SemaDeclObjC.cpp revision b1224f69089815fd66b04ae33215b7fba10780aa
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/ExternalSemaSource.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/Sema/DeclSpec.h"
23#include "llvm/ADT/DenseSet.h"
24
25using namespace clang;
26
27/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
28/// and user declared, in the method definition's AST.
29void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
30  assert(getCurMethodDecl() == 0 && "Method parsing confused");
31  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
32
33  // If we don't have a valid method decl, simply return.
34  if (!MDecl)
35    return;
36
37  // Allow the rest of sema to find private method decl implementations.
38  if (MDecl->isInstanceMethod())
39    AddInstanceMethodToGlobalPool(MDecl, true);
40  else
41    AddFactoryMethodToGlobalPool(MDecl, true);
42
43  // Allow all of Sema to see that we are entering a method definition.
44  PushDeclContext(FnBodyScope, MDecl);
45  PushFunctionScope();
46
47  // Create Decl objects for each parameter, entrring them in the scope for
48  // binding to their use.
49
50  // Insert the invisible arguments, self and _cmd!
51  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
52
53  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
54  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
55
56  // Introduce all of the other parameters into this scope.
57  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
58       E = MDecl->param_end(); PI != E; ++PI) {
59    ParmVarDecl *Param = (*PI);
60    if (!Param->isInvalidDecl() &&
61        RequireCompleteType(Param->getLocation(), Param->getType(),
62                            diag::err_typecheck_decl_incomplete_type))
63          Param->setInvalidDecl();
64    if ((*PI)->getIdentifier())
65      PushOnScopeChains(*PI, FnBodyScope);
66  }
67  // Warn on implementating deprecated methods under
68  // -Wdeprecated-implementations flag.
69  // FIXME. Refactor using common routine.
70  unsigned DIAG = diag::warn_depercated_def;
71  if (Diags.getDiagnosticLevel(DIAG, MDecl->getLocation())
72      != Diagnostic::Ignored)
73    if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
74      if (ObjCMethodDecl *IMD =
75          IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()))
76        if (NamedDecl *ND = dyn_cast<NamedDecl>(IMD))
77          if (ND->getAttr<DeprecatedAttr>()) {
78            Diag(MDecl->getLocation(), DIAG) << 0;
79            Diag(IMD->getLocation(), diag::note_method_declared_at);
80          }
81    }
82}
83
84Decl *Sema::
85ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
86                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
87                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
88                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
89                         const SourceLocation *ProtoLocs,
90                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
91  assert(ClassName && "Missing class identifier");
92
93  // Check for another declaration kind with the same name.
94  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
95                                         LookupOrdinaryName, ForRedeclaration);
96
97  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
98    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
99    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
100  }
101
102  ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
103  if (IDecl) {
104    // Class already seen. Is it a forward declaration?
105    if (!IDecl->isForwardDecl()) {
106      IDecl->setInvalidDecl();
107      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName();
108      Diag(IDecl->getLocation(), diag::note_previous_definition);
109
110      // Return the previous class interface.
111      // FIXME: don't leak the objects passed in!
112      return IDecl;
113    } else {
114      IDecl->setLocation(AtInterfaceLoc);
115      IDecl->setForwardDecl(false);
116      IDecl->setClassLoc(ClassLoc);
117      // If the forward decl was in a PCH, we need to write it again in a
118      // dependent AST file.
119      IDecl->setChangedSinceDeserialization(true);
120
121      // Since this ObjCInterfaceDecl was created by a forward declaration,
122      // we now add it to the DeclContext since it wasn't added before
123      // (see ActOnForwardClassDeclaration).
124      IDecl->setLexicalDeclContext(CurContext);
125      CurContext->addDecl(IDecl);
126
127      if (AttrList)
128        ProcessDeclAttributeList(TUScope, IDecl, AttrList);
129    }
130  } else {
131    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc,
132                                      ClassName, ClassLoc);
133    if (AttrList)
134      ProcessDeclAttributeList(TUScope, IDecl, AttrList);
135
136    PushOnScopeChains(IDecl, TUScope);
137  }
138
139  if (SuperName) {
140    // Check if a different kind of symbol declared in this scope.
141    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
142                                LookupOrdinaryName);
143
144    if (!PrevDecl) {
145      // Try to correct for a typo in the superclass name.
146      LookupResult R(*this, SuperName, SuperLoc, LookupOrdinaryName);
147      if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
148          (PrevDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
149        Diag(SuperLoc, diag::err_undef_superclass_suggest)
150          << SuperName << ClassName << PrevDecl->getDeclName();
151        Diag(PrevDecl->getLocation(), diag::note_previous_decl)
152          << PrevDecl->getDeclName();
153      }
154    }
155
156    if (PrevDecl == IDecl) {
157      Diag(SuperLoc, diag::err_recursive_superclass)
158        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
159      IDecl->setLocEnd(ClassLoc);
160    } else {
161      ObjCInterfaceDecl *SuperClassDecl =
162                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
163
164      // Diagnose classes that inherit from deprecated classes.
165      if (SuperClassDecl)
166        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
167
168      if (PrevDecl && SuperClassDecl == 0) {
169        // The previous declaration was not a class decl. Check if we have a
170        // typedef. If we do, get the underlying class type.
171        if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(PrevDecl)) {
172          QualType T = TDecl->getUnderlyingType();
173          if (T->isObjCObjectType()) {
174            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
175              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
176          }
177        }
178
179        // This handles the following case:
180        //
181        // typedef int SuperClass;
182        // @interface MyClass : SuperClass {} @end
183        //
184        if (!SuperClassDecl) {
185          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
186          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
187        }
188      }
189
190      if (!dyn_cast_or_null<TypedefDecl>(PrevDecl)) {
191        if (!SuperClassDecl)
192          Diag(SuperLoc, diag::err_undef_superclass)
193            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
194        else if (SuperClassDecl->isForwardDecl())
195          Diag(SuperLoc, diag::err_undef_superclass)
196            << SuperClassDecl->getDeclName() << ClassName
197            << SourceRange(AtInterfaceLoc, ClassLoc);
198      }
199      IDecl->setSuperClass(SuperClassDecl);
200      IDecl->setSuperClassLoc(SuperLoc);
201      IDecl->setLocEnd(SuperLoc);
202    }
203  } else { // we have a root class.
204    IDecl->setLocEnd(ClassLoc);
205  }
206
207  // Check then save referenced protocols.
208  if (NumProtoRefs) {
209    IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
210                           ProtoLocs, Context);
211    IDecl->setLocEnd(EndProtoLoc);
212  }
213
214  CheckObjCDeclScope(IDecl);
215  return IDecl;
216}
217
218/// ActOnCompatiblityAlias - this action is called after complete parsing of
219/// @compatibility_alias declaration. It sets up the alias relationships.
220Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
221                                        IdentifierInfo *AliasName,
222                                        SourceLocation AliasLocation,
223                                        IdentifierInfo *ClassName,
224                                        SourceLocation ClassLocation) {
225  // Look for previous declaration of alias name
226  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
227                                      LookupOrdinaryName, ForRedeclaration);
228  if (ADecl) {
229    if (isa<ObjCCompatibleAliasDecl>(ADecl))
230      Diag(AliasLocation, diag::warn_previous_alias_decl);
231    else
232      Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
233    Diag(ADecl->getLocation(), diag::note_previous_declaration);
234    return 0;
235  }
236  // Check for class declaration
237  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
238                                       LookupOrdinaryName, ForRedeclaration);
239  if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(CDeclU)) {
240    QualType T = TDecl->getUnderlyingType();
241    if (T->isObjCObjectType()) {
242      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
243        ClassName = IDecl->getIdentifier();
244        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
245                                  LookupOrdinaryName, ForRedeclaration);
246      }
247    }
248  }
249  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
250  if (CDecl == 0) {
251    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
252    if (CDeclU)
253      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
254    return 0;
255  }
256
257  // Everything checked out, instantiate a new alias declaration AST.
258  ObjCCompatibleAliasDecl *AliasDecl =
259    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
260
261  if (!CheckObjCDeclScope(AliasDecl))
262    PushOnScopeChains(AliasDecl, TUScope);
263
264  return AliasDecl;
265}
266
267void Sema::CheckForwardProtocolDeclarationForCircularDependency(
268  IdentifierInfo *PName,
269  SourceLocation &Ploc, SourceLocation PrevLoc,
270  const ObjCList<ObjCProtocolDecl> &PList) {
271  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
272       E = PList.end(); I != E; ++I) {
273
274    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
275                                                 Ploc)) {
276      if (PDecl->getIdentifier() == PName) {
277        Diag(Ploc, diag::err_protocol_has_circular_dependency);
278        Diag(PrevLoc, diag::note_previous_definition);
279      }
280      CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
281        PDecl->getLocation(), PDecl->getReferencedProtocols());
282    }
283  }
284}
285
286Decl *
287Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
288                                  IdentifierInfo *ProtocolName,
289                                  SourceLocation ProtocolLoc,
290                                  Decl * const *ProtoRefs,
291                                  unsigned NumProtoRefs,
292                                  const SourceLocation *ProtoLocs,
293                                  SourceLocation EndProtoLoc,
294                                  AttributeList *AttrList) {
295  // FIXME: Deal with AttrList.
296  assert(ProtocolName && "Missing protocol identifier");
297  ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc);
298  if (PDecl) {
299    // Protocol already seen. Better be a forward protocol declaration
300    if (!PDecl->isForwardDecl()) {
301      Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
302      Diag(PDecl->getLocation(), diag::note_previous_definition);
303      // Just return the protocol we already had.
304      // FIXME: don't leak the objects passed in!
305      return PDecl;
306    }
307    ObjCList<ObjCProtocolDecl> PList;
308    PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
309    CheckForwardProtocolDeclarationForCircularDependency(
310      ProtocolName, ProtocolLoc, PDecl->getLocation(), PList);
311
312    // Make sure the cached decl gets a valid start location.
313    PDecl->setLocation(AtProtoInterfaceLoc);
314    PDecl->setForwardDecl(false);
315    CurContext->addDecl(PDecl);
316    // Repeat in dependent AST files.
317    PDecl->setChangedSinceDeserialization(true);
318  } else {
319    PDecl = ObjCProtocolDecl::Create(Context, CurContext,
320                                     AtProtoInterfaceLoc,ProtocolName);
321    PushOnScopeChains(PDecl, TUScope);
322    PDecl->setForwardDecl(false);
323  }
324  if (AttrList)
325    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
326  if (NumProtoRefs) {
327    /// Check then save referenced protocols.
328    PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
329                           ProtoLocs, Context);
330    PDecl->setLocEnd(EndProtoLoc);
331  }
332
333  CheckObjCDeclScope(PDecl);
334  return PDecl;
335}
336
337/// FindProtocolDeclaration - This routine looks up protocols and
338/// issues an error if they are not declared. It returns list of
339/// protocol declarations in its 'Protocols' argument.
340void
341Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
342                              const IdentifierLocPair *ProtocolId,
343                              unsigned NumProtocols,
344                              llvm::SmallVectorImpl<Decl *> &Protocols) {
345  for (unsigned i = 0; i != NumProtocols; ++i) {
346    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
347                                             ProtocolId[i].second);
348    if (!PDecl) {
349      LookupResult R(*this, ProtocolId[i].first, ProtocolId[i].second,
350                     LookupObjCProtocolName);
351      if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
352          (PDecl = R.getAsSingle<ObjCProtocolDecl>())) {
353        Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
354          << ProtocolId[i].first << R.getLookupName();
355        Diag(PDecl->getLocation(), diag::note_previous_decl)
356          << PDecl->getDeclName();
357      }
358    }
359
360    if (!PDecl) {
361      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
362        << ProtocolId[i].first;
363      continue;
364    }
365
366    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
367
368    // If this is a forward declaration and we are supposed to warn in this
369    // case, do it.
370    if (WarnOnDeclarations && PDecl->isForwardDecl())
371      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
372        << ProtocolId[i].first;
373    Protocols.push_back(PDecl);
374  }
375}
376
377/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
378/// a class method in its extension.
379///
380void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
381                                            ObjCInterfaceDecl *ID) {
382  if (!ID)
383    return;  // Possibly due to previous error
384
385  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
386  for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
387       e =  ID->meth_end(); i != e; ++i) {
388    ObjCMethodDecl *MD = *i;
389    MethodMap[MD->getSelector()] = MD;
390  }
391
392  if (MethodMap.empty())
393    return;
394  for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
395       e =  CAT->meth_end(); i != e; ++i) {
396    ObjCMethodDecl *Method = *i;
397    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
398    if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
399      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
400            << Method->getDeclName();
401      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
402    }
403  }
404}
405
406/// ActOnForwardProtocolDeclaration - Handle @protocol foo;
407Decl *
408Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
409                                      const IdentifierLocPair *IdentList,
410                                      unsigned NumElts,
411                                      AttributeList *attrList) {
412  llvm::SmallVector<ObjCProtocolDecl*, 32> Protocols;
413  llvm::SmallVector<SourceLocation, 8> ProtoLocs;
414
415  for (unsigned i = 0; i != NumElts; ++i) {
416    IdentifierInfo *Ident = IdentList[i].first;
417    ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second);
418    bool isNew = false;
419    if (PDecl == 0) { // Not already seen?
420      PDecl = ObjCProtocolDecl::Create(Context, CurContext,
421                                       IdentList[i].second, Ident);
422      PushOnScopeChains(PDecl, TUScope, false);
423      isNew = true;
424    }
425    if (attrList) {
426      ProcessDeclAttributeList(TUScope, PDecl, attrList);
427      if (!isNew)
428        PDecl->setChangedSinceDeserialization(true);
429    }
430    Protocols.push_back(PDecl);
431    ProtoLocs.push_back(IdentList[i].second);
432  }
433
434  ObjCForwardProtocolDecl *PDecl =
435    ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc,
436                                    Protocols.data(), Protocols.size(),
437                                    ProtoLocs.data());
438  CurContext->addDecl(PDecl);
439  CheckObjCDeclScope(PDecl);
440  return PDecl;
441}
442
443Decl *Sema::
444ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
445                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
446                            IdentifierInfo *CategoryName,
447                            SourceLocation CategoryLoc,
448                            Decl * const *ProtoRefs,
449                            unsigned NumProtoRefs,
450                            const SourceLocation *ProtoLocs,
451                            SourceLocation EndProtoLoc) {
452  ObjCCategoryDecl *CDecl;
453  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
454
455  /// Check that class of this category is already completely declared.
456  if (!IDecl || IDecl->isForwardDecl()) {
457    // Create an invalid ObjCCategoryDecl to serve as context for
458    // the enclosing method declarations.  We mark the decl invalid
459    // to make it clear that this isn't a valid AST.
460    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
461                                     ClassLoc, CategoryLoc, CategoryName);
462    CDecl->setInvalidDecl();
463    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
464    return CDecl;
465  }
466
467  if (!CategoryName && IDecl->getImplementation()) {
468    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
469    Diag(IDecl->getImplementation()->getLocation(),
470          diag::note_implementation_declared);
471  }
472
473  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
474                                   ClassLoc, CategoryLoc, CategoryName);
475  // FIXME: PushOnScopeChains?
476  CurContext->addDecl(CDecl);
477
478  CDecl->setClassInterface(IDecl);
479  // Insert class extension to the list of class's categories.
480  if (!CategoryName)
481    CDecl->insertNextClassCategory();
482
483  // If the interface is deprecated, warn about it.
484  (void)DiagnoseUseOfDecl(IDecl, ClassLoc);
485
486  if (CategoryName) {
487    /// Check for duplicate interface declaration for this category
488    ObjCCategoryDecl *CDeclChain;
489    for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
490         CDeclChain = CDeclChain->getNextClassCategory()) {
491      if (CDeclChain->getIdentifier() == CategoryName) {
492        // Class extensions can be declared multiple times.
493        Diag(CategoryLoc, diag::warn_dup_category_def)
494          << ClassName << CategoryName;
495        Diag(CDeclChain->getLocation(), diag::note_previous_definition);
496        break;
497      }
498    }
499    if (!CDeclChain)
500      CDecl->insertNextClassCategory();
501  }
502
503  if (NumProtoRefs) {
504    CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
505                           ProtoLocs, Context);
506    // Protocols in the class extension belong to the class.
507    if (CDecl->IsClassExtension())
508     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
509                                            NumProtoRefs, Context);
510  }
511
512  CheckObjCDeclScope(CDecl);
513  return CDecl;
514}
515
516/// ActOnStartCategoryImplementation - Perform semantic checks on the
517/// category implementation declaration and build an ObjCCategoryImplDecl
518/// object.
519Decl *Sema::ActOnStartCategoryImplementation(
520                      SourceLocation AtCatImplLoc,
521                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
522                      IdentifierInfo *CatName, SourceLocation CatLoc) {
523  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
524  ObjCCategoryDecl *CatIDecl = 0;
525  if (IDecl) {
526    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
527    if (!CatIDecl) {
528      // Category @implementation with no corresponding @interface.
529      // Create and install one.
530      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(),
531                                          SourceLocation(), SourceLocation(),
532                                          CatName);
533      CatIDecl->setClassInterface(IDecl);
534      CatIDecl->insertNextClassCategory();
535    }
536  }
537
538  ObjCCategoryImplDecl *CDecl =
539    ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName,
540                                 IDecl);
541  /// Check that class of this category is already completely declared.
542  if (!IDecl || IDecl->isForwardDecl())
543    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
544
545  // FIXME: PushOnScopeChains?
546  CurContext->addDecl(CDecl);
547
548  /// Check that CatName, category name, is not used in another implementation.
549  if (CatIDecl) {
550    if (CatIDecl->getImplementation()) {
551      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
552        << CatName;
553      Diag(CatIDecl->getImplementation()->getLocation(),
554           diag::note_previous_definition);
555    } else {
556      CatIDecl->setImplementation(CDecl);
557      // Warn on implementating category of deprecated class under
558      // -Wdeprecated-implementations flag.
559      // FIXME. Refactor using common routine.
560      unsigned DIAG = diag::warn_depercated_def;
561      if (Diags.getDiagnosticLevel(DIAG, CDecl->getLocation())
562          != Diagnostic::Ignored)
563        if (NamedDecl *ND = dyn_cast<NamedDecl>(IDecl))
564          if (ND->getAttr<DeprecatedAttr>()) {
565            Diag(CDecl->getLocation(), DIAG) << 2;
566            Diag(IDecl->getLocation(), diag::note_previous_decl) << "class";
567          }
568
569    }
570  }
571
572  CheckObjCDeclScope(CDecl);
573  return CDecl;
574}
575
576Decl *Sema::ActOnStartClassImplementation(
577                      SourceLocation AtClassImplLoc,
578                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
579                      IdentifierInfo *SuperClassname,
580                      SourceLocation SuperClassLoc) {
581  ObjCInterfaceDecl* IDecl = 0;
582  // Check for another declaration kind with the same name.
583  NamedDecl *PrevDecl
584    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
585                       ForRedeclaration);
586  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
587    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
588    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
589  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
590    // If this is a forward declaration of an interface, warn.
591    if (IDecl->isForwardDecl()) {
592      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
593      IDecl = 0;
594    }
595  } else {
596    // We did not find anything with the name ClassName; try to correct for
597    // typos in the class name.
598    LookupResult R(*this, ClassName, ClassLoc, LookupOrdinaryName);
599    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
600        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
601      // Suggest the (potentially) correct interface name. However, put the
602      // fix-it hint itself in a separate note, since changing the name in
603      // the warning would make the fix-it change semantics.However, don't
604      // provide a code-modification hint or use the typo name for recovery,
605      // because this is just a warning. The program may actually be correct.
606      Diag(ClassLoc, diag::warn_undef_interface_suggest)
607        << ClassName << R.getLookupName();
608      Diag(IDecl->getLocation(), diag::note_previous_decl)
609        << R.getLookupName()
610        << FixItHint::CreateReplacement(ClassLoc,
611                                        R.getLookupName().getAsString());
612      IDecl = 0;
613    } else {
614      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
615    }
616  }
617
618  // Check that super class name is valid class name
619  ObjCInterfaceDecl* SDecl = 0;
620  if (SuperClassname) {
621    // Check if a different kind of symbol declared in this scope.
622    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
623                                LookupOrdinaryName);
624    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
625      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
626        << SuperClassname;
627      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
628    } else {
629      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
630      if (!SDecl)
631        Diag(SuperClassLoc, diag::err_undef_superclass)
632          << SuperClassname << ClassName;
633      else if (IDecl && IDecl->getSuperClass() != SDecl) {
634        // This implementation and its interface do not have the same
635        // super class.
636        Diag(SuperClassLoc, diag::err_conflicting_super_class)
637          << SDecl->getDeclName();
638        Diag(SDecl->getLocation(), diag::note_previous_definition);
639      }
640    }
641  }
642
643  if (!IDecl) {
644    // Legacy case of @implementation with no corresponding @interface.
645    // Build, chain & install the interface decl into the identifier.
646
647    // FIXME: Do we support attributes on the @implementation? If so we should
648    // copy them over.
649    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
650                                      ClassName, ClassLoc, false, true);
651    IDecl->setSuperClass(SDecl);
652    IDecl->setLocEnd(ClassLoc);
653
654    PushOnScopeChains(IDecl, TUScope);
655  } else {
656    // Mark the interface as being completed, even if it was just as
657    //   @class ....;
658    // declaration; the user cannot reopen it.
659    IDecl->setForwardDecl(false);
660  }
661
662  ObjCImplementationDecl* IMPDecl =
663    ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc,
664                                   IDecl, SDecl);
665
666  if (CheckObjCDeclScope(IMPDecl))
667    return IMPDecl;
668
669  // Check that there is no duplicate implementation of this class.
670  if (IDecl->getImplementation()) {
671    // FIXME: Don't leak everything!
672    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
673    Diag(IDecl->getImplementation()->getLocation(),
674         diag::note_previous_definition);
675  } else { // add it to the list.
676    IDecl->setImplementation(IMPDecl);
677    PushOnScopeChains(IMPDecl, TUScope);
678    // Warn on implementating deprecated class under
679    // -Wdeprecated-implementations flag.
680    // FIXME. Refactor using common routine.
681    unsigned DIAG = diag::warn_depercated_def;
682    if (Diags.getDiagnosticLevel(DIAG, IMPDecl->getLocation())
683          != Diagnostic::Ignored)
684      if (NamedDecl *ND = dyn_cast<NamedDecl>(IDecl))
685        if (ND->getAttr<DeprecatedAttr>()) {
686          Diag(IMPDecl->getLocation(), DIAG) << 1;
687          Diag(IDecl->getLocation(), diag::note_previous_decl) << "class";
688       }
689  }
690  return IMPDecl;
691}
692
693void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
694                                    ObjCIvarDecl **ivars, unsigned numIvars,
695                                    SourceLocation RBrace) {
696  assert(ImpDecl && "missing implementation decl");
697  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
698  if (!IDecl)
699    return;
700  /// Check case of non-existing @interface decl.
701  /// (legacy objective-c @implementation decl without an @interface decl).
702  /// Add implementations's ivar to the synthesize class's ivar list.
703  if (IDecl->isImplicitInterfaceDecl()) {
704    IDecl->setLocEnd(RBrace);
705    // Add ivar's to class's DeclContext.
706    for (unsigned i = 0, e = numIvars; i != e; ++i) {
707      ivars[i]->setLexicalDeclContext(ImpDecl);
708      IDecl->makeDeclVisibleInContext(ivars[i], false);
709      ImpDecl->addDecl(ivars[i]);
710    }
711
712    return;
713  }
714  // If implementation has empty ivar list, just return.
715  if (numIvars == 0)
716    return;
717
718  assert(ivars && "missing @implementation ivars");
719  if (LangOpts.ObjCNonFragileABI2) {
720    if (ImpDecl->getSuperClass())
721      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
722    for (unsigned i = 0; i < numIvars; i++) {
723      ObjCIvarDecl* ImplIvar = ivars[i];
724      if (const ObjCIvarDecl *ClsIvar =
725            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
726        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
727        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
728        continue;
729      }
730      // Instance ivar to Implementation's DeclContext.
731      ImplIvar->setLexicalDeclContext(ImpDecl);
732      IDecl->makeDeclVisibleInContext(ImplIvar, false);
733      ImpDecl->addDecl(ImplIvar);
734    }
735    return;
736  }
737  // Check interface's Ivar list against those in the implementation.
738  // names and types must match.
739  //
740  unsigned j = 0;
741  ObjCInterfaceDecl::ivar_iterator
742    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
743  for (; numIvars > 0 && IVI != IVE; ++IVI) {
744    ObjCIvarDecl* ImplIvar = ivars[j++];
745    ObjCIvarDecl* ClsIvar = *IVI;
746    assert (ImplIvar && "missing implementation ivar");
747    assert (ClsIvar && "missing class ivar");
748
749    // First, make sure the types match.
750    if (Context.getCanonicalType(ImplIvar->getType()) !=
751        Context.getCanonicalType(ClsIvar->getType())) {
752      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
753        << ImplIvar->getIdentifier()
754        << ImplIvar->getType() << ClsIvar->getType();
755      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
756    } else if (ImplIvar->isBitField() && ClsIvar->isBitField()) {
757      Expr *ImplBitWidth = ImplIvar->getBitWidth();
758      Expr *ClsBitWidth = ClsIvar->getBitWidth();
759      if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() !=
760          ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) {
761        Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth)
762          << ImplIvar->getIdentifier();
763        Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition);
764      }
765    }
766    // Make sure the names are identical.
767    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
768      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
769        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
770      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
771    }
772    --numIvars;
773  }
774
775  if (numIvars > 0)
776    Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
777  else if (IVI != IVE)
778    Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
779}
780
781void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
782                               bool &IncompleteImpl, unsigned DiagID) {
783  if (!IncompleteImpl) {
784    Diag(ImpLoc, diag::warn_incomplete_impl);
785    IncompleteImpl = true;
786  }
787  if (DiagID == diag::warn_unimplemented_protocol_method)
788    Diag(ImpLoc, DiagID) << method->getDeclName();
789  else
790    Diag(method->getLocation(), DiagID) << method->getDeclName();
791}
792
793/// Determines if type B can be substituted for type A.  Returns true if we can
794/// guarantee that anything that the user will do to an object of type A can
795/// also be done to an object of type B.  This is trivially true if the two
796/// types are the same, or if B is a subclass of A.  It becomes more complex
797/// in cases where protocols are involved.
798///
799/// Object types in Objective-C describe the minimum requirements for an
800/// object, rather than providing a complete description of a type.  For
801/// example, if A is a subclass of B, then B* may refer to an instance of A.
802/// The principle of substitutability means that we may use an instance of A
803/// anywhere that we may use an instance of B - it will implement all of the
804/// ivars of B and all of the methods of B.
805///
806/// This substitutability is important when type checking methods, because
807/// the implementation may have stricter type definitions than the interface.
808/// The interface specifies minimum requirements, but the implementation may
809/// have more accurate ones.  For example, a method may privately accept
810/// instances of B, but only publish that it accepts instances of A.  Any
811/// object passed to it will be type checked against B, and so will implicitly
812/// by a valid A*.  Similarly, a method may return a subclass of the class that
813/// it is declared as returning.
814///
815/// This is most important when considering subclassing.  A method in a
816/// subclass must accept any object as an argument that its superclass's
817/// implementation accepts.  It may, however, accept a more general type
818/// without breaking substitutability (i.e. you can still use the subclass
819/// anywhere that you can use the superclass, but not vice versa).  The
820/// converse requirement applies to return types: the return type for a
821/// subclass method must be a valid object of the kind that the superclass
822/// advertises, but it may be specified more accurately.  This avoids the need
823/// for explicit down-casting by callers.
824///
825/// Note: This is a stricter requirement than for assignment.
826static bool isObjCTypeSubstitutable(ASTContext &Context,
827                                    const ObjCObjectPointerType *A,
828                                    const ObjCObjectPointerType *B,
829                                    bool rejectId) {
830  // Reject a protocol-unqualified id.
831  if (rejectId && B->isObjCIdType()) return false;
832
833  // If B is a qualified id, then A must also be a qualified id and it must
834  // implement all of the protocols in B.  It may not be a qualified class.
835  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
836  // stricter definition so it is not substitutable for id<A>.
837  if (B->isObjCQualifiedIdType()) {
838    return A->isObjCQualifiedIdType() &&
839           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
840                                                     QualType(B,0),
841                                                     false);
842  }
843
844  /*
845  // id is a special type that bypasses type checking completely.  We want a
846  // warning when it is used in one place but not another.
847  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
848
849
850  // If B is a qualified id, then A must also be a qualified id (which it isn't
851  // if we've got this far)
852  if (B->isObjCQualifiedIdType()) return false;
853  */
854
855  // Now we know that A and B are (potentially-qualified) class types.  The
856  // normal rules for assignment apply.
857  return Context.canAssignObjCInterfaces(A, B);
858}
859
860static SourceRange getTypeRange(TypeSourceInfo *TSI) {
861  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
862}
863
864static void CheckMethodOverrideReturn(Sema &S,
865                                      ObjCMethodDecl *MethodImpl,
866                                      ObjCMethodDecl *MethodIface) {
867  if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
868                                       MethodIface->getResultType()))
869    return;
870
871  unsigned DiagID = diag::warn_conflicting_ret_types;
872
873  // Mismatches between ObjC pointers go into a different warning
874  // category, and sometimes they're even completely whitelisted.
875  if (const ObjCObjectPointerType *ImplPtrTy =
876        MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
877    if (const ObjCObjectPointerType *IfacePtrTy =
878          MethodIface->getResultType()->getAs<ObjCObjectPointerType>()) {
879      // Allow non-matching return types as long as they don't violate
880      // the principle of substitutability.  Specifically, we permit
881      // return types that are subclasses of the declared return type,
882      // or that are more-qualified versions of the declared type.
883      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
884        return;
885
886      DiagID = diag::warn_non_covariant_ret_types;
887    }
888  }
889
890  S.Diag(MethodImpl->getLocation(), DiagID)
891    << MethodImpl->getDeclName()
892    << MethodIface->getResultType()
893    << MethodImpl->getResultType()
894    << getTypeRange(MethodImpl->getResultTypeSourceInfo());
895  S.Diag(MethodIface->getLocation(), diag::note_previous_definition)
896    << getTypeRange(MethodIface->getResultTypeSourceInfo());
897}
898
899static void CheckMethodOverrideParam(Sema &S,
900                                     ObjCMethodDecl *MethodImpl,
901                                     ObjCMethodDecl *MethodIface,
902                                     ParmVarDecl *ImplVar,
903                                     ParmVarDecl *IfaceVar) {
904  QualType ImplTy = ImplVar->getType();
905  QualType IfaceTy = IfaceVar->getType();
906  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
907    return;
908
909  unsigned DiagID = diag::warn_conflicting_param_types;
910
911  // Mismatches between ObjC pointers go into a different warning
912  // category, and sometimes they're even completely whitelisted.
913  if (const ObjCObjectPointerType *ImplPtrTy =
914        ImplTy->getAs<ObjCObjectPointerType>()) {
915    if (const ObjCObjectPointerType *IfacePtrTy =
916          IfaceTy->getAs<ObjCObjectPointerType>()) {
917      // Allow non-matching argument types as long as they don't
918      // violate the principle of substitutability.  Specifically, the
919      // implementation must accept any objects that the superclass
920      // accepts, however it may also accept others.
921      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
922        return;
923
924      DiagID = diag::warn_non_contravariant_param_types;
925    }
926  }
927
928  S.Diag(ImplVar->getLocation(), DiagID)
929    << getTypeRange(ImplVar->getTypeSourceInfo())
930    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
931  S.Diag(IfaceVar->getLocation(), diag::note_previous_definition)
932    << getTypeRange(IfaceVar->getTypeSourceInfo());
933}
934
935
936void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
937                                       ObjCMethodDecl *IntfMethodDecl) {
938  CheckMethodOverrideReturn(*this, ImpMethodDecl, IntfMethodDecl);
939
940  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
941       IF = IntfMethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
942       IM != EM; ++IM, ++IF)
943    CheckMethodOverrideParam(*this, ImpMethodDecl, IntfMethodDecl, *IM, *IF);
944
945  if (ImpMethodDecl->isVariadic() != IntfMethodDecl->isVariadic()) {
946    Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_variadic);
947    Diag(IntfMethodDecl->getLocation(), diag::note_previous_declaration);
948  }
949}
950
951/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
952/// improve the efficiency of selector lookups and type checking by associating
953/// with each protocol / interface / category the flattened instance tables. If
954/// we used an immutable set to keep the table then it wouldn't add significant
955/// memory cost and it would be handy for lookups.
956
957/// CheckProtocolMethodDefs - This routine checks unimplemented methods
958/// Declared in protocol, and those referenced by it.
959void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
960                                   ObjCProtocolDecl *PDecl,
961                                   bool& IncompleteImpl,
962                                   const llvm::DenseSet<Selector> &InsMap,
963                                   const llvm::DenseSet<Selector> &ClsMap,
964                                   ObjCContainerDecl *CDecl) {
965  ObjCInterfaceDecl *IDecl;
966  if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl))
967    IDecl = C->getClassInterface();
968  else
969    IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
970  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
971
972  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
973  ObjCInterfaceDecl *NSIDecl = 0;
974  if (getLangOptions().NeXTRuntime) {
975    // check to see if class implements forwardInvocation method and objects
976    // of this class are derived from 'NSProxy' so that to forward requests
977    // from one object to another.
978    // Under such conditions, which means that every method possible is
979    // implemented in the class, we should not issue "Method definition not
980    // found" warnings.
981    // FIXME: Use a general GetUnarySelector method for this.
982    IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
983    Selector fISelector = Context.Selectors.getSelector(1, &II);
984    if (InsMap.count(fISelector))
985      // Is IDecl derived from 'NSProxy'? If so, no instance methods
986      // need be implemented in the implementation.
987      NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
988  }
989
990  // If a method lookup fails locally we still need to look and see if
991  // the method was implemented by a base class or an inherited
992  // protocol. This lookup is slow, but occurs rarely in correct code
993  // and otherwise would terminate in a warning.
994
995  // check unimplemented instance methods.
996  if (!NSIDecl)
997    for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
998         E = PDecl->instmeth_end(); I != E; ++I) {
999      ObjCMethodDecl *method = *I;
1000      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1001          !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
1002          (!Super ||
1003           !Super->lookupInstanceMethod(method->getSelector()))) {
1004            // Ugly, but necessary. Method declared in protcol might have
1005            // have been synthesized due to a property declared in the class which
1006            // uses the protocol.
1007            ObjCMethodDecl *MethodInClass =
1008            IDecl->lookupInstanceMethod(method->getSelector());
1009            if (!MethodInClass || !MethodInClass->isSynthesized()) {
1010              unsigned DIAG = diag::warn_unimplemented_protocol_method;
1011              if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1012                      != Diagnostic::Ignored) {
1013                WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1014                Diag(method->getLocation(), diag::note_method_declared_at);
1015                Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1016                  << PDecl->getDeclName();
1017              }
1018            }
1019          }
1020    }
1021  // check unimplemented class methods
1022  for (ObjCProtocolDecl::classmeth_iterator
1023         I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1024       I != E; ++I) {
1025    ObjCMethodDecl *method = *I;
1026    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1027        !ClsMap.count(method->getSelector()) &&
1028        (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1029      unsigned DIAG = diag::warn_unimplemented_protocol_method;
1030      if (Diags.getDiagnosticLevel(DIAG, ImpLoc) != Diagnostic::Ignored) {
1031        WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1032        Diag(method->getLocation(), diag::note_method_declared_at);
1033        Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1034          PDecl->getDeclName();
1035      }
1036    }
1037  }
1038  // Check on this protocols's referenced protocols, recursively.
1039  for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1040       E = PDecl->protocol_end(); PI != E; ++PI)
1041    CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl);
1042}
1043
1044/// MatchAllMethodDeclarations - Check methods declaraed in interface or
1045/// or protocol against those declared in their implementations.
1046///
1047void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
1048                                      const llvm::DenseSet<Selector> &ClsMap,
1049                                      llvm::DenseSet<Selector> &InsMapSeen,
1050                                      llvm::DenseSet<Selector> &ClsMapSeen,
1051                                      ObjCImplDecl* IMPDecl,
1052                                      ObjCContainerDecl* CDecl,
1053                                      bool &IncompleteImpl,
1054                                      bool ImmediateClass) {
1055  // Check and see if instance methods in class interface have been
1056  // implemented in the implementation class. If so, their types match.
1057  for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1058       E = CDecl->instmeth_end(); I != E; ++I) {
1059    if (InsMapSeen.count((*I)->getSelector()))
1060        continue;
1061    InsMapSeen.insert((*I)->getSelector());
1062    if (!(*I)->isSynthesized() &&
1063        !InsMap.count((*I)->getSelector())) {
1064      if (ImmediateClass)
1065        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1066                            diag::note_undef_method_impl);
1067      continue;
1068    } else {
1069      ObjCMethodDecl *ImpMethodDecl =
1070      IMPDecl->getInstanceMethod((*I)->getSelector());
1071      ObjCMethodDecl *IntfMethodDecl =
1072      CDecl->getInstanceMethod((*I)->getSelector());
1073      assert(IntfMethodDecl &&
1074             "IntfMethodDecl is null in ImplMethodsVsClassMethods");
1075      // ImpMethodDecl may be null as in a @dynamic property.
1076      if (ImpMethodDecl)
1077        WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl);
1078    }
1079  }
1080
1081  // Check and see if class methods in class interface have been
1082  // implemented in the implementation class. If so, their types match.
1083   for (ObjCInterfaceDecl::classmeth_iterator
1084       I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1085     if (ClsMapSeen.count((*I)->getSelector()))
1086       continue;
1087     ClsMapSeen.insert((*I)->getSelector());
1088    if (!ClsMap.count((*I)->getSelector())) {
1089      if (ImmediateClass)
1090        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1091                            diag::note_undef_method_impl);
1092    } else {
1093      ObjCMethodDecl *ImpMethodDecl =
1094        IMPDecl->getClassMethod((*I)->getSelector());
1095      ObjCMethodDecl *IntfMethodDecl =
1096        CDecl->getClassMethod((*I)->getSelector());
1097      WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl);
1098    }
1099  }
1100
1101  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1102    // Also methods in class extensions need be looked at next.
1103    for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
1104         ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
1105      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1106                                 IMPDecl,
1107                                 const_cast<ObjCCategoryDecl *>(ClsExtDecl),
1108                                 IncompleteImpl, false);
1109
1110    // Check for any implementation of a methods declared in protocol.
1111    for (ObjCInterfaceDecl::all_protocol_iterator
1112          PI = I->all_referenced_protocol_begin(),
1113          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1114      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1115                                 IMPDecl,
1116                                 (*PI), IncompleteImpl, false);
1117    if (I->getSuperClass())
1118      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1119                                 IMPDecl,
1120                                 I->getSuperClass(), IncompleteImpl, false);
1121  }
1122}
1123
1124void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1125                                     ObjCContainerDecl* CDecl,
1126                                     bool IncompleteImpl) {
1127  llvm::DenseSet<Selector> InsMap;
1128  // Check and see if instance methods in class interface have been
1129  // implemented in the implementation class.
1130  for (ObjCImplementationDecl::instmeth_iterator
1131         I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1132    InsMap.insert((*I)->getSelector());
1133
1134  // Check and see if properties declared in the interface have either 1)
1135  // an implementation or 2) there is a @synthesize/@dynamic implementation
1136  // of the property in the @implementation.
1137  if (isa<ObjCInterfaceDecl>(CDecl) &&
1138        !(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2))
1139    DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1140
1141  llvm::DenseSet<Selector> ClsMap;
1142  for (ObjCImplementationDecl::classmeth_iterator
1143       I = IMPDecl->classmeth_begin(),
1144       E = IMPDecl->classmeth_end(); I != E; ++I)
1145    ClsMap.insert((*I)->getSelector());
1146
1147  // Check for type conflict of methods declared in a class/protocol and
1148  // its implementation; if any.
1149  llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
1150  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1151                             IMPDecl, CDecl,
1152                             IncompleteImpl, true);
1153
1154  // Check the protocol list for unimplemented methods in the @implementation
1155  // class.
1156  // Check and see if class methods in class interface have been
1157  // implemented in the implementation class.
1158
1159  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1160    for (ObjCInterfaceDecl::all_protocol_iterator
1161          PI = I->all_referenced_protocol_begin(),
1162          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1163      CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1164                              InsMap, ClsMap, I);
1165    // Check class extensions (unnamed categories)
1166    for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
1167         Categories; Categories = Categories->getNextClassExtension())
1168      ImplMethodsVsClassMethods(S, IMPDecl,
1169                                const_cast<ObjCCategoryDecl*>(Categories),
1170                                IncompleteImpl);
1171  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1172    // For extended class, unimplemented methods in its protocols will
1173    // be reported in the primary class.
1174    if (!C->IsClassExtension()) {
1175      for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1176           E = C->protocol_end(); PI != E; ++PI)
1177        CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1178                                InsMap, ClsMap, CDecl);
1179      // Report unimplemented properties in the category as well.
1180      // When reporting on missing setter/getters, do not report when
1181      // setter/getter is implemented in category's primary class
1182      // implementation.
1183      if (ObjCInterfaceDecl *ID = C->getClassInterface())
1184        if (ObjCImplDecl *IMP = ID->getImplementation()) {
1185          for (ObjCImplementationDecl::instmeth_iterator
1186               I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
1187            InsMap.insert((*I)->getSelector());
1188        }
1189      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1190    }
1191  } else
1192    assert(false && "invalid ObjCContainerDecl type.");
1193}
1194
1195/// ActOnForwardClassDeclaration -
1196Decl *
1197Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1198                                   IdentifierInfo **IdentList,
1199                                   SourceLocation *IdentLocs,
1200                                   unsigned NumElts) {
1201  llvm::SmallVector<ObjCInterfaceDecl*, 32> Interfaces;
1202
1203  for (unsigned i = 0; i != NumElts; ++i) {
1204    // Check for another declaration kind with the same name.
1205    NamedDecl *PrevDecl
1206      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1207                         LookupOrdinaryName, ForRedeclaration);
1208    if (PrevDecl && PrevDecl->isTemplateParameter()) {
1209      // Maybe we will complain about the shadowed template parameter.
1210      DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
1211      // Just pretend that we didn't see the previous declaration.
1212      PrevDecl = 0;
1213    }
1214
1215    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1216      // GCC apparently allows the following idiom:
1217      //
1218      // typedef NSObject < XCElementTogglerP > XCElementToggler;
1219      // @class XCElementToggler;
1220      //
1221      // FIXME: Make an extension?
1222      TypedefDecl *TDD = dyn_cast<TypedefDecl>(PrevDecl);
1223      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1224        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1225        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1226      } else {
1227        // a forward class declaration matching a typedef name of a class refers
1228        // to the underlying class.
1229        if (const ObjCObjectType *OI =
1230              TDD->getUnderlyingType()->getAs<ObjCObjectType>())
1231          PrevDecl = OI->getInterface();
1232      }
1233    }
1234    ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1235    if (!IDecl) {  // Not already seen?  Make a forward decl.
1236      IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1237                                        IdentList[i], IdentLocs[i], true);
1238
1239      // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to
1240      // the current DeclContext.  This prevents clients that walk DeclContext
1241      // from seeing the imaginary ObjCInterfaceDecl until it is actually
1242      // declared later (if at all).  We also take care to explicitly make
1243      // sure this declaration is visible for name lookup.
1244      PushOnScopeChains(IDecl, TUScope, false);
1245      CurContext->makeDeclVisibleInContext(IDecl, true);
1246    }
1247
1248    Interfaces.push_back(IDecl);
1249  }
1250
1251  assert(Interfaces.size() == NumElts);
1252  ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc,
1253                                               Interfaces.data(), IdentLocs,
1254                                               Interfaces.size());
1255  CurContext->addDecl(CDecl);
1256  CheckObjCDeclScope(CDecl);
1257  return CDecl;
1258}
1259
1260
1261/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
1262/// returns true, or false, accordingly.
1263/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
1264bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
1265                                      const ObjCMethodDecl *PrevMethod,
1266                                      bool matchBasedOnSizeAndAlignment,
1267                                      bool matchBasedOnStrictEqulity) {
1268  QualType T1 = Context.getCanonicalType(Method->getResultType());
1269  QualType T2 = Context.getCanonicalType(PrevMethod->getResultType());
1270
1271  if (T1 != T2) {
1272    // The result types are different.
1273    if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity)
1274      return false;
1275    // Incomplete types don't have a size and alignment.
1276    if (T1->isIncompleteType() || T2->isIncompleteType())
1277      return false;
1278    // Check is based on size and alignment.
1279    if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
1280      return false;
1281  }
1282
1283  ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
1284       E = Method->param_end();
1285  ObjCMethodDecl::param_iterator PrevI = PrevMethod->param_begin();
1286
1287  for (; ParamI != E; ++ParamI, ++PrevI) {
1288    assert(PrevI != PrevMethod->param_end() && "Param mismatch");
1289    T1 = Context.getCanonicalType((*ParamI)->getType());
1290    T2 = Context.getCanonicalType((*PrevI)->getType());
1291    if (T1 != T2) {
1292      // The result types are different.
1293      if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity)
1294        return false;
1295      // Incomplete types don't have a size and alignment.
1296      if (T1->isIncompleteType() || T2->isIncompleteType())
1297        return false;
1298      // Check is based on size and alignment.
1299      if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
1300        return false;
1301    }
1302  }
1303  return true;
1304}
1305
1306/// \brief Read the contents of the method pool for a given selector from
1307/// external storage.
1308///
1309/// This routine should only be called once, when the method pool has no entry
1310/// for this selector.
1311Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) {
1312  assert(ExternalSource && "We need an external AST source");
1313  assert(MethodPool.find(Sel) == MethodPool.end() &&
1314         "Selector data already loaded into the method pool");
1315
1316  // Read the method list from the external source.
1317  GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel);
1318
1319  return MethodPool.insert(std::make_pair(Sel, Methods)).first;
1320}
1321
1322void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
1323                                 bool instance) {
1324  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
1325  if (Pos == MethodPool.end()) {
1326    if (ExternalSource)
1327      Pos = ReadMethodPool(Method->getSelector());
1328    else
1329      Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
1330                                             GlobalMethods())).first;
1331  }
1332  Method->setDefined(impl);
1333  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
1334  if (Entry.Method == 0) {
1335    // Haven't seen a method with this selector name yet - add it.
1336    Entry.Method = Method;
1337    Entry.Next = 0;
1338    return;
1339  }
1340
1341  // We've seen a method with this name, see if we have already seen this type
1342  // signature.
1343  for (ObjCMethodList *List = &Entry; List; List = List->Next)
1344    if (MatchTwoMethodDeclarations(Method, List->Method)) {
1345      ObjCMethodDecl *PrevObjCMethod = List->Method;
1346      PrevObjCMethod->setDefined(impl);
1347      // If a method is deprecated, push it in the global pool.
1348      // This is used for better diagnostics.
1349      if (Method->getAttr<DeprecatedAttr>()) {
1350        if (!PrevObjCMethod->getAttr<DeprecatedAttr>())
1351          List->Method = Method;
1352      }
1353      // If new method is unavailable, push it into global pool
1354      // unless previous one is deprecated.
1355      if (Method->getAttr<UnavailableAttr>()) {
1356        if (!PrevObjCMethod->getAttr<UnavailableAttr>() &&
1357            !PrevObjCMethod->getAttr<DeprecatedAttr>())
1358          List->Method = Method;
1359      }
1360      return;
1361    }
1362
1363  // We have a new signature for an existing method - add it.
1364  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
1365  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
1366  Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next);
1367}
1368
1369ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
1370                                               bool receiverIdOrClass,
1371                                               bool warn, bool instance) {
1372  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
1373  if (Pos == MethodPool.end()) {
1374    if (ExternalSource)
1375      Pos = ReadMethodPool(Sel);
1376    else
1377      return 0;
1378  }
1379
1380  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
1381
1382  bool strictSelectorMatch = receiverIdOrClass && warn &&
1383    (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
1384                              R.getBegin()) !=
1385      Diagnostic::Ignored);
1386  if (warn && MethList.Method && MethList.Next) {
1387    bool issueWarning = false;
1388    if (strictSelectorMatch)
1389      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
1390        // This checks if the methods differ in type mismatch.
1391        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, false, true))
1392          issueWarning = true;
1393      }
1394
1395    if (!issueWarning)
1396      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
1397        // This checks if the methods differ by size & alignment.
1398        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, true))
1399          issueWarning = true;
1400      }
1401
1402    if (issueWarning) {
1403      if (strictSelectorMatch)
1404        Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
1405      else
1406        Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
1407      Diag(MethList.Method->getLocStart(), diag::note_using)
1408        << MethList.Method->getSourceRange();
1409      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
1410        Diag(Next->Method->getLocStart(), diag::note_also_found)
1411          << Next->Method->getSourceRange();
1412    }
1413  }
1414  return MethList.Method;
1415}
1416
1417ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
1418  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
1419  if (Pos == MethodPool.end())
1420    return 0;
1421
1422  GlobalMethods &Methods = Pos->second;
1423
1424  if (Methods.first.Method && Methods.first.Method->isDefined())
1425    return Methods.first.Method;
1426  if (Methods.second.Method && Methods.second.Method->isDefined())
1427    return Methods.second.Method;
1428  return 0;
1429}
1430
1431/// CompareMethodParamsInBaseAndSuper - This routine compares methods with
1432/// identical selector names in current and its super classes and issues
1433/// a warning if any of their argument types are incompatible.
1434void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
1435                                             ObjCMethodDecl *Method,
1436                                             bool IsInstance)  {
1437  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
1438  if (ID == 0) return;
1439
1440  while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
1441    ObjCMethodDecl *SuperMethodDecl =
1442        SD->lookupMethod(Method->getSelector(), IsInstance);
1443    if (SuperMethodDecl == 0) {
1444      ID = SD;
1445      continue;
1446    }
1447    ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
1448      E = Method->param_end();
1449    ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
1450    for (; ParamI != E; ++ParamI, ++PrevI) {
1451      // Number of parameters are the same and is guaranteed by selector match.
1452      assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
1453      QualType T1 = Context.getCanonicalType((*ParamI)->getType());
1454      QualType T2 = Context.getCanonicalType((*PrevI)->getType());
1455      // If type of arguement of method in this class does not match its
1456      // respective argument type in the super class method, issue warning;
1457      if (!Context.typesAreCompatible(T1, T2)) {
1458        Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
1459          << T1 << T2;
1460        Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
1461        return;
1462      }
1463    }
1464    ID = SD;
1465  }
1466}
1467
1468/// DiagnoseDuplicateIvars -
1469/// Check for duplicate ivars in the entire class at the start of
1470/// @implementation. This becomes necesssary because class extension can
1471/// add ivars to a class in random order which will not be known until
1472/// class's @implementation is seen.
1473void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
1474                                  ObjCInterfaceDecl *SID) {
1475  for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
1476       IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
1477    ObjCIvarDecl* Ivar = (*IVI);
1478    if (Ivar->isInvalidDecl())
1479      continue;
1480    if (IdentifierInfo *II = Ivar->getIdentifier()) {
1481      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
1482      if (prevIvar) {
1483        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
1484        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
1485        Ivar->setInvalidDecl();
1486      }
1487    }
1488  }
1489}
1490
1491// Note: For class/category implemenations, allMethods/allProperties is
1492// always null.
1493void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
1494                      Decl *ClassDecl,
1495                      Decl **allMethods, unsigned allNum,
1496                      Decl **allProperties, unsigned pNum,
1497                      DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
1498  // FIXME: If we don't have a ClassDecl, we have an error. We should consider
1499  // always passing in a decl. If the decl has an error, isInvalidDecl()
1500  // should be true.
1501  if (!ClassDecl)
1502    return;
1503
1504  bool isInterfaceDeclKind =
1505        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
1506         || isa<ObjCProtocolDecl>(ClassDecl);
1507  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
1508
1509  if (!isInterfaceDeclKind && AtEnd.isInvalid()) {
1510    // FIXME: This is wrong.  We shouldn't be pretending that there is
1511    //  an '@end' in the declaration.
1512    SourceLocation L = ClassDecl->getLocation();
1513    AtEnd.setBegin(L);
1514    AtEnd.setEnd(L);
1515    Diag(L, diag::warn_missing_atend);
1516  }
1517
1518  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
1519  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
1520  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
1521
1522  for (unsigned i = 0; i < allNum; i++ ) {
1523    ObjCMethodDecl *Method =
1524      cast_or_null<ObjCMethodDecl>(allMethods[i]);
1525
1526    if (!Method) continue;  // Already issued a diagnostic.
1527    if (Method->isInstanceMethod()) {
1528      /// Check for instance method of the same name with incompatible types
1529      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
1530      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
1531                              : false;
1532      if ((isInterfaceDeclKind && PrevMethod && !match)
1533          || (checkIdenticalMethods && match)) {
1534          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1535            << Method->getDeclName();
1536          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1537        Method->setInvalidDecl();
1538      } else {
1539        InsMap[Method->getSelector()] = Method;
1540        /// The following allows us to typecheck messages to "id".
1541        AddInstanceMethodToGlobalPool(Method);
1542        // verify that the instance method conforms to the same definition of
1543        // parent methods if it shadows one.
1544        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
1545      }
1546    } else {
1547      /// Check for class method of the same name with incompatible types
1548      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
1549      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
1550                              : false;
1551      if ((isInterfaceDeclKind && PrevMethod && !match)
1552          || (checkIdenticalMethods && match)) {
1553        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1554          << Method->getDeclName();
1555        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1556        Method->setInvalidDecl();
1557      } else {
1558        ClsMap[Method->getSelector()] = Method;
1559        /// The following allows us to typecheck messages to "Class".
1560        AddFactoryMethodToGlobalPool(Method);
1561        // verify that the class method conforms to the same definition of
1562        // parent methods if it shadows one.
1563        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
1564      }
1565    }
1566  }
1567  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
1568    // Compares properties declared in this class to those of its
1569    // super class.
1570    ComparePropertiesInBaseAndSuper(I);
1571    CompareProperties(I, I);
1572  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
1573    // Categories are used to extend the class by declaring new methods.
1574    // By the same token, they are also used to add new properties. No
1575    // need to compare the added property to those in the class.
1576
1577    // Compare protocol properties with those in category
1578    CompareProperties(C, C);
1579    if (C->IsClassExtension()) {
1580      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
1581      DiagnoseClassExtensionDupMethods(C, CCPrimary);
1582    }
1583  }
1584  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
1585    if (CDecl->getIdentifier())
1586      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
1587      // user-defined setter/getter. It also synthesizes setter/getter methods
1588      // and adds them to the DeclContext and global method pools.
1589      for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
1590                                            E = CDecl->prop_end();
1591           I != E; ++I)
1592        ProcessPropertyDecl(*I, CDecl);
1593    CDecl->setAtEndRange(AtEnd);
1594  }
1595  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
1596    IC->setAtEndRange(AtEnd);
1597    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
1598      // Any property declared in a class extension might have user
1599      // declared setter or getter in current class extension or one
1600      // of the other class extensions. Mark them as synthesized as
1601      // property will be synthesized when property with same name is
1602      // seen in the @implementation.
1603      for (const ObjCCategoryDecl *ClsExtDecl =
1604           IDecl->getFirstClassExtension();
1605           ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
1606        for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
1607             E = ClsExtDecl->prop_end(); I != E; ++I) {
1608          ObjCPropertyDecl *Property = (*I);
1609          // Skip over properties declared @dynamic
1610          if (const ObjCPropertyImplDecl *PIDecl
1611              = IC->FindPropertyImplDecl(Property->getIdentifier()))
1612            if (PIDecl->getPropertyImplementation()
1613                  == ObjCPropertyImplDecl::Dynamic)
1614              continue;
1615
1616          for (const ObjCCategoryDecl *CExtDecl =
1617               IDecl->getFirstClassExtension();
1618               CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
1619            if (ObjCMethodDecl *GetterMethod =
1620                CExtDecl->getInstanceMethod(Property->getGetterName()))
1621              GetterMethod->setSynthesized(true);
1622            if (!Property->isReadOnly())
1623              if (ObjCMethodDecl *SetterMethod =
1624                  CExtDecl->getInstanceMethod(Property->getSetterName()))
1625                SetterMethod->setSynthesized(true);
1626          }
1627        }
1628      }
1629
1630      if (LangOpts.ObjCDefaultSynthProperties &&
1631          LangOpts.ObjCNonFragileABI2)
1632        DefaultSynthesizeProperties(S, IC, IDecl);
1633      ImplMethodsVsClassMethods(S, IC, IDecl);
1634      AtomicPropertySetterGetterRules(IC, IDecl);
1635
1636      if (LangOpts.ObjCNonFragileABI2)
1637        while (IDecl->getSuperClass()) {
1638          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
1639          IDecl = IDecl->getSuperClass();
1640        }
1641    }
1642    SetIvarInitializers(IC);
1643  } else if (ObjCCategoryImplDecl* CatImplClass =
1644                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
1645    CatImplClass->setAtEndRange(AtEnd);
1646
1647    // Find category interface decl and then check that all methods declared
1648    // in this interface are implemented in the category @implementation.
1649    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
1650      for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
1651           Categories; Categories = Categories->getNextClassCategory()) {
1652        if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
1653          ImplMethodsVsClassMethods(S, CatImplClass, Categories);
1654          break;
1655        }
1656      }
1657    }
1658  }
1659  if (isInterfaceDeclKind) {
1660    // Reject invalid vardecls.
1661    for (unsigned i = 0; i != tuvNum; i++) {
1662      DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
1663      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
1664        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
1665          if (!VDecl->hasExternalStorage())
1666            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
1667        }
1668    }
1669  }
1670}
1671
1672
1673/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
1674/// objective-c's type qualifier from the parser version of the same info.
1675static Decl::ObjCDeclQualifier
1676CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
1677  Decl::ObjCDeclQualifier ret = Decl::OBJC_TQ_None;
1678  if (PQTVal & ObjCDeclSpec::DQ_In)
1679    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_In);
1680  if (PQTVal & ObjCDeclSpec::DQ_Inout)
1681    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Inout);
1682  if (PQTVal & ObjCDeclSpec::DQ_Out)
1683    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Out);
1684  if (PQTVal & ObjCDeclSpec::DQ_Bycopy)
1685    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Bycopy);
1686  if (PQTVal & ObjCDeclSpec::DQ_Byref)
1687    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Byref);
1688  if (PQTVal & ObjCDeclSpec::DQ_Oneway)
1689    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Oneway);
1690
1691  return ret;
1692}
1693
1694static inline
1695bool containsInvalidMethodImplAttribute(const AttrVec &A) {
1696  // The 'ibaction' attribute is allowed on method definitions because of
1697  // how the IBAction macro is used on both method declarations and definitions.
1698  // If the method definitions contains any other attributes, return true.
1699  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
1700    if ((*i)->getKind() != attr::IBAction)
1701      return true;
1702  return false;
1703}
1704
1705Decl *Sema::ActOnMethodDeclaration(
1706    Scope *S,
1707    SourceLocation MethodLoc, SourceLocation EndLoc,
1708    tok::TokenKind MethodType, Decl *ClassDecl,
1709    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
1710    Selector Sel,
1711    // optional arguments. The number of types/arguments is obtained
1712    // from the Sel.getNumArgs().
1713    ObjCArgInfo *ArgInfo,
1714    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
1715    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
1716    bool isVariadic) {
1717  // Make sure we can establish a context for the method.
1718  if (!ClassDecl) {
1719    Diag(MethodLoc, diag::error_missing_method_context);
1720    getCurFunction()->LabelMap.clear();
1721    return 0;
1722  }
1723  QualType resultDeclType;
1724
1725  TypeSourceInfo *ResultTInfo = 0;
1726  if (ReturnType) {
1727    resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
1728
1729    // Methods cannot return interface types. All ObjC objects are
1730    // passed by reference.
1731    if (resultDeclType->isObjCObjectType()) {
1732      Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
1733        << 0 << resultDeclType;
1734      return 0;
1735    }
1736  } else // get the type for "id".
1737    resultDeclType = Context.getObjCIdType();
1738
1739  ObjCMethodDecl* ObjCMethod =
1740    ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType,
1741                           ResultTInfo,
1742                           cast<DeclContext>(ClassDecl),
1743                           MethodType == tok::minus, isVariadic,
1744                           false, false,
1745                           MethodDeclKind == tok::objc_optional ?
1746                           ObjCMethodDecl::Optional :
1747                           ObjCMethodDecl::Required);
1748
1749  llvm::SmallVector<ParmVarDecl*, 16> Params;
1750
1751  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
1752    QualType ArgType;
1753    TypeSourceInfo *DI;
1754
1755    if (ArgInfo[i].Type == 0) {
1756      ArgType = Context.getObjCIdType();
1757      DI = 0;
1758    } else {
1759      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
1760      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
1761      ArgType = adjustParameterType(ArgType);
1762    }
1763
1764    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
1765                   LookupOrdinaryName, ForRedeclaration);
1766    LookupName(R, S);
1767    if (R.isSingleResult()) {
1768      NamedDecl *PrevDecl = R.getFoundDecl();
1769      if (S->isDeclScope(PrevDecl)) {
1770        // FIXME. This should be an error; but will break projects.
1771        Diag(ArgInfo[i].NameLoc, diag::warn_method_param_redefinition)
1772          << ArgInfo[i].Name;
1773        Diag(PrevDecl->getLocation(),
1774             diag::note_previous_declaration);
1775      }
1776    }
1777
1778    ParmVarDecl* Param
1779      = ParmVarDecl::Create(Context, ObjCMethod, ArgInfo[i].NameLoc,
1780                            ArgInfo[i].Name, ArgType, DI,
1781                            SC_None, SC_None, 0);
1782
1783    if (ArgType->isObjCObjectType()) {
1784      Diag(ArgInfo[i].NameLoc,
1785           diag::err_object_cannot_be_passed_returned_by_value)
1786        << 1 << ArgType;
1787      Param->setInvalidDecl();
1788    }
1789
1790    Param->setObjCDeclQualifier(
1791      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
1792
1793    // Apply the attributes to the parameter.
1794    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
1795
1796    S->AddDecl(Param);
1797    IdResolver.AddDecl(Param);
1798
1799    Params.push_back(Param);
1800  }
1801
1802  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
1803    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
1804    QualType ArgType = Param->getType();
1805    if (ArgType.isNull())
1806      ArgType = Context.getObjCIdType();
1807    else
1808      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
1809      ArgType = adjustParameterType(ArgType);
1810    if (ArgType->isObjCObjectType()) {
1811      Diag(Param->getLocation(),
1812           diag::err_object_cannot_be_passed_returned_by_value)
1813      << 1 << ArgType;
1814      Param->setInvalidDecl();
1815    }
1816    Param->setDeclContext(ObjCMethod);
1817
1818    Params.push_back(Param);
1819  }
1820
1821  ObjCMethod->setMethodParams(Context, Params.data(), Params.size(),
1822                              Sel.getNumArgs());
1823  ObjCMethod->setObjCDeclQualifier(
1824    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
1825  const ObjCMethodDecl *PrevMethod = 0;
1826
1827  if (AttrList)
1828    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
1829
1830  const ObjCMethodDecl *InterfaceMD = 0;
1831
1832  // Add the method now.
1833  if (ObjCImplementationDecl *ImpDecl =
1834        dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
1835    if (MethodType == tok::minus) {
1836      PrevMethod = ImpDecl->getInstanceMethod(Sel);
1837      ImpDecl->addInstanceMethod(ObjCMethod);
1838    } else {
1839      PrevMethod = ImpDecl->getClassMethod(Sel);
1840      ImpDecl->addClassMethod(ObjCMethod);
1841    }
1842    InterfaceMD = ImpDecl->getClassInterface()->getMethod(Sel,
1843                                                   MethodType == tok::minus);
1844    if (ObjCMethod->hasAttrs() &&
1845        containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
1846      Diag(EndLoc, diag::warn_attribute_method_def);
1847  } else if (ObjCCategoryImplDecl *CatImpDecl =
1848             dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
1849    if (MethodType == tok::minus) {
1850      PrevMethod = CatImpDecl->getInstanceMethod(Sel);
1851      CatImpDecl->addInstanceMethod(ObjCMethod);
1852    } else {
1853      PrevMethod = CatImpDecl->getClassMethod(Sel);
1854      CatImpDecl->addClassMethod(ObjCMethod);
1855    }
1856    if (ObjCMethod->hasAttrs() &&
1857        containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
1858      Diag(EndLoc, diag::warn_attribute_method_def);
1859  } else {
1860    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
1861  }
1862  if (PrevMethod) {
1863    // You can never have two method definitions with the same name.
1864    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
1865      << ObjCMethod->getDeclName();
1866    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1867  }
1868
1869  // If the interface declared this method, and it was deprecated there,
1870  // mark it deprecated here.
1871  if (InterfaceMD)
1872   if (Attr *DA = InterfaceMD->getAttr<DeprecatedAttr>()) {
1873    StringLiteral *SE = StringLiteral::CreateEmpty(Context, 1);
1874    ObjCMethod->addAttr(::new (Context)
1875                        DeprecatedAttr(DA->getLocation(),
1876                                       Context,
1877                                       SE->getString()));
1878   }
1879
1880  return ObjCMethod;
1881}
1882
1883bool Sema::CheckObjCDeclScope(Decl *D) {
1884  if (isa<TranslationUnitDecl>(CurContext->getRedeclContext()))
1885    return false;
1886
1887  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
1888  D->setInvalidDecl();
1889
1890  return true;
1891}
1892
1893/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
1894/// instance variables of ClassName into Decls.
1895void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
1896                     IdentifierInfo *ClassName,
1897                     llvm::SmallVectorImpl<Decl*> &Decls) {
1898  // Check that ClassName is a valid class
1899  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
1900  if (!Class) {
1901    Diag(DeclStart, diag::err_undef_interface) << ClassName;
1902    return;
1903  }
1904  if (LangOpts.ObjCNonFragileABI) {
1905    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
1906    return;
1907  }
1908
1909  // Collect the instance variables
1910  llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
1911  Context.DeepCollectObjCIvars(Class, true, Ivars);
1912  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
1913  for (unsigned i = 0; i < Ivars.size(); i++) {
1914    FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
1915    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
1916    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, ID->getLocation(),
1917                                           ID->getIdentifier(), ID->getType(),
1918                                           ID->getBitWidth());
1919    Decls.push_back(FD);
1920  }
1921
1922  // Introduce all of these fields into the appropriate scope.
1923  for (llvm::SmallVectorImpl<Decl*>::iterator D = Decls.begin();
1924       D != Decls.end(); ++D) {
1925    FieldDecl *FD = cast<FieldDecl>(*D);
1926    if (getLangOptions().CPlusPlus)
1927      PushOnScopeChains(cast<FieldDecl>(FD), S);
1928    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
1929      Record->addDecl(FD);
1930  }
1931}
1932
1933/// \brief Build a type-check a new Objective-C exception variable declaration.
1934VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo,
1935                                      QualType T,
1936                                      IdentifierInfo *Name,
1937                                      SourceLocation NameLoc,
1938                                      bool Invalid) {
1939  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
1940  // duration shall not be qualified by an address-space qualifier."
1941  // Since all parameters have automatic store duration, they can not have
1942  // an address space.
1943  if (T.getAddressSpace() != 0) {
1944    Diag(NameLoc, diag::err_arg_with_address_space);
1945    Invalid = true;
1946  }
1947
1948  // An @catch parameter must be an unqualified object pointer type;
1949  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
1950  if (Invalid) {
1951    // Don't do any further checking.
1952  } else if (T->isDependentType()) {
1953    // Okay: we don't know what this type will instantiate to.
1954  } else if (!T->isObjCObjectPointerType()) {
1955    Invalid = true;
1956    Diag(NameLoc ,diag::err_catch_param_not_objc_type);
1957  } else if (T->isObjCQualifiedIdType()) {
1958    Invalid = true;
1959    Diag(NameLoc, diag::err_illegal_qualifiers_on_catch_parm);
1960  }
1961
1962  VarDecl *New = VarDecl::Create(Context, CurContext, NameLoc, Name, T, TInfo,
1963                                 SC_None, SC_None);
1964  New->setExceptionVariable(true);
1965
1966  if (Invalid)
1967    New->setInvalidDecl();
1968  return New;
1969}
1970
1971Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
1972  const DeclSpec &DS = D.getDeclSpec();
1973
1974  // We allow the "register" storage class on exception variables because
1975  // GCC did, but we drop it completely. Any other storage class is an error.
1976  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1977    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
1978      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
1979  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1980    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
1981      << DS.getStorageClassSpec();
1982  }
1983  if (D.getDeclSpec().isThreadSpecified())
1984    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1985  D.getMutableDeclSpec().ClearStorageClassSpecs();
1986
1987  DiagnoseFunctionSpecifiers(D);
1988
1989  // Check that there are no default arguments inside the type of this
1990  // exception object (C++ only).
1991  if (getLangOptions().CPlusPlus)
1992    CheckExtraCXXDefaultArguments(D);
1993
1994  TagDecl *OwnedDecl = 0;
1995  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
1996  QualType ExceptionType = TInfo->getType();
1997
1998  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
1999    // Objective-C++: Types shall not be defined in exception types.
2000    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
2001      << Context.getTypeDeclType(OwnedDecl);
2002  }
2003
2004  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, D.getIdentifier(),
2005                                        D.getIdentifierLoc(),
2006                                        D.isInvalidType());
2007
2008  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2009  if (D.getCXXScopeSpec().isSet()) {
2010    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
2011      << D.getCXXScopeSpec().getRange();
2012    New->setInvalidDecl();
2013  }
2014
2015  // Add the parameter declaration into this scope.
2016  S->AddDecl(New);
2017  if (D.getIdentifier())
2018    IdResolver.AddDecl(New);
2019
2020  ProcessDeclAttributes(S, New, D);
2021
2022  if (New->hasAttr<BlocksAttr>())
2023    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2024  return New;
2025}
2026
2027/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
2028/// initialization.
2029void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
2030                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
2031  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
2032       Iv= Iv->getNextIvar()) {
2033    QualType QT = Context.getBaseElementType(Iv->getType());
2034    if (QT->isRecordType())
2035      Ivars.push_back(Iv);
2036  }
2037}
2038
2039void ObjCImplementationDecl::setIvarInitializers(ASTContext &C,
2040                                             CXXCtorInitializer ** initializers,
2041                                                 unsigned numInitializers) {
2042  if (numInitializers > 0) {
2043    NumIvarInitializers = numInitializers;
2044    CXXCtorInitializer **ivarInitializers =
2045    new (C) CXXCtorInitializer*[NumIvarInitializers];
2046    memcpy(ivarInitializers, initializers,
2047           numInitializers * sizeof(CXXCtorInitializer*));
2048    IvarInitializers = ivarInitializers;
2049  }
2050}
2051
2052void Sema::DiagnoseUseOfUnimplementedSelectors() {
2053  // Warning will be issued only when selector table is
2054  // generated (which means there is at lease one implementation
2055  // in the TU). This is to match gcc's behavior.
2056  if (ReferencedSelectors.empty() ||
2057      !Context.AnyObjCImplementation())
2058    return;
2059  for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
2060        ReferencedSelectors.begin(),
2061       E = ReferencedSelectors.end(); S != E; ++S) {
2062    Selector Sel = (*S).first;
2063    if (!LookupImplementedMethodInGlobalPool(Sel))
2064      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
2065  }
2066  return;
2067}
2068