SemaStmt.cpp revision 58f14c012e5d739b09532bb12645dc161f88cfcf
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallVector.h"
32using namespace clang;
33using namespace sema;
34
35StmtResult Sema::ActOnExprStmt(FullExprArg expr) {
36  Expr *E = expr.get();
37  if (!E) // FIXME: FullExprArg has no error state?
38    return StmtError();
39
40  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
41  // void expression for its side effects.  Conversion to void allows any
42  // operand, even incomplete types.
43
44  // Same thing in for stmt first clause (when expr) and third clause.
45  return Owned(static_cast<Stmt*>(E));
46}
47
48
49StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
50                               SourceLocation LeadingEmptyMacroLoc) {
51  return Owned(new (Context) NullStmt(SemiLoc, LeadingEmptyMacroLoc));
52}
53
54StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
55                               SourceLocation EndLoc) {
56  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
57
58  // If we have an invalid decl, just return an error.
59  if (DG.isNull()) return StmtError();
60
61  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
62}
63
64void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
65  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
66
67  // If we have an invalid decl, just return.
68  if (DG.isNull() || !DG.isSingleDecl()) return;
69  // suppress any potential 'unused variable' warning.
70  DG.getSingleDecl()->setUsed();
71}
72
73void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
74  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
75    return DiagnoseUnusedExprResult(Label->getSubStmt());
76
77  const Expr *E = dyn_cast_or_null<Expr>(S);
78  if (!E)
79    return;
80
81  SourceLocation Loc;
82  SourceRange R1, R2;
83  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
84    return;
85
86  // Okay, we have an unused result.  Depending on what the base expression is,
87  // we might want to make a more specific diagnostic.  Check for one of these
88  // cases now.
89  unsigned DiagID = diag::warn_unused_expr;
90  if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
91    E = Temps->getSubExpr();
92  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
93    E = TempExpr->getSubExpr();
94
95  E = E->IgnoreParenImpCasts();
96  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
97    if (E->getType()->isVoidType())
98      return;
99
100    // If the callee has attribute pure, const, or warn_unused_result, warn with
101    // a more specific message to make it clear what is happening.
102    if (const Decl *FD = CE->getCalleeDecl()) {
103      if (FD->getAttr<WarnUnusedResultAttr>()) {
104        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
105        return;
106      }
107      if (FD->getAttr<PureAttr>()) {
108        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
109        return;
110      }
111      if (FD->getAttr<ConstAttr>()) {
112        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
113        return;
114      }
115    }
116  } else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
117    const ObjCMethodDecl *MD = ME->getMethodDecl();
118    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
119      Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
120      return;
121    }
122  } else if (isa<ObjCPropertyRefExpr>(E)) {
123    DiagID = diag::warn_unused_property_expr;
124  } else if (const CXXFunctionalCastExpr *FC
125                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
126    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
127        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
128      return;
129  }
130  // Diagnose "(void*) blah" as a typo for "(void) blah".
131  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
132    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
133    QualType T = TI->getType();
134
135    // We really do want to use the non-canonical type here.
136    if (T == Context.VoidPtrTy) {
137      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
138
139      Diag(Loc, diag::warn_unused_voidptr)
140        << FixItHint::CreateRemoval(TL.getStarLoc());
141      return;
142    }
143  }
144
145  DiagRuntimeBehavior(Loc, 0, PDiag(DiagID) << R1 << R2);
146}
147
148StmtResult
149Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
150                        MultiStmtArg elts, bool isStmtExpr) {
151  unsigned NumElts = elts.size();
152  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
153  // If we're in C89 mode, check that we don't have any decls after stmts.  If
154  // so, emit an extension diagnostic.
155  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
156    // Note that __extension__ can be around a decl.
157    unsigned i = 0;
158    // Skip over all declarations.
159    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
160      /*empty*/;
161
162    // We found the end of the list or a statement.  Scan for another declstmt.
163    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
164      /*empty*/;
165
166    if (i != NumElts) {
167      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
168      Diag(D->getLocation(), diag::ext_mixed_decls_code);
169    }
170  }
171  // Warn about unused expressions in statements.
172  for (unsigned i = 0; i != NumElts; ++i) {
173    // Ignore statements that are last in a statement expression.
174    if (isStmtExpr && i == NumElts - 1)
175      continue;
176
177    DiagnoseUnusedExprResult(Elts[i]);
178  }
179
180  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
181}
182
183StmtResult
184Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
185                    SourceLocation DotDotDotLoc, Expr *RHSVal,
186                    SourceLocation ColonLoc) {
187  assert((LHSVal != 0) && "missing expression in case statement");
188
189  // C99 6.8.4.2p3: The expression shall be an integer constant.
190  // However, GCC allows any evaluatable integer expression.
191  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
192      VerifyIntegerConstantExpression(LHSVal))
193    return StmtError();
194
195  // GCC extension: The expression shall be an integer constant.
196
197  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
198      VerifyIntegerConstantExpression(RHSVal)) {
199    RHSVal = 0;  // Recover by just forgetting about it.
200  }
201
202  if (getCurFunction()->SwitchStack.empty()) {
203    Diag(CaseLoc, diag::err_case_not_in_switch);
204    return StmtError();
205  }
206
207  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
208                                        ColonLoc);
209  getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
210  return Owned(CS);
211}
212
213/// ActOnCaseStmtBody - This installs a statement as the body of a case.
214void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
215  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
216  CS->setSubStmt(SubStmt);
217}
218
219StmtResult
220Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
221                       Stmt *SubStmt, Scope *CurScope) {
222  if (getCurFunction()->SwitchStack.empty()) {
223    Diag(DefaultLoc, diag::err_default_not_in_switch);
224    return Owned(SubStmt);
225  }
226
227  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
228  getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
229  return Owned(DS);
230}
231
232StmtResult
233Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
234                     SourceLocation ColonLoc, Stmt *SubStmt) {
235
236  // If the label was multiply defined, reject it now.
237  if (TheDecl->getStmt()) {
238    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
239    Diag(TheDecl->getLocation(), diag::note_previous_definition);
240    return Owned(SubStmt);
241  }
242
243  // Otherwise, things are good.  Fill in the declaration and return it.
244  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
245  TheDecl->setStmt(LS);
246  if (!TheDecl->isGnuLocal())
247    TheDecl->setLocation(IdentLoc);
248  return Owned(LS);
249}
250
251StmtResult
252Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
253                  Stmt *thenStmt, SourceLocation ElseLoc,
254                  Stmt *elseStmt) {
255  ExprResult CondResult(CondVal.release());
256
257  VarDecl *ConditionVar = 0;
258  if (CondVar) {
259    ConditionVar = cast<VarDecl>(CondVar);
260    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
261    if (CondResult.isInvalid())
262      return StmtError();
263  }
264  Expr *ConditionExpr = CondResult.takeAs<Expr>();
265  if (!ConditionExpr)
266    return StmtError();
267
268  DiagnoseUnusedExprResult(thenStmt);
269
270  // Warn if the if block has a null body without an else value.
271  // this helps prevent bugs due to typos, such as
272  // if (condition);
273  //   do_stuff();
274  //
275  if (!elseStmt) {
276    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
277      // But do not warn if the body is a macro that expands to nothing, e.g:
278      //
279      // #define CALL(x)
280      // if (condition)
281      //   CALL(0);
282      //
283      if (!stmt->hasLeadingEmptyMacro())
284        Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
285  }
286
287  DiagnoseUnusedExprResult(elseStmt);
288
289  return Owned(new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
290                                    thenStmt, ElseLoc, elseStmt));
291}
292
293/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
294/// the specified width and sign.  If an overflow occurs, detect it and emit
295/// the specified diagnostic.
296void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
297                                              unsigned NewWidth, bool NewSign,
298                                              SourceLocation Loc,
299                                              unsigned DiagID) {
300  // Perform a conversion to the promoted condition type if needed.
301  if (NewWidth > Val.getBitWidth()) {
302    // If this is an extension, just do it.
303    Val = Val.extend(NewWidth);
304    Val.setIsSigned(NewSign);
305
306    // If the input was signed and negative and the output is
307    // unsigned, don't bother to warn: this is implementation-defined
308    // behavior.
309    // FIXME: Introduce a second, default-ignored warning for this case?
310  } else if (NewWidth < Val.getBitWidth()) {
311    // If this is a truncation, check for overflow.
312    llvm::APSInt ConvVal(Val);
313    ConvVal = ConvVal.trunc(NewWidth);
314    ConvVal.setIsSigned(NewSign);
315    ConvVal = ConvVal.extend(Val.getBitWidth());
316    ConvVal.setIsSigned(Val.isSigned());
317    if (ConvVal != Val)
318      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
319
320    // Regardless of whether a diagnostic was emitted, really do the
321    // truncation.
322    Val = Val.trunc(NewWidth);
323    Val.setIsSigned(NewSign);
324  } else if (NewSign != Val.isSigned()) {
325    // Convert the sign to match the sign of the condition.  This can cause
326    // overflow as well: unsigned(INTMIN)
327    // We don't diagnose this overflow, because it is implementation-defined
328    // behavior.
329    // FIXME: Introduce a second, default-ignored warning for this case?
330    llvm::APSInt OldVal(Val);
331    Val.setIsSigned(NewSign);
332  }
333}
334
335namespace {
336  struct CaseCompareFunctor {
337    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
338                    const llvm::APSInt &RHS) {
339      return LHS.first < RHS;
340    }
341    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
342                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
343      return LHS.first < RHS.first;
344    }
345    bool operator()(const llvm::APSInt &LHS,
346                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
347      return LHS < RHS.first;
348    }
349  };
350}
351
352/// CmpCaseVals - Comparison predicate for sorting case values.
353///
354static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
355                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
356  if (lhs.first < rhs.first)
357    return true;
358
359  if (lhs.first == rhs.first &&
360      lhs.second->getCaseLoc().getRawEncoding()
361       < rhs.second->getCaseLoc().getRawEncoding())
362    return true;
363  return false;
364}
365
366/// CmpEnumVals - Comparison predicate for sorting enumeration values.
367///
368static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
369                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
370{
371  return lhs.first < rhs.first;
372}
373
374/// EqEnumVals - Comparison preficate for uniqing enumeration values.
375///
376static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
377                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
378{
379  return lhs.first == rhs.first;
380}
381
382/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
383/// potentially integral-promoted expression @p expr.
384static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
385  if (const CastExpr *ImplicitCast = dyn_cast<ImplicitCastExpr>(expr)) {
386    const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
387    QualType TypeBeforePromotion = ExprBeforePromotion->getType();
388    if (TypeBeforePromotion->isIntegralOrEnumerationType()) {
389      return TypeBeforePromotion;
390    }
391  }
392  return expr->getType();
393}
394
395StmtResult
396Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
397                             Decl *CondVar) {
398  ExprResult CondResult;
399
400  VarDecl *ConditionVar = 0;
401  if (CondVar) {
402    ConditionVar = cast<VarDecl>(CondVar);
403    CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
404    if (CondResult.isInvalid())
405      return StmtError();
406
407    Cond = CondResult.release();
408  }
409
410  if (!Cond)
411    return StmtError();
412
413  CondResult
414    = ConvertToIntegralOrEnumerationType(SwitchLoc, Cond,
415                          PDiag(diag::err_typecheck_statement_requires_integer),
416                                   PDiag(diag::err_switch_incomplete_class_type)
417                                     << Cond->getSourceRange(),
418                                   PDiag(diag::err_switch_explicit_conversion),
419                                         PDiag(diag::note_switch_conversion),
420                                   PDiag(diag::err_switch_multiple_conversions),
421                                         PDiag(diag::note_switch_conversion),
422                                         PDiag(0));
423  if (CondResult.isInvalid()) return StmtError();
424  Cond = CondResult.take();
425
426  if (!CondVar) {
427    CheckImplicitConversions(Cond, SwitchLoc);
428    CondResult = MaybeCreateExprWithCleanups(Cond);
429    if (CondResult.isInvalid())
430      return StmtError();
431    Cond = CondResult.take();
432  }
433
434  getCurFunction()->setHasBranchIntoScope();
435
436  SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
437  getCurFunction()->SwitchStack.push_back(SS);
438  return Owned(SS);
439}
440
441static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
442  if (Val.getBitWidth() < BitWidth)
443    Val = Val.extend(BitWidth);
444  else if (Val.getBitWidth() > BitWidth)
445    Val = Val.trunc(BitWidth);
446  Val.setIsSigned(IsSigned);
447}
448
449StmtResult
450Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
451                            Stmt *BodyStmt) {
452  SwitchStmt *SS = cast<SwitchStmt>(Switch);
453  assert(SS == getCurFunction()->SwitchStack.back() &&
454         "switch stack missing push/pop!");
455
456  SS->setBody(BodyStmt, SwitchLoc);
457  getCurFunction()->SwitchStack.pop_back();
458
459  if (SS->getCond() == 0)
460    return StmtError();
461
462  Expr *CondExpr = SS->getCond();
463  Expr *CondExprBeforePromotion = CondExpr;
464  QualType CondTypeBeforePromotion =
465      GetTypeBeforeIntegralPromotion(CondExpr);
466
467  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
468  ExprResult CondResult = UsualUnaryConversions(CondExpr);
469  if (CondResult.isInvalid())
470    return StmtError();
471  CondExpr = CondResult.take();
472  QualType CondType = CondExpr->getType();
473  SS->setCond(CondExpr);
474
475  // C++ 6.4.2.p2:
476  // Integral promotions are performed (on the switch condition).
477  //
478  // A case value unrepresentable by the original switch condition
479  // type (before the promotion) doesn't make sense, even when it can
480  // be represented by the promoted type.  Therefore we need to find
481  // the pre-promotion type of the switch condition.
482  if (!CondExpr->isTypeDependent()) {
483    // We have already converted the expression to an integral or enumeration
484    // type, when we started the switch statement. If we don't have an
485    // appropriate type now, just return an error.
486    if (!CondType->isIntegralOrEnumerationType())
487      return StmtError();
488
489    if (CondExpr->isKnownToHaveBooleanValue()) {
490      // switch(bool_expr) {...} is often a programmer error, e.g.
491      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
492      // One can always use an if statement instead of switch(bool_expr).
493      Diag(SwitchLoc, diag::warn_bool_switch_condition)
494          << CondExpr->getSourceRange();
495    }
496  }
497
498  // Get the bitwidth of the switched-on value before promotions.  We must
499  // convert the integer case values to this width before comparison.
500  bool HasDependentValue
501    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
502  unsigned CondWidth
503    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
504  bool CondIsSigned
505    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
506
507  // Accumulate all of the case values in a vector so that we can sort them
508  // and detect duplicates.  This vector contains the APInt for the case after
509  // it has been converted to the condition type.
510  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
511  CaseValsTy CaseVals;
512
513  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
514  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
515  CaseRangesTy CaseRanges;
516
517  DefaultStmt *TheDefaultStmt = 0;
518
519  bool CaseListIsErroneous = false;
520
521  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
522       SC = SC->getNextSwitchCase()) {
523
524    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
525      if (TheDefaultStmt) {
526        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
527        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
528
529        // FIXME: Remove the default statement from the switch block so that
530        // we'll return a valid AST.  This requires recursing down the AST and
531        // finding it, not something we are set up to do right now.  For now,
532        // just lop the entire switch stmt out of the AST.
533        CaseListIsErroneous = true;
534      }
535      TheDefaultStmt = DS;
536
537    } else {
538      CaseStmt *CS = cast<CaseStmt>(SC);
539
540      // We already verified that the expression has a i-c-e value (C99
541      // 6.8.4.2p3) - get that value now.
542      Expr *Lo = CS->getLHS();
543
544      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
545        HasDependentValue = true;
546        break;
547      }
548
549      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
550
551      // Convert the value to the same width/sign as the condition.
552      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
553                                         Lo->getLocStart(),
554                                         diag::warn_case_value_overflow);
555
556      // If the LHS is not the same type as the condition, insert an implicit
557      // cast.
558      Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).take();
559      CS->setLHS(Lo);
560
561      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
562      if (CS->getRHS()) {
563        if (CS->getRHS()->isTypeDependent() ||
564            CS->getRHS()->isValueDependent()) {
565          HasDependentValue = true;
566          break;
567        }
568        CaseRanges.push_back(std::make_pair(LoVal, CS));
569      } else
570        CaseVals.push_back(std::make_pair(LoVal, CS));
571    }
572  }
573
574  if (!HasDependentValue) {
575    // If we don't have a default statement, check whether the
576    // condition is constant.
577    llvm::APSInt ConstantCondValue;
578    bool HasConstantCond = false;
579    bool ShouldCheckConstantCond = false;
580    if (!HasDependentValue && !TheDefaultStmt) {
581      Expr::EvalResult Result;
582      HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
583      if (HasConstantCond) {
584        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
585        ConstantCondValue = Result.Val.getInt();
586        ShouldCheckConstantCond = true;
587
588        assert(ConstantCondValue.getBitWidth() == CondWidth &&
589               ConstantCondValue.isSigned() == CondIsSigned);
590      }
591    }
592
593    // Sort all the scalar case values so we can easily detect duplicates.
594    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
595
596    if (!CaseVals.empty()) {
597      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
598        if (ShouldCheckConstantCond &&
599            CaseVals[i].first == ConstantCondValue)
600          ShouldCheckConstantCond = false;
601
602        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
603          // If we have a duplicate, report it.
604          Diag(CaseVals[i].second->getLHS()->getLocStart(),
605               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
606          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
607               diag::note_duplicate_case_prev);
608          // FIXME: We really want to remove the bogus case stmt from the
609          // substmt, but we have no way to do this right now.
610          CaseListIsErroneous = true;
611        }
612      }
613    }
614
615    // Detect duplicate case ranges, which usually don't exist at all in
616    // the first place.
617    if (!CaseRanges.empty()) {
618      // Sort all the case ranges by their low value so we can easily detect
619      // overlaps between ranges.
620      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
621
622      // Scan the ranges, computing the high values and removing empty ranges.
623      std::vector<llvm::APSInt> HiVals;
624      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
625        llvm::APSInt &LoVal = CaseRanges[i].first;
626        CaseStmt *CR = CaseRanges[i].second;
627        Expr *Hi = CR->getRHS();
628        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
629
630        // Convert the value to the same width/sign as the condition.
631        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
632                                           Hi->getLocStart(),
633                                           diag::warn_case_value_overflow);
634
635        // If the LHS is not the same type as the condition, insert an implicit
636        // cast.
637        Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).take();
638        CR->setRHS(Hi);
639
640        // If the low value is bigger than the high value, the case is empty.
641        if (LoVal > HiVal) {
642          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
643            << SourceRange(CR->getLHS()->getLocStart(),
644                           Hi->getLocEnd());
645          CaseRanges.erase(CaseRanges.begin()+i);
646          --i, --e;
647          continue;
648        }
649
650        if (ShouldCheckConstantCond &&
651            LoVal <= ConstantCondValue &&
652            ConstantCondValue <= HiVal)
653          ShouldCheckConstantCond = false;
654
655        HiVals.push_back(HiVal);
656      }
657
658      // Rescan the ranges, looking for overlap with singleton values and other
659      // ranges.  Since the range list is sorted, we only need to compare case
660      // ranges with their neighbors.
661      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
662        llvm::APSInt &CRLo = CaseRanges[i].first;
663        llvm::APSInt &CRHi = HiVals[i];
664        CaseStmt *CR = CaseRanges[i].second;
665
666        // Check to see whether the case range overlaps with any
667        // singleton cases.
668        CaseStmt *OverlapStmt = 0;
669        llvm::APSInt OverlapVal(32);
670
671        // Find the smallest value >= the lower bound.  If I is in the
672        // case range, then we have overlap.
673        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
674                                                  CaseVals.end(), CRLo,
675                                                  CaseCompareFunctor());
676        if (I != CaseVals.end() && I->first < CRHi) {
677          OverlapVal  = I->first;   // Found overlap with scalar.
678          OverlapStmt = I->second;
679        }
680
681        // Find the smallest value bigger than the upper bound.
682        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
683        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
684          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
685          OverlapStmt = (I-1)->second;
686        }
687
688        // Check to see if this case stmt overlaps with the subsequent
689        // case range.
690        if (i && CRLo <= HiVals[i-1]) {
691          OverlapVal  = HiVals[i-1];       // Found overlap with range.
692          OverlapStmt = CaseRanges[i-1].second;
693        }
694
695        if (OverlapStmt) {
696          // If we have a duplicate, report it.
697          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
698            << OverlapVal.toString(10);
699          Diag(OverlapStmt->getLHS()->getLocStart(),
700               diag::note_duplicate_case_prev);
701          // FIXME: We really want to remove the bogus case stmt from the
702          // substmt, but we have no way to do this right now.
703          CaseListIsErroneous = true;
704        }
705      }
706    }
707
708    // Complain if we have a constant condition and we didn't find a match.
709    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
710      // TODO: it would be nice if we printed enums as enums, chars as
711      // chars, etc.
712      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
713        << ConstantCondValue.toString(10)
714        << CondExpr->getSourceRange();
715    }
716
717    // Check to see if switch is over an Enum and handles all of its
718    // values.  We only issue a warning if there is not 'default:', but
719    // we still do the analysis to preserve this information in the AST
720    // (which can be used by flow-based analyes).
721    //
722    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
723
724    // If switch has default case, then ignore it.
725    if (!CaseListIsErroneous  && !HasConstantCond && ET) {
726      const EnumDecl *ED = ET->getDecl();
727      typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
728        EnumValsTy;
729      EnumValsTy EnumVals;
730
731      // Gather all enum values, set their type and sort them,
732      // allowing easier comparison with CaseVals.
733      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
734           EDI != ED->enumerator_end(); ++EDI) {
735        llvm::APSInt Val = EDI->getInitVal();
736        AdjustAPSInt(Val, CondWidth, CondIsSigned);
737        EnumVals.push_back(std::make_pair(Val, *EDI));
738      }
739      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
740      EnumValsTy::iterator EIend =
741        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
742
743      // See which case values aren't in enum.
744      // TODO: we might want to check whether case values are out of the
745      // enum even if we don't want to check whether all cases are handled.
746      if (!TheDefaultStmt) {
747        EnumValsTy::const_iterator EI = EnumVals.begin();
748        for (CaseValsTy::const_iterator CI = CaseVals.begin();
749             CI != CaseVals.end(); CI++) {
750          while (EI != EIend && EI->first < CI->first)
751            EI++;
752          if (EI == EIend || EI->first > CI->first)
753            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
754              << ED->getDeclName();
755        }
756        // See which of case ranges aren't in enum
757        EI = EnumVals.begin();
758        for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
759             RI != CaseRanges.end() && EI != EIend; RI++) {
760          while (EI != EIend && EI->first < RI->first)
761            EI++;
762
763          if (EI == EIend || EI->first != RI->first) {
764            Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
765              << ED->getDeclName();
766          }
767
768          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
769          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
770          while (EI != EIend && EI->first < Hi)
771            EI++;
772          if (EI == EIend || EI->first != Hi)
773            Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
774              << ED->getDeclName();
775        }
776      }
777
778      // Check which enum vals aren't in switch
779      CaseValsTy::const_iterator CI = CaseVals.begin();
780      CaseRangesTy::const_iterator RI = CaseRanges.begin();
781      bool hasCasesNotInSwitch = false;
782
783      llvm::SmallVector<DeclarationName,8> UnhandledNames;
784
785      for (EnumValsTy::const_iterator EI = EnumVals.begin(); EI != EIend; EI++){
786        // Drop unneeded case values
787        llvm::APSInt CIVal;
788        while (CI != CaseVals.end() && CI->first < EI->first)
789          CI++;
790
791        if (CI != CaseVals.end() && CI->first == EI->first)
792          continue;
793
794        // Drop unneeded case ranges
795        for (; RI != CaseRanges.end(); RI++) {
796          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
797          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
798          if (EI->first <= Hi)
799            break;
800        }
801
802        if (RI == CaseRanges.end() || EI->first < RI->first) {
803          hasCasesNotInSwitch = true;
804          if (!TheDefaultStmt)
805            UnhandledNames.push_back(EI->second->getDeclName());
806        }
807      }
808
809      // Produce a nice diagnostic if multiple values aren't handled.
810      switch (UnhandledNames.size()) {
811      case 0: break;
812      case 1:
813        Diag(CondExpr->getExprLoc(), diag::warn_missing_case1)
814          << UnhandledNames[0];
815        break;
816      case 2:
817        Diag(CondExpr->getExprLoc(), diag::warn_missing_case2)
818          << UnhandledNames[0] << UnhandledNames[1];
819        break;
820      case 3:
821        Diag(CondExpr->getExprLoc(), diag::warn_missing_case3)
822          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
823        break;
824      default:
825        Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
826          << (unsigned)UnhandledNames.size()
827          << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
828        break;
829      }
830
831      if (!hasCasesNotInSwitch)
832        SS->setAllEnumCasesCovered();
833    }
834  }
835
836  // FIXME: If the case list was broken is some way, we don't have a good system
837  // to patch it up.  Instead, just return the whole substmt as broken.
838  if (CaseListIsErroneous)
839    return StmtError();
840
841  return Owned(SS);
842}
843
844StmtResult
845Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
846                     Decl *CondVar, Stmt *Body) {
847  ExprResult CondResult(Cond.release());
848
849  VarDecl *ConditionVar = 0;
850  if (CondVar) {
851    ConditionVar = cast<VarDecl>(CondVar);
852    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
853    if (CondResult.isInvalid())
854      return StmtError();
855  }
856  Expr *ConditionExpr = CondResult.take();
857  if (!ConditionExpr)
858    return StmtError();
859
860  DiagnoseUnusedExprResult(Body);
861
862  return Owned(new (Context) WhileStmt(Context, ConditionVar, ConditionExpr,
863                                       Body, WhileLoc));
864}
865
866StmtResult
867Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
868                  SourceLocation WhileLoc, SourceLocation CondLParen,
869                  Expr *Cond, SourceLocation CondRParen) {
870  assert(Cond && "ActOnDoStmt(): missing expression");
871
872  ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
873  if (CondResult.isInvalid() || CondResult.isInvalid())
874    return StmtError();
875  Cond = CondResult.take();
876
877  CheckImplicitConversions(Cond, DoLoc);
878  CondResult = MaybeCreateExprWithCleanups(Cond);
879  if (CondResult.isInvalid())
880    return StmtError();
881  Cond = CondResult.take();
882
883  DiagnoseUnusedExprResult(Body);
884
885  return Owned(new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen));
886}
887
888StmtResult
889Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
890                   Stmt *First, FullExprArg second, Decl *secondVar,
891                   FullExprArg third,
892                   SourceLocation RParenLoc, Stmt *Body) {
893  if (!getLangOptions().CPlusPlus) {
894    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
895      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
896      // declare identifiers for objects having storage class 'auto' or
897      // 'register'.
898      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
899           DI!=DE; ++DI) {
900        VarDecl *VD = dyn_cast<VarDecl>(*DI);
901        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
902          VD = 0;
903        if (VD == 0)
904          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
905        // FIXME: mark decl erroneous!
906      }
907    }
908  }
909
910  ExprResult SecondResult(second.release());
911  VarDecl *ConditionVar = 0;
912  if (secondVar) {
913    ConditionVar = cast<VarDecl>(secondVar);
914    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
915    if (SecondResult.isInvalid())
916      return StmtError();
917  }
918
919  Expr *Third  = third.release().takeAs<Expr>();
920
921  DiagnoseUnusedExprResult(First);
922  DiagnoseUnusedExprResult(Third);
923  DiagnoseUnusedExprResult(Body);
924
925  return Owned(new (Context) ForStmt(Context, First,
926                                     SecondResult.take(), ConditionVar,
927                                     Third, Body, ForLoc, LParenLoc,
928                                     RParenLoc));
929}
930
931/// In an Objective C collection iteration statement:
932///   for (x in y)
933/// x can be an arbitrary l-value expression.  Bind it up as a
934/// full-expression.
935StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
936  CheckImplicitConversions(E);
937  ExprResult Result = MaybeCreateExprWithCleanups(E);
938  if (Result.isInvalid()) return StmtError();
939  return Owned(static_cast<Stmt*>(Result.get()));
940}
941
942StmtResult
943Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
944                                 SourceLocation LParenLoc,
945                                 Stmt *First, Expr *Second,
946                                 SourceLocation RParenLoc, Stmt *Body) {
947  if (First) {
948    QualType FirstType;
949    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
950      if (!DS->isSingleDecl())
951        return StmtError(Diag((*DS->decl_begin())->getLocation(),
952                         diag::err_toomany_element_decls));
953
954      Decl *D = DS->getSingleDecl();
955      FirstType = cast<ValueDecl>(D)->getType();
956      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
957      // declare identifiers for objects having storage class 'auto' or
958      // 'register'.
959      VarDecl *VD = cast<VarDecl>(D);
960      if (VD->isLocalVarDecl() && !VD->hasLocalStorage())
961        return StmtError(Diag(VD->getLocation(),
962                              diag::err_non_variable_decl_in_for));
963    } else {
964      Expr *FirstE = cast<Expr>(First);
965      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
966        return StmtError(Diag(First->getLocStart(),
967                   diag::err_selector_element_not_lvalue)
968          << First->getSourceRange());
969
970      FirstType = static_cast<Expr*>(First)->getType();
971    }
972    if (!FirstType->isDependentType() &&
973        !FirstType->isObjCObjectPointerType() &&
974        !FirstType->isBlockPointerType())
975        Diag(ForLoc, diag::err_selector_element_type)
976          << FirstType << First->getSourceRange();
977  }
978  if (Second && !Second->isTypeDependent()) {
979    ExprResult Result = DefaultFunctionArrayLvalueConversion(Second);
980    if (Result.isInvalid())
981      return StmtError();
982    Second = Result.take();
983    QualType SecondType = Second->getType();
984    if (!SecondType->isObjCObjectPointerType())
985      Diag(ForLoc, diag::err_collection_expr_type)
986        << SecondType << Second->getSourceRange();
987    else if (const ObjCObjectPointerType *OPT =
988             SecondType->getAsObjCInterfacePointerType()) {
989      llvm::SmallVector<IdentifierInfo *, 4> KeyIdents;
990      IdentifierInfo* selIdent =
991        &Context.Idents.get("countByEnumeratingWithState");
992      KeyIdents.push_back(selIdent);
993      selIdent = &Context.Idents.get("objects");
994      KeyIdents.push_back(selIdent);
995      selIdent = &Context.Idents.get("count");
996      KeyIdents.push_back(selIdent);
997      Selector CSelector = Context.Selectors.getSelector(3, &KeyIdents[0]);
998      if (ObjCInterfaceDecl *IDecl = OPT->getInterfaceDecl()) {
999        if (!IDecl->isForwardDecl() &&
1000            !IDecl->lookupInstanceMethod(CSelector) &&
1001            !LookupMethodInQualifiedType(CSelector, OPT, true)) {
1002          // Must further look into private implementation methods.
1003          if (!LookupPrivateInstanceMethod(CSelector, IDecl))
1004            Diag(ForLoc, diag::warn_collection_expr_type)
1005              << SecondType << CSelector << Second->getSourceRange();
1006        }
1007      }
1008    }
1009  }
1010  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1011                                                   ForLoc, RParenLoc));
1012}
1013
1014namespace {
1015
1016enum BeginEndFunction {
1017  BEF_begin,
1018  BEF_end
1019};
1020
1021/// Build a variable declaration for a for-range statement.
1022static VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1023                                     QualType Type, const char *Name) {
1024  DeclContext *DC = SemaRef.CurContext;
1025  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1026  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1027  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1028                                  TInfo, SC_Auto, SC_None);
1029  Decl->setImplicit();
1030  return Decl;
1031}
1032
1033/// Finish building a variable declaration for a for-range statement.
1034/// \return true if an error occurs.
1035static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1036                                  SourceLocation Loc, int diag) {
1037  // Deduce the type for the iterator variable now rather than leaving it to
1038  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1039  TypeSourceInfo *InitTSI = 0;
1040  if (Init->getType()->isVoidType() ||
1041      !SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitTSI))
1042    SemaRef.Diag(Loc, diag) << Init->getType();
1043  if (!InitTSI) {
1044    Decl->setInvalidDecl();
1045    return true;
1046  }
1047  Decl->setTypeSourceInfo(InitTSI);
1048  Decl->setType(InitTSI->getType());
1049
1050  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1051                               /*TypeMayContainAuto=*/false);
1052  SemaRef.FinalizeDeclaration(Decl);
1053  SemaRef.CurContext->addHiddenDecl(Decl);
1054  return false;
1055}
1056
1057/// Produce a note indicating which begin/end function was implicitly called
1058/// by a C++0x for-range statement. This is often not obvious from the code,
1059/// nor from the diagnostics produced when analysing the implicit expressions
1060/// required in a for-range statement.
1061void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1062                                  BeginEndFunction BEF) {
1063  CallExpr *CE = dyn_cast<CallExpr>(E);
1064  if (!CE)
1065    return;
1066  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1067  if (!D)
1068    return;
1069  SourceLocation Loc = D->getLocation();
1070
1071  std::string Description;
1072  bool IsTemplate = false;
1073  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1074    Description = SemaRef.getTemplateArgumentBindingsText(
1075      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1076    IsTemplate = true;
1077  }
1078
1079  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1080    << BEF << IsTemplate << Description << E->getType();
1081}
1082
1083/// Build a call to 'begin' or 'end' for a C++0x for-range statement. If the
1084/// given LookupResult is non-empty, it is assumed to describe a member which
1085/// will be invoked. Otherwise, the function will be found via argument
1086/// dependent lookup.
1087static ExprResult BuildForRangeBeginEndCall(Sema &SemaRef, Scope *S,
1088                                            SourceLocation Loc,
1089                                            VarDecl *Decl,
1090                                            BeginEndFunction BEF,
1091                                            const DeclarationNameInfo &NameInfo,
1092                                            LookupResult &MemberLookup,
1093                                            Expr *Range) {
1094  ExprResult CallExpr;
1095  if (!MemberLookup.empty()) {
1096    ExprResult MemberRef =
1097      SemaRef.BuildMemberReferenceExpr(Range, Range->getType(), Loc,
1098                                       /*IsPtr=*/false, CXXScopeSpec(),
1099                                       /*Qualifier=*/0, MemberLookup,
1100                                       /*TemplateArgs=*/0);
1101    if (MemberRef.isInvalid())
1102      return ExprError();
1103    CallExpr = SemaRef.ActOnCallExpr(S, MemberRef.get(), Loc, MultiExprArg(),
1104                                     Loc, 0);
1105    if (CallExpr.isInvalid())
1106      return ExprError();
1107  } else {
1108    UnresolvedSet<0> FoundNames;
1109    // C++0x [stmt.ranged]p1: For the purposes of this name lookup, namespace
1110    // std is an associated namespace.
1111    UnresolvedLookupExpr *Fn =
1112      UnresolvedLookupExpr::Create(SemaRef.Context, /*NamingClass=*/0,
1113                                   NestedNameSpecifierLoc(), NameInfo,
1114                                   /*NeedsADL=*/true, /*Overloaded=*/false,
1115                                   FoundNames.begin(), FoundNames.end(),
1116                                   /*LookInStdNamespace=*/true);
1117    CallExpr = SemaRef.BuildOverloadedCallExpr(S, Fn, Fn, Loc, &Range, 1, Loc,
1118                                               0);
1119    if (CallExpr.isInvalid()) {
1120      SemaRef.Diag(Range->getLocStart(), diag::note_for_range_type)
1121        << Range->getType();
1122      return ExprError();
1123    }
1124  }
1125  if (FinishForRangeVarDecl(SemaRef, Decl, CallExpr.get(), Loc,
1126                            diag::err_for_range_iter_deduction_failure)) {
1127    NoteForRangeBeginEndFunction(SemaRef, CallExpr.get(), BEF);
1128    return ExprError();
1129  }
1130  return CallExpr;
1131}
1132
1133}
1134
1135/// ActOnCXXForRangeStmt - Check and build a C++0x for-range statement.
1136///
1137/// C++0x [stmt.ranged]:
1138///   A range-based for statement is equivalent to
1139///
1140///   {
1141///     auto && __range = range-init;
1142///     for ( auto __begin = begin-expr,
1143///           __end = end-expr;
1144///           __begin != __end;
1145///           ++__begin ) {
1146///       for-range-declaration = *__begin;
1147///       statement
1148///     }
1149///   }
1150///
1151/// The body of the loop is not available yet, since it cannot be analysed until
1152/// we have determined the type of the for-range-declaration.
1153StmtResult
1154Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1155                           Stmt *First, SourceLocation ColonLoc, Expr *Range,
1156                           SourceLocation RParenLoc) {
1157  if (!First || !Range)
1158    return StmtError();
1159
1160  DeclStmt *DS = dyn_cast<DeclStmt>(First);
1161  assert(DS && "first part of for range not a decl stmt");
1162
1163  if (!DS->isSingleDecl()) {
1164    Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1165    return StmtError();
1166  }
1167  if (DS->getSingleDecl()->isInvalidDecl())
1168    return StmtError();
1169
1170  if (DiagnoseUnexpandedParameterPack(Range, UPPC_Expression))
1171    return StmtError();
1172
1173  // Build  auto && __range = range-init
1174  SourceLocation RangeLoc = Range->getLocStart();
1175  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1176                                           Context.getAutoRRefDeductType(),
1177                                           "__range");
1178  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1179                            diag::err_for_range_deduction_failure))
1180    return StmtError();
1181
1182  // Claim the type doesn't contain auto: we've already done the checking.
1183  DeclGroupPtrTy RangeGroup =
1184    BuildDeclaratorGroup((Decl**)&RangeVar, 1, /*TypeMayContainAuto=*/false);
1185  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1186  if (RangeDecl.isInvalid())
1187    return StmtError();
1188
1189  return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1190                              /*BeginEndDecl=*/0, /*Cond=*/0, /*Inc=*/0, DS,
1191                              RParenLoc);
1192}
1193
1194/// BuildCXXForRangeStmt - Build or instantiate a C++0x for-range statement.
1195StmtResult
1196Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
1197                           Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
1198                           Expr *Inc, Stmt *LoopVarDecl,
1199                           SourceLocation RParenLoc) {
1200  Scope *S = getCurScope();
1201
1202  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
1203  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
1204  QualType RangeVarType = RangeVar->getType();
1205
1206  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
1207  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
1208
1209  StmtResult BeginEndDecl = BeginEnd;
1210  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
1211
1212  if (!BeginEndDecl.get() && !RangeVarType->isDependentType()) {
1213    SourceLocation RangeLoc = RangeVar->getLocation();
1214
1215    ExprResult RangeRef = BuildDeclRefExpr(RangeVar,
1216                                           RangeVarType.getNonReferenceType(),
1217                                           VK_LValue, ColonLoc);
1218    if (RangeRef.isInvalid())
1219      return StmtError();
1220
1221    QualType AutoType = Context.getAutoDeductType();
1222    Expr *Range = RangeVar->getInit();
1223    if (!Range)
1224      return StmtError();
1225    QualType RangeType = Range->getType();
1226
1227    if (RequireCompleteType(RangeLoc, RangeType,
1228                            PDiag(diag::err_for_range_incomplete_type)))
1229      return StmtError();
1230
1231    // Build auto __begin = begin-expr, __end = end-expr.
1232    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1233                                             "__begin");
1234    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
1235                                           "__end");
1236
1237    // Build begin-expr and end-expr and attach to __begin and __end variables.
1238    ExprResult BeginExpr, EndExpr;
1239    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
1240      // - if _RangeT is an array type, begin-expr and end-expr are __range and
1241      //   __range + __bound, respectively, where __bound is the array bound. If
1242      //   _RangeT is an array of unknown size or an array of incomplete type,
1243      //   the program is ill-formed;
1244
1245      // begin-expr is __range.
1246      BeginExpr = RangeRef;
1247      if (FinishForRangeVarDecl(*this, BeginVar, RangeRef.get(), ColonLoc,
1248                                diag::err_for_range_iter_deduction_failure)) {
1249        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1250        return StmtError();
1251      }
1252
1253      // Find the array bound.
1254      ExprResult BoundExpr;
1255      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
1256        BoundExpr = Owned(IntegerLiteral::Create(Context, CAT->getSize(),
1257                                                 Context.getPointerDiffType(),
1258                                                 RangeLoc));
1259      else if (const VariableArrayType *VAT =
1260               dyn_cast<VariableArrayType>(UnqAT))
1261        BoundExpr = VAT->getSizeExpr();
1262      else {
1263        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
1264        // UnqAT is not incomplete and Range is not type-dependent.
1265        assert(0 && "Unexpected array type in for-range");
1266        return StmtError();
1267      }
1268
1269      // end-expr is __range + __bound.
1270      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, RangeRef.get(),
1271                           BoundExpr.get());
1272      if (EndExpr.isInvalid())
1273        return StmtError();
1274      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
1275                                diag::err_for_range_iter_deduction_failure)) {
1276        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1277        return StmtError();
1278      }
1279    } else {
1280      DeclarationNameInfo BeginNameInfo(&PP.getIdentifierTable().get("begin"),
1281                                        ColonLoc);
1282      DeclarationNameInfo EndNameInfo(&PP.getIdentifierTable().get("end"),
1283                                      ColonLoc);
1284
1285      LookupResult BeginMemberLookup(*this, BeginNameInfo, LookupMemberName);
1286      LookupResult EndMemberLookup(*this, EndNameInfo, LookupMemberName);
1287
1288      if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1289        // - if _RangeT is a class type, the unqualified-ids begin and end are
1290        //   looked up in the scope of class _RangeT as if by class member access
1291        //   lookup (3.4.5), and if either (or both) finds at least one
1292        //   declaration, begin-expr and end-expr are __range.begin() and
1293        //   __range.end(), respectively;
1294        LookupQualifiedName(BeginMemberLookup, D);
1295        LookupQualifiedName(EndMemberLookup, D);
1296
1297        if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1298          Diag(ColonLoc, diag::err_for_range_member_begin_end_mismatch)
1299            << RangeType << BeginMemberLookup.empty();
1300          return StmtError();
1301        }
1302      } else {
1303        // - otherwise, begin-expr and end-expr are begin(__range) and
1304        //   end(__range), respectively, where begin and end are looked up with
1305        //   argument-dependent lookup (3.4.2). For the purposes of this name
1306        //   lookup, namespace std is an associated namespace.
1307      }
1308
1309      BeginExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, BeginVar,
1310                                            BEF_begin, BeginNameInfo,
1311                                            BeginMemberLookup, RangeRef.get());
1312      if (BeginExpr.isInvalid())
1313        return StmtError();
1314
1315      EndExpr = BuildForRangeBeginEndCall(*this, S, ColonLoc, EndVar,
1316                                          BEF_end, EndNameInfo,
1317                                          EndMemberLookup, RangeRef.get());
1318      if (EndExpr.isInvalid())
1319        return StmtError();
1320    }
1321
1322    // C++0x [decl.spec.auto]p6: BeginType and EndType must be the same.
1323    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
1324    if (!Context.hasSameType(BeginType, EndType)) {
1325      Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
1326        << BeginType << EndType;
1327      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1328      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1329    }
1330
1331    Decl *BeginEndDecls[] = { BeginVar, EndVar };
1332    // Claim the type doesn't contain auto: we've already done the checking.
1333    DeclGroupPtrTy BeginEndGroup =
1334      BuildDeclaratorGroup(BeginEndDecls, 2, /*TypeMayContainAuto=*/false);
1335    BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
1336
1337    ExprResult BeginRef = BuildDeclRefExpr(BeginVar,
1338                                           BeginType.getNonReferenceType(),
1339                                           VK_LValue, ColonLoc);
1340    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
1341                                         VK_LValue, ColonLoc);
1342
1343    // Build and check __begin != __end expression.
1344    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
1345                           BeginRef.get(), EndRef.get());
1346    NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
1347    NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
1348    if (NotEqExpr.isInvalid()) {
1349      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1350      if (!Context.hasSameType(BeginType, EndType))
1351        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
1352      return StmtError();
1353    }
1354
1355    // Build and check ++__begin expression.
1356    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
1357    IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
1358    if (IncrExpr.isInvalid()) {
1359      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1360      return StmtError();
1361    }
1362
1363    // Build and check *__begin  expression.
1364    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
1365    if (DerefExpr.isInvalid()) {
1366      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1367      return StmtError();
1368    }
1369
1370    // Attach  *__begin  as initializer for VD.
1371    if (!LoopVar->isInvalidDecl()) {
1372      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
1373                           /*TypeMayContainAuto=*/true);
1374      if (LoopVar->isInvalidDecl())
1375        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
1376    }
1377  }
1378
1379  return Owned(new (Context) CXXForRangeStmt(RangeDS,
1380                                     cast_or_null<DeclStmt>(BeginEndDecl.get()),
1381                                             NotEqExpr.take(), IncrExpr.take(),
1382                                             LoopVarDS, /*Body=*/0, ForLoc,
1383                                             ColonLoc, RParenLoc));
1384}
1385
1386/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
1387/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
1388/// body cannot be performed until after the type of the range variable is
1389/// determined.
1390StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
1391  if (!S || !B)
1392    return StmtError();
1393
1394  cast<CXXForRangeStmt>(S)->setBody(B);
1395  return S;
1396}
1397
1398StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
1399                               SourceLocation LabelLoc,
1400                               LabelDecl *TheDecl) {
1401  getCurFunction()->setHasBranchIntoScope();
1402  TheDecl->setUsed();
1403  return Owned(new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc));
1404}
1405
1406StmtResult
1407Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1408                            Expr *E) {
1409  // Convert operand to void*
1410  if (!E->isTypeDependent()) {
1411    QualType ETy = E->getType();
1412    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1413    ExprResult ExprRes = Owned(E);
1414    AssignConvertType ConvTy =
1415      CheckSingleAssignmentConstraints(DestTy, ExprRes);
1416    if (ExprRes.isInvalid())
1417      return StmtError();
1418    E = ExprRes.take();
1419    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1420      return StmtError();
1421  }
1422
1423  getCurFunction()->setHasIndirectGoto();
1424
1425  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1426}
1427
1428StmtResult
1429Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1430  Scope *S = CurScope->getContinueParent();
1431  if (!S) {
1432    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1433    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1434  }
1435
1436  return Owned(new (Context) ContinueStmt(ContinueLoc));
1437}
1438
1439StmtResult
1440Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1441  Scope *S = CurScope->getBreakParent();
1442  if (!S) {
1443    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1444    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1445  }
1446
1447  return Owned(new (Context) BreakStmt(BreakLoc));
1448}
1449
1450/// \brief Determine whether the given expression is a candidate for
1451/// copy elision in either a return statement or a throw expression.
1452///
1453/// \param ReturnType If we're determining the copy elision candidate for
1454/// a return statement, this is the return type of the function. If we're
1455/// determining the copy elision candidate for a throw expression, this will
1456/// be a NULL type.
1457///
1458/// \param E The expression being returned from the function or block, or
1459/// being thrown.
1460///
1461/// \param AllowFunctionParameter Whether we allow function parameters to
1462/// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
1463/// we re-use this logic to determine whether we should try to move as part of
1464/// a return or throw (which does allow function parameters).
1465///
1466/// \returns The NRVO candidate variable, if the return statement may use the
1467/// NRVO, or NULL if there is no such candidate.
1468const VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
1469                                             Expr *E,
1470                                             bool AllowFunctionParameter) {
1471  QualType ExprType = E->getType();
1472  // - in a return statement in a function with ...
1473  // ... a class return type ...
1474  if (!ReturnType.isNull()) {
1475    if (!ReturnType->isRecordType())
1476      return 0;
1477    // ... the same cv-unqualified type as the function return type ...
1478    if (!Context.hasSameUnqualifiedType(ReturnType, ExprType))
1479      return 0;
1480  }
1481
1482  // ... the expression is the name of a non-volatile automatic object
1483  // (other than a function or catch-clause parameter)) ...
1484  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
1485  if (!DR)
1486    return 0;
1487  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1488  if (!VD)
1489    return 0;
1490
1491  if (VD->hasLocalStorage() && !VD->isExceptionVariable() &&
1492      !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
1493      !VD->getType().isVolatileQualified() &&
1494      ((VD->getKind() == Decl::Var) ||
1495       (AllowFunctionParameter && VD->getKind() == Decl::ParmVar)))
1496    return VD;
1497
1498  return 0;
1499}
1500
1501/// \brief Perform the initialization of a potentially-movable value, which
1502/// is the result of return value.
1503///
1504/// This routine implements C++0x [class.copy]p33, which attempts to treat
1505/// returned lvalues as rvalues in certain cases (to prefer move construction),
1506/// then falls back to treating them as lvalues if that failed.
1507ExprResult
1508Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
1509                                      const VarDecl *NRVOCandidate,
1510                                      QualType ResultType,
1511                                      Expr *Value) {
1512  // C++0x [class.copy]p33:
1513  //   When the criteria for elision of a copy operation are met or would
1514  //   be met save for the fact that the source object is a function
1515  //   parameter, and the object to be copied is designated by an lvalue,
1516  //   overload resolution to select the constructor for the copy is first
1517  //   performed as if the object were designated by an rvalue.
1518  ExprResult Res = ExprError();
1519  if (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true)) {
1520    ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
1521                              Value->getType(), CK_LValueToRValue,
1522                              Value, VK_XValue);
1523
1524    Expr *InitExpr = &AsRvalue;
1525    InitializationKind Kind
1526      = InitializationKind::CreateCopy(Value->getLocStart(),
1527                                       Value->getLocStart());
1528    InitializationSequence Seq(*this, Entity, Kind, &InitExpr, 1);
1529
1530    //   [...] If overload resolution fails, or if the type of the first
1531    //   parameter of the selected constructor is not an rvalue reference
1532    //   to the object's type (possibly cv-qualified), overload resolution
1533    //   is performed again, considering the object as an lvalue.
1534    if (Seq.getKind() != InitializationSequence::FailedSequence) {
1535      for (InitializationSequence::step_iterator Step = Seq.step_begin(),
1536           StepEnd = Seq.step_end();
1537           Step != StepEnd; ++Step) {
1538        if (Step->Kind
1539            != InitializationSequence::SK_ConstructorInitialization)
1540          continue;
1541
1542        CXXConstructorDecl *Constructor
1543        = cast<CXXConstructorDecl>(Step->Function.Function);
1544
1545        const RValueReferenceType *RRefType
1546          = Constructor->getParamDecl(0)->getType()
1547                                                 ->getAs<RValueReferenceType>();
1548
1549        // If we don't meet the criteria, break out now.
1550        if (!RRefType ||
1551            !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
1552                            Context.getTypeDeclType(Constructor->getParent())))
1553          break;
1554
1555        // Promote "AsRvalue" to the heap, since we now need this
1556        // expression node to persist.
1557        Value = ImplicitCastExpr::Create(Context, Value->getType(),
1558                                         CK_LValueToRValue, Value, 0,
1559                                         VK_XValue);
1560
1561        // Complete type-checking the initialization of the return type
1562        // using the constructor we found.
1563        Res = Seq.Perform(*this, Entity, Kind, MultiExprArg(&Value, 1));
1564      }
1565    }
1566  }
1567
1568  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
1569  // above, or overload resolution failed. Either way, we need to try
1570  // (again) now with the return value expression as written.
1571  if (Res.isInvalid())
1572    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
1573
1574  return Res;
1575}
1576
1577/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1578///
1579StmtResult
1580Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1581  // If this is the first return we've seen in the block, infer the type of
1582  // the block from it.
1583  BlockScopeInfo *CurBlock = getCurBlock();
1584  if (CurBlock->ReturnType.isNull()) {
1585    if (RetValExp) {
1586      // Don't call UsualUnaryConversions(), since we don't want to do
1587      // integer promotions here.
1588      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
1589      if (Result.isInvalid())
1590        return StmtError();
1591      RetValExp = Result.take();
1592      CurBlock->ReturnType = RetValExp->getType();
1593      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1594        // We have to remove a 'const' added to copied-in variable which was
1595        // part of the implementation spec. and not the actual qualifier for
1596        // the variable.
1597        if (CDRE->isConstQualAdded())
1598          CurBlock->ReturnType.removeLocalConst(); // FIXME: local???
1599      }
1600    } else
1601      CurBlock->ReturnType = Context.VoidTy;
1602  }
1603  QualType FnRetType = CurBlock->ReturnType;
1604
1605  if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
1606    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1607      << getCurFunctionOrMethodDecl()->getDeclName();
1608    return StmtError();
1609  }
1610
1611  // Otherwise, verify that this result type matches the previous one.  We are
1612  // pickier with blocks than for normal functions because we don't have GCC
1613  // compatibility to worry about here.
1614  ReturnStmt *Result = 0;
1615  if (CurBlock->ReturnType->isVoidType()) {
1616    if (RetValExp) {
1617      Diag(ReturnLoc, diag::err_return_block_has_expr);
1618      RetValExp = 0;
1619    }
1620    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1621  } else if (!RetValExp) {
1622    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1623  } else {
1624    const VarDecl *NRVOCandidate = 0;
1625
1626    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1627      // we have a non-void block with an expression, continue checking
1628
1629      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1630      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1631      // function return.
1632
1633      // In C++ the return statement is handled via a copy initialization.
1634      // the C version of which boils down to CheckSingleAssignmentConstraints.
1635      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1636      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1637                                                                     FnRetType,
1638                                                           NRVOCandidate != 0);
1639      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1640                                                       FnRetType, RetValExp);
1641      if (Res.isInvalid()) {
1642        // FIXME: Cleanup temporaries here, anyway?
1643        return StmtError();
1644      }
1645
1646      if (RetValExp) {
1647        CheckImplicitConversions(RetValExp, ReturnLoc);
1648        RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1649      }
1650
1651      RetValExp = Res.takeAs<Expr>();
1652      if (RetValExp)
1653        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1654    }
1655
1656    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1657  }
1658
1659  // If we need to check for the named return value optimization, save the
1660  // return statement in our scope for later processing.
1661  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1662      !CurContext->isDependentContext())
1663    FunctionScopes.back()->Returns.push_back(Result);
1664
1665  return Owned(Result);
1666}
1667
1668StmtResult
1669Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1670  // Check for unexpanded parameter packs.
1671  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
1672    return StmtError();
1673
1674  if (getCurBlock())
1675    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1676
1677  QualType FnRetType;
1678  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1679    FnRetType = FD->getResultType();
1680    if (FD->hasAttr<NoReturnAttr>() ||
1681        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1682      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1683        << getCurFunctionOrMethodDecl()->getDeclName();
1684  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
1685    FnRetType = MD->getResultType();
1686  else // If we don't have a function/method context, bail.
1687    return StmtError();
1688
1689  ReturnStmt *Result = 0;
1690  if (FnRetType->isVoidType()) {
1691    if (RetValExp) {
1692      if (!RetValExp->isTypeDependent()) {
1693        // C99 6.8.6.4p1 (ext_ since GCC warns)
1694        unsigned D = diag::ext_return_has_expr;
1695        if (RetValExp->getType()->isVoidType())
1696          D = diag::ext_return_has_void_expr;
1697        else {
1698          ExprResult Result = Owned(RetValExp);
1699          Result = IgnoredValueConversions(Result.take());
1700          if (Result.isInvalid())
1701            return StmtError();
1702          RetValExp = Result.take();
1703          RetValExp = ImpCastExprToType(RetValExp,
1704                                        Context.VoidTy, CK_ToVoid).take();
1705        }
1706
1707        // return (some void expression); is legal in C++.
1708        if (D != diag::ext_return_has_void_expr ||
1709            !getLangOptions().CPlusPlus) {
1710          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1711          Diag(ReturnLoc, D)
1712            << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
1713            << RetValExp->getSourceRange();
1714        }
1715      }
1716
1717      CheckImplicitConversions(RetValExp, ReturnLoc);
1718      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1719    }
1720
1721    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1722  } else if (!RetValExp && !FnRetType->isDependentType()) {
1723    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1724    // C99 6.8.6.4p1 (ext_ since GCC warns)
1725    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1726
1727    if (FunctionDecl *FD = getCurFunctionDecl())
1728      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1729    else
1730      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1731    Result = new (Context) ReturnStmt(ReturnLoc);
1732  } else {
1733    const VarDecl *NRVOCandidate = 0;
1734    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1735      // we have a non-void function with an expression, continue checking
1736
1737      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1738      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1739      // function return.
1740
1741      // In C++ the return statement is handled via a copy initialization.
1742      // the C version of which boils down to CheckSingleAssignmentConstraints.
1743      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
1744      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
1745                                                                     FnRetType,
1746                                                            NRVOCandidate != 0);
1747      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
1748                                                       FnRetType, RetValExp);
1749      if (Res.isInvalid()) {
1750        // FIXME: Cleanup temporaries here, anyway?
1751        return StmtError();
1752      }
1753
1754      RetValExp = Res.takeAs<Expr>();
1755      if (RetValExp)
1756        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1757    }
1758
1759    if (RetValExp) {
1760      CheckImplicitConversions(RetValExp, ReturnLoc);
1761      RetValExp = MaybeCreateExprWithCleanups(RetValExp);
1762    }
1763    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1764  }
1765
1766  // If we need to check for the named return value optimization, save the
1767  // return statement in our scope for later processing.
1768  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1769      !CurContext->isDependentContext())
1770    FunctionScopes.back()->Returns.push_back(Result);
1771
1772  return Owned(Result);
1773}
1774
1775/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1776/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1777/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1778/// provide a strong guidance to not use it.
1779///
1780/// This method checks to see if the argument is an acceptable l-value and
1781/// returns false if it is a case we can handle.
1782static bool CheckAsmLValue(const Expr *E, Sema &S) {
1783  // Type dependent expressions will be checked during instantiation.
1784  if (E->isTypeDependent())
1785    return false;
1786
1787  if (E->isLValue())
1788    return false;  // Cool, this is an lvalue.
1789
1790  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1791  // are supposed to allow.
1792  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1793  if (E != E2 && E2->isLValue()) {
1794    if (!S.getLangOptions().HeinousExtensions)
1795      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1796        << E->getSourceRange();
1797    else
1798      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1799        << E->getSourceRange();
1800    // Accept, even if we emitted an error diagnostic.
1801    return false;
1802  }
1803
1804  // None of the above, just randomly invalid non-lvalue.
1805  return true;
1806}
1807
1808/// isOperandMentioned - Return true if the specified operand # is mentioned
1809/// anywhere in the decomposed asm string.
1810static bool isOperandMentioned(unsigned OpNo,
1811                         llvm::ArrayRef<AsmStmt::AsmStringPiece> AsmStrPieces) {
1812  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
1813    const AsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
1814    if (!Piece.isOperand()) continue;
1815
1816    // If this is a reference to the input and if the input was the smaller
1817    // one, then we have to reject this asm.
1818    if (Piece.getOperandNo() == OpNo)
1819      return true;
1820  }
1821
1822  return false;
1823}
1824
1825StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc, bool IsSimple,
1826                              bool IsVolatile, unsigned NumOutputs,
1827                              unsigned NumInputs, IdentifierInfo **Names,
1828                              MultiExprArg constraints, MultiExprArg exprs,
1829                              Expr *asmString, MultiExprArg clobbers,
1830                              SourceLocation RParenLoc, bool MSAsm) {
1831  unsigned NumClobbers = clobbers.size();
1832  StringLiteral **Constraints =
1833    reinterpret_cast<StringLiteral**>(constraints.get());
1834  Expr **Exprs = exprs.get();
1835  StringLiteral *AsmString = cast<StringLiteral>(asmString);
1836  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
1837
1838  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1839
1840  // The parser verifies that there is a string literal here.
1841  if (AsmString->isWide())
1842    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
1843      << AsmString->getSourceRange());
1844
1845  for (unsigned i = 0; i != NumOutputs; i++) {
1846    StringLiteral *Literal = Constraints[i];
1847    if (Literal->isWide())
1848      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1849        << Literal->getSourceRange());
1850
1851    llvm::StringRef OutputName;
1852    if (Names[i])
1853      OutputName = Names[i]->getName();
1854
1855    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
1856    if (!Context.Target.validateOutputConstraint(Info))
1857      return StmtError(Diag(Literal->getLocStart(),
1858                            diag::err_asm_invalid_output_constraint)
1859                       << Info.getConstraintStr());
1860
1861    // Check that the output exprs are valid lvalues.
1862    Expr *OutputExpr = Exprs[i];
1863    if (CheckAsmLValue(OutputExpr, *this)) {
1864      return StmtError(Diag(OutputExpr->getLocStart(),
1865                  diag::err_asm_invalid_lvalue_in_output)
1866        << OutputExpr->getSourceRange());
1867    }
1868
1869    OutputConstraintInfos.push_back(Info);
1870  }
1871
1872  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1873
1874  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1875    StringLiteral *Literal = Constraints[i];
1876    if (Literal->isWide())
1877      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1878        << Literal->getSourceRange());
1879
1880    llvm::StringRef InputName;
1881    if (Names[i])
1882      InputName = Names[i]->getName();
1883
1884    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
1885    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1886                                                NumOutputs, Info)) {
1887      return StmtError(Diag(Literal->getLocStart(),
1888                            diag::err_asm_invalid_input_constraint)
1889                       << Info.getConstraintStr());
1890    }
1891
1892    Expr *InputExpr = Exprs[i];
1893
1894    // Only allow void types for memory constraints.
1895    if (Info.allowsMemory() && !Info.allowsRegister()) {
1896      if (CheckAsmLValue(InputExpr, *this))
1897        return StmtError(Diag(InputExpr->getLocStart(),
1898                              diag::err_asm_invalid_lvalue_in_input)
1899                         << Info.getConstraintStr()
1900                         << InputExpr->getSourceRange());
1901    }
1902
1903    if (Info.allowsRegister()) {
1904      if (InputExpr->getType()->isVoidType()) {
1905        return StmtError(Diag(InputExpr->getLocStart(),
1906                              diag::err_asm_invalid_type_in_input)
1907          << InputExpr->getType() << Info.getConstraintStr()
1908          << InputExpr->getSourceRange());
1909      }
1910    }
1911
1912    ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
1913    if (Result.isInvalid())
1914      return StmtError();
1915
1916    Exprs[i] = Result.take();
1917    InputConstraintInfos.push_back(Info);
1918  }
1919
1920  // Check that the clobbers are valid.
1921  for (unsigned i = 0; i != NumClobbers; i++) {
1922    StringLiteral *Literal = Clobbers[i];
1923    if (Literal->isWide())
1924      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1925        << Literal->getSourceRange());
1926
1927    llvm::StringRef Clobber = Literal->getString();
1928
1929    if (!Context.Target.isValidGCCRegisterName(Clobber))
1930      return StmtError(Diag(Literal->getLocStart(),
1931                  diag::err_asm_unknown_register_name) << Clobber);
1932  }
1933
1934  AsmStmt *NS =
1935    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
1936                          NumOutputs, NumInputs, Names, Constraints, Exprs,
1937                          AsmString, NumClobbers, Clobbers, RParenLoc);
1938  // Validate the asm string, ensuring it makes sense given the operands we
1939  // have.
1940  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1941  unsigned DiagOffs;
1942  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1943    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1944           << AsmString->getSourceRange();
1945    return StmtError();
1946  }
1947
1948  // Validate tied input operands for type mismatches.
1949  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1950    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1951
1952    // If this is a tied constraint, verify that the output and input have
1953    // either exactly the same type, or that they are int/ptr operands with the
1954    // same size (int/long, int*/long, are ok etc).
1955    if (!Info.hasTiedOperand()) continue;
1956
1957    unsigned TiedTo = Info.getTiedOperand();
1958    unsigned InputOpNo = i+NumOutputs;
1959    Expr *OutputExpr = Exprs[TiedTo];
1960    Expr *InputExpr = Exprs[InputOpNo];
1961    QualType InTy = InputExpr->getType();
1962    QualType OutTy = OutputExpr->getType();
1963    if (Context.hasSameType(InTy, OutTy))
1964      continue;  // All types can be tied to themselves.
1965
1966    // Decide if the input and output are in the same domain (integer/ptr or
1967    // floating point.
1968    enum AsmDomain {
1969      AD_Int, AD_FP, AD_Other
1970    } InputDomain, OutputDomain;
1971
1972    if (InTy->isIntegerType() || InTy->isPointerType())
1973      InputDomain = AD_Int;
1974    else if (InTy->isRealFloatingType())
1975      InputDomain = AD_FP;
1976    else
1977      InputDomain = AD_Other;
1978
1979    if (OutTy->isIntegerType() || OutTy->isPointerType())
1980      OutputDomain = AD_Int;
1981    else if (OutTy->isRealFloatingType())
1982      OutputDomain = AD_FP;
1983    else
1984      OutputDomain = AD_Other;
1985
1986    // They are ok if they are the same size and in the same domain.  This
1987    // allows tying things like:
1988    //   void* to int*
1989    //   void* to int            if they are the same size.
1990    //   double to long double   if they are the same size.
1991    //
1992    uint64_t OutSize = Context.getTypeSize(OutTy);
1993    uint64_t InSize = Context.getTypeSize(InTy);
1994    if (OutSize == InSize && InputDomain == OutputDomain &&
1995        InputDomain != AD_Other)
1996      continue;
1997
1998    // If the smaller input/output operand is not mentioned in the asm string,
1999    // then we can promote the smaller one to a larger input and the asm string
2000    // won't notice.
2001    bool SmallerValueMentioned = false;
2002
2003    // If this is a reference to the input and if the input was the smaller
2004    // one, then we have to reject this asm.
2005    if (isOperandMentioned(InputOpNo, Pieces)) {
2006      // This is a use in the asm string of the smaller operand.  Since we
2007      // codegen this by promoting to a wider value, the asm will get printed
2008      // "wrong".
2009      SmallerValueMentioned |= InSize < OutSize;
2010    }
2011    if (isOperandMentioned(TiedTo, Pieces)) {
2012      // If this is a reference to the output, and if the output is the larger
2013      // value, then it's ok because we'll promote the input to the larger type.
2014      SmallerValueMentioned |= OutSize < InSize;
2015    }
2016
2017    // If the smaller value wasn't mentioned in the asm string, and if the
2018    // output was a register, just extend the shorter one to the size of the
2019    // larger one.
2020    if (!SmallerValueMentioned && InputDomain != AD_Other &&
2021        OutputConstraintInfos[TiedTo].allowsRegister())
2022      continue;
2023
2024    // Either both of the operands were mentioned or the smaller one was
2025    // mentioned.  One more special case that we'll allow: if the tied input is
2026    // integer, unmentioned, and is a constant, then we'll allow truncating it
2027    // down to the size of the destination.
2028    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
2029        !isOperandMentioned(InputOpNo, Pieces) &&
2030        InputExpr->isEvaluatable(Context)) {
2031      CastKind castKind =
2032        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
2033      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
2034      Exprs[InputOpNo] = InputExpr;
2035      NS->setInputExpr(i, InputExpr);
2036      continue;
2037    }
2038
2039    Diag(InputExpr->getLocStart(),
2040         diag::err_asm_tying_incompatible_types)
2041      << InTy << OutTy << OutputExpr->getSourceRange()
2042      << InputExpr->getSourceRange();
2043    return StmtError();
2044  }
2045
2046  return Owned(NS);
2047}
2048
2049StmtResult
2050Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
2051                           SourceLocation RParen, Decl *Parm,
2052                           Stmt *Body) {
2053  VarDecl *Var = cast_or_null<VarDecl>(Parm);
2054  if (Var && Var->isInvalidDecl())
2055    return StmtError();
2056
2057  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body));
2058}
2059
2060StmtResult
2061Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
2062  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc, Body));
2063}
2064
2065StmtResult
2066Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
2067                         MultiStmtArg CatchStmts, Stmt *Finally) {
2068  if (!getLangOptions().ObjCExceptions)
2069    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
2070
2071  getCurFunction()->setHasBranchProtectedScope();
2072  unsigned NumCatchStmts = CatchStmts.size();
2073  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try,
2074                                     CatchStmts.release(),
2075                                     NumCatchStmts,
2076                                     Finally));
2077}
2078
2079StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
2080                                                  Expr *Throw) {
2081  if (Throw) {
2082    ExprResult Result = DefaultLvalueConversion(Throw);
2083    if (Result.isInvalid())
2084      return StmtError();
2085
2086    Throw = Result.take();
2087    QualType ThrowType = Throw->getType();
2088    // Make sure the expression type is an ObjC pointer or "void *".
2089    if (!ThrowType->isDependentType() &&
2090        !ThrowType->isObjCObjectPointerType()) {
2091      const PointerType *PT = ThrowType->getAs<PointerType>();
2092      if (!PT || !PT->getPointeeType()->isVoidType())
2093        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
2094                         << Throw->getType() << Throw->getSourceRange());
2095    }
2096  }
2097
2098  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, Throw));
2099}
2100
2101StmtResult
2102Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
2103                           Scope *CurScope) {
2104  if (!getLangOptions().ObjCExceptions)
2105    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
2106
2107  if (!Throw) {
2108    // @throw without an expression designates a rethrow (which much occur
2109    // in the context of an @catch clause).
2110    Scope *AtCatchParent = CurScope;
2111    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
2112      AtCatchParent = AtCatchParent->getParent();
2113    if (!AtCatchParent)
2114      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
2115  }
2116
2117  return BuildObjCAtThrowStmt(AtLoc, Throw);
2118}
2119
2120StmtResult
2121Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
2122                                  Stmt *SyncBody) {
2123  getCurFunction()->setHasBranchProtectedScope();
2124
2125  ExprResult Result = DefaultLvalueConversion(SyncExpr);
2126  if (Result.isInvalid())
2127    return StmtError();
2128
2129  SyncExpr = Result.take();
2130  // Make sure the expression type is an ObjC pointer or "void *".
2131  if (!SyncExpr->getType()->isDependentType() &&
2132      !SyncExpr->getType()->isObjCObjectPointerType()) {
2133    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
2134    if (!PT || !PT->getPointeeType()->isVoidType())
2135      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
2136                       << SyncExpr->getType() << SyncExpr->getSourceRange());
2137  }
2138
2139  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody));
2140}
2141
2142/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
2143/// and creates a proper catch handler from them.
2144StmtResult
2145Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
2146                         Stmt *HandlerBlock) {
2147  // There's nothing to test that ActOnExceptionDecl didn't already test.
2148  return Owned(new (Context) CXXCatchStmt(CatchLoc,
2149                                          cast_or_null<VarDecl>(ExDecl),
2150                                          HandlerBlock));
2151}
2152
2153namespace {
2154
2155class TypeWithHandler {
2156  QualType t;
2157  CXXCatchStmt *stmt;
2158public:
2159  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
2160  : t(type), stmt(statement) {}
2161
2162  // An arbitrary order is fine as long as it places identical
2163  // types next to each other.
2164  bool operator<(const TypeWithHandler &y) const {
2165    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
2166      return true;
2167    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
2168      return false;
2169    else
2170      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
2171  }
2172
2173  bool operator==(const TypeWithHandler& other) const {
2174    return t == other.t;
2175  }
2176
2177  CXXCatchStmt *getCatchStmt() const { return stmt; }
2178  SourceLocation getTypeSpecStartLoc() const {
2179    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
2180  }
2181};
2182
2183}
2184
2185/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
2186/// handlers and creates a try statement from them.
2187StmtResult
2188Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
2189                       MultiStmtArg RawHandlers) {
2190  // Don't report an error if 'try' is used in system headers.
2191  if (!getLangOptions().CXXExceptions &&
2192      !getSourceManager().isInSystemHeader(TryLoc))
2193      Diag(TryLoc, diag::err_exceptions_disabled) << "try";
2194
2195  unsigned NumHandlers = RawHandlers.size();
2196  assert(NumHandlers > 0 &&
2197         "The parser shouldn't call this if there are no handlers.");
2198  Stmt **Handlers = RawHandlers.get();
2199
2200  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
2201
2202  for (unsigned i = 0; i < NumHandlers; ++i) {
2203    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
2204    if (!Handler->getExceptionDecl()) {
2205      if (i < NumHandlers - 1)
2206        return StmtError(Diag(Handler->getLocStart(),
2207                              diag::err_early_catch_all));
2208
2209      continue;
2210    }
2211
2212    const QualType CaughtType = Handler->getCaughtType();
2213    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
2214    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
2215  }
2216
2217  // Detect handlers for the same type as an earlier one.
2218  if (NumHandlers > 1) {
2219    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
2220
2221    TypeWithHandler prev = TypesWithHandlers[0];
2222    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
2223      TypeWithHandler curr = TypesWithHandlers[i];
2224
2225      if (curr == prev) {
2226        Diag(curr.getTypeSpecStartLoc(),
2227             diag::warn_exception_caught_by_earlier_handler)
2228          << curr.getCatchStmt()->getCaughtType().getAsString();
2229        Diag(prev.getTypeSpecStartLoc(),
2230             diag::note_previous_exception_handler)
2231          << prev.getCatchStmt()->getCaughtType().getAsString();
2232      }
2233
2234      prev = curr;
2235    }
2236  }
2237
2238  getCurFunction()->setHasBranchProtectedScope();
2239
2240  // FIXME: We should detect handlers that cannot catch anything because an
2241  // earlier handler catches a superclass. Need to find a method that is not
2242  // quadratic for this.
2243  // Neither of these are explicitly forbidden, but every compiler detects them
2244  // and warns.
2245
2246  return Owned(CXXTryStmt::Create(Context, TryLoc, TryBlock,
2247                                  Handlers, NumHandlers));
2248}
2249
2250StmtResult
2251Sema::ActOnSEHTryBlock(bool IsCXXTry,
2252                       SourceLocation TryLoc,
2253                       Stmt *TryBlock,
2254                       Stmt *Handler) {
2255  assert(TryBlock && Handler);
2256
2257  getCurFunction()->setHasBranchProtectedScope();
2258
2259  return Owned(SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler));
2260}
2261
2262StmtResult
2263Sema::ActOnSEHExceptBlock(SourceLocation Loc,
2264                          Expr *FilterExpr,
2265                          Stmt *Block) {
2266  assert(FilterExpr && Block);
2267
2268  if(!FilterExpr->getType()->isIntegerType()) {
2269    return StmtError(Diag(FilterExpr->getExprLoc(),
2270                     diag::err_filter_expression_integral)
2271                     << FilterExpr->getType());
2272  }
2273
2274  return Owned(SEHExceptStmt::Create(Context,Loc,FilterExpr,Block));
2275}
2276
2277StmtResult
2278Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
2279                           Stmt *Block) {
2280  assert(Block);
2281  return Owned(SEHFinallyStmt::Create(Context,Loc,Block));
2282}
2283
2284