SemaStmt.cpp revision 6907fbe758d23e1aec4c0a67e7b633d1d855feb4
1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for statements.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/StmtObjC.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/AST/TypeLoc.h"
24#include "clang/Lex/Preprocessor.h"
25#include "clang/Basic/TargetInfo.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallVector.h"
28using namespace clang;
29
30Sema::OwningStmtResult Sema::ActOnExprStmt(FullExprArg expr) {
31  Expr *E = expr->takeAs<Expr>();
32  assert(E && "ActOnExprStmt(): missing expression");
33  if (E->getType()->isObjCObjectType()) {
34    if (LangOpts.ObjCNonFragileABI)
35      Diag(E->getLocEnd(), diag::err_indirection_requires_nonfragile_object)
36             << E->getType();
37    else
38      Diag(E->getLocEnd(), diag::err_direct_interface_unsupported)
39             << E->getType();
40    return StmtError();
41  }
42  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
43  // void expression for its side effects.  Conversion to void allows any
44  // operand, even incomplete types.
45
46  // Same thing in for stmt first clause (when expr) and third clause.
47  return Owned(static_cast<Stmt*>(E));
48}
49
50
51Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
52  return Owned(new (Context) NullStmt(SemiLoc));
53}
54
55Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
56                                           SourceLocation StartLoc,
57                                           SourceLocation EndLoc) {
58  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
59
60  // If we have an invalid decl, just return an error.
61  if (DG.isNull()) return StmtError();
62
63  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
64}
65
66void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
67  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
68
69  // If we have an invalid decl, just return.
70  if (DG.isNull() || !DG.isSingleDecl()) return;
71  // suppress any potential 'unused variable' warning.
72  DG.getSingleDecl()->setUsed();
73}
74
75void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
76  const Expr *E = dyn_cast_or_null<Expr>(S);
77  if (!E)
78    return;
79
80  SourceLocation Loc;
81  SourceRange R1, R2;
82  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
83    return;
84
85  // Okay, we have an unused result.  Depending on what the base expression is,
86  // we might want to make a more specific diagnostic.  Check for one of these
87  // cases now.
88  unsigned DiagID = diag::warn_unused_expr;
89  E = E->IgnoreParens();
90  if (isa<ObjCImplicitSetterGetterRefExpr>(E))
91    DiagID = diag::warn_unused_property_expr;
92
93  if (const CXXExprWithTemporaries *Temps = dyn_cast<CXXExprWithTemporaries>(E))
94    E = Temps->getSubExpr();
95  if (const CXXZeroInitValueExpr *Zero = dyn_cast<CXXZeroInitValueExpr>(E)) {
96    if (const RecordType *RecordT = Zero->getType()->getAs<RecordType>())
97      if (CXXRecordDecl *RecordD = dyn_cast<CXXRecordDecl>(RecordT->getDecl()))
98        if (!RecordD->hasTrivialDestructor())
99          return;
100  }
101
102  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
103    if (E->getType()->isVoidType())
104      return;
105
106    // If the callee has attribute pure, const, or warn_unused_result, warn with
107    // a more specific message to make it clear what is happening.
108    if (const Decl *FD = CE->getCalleeDecl()) {
109      if (FD->getAttr<WarnUnusedResultAttr>()) {
110        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
111        return;
112      }
113      if (FD->getAttr<PureAttr>()) {
114        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
115        return;
116      }
117      if (FD->getAttr<ConstAttr>()) {
118        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
119        return;
120      }
121    }
122  }
123  else if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
124    const ObjCMethodDecl *MD = ME->getMethodDecl();
125    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
126      Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
127      return;
128    }
129  } else if (const CXXFunctionalCastExpr *FC
130                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
131    if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
132        isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
133      return;
134  }
135  // Diagnose "(void*) blah" as a typo for "(void) blah".
136  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
137    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
138    QualType T = TI->getType();
139
140    // We really do want to use the non-canonical type here.
141    if (T == Context.VoidPtrTy) {
142      PointerTypeLoc TL = cast<PointerTypeLoc>(TI->getTypeLoc());
143
144      Diag(Loc, diag::warn_unused_voidptr)
145        << FixItHint::CreateRemoval(TL.getStarLoc());
146      return;
147    }
148  }
149
150  Diag(Loc, DiagID) << R1 << R2;
151}
152
153Action::OwningStmtResult
154Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
155                        MultiStmtArg elts, bool isStmtExpr) {
156  unsigned NumElts = elts.size();
157  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
158  // If we're in C89 mode, check that we don't have any decls after stmts.  If
159  // so, emit an extension diagnostic.
160  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
161    // Note that __extension__ can be around a decl.
162    unsigned i = 0;
163    // Skip over all declarations.
164    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
165      /*empty*/;
166
167    // We found the end of the list or a statement.  Scan for another declstmt.
168    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
169      /*empty*/;
170
171    if (i != NumElts) {
172      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
173      Diag(D->getLocation(), diag::ext_mixed_decls_code);
174    }
175  }
176  // Warn about unused expressions in statements.
177  for (unsigned i = 0; i != NumElts; ++i) {
178    // Ignore statements that are last in a statement expression.
179    if (isStmtExpr && i == NumElts - 1)
180      continue;
181
182    DiagnoseUnusedExprResult(Elts[i]);
183  }
184
185  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
186}
187
188Action::OwningStmtResult
189Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
190                    SourceLocation DotDotDotLoc, ExprArg rhsval,
191                    SourceLocation ColonLoc) {
192  assert((lhsval.get() != 0) && "missing expression in case statement");
193
194  // C99 6.8.4.2p3: The expression shall be an integer constant.
195  // However, GCC allows any evaluatable integer expression.
196  Expr *LHSVal = static_cast<Expr*>(lhsval.get());
197  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
198      VerifyIntegerConstantExpression(LHSVal))
199    return StmtError();
200
201  // GCC extension: The expression shall be an integer constant.
202
203  Expr *RHSVal = static_cast<Expr*>(rhsval.get());
204  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
205      VerifyIntegerConstantExpression(RHSVal)) {
206    RHSVal = 0;  // Recover by just forgetting about it.
207    rhsval = 0;
208  }
209
210  if (getSwitchStack().empty()) {
211    Diag(CaseLoc, diag::err_case_not_in_switch);
212    return StmtError();
213  }
214
215  // Only now release the smart pointers.
216  lhsval.release();
217  rhsval.release();
218  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
219                                        ColonLoc);
220  getSwitchStack().back()->addSwitchCase(CS);
221  return Owned(CS);
222}
223
224/// ActOnCaseStmtBody - This installs a statement as the body of a case.
225void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) {
226  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
227  Stmt *SubStmt = subStmt.takeAs<Stmt>();
228  CS->setSubStmt(SubStmt);
229}
230
231Action::OwningStmtResult
232Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
233                       StmtArg subStmt, Scope *CurScope) {
234  Stmt *SubStmt = subStmt.takeAs<Stmt>();
235
236  if (getSwitchStack().empty()) {
237    Diag(DefaultLoc, diag::err_default_not_in_switch);
238    return Owned(SubStmt);
239  }
240
241  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
242  getSwitchStack().back()->addSwitchCase(DS);
243  return Owned(DS);
244}
245
246Action::OwningStmtResult
247Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
248                     SourceLocation ColonLoc, StmtArg subStmt) {
249  Stmt *SubStmt = subStmt.takeAs<Stmt>();
250  // Look up the record for this label identifier.
251  LabelStmt *&LabelDecl = getLabelMap()[II];
252
253  // If not forward referenced or defined already, just create a new LabelStmt.
254  if (LabelDecl == 0)
255    return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
256
257  assert(LabelDecl->getID() == II && "Label mismatch!");
258
259  // Otherwise, this label was either forward reference or multiply defined.  If
260  // multiply defined, reject it now.
261  if (LabelDecl->getSubStmt()) {
262    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
263    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
264    return Owned(SubStmt);
265  }
266
267  // Otherwise, this label was forward declared, and we just found its real
268  // definition.  Fill in the forward definition and return it.
269  LabelDecl->setIdentLoc(IdentLoc);
270  LabelDecl->setSubStmt(SubStmt);
271  return Owned(LabelDecl);
272}
273
274Action::OwningStmtResult
275Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, DeclPtrTy CondVar,
276                  StmtArg ThenVal, SourceLocation ElseLoc,
277                  StmtArg ElseVal) {
278  OwningExprResult CondResult(CondVal.release());
279
280  VarDecl *ConditionVar = 0;
281  if (CondVar.get()) {
282    ConditionVar = CondVar.getAs<VarDecl>();
283    CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
284    if (CondResult.isInvalid())
285      return StmtError();
286  }
287  Expr *ConditionExpr = CondResult.takeAs<Expr>();
288  if (!ConditionExpr)
289    return StmtError();
290
291  Stmt *thenStmt = ThenVal.takeAs<Stmt>();
292  DiagnoseUnusedExprResult(thenStmt);
293
294  // Warn if the if block has a null body without an else value.
295  // this helps prevent bugs due to typos, such as
296  // if (condition);
297  //   do_stuff();
298  if (!ElseVal.get()) {
299    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
300      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
301  }
302
303  Stmt *elseStmt = ElseVal.takeAs<Stmt>();
304  DiagnoseUnusedExprResult(elseStmt);
305
306  CondResult.release();
307  return Owned(new (Context) IfStmt(IfLoc, ConditionVar, ConditionExpr,
308                                    thenStmt, ElseLoc, elseStmt));
309}
310
311/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
312/// the specified width and sign.  If an overflow occurs, detect it and emit
313/// the specified diagnostic.
314void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
315                                              unsigned NewWidth, bool NewSign,
316                                              SourceLocation Loc,
317                                              unsigned DiagID) {
318  // Perform a conversion to the promoted condition type if needed.
319  if (NewWidth > Val.getBitWidth()) {
320    // If this is an extension, just do it.
321    Val.extend(NewWidth);
322    Val.setIsSigned(NewSign);
323
324    // If the input was signed and negative and the output is
325    // unsigned, don't bother to warn: this is implementation-defined
326    // behavior.
327    // FIXME: Introduce a second, default-ignored warning for this case?
328  } else if (NewWidth < Val.getBitWidth()) {
329    // If this is a truncation, check for overflow.
330    llvm::APSInt ConvVal(Val);
331    ConvVal.trunc(NewWidth);
332    ConvVal.setIsSigned(NewSign);
333    ConvVal.extend(Val.getBitWidth());
334    ConvVal.setIsSigned(Val.isSigned());
335    if (ConvVal != Val)
336      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
337
338    // Regardless of whether a diagnostic was emitted, really do the
339    // truncation.
340    Val.trunc(NewWidth);
341    Val.setIsSigned(NewSign);
342  } else if (NewSign != Val.isSigned()) {
343    // Convert the sign to match the sign of the condition.  This can cause
344    // overflow as well: unsigned(INTMIN)
345    // We don't diagnose this overflow, because it is implementation-defined
346    // behavior.
347    // FIXME: Introduce a second, default-ignored warning for this case?
348    llvm::APSInt OldVal(Val);
349    Val.setIsSigned(NewSign);
350  }
351}
352
353namespace {
354  struct CaseCompareFunctor {
355    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
356                    const llvm::APSInt &RHS) {
357      return LHS.first < RHS;
358    }
359    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
360                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
361      return LHS.first < RHS.first;
362    }
363    bool operator()(const llvm::APSInt &LHS,
364                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
365      return LHS < RHS.first;
366    }
367  };
368}
369
370/// CmpCaseVals - Comparison predicate for sorting case values.
371///
372static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
373                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
374  if (lhs.first < rhs.first)
375    return true;
376
377  if (lhs.first == rhs.first &&
378      lhs.second->getCaseLoc().getRawEncoding()
379       < rhs.second->getCaseLoc().getRawEncoding())
380    return true;
381  return false;
382}
383
384/// CmpEnumVals - Comparison predicate for sorting enumeration values.
385///
386static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
387                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
388{
389  return lhs.first < rhs.first;
390}
391
392/// EqEnumVals - Comparison preficate for uniqing enumeration values.
393///
394static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
395                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
396{
397  return lhs.first == rhs.first;
398}
399
400/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
401/// potentially integral-promoted expression @p expr.
402static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
403  if (const CastExpr *ImplicitCast = dyn_cast<ImplicitCastExpr>(expr)) {
404    const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
405    QualType TypeBeforePromotion = ExprBeforePromotion->getType();
406    if (TypeBeforePromotion->isIntegralType()) {
407      return TypeBeforePromotion;
408    }
409  }
410  return expr->getType();
411}
412
413/// \brief Check (and possibly convert) the condition in a switch
414/// statement in C++.
415static bool CheckCXXSwitchCondition(Sema &S, SourceLocation SwitchLoc,
416                                    Expr *&CondExpr) {
417  if (CondExpr->isTypeDependent())
418    return false;
419
420  QualType CondType = CondExpr->getType();
421
422  // C++ 6.4.2.p2:
423  // The condition shall be of integral type, enumeration type, or of a class
424  // type for which a single conversion function to integral or enumeration
425  // type exists (12.3). If the condition is of class type, the condition is
426  // converted by calling that conversion function, and the result of the
427  // conversion is used in place of the original condition for the remainder
428  // of this section. Integral promotions are performed.
429
430  // Make sure that the condition expression has a complete type,
431  // otherwise we'll never find any conversions.
432  if (S.RequireCompleteType(SwitchLoc, CondType,
433                            S.PDiag(diag::err_switch_incomplete_class_type)
434                              << CondExpr->getSourceRange()))
435    return true;
436
437  UnresolvedSet<4> ViableConversions;
438  UnresolvedSet<4> ExplicitConversions;
439  if (const RecordType *RecordTy = CondType->getAs<RecordType>()) {
440    const UnresolvedSetImpl *Conversions
441      = cast<CXXRecordDecl>(RecordTy->getDecl())
442                                             ->getVisibleConversionFunctions();
443    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
444           E = Conversions->end(); I != E; ++I) {
445      if (CXXConversionDecl *Conversion
446            = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl()))
447        if (Conversion->getConversionType().getNonReferenceType()
448              ->isIntegralType()) {
449          if (Conversion->isExplicit())
450            ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
451          else
452            ViableConversions.addDecl(I.getDecl(), I.getAccess());
453        }
454    }
455
456    switch (ViableConversions.size()) {
457    case 0:
458      if (ExplicitConversions.size() == 1) {
459        DeclAccessPair Found = ExplicitConversions[0];
460        CXXConversionDecl *Conversion =
461          cast<CXXConversionDecl>(Found->getUnderlyingDecl());
462        // The user probably meant to invoke the given explicit
463        // conversion; use it.
464        QualType ConvTy
465          = Conversion->getConversionType().getNonReferenceType();
466        std::string TypeStr;
467        ConvTy.getAsStringInternal(TypeStr, S.Context.PrintingPolicy);
468
469        S.Diag(SwitchLoc, diag::err_switch_explicit_conversion)
470          << CondType << ConvTy << CondExpr->getSourceRange()
471          << FixItHint::CreateInsertion(CondExpr->getLocStart(),
472                                        "static_cast<" + TypeStr + ">(")
473          << FixItHint::CreateInsertion(
474                            S.PP.getLocForEndOfToken(CondExpr->getLocEnd()),
475                               ")");
476        S.Diag(Conversion->getLocation(), diag::note_switch_conversion)
477          << ConvTy->isEnumeralType() << ConvTy;
478
479        // If we aren't in a SFINAE context, build a call to the
480        // explicit conversion function.
481        if (S.isSFINAEContext())
482          return true;
483
484        S.CheckMemberOperatorAccess(CondExpr->getExprLoc(),
485                                    CondExpr, 0, Found);
486        CondExpr = S.BuildCXXMemberCallExpr(CondExpr, Found, Conversion);
487      }
488
489      // We'll complain below about a non-integral condition type.
490      break;
491
492    case 1: {
493      // Apply this conversion.
494      DeclAccessPair Found = ViableConversions[0];
495      S.CheckMemberOperatorAccess(CondExpr->getExprLoc(),
496                                  CondExpr, 0, Found);
497      CondExpr = S.BuildCXXMemberCallExpr(CondExpr, Found,
498                        cast<CXXConversionDecl>(Found->getUnderlyingDecl()));
499      break;
500    }
501
502    default:
503      S.Diag(SwitchLoc, diag::err_switch_multiple_conversions)
504        << CondType << CondExpr->getSourceRange();
505      for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
506        CXXConversionDecl *Conv
507          = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
508        QualType ConvTy = Conv->getConversionType().getNonReferenceType();
509        S.Diag(Conv->getLocation(), diag::note_switch_conversion)
510          << ConvTy->isEnumeralType() << ConvTy;
511      }
512      return true;
513    }
514  }
515
516  return false;
517}
518
519Action::OwningStmtResult
520Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, ExprArg Cond,
521                             DeclPtrTy CondVar) {
522  VarDecl *ConditionVar = 0;
523  if (CondVar.get()) {
524    ConditionVar = CondVar.getAs<VarDecl>();
525    OwningExprResult CondE = CheckConditionVariable(ConditionVar, SourceLocation(), false);
526    if (CondE.isInvalid())
527      return StmtError();
528
529    Cond = move(CondE);
530  }
531
532  Expr *CondExpr = Cond.takeAs<Expr>();
533  if (!CondExpr)
534    return StmtError();
535
536  if (getLangOptions().CPlusPlus &&
537      CheckCXXSwitchCondition(*this, SwitchLoc, CondExpr))
538    return StmtError();
539
540  if (!CondVar.get()) {
541    CondExpr = MaybeCreateCXXExprWithTemporaries(CondExpr);
542    if (!CondExpr)
543      return StmtError();
544  }
545
546  SwitchStmt *SS = new (Context) SwitchStmt(ConditionVar, CondExpr);
547  getSwitchStack().push_back(SS);
548  return Owned(SS);
549}
550
551Action::OwningStmtResult
552Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
553                            StmtArg Body) {
554  Stmt *BodyStmt = Body.takeAs<Stmt>();
555
556  SwitchStmt *SS = getSwitchStack().back();
557  assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
558
559  SS->setBody(BodyStmt, SwitchLoc);
560  getSwitchStack().pop_back();
561
562  if (SS->getCond() == 0) {
563    SS->Destroy(Context);
564    return StmtError();
565  }
566
567  Expr *CondExpr = SS->getCond();
568  Expr *CondExprBeforePromotion = CondExpr;
569  QualType CondTypeBeforePromotion =
570      GetTypeBeforeIntegralPromotion(CondExpr);
571
572  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
573  UsualUnaryConversions(CondExpr);
574  QualType CondType = CondExpr->getType();
575  SS->setCond(CondExpr);
576
577  // C++ 6.4.2.p2:
578  // Integral promotions are performed (on the switch condition).
579  //
580  // A case value unrepresentable by the original switch condition
581  // type (before the promotion) doesn't make sense, even when it can
582  // be represented by the promoted type.  Therefore we need to find
583  // the pre-promotion type of the switch condition.
584  if (!CondExpr->isTypeDependent()) {
585    if (!CondType->isIntegerType()) { // C99 6.8.4.2p1
586      Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
587          << CondType << CondExpr->getSourceRange();
588      return StmtError();
589    }
590
591    if (CondExpr->isKnownToHaveBooleanValue()) {
592      // switch(bool_expr) {...} is often a programmer error, e.g.
593      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
594      // One can always use an if statement instead of switch(bool_expr).
595      Diag(SwitchLoc, diag::warn_bool_switch_condition)
596          << CondExpr->getSourceRange();
597    }
598  }
599
600  // Get the bitwidth of the switched-on value before promotions.  We must
601  // convert the integer case values to this width before comparison.
602  bool HasDependentValue
603    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
604  unsigned CondWidth
605    = HasDependentValue? 0
606      : static_cast<unsigned>(Context.getTypeSize(CondTypeBeforePromotion));
607  bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerType();
608
609  // Accumulate all of the case values in a vector so that we can sort them
610  // and detect duplicates.  This vector contains the APInt for the case after
611  // it has been converted to the condition type.
612  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
613  CaseValsTy CaseVals;
614
615  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
616  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
617  CaseRangesTy CaseRanges;
618
619  DefaultStmt *TheDefaultStmt = 0;
620
621  bool CaseListIsErroneous = false;
622
623  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
624       SC = SC->getNextSwitchCase()) {
625
626    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
627      if (TheDefaultStmt) {
628        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
629        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
630
631        // FIXME: Remove the default statement from the switch block so that
632        // we'll return a valid AST.  This requires recursing down the AST and
633        // finding it, not something we are set up to do right now.  For now,
634        // just lop the entire switch stmt out of the AST.
635        CaseListIsErroneous = true;
636      }
637      TheDefaultStmt = DS;
638
639    } else {
640      CaseStmt *CS = cast<CaseStmt>(SC);
641
642      // We already verified that the expression has a i-c-e value (C99
643      // 6.8.4.2p3) - get that value now.
644      Expr *Lo = CS->getLHS();
645
646      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
647        HasDependentValue = true;
648        break;
649      }
650
651      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
652
653      // Convert the value to the same width/sign as the condition.
654      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
655                                         CS->getLHS()->getLocStart(),
656                                         diag::warn_case_value_overflow);
657
658      // If the LHS is not the same type as the condition, insert an implicit
659      // cast.
660      ImpCastExprToType(Lo, CondType, CastExpr::CK_IntegralCast);
661      CS->setLHS(Lo);
662
663      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
664      if (CS->getRHS()) {
665        if (CS->getRHS()->isTypeDependent() ||
666            CS->getRHS()->isValueDependent()) {
667          HasDependentValue = true;
668          break;
669        }
670        CaseRanges.push_back(std::make_pair(LoVal, CS));
671      } else
672        CaseVals.push_back(std::make_pair(LoVal, CS));
673    }
674  }
675
676  if (!HasDependentValue) {
677    // If we don't have a default statement, check whether the
678    // condition is constant.
679    llvm::APSInt ConstantCondValue;
680    bool HasConstantCond = false;
681    bool ShouldCheckConstantCond = false;
682    if (!HasDependentValue && !TheDefaultStmt) {
683      Expr::EvalResult Result;
684      HasConstantCond = CondExprBeforePromotion->Evaluate(Result, Context);
685      if (HasConstantCond) {
686        assert(Result.Val.isInt() && "switch condition evaluated to non-int");
687        ConstantCondValue = Result.Val.getInt();
688        ShouldCheckConstantCond = true;
689
690        assert(ConstantCondValue.getBitWidth() == CondWidth &&
691               ConstantCondValue.isSigned() == CondIsSigned);
692      }
693    }
694
695    // Sort all the scalar case values so we can easily detect duplicates.
696    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
697
698    if (!CaseVals.empty()) {
699      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
700        if (ShouldCheckConstantCond &&
701            CaseVals[i].first == ConstantCondValue)
702          ShouldCheckConstantCond = false;
703
704        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
705          // If we have a duplicate, report it.
706          Diag(CaseVals[i].second->getLHS()->getLocStart(),
707               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
708          Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
709               diag::note_duplicate_case_prev);
710          // FIXME: We really want to remove the bogus case stmt from the
711          // substmt, but we have no way to do this right now.
712          CaseListIsErroneous = true;
713        }
714      }
715    }
716
717    // Detect duplicate case ranges, which usually don't exist at all in
718    // the first place.
719    if (!CaseRanges.empty()) {
720      // Sort all the case ranges by their low value so we can easily detect
721      // overlaps between ranges.
722      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
723
724      // Scan the ranges, computing the high values and removing empty ranges.
725      std::vector<llvm::APSInt> HiVals;
726      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
727        llvm::APSInt &LoVal = CaseRanges[i].first;
728        CaseStmt *CR = CaseRanges[i].second;
729        Expr *Hi = CR->getRHS();
730        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
731
732        // Convert the value to the same width/sign as the condition.
733        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
734                                           CR->getRHS()->getLocStart(),
735                                           diag::warn_case_value_overflow);
736
737        // If the LHS is not the same type as the condition, insert an implicit
738        // cast.
739        ImpCastExprToType(Hi, CondType, CastExpr::CK_IntegralCast);
740        CR->setRHS(Hi);
741
742        // If the low value is bigger than the high value, the case is empty.
743        if (LoVal > HiVal) {
744          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
745            << SourceRange(CR->getLHS()->getLocStart(),
746                           CR->getRHS()->getLocEnd());
747          CaseRanges.erase(CaseRanges.begin()+i);
748          --i, --e;
749          continue;
750        }
751
752        if (ShouldCheckConstantCond &&
753            LoVal <= ConstantCondValue &&
754            ConstantCondValue <= HiVal)
755          ShouldCheckConstantCond = false;
756
757        HiVals.push_back(HiVal);
758      }
759
760      // Rescan the ranges, looking for overlap with singleton values and other
761      // ranges.  Since the range list is sorted, we only need to compare case
762      // ranges with their neighbors.
763      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
764        llvm::APSInt &CRLo = CaseRanges[i].first;
765        llvm::APSInt &CRHi = HiVals[i];
766        CaseStmt *CR = CaseRanges[i].second;
767
768        // Check to see whether the case range overlaps with any
769        // singleton cases.
770        CaseStmt *OverlapStmt = 0;
771        llvm::APSInt OverlapVal(32);
772
773        // Find the smallest value >= the lower bound.  If I is in the
774        // case range, then we have overlap.
775        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
776                                                  CaseVals.end(), CRLo,
777                                                  CaseCompareFunctor());
778        if (I != CaseVals.end() && I->first < CRHi) {
779          OverlapVal  = I->first;   // Found overlap with scalar.
780          OverlapStmt = I->second;
781        }
782
783        // Find the smallest value bigger than the upper bound.
784        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
785        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
786          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
787          OverlapStmt = (I-1)->second;
788        }
789
790        // Check to see if this case stmt overlaps with the subsequent
791        // case range.
792        if (i && CRLo <= HiVals[i-1]) {
793          OverlapVal  = HiVals[i-1];       // Found overlap with range.
794          OverlapStmt = CaseRanges[i-1].second;
795        }
796
797        if (OverlapStmt) {
798          // If we have a duplicate, report it.
799          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
800            << OverlapVal.toString(10);
801          Diag(OverlapStmt->getLHS()->getLocStart(),
802               diag::note_duplicate_case_prev);
803          // FIXME: We really want to remove the bogus case stmt from the
804          // substmt, but we have no way to do this right now.
805          CaseListIsErroneous = true;
806        }
807      }
808    }
809
810    // Complain if we have a constant condition and we didn't find a match.
811    if (!CaseListIsErroneous && ShouldCheckConstantCond) {
812      // TODO: it would be nice if we printed enums as enums, chars as
813      // chars, etc.
814      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
815        << ConstantCondValue.toString(10)
816        << CondExpr->getSourceRange();
817    }
818
819    // Check to see if switch is over an Enum and handles all of its
820    // values.  We don't need to do this if there's a default
821    // statement or if we have a constant condition.
822    //
823    // TODO: we might want to check whether case values are out of the
824    // enum even if we don't want to check whether all cases are handled.
825    const EnumType* ET = CondTypeBeforePromotion->getAs<EnumType>();
826    // If switch has default case, then ignore it.
827    if (!CaseListIsErroneous && !TheDefaultStmt && !HasConstantCond && ET) {
828      const EnumDecl *ED = ET->getDecl();
829      typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
830      EnumValsTy EnumVals;
831
832      // Gather all enum values, set their type and sort them,
833      // allowing easier comparison with CaseVals.
834      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin();
835             EDI != ED->enumerator_end(); EDI++) {
836        llvm::APSInt Val = (*EDI)->getInitVal();
837        if(Val.getBitWidth() < CondWidth)
838          Val.extend(CondWidth);
839        Val.setIsSigned(CondIsSigned);
840        EnumVals.push_back(std::make_pair(Val, (*EDI)));
841      }
842      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
843      EnumValsTy::iterator EIend =
844        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
845      // See which case values aren't in enum
846      EnumValsTy::const_iterator EI = EnumVals.begin();
847      for (CaseValsTy::const_iterator CI = CaseVals.begin();
848             CI != CaseVals.end(); CI++) {
849        while (EI != EIend && EI->first < CI->first)
850          EI++;
851        if (EI == EIend || EI->first > CI->first)
852            Diag(CI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
853              << ED->getDeclName();
854      }
855      // See which of case ranges aren't in enum
856      EI = EnumVals.begin();
857      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
858             RI != CaseRanges.end() && EI != EIend; RI++) {
859        while (EI != EIend && EI->first < RI->first)
860          EI++;
861
862        if (EI == EIend || EI->first != RI->first) {
863          Diag(RI->second->getLHS()->getExprLoc(), diag::warn_not_in_enum)
864            << ED->getDeclName();
865        }
866
867        llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
868        while (EI != EIend && EI->first < Hi)
869          EI++;
870        if (EI == EIend || EI->first != Hi)
871          Diag(RI->second->getRHS()->getExprLoc(), diag::warn_not_in_enum)
872            << ED->getDeclName();
873      }
874      //Check which enum vals aren't in switch
875      CaseValsTy::const_iterator CI = CaseVals.begin();
876      CaseRangesTy::const_iterator RI = CaseRanges.begin();
877      EI = EnumVals.begin();
878      for (; EI != EIend; EI++) {
879        //Drop unneeded case values
880        llvm::APSInt CIVal;
881        while (CI != CaseVals.end() && CI->first < EI->first)
882          CI++;
883
884        if (CI != CaseVals.end() && CI->first == EI->first)
885          continue;
886
887        //Drop unneeded case ranges
888        for (; RI != CaseRanges.end(); RI++) {
889          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
890          if (EI->first <= Hi)
891            break;
892        }
893
894        if (RI == CaseRanges.end() || EI->first < RI->first)
895          Diag(CondExpr->getExprLoc(), diag::warn_missing_cases)
896            << EI->second->getDeclName();
897      }
898    }
899  }
900
901  // FIXME: If the case list was broken is some way, we don't have a good system
902  // to patch it up.  Instead, just return the whole substmt as broken.
903  if (CaseListIsErroneous)
904    return StmtError();
905
906  Switch.release();
907  return Owned(SS);
908}
909
910Action::OwningStmtResult
911Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
912                     DeclPtrTy CondVar, StmtArg Body) {
913  OwningExprResult CondResult(Cond.release());
914
915  VarDecl *ConditionVar = 0;
916  if (CondVar.get()) {
917    ConditionVar = CondVar.getAs<VarDecl>();
918    CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
919    if (CondResult.isInvalid())
920      return StmtError();
921  }
922  Expr *ConditionExpr = CondResult.takeAs<Expr>();
923  if (!ConditionExpr)
924    return StmtError();
925
926  Stmt *bodyStmt = Body.takeAs<Stmt>();
927  DiagnoseUnusedExprResult(bodyStmt);
928
929  CondResult.release();
930  return Owned(new (Context) WhileStmt(ConditionVar, ConditionExpr, bodyStmt,
931                                       WhileLoc));
932}
933
934Action::OwningStmtResult
935Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
936                  SourceLocation WhileLoc, SourceLocation CondLParen,
937                  ExprArg Cond, SourceLocation CondRParen) {
938  Expr *condExpr = Cond.takeAs<Expr>();
939  assert(condExpr && "ActOnDoStmt(): missing expression");
940
941  if (CheckBooleanCondition(condExpr, DoLoc)) {
942    Cond = condExpr;
943    return StmtError();
944  }
945
946  condExpr = MaybeCreateCXXExprWithTemporaries(condExpr);
947  if (!condExpr)
948    return StmtError();
949
950  Stmt *bodyStmt = Body.takeAs<Stmt>();
951  DiagnoseUnusedExprResult(bodyStmt);
952
953  Cond.release();
954  return Owned(new (Context) DoStmt(bodyStmt, condExpr, DoLoc,
955                                    WhileLoc, CondRParen));
956}
957
958Action::OwningStmtResult
959Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
960                   StmtArg first, FullExprArg second, DeclPtrTy secondVar,
961                   FullExprArg third,
962                   SourceLocation RParenLoc, StmtArg body) {
963  Stmt *First  = static_cast<Stmt*>(first.get());
964
965  if (!getLangOptions().CPlusPlus) {
966    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
967      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
968      // declare identifiers for objects having storage class 'auto' or
969      // 'register'.
970      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
971           DI!=DE; ++DI) {
972        VarDecl *VD = dyn_cast<VarDecl>(*DI);
973        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
974          VD = 0;
975        if (VD == 0)
976          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
977        // FIXME: mark decl erroneous!
978      }
979    }
980  }
981
982  OwningExprResult SecondResult(second.release());
983  VarDecl *ConditionVar = 0;
984  if (secondVar.get()) {
985    ConditionVar = secondVar.getAs<VarDecl>();
986    SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
987    if (SecondResult.isInvalid())
988      return StmtError();
989  }
990
991  Expr *Third  = third.release().takeAs<Expr>();
992  Stmt *Body  = static_cast<Stmt*>(body.get());
993
994  DiagnoseUnusedExprResult(First);
995  DiagnoseUnusedExprResult(Third);
996  DiagnoseUnusedExprResult(Body);
997
998  first.release();
999  body.release();
1000  return Owned(new (Context) ForStmt(First, SecondResult.takeAs<Expr>(),
1001                                     ConditionVar, Third, Body,
1002                                     ForLoc, LParenLoc, RParenLoc));
1003}
1004
1005Action::OwningStmtResult
1006Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1007                                 SourceLocation LParenLoc,
1008                                 StmtArg first, ExprArg second,
1009                                 SourceLocation RParenLoc, StmtArg body) {
1010  Stmt *First  = static_cast<Stmt*>(first.get());
1011  Expr *Second = static_cast<Expr*>(second.get());
1012  Stmt *Body  = static_cast<Stmt*>(body.get());
1013  if (First) {
1014    QualType FirstType;
1015    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1016      if (!DS->isSingleDecl())
1017        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1018                         diag::err_toomany_element_decls));
1019
1020      Decl *D = DS->getSingleDecl();
1021      FirstType = cast<ValueDecl>(D)->getType();
1022      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1023      // declare identifiers for objects having storage class 'auto' or
1024      // 'register'.
1025      VarDecl *VD = cast<VarDecl>(D);
1026      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
1027        return StmtError(Diag(VD->getLocation(),
1028                              diag::err_non_variable_decl_in_for));
1029    } else {
1030      Expr *FirstE = cast<Expr>(First);
1031      if (!FirstE->isTypeDependent() &&
1032          FirstE->isLvalue(Context) != Expr::LV_Valid)
1033        return StmtError(Diag(First->getLocStart(),
1034                   diag::err_selector_element_not_lvalue)
1035          << First->getSourceRange());
1036
1037      FirstType = static_cast<Expr*>(First)->getType();
1038    }
1039    if (!FirstType->isDependentType() &&
1040        !FirstType->isObjCObjectPointerType() &&
1041        !FirstType->isBlockPointerType())
1042        Diag(ForLoc, diag::err_selector_element_type)
1043          << FirstType << First->getSourceRange();
1044  }
1045  if (Second && !Second->isTypeDependent()) {
1046    DefaultFunctionArrayLvalueConversion(Second);
1047    QualType SecondType = Second->getType();
1048    if (!SecondType->isObjCObjectPointerType())
1049      Diag(ForLoc, diag::err_collection_expr_type)
1050        << SecondType << Second->getSourceRange();
1051  }
1052  first.release();
1053  second.release();
1054  body.release();
1055  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
1056                                                   ForLoc, RParenLoc));
1057}
1058
1059Action::OwningStmtResult
1060Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
1061                    IdentifierInfo *LabelII) {
1062  // Look up the record for this label identifier.
1063  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
1064
1065  // If we haven't seen this label yet, create a forward reference.
1066  if (LabelDecl == 0)
1067    LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
1068
1069  return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
1070}
1071
1072Action::OwningStmtResult
1073Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
1074                            ExprArg DestExp) {
1075  // Convert operand to void*
1076  Expr* E = DestExp.takeAs<Expr>();
1077  if (!E->isTypeDependent()) {
1078    QualType ETy = E->getType();
1079    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
1080    AssignConvertType ConvTy =
1081      CheckSingleAssignmentConstraints(DestTy, E);
1082    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
1083      return StmtError();
1084  }
1085  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
1086}
1087
1088Action::OwningStmtResult
1089Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
1090  Scope *S = CurScope->getContinueParent();
1091  if (!S) {
1092    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
1093    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
1094  }
1095
1096  return Owned(new (Context) ContinueStmt(ContinueLoc));
1097}
1098
1099Action::OwningStmtResult
1100Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
1101  Scope *S = CurScope->getBreakParent();
1102  if (!S) {
1103    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
1104    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
1105  }
1106
1107  return Owned(new (Context) BreakStmt(BreakLoc));
1108}
1109
1110/// \brief Determine whether a return statement is a candidate for the named
1111/// return value optimization (C++0x 12.8p34, bullet 1).
1112///
1113/// \param Ctx The context in which the return expression and type occur.
1114///
1115/// \param RetType The return type of the function or block.
1116///
1117/// \param RetExpr The expression being returned from the function or block.
1118///
1119/// \returns The NRVO candidate variable, if the return statement may use the
1120/// NRVO, or NULL if there is no such candidate.
1121static const VarDecl *getNRVOCandidate(ASTContext &Ctx, QualType RetType,
1122                                       Expr *RetExpr) {
1123  QualType ExprType = RetExpr->getType();
1124  // - in a return statement in a function with ...
1125  // ... a class return type ...
1126  if (!RetType->isRecordType())
1127    return 0;
1128  // ... the same cv-unqualified type as the function return type ...
1129  if (!Ctx.hasSameUnqualifiedType(RetType, ExprType))
1130    return 0;
1131  // ... the expression is the name of a non-volatile automatic object ...
1132  // We ignore parentheses here.
1133  // FIXME: Is this compliant? (Everyone else does it)
1134  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
1135  if (!DR)
1136    return 0;
1137  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
1138  if (!VD)
1139    return 0;
1140
1141  if (VD->getKind() == Decl::Var && VD->hasLocalStorage() &&
1142      !VD->getType()->isReferenceType() && !VD->hasAttr<BlocksAttr>() &&
1143      !VD->getType().isVolatileQualified())
1144    return VD;
1145
1146  return 0;
1147}
1148
1149/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
1150///
1151Action::OwningStmtResult
1152Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
1153  // If this is the first return we've seen in the block, infer the type of
1154  // the block from it.
1155  BlockScopeInfo *CurBlock = getCurBlock();
1156  if (CurBlock->ReturnType.isNull()) {
1157    if (RetValExp) {
1158      // Don't call UsualUnaryConversions(), since we don't want to do
1159      // integer promotions here.
1160      DefaultFunctionArrayLvalueConversion(RetValExp);
1161      CurBlock->ReturnType = RetValExp->getType();
1162      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
1163        // We have to remove a 'const' added to copied-in variable which was
1164        // part of the implementation spec. and not the actual qualifier for
1165        // the variable.
1166        if (CDRE->isConstQualAdded())
1167           CurBlock->ReturnType.removeConst();
1168      }
1169    } else
1170      CurBlock->ReturnType = Context.VoidTy;
1171  }
1172  QualType FnRetType = CurBlock->ReturnType;
1173
1174  if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
1175    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
1176      << getCurFunctionOrMethodDecl()->getDeclName();
1177    return StmtError();
1178  }
1179
1180  // Otherwise, verify that this result type matches the previous one.  We are
1181  // pickier with blocks than for normal functions because we don't have GCC
1182  // compatibility to worry about here.
1183  ReturnStmt *Result = 0;
1184  if (CurBlock->ReturnType->isVoidType()) {
1185    if (RetValExp) {
1186      Diag(ReturnLoc, diag::err_return_block_has_expr);
1187      RetValExp->Destroy(Context);
1188      RetValExp = 0;
1189    }
1190    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1191  } else if (!RetValExp) {
1192    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
1193  } else {
1194    const VarDecl *NRVOCandidate = 0;
1195
1196    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1197      // we have a non-void block with an expression, continue checking
1198
1199      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1200      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1201      // function return.
1202
1203      // In C++ the return statement is handled via a copy initialization.
1204      // the C version of which boils down to CheckSingleAssignmentConstraints.
1205      NRVOCandidate = getNRVOCandidate(Context, FnRetType, RetValExp);
1206      OwningExprResult Res = PerformCopyInitialization(
1207                               InitializedEntity::InitializeResult(ReturnLoc,
1208                                                                   FnRetType,
1209                                                            NRVOCandidate != 0),
1210                               SourceLocation(),
1211                               Owned(RetValExp));
1212      if (Res.isInvalid()) {
1213        // FIXME: Cleanup temporaries here, anyway?
1214        return StmtError();
1215      }
1216
1217      if (RetValExp)
1218        RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1219
1220      RetValExp = Res.takeAs<Expr>();
1221      if (RetValExp)
1222        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1223    }
1224
1225    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1226  }
1227
1228  // If we need to check for the named return value optimization, save the
1229  // return statement in our scope for later processing.
1230  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1231      !CurContext->isDependentContext())
1232    FunctionScopes.back()->Returns.push_back(Result);
1233
1234  return Owned(Result);
1235}
1236
1237Action::OwningStmtResult
1238Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) {
1239  Expr *RetValExp = rex.takeAs<Expr>();
1240  if (getCurBlock())
1241    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
1242
1243  QualType FnRetType;
1244  if (const FunctionDecl *FD = getCurFunctionDecl()) {
1245    FnRetType = FD->getResultType();
1246    if (FD->hasAttr<NoReturnAttr>() ||
1247        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
1248      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
1249        << getCurFunctionOrMethodDecl()->getDeclName();
1250  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
1251    FnRetType = MD->getResultType();
1252  else // If we don't have a function/method context, bail.
1253    return StmtError();
1254
1255  ReturnStmt *Result = 0;
1256  if (FnRetType->isVoidType()) {
1257    if (RetValExp && !RetValExp->isTypeDependent()) {
1258      // C99 6.8.6.4p1 (ext_ since GCC warns)
1259      unsigned D = diag::ext_return_has_expr;
1260      if (RetValExp->getType()->isVoidType())
1261        D = diag::ext_return_has_void_expr;
1262
1263      // return (some void expression); is legal in C++.
1264      if (D != diag::ext_return_has_void_expr ||
1265          !getLangOptions().CPlusPlus) {
1266        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
1267        Diag(ReturnLoc, D)
1268          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
1269          << RetValExp->getSourceRange();
1270      }
1271
1272      RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1273    }
1274
1275    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, 0);
1276  } else if (!RetValExp && !FnRetType->isDependentType()) {
1277    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
1278    // C99 6.8.6.4p1 (ext_ since GCC warns)
1279    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
1280
1281    if (FunctionDecl *FD = getCurFunctionDecl())
1282      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
1283    else
1284      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
1285    Result = new (Context) ReturnStmt(ReturnLoc);
1286  } else {
1287    const VarDecl *NRVOCandidate = 0;
1288    if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
1289      // we have a non-void function with an expression, continue checking
1290
1291      // C99 6.8.6.4p3(136): The return statement is not an assignment. The
1292      // overlap restriction of subclause 6.5.16.1 does not apply to the case of
1293      // function return.
1294
1295      // In C++ the return statement is handled via a copy initialization.
1296      // the C version of which boils down to CheckSingleAssignmentConstraints.
1297      NRVOCandidate = getNRVOCandidate(Context, FnRetType, RetValExp);
1298      OwningExprResult Res = PerformCopyInitialization(
1299                               InitializedEntity::InitializeResult(ReturnLoc,
1300                                                                   FnRetType,
1301                                                            NRVOCandidate != 0),
1302                               SourceLocation(),
1303                               Owned(RetValExp));
1304      if (Res.isInvalid()) {
1305        // FIXME: Cleanup temporaries here, anyway?
1306        return StmtError();
1307      }
1308
1309      RetValExp = Res.takeAs<Expr>();
1310      if (RetValExp)
1311        CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
1312    }
1313
1314    if (RetValExp)
1315      RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
1316    Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
1317  }
1318
1319  // If we need to check for the named return value optimization, save the
1320  // return statement in our scope for later processing.
1321  if (getLangOptions().CPlusPlus && FnRetType->isRecordType() &&
1322      !CurContext->isDependentContext())
1323    FunctionScopes.back()->Returns.push_back(Result);
1324
1325  return Owned(Result);
1326}
1327
1328/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
1329/// ignore "noop" casts in places where an lvalue is required by an inline asm.
1330/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
1331/// provide a strong guidance to not use it.
1332///
1333/// This method checks to see if the argument is an acceptable l-value and
1334/// returns false if it is a case we can handle.
1335static bool CheckAsmLValue(const Expr *E, Sema &S) {
1336  // Type dependent expressions will be checked during instantiation.
1337  if (E->isTypeDependent())
1338    return false;
1339
1340  if (E->isLvalue(S.Context) == Expr::LV_Valid)
1341    return false;  // Cool, this is an lvalue.
1342
1343  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
1344  // are supposed to allow.
1345  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
1346  if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
1347    if (!S.getLangOptions().HeinousExtensions)
1348      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
1349        << E->getSourceRange();
1350    else
1351      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
1352        << E->getSourceRange();
1353    // Accept, even if we emitted an error diagnostic.
1354    return false;
1355  }
1356
1357  // None of the above, just randomly invalid non-lvalue.
1358  return true;
1359}
1360
1361
1362Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
1363                                          bool IsSimple,
1364                                          bool IsVolatile,
1365                                          unsigned NumOutputs,
1366                                          unsigned NumInputs,
1367                                          IdentifierInfo **Names,
1368                                          MultiExprArg constraints,
1369                                          MultiExprArg exprs,
1370                                          ExprArg asmString,
1371                                          MultiExprArg clobbers,
1372                                          SourceLocation RParenLoc,
1373                                          bool MSAsm) {
1374  unsigned NumClobbers = clobbers.size();
1375  StringLiteral **Constraints =
1376    reinterpret_cast<StringLiteral**>(constraints.get());
1377  Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
1378  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
1379  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
1380
1381  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1382
1383  // The parser verifies that there is a string literal here.
1384  if (AsmString->isWide())
1385    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
1386      << AsmString->getSourceRange());
1387
1388  for (unsigned i = 0; i != NumOutputs; i++) {
1389    StringLiteral *Literal = Constraints[i];
1390    if (Literal->isWide())
1391      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1392        << Literal->getSourceRange());
1393
1394    llvm::StringRef OutputName;
1395    if (Names[i])
1396      OutputName = Names[i]->getName();
1397
1398    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
1399    if (!Context.Target.validateOutputConstraint(Info))
1400      return StmtError(Diag(Literal->getLocStart(),
1401                            diag::err_asm_invalid_output_constraint)
1402                       << Info.getConstraintStr());
1403
1404    // Check that the output exprs are valid lvalues.
1405    Expr *OutputExpr = Exprs[i];
1406    if (CheckAsmLValue(OutputExpr, *this)) {
1407      return StmtError(Diag(OutputExpr->getLocStart(),
1408                  diag::err_asm_invalid_lvalue_in_output)
1409        << OutputExpr->getSourceRange());
1410    }
1411
1412    OutputConstraintInfos.push_back(Info);
1413  }
1414
1415  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1416
1417  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
1418    StringLiteral *Literal = Constraints[i];
1419    if (Literal->isWide())
1420      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1421        << Literal->getSourceRange());
1422
1423    llvm::StringRef InputName;
1424    if (Names[i])
1425      InputName = Names[i]->getName();
1426
1427    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
1428    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
1429                                                NumOutputs, Info)) {
1430      return StmtError(Diag(Literal->getLocStart(),
1431                            diag::err_asm_invalid_input_constraint)
1432                       << Info.getConstraintStr());
1433    }
1434
1435    Expr *InputExpr = Exprs[i];
1436
1437    // Only allow void types for memory constraints.
1438    if (Info.allowsMemory() && !Info.allowsRegister()) {
1439      if (CheckAsmLValue(InputExpr, *this))
1440        return StmtError(Diag(InputExpr->getLocStart(),
1441                              diag::err_asm_invalid_lvalue_in_input)
1442                         << Info.getConstraintStr()
1443                         << InputExpr->getSourceRange());
1444    }
1445
1446    if (Info.allowsRegister()) {
1447      if (InputExpr->getType()->isVoidType()) {
1448        return StmtError(Diag(InputExpr->getLocStart(),
1449                              diag::err_asm_invalid_type_in_input)
1450          << InputExpr->getType() << Info.getConstraintStr()
1451          << InputExpr->getSourceRange());
1452      }
1453    }
1454
1455    DefaultFunctionArrayLvalueConversion(Exprs[i]);
1456
1457    InputConstraintInfos.push_back(Info);
1458  }
1459
1460  // Check that the clobbers are valid.
1461  for (unsigned i = 0; i != NumClobbers; i++) {
1462    StringLiteral *Literal = Clobbers[i];
1463    if (Literal->isWide())
1464      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
1465        << Literal->getSourceRange());
1466
1467    llvm::StringRef Clobber = Literal->getString();
1468
1469    if (!Context.Target.isValidGCCRegisterName(Clobber))
1470      return StmtError(Diag(Literal->getLocStart(),
1471                  diag::err_asm_unknown_register_name) << Clobber);
1472  }
1473
1474  constraints.release();
1475  exprs.release();
1476  asmString.release();
1477  clobbers.release();
1478  AsmStmt *NS =
1479    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm,
1480                          NumOutputs, NumInputs, Names, Constraints, Exprs,
1481                          AsmString, NumClobbers, Clobbers, RParenLoc);
1482  // Validate the asm string, ensuring it makes sense given the operands we
1483  // have.
1484  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
1485  unsigned DiagOffs;
1486  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
1487    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
1488           << AsmString->getSourceRange();
1489    DeleteStmt(NS);
1490    return StmtError();
1491  }
1492
1493  // Validate tied input operands for type mismatches.
1494  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
1495    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1496
1497    // If this is a tied constraint, verify that the output and input have
1498    // either exactly the same type, or that they are int/ptr operands with the
1499    // same size (int/long, int*/long, are ok etc).
1500    if (!Info.hasTiedOperand()) continue;
1501
1502    unsigned TiedTo = Info.getTiedOperand();
1503    Expr *OutputExpr = Exprs[TiedTo];
1504    Expr *InputExpr = Exprs[i+NumOutputs];
1505    QualType InTy = InputExpr->getType();
1506    QualType OutTy = OutputExpr->getType();
1507    if (Context.hasSameType(InTy, OutTy))
1508      continue;  // All types can be tied to themselves.
1509
1510    // Decide if the input and output are in the same domain (integer/ptr or
1511    // floating point.
1512    enum AsmDomain {
1513      AD_Int, AD_FP, AD_Other
1514    } InputDomain, OutputDomain;
1515
1516    if (InTy->isIntegerType() || InTy->isPointerType())
1517      InputDomain = AD_Int;
1518    else if (InTy->isFloatingType())
1519      InputDomain = AD_FP;
1520    else
1521      InputDomain = AD_Other;
1522
1523    if (OutTy->isIntegerType() || OutTy->isPointerType())
1524      OutputDomain = AD_Int;
1525    else if (OutTy->isFloatingType())
1526      OutputDomain = AD_FP;
1527    else
1528      OutputDomain = AD_Other;
1529
1530    // They are ok if they are the same size and in the same domain.  This
1531    // allows tying things like:
1532    //   void* to int*
1533    //   void* to int            if they are the same size.
1534    //   double to long double   if they are the same size.
1535    //
1536    uint64_t OutSize = Context.getTypeSize(OutTy);
1537    uint64_t InSize = Context.getTypeSize(InTy);
1538    if (OutSize == InSize && InputDomain == OutputDomain &&
1539        InputDomain != AD_Other)
1540      continue;
1541
1542    // If the smaller input/output operand is not mentioned in the asm string,
1543    // then we can promote it and the asm string won't notice.  Check this
1544    // case now.
1545    bool SmallerValueMentioned = false;
1546    for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
1547      AsmStmt::AsmStringPiece &Piece = Pieces[p];
1548      if (!Piece.isOperand()) continue;
1549
1550      // If this is a reference to the input and if the input was the smaller
1551      // one, then we have to reject this asm.
1552      if (Piece.getOperandNo() == i+NumOutputs) {
1553        if (InSize < OutSize) {
1554          SmallerValueMentioned = true;
1555          break;
1556        }
1557      }
1558
1559      // If this is a reference to the input and if the input was the smaller
1560      // one, then we have to reject this asm.
1561      if (Piece.getOperandNo() == TiedTo) {
1562        if (InSize > OutSize) {
1563          SmallerValueMentioned = true;
1564          break;
1565        }
1566      }
1567    }
1568
1569    // If the smaller value wasn't mentioned in the asm string, and if the
1570    // output was a register, just extend the shorter one to the size of the
1571    // larger one.
1572    if (!SmallerValueMentioned && InputDomain != AD_Other &&
1573        OutputConstraintInfos[TiedTo].allowsRegister())
1574      continue;
1575
1576    Diag(InputExpr->getLocStart(),
1577         diag::err_asm_tying_incompatible_types)
1578      << InTy << OutTy << OutputExpr->getSourceRange()
1579      << InputExpr->getSourceRange();
1580    DeleteStmt(NS);
1581    return StmtError();
1582  }
1583
1584  return Owned(NS);
1585}
1586
1587Action::OwningStmtResult
1588Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
1589                           SourceLocation RParen, DeclPtrTy Parm,
1590                           StmtArg Body) {
1591  VarDecl *Var = cast_or_null<VarDecl>(Parm.getAs<Decl>());
1592  if (Var && Var->isInvalidDecl())
1593    return StmtError();
1594
1595  return Owned(new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var,
1596                                             Body.takeAs<Stmt>()));
1597}
1598
1599Action::OwningStmtResult
1600Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
1601  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc,
1602                                           static_cast<Stmt*>(Body.release())));
1603}
1604
1605Action::OwningStmtResult
1606Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, StmtArg Try,
1607                         MultiStmtArg CatchStmts, StmtArg Finally) {
1608  FunctionNeedsScopeChecking() = true;
1609  unsigned NumCatchStmts = CatchStmts.size();
1610  return Owned(ObjCAtTryStmt::Create(Context, AtLoc, Try.takeAs<Stmt>(),
1611                                     (Stmt **)CatchStmts.release(),
1612                                     NumCatchStmts,
1613                                     Finally.takeAs<Stmt>()));
1614}
1615
1616Sema::OwningStmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc,
1617                                                  ExprArg ThrowE) {
1618  Expr *Throw = static_cast<Expr *>(ThrowE.get());
1619  if (Throw) {
1620    QualType ThrowType = Throw->getType();
1621    // Make sure the expression type is an ObjC pointer or "void *".
1622    if (!ThrowType->isDependentType() &&
1623        !ThrowType->isObjCObjectPointerType()) {
1624      const PointerType *PT = ThrowType->getAs<PointerType>();
1625      if (!PT || !PT->getPointeeType()->isVoidType())
1626        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
1627                         << Throw->getType() << Throw->getSourceRange());
1628    }
1629  }
1630
1631  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowE.takeAs<Expr>()));
1632}
1633
1634Action::OwningStmtResult
1635Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg Throw,
1636                           Scope *CurScope) {
1637  if (!Throw.get()) {
1638    // @throw without an expression designates a rethrow (which much occur
1639    // in the context of an @catch clause).
1640    Scope *AtCatchParent = CurScope;
1641    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
1642      AtCatchParent = AtCatchParent->getParent();
1643    if (!AtCatchParent)
1644      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
1645  }
1646
1647  return BuildObjCAtThrowStmt(AtLoc, move(Throw));
1648}
1649
1650Action::OwningStmtResult
1651Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
1652                                  StmtArg SynchBody) {
1653  FunctionNeedsScopeChecking() = true;
1654
1655  // Make sure the expression type is an ObjC pointer or "void *".
1656  Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get());
1657  if (!SyncExpr->getType()->isDependentType() &&
1658      !SyncExpr->getType()->isObjCObjectPointerType()) {
1659    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
1660    if (!PT || !PT->getPointeeType()->isVoidType())
1661      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
1662                       << SyncExpr->getType() << SyncExpr->getSourceRange());
1663  }
1664
1665  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc,
1666                                                    SynchExpr.takeAs<Stmt>(),
1667                                                    SynchBody.takeAs<Stmt>()));
1668}
1669
1670/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
1671/// and creates a proper catch handler from them.
1672Action::OwningStmtResult
1673Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl,
1674                         StmtArg HandlerBlock) {
1675  // There's nothing to test that ActOnExceptionDecl didn't already test.
1676  return Owned(new (Context) CXXCatchStmt(CatchLoc,
1677                                  cast_or_null<VarDecl>(ExDecl.getAs<Decl>()),
1678                                          HandlerBlock.takeAs<Stmt>()));
1679}
1680
1681class TypeWithHandler {
1682  QualType t;
1683  CXXCatchStmt *stmt;
1684public:
1685  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
1686  : t(type), stmt(statement) {}
1687
1688  // An arbitrary order is fine as long as it places identical
1689  // types next to each other.
1690  bool operator<(const TypeWithHandler &y) const {
1691    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
1692      return true;
1693    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
1694      return false;
1695    else
1696      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
1697  }
1698
1699  bool operator==(const TypeWithHandler& other) const {
1700    return t == other.t;
1701  }
1702
1703  QualType getQualType() const { return t; }
1704  CXXCatchStmt *getCatchStmt() const { return stmt; }
1705  SourceLocation getTypeSpecStartLoc() const {
1706    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
1707  }
1708};
1709
1710/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
1711/// handlers and creates a try statement from them.
1712Action::OwningStmtResult
1713Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
1714                       MultiStmtArg RawHandlers) {
1715  unsigned NumHandlers = RawHandlers.size();
1716  assert(NumHandlers > 0 &&
1717         "The parser shouldn't call this if there are no handlers.");
1718  Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
1719
1720  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
1721
1722  for (unsigned i = 0; i < NumHandlers; ++i) {
1723    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
1724    if (!Handler->getExceptionDecl()) {
1725      if (i < NumHandlers - 1)
1726        return StmtError(Diag(Handler->getLocStart(),
1727                              diag::err_early_catch_all));
1728
1729      continue;
1730    }
1731
1732    const QualType CaughtType = Handler->getCaughtType();
1733    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
1734    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
1735  }
1736
1737  // Detect handlers for the same type as an earlier one.
1738  if (NumHandlers > 1) {
1739    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
1740
1741    TypeWithHandler prev = TypesWithHandlers[0];
1742    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
1743      TypeWithHandler curr = TypesWithHandlers[i];
1744
1745      if (curr == prev) {
1746        Diag(curr.getTypeSpecStartLoc(),
1747             diag::warn_exception_caught_by_earlier_handler)
1748          << curr.getCatchStmt()->getCaughtType().getAsString();
1749        Diag(prev.getTypeSpecStartLoc(),
1750             diag::note_previous_exception_handler)
1751          << prev.getCatchStmt()->getCaughtType().getAsString();
1752      }
1753
1754      prev = curr;
1755    }
1756  }
1757
1758  // FIXME: We should detect handlers that cannot catch anything because an
1759  // earlier handler catches a superclass. Need to find a method that is not
1760  // quadratic for this.
1761  // Neither of these are explicitly forbidden, but every compiler detects them
1762  // and warns.
1763
1764  FunctionNeedsScopeChecking() = true;
1765  RawHandlers.release();
1766  return Owned(CXXTryStmt::Create(Context, TryLoc,
1767                                  static_cast<Stmt*>(TryBlock.release()),
1768                                  Handlers, NumHandlers));
1769}
1770