SemaDeclObjC.cpp revision bdaae392d4ede29c992db6c40c14860a0505415f
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/ExternalSemaSource.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/Sema/DeclSpec.h"
23#include "llvm/ADT/DenseSet.h"
24
25using namespace clang;
26
27/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
28/// and user declared, in the method definition's AST.
29void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
30  assert(getCurMethodDecl() == 0 && "Method parsing confused");
31  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
32
33  // If we don't have a valid method decl, simply return.
34  if (!MDecl)
35    return;
36
37  // Allow the rest of sema to find private method decl implementations.
38  if (MDecl->isInstanceMethod())
39    AddInstanceMethodToGlobalPool(MDecl, true);
40  else
41    AddFactoryMethodToGlobalPool(MDecl, true);
42
43  // Allow all of Sema to see that we are entering a method definition.
44  PushDeclContext(FnBodyScope, MDecl);
45  PushFunctionScope();
46
47  // Create Decl objects for each parameter, entrring them in the scope for
48  // binding to their use.
49
50  // Insert the invisible arguments, self and _cmd!
51  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
52
53  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
54  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
55
56  // Introduce all of the other parameters into this scope.
57  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
58       E = MDecl->param_end(); PI != E; ++PI) {
59    ParmVarDecl *Param = (*PI);
60    if (!Param->isInvalidDecl() &&
61        RequireCompleteType(Param->getLocation(), Param->getType(),
62                            diag::err_typecheck_decl_incomplete_type))
63          Param->setInvalidDecl();
64    if ((*PI)->getIdentifier())
65      PushOnScopeChains(*PI, FnBodyScope);
66  }
67}
68
69Decl *Sema::
70ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
71                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
72                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
73                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
74                         const SourceLocation *ProtoLocs,
75                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
76  assert(ClassName && "Missing class identifier");
77
78  // Check for another declaration kind with the same name.
79  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
80                                         LookupOrdinaryName, ForRedeclaration);
81
82  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
83    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
84    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
85  }
86
87  ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
88  if (IDecl) {
89    // Class already seen. Is it a forward declaration?
90    if (!IDecl->isForwardDecl()) {
91      IDecl->setInvalidDecl();
92      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName();
93      Diag(IDecl->getLocation(), diag::note_previous_definition);
94
95      // Return the previous class interface.
96      // FIXME: don't leak the objects passed in!
97      return IDecl;
98    } else {
99      IDecl->setLocation(AtInterfaceLoc);
100      IDecl->setForwardDecl(false);
101      IDecl->setClassLoc(ClassLoc);
102      // If the forward decl was in a PCH, we need to write it again in a
103      // dependent AST file.
104      IDecl->setChangedSinceDeserialization(true);
105
106      // Since this ObjCInterfaceDecl was created by a forward declaration,
107      // we now add it to the DeclContext since it wasn't added before
108      // (see ActOnForwardClassDeclaration).
109      IDecl->setLexicalDeclContext(CurContext);
110      CurContext->addDecl(IDecl);
111
112      if (AttrList)
113        ProcessDeclAttributeList(TUScope, IDecl, AttrList);
114    }
115  } else {
116    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc,
117                                      ClassName, ClassLoc);
118    if (AttrList)
119      ProcessDeclAttributeList(TUScope, IDecl, AttrList);
120
121    PushOnScopeChains(IDecl, TUScope);
122  }
123
124  if (SuperName) {
125    // Check if a different kind of symbol declared in this scope.
126    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
127                                LookupOrdinaryName);
128
129    if (!PrevDecl) {
130      // Try to correct for a typo in the superclass name.
131      LookupResult R(*this, SuperName, SuperLoc, LookupOrdinaryName);
132      if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
133          (PrevDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
134        Diag(SuperLoc, diag::err_undef_superclass_suggest)
135          << SuperName << ClassName << PrevDecl->getDeclName();
136        Diag(PrevDecl->getLocation(), diag::note_previous_decl)
137          << PrevDecl->getDeclName();
138      }
139    }
140
141    if (PrevDecl == IDecl) {
142      Diag(SuperLoc, diag::err_recursive_superclass)
143        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
144      IDecl->setLocEnd(ClassLoc);
145    } else {
146      ObjCInterfaceDecl *SuperClassDecl =
147                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
148
149      // Diagnose classes that inherit from deprecated classes.
150      if (SuperClassDecl)
151        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
152
153      if (PrevDecl && SuperClassDecl == 0) {
154        // The previous declaration was not a class decl. Check if we have a
155        // typedef. If we do, get the underlying class type.
156        if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(PrevDecl)) {
157          QualType T = TDecl->getUnderlyingType();
158          if (T->isObjCObjectType()) {
159            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
160              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
161          }
162        }
163
164        // This handles the following case:
165        //
166        // typedef int SuperClass;
167        // @interface MyClass : SuperClass {} @end
168        //
169        if (!SuperClassDecl) {
170          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
171          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
172        }
173      }
174
175      if (!dyn_cast_or_null<TypedefDecl>(PrevDecl)) {
176        if (!SuperClassDecl)
177          Diag(SuperLoc, diag::err_undef_superclass)
178            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
179        else if (SuperClassDecl->isForwardDecl())
180          Diag(SuperLoc, diag::err_undef_superclass)
181            << SuperClassDecl->getDeclName() << ClassName
182            << SourceRange(AtInterfaceLoc, ClassLoc);
183      }
184      IDecl->setSuperClass(SuperClassDecl);
185      IDecl->setSuperClassLoc(SuperLoc);
186      IDecl->setLocEnd(SuperLoc);
187    }
188  } else { // we have a root class.
189    IDecl->setLocEnd(ClassLoc);
190  }
191
192  // Check then save referenced protocols.
193  if (NumProtoRefs) {
194    IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
195                           ProtoLocs, Context);
196    IDecl->setLocEnd(EndProtoLoc);
197  }
198
199  CheckObjCDeclScope(IDecl);
200  return IDecl;
201}
202
203/// ActOnCompatiblityAlias - this action is called after complete parsing of
204/// @compatibility_alias declaration. It sets up the alias relationships.
205Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
206                                        IdentifierInfo *AliasName,
207                                        SourceLocation AliasLocation,
208                                        IdentifierInfo *ClassName,
209                                        SourceLocation ClassLocation) {
210  // Look for previous declaration of alias name
211  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
212                                      LookupOrdinaryName, ForRedeclaration);
213  if (ADecl) {
214    if (isa<ObjCCompatibleAliasDecl>(ADecl))
215      Diag(AliasLocation, diag::warn_previous_alias_decl);
216    else
217      Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
218    Diag(ADecl->getLocation(), diag::note_previous_declaration);
219    return 0;
220  }
221  // Check for class declaration
222  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
223                                       LookupOrdinaryName, ForRedeclaration);
224  if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(CDeclU)) {
225    QualType T = TDecl->getUnderlyingType();
226    if (T->isObjCObjectType()) {
227      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
228        ClassName = IDecl->getIdentifier();
229        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
230                                  LookupOrdinaryName, ForRedeclaration);
231      }
232    }
233  }
234  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
235  if (CDecl == 0) {
236    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
237    if (CDeclU)
238      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
239    return 0;
240  }
241
242  // Everything checked out, instantiate a new alias declaration AST.
243  ObjCCompatibleAliasDecl *AliasDecl =
244    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
245
246  if (!CheckObjCDeclScope(AliasDecl))
247    PushOnScopeChains(AliasDecl, TUScope);
248
249  return AliasDecl;
250}
251
252void Sema::CheckForwardProtocolDeclarationForCircularDependency(
253  IdentifierInfo *PName,
254  SourceLocation &Ploc, SourceLocation PrevLoc,
255  const ObjCList<ObjCProtocolDecl> &PList) {
256  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
257       E = PList.end(); I != E; ++I) {
258
259    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
260                                                 Ploc)) {
261      if (PDecl->getIdentifier() == PName) {
262        Diag(Ploc, diag::err_protocol_has_circular_dependency);
263        Diag(PrevLoc, diag::note_previous_definition);
264      }
265      CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
266        PDecl->getLocation(), PDecl->getReferencedProtocols());
267    }
268  }
269}
270
271Decl *
272Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
273                                  IdentifierInfo *ProtocolName,
274                                  SourceLocation ProtocolLoc,
275                                  Decl * const *ProtoRefs,
276                                  unsigned NumProtoRefs,
277                                  const SourceLocation *ProtoLocs,
278                                  SourceLocation EndProtoLoc,
279                                  AttributeList *AttrList) {
280  // FIXME: Deal with AttrList.
281  assert(ProtocolName && "Missing protocol identifier");
282  ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc);
283  if (PDecl) {
284    // Protocol already seen. Better be a forward protocol declaration
285    if (!PDecl->isForwardDecl()) {
286      Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
287      Diag(PDecl->getLocation(), diag::note_previous_definition);
288      // Just return the protocol we already had.
289      // FIXME: don't leak the objects passed in!
290      return PDecl;
291    }
292    ObjCList<ObjCProtocolDecl> PList;
293    PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
294    CheckForwardProtocolDeclarationForCircularDependency(
295      ProtocolName, ProtocolLoc, PDecl->getLocation(), PList);
296
297    // Make sure the cached decl gets a valid start location.
298    PDecl->setLocation(AtProtoInterfaceLoc);
299    PDecl->setForwardDecl(false);
300    CurContext->addDecl(PDecl);
301    // Repeat in dependent AST files.
302    PDecl->setChangedSinceDeserialization(true);
303  } else {
304    PDecl = ObjCProtocolDecl::Create(Context, CurContext,
305                                     AtProtoInterfaceLoc,ProtocolName);
306    PushOnScopeChains(PDecl, TUScope);
307    PDecl->setForwardDecl(false);
308  }
309  if (AttrList)
310    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
311  if (NumProtoRefs) {
312    /// Check then save referenced protocols.
313    PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
314                           ProtoLocs, Context);
315    PDecl->setLocEnd(EndProtoLoc);
316  }
317
318  CheckObjCDeclScope(PDecl);
319  return PDecl;
320}
321
322/// FindProtocolDeclaration - This routine looks up protocols and
323/// issues an error if they are not declared. It returns list of
324/// protocol declarations in its 'Protocols' argument.
325void
326Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
327                              const IdentifierLocPair *ProtocolId,
328                              unsigned NumProtocols,
329                              llvm::SmallVectorImpl<Decl *> &Protocols) {
330  for (unsigned i = 0; i != NumProtocols; ++i) {
331    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
332                                             ProtocolId[i].second);
333    if (!PDecl) {
334      LookupResult R(*this, ProtocolId[i].first, ProtocolId[i].second,
335                     LookupObjCProtocolName);
336      if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
337          (PDecl = R.getAsSingle<ObjCProtocolDecl>())) {
338        Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
339          << ProtocolId[i].first << R.getLookupName();
340        Diag(PDecl->getLocation(), diag::note_previous_decl)
341          << PDecl->getDeclName();
342      }
343    }
344
345    if (!PDecl) {
346      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
347        << ProtocolId[i].first;
348      continue;
349    }
350
351    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
352
353    // If this is a forward declaration and we are supposed to warn in this
354    // case, do it.
355    if (WarnOnDeclarations && PDecl->isForwardDecl())
356      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
357        << ProtocolId[i].first;
358    Protocols.push_back(PDecl);
359  }
360}
361
362/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
363/// a class method in its extension.
364///
365void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
366                                            ObjCInterfaceDecl *ID) {
367  if (!ID)
368    return;  // Possibly due to previous error
369
370  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
371  for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
372       e =  ID->meth_end(); i != e; ++i) {
373    ObjCMethodDecl *MD = *i;
374    MethodMap[MD->getSelector()] = MD;
375  }
376
377  if (MethodMap.empty())
378    return;
379  for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
380       e =  CAT->meth_end(); i != e; ++i) {
381    ObjCMethodDecl *Method = *i;
382    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
383    if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
384      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
385            << Method->getDeclName();
386      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
387    }
388  }
389}
390
391/// ActOnForwardProtocolDeclaration - Handle @protocol foo;
392Decl *
393Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
394                                      const IdentifierLocPair *IdentList,
395                                      unsigned NumElts,
396                                      AttributeList *attrList) {
397  llvm::SmallVector<ObjCProtocolDecl*, 32> Protocols;
398  llvm::SmallVector<SourceLocation, 8> ProtoLocs;
399
400  for (unsigned i = 0; i != NumElts; ++i) {
401    IdentifierInfo *Ident = IdentList[i].first;
402    ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second);
403    bool isNew = false;
404    if (PDecl == 0) { // Not already seen?
405      PDecl = ObjCProtocolDecl::Create(Context, CurContext,
406                                       IdentList[i].second, Ident);
407      PushOnScopeChains(PDecl, TUScope, false);
408      isNew = true;
409    }
410    if (attrList) {
411      ProcessDeclAttributeList(TUScope, PDecl, attrList);
412      if (!isNew)
413        PDecl->setChangedSinceDeserialization(true);
414    }
415    Protocols.push_back(PDecl);
416    ProtoLocs.push_back(IdentList[i].second);
417  }
418
419  ObjCForwardProtocolDecl *PDecl =
420    ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc,
421                                    Protocols.data(), Protocols.size(),
422                                    ProtoLocs.data());
423  CurContext->addDecl(PDecl);
424  CheckObjCDeclScope(PDecl);
425  return PDecl;
426}
427
428Decl *Sema::
429ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
430                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
431                            IdentifierInfo *CategoryName,
432                            SourceLocation CategoryLoc,
433                            Decl * const *ProtoRefs,
434                            unsigned NumProtoRefs,
435                            const SourceLocation *ProtoLocs,
436                            SourceLocation EndProtoLoc) {
437  ObjCCategoryDecl *CDecl;
438  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
439
440  /// Check that class of this category is already completely declared.
441  if (!IDecl || IDecl->isForwardDecl()) {
442    // Create an invalid ObjCCategoryDecl to serve as context for
443    // the enclosing method declarations.  We mark the decl invalid
444    // to make it clear that this isn't a valid AST.
445    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
446                                     ClassLoc, CategoryLoc, CategoryName);
447    CDecl->setInvalidDecl();
448    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
449    return CDecl;
450  }
451
452  if (!CategoryName && IDecl->getImplementation()) {
453    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
454    Diag(IDecl->getImplementation()->getLocation(),
455          diag::note_implementation_declared);
456  }
457
458  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
459                                   ClassLoc, CategoryLoc, CategoryName);
460  // FIXME: PushOnScopeChains?
461  CurContext->addDecl(CDecl);
462
463  CDecl->setClassInterface(IDecl);
464  // Insert class extension to the list of class's categories.
465  if (!CategoryName)
466    CDecl->insertNextClassCategory();
467
468  // If the interface is deprecated, warn about it.
469  (void)DiagnoseUseOfDecl(IDecl, ClassLoc);
470
471  if (CategoryName) {
472    /// Check for duplicate interface declaration for this category
473    ObjCCategoryDecl *CDeclChain;
474    for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
475         CDeclChain = CDeclChain->getNextClassCategory()) {
476      if (CDeclChain->getIdentifier() == CategoryName) {
477        // Class extensions can be declared multiple times.
478        Diag(CategoryLoc, diag::warn_dup_category_def)
479          << ClassName << CategoryName;
480        Diag(CDeclChain->getLocation(), diag::note_previous_definition);
481        break;
482      }
483    }
484    if (!CDeclChain)
485      CDecl->insertNextClassCategory();
486  }
487
488  if (NumProtoRefs) {
489    CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
490                           ProtoLocs, Context);
491    // Protocols in the class extension belong to the class.
492    if (CDecl->IsClassExtension())
493     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
494                                            NumProtoRefs, Context);
495  }
496
497  CheckObjCDeclScope(CDecl);
498  return CDecl;
499}
500
501/// ActOnStartCategoryImplementation - Perform semantic checks on the
502/// category implementation declaration and build an ObjCCategoryImplDecl
503/// object.
504Decl *Sema::ActOnStartCategoryImplementation(
505                      SourceLocation AtCatImplLoc,
506                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
507                      IdentifierInfo *CatName, SourceLocation CatLoc) {
508  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
509  ObjCCategoryDecl *CatIDecl = 0;
510  if (IDecl) {
511    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
512    if (!CatIDecl) {
513      // Category @implementation with no corresponding @interface.
514      // Create and install one.
515      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(),
516                                          SourceLocation(), SourceLocation(),
517                                          CatName);
518      CatIDecl->setClassInterface(IDecl);
519      CatIDecl->insertNextClassCategory();
520    }
521  }
522
523  ObjCCategoryImplDecl *CDecl =
524    ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName,
525                                 IDecl);
526  /// Check that class of this category is already completely declared.
527  if (!IDecl || IDecl->isForwardDecl())
528    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
529
530  // FIXME: PushOnScopeChains?
531  CurContext->addDecl(CDecl);
532
533  /// Check that CatName, category name, is not used in another implementation.
534  if (CatIDecl) {
535    if (CatIDecl->getImplementation()) {
536      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
537        << CatName;
538      Diag(CatIDecl->getImplementation()->getLocation(),
539           diag::note_previous_definition);
540    } else
541      CatIDecl->setImplementation(CDecl);
542  }
543
544  CheckObjCDeclScope(CDecl);
545  return CDecl;
546}
547
548Decl *Sema::ActOnStartClassImplementation(
549                      SourceLocation AtClassImplLoc,
550                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
551                      IdentifierInfo *SuperClassname,
552                      SourceLocation SuperClassLoc) {
553  ObjCInterfaceDecl* IDecl = 0;
554  // Check for another declaration kind with the same name.
555  NamedDecl *PrevDecl
556    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
557                       ForRedeclaration);
558  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
559    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
560    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
561  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
562    // If this is a forward declaration of an interface, warn.
563    if (IDecl->isForwardDecl()) {
564      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
565      IDecl = 0;
566    }
567  } else {
568    // We did not find anything with the name ClassName; try to correct for
569    // typos in the class name.
570    LookupResult R(*this, ClassName, ClassLoc, LookupOrdinaryName);
571    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
572        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
573      // Suggest the (potentially) correct interface name. However, put the
574      // fix-it hint itself in a separate note, since changing the name in
575      // the warning would make the fix-it change semantics.However, don't
576      // provide a code-modification hint or use the typo name for recovery,
577      // because this is just a warning. The program may actually be correct.
578      Diag(ClassLoc, diag::warn_undef_interface_suggest)
579        << ClassName << R.getLookupName();
580      Diag(IDecl->getLocation(), diag::note_previous_decl)
581        << R.getLookupName()
582        << FixItHint::CreateReplacement(ClassLoc,
583                                        R.getLookupName().getAsString());
584      IDecl = 0;
585    } else {
586      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
587    }
588  }
589
590  // Check that super class name is valid class name
591  ObjCInterfaceDecl* SDecl = 0;
592  if (SuperClassname) {
593    // Check if a different kind of symbol declared in this scope.
594    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
595                                LookupOrdinaryName);
596    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
597      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
598        << SuperClassname;
599      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
600    } else {
601      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
602      if (!SDecl)
603        Diag(SuperClassLoc, diag::err_undef_superclass)
604          << SuperClassname << ClassName;
605      else if (IDecl && IDecl->getSuperClass() != SDecl) {
606        // This implementation and its interface do not have the same
607        // super class.
608        Diag(SuperClassLoc, diag::err_conflicting_super_class)
609          << SDecl->getDeclName();
610        Diag(SDecl->getLocation(), diag::note_previous_definition);
611      }
612    }
613  }
614
615  if (!IDecl) {
616    // Legacy case of @implementation with no corresponding @interface.
617    // Build, chain & install the interface decl into the identifier.
618
619    // FIXME: Do we support attributes on the @implementation? If so we should
620    // copy them over.
621    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
622                                      ClassName, ClassLoc, false, true);
623    IDecl->setSuperClass(SDecl);
624    IDecl->setLocEnd(ClassLoc);
625
626    PushOnScopeChains(IDecl, TUScope);
627  } else {
628    // Mark the interface as being completed, even if it was just as
629    //   @class ....;
630    // declaration; the user cannot reopen it.
631    IDecl->setForwardDecl(false);
632  }
633
634  ObjCImplementationDecl* IMPDecl =
635    ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc,
636                                   IDecl, SDecl);
637
638  if (CheckObjCDeclScope(IMPDecl))
639    return IMPDecl;
640
641  // Check that there is no duplicate implementation of this class.
642  if (IDecl->getImplementation()) {
643    // FIXME: Don't leak everything!
644    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
645    Diag(IDecl->getImplementation()->getLocation(),
646         diag::note_previous_definition);
647  } else { // add it to the list.
648    IDecl->setImplementation(IMPDecl);
649    PushOnScopeChains(IMPDecl, TUScope);
650  }
651  return IMPDecl;
652}
653
654void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
655                                    ObjCIvarDecl **ivars, unsigned numIvars,
656                                    SourceLocation RBrace) {
657  assert(ImpDecl && "missing implementation decl");
658  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
659  if (!IDecl)
660    return;
661  /// Check case of non-existing @interface decl.
662  /// (legacy objective-c @implementation decl without an @interface decl).
663  /// Add implementations's ivar to the synthesize class's ivar list.
664  if (IDecl->isImplicitInterfaceDecl()) {
665    IDecl->setLocEnd(RBrace);
666    // Add ivar's to class's DeclContext.
667    for (unsigned i = 0, e = numIvars; i != e; ++i) {
668      ivars[i]->setLexicalDeclContext(ImpDecl);
669      IDecl->makeDeclVisibleInContext(ivars[i], false);
670      ImpDecl->addDecl(ivars[i]);
671    }
672
673    return;
674  }
675  // If implementation has empty ivar list, just return.
676  if (numIvars == 0)
677    return;
678
679  assert(ivars && "missing @implementation ivars");
680  if (LangOpts.ObjCNonFragileABI2) {
681    if (ImpDecl->getSuperClass())
682      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
683    for (unsigned i = 0; i < numIvars; i++) {
684      ObjCIvarDecl* ImplIvar = ivars[i];
685      if (const ObjCIvarDecl *ClsIvar =
686            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
687        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
688        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
689        continue;
690      }
691      // Instance ivar to Implementation's DeclContext.
692      ImplIvar->setLexicalDeclContext(ImpDecl);
693      IDecl->makeDeclVisibleInContext(ImplIvar, false);
694      ImpDecl->addDecl(ImplIvar);
695    }
696    return;
697  }
698  // Check interface's Ivar list against those in the implementation.
699  // names and types must match.
700  //
701  unsigned j = 0;
702  ObjCInterfaceDecl::ivar_iterator
703    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
704  for (; numIvars > 0 && IVI != IVE; ++IVI) {
705    ObjCIvarDecl* ImplIvar = ivars[j++];
706    ObjCIvarDecl* ClsIvar = *IVI;
707    assert (ImplIvar && "missing implementation ivar");
708    assert (ClsIvar && "missing class ivar");
709
710    // First, make sure the types match.
711    if (Context.getCanonicalType(ImplIvar->getType()) !=
712        Context.getCanonicalType(ClsIvar->getType())) {
713      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
714        << ImplIvar->getIdentifier()
715        << ImplIvar->getType() << ClsIvar->getType();
716      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
717    } else if (ImplIvar->isBitField() && ClsIvar->isBitField()) {
718      Expr *ImplBitWidth = ImplIvar->getBitWidth();
719      Expr *ClsBitWidth = ClsIvar->getBitWidth();
720      if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() !=
721          ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) {
722        Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth)
723          << ImplIvar->getIdentifier();
724        Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition);
725      }
726    }
727    // Make sure the names are identical.
728    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
729      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
730        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
731      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
732    }
733    --numIvars;
734  }
735
736  if (numIvars > 0)
737    Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
738  else if (IVI != IVE)
739    Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
740}
741
742void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
743                               bool &IncompleteImpl, unsigned DiagID) {
744  if (!IncompleteImpl) {
745    Diag(ImpLoc, diag::warn_incomplete_impl);
746    IncompleteImpl = true;
747  }
748  Diag(method->getLocation(), DiagID)
749    << method->getDeclName();
750}
751
752void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
753                                       ObjCMethodDecl *IntfMethodDecl) {
754  if (!Context.hasSameType(IntfMethodDecl->getResultType(),
755                           ImpMethodDecl->getResultType())) {
756    Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_ret_types)
757      << ImpMethodDecl->getDeclName() << IntfMethodDecl->getResultType()
758      << ImpMethodDecl->getResultType();
759    Diag(IntfMethodDecl->getLocation(), diag::note_previous_definition);
760  }
761
762  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
763       IF = IntfMethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
764       IM != EM; ++IM, ++IF) {
765    QualType ParmDeclTy = (*IF)->getType().getUnqualifiedType();
766    QualType ParmImpTy = (*IM)->getType().getUnqualifiedType();
767    if (Context.hasSameType(ParmDeclTy, ParmImpTy))
768      continue;
769
770    Diag((*IM)->getLocation(), diag::warn_conflicting_param_types)
771      << ImpMethodDecl->getDeclName() << (*IF)->getType()
772      << (*IM)->getType();
773    Diag((*IF)->getLocation(), diag::note_previous_definition);
774  }
775  if (ImpMethodDecl->isVariadic() != IntfMethodDecl->isVariadic()) {
776    Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_variadic);
777    Diag(IntfMethodDecl->getLocation(), diag::note_previous_declaration);
778  }
779}
780
781/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
782/// improve the efficiency of selector lookups and type checking by associating
783/// with each protocol / interface / category the flattened instance tables. If
784/// we used an immutable set to keep the table then it wouldn't add significant
785/// memory cost and it would be handy for lookups.
786
787/// CheckProtocolMethodDefs - This routine checks unimplemented methods
788/// Declared in protocol, and those referenced by it.
789void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
790                                   ObjCProtocolDecl *PDecl,
791                                   bool& IncompleteImpl,
792                                   const llvm::DenseSet<Selector> &InsMap,
793                                   const llvm::DenseSet<Selector> &ClsMap,
794                                   ObjCContainerDecl *CDecl) {
795  ObjCInterfaceDecl *IDecl;
796  if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl))
797    IDecl = C->getClassInterface();
798  else
799    IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
800  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
801
802  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
803  ObjCInterfaceDecl *NSIDecl = 0;
804  if (getLangOptions().NeXTRuntime) {
805    // check to see if class implements forwardInvocation method and objects
806    // of this class are derived from 'NSProxy' so that to forward requests
807    // from one object to another.
808    // Under such conditions, which means that every method possible is
809    // implemented in the class, we should not issue "Method definition not
810    // found" warnings.
811    // FIXME: Use a general GetUnarySelector method for this.
812    IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
813    Selector fISelector = Context.Selectors.getSelector(1, &II);
814    if (InsMap.count(fISelector))
815      // Is IDecl derived from 'NSProxy'? If so, no instance methods
816      // need be implemented in the implementation.
817      NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
818  }
819
820  // If a method lookup fails locally we still need to look and see if
821  // the method was implemented by a base class or an inherited
822  // protocol. This lookup is slow, but occurs rarely in correct code
823  // and otherwise would terminate in a warning.
824
825  // check unimplemented instance methods.
826  if (!NSIDecl)
827    for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
828         E = PDecl->instmeth_end(); I != E; ++I) {
829      ObjCMethodDecl *method = *I;
830      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
831          !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
832          (!Super ||
833           !Super->lookupInstanceMethod(method->getSelector()))) {
834            // Ugly, but necessary. Method declared in protcol might have
835            // have been synthesized due to a property declared in the class which
836            // uses the protocol.
837            ObjCMethodDecl *MethodInClass =
838            IDecl->lookupInstanceMethod(method->getSelector());
839            if (!MethodInClass || !MethodInClass->isSynthesized()) {
840              unsigned DIAG = diag::warn_unimplemented_protocol_method;
841              if (Diags.getDiagnosticLevel(DIAG) != Diagnostic::Ignored) {
842                WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
843                Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
844                  << PDecl->getDeclName();
845              }
846            }
847          }
848    }
849  // check unimplemented class methods
850  for (ObjCProtocolDecl::classmeth_iterator
851         I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
852       I != E; ++I) {
853    ObjCMethodDecl *method = *I;
854    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
855        !ClsMap.count(method->getSelector()) &&
856        (!Super || !Super->lookupClassMethod(method->getSelector()))) {
857      unsigned DIAG = diag::warn_unimplemented_protocol_method;
858      if (Diags.getDiagnosticLevel(DIAG) != Diagnostic::Ignored) {
859        WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
860        Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
861          PDecl->getDeclName();
862      }
863    }
864  }
865  // Check on this protocols's referenced protocols, recursively.
866  for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
867       E = PDecl->protocol_end(); PI != E; ++PI)
868    CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl);
869}
870
871/// MatchAllMethodDeclarations - Check methods declaraed in interface or
872/// or protocol against those declared in their implementations.
873///
874void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
875                                      const llvm::DenseSet<Selector> &ClsMap,
876                                      llvm::DenseSet<Selector> &InsMapSeen,
877                                      llvm::DenseSet<Selector> &ClsMapSeen,
878                                      ObjCImplDecl* IMPDecl,
879                                      ObjCContainerDecl* CDecl,
880                                      bool &IncompleteImpl,
881                                      bool ImmediateClass) {
882  // Check and see if instance methods in class interface have been
883  // implemented in the implementation class. If so, their types match.
884  for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
885       E = CDecl->instmeth_end(); I != E; ++I) {
886    if (InsMapSeen.count((*I)->getSelector()))
887        continue;
888    InsMapSeen.insert((*I)->getSelector());
889    if (!(*I)->isSynthesized() &&
890        !InsMap.count((*I)->getSelector())) {
891      if (ImmediateClass)
892        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
893                            diag::note_undef_method_impl);
894      continue;
895    } else {
896      ObjCMethodDecl *ImpMethodDecl =
897      IMPDecl->getInstanceMethod((*I)->getSelector());
898      ObjCMethodDecl *IntfMethodDecl =
899      CDecl->getInstanceMethod((*I)->getSelector());
900      assert(IntfMethodDecl &&
901             "IntfMethodDecl is null in ImplMethodsVsClassMethods");
902      // ImpMethodDecl may be null as in a @dynamic property.
903      if (ImpMethodDecl)
904        WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl);
905    }
906  }
907
908  // Check and see if class methods in class interface have been
909  // implemented in the implementation class. If so, their types match.
910   for (ObjCInterfaceDecl::classmeth_iterator
911       I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
912     if (ClsMapSeen.count((*I)->getSelector()))
913       continue;
914     ClsMapSeen.insert((*I)->getSelector());
915    if (!ClsMap.count((*I)->getSelector())) {
916      if (ImmediateClass)
917        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
918                            diag::note_undef_method_impl);
919    } else {
920      ObjCMethodDecl *ImpMethodDecl =
921        IMPDecl->getClassMethod((*I)->getSelector());
922      ObjCMethodDecl *IntfMethodDecl =
923        CDecl->getClassMethod((*I)->getSelector());
924      WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl);
925    }
926  }
927  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
928    // Check for any implementation of a methods declared in protocol.
929    for (ObjCInterfaceDecl::all_protocol_iterator
930          PI = I->all_referenced_protocol_begin(),
931          E = I->all_referenced_protocol_end(); PI != E; ++PI)
932      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
933                                 IMPDecl,
934                                 (*PI), IncompleteImpl, false);
935    if (I->getSuperClass())
936      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
937                                 IMPDecl,
938                                 I->getSuperClass(), IncompleteImpl, false);
939  }
940}
941
942void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
943                                     ObjCContainerDecl* CDecl,
944                                     bool IncompleteImpl) {
945  llvm::DenseSet<Selector> InsMap;
946  // Check and see if instance methods in class interface have been
947  // implemented in the implementation class.
948  for (ObjCImplementationDecl::instmeth_iterator
949         I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
950    InsMap.insert((*I)->getSelector());
951
952  // Check and see if properties declared in the interface have either 1)
953  // an implementation or 2) there is a @synthesize/@dynamic implementation
954  // of the property in the @implementation.
955  if (isa<ObjCInterfaceDecl>(CDecl) && !LangOpts.ObjCNonFragileABI2)
956    DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
957
958  llvm::DenseSet<Selector> ClsMap;
959  for (ObjCImplementationDecl::classmeth_iterator
960       I = IMPDecl->classmeth_begin(),
961       E = IMPDecl->classmeth_end(); I != E; ++I)
962    ClsMap.insert((*I)->getSelector());
963
964  // Check for type conflict of methods declared in a class/protocol and
965  // its implementation; if any.
966  llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
967  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
968                             IMPDecl, CDecl,
969                             IncompleteImpl, true);
970
971  // Check the protocol list for unimplemented methods in the @implementation
972  // class.
973  // Check and see if class methods in class interface have been
974  // implemented in the implementation class.
975
976  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
977    for (ObjCInterfaceDecl::all_protocol_iterator
978          PI = I->all_referenced_protocol_begin(),
979          E = I->all_referenced_protocol_end(); PI != E; ++PI)
980      CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
981                              InsMap, ClsMap, I);
982    // Check class extensions (unnamed categories)
983    for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
984         Categories; Categories = Categories->getNextClassExtension())
985      ImplMethodsVsClassMethods(S, IMPDecl,
986                                const_cast<ObjCCategoryDecl*>(Categories),
987                                IncompleteImpl);
988  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
989    // For extended class, unimplemented methods in its protocols will
990    // be reported in the primary class.
991    if (!C->IsClassExtension()) {
992      for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
993           E = C->protocol_end(); PI != E; ++PI)
994        CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
995                                InsMap, ClsMap, CDecl);
996      // Report unimplemented properties in the category as well.
997      // When reporting on missing setter/getters, do not report when
998      // setter/getter is implemented in category's primary class
999      // implementation.
1000      if (ObjCInterfaceDecl *ID = C->getClassInterface())
1001        if (ObjCImplDecl *IMP = ID->getImplementation()) {
1002          for (ObjCImplementationDecl::instmeth_iterator
1003               I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
1004            InsMap.insert((*I)->getSelector());
1005        }
1006      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1007    }
1008  } else
1009    assert(false && "invalid ObjCContainerDecl type.");
1010}
1011
1012/// ActOnForwardClassDeclaration -
1013Decl *
1014Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1015                                   IdentifierInfo **IdentList,
1016                                   SourceLocation *IdentLocs,
1017                                   unsigned NumElts) {
1018  llvm::SmallVector<ObjCInterfaceDecl*, 32> Interfaces;
1019
1020  for (unsigned i = 0; i != NumElts; ++i) {
1021    // Check for another declaration kind with the same name.
1022    NamedDecl *PrevDecl
1023      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1024                         LookupOrdinaryName, ForRedeclaration);
1025    if (PrevDecl && PrevDecl->isTemplateParameter()) {
1026      // Maybe we will complain about the shadowed template parameter.
1027      DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
1028      // Just pretend that we didn't see the previous declaration.
1029      PrevDecl = 0;
1030    }
1031
1032    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1033      // GCC apparently allows the following idiom:
1034      //
1035      // typedef NSObject < XCElementTogglerP > XCElementToggler;
1036      // @class XCElementToggler;
1037      //
1038      // FIXME: Make an extension?
1039      TypedefDecl *TDD = dyn_cast<TypedefDecl>(PrevDecl);
1040      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1041        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1042        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1043      } else {
1044        // a forward class declaration matching a typedef name of a class refers
1045        // to the underlying class.
1046        if (const ObjCObjectType *OI =
1047              TDD->getUnderlyingType()->getAs<ObjCObjectType>())
1048          PrevDecl = OI->getInterface();
1049      }
1050    }
1051    ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1052    if (!IDecl) {  // Not already seen?  Make a forward decl.
1053      IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1054                                        IdentList[i], IdentLocs[i], true);
1055
1056      // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to
1057      // the current DeclContext.  This prevents clients that walk DeclContext
1058      // from seeing the imaginary ObjCInterfaceDecl until it is actually
1059      // declared later (if at all).  We also take care to explicitly make
1060      // sure this declaration is visible for name lookup.
1061      PushOnScopeChains(IDecl, TUScope, false);
1062      CurContext->makeDeclVisibleInContext(IDecl, true);
1063    }
1064
1065    Interfaces.push_back(IDecl);
1066  }
1067
1068  assert(Interfaces.size() == NumElts);
1069  ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc,
1070                                               Interfaces.data(), IdentLocs,
1071                                               Interfaces.size());
1072  CurContext->addDecl(CDecl);
1073  CheckObjCDeclScope(CDecl);
1074  return CDecl;
1075}
1076
1077
1078/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
1079/// returns true, or false, accordingly.
1080/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
1081bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
1082                                      const ObjCMethodDecl *PrevMethod,
1083                                      bool matchBasedOnSizeAndAlignment,
1084                                      bool matchBasedOnStrictEqulity) {
1085  QualType T1 = Context.getCanonicalType(Method->getResultType());
1086  QualType T2 = Context.getCanonicalType(PrevMethod->getResultType());
1087
1088  if (T1 != T2) {
1089    // The result types are different.
1090    if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity)
1091      return false;
1092    // Incomplete types don't have a size and alignment.
1093    if (T1->isIncompleteType() || T2->isIncompleteType())
1094      return false;
1095    // Check is based on size and alignment.
1096    if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
1097      return false;
1098  }
1099
1100  ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
1101       E = Method->param_end();
1102  ObjCMethodDecl::param_iterator PrevI = PrevMethod->param_begin();
1103
1104  for (; ParamI != E; ++ParamI, ++PrevI) {
1105    assert(PrevI != PrevMethod->param_end() && "Param mismatch");
1106    T1 = Context.getCanonicalType((*ParamI)->getType());
1107    T2 = Context.getCanonicalType((*PrevI)->getType());
1108    if (T1 != T2) {
1109      // The result types are different.
1110      if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity)
1111        return false;
1112      // Incomplete types don't have a size and alignment.
1113      if (T1->isIncompleteType() || T2->isIncompleteType())
1114        return false;
1115      // Check is based on size and alignment.
1116      if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
1117        return false;
1118    }
1119  }
1120  return true;
1121}
1122
1123/// \brief Read the contents of the method pool for a given selector from
1124/// external storage.
1125///
1126/// This routine should only be called once, when the method pool has no entry
1127/// for this selector.
1128Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) {
1129  assert(ExternalSource && "We need an external AST source");
1130  assert(MethodPool.find(Sel) == MethodPool.end() &&
1131         "Selector data already loaded into the method pool");
1132
1133  // Read the method list from the external source.
1134  GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel);
1135
1136  return MethodPool.insert(std::make_pair(Sel, Methods)).first;
1137}
1138
1139void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
1140                                 bool instance) {
1141  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
1142  if (Pos == MethodPool.end()) {
1143    if (ExternalSource)
1144      Pos = ReadMethodPool(Method->getSelector());
1145    else
1146      Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
1147                                             GlobalMethods())).first;
1148  }
1149  Method->setDefined(impl);
1150  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
1151  if (Entry.Method == 0) {
1152    // Haven't seen a method with this selector name yet - add it.
1153    Entry.Method = Method;
1154    Entry.Next = 0;
1155    return;
1156  }
1157
1158  // We've seen a method with this name, see if we have already seen this type
1159  // signature.
1160  for (ObjCMethodList *List = &Entry; List; List = List->Next)
1161    if (MatchTwoMethodDeclarations(Method, List->Method)) {
1162      List->Method->setDefined(impl);
1163      return;
1164    }
1165
1166  // We have a new signature for an existing method - add it.
1167  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
1168  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
1169  Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next);
1170}
1171
1172ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
1173                                               bool receiverIdOrClass,
1174                                               bool warn, bool instance) {
1175  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
1176  if (Pos == MethodPool.end()) {
1177    if (ExternalSource)
1178      Pos = ReadMethodPool(Sel);
1179    else
1180      return 0;
1181  }
1182
1183  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
1184
1185  bool strictSelectorMatch = receiverIdOrClass && warn &&
1186    (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl) !=
1187      Diagnostic::Ignored);
1188  if (warn && MethList.Method && MethList.Next) {
1189    bool issueWarning = false;
1190    if (strictSelectorMatch)
1191      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
1192        // This checks if the methods differ in type mismatch.
1193        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, false, true))
1194          issueWarning = true;
1195      }
1196
1197    if (!issueWarning)
1198      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
1199        // This checks if the methods differ by size & alignment.
1200        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, true))
1201          issueWarning = true;
1202      }
1203
1204    if (issueWarning) {
1205      if (strictSelectorMatch)
1206        Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
1207      else
1208        Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
1209      Diag(MethList.Method->getLocStart(), diag::note_using)
1210        << MethList.Method->getSourceRange();
1211      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
1212        Diag(Next->Method->getLocStart(), diag::note_also_found)
1213          << Next->Method->getSourceRange();
1214    }
1215  }
1216  return MethList.Method;
1217}
1218
1219ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
1220  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
1221  if (Pos == MethodPool.end())
1222    return 0;
1223
1224  GlobalMethods &Methods = Pos->second;
1225
1226  if (Methods.first.Method && Methods.first.Method->isDefined())
1227    return Methods.first.Method;
1228  if (Methods.second.Method && Methods.second.Method->isDefined())
1229    return Methods.second.Method;
1230  return 0;
1231}
1232
1233/// CompareMethodParamsInBaseAndSuper - This routine compares methods with
1234/// identical selector names in current and its super classes and issues
1235/// a warning if any of their argument types are incompatible.
1236void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
1237                                             ObjCMethodDecl *Method,
1238                                             bool IsInstance)  {
1239  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
1240  if (ID == 0) return;
1241
1242  while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
1243    ObjCMethodDecl *SuperMethodDecl =
1244        SD->lookupMethod(Method->getSelector(), IsInstance);
1245    if (SuperMethodDecl == 0) {
1246      ID = SD;
1247      continue;
1248    }
1249    ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
1250      E = Method->param_end();
1251    ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
1252    for (; ParamI != E; ++ParamI, ++PrevI) {
1253      // Number of parameters are the same and is guaranteed by selector match.
1254      assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
1255      QualType T1 = Context.getCanonicalType((*ParamI)->getType());
1256      QualType T2 = Context.getCanonicalType((*PrevI)->getType());
1257      // If type of arguement of method in this class does not match its
1258      // respective argument type in the super class method, issue warning;
1259      if (!Context.typesAreCompatible(T1, T2)) {
1260        Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
1261          << T1 << T2;
1262        Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
1263        return;
1264      }
1265    }
1266    ID = SD;
1267  }
1268}
1269
1270/// DiagnoseDuplicateIvars -
1271/// Check for duplicate ivars in the entire class at the start of
1272/// @implementation. This becomes necesssary because class extension can
1273/// add ivars to a class in random order which will not be known until
1274/// class's @implementation is seen.
1275void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
1276                                  ObjCInterfaceDecl *SID) {
1277  for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
1278       IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
1279    ObjCIvarDecl* Ivar = (*IVI);
1280    if (Ivar->isInvalidDecl())
1281      continue;
1282    if (IdentifierInfo *II = Ivar->getIdentifier()) {
1283      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
1284      if (prevIvar) {
1285        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
1286        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
1287        Ivar->setInvalidDecl();
1288      }
1289    }
1290  }
1291}
1292
1293// Note: For class/category implemenations, allMethods/allProperties is
1294// always null.
1295void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
1296                      Decl *ClassDecl,
1297                      Decl **allMethods, unsigned allNum,
1298                      Decl **allProperties, unsigned pNum,
1299                      DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
1300  // FIXME: If we don't have a ClassDecl, we have an error. We should consider
1301  // always passing in a decl. If the decl has an error, isInvalidDecl()
1302  // should be true.
1303  if (!ClassDecl)
1304    return;
1305
1306  bool isInterfaceDeclKind =
1307        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
1308         || isa<ObjCProtocolDecl>(ClassDecl);
1309  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
1310
1311  if (!isInterfaceDeclKind && AtEnd.isInvalid()) {
1312    // FIXME: This is wrong.  We shouldn't be pretending that there is
1313    //  an '@end' in the declaration.
1314    SourceLocation L = ClassDecl->getLocation();
1315    AtEnd.setBegin(L);
1316    AtEnd.setEnd(L);
1317    Diag(L, diag::warn_missing_atend);
1318  }
1319
1320  DeclContext *DC = dyn_cast<DeclContext>(ClassDecl);
1321
1322  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
1323  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
1324  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
1325
1326  for (unsigned i = 0; i < allNum; i++ ) {
1327    ObjCMethodDecl *Method =
1328      cast_or_null<ObjCMethodDecl>(allMethods[i]);
1329
1330    if (!Method) continue;  // Already issued a diagnostic.
1331    if (Method->isInstanceMethod()) {
1332      /// Check for instance method of the same name with incompatible types
1333      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
1334      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
1335                              : false;
1336      if ((isInterfaceDeclKind && PrevMethod && !match)
1337          || (checkIdenticalMethods && match)) {
1338          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1339            << Method->getDeclName();
1340          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1341      } else {
1342        DC->addDecl(Method);
1343        InsMap[Method->getSelector()] = Method;
1344        /// The following allows us to typecheck messages to "id".
1345        AddInstanceMethodToGlobalPool(Method);
1346        // verify that the instance method conforms to the same definition of
1347        // parent methods if it shadows one.
1348        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
1349      }
1350    } else {
1351      /// Check for class method of the same name with incompatible types
1352      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
1353      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
1354                              : false;
1355      if ((isInterfaceDeclKind && PrevMethod && !match)
1356          || (checkIdenticalMethods && match)) {
1357        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1358          << Method->getDeclName();
1359        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1360      } else {
1361        DC->addDecl(Method);
1362        ClsMap[Method->getSelector()] = Method;
1363        /// The following allows us to typecheck messages to "Class".
1364        AddFactoryMethodToGlobalPool(Method);
1365        // verify that the class method conforms to the same definition of
1366        // parent methods if it shadows one.
1367        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
1368      }
1369    }
1370  }
1371  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
1372    // Compares properties declared in this class to those of its
1373    // super class.
1374    ComparePropertiesInBaseAndSuper(I);
1375    CompareProperties(I, I);
1376  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
1377    // Categories are used to extend the class by declaring new methods.
1378    // By the same token, they are also used to add new properties. No
1379    // need to compare the added property to those in the class.
1380
1381    // Compare protocol properties with those in category
1382    CompareProperties(C, C);
1383    if (C->IsClassExtension())
1384      DiagnoseClassExtensionDupMethods(C, C->getClassInterface());
1385  }
1386  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
1387    if (CDecl->getIdentifier())
1388      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
1389      // user-defined setter/getter. It also synthesizes setter/getter methods
1390      // and adds them to the DeclContext and global method pools.
1391      for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
1392                                            E = CDecl->prop_end();
1393           I != E; ++I)
1394        ProcessPropertyDecl(*I, CDecl);
1395    CDecl->setAtEndRange(AtEnd);
1396  }
1397  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
1398    IC->setAtEndRange(AtEnd);
1399    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
1400      if (LangOpts.ObjCNonFragileABI2)
1401        DefaultSynthesizeProperties(S, IC, IDecl);
1402      ImplMethodsVsClassMethods(S, IC, IDecl);
1403      AtomicPropertySetterGetterRules(IC, IDecl);
1404
1405      if (LangOpts.ObjCNonFragileABI2)
1406        while (IDecl->getSuperClass()) {
1407          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
1408          IDecl = IDecl->getSuperClass();
1409        }
1410    }
1411    SetIvarInitializers(IC);
1412  } else if (ObjCCategoryImplDecl* CatImplClass =
1413                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
1414    CatImplClass->setAtEndRange(AtEnd);
1415
1416    // Find category interface decl and then check that all methods declared
1417    // in this interface are implemented in the category @implementation.
1418    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
1419      for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
1420           Categories; Categories = Categories->getNextClassCategory()) {
1421        if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
1422          ImplMethodsVsClassMethods(S, CatImplClass, Categories);
1423          break;
1424        }
1425      }
1426    }
1427  }
1428  if (isInterfaceDeclKind) {
1429    // Reject invalid vardecls.
1430    for (unsigned i = 0; i != tuvNum; i++) {
1431      DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
1432      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
1433        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
1434          if (!VDecl->hasExternalStorage())
1435            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
1436        }
1437    }
1438  }
1439}
1440
1441
1442/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
1443/// objective-c's type qualifier from the parser version of the same info.
1444static Decl::ObjCDeclQualifier
1445CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
1446  Decl::ObjCDeclQualifier ret = Decl::OBJC_TQ_None;
1447  if (PQTVal & ObjCDeclSpec::DQ_In)
1448    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_In);
1449  if (PQTVal & ObjCDeclSpec::DQ_Inout)
1450    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Inout);
1451  if (PQTVal & ObjCDeclSpec::DQ_Out)
1452    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Out);
1453  if (PQTVal & ObjCDeclSpec::DQ_Bycopy)
1454    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Bycopy);
1455  if (PQTVal & ObjCDeclSpec::DQ_Byref)
1456    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Byref);
1457  if (PQTVal & ObjCDeclSpec::DQ_Oneway)
1458    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Oneway);
1459
1460  return ret;
1461}
1462
1463static inline
1464bool containsInvalidMethodImplAttribute(const AttrVec &A) {
1465  // The 'ibaction' attribute is allowed on method definitions because of
1466  // how the IBAction macro is used on both method declarations and definitions.
1467  // If the method definitions contains any other attributes, return true.
1468  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
1469    if ((*i)->getKind() != attr::IBAction)
1470      return true;
1471  return false;
1472}
1473
1474Decl *Sema::ActOnMethodDeclaration(
1475    SourceLocation MethodLoc, SourceLocation EndLoc,
1476    tok::TokenKind MethodType, Decl *ClassDecl,
1477    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
1478    Selector Sel,
1479    // optional arguments. The number of types/arguments is obtained
1480    // from the Sel.getNumArgs().
1481    ObjCArgInfo *ArgInfo,
1482    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
1483    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
1484    bool isVariadic) {
1485  // Make sure we can establish a context for the method.
1486  if (!ClassDecl) {
1487    Diag(MethodLoc, diag::error_missing_method_context);
1488    getCurFunction()->LabelMap.clear();
1489    return 0;
1490  }
1491  QualType resultDeclType;
1492
1493  TypeSourceInfo *ResultTInfo = 0;
1494  if (ReturnType) {
1495    resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
1496
1497    // Methods cannot return interface types. All ObjC objects are
1498    // passed by reference.
1499    if (resultDeclType->isObjCObjectType()) {
1500      Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
1501        << 0 << resultDeclType;
1502      return 0;
1503    }
1504  } else // get the type for "id".
1505    resultDeclType = Context.getObjCIdType();
1506
1507  ObjCMethodDecl* ObjCMethod =
1508    ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType,
1509                           ResultTInfo,
1510                           cast<DeclContext>(ClassDecl),
1511                           MethodType == tok::minus, isVariadic,
1512                           false, false,
1513                           MethodDeclKind == tok::objc_optional ?
1514                           ObjCMethodDecl::Optional :
1515                           ObjCMethodDecl::Required);
1516
1517  llvm::SmallVector<ParmVarDecl*, 16> Params;
1518
1519  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
1520    QualType ArgType;
1521    TypeSourceInfo *DI;
1522
1523    if (ArgInfo[i].Type == 0) {
1524      ArgType = Context.getObjCIdType();
1525      DI = 0;
1526    } else {
1527      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
1528      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
1529      ArgType = adjustParameterType(ArgType);
1530    }
1531
1532    ParmVarDecl* Param
1533      = ParmVarDecl::Create(Context, ObjCMethod, ArgInfo[i].NameLoc,
1534                            ArgInfo[i].Name, ArgType, DI,
1535                            SC_None, SC_None, 0);
1536
1537    if (ArgType->isObjCObjectType()) {
1538      Diag(ArgInfo[i].NameLoc,
1539           diag::err_object_cannot_be_passed_returned_by_value)
1540        << 1 << ArgType;
1541      Param->setInvalidDecl();
1542    }
1543
1544    Param->setObjCDeclQualifier(
1545      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
1546
1547    // Apply the attributes to the parameter.
1548    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
1549
1550    Params.push_back(Param);
1551  }
1552
1553  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
1554    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
1555    QualType ArgType = Param->getType();
1556    if (ArgType.isNull())
1557      ArgType = Context.getObjCIdType();
1558    else
1559      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
1560      ArgType = adjustParameterType(ArgType);
1561    if (ArgType->isObjCObjectType()) {
1562      Diag(Param->getLocation(),
1563           diag::err_object_cannot_be_passed_returned_by_value)
1564      << 1 << ArgType;
1565      Param->setInvalidDecl();
1566    }
1567    Param->setDeclContext(ObjCMethod);
1568    if (Param->getDeclName())
1569      IdResolver.RemoveDecl(Param);
1570    Params.push_back(Param);
1571  }
1572
1573  ObjCMethod->setMethodParams(Context, Params.data(), Params.size(),
1574                              Sel.getNumArgs());
1575  ObjCMethod->setObjCDeclQualifier(
1576    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
1577  const ObjCMethodDecl *PrevMethod = 0;
1578
1579  if (AttrList)
1580    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
1581
1582  const ObjCMethodDecl *InterfaceMD = 0;
1583
1584  // For implementations (which can be very "coarse grain"), we add the
1585  // method now. This allows the AST to implement lookup methods that work
1586  // incrementally (without waiting until we parse the @end). It also allows
1587  // us to flag multiple declaration errors as they occur.
1588  if (ObjCImplementationDecl *ImpDecl =
1589        dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
1590    if (MethodType == tok::minus) {
1591      PrevMethod = ImpDecl->getInstanceMethod(Sel);
1592      ImpDecl->addInstanceMethod(ObjCMethod);
1593    } else {
1594      PrevMethod = ImpDecl->getClassMethod(Sel);
1595      ImpDecl->addClassMethod(ObjCMethod);
1596    }
1597    InterfaceMD = ImpDecl->getClassInterface()->getMethod(Sel,
1598                                                   MethodType == tok::minus);
1599    if (ObjCMethod->hasAttrs() &&
1600        containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
1601      Diag(EndLoc, diag::warn_attribute_method_def);
1602  } else if (ObjCCategoryImplDecl *CatImpDecl =
1603             dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
1604    if (MethodType == tok::minus) {
1605      PrevMethod = CatImpDecl->getInstanceMethod(Sel);
1606      CatImpDecl->addInstanceMethod(ObjCMethod);
1607    } else {
1608      PrevMethod = CatImpDecl->getClassMethod(Sel);
1609      CatImpDecl->addClassMethod(ObjCMethod);
1610    }
1611    if (ObjCMethod->hasAttrs() &&
1612        containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
1613      Diag(EndLoc, diag::warn_attribute_method_def);
1614  }
1615  if (PrevMethod) {
1616    // You can never have two method definitions with the same name.
1617    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
1618      << ObjCMethod->getDeclName();
1619    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1620  }
1621
1622  // If the interface declared this method, and it was deprecated there,
1623  // mark it deprecated here.
1624  if (InterfaceMD)
1625   if (Attr *DA = InterfaceMD->getAttr<DeprecatedAttr>())
1626    ObjCMethod->addAttr(::new (Context) DeprecatedAttr(DA->getLocation(),
1627                                                       Context));
1628
1629  return ObjCMethod;
1630}
1631
1632bool Sema::CheckObjCDeclScope(Decl *D) {
1633  if (isa<TranslationUnitDecl>(CurContext->getRedeclContext()))
1634    return false;
1635
1636  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
1637  D->setInvalidDecl();
1638
1639  return true;
1640}
1641
1642/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
1643/// instance variables of ClassName into Decls.
1644void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
1645                     IdentifierInfo *ClassName,
1646                     llvm::SmallVectorImpl<Decl*> &Decls) {
1647  // Check that ClassName is a valid class
1648  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
1649  if (!Class) {
1650    Diag(DeclStart, diag::err_undef_interface) << ClassName;
1651    return;
1652  }
1653  if (LangOpts.ObjCNonFragileABI) {
1654    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
1655    return;
1656  }
1657
1658  // Collect the instance variables
1659  llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
1660  Context.DeepCollectObjCIvars(Class, true, Ivars);
1661  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
1662  for (unsigned i = 0; i < Ivars.size(); i++) {
1663    FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
1664    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
1665    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, ID->getLocation(),
1666                                           ID->getIdentifier(), ID->getType(),
1667                                           ID->getBitWidth());
1668    Decls.push_back(FD);
1669  }
1670
1671  // Introduce all of these fields into the appropriate scope.
1672  for (llvm::SmallVectorImpl<Decl*>::iterator D = Decls.begin();
1673       D != Decls.end(); ++D) {
1674    FieldDecl *FD = cast<FieldDecl>(*D);
1675    if (getLangOptions().CPlusPlus)
1676      PushOnScopeChains(cast<FieldDecl>(FD), S);
1677    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
1678      Record->addDecl(FD);
1679  }
1680}
1681
1682/// \brief Build a type-check a new Objective-C exception variable declaration.
1683VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo,
1684                                      QualType T,
1685                                      IdentifierInfo *Name,
1686                                      SourceLocation NameLoc,
1687                                      bool Invalid) {
1688  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
1689  // duration shall not be qualified by an address-space qualifier."
1690  // Since all parameters have automatic store duration, they can not have
1691  // an address space.
1692  if (T.getAddressSpace() != 0) {
1693    Diag(NameLoc, diag::err_arg_with_address_space);
1694    Invalid = true;
1695  }
1696
1697  // An @catch parameter must be an unqualified object pointer type;
1698  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
1699  if (Invalid) {
1700    // Don't do any further checking.
1701  } else if (T->isDependentType()) {
1702    // Okay: we don't know what this type will instantiate to.
1703  } else if (!T->isObjCObjectPointerType()) {
1704    Invalid = true;
1705    Diag(NameLoc ,diag::err_catch_param_not_objc_type);
1706  } else if (T->isObjCQualifiedIdType()) {
1707    Invalid = true;
1708    Diag(NameLoc, diag::err_illegal_qualifiers_on_catch_parm);
1709  }
1710
1711  VarDecl *New = VarDecl::Create(Context, CurContext, NameLoc, Name, T, TInfo,
1712                                 SC_None, SC_None);
1713  New->setExceptionVariable(true);
1714
1715  if (Invalid)
1716    New->setInvalidDecl();
1717  return New;
1718}
1719
1720Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
1721  const DeclSpec &DS = D.getDeclSpec();
1722
1723  // We allow the "register" storage class on exception variables because
1724  // GCC did, but we drop it completely. Any other storage class is an error.
1725  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1726    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
1727      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
1728  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1729    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
1730      << DS.getStorageClassSpec();
1731  }
1732  if (D.getDeclSpec().isThreadSpecified())
1733    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1734  D.getMutableDeclSpec().ClearStorageClassSpecs();
1735
1736  DiagnoseFunctionSpecifiers(D);
1737
1738  // Check that there are no default arguments inside the type of this
1739  // exception object (C++ only).
1740  if (getLangOptions().CPlusPlus)
1741    CheckExtraCXXDefaultArguments(D);
1742
1743  TagDecl *OwnedDecl = 0;
1744  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
1745  QualType ExceptionType = TInfo->getType();
1746
1747  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
1748    // Objective-C++: Types shall not be defined in exception types.
1749    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
1750      << Context.getTypeDeclType(OwnedDecl);
1751  }
1752
1753  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, D.getIdentifier(),
1754                                        D.getIdentifierLoc(),
1755                                        D.isInvalidType());
1756
1757  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
1758  if (D.getCXXScopeSpec().isSet()) {
1759    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
1760      << D.getCXXScopeSpec().getRange();
1761    New->setInvalidDecl();
1762  }
1763
1764  // Add the parameter declaration into this scope.
1765  S->AddDecl(New);
1766  if (D.getIdentifier())
1767    IdResolver.AddDecl(New);
1768
1769  ProcessDeclAttributes(S, New, D);
1770
1771  if (New->hasAttr<BlocksAttr>())
1772    Diag(New->getLocation(), diag::err_block_on_nonlocal);
1773  return New;
1774}
1775
1776/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
1777/// initialization.
1778void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
1779                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
1780  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
1781       Iv= Iv->getNextIvar()) {
1782    QualType QT = Context.getBaseElementType(Iv->getType());
1783    if (QT->isRecordType())
1784      Ivars.push_back(Iv);
1785  }
1786}
1787
1788void ObjCImplementationDecl::setIvarInitializers(ASTContext &C,
1789                                    CXXBaseOrMemberInitializer ** initializers,
1790                                                 unsigned numInitializers) {
1791  if (numInitializers > 0) {
1792    NumIvarInitializers = numInitializers;
1793    CXXBaseOrMemberInitializer **ivarInitializers =
1794    new (C) CXXBaseOrMemberInitializer*[NumIvarInitializers];
1795    memcpy(ivarInitializers, initializers,
1796           numInitializers * sizeof(CXXBaseOrMemberInitializer*));
1797    IvarInitializers = ivarInitializers;
1798  }
1799}
1800
1801void Sema::DiagnoseUseOfUnimplementedSelectors() {
1802  if (ReferencedSelectors.empty())
1803    return;
1804  for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
1805        ReferencedSelectors.begin(),
1806       E = ReferencedSelectors.end(); S != E; ++S) {
1807    Selector Sel = (*S).first;
1808    if (!LookupImplementedMethodInGlobalPool(Sel))
1809      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
1810  }
1811  return;
1812}
1813