(Sema &S,
239                                                NamedDecl *ND,
240                                                SourceLocation ImplLoc,
241                                                int select) {
242  if (ND && ND->isDeprecated()) {
243    S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
244    if (select == 0)
245      S.Diag(ND->getLocation(), diag::note_method_declared_at);
246    else
247      S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
248  }
249}
250
251/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
252/// pool.
253void Sema::AddAnyMethodToGlobalPool(Decl *D) {
254  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
255
256  // If we don't have a valid method decl, simply return.
257  if (!MDecl)
258    return;
259  if (MDecl->isInstanceMethod())
260    AddInstanceMethodToGlobalPool(MDecl, true);
261  else
262    AddFactoryMethodToGlobalPool(MDecl, true);
263}
264
265/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
266/// and user declared, in the method definition's AST.
267void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
268  assert(getCurMethodDecl() == 0 && "Method parsing confused");
269  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
270
271  // If we don't have a valid method decl, simply return.
272  if (!MDecl)
273    return;
274
275  // Allow all of Sema to see that we are entering a method definition.
276  PushDeclContext(FnBodyScope, MDecl);
277  PushFunctionScope();
278
279  // Create Decl objects for each parameter, entrring them in the scope for
280  // binding to their use.
281
282  // Insert the invisible arguments, self and _cmd!
283  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
284
285  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
286  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
287
288  // Introduce all of the other parameters into this scope.
289  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
290       E = MDecl->param_end(); PI != E; ++PI) {
291    ParmVarDecl *Param = (*PI);
292    if (!Param->isInvalidDecl() &&
293        RequireCompleteType(Param->getLocation(), Param->getType(),
294                            diag::err_typecheck_decl_incomplete_type))
295          Param->setInvalidDecl();
296    if ((*PI)->getIdentifier())
297      PushOnScopeChains(*PI, FnBodyScope);
298  }
299
300  // In ARC, disallow definition of retain/release/autorelease/retainCount
301  if (getLangOptions().ObjCAutoRefCount) {
302    switch (MDecl->getMethodFamily()) {
303    case OMF_retain:
304    case OMF_retainCount:
305    case OMF_release:
306    case OMF_autorelease:
307      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
308        << MDecl->getSelector();
309      break;
310
311    case OMF_None:
312    case OMF_dealloc:
313    case OMF_finalize:
314    case OMF_alloc:
315    case OMF_init:
316    case OMF_mutableCopy:
317    case OMF_copy:
318    case OMF_new:
319    case OMF_self:
320    case OMF_performSelector:
321      break;
322    }
323  }
324
325  // Warn on deprecated methods under -Wdeprecated-implementations,
326  // and prepare for warning on missing super calls.
327  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
328    if (ObjCMethodDecl *IMD =
329          IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()))
330      DiagnoseObjCImplementedDeprecations(*this,
331                                          dyn_cast<NamedDecl>(IMD),
332                                          MDecl->getLocation(), 0);
333
334    // If this is "dealloc" or "finalize", set some bit here.
335    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
336    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
337    // Only do this if the current class actually has a superclass.
338    if (IC->getSuperClass()) {
339      ObjCShouldCallSuperDealloc =
340        !(Context.getLangOptions().ObjCAutoRefCount ||
341          Context.getLangOptions().getGC() == LangOptions::GCOnly) &&
342        MDecl->getMethodFamily() == OMF_dealloc;
343      ObjCShouldCallSuperFinalize =
344        Context.getLangOptions().getGC() != LangOptions::NonGC &&
345        MDecl->getMethodFamily() == OMF_finalize;
346    }
347  }
348}
349
350Decl *Sema::
351ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
352                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
353                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
354                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
355                         const SourceLocation *ProtoLocs,
356                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
357  assert(ClassName && "Missing class identifier");
358
359  // Check for another declaration kind with the same name.
360  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
361                                         LookupOrdinaryName, ForRedeclaration);
362
363  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
364    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
365    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
366  }
367
368  // Create a declaration to describe this @interface.
369  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
370  ObjCInterfaceDecl *IDecl
371    = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
372                                PrevIDecl, ClassLoc);
373
374  if (PrevIDecl) {
375    // Class already seen. Was it a definition?
376    if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
377      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
378        << PrevIDecl->getDeclName();
379      Diag(Def->getLocation(), diag::note_previous_definition);
380      IDecl->setInvalidDecl();
381    }
382  }
383
384  if (AttrList)
385    ProcessDeclAttributeList(TUScope, IDecl, AttrList);
386  PushOnScopeChains(IDecl, TUScope);
387
388  // Start the definition of this class. If we're in a redefinition case, there
389  // may already be a definition, so we'll end up adding to it.
390  if (!IDecl->hasDefinition())
391    IDecl->startDefinition();
392
393  if (SuperName) {
394    // Check if a different kind of symbol declared in this scope.
395    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
396                                LookupOrdinaryName);
397
398    if (!PrevDecl) {
399      // Try to correct for a typo in the superclass name.
400      TypoCorrection Corrected = CorrectTypo(
401          DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
402          NULL, NULL, false, CTC_NoKeywords);
403      if ((PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
404        if (declaresSameEntity(PrevDecl, IDecl)) {
405          // Don't correct to the class we're defining.
406          PrevDecl = 0;
407        } else {
408          Diag(SuperLoc, diag::err_undef_superclass_suggest)
409            << SuperName << ClassName << PrevDecl->getDeclName();
410          Diag(PrevDecl->getLocation(), diag::note_previous_decl)
411            << PrevDecl->getDeclName();
412        }
413      }
414    }
415
416    if (declaresSameEntity(PrevDecl, IDecl)) {
417      Diag(SuperLoc, diag::err_recursive_superclass)
418        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
419      IDecl->setEndOfDefinitionLoc(ClassLoc);
420    } else {
421      ObjCInterfaceDecl *SuperClassDecl =
422                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
423
424      // Diagnose classes that inherit from deprecated classes.
425      if (SuperClassDecl)
426        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
427
428      if (PrevDecl && SuperClassDecl == 0) {
429        // The previous declaration was not a class decl. Check if we have a
430        // typedef. If we do, get the underlying class type.
431        if (const TypedefNameDecl *TDecl =
432              dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
433          QualType T = TDecl->getUnderlyingType();
434          if (T->isObjCObjectType()) {
435            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
436              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
437          }
438        }
439
440        // This handles the following case:
441        //
442        // typedef int SuperClass;
443        // @interface MyClass : SuperClass {} @end
444        //
445        if (!SuperClassDecl) {
446          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
447          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
448        }
449      }
450
451      if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
452        if (!SuperClassDecl)
453          Diag(SuperLoc, diag::err_undef_superclass)
454            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
455        else if (RequireCompleteType(SuperLoc,
456                   Context.getObjCInterfaceType(SuperClassDecl),
457                   PDiag(diag::err_forward_superclass)
458                     << SuperClassDecl->getDeclName()
459                     << ClassName
460                   << SourceRange(AtInterfaceLoc, ClassLoc))) {
461          SuperClassDecl = 0;
462        }
463      }
464      IDecl->setSuperClass(SuperClassDecl);
465      IDecl->setSuperClassLoc(SuperLoc);
466      IDecl->setEndOfDefinitionLoc(SuperLoc);
467    }
468  } else { // we have a root class.
469    IDecl->setEndOfDefinitionLoc(ClassLoc);
470  }
471
472  // Check then save referenced protocols.
473  if (NumProtoRefs) {
474    IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
475                           ProtoLocs, Context);
476    IDecl->setEndOfDefinitionLoc(EndProtoLoc);
477  }
478
479  CheckObjCDeclScope(IDecl);
480  return ActOnObjCContainerStartDefinition(IDecl);
481}
482
483/// ActOnCompatiblityAlias - this action is called after complete parsing of
484/// @compatibility_alias declaration. It sets up the alias relationships.
485Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
486                                        IdentifierInfo *AliasName,
487                                        SourceLocation AliasLocation,
488                                        IdentifierInfo *ClassName,
489                                        SourceLocation ClassLocation) {
490  // Look for previous declaration of alias name
491  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
492                                      LookupOrdinaryName, ForRedeclaration);
493  if (ADecl) {
494    if (isa<ObjCCompatibleAliasDecl>(ADecl))
495      Diag(AliasLocation, diag::warn_previous_alias_decl);
496    else
497      Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
498    Diag(ADecl->getLocation(), diag::note_previous_declaration);
499    return 0;
500  }
501  // Check for class declaration
502  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
503                                       LookupOrdinaryName, ForRedeclaration);
504  if (const TypedefNameDecl *TDecl =
505        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
506    QualType T = TDecl->getUnderlyingType();
507    if (T->isObjCObjectType()) {
508      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
509        ClassName = IDecl->getIdentifier();
510        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
511                                  LookupOrdinaryName, ForRedeclaration);
512      }
513    }
514  }
515  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
516  if (CDecl == 0) {
517    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
518    if (CDeclU)
519      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
520    return 0;
521  }
522
523  // Everything checked out, instantiate a new alias declaration AST.
524  ObjCCompatibleAliasDecl *AliasDecl =
525    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
526
527  if (!CheckObjCDeclScope(AliasDecl))
528    PushOnScopeChains(AliasDecl, TUScope);
529
530  return AliasDecl;
531}
532
533bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
534  IdentifierInfo *PName,
535  SourceLocation &Ploc, SourceLocation PrevLoc,
536  const ObjCList<ObjCProtocolDecl> &PList) {
537
538  bool res = false;
539  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
540       E = PList.end(); I != E; ++I) {
541    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
542                                                 Ploc)) {
543      if (PDecl->getIdentifier() == PName) {
544        Diag(Ploc, diag::err_protocol_has_circular_dependency);
545        Diag(PrevLoc, diag::note_previous_definition);
546        res = true;
547      }
548      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
549            PDecl->getLocation(), PDecl->getReferencedProtocols()))
550        res = true;
551    }
552  }
553  return res;
554}
555
556Decl *
557Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
558                                  IdentifierInfo *ProtocolName,
559                                  SourceLocation ProtocolLoc,
560                                  Decl * const *ProtoRefs,
561                                  unsigned NumProtoRefs,
562                                  const SourceLocation *ProtoLocs,
563                                  SourceLocation EndProtoLoc,
564                                  AttributeList *AttrList) {
565  bool err = false;
566  // FIXME: Deal with AttrList.
567  assert(ProtocolName && "Missing protocol identifier");
568  ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc);
569  if (PDecl) {
570    // Protocol already seen. Better be a forward protocol declaration
571    if (!PDecl->isForwardDecl()) {
572      Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
573      Diag(PDecl->getLocation(), diag::note_previous_definition);
574
575      // Create a new one; the other may be in a different DeclContex, (e.g.
576      // this one may be in a LinkageSpecDecl while the other is not) which
577      // will break invariants.
578      // We will not add it to scope chains to ignore it as the warning says.
579      PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
580                                       ProtocolLoc, AtProtoInterfaceLoc,
581                                       /*isForwardDecl=*/false);
582
583    } else {
584      ObjCList<ObjCProtocolDecl> PList;
585      PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
586      err = CheckForwardProtocolDeclarationForCircularDependency(
587              ProtocolName, ProtocolLoc, PDecl->getLocation(), PList);
588
589      // Make sure the cached decl gets a valid start location.
590      PDecl->setAtStartLoc(AtProtoInterfaceLoc);
591      PDecl->setLocation(ProtocolLoc);
592      // Since this ObjCProtocolDecl was created by a forward declaration,
593      // we now add it to the DeclContext since it wasn't added before
594      PDecl->setLexicalDeclContext(CurContext);
595      CurContext->addDecl(PDecl);
596      PDecl->completedForwardDecl();
597    }
598  } else {
599    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
600                                     ProtocolLoc, AtProtoInterfaceLoc,
601                                     /*isForwardDecl=*/false);
602    PushOnScopeChains(PDecl, TUScope);
603  }
604  if (AttrList)
605    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
606  if (!err && NumProtoRefs ) {
607    /// Check then save referenced protocols.
608    PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
609                           ProtoLocs, Context);
610    PDecl->setLocEnd(EndProtoLoc);
611  }
612
613  CheckObjCDeclScope(PDecl);
614  return ActOnObjCContainerStartDefinition(PDecl);
615}
616
617/// FindProtocolDeclaration - This routine looks up protocols and
618/// issues an error if they are not declared. It returns list of
619/// protocol declarations in its 'Protocols' argument.
620void
621Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
622                              const IdentifierLocPair *ProtocolId,
623                              unsigned NumProtocols,
624                              SmallVectorImpl<Decl *> &Protocols) {
625  for (unsigned i = 0; i != NumProtocols; ++i) {
626    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
627                                             ProtocolId[i].second);
628    if (!PDecl) {
629      TypoCorrection Corrected = CorrectTypo(
630          DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
631          LookupObjCProtocolName, TUScope, NULL, NULL, false, CTC_NoKeywords);
632      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
633        Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
634          << ProtocolId[i].first << Corrected.getCorrection();
635        Diag(PDecl->getLocation(), diag::note_previous_decl)
636          << PDecl->getDeclName();
637      }
638    }
639
640    if (!PDecl) {
641      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
642        << ProtocolId[i].first;
643      continue;
644    }
645
646    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
647
648    // If this is a forward declaration and we are supposed to warn in this
649    // case, do it.
650    if (WarnOnDeclarations && PDecl->isForwardDecl())
651      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
652        << ProtocolId[i].first;
653    Protocols.push_back(PDecl);
654  }
655}
656
657/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
658/// a class method in its extension.
659///
660void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
661                                            ObjCInterfaceDecl *ID) {
662  if (!ID)
663    return;  // Possibly due to previous error
664
665  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
666  for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
667       e =  ID->meth_end(); i != e; ++i) {
668    ObjCMethodDecl *MD = *i;
669    MethodMap[MD->getSelector()] = MD;
670  }
671
672  if (MethodMap.empty())
673    return;
674  for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
675       e =  CAT->meth_end(); i != e; ++i) {
676    ObjCMethodDecl *Method = *i;
677    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
678    if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
679      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
680            << Method->getDeclName();
681      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
682    }
683  }
684}
685
686/// ActOnForwardProtocolDeclaration - Handle @protocol foo;
687Decl *
688Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
689                                      const IdentifierLocPair *IdentList,
690                                      unsigned NumElts,
691                                      AttributeList *attrList) {
692  SmallVector<ObjCProtocolDecl*, 32> Protocols;
693  SmallVector<SourceLocation, 8> ProtoLocs;
694
695  for (unsigned i = 0; i != NumElts; ++i) {
696    IdentifierInfo *Ident = IdentList[i].first;
697    ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second);
698    bool isNew = false;
699    if (PDecl == 0) { // Not already seen?
700      PDecl = ObjCProtocolDecl::Create(Context, CurContext, Ident,
701                                       IdentList[i].second, AtProtocolLoc,
702                                       /*isForwardDecl=*/true);
703      PushOnScopeChains(PDecl, TUScope, false);
704      isNew = true;
705    }
706    if (attrList) {
707      ProcessDeclAttributeList(TUScope, PDecl, attrList);
708      if (!isNew) {
709        if (ASTMutationListener *L = Context.getASTMutationListener())
710          L->UpdatedAttributeList(PDecl);
711      }
712    }
713    Protocols.push_back(PDecl);
714    ProtoLocs.push_back(IdentList[i].second);
715  }
716
717  ObjCForwardProtocolDecl *PDecl =
718    ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc,
719                                    Protocols.data(), Protocols.size(),
720                                    ProtoLocs.data());
721  CurContext->addDecl(PDecl);
722  CheckObjCDeclScope(PDecl);
723  return PDecl;
724}
725
726Decl *Sema::
727ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
728                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
729                            IdentifierInfo *CategoryName,
730                            SourceLocation CategoryLoc,
731                            Decl * const *ProtoRefs,
732                            unsigned NumProtoRefs,
733                            const SourceLocation *ProtoLocs,
734                            SourceLocation EndProtoLoc) {
735  ObjCCategoryDecl *CDecl;
736  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
737
738  /// Check that class of this category is already completely declared.
739
740  if (!IDecl
741      || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
742                             PDiag(diag::err_category_forward_interface)
743                               << (CategoryName == 0))) {
744    // Create an invalid ObjCCategoryDecl to serve as context for
745    // the enclosing method declarations.  We mark the decl invalid
746    // to make it clear that this isn't a valid AST.
747    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
748                                     ClassLoc, CategoryLoc, CategoryName,IDecl);
749    CDecl->setInvalidDecl();
750
751    if (!IDecl)
752      Diag(ClassLoc, diag::err_undef_interface) << ClassName;
753    return ActOnObjCContainerStartDefinition(CDecl);
754  }
755
756  if (!CategoryName && IDecl->getImplementation()) {
757    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
758    Diag(IDecl->getImplementation()->getLocation(),
759          diag::note_implementation_declared);
760  }
761
762  if (CategoryName) {
763    /// Check for duplicate interface declaration for this category
764    ObjCCategoryDecl *CDeclChain;
765    for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
766         CDeclChain = CDeclChain->getNextClassCategory()) {
767      if (CDeclChain->getIdentifier() == CategoryName) {
768        // Class extensions can be declared multiple times.
769        Diag(CategoryLoc, diag::warn_dup_category_def)
770          << ClassName << CategoryName;
771        Diag(CDeclChain->getLocation(), diag::note_previous_definition);
772        break;
773      }
774    }
775  }
776
777  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
778                                   ClassLoc, CategoryLoc, CategoryName, IDecl);
779  // FIXME: PushOnScopeChains?
780  CurContext->addDecl(CDecl);
781
782  if (NumProtoRefs) {
783    CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
784                           ProtoLocs, Context);
785    // Protocols in the class extension belong to the class.
786    if (CDecl->IsClassExtension())
787     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
788                                            NumProtoRefs, Context);
789  }
790
791  CheckObjCDeclScope(CDecl);
792  return ActOnObjCContainerStartDefinition(CDecl);
793}
794
795/// ActOnStartCategoryImplementation - Perform semantic checks on the
796/// category implementation declaration and build an ObjCCategoryImplDecl
797/// object.
798Decl *Sema::ActOnStartCategoryImplementation(
799                      SourceLocation AtCatImplLoc,
800                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
801                      IdentifierInfo *CatName, SourceLocation CatLoc) {
802  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
803  ObjCCategoryDecl *CatIDecl = 0;
804  if (IDecl) {
805    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
806    if (!CatIDecl) {
807      // Category @implementation with no corresponding @interface.
808      // Create and install one.
809      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
810                                          ClassLoc, CatLoc,
811                                          CatName, IDecl);
812      CatIDecl->setImplicit();
813    }
814  }
815
816  ObjCCategoryImplDecl *CDecl =
817    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
818                                 ClassLoc, AtCatImplLoc, CatLoc);
819  /// Check that class of this category is already completely declared.
820  if (!IDecl) {
821    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
822    CDecl->setInvalidDecl();
823  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
824                                 diag::err_undef_interface)) {
825    CDecl->setInvalidDecl();
826  }
827
828  // FIXME: PushOnScopeChains?
829  CurContext->addDecl(CDecl);
830
831  // If the interface is deprecated/unavailable, warn/error about it.
832  if (IDecl)
833    DiagnoseUseOfDecl(IDecl, ClassLoc);
834
835  /// Check that CatName, category name, is not used in another implementation.
836  if (CatIDecl) {
837    if (CatIDecl->getImplementation()) {
838      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
839        << CatName;
840      Diag(CatIDecl->getImplementation()->getLocation(),
841           diag::note_previous_definition);
842    } else {
843      CatIDecl->setImplementation(CDecl);
844      // Warn on implementating category of deprecated class under
845      // -Wdeprecated-implementations flag.
846      DiagnoseObjCImplementedDeprecations(*this,
847                                          dyn_cast<NamedDecl>(IDecl),
848                                          CDecl->getLocation(), 2);
849    }
850  }
851
852  CheckObjCDeclScope(CDecl);
853  return ActOnObjCContainerStartDefinition(CDecl);
854}
855
856Decl *Sema::ActOnStartClassImplementation(
857                      SourceLocation AtClassImplLoc,
858                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
859                      IdentifierInfo *SuperClassname,
860                      SourceLocation SuperClassLoc) {
861  ObjCInterfaceDecl* IDecl = 0;
862  // Check for another declaration kind with the same name.
863  NamedDecl *PrevDecl
864    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
865                       ForRedeclaration);
866  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
867    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
868    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
869  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
870    RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
871                        diag::warn_undef_interface);
872  } else {
873    // We did not find anything with the name ClassName; try to correct for
874    // typos in the class name.
875    TypoCorrection Corrected = CorrectTypo(
876        DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
877        NULL, NULL, false, CTC_NoKeywords);
878    if ((IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
879      // Suggest the (potentially) correct interface name. However, put the
880      // fix-it hint itself in a separate note, since changing the name in
881      // the warning would make the fix-it change semantics.However, don't
882      // provide a code-modification hint or use the typo name for recovery,
883      // because this is just a warning. The program may actually be correct.
884      DeclarationName CorrectedName = Corrected.getCorrection();
885      Diag(ClassLoc, diag::warn_undef_interface_suggest)
886        << ClassName << CorrectedName;
887      Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
888        << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
889      IDecl = 0;
890    } else {
891      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
892    }
893  }
894
895  // Check that super class name is valid class name
896  ObjCInterfaceDecl* SDecl = 0;
897  if (SuperClassname) {
898    // Check if a different kind of symbol declared in this scope.
899    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
900                                LookupOrdinaryName);
901    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
902      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
903        << SuperClassname;
904      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
905    } else {
906      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
907      if (!SDecl)
908        Diag(SuperClassLoc, diag::err_undef_superclass)
909          << SuperClassname << ClassName;
910      else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
911        // This implementation and its interface do not have the same
912        // super class.
913        Diag(SuperClassLoc, diag::err_conflicting_super_class)
914          << SDecl->getDeclName();
915        Diag(SDecl->getLocation(), diag::note_previous_definition);
916      }
917    }
918  }
919
920  if (!IDecl) {
921    // Legacy case of @implementation with no corresponding @interface.
922    // Build, chain & install the interface decl into the identifier.
923
924    // FIXME: Do we support attributes on the @implementation? If so we should
925    // copy them over.
926    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
927                                      ClassName, /*PrevDecl=*/0, ClassLoc,
928                                      true);
929    IDecl->startDefinition();
930    if (SDecl) {
931      IDecl->setSuperClass(SDecl);
932      IDecl->setSuperClassLoc(SuperClassLoc);
933      IDecl->setEndOfDefinitionLoc(SuperClassLoc);
934    } else {
935      IDecl->setEndOfDefinitionLoc(ClassLoc);
936    }
937
938    PushOnScopeChains(IDecl, TUScope);
939  } else {
940    // Mark the interface as being completed, even if it was just as
941    //   @class ....;
942    // declaration; the user cannot reopen it.
943    if (!IDecl->hasDefinition())
944      IDecl->startDefinition();
945  }
946
947  ObjCImplementationDecl* IMPDecl =
948    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
949                                   ClassLoc, AtClassImplLoc);
950
951  if (CheckObjCDeclScope(IMPDecl))
952    return ActOnObjCContainerStartDefinition(IMPDecl);
953
954  // Check that there is no duplicate implementation of this class.
955  if (IDecl->getImplementation()) {
956    // FIXME: Don't leak everything!
957    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
958    Diag(IDecl->getImplementation()->getLocation(),
959         diag::note_previous_definition);
960  } else { // add it to the list.
961    IDecl->setImplementation(IMPDecl);
962    PushOnScopeChains(IMPDecl, TUScope);
963    // Warn on implementating deprecated class under
964    // -Wdeprecated-implementations flag.
965    DiagnoseObjCImplementedDeprecations(*this,
966                                        dyn_cast<NamedDecl>(IDecl),
967                                        IMPDecl->getLocation(), 1);
968  }
969  return ActOnObjCContainerStartDefinition(IMPDecl);
970}
971
972void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
973                                    ObjCIvarDecl **ivars, unsigned numIvars,
974                                    SourceLocation RBrace) {
975  assert(ImpDecl && "missing implementation decl");
976  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
977  if (!IDecl)
978    return;
979  /// Check case of non-existing @interface decl.
980  /// (legacy objective-c @implementation decl without an @interface decl).
981  /// Add implementations's ivar to the synthesize class's ivar list.
982  if (IDecl->isImplicitInterfaceDecl()) {
983    IDecl->setEndOfDefinitionLoc(RBrace);
984    // Add ivar's to class's DeclContext.
985    for (unsigned i = 0, e = numIvars; i != e; ++i) {
986      ivars[i]->setLexicalDeclContext(ImpDecl);
987      IDecl->makeDeclVisibleInContext(ivars[i], false);
988      ImpDecl->addDecl(ivars[i]);
989    }
990
991    return;
992  }
993  // If implementation has empty ivar list, just return.
994  if (numIvars == 0)
995    return;
996
997  assert(ivars && "missing @implementation ivars");
998  if (LangOpts.ObjCNonFragileABI2) {
999    if (ImpDecl->getSuperClass())
1000      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1001    for (unsigned i = 0; i < numIvars; i++) {
1002      ObjCIvarDecl* ImplIvar = ivars[i];
1003      if (const ObjCIvarDecl *ClsIvar =
1004            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1005        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1006        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1007        continue;
1008      }
1009      // Instance ivar to Implementation's DeclContext.
1010      ImplIvar->setLexicalDeclContext(ImpDecl);
1011      IDecl->makeDeclVisibleInContext(ImplIvar, false);
1012      ImpDecl->addDecl(ImplIvar);
1013    }
1014    return;
1015  }
1016  // Check interface's Ivar list against those in the implementation.
1017  // names and types must match.
1018  //
1019  unsigned j = 0;
1020  ObjCInterfaceDecl::ivar_iterator
1021    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1022  for (; numIvars > 0 && IVI != IVE; ++IVI) {
1023    ObjCIvarDecl* ImplIvar = ivars[j++];
1024    ObjCIvarDecl* ClsIvar = *IVI;
1025    assert (ImplIvar && "missing implementation ivar");
1026    assert (ClsIvar && "missing class ivar");
1027
1028    // First, make sure the types match.
1029    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1030      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1031        << ImplIvar->getIdentifier()
1032        << ImplIvar->getType() << ClsIvar->getType();
1033      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1034    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1035               ImplIvar->getBitWidthValue(Context) !=
1036               ClsIvar->getBitWidthValue(Context)) {
1037      Diag(ImplIvar->getBitWidth()->getLocStart(),
1038           diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1039      Diag(ClsIvar->getBitWidth()->getLocStart(),
1040           diag::note_previous_definition);
1041    }
1042    // Make sure the names are identical.
1043    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1044      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1045        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1046      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1047    }
1048    --numIvars;
1049  }
1050
1051  if (numIvars > 0)
1052    Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
1053  else if (IVI != IVE)
1054    Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
1055}
1056
1057void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
1058                               bool &IncompleteImpl, unsigned DiagID) {
1059  // No point warning no definition of method which is 'unavailable'.
1060  if (method->hasAttr<UnavailableAttr>())
1061    return;
1062  if (!IncompleteImpl) {
1063    Diag(ImpLoc, diag::warn_incomplete_impl);
1064    IncompleteImpl = true;
1065  }
1066  if (DiagID == diag::warn_unimplemented_protocol_method)
1067    Diag(ImpLoc, DiagID) << method->getDeclName();
1068  else
1069    Diag(method->getLocation(), DiagID) << method->getDeclName();
1070}
1071
1072/// Determines if type B can be substituted for type A.  Returns true if we can
1073/// guarantee that anything that the user will do to an object of type A can
1074/// also be done to an object of type B.  This is trivially true if the two
1075/// types are the same, or if B is a subclass of A.  It becomes more complex
1076/// in cases where protocols are involved.
1077///
1078/// Object types in Objective-C describe the minimum requirements for an
1079/// object, rather than providing a complete description of a type.  For
1080/// example, if A is a subclass of B, then B* may refer to an instance of A.
1081/// The principle of substitutability means that we may use an instance of A
1082/// anywhere that we may use an instance of B - it will implement all of the
1083/// ivars of B and all of the methods of B.
1084///
1085/// This substitutability is important when type checking methods, because
1086/// the implementation may have stricter type definitions than the interface.
1087/// The interface specifies minimum requirements, but the implementation may
1088/// have more accurate ones.  For example, a method may privately accept
1089/// instances of B, but only publish that it accepts instances of A.  Any
1090/// object passed to it will be type checked against B, and so will implicitly
1091/// by a valid A*.  Similarly, a method may return a subclass of the class that
1092/// it is declared as returning.
1093///
1094/// This is most important when considering subclassing.  A method in a
1095/// subclass must accept any object as an argument that its superclass's
1096/// implementation accepts.  It may, however, accept a more general type
1097/// without breaking substitutability (i.e. you can still use the subclass
1098/// anywhere that you can use the superclass, but not vice versa).  The
1099/// converse requirement applies to return types: the return type for a
1100/// subclass method must be a valid object of the kind that the superclass
1101/// advertises, but it may be specified more accurately.  This avoids the need
1102/// for explicit down-casting by callers.
1103///
1104/// Note: This is a stricter requirement than for assignment.
1105static bool isObjCTypeSubstitutable(ASTContext &Context,
1106                                    const ObjCObjectPointerType *A,
1107                                    const ObjCObjectPointerType *B,
1108                                    bool rejectId) {
1109  // Reject a protocol-unqualified id.
1110  if (rejectId && B->isObjCIdType()) return false;
1111
1112  // If B is a qualified id, then A must also be a qualified id and it must
1113  // implement all of the protocols in B.  It may not be a qualified class.
1114  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1115  // stricter definition so it is not substitutable for id<A>.
1116  if (B->isObjCQualifiedIdType()) {
1117    return A->isObjCQualifiedIdType() &&
1118           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1119                                                     QualType(B,0),
1120                                                     false);
1121  }
1122
1123  /*
1124  // id is a special type that bypasses type checking completely.  We want a
1125  // warning when it is used in one place but not another.
1126  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1127
1128
1129  // If B is a qualified id, then A must also be a qualified id (which it isn't
1130  // if we've got this far)
1131  if (B->isObjCQualifiedIdType()) return false;
1132  */
1133
1134  // Now we know that A and B are (potentially-qualified) class types.  The
1135  // normal rules for assignment apply.
1136  return Context.canAssignObjCInterfaces(A, B);
1137}
1138
1139static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1140  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1141}
1142
1143static bool CheckMethodOverrideReturn(Sema &S,
1144                                      ObjCMethodDecl *MethodImpl,
1145                                      ObjCMethodDecl *MethodDecl,
1146                                      bool IsProtocolMethodDecl,
1147                                      bool IsOverridingMode,
1148                                      bool Warn) {
1149  if (IsProtocolMethodDecl &&
1150      (MethodDecl->getObjCDeclQualifier() !=
1151       MethodImpl->getObjCDeclQualifier())) {
1152    if (Warn) {
1153        S.Diag(MethodImpl->getLocation(),
1154               (IsOverridingMode ?
1155                 diag::warn_conflicting_overriding_ret_type_modifiers
1156                 : diag::warn_conflicting_ret_type_modifiers))
1157          << MethodImpl->getDeclName()
1158          << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1159        S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1160          << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1161    }
1162    else
1163      return false;
1164  }
1165
1166  if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
1167                                       MethodDecl->getResultType()))
1168    return true;
1169  if (!Warn)
1170    return false;
1171
1172  unsigned DiagID =
1173    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
1174                     : diag::warn_conflicting_ret_types;
1175
1176  // Mismatches between ObjC pointers go into a different warning
1177  // category, and sometimes they're even completely whitelisted.
1178  if (const ObjCObjectPointerType *ImplPtrTy =
1179        MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
1180    if (const ObjCObjectPointerType *IfacePtrTy =
1181          MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
1182      // Allow non-matching return types as long as they don't violate
1183      // the principle of substitutability.  Specifically, we permit
1184      // return types that are subclasses of the declared return type,
1185      // or that are more-qualified versions of the declared type.
1186      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1187        return false;
1188
1189      DiagID =
1190        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
1191                          : diag::warn_non_covariant_ret_types;
1192    }
1193  }
1194
1195  S.Diag(MethodImpl->getLocation(), DiagID)
1196    << MethodImpl->getDeclName()
1197    << MethodDecl->getResultType()
1198    << MethodImpl->getResultType()
1199    << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1200  S.Diag(MethodDecl->getLocation(),
1201         IsOverridingMode ? diag::note_previous_declaration
1202                          : diag::note_previous_definition)
1203    << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1204  return false;
1205}
1206
1207static bool CheckMethodOverrideParam(Sema &S,
1208                                     ObjCMethodDecl *MethodImpl,
1209                                     ObjCMethodDecl *MethodDecl,
1210                                     ParmVarDecl *ImplVar,
1211                                     ParmVarDecl *IfaceVar,
1212                                     bool IsProtocolMethodDecl,
1213                                     bool IsOverridingMode,
1214                                     bool Warn) {
1215  if (IsProtocolMethodDecl &&
1216      (ImplVar->getObjCDeclQualifier() !=
1217       IfaceVar->getObjCDeclQualifier())) {
1218    if (Warn) {
1219      if (IsOverridingMode)
1220        S.Diag(ImplVar->getLocation(),
1221               diag::warn_conflicting_overriding_param_modifiers)
1222            << getTypeRange(ImplVar->getTypeSourceInfo())
1223            << MethodImpl->getDeclName();
1224      else S.Diag(ImplVar->getLocation(),
1225             diag::warn_conflicting_param_modifiers)
1226          << getTypeRange(ImplVar->getTypeSourceInfo())
1227          << MethodImpl->getDeclName();
1228      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1229          << getTypeRange(IfaceVar->getTypeSourceInfo());
1230    }
1231    else
1232      return false;
1233  }
1234
1235  QualType ImplTy = ImplVar->getType();
1236  QualType IfaceTy = IfaceVar->getType();
1237
1238  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1239    return true;
1240
1241  if (!Warn)
1242    return false;
1243  unsigned DiagID =
1244    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
1245                     : diag::warn_conflicting_param_types;
1246
1247  // Mismatches between ObjC pointers go into a different warning
1248  // category, and sometimes they're even completely whitelisted.
1249  if (const ObjCObjectPointerType *ImplPtrTy =
1250        ImplTy->getAs<ObjCObjectPointerType>()) {
1251    if (const ObjCObjectPointerType *IfacePtrTy =
1252          IfaceTy->getAs<ObjCObjectPointerType>()) {
1253      // Allow non-matching argument types as long as they don't
1254      // violate the principle of substitutability.  Specifically, the
1255      // implementation must accept any objects that the superclass
1256      // accepts, however it may also accept others.
1257      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1258        return false;
1259
1260      DiagID =
1261      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
1262                       :  diag::warn_non_contravariant_param_types;
1263    }
1264  }
1265
1266  S.Diag(ImplVar->getLocation(), DiagID)
1267    << getTypeRange(ImplVar->getTypeSourceInfo())
1268    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1269  S.Diag(IfaceVar->getLocation(),
1270         (IsOverridingMode ? diag::note_previous_declaration
1271                        : diag::note_previous_definition))
1272    << getTypeRange(IfaceVar->getTypeSourceInfo());
1273  return false;
1274}
1275
1276/// In ARC, check whether the conventional meanings of the two methods
1277/// match.  If they don't, it's a hard error.
1278static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1279                                      ObjCMethodDecl *decl) {
1280  ObjCMethodFamily implFamily = impl->getMethodFamily();
1281  ObjCMethodFamily declFamily = decl->getMethodFamily();
1282  if (implFamily == declFamily) return false;
1283
1284  // Since conventions are sorted by selector, the only possibility is
1285  // that the types differ enough to cause one selector or the other
1286  // to fall out of the family.
1287  assert(implFamily == OMF_None || declFamily == OMF_None);
1288
1289  // No further diagnostics required on invalid declarations.
1290  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1291
1292  const ObjCMethodDecl *unmatched = impl;
1293  ObjCMethodFamily family = declFamily;
1294  unsigned errorID = diag::err_arc_lost_method_convention;
1295  unsigned noteID = diag::note_arc_lost_method_convention;
1296  if (declFamily == OMF_None) {
1297    unmatched = decl;
1298    family = implFamily;
1299    errorID = diag::err_arc_gained_method_convention;
1300    noteID = diag::note_arc_gained_method_convention;
1301  }
1302
1303  // Indexes into a %select clause in the diagnostic.
1304  enum FamilySelector {
1305    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1306  };
1307  FamilySelector familySelector = FamilySelector();
1308
1309  switch (family) {
1310  case OMF_None: llvm_unreachable("logic error, no method convention");
1311  case OMF_retain:
1312  case OMF_release:
1313  case OMF_autorelease:
1314  case OMF_dealloc:
1315  case OMF_finalize:
1316  case OMF_retainCount:
1317  case OMF_self:
1318  case OMF_performSelector:
1319    // Mismatches for these methods don't change ownership
1320    // conventions, so we don't care.
1321    return false;
1322
1323  case OMF_init: familySelector = F_init; break;
1324  case OMF_alloc: familySelector = F_alloc; break;
1325  case OMF_copy: familySelector = F_copy; break;
1326  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1327  case OMF_new: familySelector = F_new; break;
1328  }
1329
1330  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1331  ReasonSelector reasonSelector;
1332
1333  // The only reason these methods don't fall within their families is
1334  // due to unusual result types.
1335  if (unmatched->getResultType()->isObjCObjectPointerType()) {
1336    reasonSelector = R_UnrelatedReturn;
1337  } else {
1338    reasonSelector = R_NonObjectReturn;
1339  }
1340
1341  S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
1342  S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
1343
1344  return true;
1345}
1346
1347void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1348                                       ObjCMethodDecl *MethodDecl,
1349                                       bool IsProtocolMethodDecl) {
1350  if (getLangOptions().ObjCAutoRefCount &&
1351      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1352    return;
1353
1354  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1355                            IsProtocolMethodDecl, false,
1356                            true);
1357
1358  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1359       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
1360       IM != EM; ++IM, ++IF) {
1361    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1362                             IsProtocolMethodDecl, false, true);
1363  }
1364
1365  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1366    Diag(ImpMethodDecl->getLocation(),
1367         diag::warn_conflicting_variadic);
1368    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1369  }
1370}
1371
1372void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1373                                       ObjCMethodDecl *Overridden,
1374                                       bool IsProtocolMethodDecl) {
1375
1376  CheckMethodOverrideReturn(*this, Method, Overridden,
1377                            IsProtocolMethodDecl, true,
1378                            true);
1379
1380  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1381       IF = Overridden->param_begin(), EM = Method->param_end();
1382       IM != EM; ++IM, ++IF) {
1383    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1384                             IsProtocolMethodDecl, true, true);
1385  }
1386
1387  if (Method->isVariadic() != Overridden->isVariadic()) {
1388    Diag(Method->getLocation(),
1389         diag::warn_conflicting_overriding_variadic);
1390    Diag(Overridden->getLocation(), diag::note_previous_declaration);
1391  }
1392}
1393
1394/// WarnExactTypedMethods - This routine issues a warning if method
1395/// implementation declaration matches exactly that of its declaration.
1396void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1397                                 ObjCMethodDecl *MethodDecl,
1398                                 bool IsProtocolMethodDecl) {
1399  // don't issue warning when protocol method is optional because primary
1400  // class is not required to implement it and it is safe for protocol
1401  // to implement it.
1402  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1403    return;
1404  // don't issue warning when primary class's method is
1405  // depecated/unavailable.
1406  if (MethodDecl->hasAttr<UnavailableAttr>() ||
1407      MethodDecl->hasAttr<DeprecatedAttr>())
1408    return;
1409
1410  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1411                                      IsProtocolMethodDecl, false, false);
1412  if (match)
1413    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1414         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
1415         IM != EM; ++IM, ++IF) {
1416      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
1417                                       *IM, *IF,
1418                                       IsProtocolMethodDecl, false, false);
1419      if (!match)
1420        break;
1421    }
1422  if (match)
1423    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1424  if (match)
1425    match = !(MethodDecl->isClassMethod() &&
1426              MethodDecl->getSelector() == GetNullarySelector("load", Context));
1427
1428  if (match) {
1429    Diag(ImpMethodDecl->getLocation(),
1430         diag::warn_category_method_impl_match);
1431    Diag(MethodDecl->getLocation(), diag::note_method_declared_at);
1432  }
1433}
1434
1435/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1436/// improve the efficiency of selector lookups and type checking by associating
1437/// with each protocol / interface / category the flattened instance tables. If
1438/// we used an immutable set to keep the table then it wouldn't add significant
1439/// memory cost and it would be handy for lookups.
1440
1441/// CheckProtocolMethodDefs - This routine checks unimplemented methods
1442/// Declared in protocol, and those referenced by it.
1443void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
1444                                   ObjCProtocolDecl *PDecl,
1445                                   bool& IncompleteImpl,
1446                                   const llvm::DenseSet<Selector> &InsMap,
1447                                   const llvm::DenseSet<Selector> &ClsMap,
1448                                   ObjCContainerDecl *CDecl) {
1449  ObjCInterfaceDecl *IDecl;
1450  if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl))
1451    IDecl = C->getClassInterface();
1452  else
1453    IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
1454  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1455
1456  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1457  ObjCInterfaceDecl *NSIDecl = 0;
1458  if (getLangOptions().NeXTRuntime) {
1459    // check to see if class implements forwardInvocation method and objects
1460    // of this class are derived from 'NSProxy' so that to forward requests
1461    // from one object to another.
1462    // Under such conditions, which means that every method possible is
1463    // implemented in the class, we should not issue "Method definition not
1464    // found" warnings.
1465    // FIXME: Use a general GetUnarySelector method for this.
1466    IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
1467    Selector fISelector = Context.Selectors.getSelector(1, &II);
1468    if (InsMap.count(fISelector))
1469      // Is IDecl derived from 'NSProxy'? If so, no instance methods
1470      // need be implemented in the implementation.
1471      NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
1472  }
1473
1474  // If a method lookup fails locally we still need to look and see if
1475  // the method was implemented by a base class or an inherited
1476  // protocol. This lookup is slow, but occurs rarely in correct code
1477  // and otherwise would terminate in a warning.
1478
1479  // check unimplemented instance methods.
1480  if (!NSIDecl)
1481    for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
1482         E = PDecl->instmeth_end(); I != E; ++I) {
1483      ObjCMethodDecl *method = *I;
1484      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1485          !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
1486          (!Super ||
1487           !Super->lookupInstanceMethod(method->getSelector()))) {
1488            // Ugly, but necessary. Method declared in protcol might have
1489            // have been synthesized due to a property declared in the class which
1490            // uses the protocol.
1491            ObjCMethodDecl *MethodInClass =
1492            IDecl->lookupInstanceMethod(method->getSelector());
1493            if (!MethodInClass || !MethodInClass->isSynthesized()) {
1494              unsigned DIAG = diag::warn_unimplemented_protocol_method;
1495              if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1496                      != DiagnosticsEngine::Ignored) {
1497                WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1498                Diag(method->getLocation(), diag::note_method_declared_at);
1499                Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1500                  << PDecl->getDeclName();
1501              }
1502            }
1503          }
1504    }
1505  // check unimplemented class methods
1506  for (ObjCProtocolDecl::classmeth_iterator
1507         I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1508       I != E; ++I) {
1509    ObjCMethodDecl *method = *I;
1510    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1511        !ClsMap.count(method->getSelector()) &&
1512        (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1513      unsigned DIAG = diag::warn_unimplemented_protocol_method;
1514      if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
1515            DiagnosticsEngine::Ignored) {
1516        WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1517        Diag(method->getLocation(), diag::note_method_declared_at);
1518        Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1519          PDecl->getDeclName();
1520      }
1521    }
1522  }
1523  // Check on this protocols's referenced protocols, recursively.
1524  for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1525       E = PDecl->protocol_end(); PI != E; ++PI)
1526    CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl);
1527}
1528
1529/// MatchAllMethodDeclarations - Check methods declared in interface
1530/// or protocol against those declared in their implementations.
1531///
1532void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
1533                                      const llvm::DenseSet<Selector> &ClsMap,
1534                                      llvm::DenseSet<Selector> &InsMapSeen,
1535                                      llvm::DenseSet<Selector> &ClsMapSeen,
1536                                      ObjCImplDecl* IMPDecl,
1537                                      ObjCContainerDecl* CDecl,
1538                                      bool &IncompleteImpl,
1539                                      bool ImmediateClass,
1540                                      bool WarnExactMatch) {
1541  // Check and see if instance methods in class interface have been
1542  // implemented in the implementation class. If so, their types match.
1543  for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1544       E = CDecl->instmeth_end(); I != E; ++I) {
1545    if (InsMapSeen.count((*I)->getSelector()))
1546        continue;
1547    InsMapSeen.insert((*I)->getSelector());
1548    if (!(*I)->isSynthesized() &&
1549        !InsMap.count((*I)->getSelector())) {
1550      if (ImmediateClass)
1551        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1552                            diag::note_undef_method_impl);
1553      continue;
1554    } else {
1555      ObjCMethodDecl *ImpMethodDecl =
1556        IMPDecl->getInstanceMethod((*I)->getSelector());
1557      assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
1558             "Expected to find the method through lookup as well");
1559      ObjCMethodDecl *MethodDecl = *I;
1560      // ImpMethodDecl may be null as in a @dynamic property.
1561      if (ImpMethodDecl) {
1562        if (!WarnExactMatch)
1563          WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1564                                      isa<ObjCProtocolDecl>(CDecl));
1565        else if (!MethodDecl->isSynthesized())
1566          WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1567                               isa<ObjCProtocolDecl>(CDecl));
1568      }
1569    }
1570  }
1571
1572  // Check and see if class methods in class interface have been
1573  // implemented in the implementation class. If so, their types match.
1574   for (ObjCInterfaceDecl::classmeth_iterator
1575       I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1576     if (ClsMapSeen.count((*I)->getSelector()))
1577       continue;
1578     ClsMapSeen.insert((*I)->getSelector());
1579    if (!ClsMap.count((*I)->getSelector())) {
1580      if (ImmediateClass)
1581        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1582                            diag::note_undef_method_impl);
1583    } else {
1584      ObjCMethodDecl *ImpMethodDecl =
1585        IMPDecl->getClassMethod((*I)->getSelector());
1586      assert(CDecl->getClassMethod((*I)->getSelector()) &&
1587             "Expected to find the method through lookup as well");
1588      ObjCMethodDecl *MethodDecl = *I;
1589      if (!WarnExactMatch)
1590        WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1591                                    isa<ObjCProtocolDecl>(CDecl));
1592      else
1593        WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1594                             isa<ObjCProtocolDecl>(CDecl));
1595    }
1596  }
1597
1598  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1599    // Also methods in class extensions need be looked at next.
1600    for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
1601         ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
1602      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1603                                 IMPDecl,
1604                                 const_cast<ObjCCategoryDecl *>(ClsExtDecl),
1605                                 IncompleteImpl, false, WarnExactMatch);
1606
1607    // Check for any implementation of a methods declared in protocol.
1608    for (ObjCInterfaceDecl::all_protocol_iterator
1609          PI = I->all_referenced_protocol_begin(),
1610          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1611      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1612                                 IMPDecl,
1613                                 (*PI), IncompleteImpl, false, WarnExactMatch);
1614
1615    // FIXME. For now, we are not checking for extact match of methods
1616    // in category implementation and its primary class's super class.
1617    if (!WarnExactMatch && I->getSuperClass())
1618      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1619                                 IMPDecl,
1620                                 I->getSuperClass(), IncompleteImpl, false);
1621  }
1622}
1623
1624/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1625/// category matches with those implemented in its primary class and
1626/// warns each time an exact match is found.
1627void Sema::CheckCategoryVsClassMethodMatches(
1628                                  ObjCCategoryImplDecl *CatIMPDecl) {
1629  llvm::DenseSet<Selector> InsMap, ClsMap;
1630
1631  for (ObjCImplementationDecl::instmeth_iterator
1632       I = CatIMPDecl->instmeth_begin(),
1633       E = CatIMPDecl->instmeth_end(); I!=E; ++I)
1634    InsMap.insert((*I)->getSelector());
1635
1636  for (ObjCImplementationDecl::classmeth_iterator
1637       I = CatIMPDecl->classmeth_begin(),
1638       E = CatIMPDecl->classmeth_end(); I != E; ++I)
1639    ClsMap.insert((*I)->getSelector());
1640  if (InsMap.empty() && ClsMap.empty())
1641    return;
1642
1643  // Get category's primary class.
1644  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1645  if (!CatDecl)
1646    return;
1647  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1648  if (!IDecl)
1649    return;
1650  llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
1651  bool IncompleteImpl = false;
1652  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1653                             CatIMPDecl, IDecl,
1654                             IncompleteImpl, false, true /*WarnExactMatch*/);
1655}
1656
1657void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1658                                     ObjCContainerDecl* CDecl,
1659                                     bool IncompleteImpl) {
1660  llvm::DenseSet<Selector> InsMap;
1661  // Check and see if instance methods in class interface have been
1662  // implemented in the implementation class.
1663  for (ObjCImplementationDecl::instmeth_iterator
1664         I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1665    InsMap.insert((*I)->getSelector());
1666
1667  // Check and see if properties declared in the interface have either 1)
1668  // an implementation or 2) there is a @synthesize/@dynamic implementation
1669  // of the property in the @implementation.
1670  if (isa<ObjCInterfaceDecl>(CDecl) &&
1671        !(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2))
1672    DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1673
1674  llvm::DenseSet<Selector> ClsMap;
1675  for (ObjCImplementationDecl::classmeth_iterator
1676       I = IMPDecl->classmeth_begin(),
1677       E = IMPDecl->classmeth_end(); I != E; ++I)
1678    ClsMap.insert((*I)->getSelector());
1679
1680  // Check for type conflict of methods declared in a class/protocol and
1681  // its implementation; if any.
1682  llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
1683  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1684                             IMPDecl, CDecl,
1685                             IncompleteImpl, true);
1686
1687  // check all methods implemented in category against those declared
1688  // in its primary class.
1689  if (ObjCCategoryImplDecl *CatDecl =
1690        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1691    CheckCategoryVsClassMethodMatches(CatDecl);
1692
1693  // Check the protocol list for unimplemented methods in the @implementation
1694  // class.
1695  // Check and see if class methods in class interface have been
1696  // implemented in the implementation class.
1697
1698  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1699    for (ObjCInterfaceDecl::all_protocol_iterator
1700          PI = I->all_referenced_protocol_begin(),
1701          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1702      CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1703                              InsMap, ClsMap, I);
1704    // Check class extensions (unnamed categories)
1705    for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
1706         Categories; Categories = Categories->getNextClassExtension())
1707      ImplMethodsVsClassMethods(S, IMPDecl,
1708                                const_cast<ObjCCategoryDecl*>(Categories),
1709                                IncompleteImpl);
1710  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1711    // For extended class, unimplemented methods in its protocols will
1712    // be reported in the primary class.
1713    if (!C->IsClassExtension()) {
1714      for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1715           E = C->protocol_end(); PI != E; ++PI)
1716        CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1717                                InsMap, ClsMap, CDecl);
1718      // Report unimplemented properties in the category as well.
1719      // When reporting on missing setter/getters, do not report when
1720      // setter/getter is implemented in category's primary class
1721      // implementation.
1722      if (ObjCInterfaceDecl *ID = C->getClassInterface())
1723        if (ObjCImplDecl *IMP = ID->getImplementation()) {
1724          for (ObjCImplementationDecl::instmeth_iterator
1725               I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
1726            InsMap.insert((*I)->getSelector());
1727        }
1728      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1729    }
1730  } else
1731    llvm_unreachable("invalid ObjCContainerDecl type.");
1732}
1733
1734/// ActOnForwardClassDeclaration -
1735Sema::DeclGroupPtrTy
1736Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1737                                   IdentifierInfo **IdentList,
1738                                   SourceLocation *IdentLocs,
1739                                   unsigned NumElts) {
1740  SmallVector<Decl *, 8> DeclsInGroup;
1741  for (unsigned i = 0; i != NumElts; ++i) {
1742    // Check for another declaration kind with the same name.
1743    NamedDecl *PrevDecl
1744      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1745                         LookupOrdinaryName, ForRedeclaration);
1746    if (PrevDecl && PrevDecl->isTemplateParameter()) {
1747      // Maybe we will complain about the shadowed template parameter.
1748      DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
1749      // Just pretend that we didn't see the previous declaration.
1750      PrevDecl = 0;
1751    }
1752
1753    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1754      // GCC apparently allows the following idiom:
1755      //
1756      // typedef NSObject < XCElementTogglerP > XCElementToggler;
1757      // @class XCElementToggler;
1758      //
1759      // FIXME: Make an extension?
1760      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
1761      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1762        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1763        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1764      } else {
1765        // a forward class declaration matching a typedef name of a class refers
1766        // to the underlying class.
1767        if (const ObjCObjectType *OI =
1768              TDD->getUnderlyingType()->getAs<ObjCObjectType>())
1769          PrevDecl = OI->getInterface();
1770      }
1771    }
1772
1773    // Create a declaration to describe this forward declaration.
1774    ObjCInterfaceDecl *PrevIDecl
1775      = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1776    ObjCInterfaceDecl *IDecl
1777      = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1778                                  IdentList[i], PrevIDecl, IdentLocs[i]);
1779    IDecl->setAtEndRange(IdentLocs[i]);
1780
1781    PushOnScopeChains(IDecl, TUScope);
1782    CheckObjCDeclScope(IDecl);
1783    DeclsInGroup.push_back(IDecl);
1784  }
1785
1786  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1787}
1788
1789static bool tryMatchRecordTypes(ASTContext &Context,
1790                                Sema::MethodMatchStrategy strategy,
1791                                const Type *left, const Type *right);
1792
1793static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
1794                       QualType leftQT, QualType rightQT) {
1795  const Type *left =
1796    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
1797  const Type *right =
1798    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
1799
1800  if (left == right) return true;
1801
1802  // If we're doing a strict match, the types have to match exactly.
1803  if (strategy == Sema::MMS_strict) return false;
1804
1805  if (left->isIncompleteType() || right->isIncompleteType()) return false;
1806
1807  // Otherwise, use this absurdly complicated algorithm to try to
1808  // validate the basic, low-level compatibility of the two types.
1809
1810  // As a minimum, require the sizes and alignments to match.
1811  if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
1812    return false;
1813
1814  // Consider all the kinds of non-dependent canonical types:
1815  // - functions and arrays aren't possible as return and parameter types
1816
1817  // - vector types of equal size can be arbitrarily mixed
1818  if (isa<VectorType>(left)) return isa<VectorType>(right);
1819  if (isa<VectorType>(right)) return false;
1820
1821  // - references should only match references of identical type
1822  // - structs, unions, and Objective-C objects must match more-or-less
1823  //   exactly
1824  // - everything else should be a scalar
1825  if (!left->isScalarType() || !right->isScalarType())
1826    return tryMatchRecordTypes(Context, strategy, left, right);
1827
1828  // Make scalars agree in kind, except count bools as chars, and group
1829  // all non-member pointers together.
1830  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
1831  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
1832  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
1833  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
1834  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
1835    leftSK = Type::STK_ObjCObjectPointer;
1836  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
1837    rightSK = Type::STK_ObjCObjectPointer;
1838
1839  // Note that data member pointers and function member pointers don't
1840  // intermix because of the size differences.
1841
1842  return (leftSK == rightSK);
1843}
1844
1845static bool tryMatchRecordTypes(ASTContext &Context,
1846                                Sema::MethodMatchStrategy strategy,
1847                                const Type *lt, const Type *rt) {
1848  assert(lt && rt && lt != rt);
1849
1850  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
1851  RecordDecl *left = cast<RecordType>(lt)->getDecl();
1852  RecordDecl *right = cast<RecordType>(rt)->getDecl();
1853
1854  // Require union-hood to match.
1855  if (left->isUnion() != right->isUnion()) return false;
1856
1857  // Require an exact match if either is non-POD.
1858  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
1859      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
1860    return false;
1861
1862  // Require size and alignment to match.
1863  if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
1864
1865  // Require fields to match.
1866  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
1867  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
1868  for (; li != le && ri != re; ++li, ++ri) {
1869    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
1870      return false;
1871  }
1872  return (li == le && ri == re);
1873}
1874
1875/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
1876/// returns true, or false, accordingly.
1877/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
1878bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
1879                                      const ObjCMethodDecl *right,
1880                                      MethodMatchStrategy strategy) {
1881  if (!matchTypes(Context, strategy,
1882                  left->getResultType(), right->getResultType()))
1883    return false;
1884
1885  if (getLangOptions().ObjCAutoRefCount &&
1886      (left->hasAttr<NSReturnsRetainedAttr>()
1887         != right->hasAttr<NSReturnsRetainedAttr>() ||
1888       left->hasAttr<NSConsumesSelfAttr>()
1889         != right->hasAttr<NSConsumesSelfAttr>()))
1890    return false;
1891
1892  ObjCMethodDecl::param_const_iterator
1893    li = left->param_begin(), le = left->param_end(), ri = right->param_begin();
1894
1895  for (; li != le; ++li, ++ri) {
1896    assert(ri != right->param_end() && "Param mismatch");
1897    const ParmVarDecl *lparm = *li, *rparm = *ri;
1898
1899    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
1900      return false;
1901
1902    if (getLangOptions().ObjCAutoRefCount &&
1903        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
1904      return false;
1905  }
1906  return true;
1907}
1908
1909/// \brief Read the contents of the method pool for a given selector from
1910/// external storage.
1911///
1912/// This routine should only be called once, when the method pool has no entry
1913/// for this selector.
1914Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) {
1915  assert(ExternalSource && "We need an external AST source");
1916  assert(MethodPool.find(Sel) == MethodPool.end() &&
1917         "Selector data already loaded into the method pool");
1918
1919  // Read the method list from the external source.
1920  GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel);
1921
1922  return MethodPool.insert(std::make_pair(Sel, Methods)).first;
1923}
1924
1925void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
1926                                 bool instance) {
1927  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
1928  if (Pos == MethodPool.end()) {
1929    if (ExternalSource)
1930      Pos = ReadMethodPool(Method->getSelector());
1931    else
1932      Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
1933                                             GlobalMethods())).first;
1934  }
1935  Method->setDefined(impl);
1936  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
1937  if (Entry.Method == 0) {
1938    // Haven't seen a method with this selector name yet - add it.
1939    Entry.Method = Method;
1940    Entry.Next = 0;
1941    return;
1942  }
1943
1944  // We've seen a method with this name, see if we have already seen this type
1945  // signature.
1946  for (ObjCMethodList *List = &Entry; List; List = List->Next) {
1947    bool match = MatchTwoMethodDeclarations(Method, List->Method);
1948
1949    if (match) {
1950      ObjCMethodDecl *PrevObjCMethod = List->Method;
1951      PrevObjCMethod->setDefined(impl);
1952      // If a method is deprecated, push it in the global pool.
1953      // This is used for better diagnostics.
1954      if (Method->isDeprecated()) {
1955        if (!PrevObjCMethod->isDeprecated())
1956          List->Method = Method;
1957      }
1958      // If new method is unavailable, push it into global pool
1959      // unless previous one is deprecated.
1960      if (Method->isUnavailable()) {
1961        if (PrevObjCMethod->getAvailability() < AR_Deprecated)
1962          List->Method = Method;
1963      }
1964      return;
1965    }
1966  }
1967
1968  // We have a new signature for an existing method - add it.
1969  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
1970  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
1971  Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next);
1972}
1973
1974/// Determines if this is an "acceptable" loose mismatch in the global
1975/// method pool.  This exists mostly as a hack to get around certain
1976/// global mismatches which we can't afford to make warnings / errors.
1977/// Really, what we want is a way to take a method out of the global
1978/// method pool.
1979static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
1980                                       ObjCMethodDecl *other) {
1981  if (!chosen->isInstanceMethod())
1982    return false;
1983
1984  Selector sel = chosen->getSelector();
1985  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
1986    return false;
1987
1988  // Don't complain about mismatches for -length if the method we
1989  // chose has an integral result type.
1990  return (chosen->getResultType()->isIntegerType());
1991}
1992
1993ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
1994                                               bool receiverIdOrClass,
1995                                               bool warn, bool instance) {
1996  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
1997  if (Pos == MethodPool.end()) {
1998    if (ExternalSource)
1999      Pos = ReadMethodPool(Sel);
2000    else
2001      return 0;
2002  }
2003
2004  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2005
2006  if (warn && MethList.Method && MethList.Next) {
2007    bool issueDiagnostic = false, issueError = false;
2008
2009    // We support a warning which complains about *any* difference in
2010    // method signature.
2011    bool strictSelectorMatch =
2012      (receiverIdOrClass && warn &&
2013       (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
2014                                 R.getBegin()) !=
2015      DiagnosticsEngine::Ignored));
2016    if (strictSelectorMatch)
2017      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
2018        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
2019                                        MMS_strict)) {
2020          issueDiagnostic = true;
2021          break;
2022        }
2023      }
2024
2025    // If we didn't see any strict differences, we won't see any loose
2026    // differences.  In ARC, however, we also need to check for loose
2027    // mismatches, because most of them are errors.
2028    if (!strictSelectorMatch ||
2029        (issueDiagnostic && getLangOptions().ObjCAutoRefCount))
2030      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
2031        // This checks if the methods differ in type mismatch.
2032        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
2033                                        MMS_loose) &&
2034            !isAcceptableMethodMismatch(MethList.Method, Next->Method)) {
2035          issueDiagnostic = true;
2036          if (getLangOptions().ObjCAutoRefCount)
2037            issueError = true;
2038          break;
2039        }
2040      }
2041
2042    if (issueDiagnostic) {
2043      if (issueError)
2044        Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2045      else if (strictSelectorMatch)
2046        Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2047      else
2048        Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2049
2050      Diag(MethList.Method->getLocStart(),
2051           issueError ? diag::note_possibility : diag::note_using)
2052        << MethList.Method->getSourceRange();
2053      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
2054        Diag(Next->Method->getLocStart(), diag::note_also_found)
2055          << Next->Method->getSourceRange();
2056    }
2057  }
2058  return MethList.Method;
2059}
2060
2061ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2062  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2063  if (Pos == MethodPool.end())
2064    return 0;
2065
2066  GlobalMethods &Methods = Pos->second;
2067
2068  if (Methods.first.Method && Methods.first.Method->isDefined())
2069    return Methods.first.Method;
2070  if (Methods.second.Method && Methods.second.Method->isDefined())
2071    return Methods.second.Method;
2072  return 0;
2073}
2074
2075/// CompareMethodParamsInBaseAndSuper - This routine compares methods with
2076/// identical selector names in current and its super classes and issues
2077/// a warning if any of their argument types are incompatible.
2078void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
2079                                             ObjCMethodDecl *Method,
2080                                             bool IsInstance)  {
2081  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
2082  if (ID == 0) return;
2083
2084  while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
2085    ObjCMethodDecl *SuperMethodDecl =
2086        SD->lookupMethod(Method->getSelector(), IsInstance);
2087    if (SuperMethodDecl == 0) {
2088      ID = SD;
2089      continue;
2090    }
2091    ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
2092      E = Method->param_end();
2093    ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
2094    for (; ParamI != E; ++ParamI, ++PrevI) {
2095      // Number of parameters are the same and is guaranteed by selector match.
2096      assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
2097      QualType T1 = Context.getCanonicalType((*ParamI)->getType());
2098      QualType T2 = Context.getCanonicalType((*PrevI)->getType());
2099      // If type of argument of method in this class does not match its
2100      // respective argument type in the super class method, issue warning;
2101      if (!Context.typesAreCompatible(T1, T2)) {
2102        Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
2103          << T1 << T2;
2104        Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
2105        return;
2106      }
2107    }
2108    ID = SD;
2109  }
2110}
2111
2112/// DiagnoseDuplicateIvars -
2113/// Check for duplicate ivars in the entire class at the start of
2114/// @implementation. This becomes necesssary because class extension can
2115/// add ivars to a class in random order which will not be known until
2116/// class's @implementation is seen.
2117void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
2118                                  ObjCInterfaceDecl *SID) {
2119  for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
2120       IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
2121    ObjCIvarDecl* Ivar = (*IVI);
2122    if (Ivar->isInvalidDecl())
2123      continue;
2124    if (IdentifierInfo *II = Ivar->getIdentifier()) {
2125      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2126      if (prevIvar) {
2127        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2128        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2129        Ivar->setInvalidDecl();
2130      }
2131    }
2132  }
2133}
2134
2135Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
2136  switch (CurContext->getDeclKind()) {
2137    case Decl::ObjCInterface:
2138      return Sema::OCK_Interface;
2139    case Decl::ObjCProtocol:
2140      return Sema::OCK_Protocol;
2141    case Decl::ObjCCategory:
2142      if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
2143        return Sema::OCK_ClassExtension;
2144      else
2145        return Sema::OCK_Category;
2146    case Decl::ObjCImplementation:
2147      return Sema::OCK_Implementation;
2148    case Decl::ObjCCategoryImpl:
2149      return Sema::OCK_CategoryImplementation;
2150
2151    default:
2152      return Sema::OCK_None;
2153  }
2154}
2155
2156// Note: For class/category implemenations, allMethods/allProperties is
2157// always null.
2158Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
2159                       Decl **allMethods, unsigned allNum,
2160                       Decl **allProperties, unsigned pNum,
2161                       DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
2162
2163  if (getObjCContainerKind() == Sema::OCK_None)
2164    return 0;
2165
2166  assert(AtEnd.isValid() && "Invalid location for '@end'");
2167
2168  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2169  Decl *ClassDecl = cast<Decl>(OCD);
2170
2171  bool isInterfaceDeclKind =
2172        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2173         || isa<ObjCProtocolDecl>(ClassDecl);
2174  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2175
2176  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2177  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2178  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2179
2180  for (unsigned i = 0; i < allNum; i++ ) {
2181    ObjCMethodDecl *Method =
2182      cast_or_null<ObjCMethodDecl>(allMethods[i]);
2183
2184    if (!Method) continue;  // Already issued a diagnostic.
2185    if (Method->isInstanceMethod()) {
2186      /// Check for instance method of the same name with incompatible types
2187      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2188      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2189                              : false;
2190      if ((isInterfaceDeclKind && PrevMethod && !match)
2191          || (checkIdenticalMethods && match)) {
2192          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2193            << Method->getDeclName();
2194          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2195        Method->setInvalidDecl();
2196      } else {
2197        if (PrevMethod) {
2198          Method->setAsRedeclaration(PrevMethod);
2199          if (!Context.getSourceManager().isInSystemHeader(
2200                 Method->getLocation()))
2201            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2202              << Method->getDeclName();
2203          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2204        }
2205        InsMap[Method->getSelector()] = Method;
2206        /// The following allows us to typecheck messages to "id".
2207        AddInstanceMethodToGlobalPool(Method);
2208        // verify that the instance method conforms to the same definition of
2209        // parent methods if it shadows one.
2210        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
2211      }
2212    } else {
2213      /// Check for class method of the same name with incompatible types
2214      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2215      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2216                              : false;
2217      if ((isInterfaceDeclKind && PrevMethod && !match)
2218          || (checkIdenticalMethods && match)) {
2219        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2220          << Method->getDeclName();
2221        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2222        Method->setInvalidDecl();
2223      } else {
2224        if (PrevMethod) {
2225          Method->setAsRedeclaration(PrevMethod);
2226          if (!Context.getSourceManager().isInSystemHeader(
2227                 Method->getLocation()))
2228            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2229              << Method->getDeclName();
2230          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2231        }
2232        ClsMap[Method->getSelector()] = Method;
2233        /// The following allows us to typecheck messages to "Class".
2234        AddFactoryMethodToGlobalPool(Method);
2235        // verify that the class method conforms to the same definition of
2236        // parent methods if it shadows one.
2237        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
2238      }
2239    }
2240  }
2241  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
2242    // Compares properties declared in this class to those of its
2243    // super class.
2244    ComparePropertiesInBaseAndSuper(I);
2245    CompareProperties(I, I);
2246  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2247    // Categories are used to extend the class by declaring new methods.
2248    // By the same token, they are also used to add new properties. No
2249    // need to compare the added property to those in the class.
2250
2251    // Compare protocol properties with those in category
2252    CompareProperties(C, C);
2253    if (C->IsClassExtension()) {
2254      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2255      DiagnoseClassExtensionDupMethods(C, CCPrimary);
2256    }
2257  }
2258  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2259    if (CDecl->getIdentifier())
2260      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2261      // user-defined setter/getter. It also synthesizes setter/getter methods
2262      // and adds them to the DeclContext and global method pools.
2263      for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
2264                                            E = CDecl->prop_end();
2265           I != E; ++I)
2266        ProcessPropertyDecl(*I, CDecl);
2267    CDecl->setAtEndRange(AtEnd);
2268  }
2269  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2270    IC->setAtEndRange(AtEnd);
2271    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2272      // Any property declared in a class extension might have user
2273      // declared setter or getter in current class extension or one
2274      // of the other class extensions. Mark them as synthesized as
2275      // property will be synthesized when property with same name is
2276      // seen in the @implementation.
2277      for (const ObjCCategoryDecl *ClsExtDecl =
2278           IDecl->getFirstClassExtension();
2279           ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
2280        for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
2281             E = ClsExtDecl->prop_end(); I != E; ++I) {
2282          ObjCPropertyDecl *Property = (*I);
2283          // Skip over properties declared @dynamic
2284          if (const ObjCPropertyImplDecl *PIDecl
2285              = IC->FindPropertyImplDecl(Property->getIdentifier()))
2286            if (PIDecl->getPropertyImplementation()
2287                  == ObjCPropertyImplDecl::Dynamic)
2288              continue;
2289
2290          for (const ObjCCategoryDecl *CExtDecl =
2291               IDecl->getFirstClassExtension();
2292               CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
2293            if (ObjCMethodDecl *GetterMethod =
2294                CExtDecl->getInstanceMethod(Property->getGetterName()))
2295              GetterMethod->setSynthesized(true);
2296            if (!Property->isReadOnly())
2297              if (ObjCMethodDecl *SetterMethod =
2298                  CExtDecl->getInstanceMethod(Property->getSetterName()))
2299                SetterMethod->setSynthesized(true);
2300          }
2301        }
2302      }
2303      ImplMethodsVsClassMethods(S, IC, IDecl);
2304      AtomicPropertySetterGetterRules(IC, IDecl);
2305      DiagnoseOwningPropertyGetterSynthesis(IC);
2306
2307      if (LangOpts.ObjCNonFragileABI2)
2308        while (IDecl->getSuperClass()) {
2309          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2310          IDecl = IDecl->getSuperClass();
2311        }
2312    }
2313    SetIvarInitializers(IC);
2314  } else if (ObjCCategoryImplDecl* CatImplClass =
2315                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2316    CatImplClass->setAtEndRange(AtEnd);
2317
2318    // Find category interface decl and then check that all methods declared
2319    // in this interface are implemented in the category @implementation.
2320    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2321      for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
2322           Categories; Categories = Categories->getNextClassCategory()) {
2323        if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
2324          ImplMethodsVsClassMethods(S, CatImplClass, Categories);
2325          break;
2326        }
2327      }
2328    }
2329  }
2330  if (isInterfaceDeclKind) {
2331    // Reject invalid vardecls.
2332    for (unsigned i = 0; i != tuvNum; i++) {
2333      DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2334      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2335        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2336          if (!VDecl->hasExternalStorage())
2337            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2338        }
2339    }
2340  }
2341  ActOnObjCContainerFinishDefinition();
2342
2343  for (unsigned i = 0; i != tuvNum; i++) {
2344    DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2345    for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2346      (*I)->setTopLevelDeclInObjCContainer();
2347    Consumer.HandleTopLevelDeclInObjCContainer(DG);
2348  }
2349
2350  return ClassDecl;
2351}
2352
2353
2354/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2355/// objective-c's type qualifier from the parser version of the same info.
2356static Decl::ObjCDeclQualifier
2357CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2358  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2359}
2360
2361static inline
2362bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
2363                                        const AttrVec &A) {
2364  // If method is only declared in implementation (private method),
2365  // No need to issue any diagnostics on method definition with attributes.
2366  if (!IMD)
2367    return false;
2368
2369  // method declared in interface has no attribute.
2370  // But implementation has attributes. This is invalid
2371  if (!IMD->hasAttrs())
2372    return true;
2373
2374  const AttrVec &D = IMD->getAttrs();
2375  if (D.size() != A.size())
2376    return true;
2377
2378  // attributes on method declaration and definition must match exactly.
2379  // Note that we have at most a couple of attributes on methods, so this
2380  // n*n search is good enough.
2381  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
2382    bool match = false;
2383    for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
2384      if ((*i)->getKind() == (*i1)->getKind()) {
2385        match = true;
2386        break;
2387      }
2388    }
2389    if (!match)
2390      return true;
2391  }
2392  return false;
2393}
2394
2395namespace  {
2396  /// \brief Describes the compatibility of a result type with its method.
2397  enum ResultTypeCompatibilityKind {
2398    RTC_Compatible,
2399    RTC_Incompatible,
2400    RTC_Unknown
2401  };
2402}
2403
2404/// \brief Check whether the declared result type of the given Objective-C
2405/// method declaration is compatible with the method's class.
2406///
2407static ResultTypeCompatibilityKind
2408CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2409                                    ObjCInterfaceDecl *CurrentClass) {
2410  QualType ResultType = Method->getResultType();
2411
2412  // If an Objective-C method inherits its related result type, then its
2413  // declared result type must be compatible with its own class type. The
2414  // declared result type is compatible if:
2415  if (const ObjCObjectPointerType *ResultObjectType
2416                                = ResultType->getAs<ObjCObjectPointerType>()) {
2417    //   - it is id or qualified id, or
2418    if (ResultObjectType->isObjCIdType() ||
2419        ResultObjectType->isObjCQualifiedIdType())
2420      return RTC_Compatible;
2421
2422    if (CurrentClass) {
2423      if (ObjCInterfaceDecl *ResultClass
2424                                      = ResultObjectType->getInterfaceDecl()) {
2425        //   - it is the same as the method's class type, or
2426        if (declaresSameEntity(CurrentClass, ResultClass))
2427          return RTC_Compatible;
2428
2429        //   - it is a superclass of the method's class type
2430        if (ResultClass->isSuperClassOf(CurrentClass))
2431          return RTC_Compatible;
2432      }
2433    } else {
2434      // Any Objective-C pointer type might be acceptable for a protocol
2435      // method; we just don't know.
2436      return RTC_Unknown;
2437    }
2438  }
2439
2440  return RTC_Incompatible;
2441}
2442
2443namespace {
2444/// A helper class for searching for methods which a particular method
2445/// overrides.
2446class OverrideSearch {
2447  Sema &S;
2448  ObjCMethodDecl *Method;
2449  llvm::SmallPtrSet<ObjCContainerDecl*, 8> Searched;
2450  llvm::SmallPtrSet<ObjCMethodDecl*, 8> Overridden;
2451  bool Recursive;
2452
2453public:
2454  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2455    Selector selector = method->getSelector();
2456
2457    // Bypass this search if we've never seen an instance/class method
2458    // with this selector before.
2459    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2460    if (it == S.MethodPool.end()) {
2461      if (!S.ExternalSource) return;
2462      it = S.ReadMethodPool(selector);
2463    }
2464    ObjCMethodList &list =
2465      method->isInstanceMethod() ? it->second.first : it->second.second;
2466    if (!list.Method) return;
2467
2468    ObjCContainerDecl *container
2469      = cast<ObjCContainerDecl>(method->getDeclContext());
2470
2471    // Prevent the search from reaching this container again.  This is
2472    // important with categories, which override methods from the
2473    // interface and each other.
2474    Searched.insert(container);
2475    searchFromContainer(container);
2476  }
2477
2478  typedef llvm::SmallPtrSet<ObjCMethodDecl*,8>::iterator iterator;
2479  iterator begin() const { return Overridden.begin(); }
2480  iterator end() const { return Overridden.end(); }
2481
2482private:
2483  void searchFromContainer(ObjCContainerDecl *container) {
2484    if (container->isInvalidDecl()) return;
2485
2486    switch (container->getDeclKind()) {
2487#define OBJCCONTAINER(type, base) \
2488    case Decl::type: \
2489      searchFrom(cast<type##Decl>(container)); \
2490      break;
2491#define ABSTRACT_DECL(expansion)
2492#define DECL(type, base) \
2493    case Decl::type:
2494#include "clang/AST/DeclNodes.inc"
2495      llvm_unreachable("not an ObjC container!");
2496    }
2497  }
2498
2499  void searchFrom(ObjCProtocolDecl *protocol) {
2500    // A method in a protocol declaration overrides declarations from
2501    // referenced ("parent") protocols.
2502    search(protocol->getReferencedProtocols());
2503  }
2504
2505  void searchFrom(ObjCCategoryDecl *category) {
2506    // A method in a category declaration overrides declarations from
2507    // the main class and from protocols the category references.
2508    search(category->getClassInterface());
2509    search(category->getReferencedProtocols());
2510  }
2511
2512  void searchFrom(ObjCCategoryImplDecl *impl) {
2513    // A method in a category definition that has a category
2514    // declaration overrides declarations from the category
2515    // declaration.
2516    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2517      search(category);
2518
2519    // Otherwise it overrides declarations from the class.
2520    } else {
2521      search(impl->getClassInterface());
2522    }
2523  }
2524
2525  void searchFrom(ObjCInterfaceDecl *iface) {
2526    // A method in a class declaration overrides declarations from
2527    if (!iface->hasDefinition())
2528      return;
2529
2530    //   - categories,
2531    for (ObjCCategoryDecl *category = iface->getCategoryList();
2532           category; category = category->getNextClassCategory())
2533      search(category);
2534
2535    //   - the super class, and
2536    if (ObjCInterfaceDecl *super = iface->getSuperClass())
2537      search(super);
2538
2539    //   - any referenced protocols.
2540    search(iface->getReferencedProtocols());
2541  }
2542
2543  void searchFrom(ObjCImplementationDecl *impl) {
2544    // A method in a class implementation overrides declarations from
2545    // the class interface.
2546    search(impl->getClassInterface());
2547  }
2548
2549
2550  void search(const ObjCProtocolList &protocols) {
2551    for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2552         i != e; ++i)
2553      search(*i);
2554  }
2555
2556  void search(ObjCContainerDecl *container) {
2557    // Abort if we've already searched this container.
2558    if (!Searched.insert(container)) return;
2559
2560    // Check for a method in this container which matches this selector.
2561    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2562                                                Method->isInstanceMethod());
2563
2564    // If we find one, record it and bail out.
2565    if (meth) {
2566      Overridden.insert(meth);
2567      return;
2568    }
2569
2570    // Otherwise, search for methods that a hypothetical method here
2571    // would have overridden.
2572
2573    // Note that we're now in a recursive case.
2574    Recursive = true;
2575
2576    searchFromContainer(container);
2577  }
2578};
2579}
2580
2581Decl *Sema::ActOnMethodDeclaration(
2582    Scope *S,
2583    SourceLocation MethodLoc, SourceLocation EndLoc,
2584    tok::TokenKind MethodType,
2585    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
2586    ArrayRef<SourceLocation> SelectorLocs,
2587    Selector Sel,
2588    // optional arguments. The number of types/arguments is obtained
2589    // from the Sel.getNumArgs().
2590    ObjCArgInfo *ArgInfo,
2591    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
2592    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
2593    bool isVariadic, bool MethodDefinition) {
2594  // Make sure we can establish a context for the method.
2595  if (!CurContext->isObjCContainer()) {
2596    Diag(MethodLoc, diag::error_missing_method_context);
2597    return 0;
2598  }
2599  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2600  Decl *ClassDecl = cast<Decl>(OCD);
2601  QualType resultDeclType;
2602
2603  bool HasRelatedResultType = false;
2604  TypeSourceInfo *ResultTInfo = 0;
2605  if (ReturnType) {
2606    resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
2607
2608    // Methods cannot return interface types. All ObjC objects are
2609    // passed by reference.
2610    if (resultDeclType->isObjCObjectType()) {
2611      Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
2612        << 0 << resultDeclType;
2613      return 0;
2614    }
2615
2616    HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
2617  } else { // get the type for "id".
2618    resultDeclType = Context.getObjCIdType();
2619    Diag(MethodLoc, diag::warn_missing_method_return_type)
2620      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
2621  }
2622
2623  ObjCMethodDecl* ObjCMethod =
2624    ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
2625                           resultDeclType,
2626                           ResultTInfo,
2627                           CurContext,
2628                           MethodType == tok::minus, isVariadic,
2629                           /*isSynthesized=*/false,
2630                           /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
2631                           MethodDeclKind == tok::objc_optional
2632                             ? ObjCMethodDecl::Optional
2633                             : ObjCMethodDecl::Required,
2634                           HasRelatedResultType);
2635
2636  SmallVector<ParmVarDecl*, 16> Params;
2637
2638  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
2639    QualType ArgType;
2640    TypeSourceInfo *DI;
2641
2642    if (ArgInfo[i].Type == 0) {
2643      ArgType = Context.getObjCIdType();
2644      DI = 0;
2645    } else {
2646      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
2647      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2648      ArgType = Context.getAdjustedParameterType(ArgType);
2649    }
2650
2651    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
2652                   LookupOrdinaryName, ForRedeclaration);
2653    LookupName(R, S);
2654    if (R.isSingleResult()) {
2655      NamedDecl *PrevDecl = R.getFoundDecl();
2656      if (S->isDeclScope(PrevDecl)) {
2657        Diag(ArgInfo[i].NameLoc,
2658             (MethodDefinition ? diag::warn_method_param_redefinition
2659                               : diag::warn_method_param_declaration))
2660          << ArgInfo[i].Name;
2661        Diag(PrevDecl->getLocation(),
2662             diag::note_previous_declaration);
2663      }
2664    }
2665
2666    SourceLocation StartLoc = DI
2667      ? DI->getTypeLoc().getBeginLoc()
2668      : ArgInfo[i].NameLoc;
2669
2670    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
2671                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
2672                                        ArgType, DI, SC_None, SC_None);
2673
2674    Param->setObjCMethodScopeInfo(i);
2675
2676    Param->setObjCDeclQualifier(
2677      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
2678
2679    // Apply the attributes to the parameter.
2680    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
2681
2682    S->AddDecl(Param);
2683    IdResolver.AddDecl(Param);
2684
2685    Params.push_back(Param);
2686  }
2687
2688  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
2689    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
2690    QualType ArgType = Param->getType();
2691    if (ArgType.isNull())
2692      ArgType = Context.getObjCIdType();
2693    else
2694      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2695      ArgType = Context.getAdjustedParameterType(ArgType);
2696    if (ArgType->isObjCObjectType()) {
2697      Diag(Param->getLocation(),
2698           diag::err_object_cannot_be_passed_returned_by_value)
2699      << 1 << ArgType;
2700      Param->setInvalidDecl();
2701    }
2702    Param->setDeclContext(ObjCMethod);
2703
2704    Params.push_back(Param);
2705  }
2706
2707  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
2708  ObjCMethod->setObjCDeclQualifier(
2709    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
2710
2711  if (AttrList)
2712    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
2713
2714  // Add the method now.
2715  const ObjCMethodDecl *PrevMethod = 0;
2716  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
2717    if (MethodType == tok::minus) {
2718      PrevMethod = ImpDecl->getInstanceMethod(Sel);
2719      ImpDecl->addInstanceMethod(ObjCMethod);
2720    } else {
2721      PrevMethod = ImpDecl->getClassMethod(Sel);
2722      ImpDecl->addClassMethod(ObjCMethod);
2723    }
2724
2725    ObjCMethodDecl *IMD = 0;
2726    if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
2727      IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
2728                                ObjCMethod->isInstanceMethod());
2729    if (ObjCMethod->hasAttrs() &&
2730        containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
2731      SourceLocation MethodLoc = IMD->getLocation();
2732      if (!getSourceManager().isInSystemHeader(MethodLoc)) {
2733        Diag(EndLoc, diag::warn_attribute_method_def);
2734        Diag(MethodLoc, diag::note_method_declared_at);
2735      }
2736    }
2737  } else {
2738    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
2739  }
2740
2741  if (PrevMethod) {
2742    // You can never have two method definitions with the same name.
2743    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
2744      << ObjCMethod->getDeclName();
2745    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2746  }
2747
2748  // If this Objective-C method does not have a related result type, but we
2749  // are allowed to infer related result types, try to do so based on the
2750  // method family.
2751  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
2752  if (!CurrentClass) {
2753    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
2754      CurrentClass = Cat->getClassInterface();
2755    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
2756      CurrentClass = Impl->getClassInterface();
2757    else if (ObjCCategoryImplDecl *CatImpl
2758                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
2759      CurrentClass = CatImpl->getClassInterface();
2760  }
2761
2762  ResultTypeCompatibilityKind RTC
2763    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
2764
2765  // Search for overridden methods and merge information down from them.
2766  OverrideSearch overrides(*this, ObjCMethod);
2767  for (OverrideSearch::iterator
2768         i = overrides.begin(), e = overrides.end(); i != e; ++i) {
2769    ObjCMethodDecl *overridden = *i;
2770
2771    // Propagate down the 'related result type' bit from overridden methods.
2772    if (RTC != RTC_Incompatible && overridden->hasRelatedResultType())
2773      ObjCMethod->SetRelatedResultType();
2774
2775    // Then merge the declarations.
2776    mergeObjCMethodDecls(ObjCMethod, overridden);
2777
2778    // Check for overriding methods
2779    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
2780        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
2781      CheckConflictingOverridingMethod(ObjCMethod, overridden,
2782              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
2783  }
2784
2785  bool ARCError = false;
2786  if (getLangOptions().ObjCAutoRefCount)
2787    ARCError = CheckARCMethodDecl(*this, ObjCMethod);
2788
2789  // Infer the related result type when possible.
2790  if (!ARCError && RTC == RTC_Compatible &&
2791      !ObjCMethod->hasRelatedResultType() &&
2792      LangOpts.ObjCInferRelatedResultType) {
2793    bool InferRelatedResultType = false;
2794    switch (ObjCMethod->getMethodFamily()) {
2795    case OMF_None:
2796    case OMF_copy:
2797    case OMF_dealloc:
2798    case OMF_finalize:
2799    case OMF_mutableCopy:
2800    case OMF_release:
2801    case OMF_retainCount:
2802    case OMF_performSelector:
2803      break;
2804
2805    case OMF_alloc:
2806    case OMF_new:
2807      InferRelatedResultType = ObjCMethod->isClassMethod();
2808      break;
2809
2810    case OMF_init:
2811    case OMF_autorelease:
2812    case OMF_retain:
2813    case OMF_self:
2814      InferRelatedResultType = ObjCMethod->isInstanceMethod();
2815      break;
2816    }
2817
2818    if (InferRelatedResultType)
2819      ObjCMethod->SetRelatedResultType();
2820  }
2821
2822  return ObjCMethod;
2823}
2824
2825bool Sema::CheckObjCDeclScope(Decl *D) {
2826  if (isa<TranslationUnitDecl>(CurContext->getRedeclContext()))
2827    return false;
2828  // Following is also an error. But it is caused by a missing @end
2829  // and diagnostic is issued elsewhere.
2830  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) {
2831    return false;
2832  }
2833
2834  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
2835  D->setInvalidDecl();
2836
2837  return true;
2838}
2839
2840/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2841/// instance variables of ClassName into Decls.
2842void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
2843                     IdentifierInfo *ClassName,
2844                     SmallVectorImpl<Decl*> &Decls) {
2845  // Check that ClassName is a valid class
2846  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
2847  if (!Class) {
2848    Diag(DeclStart, diag::err_undef_interface) << ClassName;
2849    return;
2850  }
2851  if (LangOpts.ObjCNonFragileABI) {
2852    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
2853    return;
2854  }
2855
2856  // Collect the instance variables
2857  SmallVector<const ObjCIvarDecl*, 32> Ivars;
2858  Context.DeepCollectObjCIvars(Class, true, Ivars);
2859  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2860  for (unsigned i = 0; i < Ivars.size(); i++) {
2861    const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
2862    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
2863    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
2864                                           /*FIXME: StartL=*/ID->getLocation(),
2865                                           ID->getLocation(),
2866                                           ID->getIdentifier(), ID->getType(),
2867                                           ID->getBitWidth());
2868    Decls.push_back(FD);
2869  }
2870
2871  // Introduce all of these fields into the appropriate scope.
2872  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
2873       D != Decls.end(); ++D) {
2874    FieldDecl *FD = cast<FieldDecl>(*D);
2875    if (getLangOptions().CPlusPlus)
2876      PushOnScopeChains(cast<FieldDecl>(FD), S);
2877    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
2878      Record->addDecl(FD);
2879  }
2880}
2881
2882/// \brief Build a type-check a new Objective-C exception variable declaration.
2883VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
2884                                      SourceLocation StartLoc,
2885                                      SourceLocation IdLoc,
2886                                      IdentifierInfo *Id,
2887                                      bool Invalid) {
2888  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
2889  // duration shall not be qualified by an address-space qualifier."
2890  // Since all parameters have automatic store duration, they can not have
2891  // an address space.
2892  if (T.getAddressSpace() != 0) {
2893    Diag(IdLoc, diag::err_arg_with_address_space);
2894    Invalid = true;
2895  }
2896
2897  // An @catch parameter must be an unqualified object pointer type;
2898  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
2899  if (Invalid) {
2900    // Don't do any further checking.
2901  } else if (T->isDependentType()) {
2902    // Okay: we don't know what this type will instantiate to.
2903  } else if (!T->isObjCObjectPointerType()) {
2904    Invalid = true;
2905    Diag(IdLoc ,diag::err_catch_param_not_objc_type);
2906  } else if (T->isObjCQualifiedIdType()) {
2907    Invalid = true;
2908    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
2909  }
2910
2911  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
2912                                 T, TInfo, SC_None, SC_None);
2913  New->setExceptionVariable(true);
2914
2915  // In ARC, infer 'retaining' for variables of retainable type.
2916  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(New))
2917    Invalid = true;
2918
2919  if (Invalid)
2920    New->setInvalidDecl();
2921  return New;
2922}
2923
2924Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
2925  const DeclSpec &DS = D.getDeclSpec();
2926
2927  // We allow the "register" storage class on exception variables because
2928  // GCC did, but we drop it completely. Any other storage class is an error.
2929  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2930    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
2931      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
2932  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2933    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
2934      << DS.getStorageClassSpec();
2935  }
2936  if (D.getDeclSpec().isThreadSpecified())
2937    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2938  D.getMutableDeclSpec().ClearStorageClassSpecs();
2939
2940  DiagnoseFunctionSpecifiers(D);
2941
2942  // Check that there are no default arguments inside the type of this
2943  // exception object (C++ only).
2944  if (getLangOptions().CPlusPlus)
2945    CheckExtraCXXDefaultArguments(D);
2946
2947  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2948  QualType ExceptionType = TInfo->getType();
2949
2950  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
2951                                        D.getSourceRange().getBegin(),
2952                                        D.getIdentifierLoc(),
2953                                        D.getIdentifier(),
2954                                        D.isInvalidType());
2955
2956  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2957  if (D.getCXXScopeSpec().isSet()) {
2958    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
2959      << D.getCXXScopeSpec().getRange();
2960    New->setInvalidDecl();
2961  }
2962
2963  // Add the parameter declaration into this scope.
2964  S->AddDecl(New);
2965  if (D.getIdentifier())
2966    IdResolver.AddDecl(New);
2967
2968  ProcessDeclAttributes(S, New, D);
2969
2970  if (New->hasAttr<BlocksAttr>())
2971    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2972  return New;
2973}
2974
2975/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
2976/// initialization.
2977void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
2978                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
2979  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
2980       Iv= Iv->getNextIvar()) {
2981    QualType QT = Context.getBaseElementType(Iv->getType());
2982    if (QT->isRecordType())
2983      Ivars.push_back(Iv);
2984  }
2985}
2986
2987void Sema::DiagnoseUseOfUnimplementedSelectors() {
2988  // Load referenced selectors from the external source.
2989  if (ExternalSource) {
2990    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
2991    ExternalSource->ReadReferencedSelectors(Sels);
2992    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
2993      ReferencedSelectors[Sels[I].first] = Sels[I].second;
2994  }
2995
2996  // Warning will be issued only when selector table is
2997  // generated (which means there is at lease one implementation
2998  // in the TU). This is to match gcc's behavior.
2999  if (ReferencedSelectors.empty() ||
3000      !Context.AnyObjCImplementation())
3001    return;
3002  for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
3003        ReferencedSelectors.begin(),
3004       E = ReferencedSelectors.end(); S != E; ++S) {
3005    Selector Sel = (*S).first;
3006    if (!LookupImplementedMethodInGlobalPool(Sel))
3007      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
3008  }
3009  return;
3010}
3011