SemaTemplateDeduction.cpp revision 2ad746aeb90e86cea7afaf552a02ae3f3b5ec859
1//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===/
12
13#include "clang/Sema/Sema.h"
14#include "clang/Sema/DeclSpec.h"
15#include "clang/Sema/SemaDiagnostic.h" // FIXME: temporary!
16#include "clang/Sema/Template.h"
17#include "clang/Sema/TemplateDeduction.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/StmtVisitor.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "llvm/ADT/BitVector.h"
25#include <algorithm>
26
27namespace clang {
28  using namespace sema;
29
30  /// \brief Various flags that control template argument deduction.
31  ///
32  /// These flags can be bitwise-OR'd together.
33  enum TemplateDeductionFlags {
34    /// \brief No template argument deduction flags, which indicates the
35    /// strictest results for template argument deduction (as used for, e.g.,
36    /// matching class template partial specializations).
37    TDF_None = 0,
38    /// \brief Within template argument deduction from a function call, we are
39    /// matching with a parameter type for which the original parameter was
40    /// a reference.
41    TDF_ParamWithReferenceType = 0x1,
42    /// \brief Within template argument deduction from a function call, we
43    /// are matching in a case where we ignore cv-qualifiers.
44    TDF_IgnoreQualifiers = 0x02,
45    /// \brief Within template argument deduction from a function call,
46    /// we are matching in a case where we can perform template argument
47    /// deduction from a template-id of a derived class of the argument type.
48    TDF_DerivedClass = 0x04,
49    /// \brief Allow non-dependent types to differ, e.g., when performing
50    /// template argument deduction from a function call where conversions
51    /// may apply.
52    TDF_SkipNonDependent = 0x08
53  };
54}
55
56using namespace clang;
57
58/// \brief Compare two APSInts, extending and switching the sign as
59/// necessary to compare their values regardless of underlying type.
60static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
61  if (Y.getBitWidth() > X.getBitWidth())
62    X = X.extend(Y.getBitWidth());
63  else if (Y.getBitWidth() < X.getBitWidth())
64    Y = Y.extend(X.getBitWidth());
65
66  // If there is a signedness mismatch, correct it.
67  if (X.isSigned() != Y.isSigned()) {
68    // If the signed value is negative, then the values cannot be the same.
69    if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
70      return false;
71
72    Y.setIsSigned(true);
73    X.setIsSigned(true);
74  }
75
76  return X == Y;
77}
78
79static Sema::TemplateDeductionResult
80DeduceTemplateArguments(Sema &S,
81                        TemplateParameterList *TemplateParams,
82                        const TemplateArgument &Param,
83                        TemplateArgument Arg,
84                        TemplateDeductionInfo &Info,
85                      llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced);
86
87/// \brief Stores the result of comparing the qualifiers of two types, used
88/// when
89enum DeductionQualifierComparison {
90  NeitherMoreQualified = 0,
91  ParamMoreQualified,
92  ArgMoreQualified
93};
94
95
96static Sema::TemplateDeductionResult
97DeduceTemplateArguments(Sema &S,
98                        TemplateParameterList *TemplateParams,
99                        QualType Param,
100                        QualType Arg,
101                        TemplateDeductionInfo &Info,
102                        llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
103                        unsigned TDF,
104                        bool PartialOrdering = false,
105                        llvm::SmallVectorImpl<DeductionQualifierComparison> *
106                                                      QualifierComparisons = 0);
107
108static Sema::TemplateDeductionResult
109DeduceTemplateArguments(Sema &S,
110                        TemplateParameterList *TemplateParams,
111                        const TemplateArgument *Params, unsigned NumParams,
112                        const TemplateArgument *Args, unsigned NumArgs,
113                        TemplateDeductionInfo &Info,
114                        llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
115                        bool NumberOfArgumentsMustMatch = true);
116
117/// \brief If the given expression is of a form that permits the deduction
118/// of a non-type template parameter, return the declaration of that
119/// non-type template parameter.
120static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
121  if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
122    E = IC->getSubExpr();
123
124  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
125    return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
126
127  return 0;
128}
129
130/// \brief Determine whether two declaration pointers refer to the same
131/// declaration.
132static bool isSameDeclaration(Decl *X, Decl *Y) {
133  if (!X || !Y)
134    return !X && !Y;
135
136  if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
137    X = NX->getUnderlyingDecl();
138  if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
139    Y = NY->getUnderlyingDecl();
140
141  return X->getCanonicalDecl() == Y->getCanonicalDecl();
142}
143
144/// \brief Verify that the given, deduced template arguments are compatible.
145///
146/// \returns The deduced template argument, or a NULL template argument if
147/// the deduced template arguments were incompatible.
148static DeducedTemplateArgument
149checkDeducedTemplateArguments(ASTContext &Context,
150                              const DeducedTemplateArgument &X,
151                              const DeducedTemplateArgument &Y) {
152  // We have no deduction for one or both of the arguments; they're compatible.
153  if (X.isNull())
154    return Y;
155  if (Y.isNull())
156    return X;
157
158  switch (X.getKind()) {
159  case TemplateArgument::Null:
160    llvm_unreachable("Non-deduced template arguments handled above");
161
162  case TemplateArgument::Type:
163    // If two template type arguments have the same type, they're compatible.
164    if (Y.getKind() == TemplateArgument::Type &&
165        Context.hasSameType(X.getAsType(), Y.getAsType()))
166      return X;
167
168    return DeducedTemplateArgument();
169
170  case TemplateArgument::Integral:
171    // If we deduced a constant in one case and either a dependent expression or
172    // declaration in another case, keep the integral constant.
173    // If both are integral constants with the same value, keep that value.
174    if (Y.getKind() == TemplateArgument::Expression ||
175        Y.getKind() == TemplateArgument::Declaration ||
176        (Y.getKind() == TemplateArgument::Integral &&
177         hasSameExtendedValue(*X.getAsIntegral(), *Y.getAsIntegral())))
178      return DeducedTemplateArgument(X,
179                                     X.wasDeducedFromArrayBound() &&
180                                     Y.wasDeducedFromArrayBound());
181
182    // All other combinations are incompatible.
183    return DeducedTemplateArgument();
184
185  case TemplateArgument::Template:
186    if (Y.getKind() == TemplateArgument::Template &&
187        Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
188      return X;
189
190    // All other combinations are incompatible.
191    return DeducedTemplateArgument();
192
193  case TemplateArgument::TemplateExpansion:
194    if (Y.getKind() == TemplateArgument::TemplateExpansion &&
195        Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
196                                    Y.getAsTemplateOrTemplatePattern()))
197      return X;
198
199    // All other combinations are incompatible.
200    return DeducedTemplateArgument();
201
202  case TemplateArgument::Expression:
203    // If we deduced a dependent expression in one case and either an integral
204    // constant or a declaration in another case, keep the integral constant
205    // or declaration.
206    if (Y.getKind() == TemplateArgument::Integral ||
207        Y.getKind() == TemplateArgument::Declaration)
208      return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
209                                     Y.wasDeducedFromArrayBound());
210
211    if (Y.getKind() == TemplateArgument::Expression) {
212      // Compare the expressions for equality
213      llvm::FoldingSetNodeID ID1, ID2;
214      X.getAsExpr()->Profile(ID1, Context, true);
215      Y.getAsExpr()->Profile(ID2, Context, true);
216      if (ID1 == ID2)
217        return X;
218    }
219
220    // All other combinations are incompatible.
221    return DeducedTemplateArgument();
222
223  case TemplateArgument::Declaration:
224    // If we deduced a declaration and a dependent expression, keep the
225    // declaration.
226    if (Y.getKind() == TemplateArgument::Expression)
227      return X;
228
229    // If we deduced a declaration and an integral constant, keep the
230    // integral constant.
231    if (Y.getKind() == TemplateArgument::Integral)
232      return Y;
233
234    // If we deduced two declarations, make sure they they refer to the
235    // same declaration.
236    if (Y.getKind() == TemplateArgument::Declaration &&
237        isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
238      return X;
239
240    // All other combinations are incompatible.
241    return DeducedTemplateArgument();
242
243  case TemplateArgument::Pack:
244    if (Y.getKind() != TemplateArgument::Pack ||
245        X.pack_size() != Y.pack_size())
246      return DeducedTemplateArgument();
247
248    for (TemplateArgument::pack_iterator XA = X.pack_begin(),
249                                      XAEnd = X.pack_end(),
250                                         YA = Y.pack_begin();
251         XA != XAEnd; ++XA, ++YA) {
252      if (checkDeducedTemplateArguments(Context,
253                    DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
254                    DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
255            .isNull())
256        return DeducedTemplateArgument();
257    }
258
259    return X;
260  }
261
262  return DeducedTemplateArgument();
263}
264
265/// \brief Deduce the value of the given non-type template parameter
266/// from the given constant.
267static Sema::TemplateDeductionResult
268DeduceNonTypeTemplateArgument(Sema &S,
269                              NonTypeTemplateParmDecl *NTTP,
270                              llvm::APSInt Value, QualType ValueType,
271                              bool DeducedFromArrayBound,
272                              TemplateDeductionInfo &Info,
273                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
274  assert(NTTP->getDepth() == 0 &&
275         "Cannot deduce non-type template argument with depth > 0");
276
277  DeducedTemplateArgument NewDeduced(Value, ValueType, DeducedFromArrayBound);
278  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
279                                                     Deduced[NTTP->getIndex()],
280                                                                 NewDeduced);
281  if (Result.isNull()) {
282    Info.Param = NTTP;
283    Info.FirstArg = Deduced[NTTP->getIndex()];
284    Info.SecondArg = NewDeduced;
285    return Sema::TDK_Inconsistent;
286  }
287
288  Deduced[NTTP->getIndex()] = Result;
289  return Sema::TDK_Success;
290}
291
292/// \brief Deduce the value of the given non-type template parameter
293/// from the given type- or value-dependent expression.
294///
295/// \returns true if deduction succeeded, false otherwise.
296static Sema::TemplateDeductionResult
297DeduceNonTypeTemplateArgument(Sema &S,
298                              NonTypeTemplateParmDecl *NTTP,
299                              Expr *Value,
300                              TemplateDeductionInfo &Info,
301                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
302  assert(NTTP->getDepth() == 0 &&
303         "Cannot deduce non-type template argument with depth > 0");
304  assert((Value->isTypeDependent() || Value->isValueDependent()) &&
305         "Expression template argument must be type- or value-dependent.");
306
307  DeducedTemplateArgument NewDeduced(Value);
308  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
309                                                     Deduced[NTTP->getIndex()],
310                                                                 NewDeduced);
311
312  if (Result.isNull()) {
313    Info.Param = NTTP;
314    Info.FirstArg = Deduced[NTTP->getIndex()];
315    Info.SecondArg = NewDeduced;
316    return Sema::TDK_Inconsistent;
317  }
318
319  Deduced[NTTP->getIndex()] = Result;
320  return Sema::TDK_Success;
321}
322
323/// \brief Deduce the value of the given non-type template parameter
324/// from the given declaration.
325///
326/// \returns true if deduction succeeded, false otherwise.
327static Sema::TemplateDeductionResult
328DeduceNonTypeTemplateArgument(Sema &S,
329                              NonTypeTemplateParmDecl *NTTP,
330                              Decl *D,
331                              TemplateDeductionInfo &Info,
332                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
333  assert(NTTP->getDepth() == 0 &&
334         "Cannot deduce non-type template argument with depth > 0");
335
336  DeducedTemplateArgument NewDeduced(D? D->getCanonicalDecl() : 0);
337  DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
338                                                     Deduced[NTTP->getIndex()],
339                                                                 NewDeduced);
340  if (Result.isNull()) {
341    Info.Param = NTTP;
342    Info.FirstArg = Deduced[NTTP->getIndex()];
343    Info.SecondArg = NewDeduced;
344    return Sema::TDK_Inconsistent;
345  }
346
347  Deduced[NTTP->getIndex()] = Result;
348  return Sema::TDK_Success;
349}
350
351static Sema::TemplateDeductionResult
352DeduceTemplateArguments(Sema &S,
353                        TemplateParameterList *TemplateParams,
354                        TemplateName Param,
355                        TemplateName Arg,
356                        TemplateDeductionInfo &Info,
357                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
358  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
359  if (!ParamDecl) {
360    // The parameter type is dependent and is not a template template parameter,
361    // so there is nothing that we can deduce.
362    return Sema::TDK_Success;
363  }
364
365  if (TemplateTemplateParmDecl *TempParam
366        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
367    DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
368    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
369                                                 Deduced[TempParam->getIndex()],
370                                                                   NewDeduced);
371    if (Result.isNull()) {
372      Info.Param = TempParam;
373      Info.FirstArg = Deduced[TempParam->getIndex()];
374      Info.SecondArg = NewDeduced;
375      return Sema::TDK_Inconsistent;
376    }
377
378    Deduced[TempParam->getIndex()] = Result;
379    return Sema::TDK_Success;
380  }
381
382  // Verify that the two template names are equivalent.
383  if (S.Context.hasSameTemplateName(Param, Arg))
384    return Sema::TDK_Success;
385
386  // Mismatch of non-dependent template parameter to argument.
387  Info.FirstArg = TemplateArgument(Param);
388  Info.SecondArg = TemplateArgument(Arg);
389  return Sema::TDK_NonDeducedMismatch;
390}
391
392/// \brief Deduce the template arguments by comparing the template parameter
393/// type (which is a template-id) with the template argument type.
394///
395/// \param S the Sema
396///
397/// \param TemplateParams the template parameters that we are deducing
398///
399/// \param Param the parameter type
400///
401/// \param Arg the argument type
402///
403/// \param Info information about the template argument deduction itself
404///
405/// \param Deduced the deduced template arguments
406///
407/// \returns the result of template argument deduction so far. Note that a
408/// "success" result means that template argument deduction has not yet failed,
409/// but it may still fail, later, for other reasons.
410static Sema::TemplateDeductionResult
411DeduceTemplateArguments(Sema &S,
412                        TemplateParameterList *TemplateParams,
413                        const TemplateSpecializationType *Param,
414                        QualType Arg,
415                        TemplateDeductionInfo &Info,
416                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
417  assert(Arg.isCanonical() && "Argument type must be canonical");
418
419  // Check whether the template argument is a dependent template-id.
420  if (const TemplateSpecializationType *SpecArg
421        = dyn_cast<TemplateSpecializationType>(Arg)) {
422    // Perform template argument deduction for the template name.
423    if (Sema::TemplateDeductionResult Result
424          = DeduceTemplateArguments(S, TemplateParams,
425                                    Param->getTemplateName(),
426                                    SpecArg->getTemplateName(),
427                                    Info, Deduced))
428      return Result;
429
430
431    // Perform template argument deduction on each template
432    // argument. Ignore any missing/extra arguments, since they could be
433    // filled in by default arguments.
434    return DeduceTemplateArguments(S, TemplateParams,
435                                   Param->getArgs(), Param->getNumArgs(),
436                                   SpecArg->getArgs(), SpecArg->getNumArgs(),
437                                   Info, Deduced,
438                                   /*NumberOfArgumentsMustMatch=*/false);
439  }
440
441  // If the argument type is a class template specialization, we
442  // perform template argument deduction using its template
443  // arguments.
444  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
445  if (!RecordArg)
446    return Sema::TDK_NonDeducedMismatch;
447
448  ClassTemplateSpecializationDecl *SpecArg
449    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
450  if (!SpecArg)
451    return Sema::TDK_NonDeducedMismatch;
452
453  // Perform template argument deduction for the template name.
454  if (Sema::TemplateDeductionResult Result
455        = DeduceTemplateArguments(S,
456                                  TemplateParams,
457                                  Param->getTemplateName(),
458                               TemplateName(SpecArg->getSpecializedTemplate()),
459                                  Info, Deduced))
460    return Result;
461
462  // Perform template argument deduction for the template arguments.
463  return DeduceTemplateArguments(S, TemplateParams,
464                                 Param->getArgs(), Param->getNumArgs(),
465                                 SpecArg->getTemplateArgs().data(),
466                                 SpecArg->getTemplateArgs().size(),
467                                 Info, Deduced);
468}
469
470/// \brief Determines whether the given type is an opaque type that
471/// might be more qualified when instantiated.
472static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
473  switch (T->getTypeClass()) {
474  case Type::TypeOfExpr:
475  case Type::TypeOf:
476  case Type::DependentName:
477  case Type::Decltype:
478  case Type::UnresolvedUsing:
479  case Type::TemplateTypeParm:
480    return true;
481
482  case Type::ConstantArray:
483  case Type::IncompleteArray:
484  case Type::VariableArray:
485  case Type::DependentSizedArray:
486    return IsPossiblyOpaquelyQualifiedType(
487                                      cast<ArrayType>(T)->getElementType());
488
489  default:
490    return false;
491  }
492}
493
494/// \brief Retrieve the depth and index of a template parameter.
495static std::pair<unsigned, unsigned>
496getDepthAndIndex(NamedDecl *ND) {
497  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
498    return std::make_pair(TTP->getDepth(), TTP->getIndex());
499
500  if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
501    return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
502
503  TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
504  return std::make_pair(TTP->getDepth(), TTP->getIndex());
505}
506
507/// \brief Retrieve the depth and index of an unexpanded parameter pack.
508static std::pair<unsigned, unsigned>
509getDepthAndIndex(UnexpandedParameterPack UPP) {
510  if (const TemplateTypeParmType *TTP
511                          = UPP.first.dyn_cast<const TemplateTypeParmType *>())
512    return std::make_pair(TTP->getDepth(), TTP->getIndex());
513
514  return getDepthAndIndex(UPP.first.get<NamedDecl *>());
515}
516
517/// \brief Helper function to build a TemplateParameter when we don't
518/// know its type statically.
519static TemplateParameter makeTemplateParameter(Decl *D) {
520  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
521    return TemplateParameter(TTP);
522  else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
523    return TemplateParameter(NTTP);
524
525  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
526}
527
528/// \brief Prepare to perform template argument deduction for all of the
529/// arguments in a set of argument packs.
530static void PrepareArgumentPackDeduction(Sema &S,
531                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
532                             const llvm::SmallVectorImpl<unsigned> &PackIndices,
533                     llvm::SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
534         llvm::SmallVectorImpl<
535           llvm::SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks) {
536  // Save the deduced template arguments for each parameter pack expanded
537  // by this pack expansion, then clear out the deduction.
538  for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
539    // Save the previously-deduced argument pack, then clear it out so that we
540    // can deduce a new argument pack.
541    SavedPacks[I] = Deduced[PackIndices[I]];
542    Deduced[PackIndices[I]] = TemplateArgument();
543
544    // If the template arugment pack was explicitly specified, add that to
545    // the set of deduced arguments.
546    const TemplateArgument *ExplicitArgs;
547    unsigned NumExplicitArgs;
548    if (NamedDecl *PartiallySubstitutedPack
549        = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
550                                                           &ExplicitArgs,
551                                                           &NumExplicitArgs)) {
552      if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
553        NewlyDeducedPacks[I].append(ExplicitArgs,
554                                    ExplicitArgs + NumExplicitArgs);
555    }
556  }
557}
558
559/// \brief Finish template argument deduction for a set of argument packs,
560/// producing the argument packs and checking for consistency with prior
561/// deductions.
562static Sema::TemplateDeductionResult
563FinishArgumentPackDeduction(Sema &S,
564                            TemplateParameterList *TemplateParams,
565                            bool HasAnyArguments,
566                        llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
567                            const llvm::SmallVectorImpl<unsigned> &PackIndices,
568                    llvm::SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
569        llvm::SmallVectorImpl<
570          llvm::SmallVector<DeducedTemplateArgument, 4> > &NewlyDeducedPacks,
571                            TemplateDeductionInfo &Info) {
572  // Build argument packs for each of the parameter packs expanded by this
573  // pack expansion.
574  for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
575    if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
576      // We were not able to deduce anything for this parameter pack,
577      // so just restore the saved argument pack.
578      Deduced[PackIndices[I]] = SavedPacks[I];
579      continue;
580    }
581
582    DeducedTemplateArgument NewPack;
583
584    if (NewlyDeducedPacks[I].empty()) {
585      // If we deduced an empty argument pack, create it now.
586      NewPack = DeducedTemplateArgument(TemplateArgument(0, 0));
587    } else {
588      TemplateArgument *ArgumentPack
589        = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
590      std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
591                ArgumentPack);
592      NewPack
593        = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
594                                                   NewlyDeducedPacks[I].size()),
595                            NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
596    }
597
598    DeducedTemplateArgument Result
599      = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
600    if (Result.isNull()) {
601      Info.Param
602        = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
603      Info.FirstArg = SavedPacks[I];
604      Info.SecondArg = NewPack;
605      return Sema::TDK_Inconsistent;
606    }
607
608    Deduced[PackIndices[I]] = Result;
609  }
610
611  return Sema::TDK_Success;
612}
613
614/// \brief Deduce the template arguments by comparing the list of parameter
615/// types to the list of argument types, as in the parameter-type-lists of
616/// function types (C++ [temp.deduct.type]p10).
617///
618/// \param S The semantic analysis object within which we are deducing
619///
620/// \param TemplateParams The template parameters that we are deducing
621///
622/// \param Params The list of parameter types
623///
624/// \param NumParams The number of types in \c Params
625///
626/// \param Args The list of argument types
627///
628/// \param NumArgs The number of types in \c Args
629///
630/// \param Info information about the template argument deduction itself
631///
632/// \param Deduced the deduced template arguments
633///
634/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
635/// how template argument deduction is performed.
636///
637/// \param PartialOrdering If true, we are performing template argument
638/// deduction for during partial ordering for a call
639/// (C++0x [temp.deduct.partial]).
640///
641/// \param QualifierComparisons If we're performing template argument deduction
642/// in the context of partial ordering, the set of qualifier comparisons.
643///
644/// \returns the result of template argument deduction so far. Note that a
645/// "success" result means that template argument deduction has not yet failed,
646/// but it may still fail, later, for other reasons.
647static Sema::TemplateDeductionResult
648DeduceTemplateArguments(Sema &S,
649                        TemplateParameterList *TemplateParams,
650                        const QualType *Params, unsigned NumParams,
651                        const QualType *Args, unsigned NumArgs,
652                        TemplateDeductionInfo &Info,
653                      llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
654                        unsigned TDF,
655                        bool PartialOrdering = false,
656                        llvm::SmallVectorImpl<DeductionQualifierComparison> *
657                                                     QualifierComparisons = 0) {
658  // Fast-path check to see if we have too many/too few arguments.
659  if (NumParams != NumArgs &&
660      !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
661      !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
662    return Sema::TDK_NonDeducedMismatch;
663
664  // C++0x [temp.deduct.type]p10:
665  //   Similarly, if P has a form that contains (T), then each parameter type
666  //   Pi of the respective parameter-type- list of P is compared with the
667  //   corresponding parameter type Ai of the corresponding parameter-type-list
668  //   of A. [...]
669  unsigned ArgIdx = 0, ParamIdx = 0;
670  for (; ParamIdx != NumParams; ++ParamIdx) {
671    // Check argument types.
672    const PackExpansionType *Expansion
673                                = dyn_cast<PackExpansionType>(Params[ParamIdx]);
674    if (!Expansion) {
675      // Simple case: compare the parameter and argument types at this point.
676
677      // Make sure we have an argument.
678      if (ArgIdx >= NumArgs)
679        return Sema::TDK_NonDeducedMismatch;
680
681      if (isa<PackExpansionType>(Args[ArgIdx])) {
682        // C++0x [temp.deduct.type]p22:
683        //   If the original function parameter associated with A is a function
684        //   parameter pack and the function parameter associated with P is not
685        //   a function parameter pack, then template argument deduction fails.
686        return Sema::TDK_NonDeducedMismatch;
687      }
688
689      if (Sema::TemplateDeductionResult Result
690            = DeduceTemplateArguments(S, TemplateParams,
691                                      Params[ParamIdx],
692                                      Args[ArgIdx],
693                                      Info, Deduced, TDF,
694                                      PartialOrdering,
695                                      QualifierComparisons))
696        return Result;
697
698      ++ArgIdx;
699      continue;
700    }
701
702    // C++0x [temp.deduct.type]p5:
703    //   The non-deduced contexts are:
704    //     - A function parameter pack that does not occur at the end of the
705    //       parameter-declaration-clause.
706    if (ParamIdx + 1 < NumParams)
707      return Sema::TDK_Success;
708
709    // C++0x [temp.deduct.type]p10:
710    //   If the parameter-declaration corresponding to Pi is a function
711    //   parameter pack, then the type of its declarator- id is compared with
712    //   each remaining parameter type in the parameter-type-list of A. Each
713    //   comparison deduces template arguments for subsequent positions in the
714    //   template parameter packs expanded by the function parameter pack.
715
716    // Compute the set of template parameter indices that correspond to
717    // parameter packs expanded by the pack expansion.
718    llvm::SmallVector<unsigned, 2> PackIndices;
719    QualType Pattern = Expansion->getPattern();
720    {
721      llvm::BitVector SawIndices(TemplateParams->size());
722      llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
723      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
724      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
725        unsigned Depth, Index;
726        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
727        if (Depth == 0 && !SawIndices[Index]) {
728          SawIndices[Index] = true;
729          PackIndices.push_back(Index);
730        }
731      }
732    }
733    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
734
735    // Keep track of the deduced template arguments for each parameter pack
736    // expanded by this pack expansion (the outer index) and for each
737    // template argument (the inner SmallVectors).
738    llvm::SmallVector<llvm::SmallVector<DeducedTemplateArgument, 4>, 2>
739      NewlyDeducedPacks(PackIndices.size());
740    llvm::SmallVector<DeducedTemplateArgument, 2>
741      SavedPacks(PackIndices.size());
742    PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
743                                 NewlyDeducedPacks);
744
745    bool HasAnyArguments = false;
746    for (; ArgIdx < NumArgs; ++ArgIdx) {
747      HasAnyArguments = true;
748
749      // Deduce template arguments from the pattern.
750      if (Sema::TemplateDeductionResult Result
751          = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
752                                    Info, Deduced, PartialOrdering,
753                                    QualifierComparisons))
754        return Result;
755
756      // Capture the deduced template arguments for each parameter pack expanded
757      // by this pack expansion, add them to the list of arguments we've deduced
758      // for that pack, then clear out the deduced argument.
759      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
760        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
761        if (!DeducedArg.isNull()) {
762          NewlyDeducedPacks[I].push_back(DeducedArg);
763          DeducedArg = DeducedTemplateArgument();
764        }
765      }
766    }
767
768    // Build argument packs for each of the parameter packs expanded by this
769    // pack expansion.
770    if (Sema::TemplateDeductionResult Result
771          = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
772                                        Deduced, PackIndices, SavedPacks,
773                                        NewlyDeducedPacks, Info))
774      return Result;
775  }
776
777  // Make sure we don't have any extra arguments.
778  if (ArgIdx < NumArgs)
779    return Sema::TDK_NonDeducedMismatch;
780
781  return Sema::TDK_Success;
782}
783
784/// \brief Deduce the template arguments by comparing the parameter type and
785/// the argument type (C++ [temp.deduct.type]).
786///
787/// \param S the semantic analysis object within which we are deducing
788///
789/// \param TemplateParams the template parameters that we are deducing
790///
791/// \param ParamIn the parameter type
792///
793/// \param ArgIn the argument type
794///
795/// \param Info information about the template argument deduction itself
796///
797/// \param Deduced the deduced template arguments
798///
799/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
800/// how template argument deduction is performed.
801///
802/// \param PartialOrdering Whether we're performing template argument deduction
803/// in the context of partial ordering (C++0x [temp.deduct.partial]).
804///
805/// \param QualifierComparisons If we're performing template argument deduction
806/// in the context of partial ordering, the set of qualifier comparisons.
807///
808/// \returns the result of template argument deduction so far. Note that a
809/// "success" result means that template argument deduction has not yet failed,
810/// but it may still fail, later, for other reasons.
811static Sema::TemplateDeductionResult
812DeduceTemplateArguments(Sema &S,
813                        TemplateParameterList *TemplateParams,
814                        QualType ParamIn, QualType ArgIn,
815                        TemplateDeductionInfo &Info,
816                     llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
817                        unsigned TDF,
818                        bool PartialOrdering,
819    llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
820  // We only want to look at the canonical types, since typedefs and
821  // sugar are not part of template argument deduction.
822  QualType Param = S.Context.getCanonicalType(ParamIn);
823  QualType Arg = S.Context.getCanonicalType(ArgIn);
824
825  // If the argument type is a pack expansion, look at its pattern.
826  // This isn't explicitly called out
827  if (const PackExpansionType *ArgExpansion
828                                            = dyn_cast<PackExpansionType>(Arg))
829    Arg = ArgExpansion->getPattern();
830
831  if (PartialOrdering) {
832    // C++0x [temp.deduct.partial]p5:
833    //   Before the partial ordering is done, certain transformations are
834    //   performed on the types used for partial ordering:
835    //     - If P is a reference type, P is replaced by the type referred to.
836    const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
837    if (ParamRef)
838      Param = ParamRef->getPointeeType();
839
840    //     - If A is a reference type, A is replaced by the type referred to.
841    const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
842    if (ArgRef)
843      Arg = ArgRef->getPointeeType();
844
845    if (QualifierComparisons && ParamRef && ArgRef) {
846      // C++0x [temp.deduct.partial]p6:
847      //   If both P and A were reference types (before being replaced with the
848      //   type referred to above), determine which of the two types (if any) is
849      //   more cv-qualified than the other; otherwise the types are considered
850      //   to be equally cv-qualified for partial ordering purposes. The result
851      //   of this determination will be used below.
852      //
853      // We save this information for later, using it only when deduction
854      // succeeds in both directions.
855      DeductionQualifierComparison QualifierResult = NeitherMoreQualified;
856      if (Param.isMoreQualifiedThan(Arg))
857        QualifierResult = ParamMoreQualified;
858      else if (Arg.isMoreQualifiedThan(Param))
859        QualifierResult = ArgMoreQualified;
860      QualifierComparisons->push_back(QualifierResult);
861    }
862
863    // C++0x [temp.deduct.partial]p7:
864    //   Remove any top-level cv-qualifiers:
865    //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
866    //       version of P.
867    Param = Param.getUnqualifiedType();
868    //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
869    //       version of A.
870    Arg = Arg.getUnqualifiedType();
871  } else {
872    // C++0x [temp.deduct.call]p4 bullet 1:
873    //   - If the original P is a reference type, the deduced A (i.e., the type
874    //     referred to by the reference) can be more cv-qualified than the
875    //     transformed A.
876    if (TDF & TDF_ParamWithReferenceType) {
877      Qualifiers Quals;
878      QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
879      Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
880                             Arg.getCVRQualifiers());
881      Param = S.Context.getQualifiedType(UnqualParam, Quals);
882    }
883  }
884
885  // If the parameter type is not dependent, there is nothing to deduce.
886  if (!Param->isDependentType()) {
887    if (!(TDF & TDF_SkipNonDependent) && Param != Arg)
888      return Sema::TDK_NonDeducedMismatch;
889
890    return Sema::TDK_Success;
891  }
892
893  // C++ [temp.deduct.type]p9:
894  //   A template type argument T, a template template argument TT or a
895  //   template non-type argument i can be deduced if P and A have one of
896  //   the following forms:
897  //
898  //     T
899  //     cv-list T
900  if (const TemplateTypeParmType *TemplateTypeParm
901        = Param->getAs<TemplateTypeParmType>()) {
902    unsigned Index = TemplateTypeParm->getIndex();
903    bool RecanonicalizeArg = false;
904
905    // If the argument type is an array type, move the qualifiers up to the
906    // top level, so they can be matched with the qualifiers on the parameter.
907    // FIXME: address spaces, ObjC GC qualifiers
908    if (isa<ArrayType>(Arg)) {
909      Qualifiers Quals;
910      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
911      if (Quals) {
912        Arg = S.Context.getQualifiedType(Arg, Quals);
913        RecanonicalizeArg = true;
914      }
915    }
916
917    // The argument type can not be less qualified than the parameter
918    // type.
919    if (Param.isMoreQualifiedThan(Arg) && !(TDF & TDF_IgnoreQualifiers)) {
920      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
921      Info.FirstArg = TemplateArgument(Param);
922      Info.SecondArg = TemplateArgument(Arg);
923      return Sema::TDK_Underqualified;
924    }
925
926    assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
927    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
928    QualType DeducedType = Arg;
929
930    // local manipulation is okay because it's canonical
931    DeducedType.removeLocalCVRQualifiers(Param.getCVRQualifiers());
932    if (RecanonicalizeArg)
933      DeducedType = S.Context.getCanonicalType(DeducedType);
934
935    DeducedTemplateArgument NewDeduced(DeducedType);
936    DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
937                                                                 Deduced[Index],
938                                                                   NewDeduced);
939    if (Result.isNull()) {
940      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
941      Info.FirstArg = Deduced[Index];
942      Info.SecondArg = NewDeduced;
943      return Sema::TDK_Inconsistent;
944    }
945
946    Deduced[Index] = Result;
947    return Sema::TDK_Success;
948  }
949
950  // Set up the template argument deduction information for a failure.
951  Info.FirstArg = TemplateArgument(ParamIn);
952  Info.SecondArg = TemplateArgument(ArgIn);
953
954  // If the parameter is an already-substituted template parameter
955  // pack, do nothing: we don't know which of its arguments to look
956  // at, so we have to wait until all of the parameter packs in this
957  // expansion have arguments.
958  if (isa<SubstTemplateTypeParmPackType>(Param))
959    return Sema::TDK_Success;
960
961  // Check the cv-qualifiers on the parameter and argument types.
962  if (!(TDF & TDF_IgnoreQualifiers)) {
963    if (TDF & TDF_ParamWithReferenceType) {
964      if (Param.isMoreQualifiedThan(Arg))
965        return Sema::TDK_NonDeducedMismatch;
966    } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
967      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
968        return Sema::TDK_NonDeducedMismatch;
969    }
970  }
971
972  switch (Param->getTypeClass()) {
973    // No deduction possible for these types
974    case Type::Builtin:
975      return Sema::TDK_NonDeducedMismatch;
976
977    //     T *
978    case Type::Pointer: {
979      QualType PointeeType;
980      if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
981        PointeeType = PointerArg->getPointeeType();
982      } else if (const ObjCObjectPointerType *PointerArg
983                   = Arg->getAs<ObjCObjectPointerType>()) {
984        PointeeType = PointerArg->getPointeeType();
985      } else {
986        return Sema::TDK_NonDeducedMismatch;
987      }
988
989      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
990      return DeduceTemplateArguments(S, TemplateParams,
991                                   cast<PointerType>(Param)->getPointeeType(),
992                                     PointeeType,
993                                     Info, Deduced, SubTDF);
994    }
995
996    //     T &
997    case Type::LValueReference: {
998      const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
999      if (!ReferenceArg)
1000        return Sema::TDK_NonDeducedMismatch;
1001
1002      return DeduceTemplateArguments(S, TemplateParams,
1003                           cast<LValueReferenceType>(Param)->getPointeeType(),
1004                                     ReferenceArg->getPointeeType(),
1005                                     Info, Deduced, 0);
1006    }
1007
1008    //     T && [C++0x]
1009    case Type::RValueReference: {
1010      const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
1011      if (!ReferenceArg)
1012        return Sema::TDK_NonDeducedMismatch;
1013
1014      return DeduceTemplateArguments(S, TemplateParams,
1015                           cast<RValueReferenceType>(Param)->getPointeeType(),
1016                                     ReferenceArg->getPointeeType(),
1017                                     Info, Deduced, 0);
1018    }
1019
1020    //     T [] (implied, but not stated explicitly)
1021    case Type::IncompleteArray: {
1022      const IncompleteArrayType *IncompleteArrayArg =
1023        S.Context.getAsIncompleteArrayType(Arg);
1024      if (!IncompleteArrayArg)
1025        return Sema::TDK_NonDeducedMismatch;
1026
1027      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1028      return DeduceTemplateArguments(S, TemplateParams,
1029                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
1030                                     IncompleteArrayArg->getElementType(),
1031                                     Info, Deduced, SubTDF);
1032    }
1033
1034    //     T [integer-constant]
1035    case Type::ConstantArray: {
1036      const ConstantArrayType *ConstantArrayArg =
1037        S.Context.getAsConstantArrayType(Arg);
1038      if (!ConstantArrayArg)
1039        return Sema::TDK_NonDeducedMismatch;
1040
1041      const ConstantArrayType *ConstantArrayParm =
1042        S.Context.getAsConstantArrayType(Param);
1043      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
1044        return Sema::TDK_NonDeducedMismatch;
1045
1046      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1047      return DeduceTemplateArguments(S, TemplateParams,
1048                                     ConstantArrayParm->getElementType(),
1049                                     ConstantArrayArg->getElementType(),
1050                                     Info, Deduced, SubTDF);
1051    }
1052
1053    //     type [i]
1054    case Type::DependentSizedArray: {
1055      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
1056      if (!ArrayArg)
1057        return Sema::TDK_NonDeducedMismatch;
1058
1059      unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
1060
1061      // Check the element type of the arrays
1062      const DependentSizedArrayType *DependentArrayParm
1063        = S.Context.getAsDependentSizedArrayType(Param);
1064      if (Sema::TemplateDeductionResult Result
1065            = DeduceTemplateArguments(S, TemplateParams,
1066                                      DependentArrayParm->getElementType(),
1067                                      ArrayArg->getElementType(),
1068                                      Info, Deduced, SubTDF))
1069        return Result;
1070
1071      // Determine the array bound is something we can deduce.
1072      NonTypeTemplateParmDecl *NTTP
1073        = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
1074      if (!NTTP)
1075        return Sema::TDK_Success;
1076
1077      // We can perform template argument deduction for the given non-type
1078      // template parameter.
1079      assert(NTTP->getDepth() == 0 &&
1080             "Cannot deduce non-type template argument at depth > 0");
1081      if (const ConstantArrayType *ConstantArrayArg
1082            = dyn_cast<ConstantArrayType>(ArrayArg)) {
1083        llvm::APSInt Size(ConstantArrayArg->getSize());
1084        return DeduceNonTypeTemplateArgument(S, NTTP, Size,
1085                                             S.Context.getSizeType(),
1086                                             /*ArrayBound=*/true,
1087                                             Info, Deduced);
1088      }
1089      if (const DependentSizedArrayType *DependentArrayArg
1090            = dyn_cast<DependentSizedArrayType>(ArrayArg))
1091        if (DependentArrayArg->getSizeExpr())
1092          return DeduceNonTypeTemplateArgument(S, NTTP,
1093                                               DependentArrayArg->getSizeExpr(),
1094                                               Info, Deduced);
1095
1096      // Incomplete type does not match a dependently-sized array type
1097      return Sema::TDK_NonDeducedMismatch;
1098    }
1099
1100    //     type(*)(T)
1101    //     T(*)()
1102    //     T(*)(T)
1103    case Type::FunctionProto: {
1104      const FunctionProtoType *FunctionProtoArg =
1105        dyn_cast<FunctionProtoType>(Arg);
1106      if (!FunctionProtoArg)
1107        return Sema::TDK_NonDeducedMismatch;
1108
1109      const FunctionProtoType *FunctionProtoParam =
1110        cast<FunctionProtoType>(Param);
1111
1112      if (FunctionProtoParam->getTypeQuals() !=
1113          FunctionProtoArg->getTypeQuals())
1114        return Sema::TDK_NonDeducedMismatch;
1115
1116      if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
1117        return Sema::TDK_NonDeducedMismatch;
1118
1119      // Check return types.
1120      if (Sema::TemplateDeductionResult Result
1121            = DeduceTemplateArguments(S, TemplateParams,
1122                                      FunctionProtoParam->getResultType(),
1123                                      FunctionProtoArg->getResultType(),
1124                                      Info, Deduced, 0))
1125        return Result;
1126
1127      return DeduceTemplateArguments(S, TemplateParams,
1128                                     FunctionProtoParam->arg_type_begin(),
1129                                     FunctionProtoParam->getNumArgs(),
1130                                     FunctionProtoArg->arg_type_begin(),
1131                                     FunctionProtoArg->getNumArgs(),
1132                                     Info, Deduced, 0);
1133    }
1134
1135    case Type::InjectedClassName: {
1136      // Treat a template's injected-class-name as if the template
1137      // specialization type had been used.
1138      Param = cast<InjectedClassNameType>(Param)
1139        ->getInjectedSpecializationType();
1140      assert(isa<TemplateSpecializationType>(Param) &&
1141             "injected class name is not a template specialization type");
1142      // fall through
1143    }
1144
1145    //     template-name<T> (where template-name refers to a class template)
1146    //     template-name<i>
1147    //     TT<T>
1148    //     TT<i>
1149    //     TT<>
1150    case Type::TemplateSpecialization: {
1151      const TemplateSpecializationType *SpecParam
1152        = cast<TemplateSpecializationType>(Param);
1153
1154      // Try to deduce template arguments from the template-id.
1155      Sema::TemplateDeductionResult Result
1156        = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
1157                                  Info, Deduced);
1158
1159      if (Result && (TDF & TDF_DerivedClass)) {
1160        // C++ [temp.deduct.call]p3b3:
1161        //   If P is a class, and P has the form template-id, then A can be a
1162        //   derived class of the deduced A. Likewise, if P is a pointer to a
1163        //   class of the form template-id, A can be a pointer to a derived
1164        //   class pointed to by the deduced A.
1165        //
1166        // More importantly:
1167        //   These alternatives are considered only if type deduction would
1168        //   otherwise fail.
1169        if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
1170          // We cannot inspect base classes as part of deduction when the type
1171          // is incomplete, so either instantiate any templates necessary to
1172          // complete the type, or skip over it if it cannot be completed.
1173          if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
1174            return Result;
1175
1176          // Use data recursion to crawl through the list of base classes.
1177          // Visited contains the set of nodes we have already visited, while
1178          // ToVisit is our stack of records that we still need to visit.
1179          llvm::SmallPtrSet<const RecordType *, 8> Visited;
1180          llvm::SmallVector<const RecordType *, 8> ToVisit;
1181          ToVisit.push_back(RecordT);
1182          bool Successful = false;
1183          llvm::SmallVectorImpl<DeducedTemplateArgument> DeducedOrig(0);
1184          DeducedOrig = Deduced;
1185          while (!ToVisit.empty()) {
1186            // Retrieve the next class in the inheritance hierarchy.
1187            const RecordType *NextT = ToVisit.back();
1188            ToVisit.pop_back();
1189
1190            // If we have already seen this type, skip it.
1191            if (!Visited.insert(NextT))
1192              continue;
1193
1194            // If this is a base class, try to perform template argument
1195            // deduction from it.
1196            if (NextT != RecordT) {
1197              Sema::TemplateDeductionResult BaseResult
1198                = DeduceTemplateArguments(S, TemplateParams, SpecParam,
1199                                          QualType(NextT, 0), Info, Deduced);
1200
1201              // If template argument deduction for this base was successful,
1202              // note that we had some success. Otherwise, ignore any deductions
1203              // from this base class.
1204              if (BaseResult == Sema::TDK_Success) {
1205                Successful = true;
1206                DeducedOrig = Deduced;
1207              }
1208              else
1209                Deduced = DeducedOrig;
1210            }
1211
1212            // Visit base classes
1213            CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
1214            for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
1215                                                 BaseEnd = Next->bases_end();
1216                 Base != BaseEnd; ++Base) {
1217              assert(Base->getType()->isRecordType() &&
1218                     "Base class that isn't a record?");
1219              ToVisit.push_back(Base->getType()->getAs<RecordType>());
1220            }
1221          }
1222
1223          if (Successful)
1224            return Sema::TDK_Success;
1225        }
1226
1227      }
1228
1229      return Result;
1230    }
1231
1232    //     T type::*
1233    //     T T::*
1234    //     T (type::*)()
1235    //     type (T::*)()
1236    //     type (type::*)(T)
1237    //     type (T::*)(T)
1238    //     T (type::*)(T)
1239    //     T (T::*)()
1240    //     T (T::*)(T)
1241    case Type::MemberPointer: {
1242      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
1243      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
1244      if (!MemPtrArg)
1245        return Sema::TDK_NonDeducedMismatch;
1246
1247      if (Sema::TemplateDeductionResult Result
1248            = DeduceTemplateArguments(S, TemplateParams,
1249                                      MemPtrParam->getPointeeType(),
1250                                      MemPtrArg->getPointeeType(),
1251                                      Info, Deduced,
1252                                      TDF & TDF_IgnoreQualifiers))
1253        return Result;
1254
1255      return DeduceTemplateArguments(S, TemplateParams,
1256                                     QualType(MemPtrParam->getClass(), 0),
1257                                     QualType(MemPtrArg->getClass(), 0),
1258                                     Info, Deduced, 0);
1259    }
1260
1261    //     (clang extension)
1262    //
1263    //     type(^)(T)
1264    //     T(^)()
1265    //     T(^)(T)
1266    case Type::BlockPointer: {
1267      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
1268      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
1269
1270      if (!BlockPtrArg)
1271        return Sema::TDK_NonDeducedMismatch;
1272
1273      return DeduceTemplateArguments(S, TemplateParams,
1274                                     BlockPtrParam->getPointeeType(),
1275                                     BlockPtrArg->getPointeeType(), Info,
1276                                     Deduced, 0);
1277    }
1278
1279    case Type::TypeOfExpr:
1280    case Type::TypeOf:
1281    case Type::DependentName:
1282      // No template argument deduction for these types
1283      return Sema::TDK_Success;
1284
1285    default:
1286      break;
1287  }
1288
1289  // FIXME: Many more cases to go (to go).
1290  return Sema::TDK_Success;
1291}
1292
1293static Sema::TemplateDeductionResult
1294DeduceTemplateArguments(Sema &S,
1295                        TemplateParameterList *TemplateParams,
1296                        const TemplateArgument &Param,
1297                        TemplateArgument Arg,
1298                        TemplateDeductionInfo &Info,
1299                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1300  // If the template argument is a pack expansion, perform template argument
1301  // deduction against the pattern of that expansion. This only occurs during
1302  // partial ordering.
1303  if (Arg.isPackExpansion())
1304    Arg = Arg.getPackExpansionPattern();
1305
1306  switch (Param.getKind()) {
1307  case TemplateArgument::Null:
1308    assert(false && "Null template argument in parameter list");
1309    break;
1310
1311  case TemplateArgument::Type:
1312    if (Arg.getKind() == TemplateArgument::Type)
1313      return DeduceTemplateArguments(S, TemplateParams, Param.getAsType(),
1314                                     Arg.getAsType(), Info, Deduced, 0);
1315    Info.FirstArg = Param;
1316    Info.SecondArg = Arg;
1317    return Sema::TDK_NonDeducedMismatch;
1318
1319  case TemplateArgument::Template:
1320    if (Arg.getKind() == TemplateArgument::Template)
1321      return DeduceTemplateArguments(S, TemplateParams,
1322                                     Param.getAsTemplate(),
1323                                     Arg.getAsTemplate(), Info, Deduced);
1324    Info.FirstArg = Param;
1325    Info.SecondArg = Arg;
1326    return Sema::TDK_NonDeducedMismatch;
1327
1328  case TemplateArgument::TemplateExpansion:
1329    llvm_unreachable("caller should handle pack expansions");
1330    break;
1331
1332  case TemplateArgument::Declaration:
1333    if (Arg.getKind() == TemplateArgument::Declaration &&
1334        Param.getAsDecl()->getCanonicalDecl() ==
1335          Arg.getAsDecl()->getCanonicalDecl())
1336      return Sema::TDK_Success;
1337
1338    Info.FirstArg = Param;
1339    Info.SecondArg = Arg;
1340    return Sema::TDK_NonDeducedMismatch;
1341
1342  case TemplateArgument::Integral:
1343    if (Arg.getKind() == TemplateArgument::Integral) {
1344      if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
1345        return Sema::TDK_Success;
1346
1347      Info.FirstArg = Param;
1348      Info.SecondArg = Arg;
1349      return Sema::TDK_NonDeducedMismatch;
1350    }
1351
1352    if (Arg.getKind() == TemplateArgument::Expression) {
1353      Info.FirstArg = Param;
1354      Info.SecondArg = Arg;
1355      return Sema::TDK_NonDeducedMismatch;
1356    }
1357
1358    Info.FirstArg = Param;
1359    Info.SecondArg = Arg;
1360    return Sema::TDK_NonDeducedMismatch;
1361
1362  case TemplateArgument::Expression: {
1363    if (NonTypeTemplateParmDecl *NTTP
1364          = getDeducedParameterFromExpr(Param.getAsExpr())) {
1365      if (Arg.getKind() == TemplateArgument::Integral)
1366        return DeduceNonTypeTemplateArgument(S, NTTP,
1367                                             *Arg.getAsIntegral(),
1368                                             Arg.getIntegralType(),
1369                                             /*ArrayBound=*/false,
1370                                             Info, Deduced);
1371      if (Arg.getKind() == TemplateArgument::Expression)
1372        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
1373                                             Info, Deduced);
1374      if (Arg.getKind() == TemplateArgument::Declaration)
1375        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
1376                                             Info, Deduced);
1377
1378      Info.FirstArg = Param;
1379      Info.SecondArg = Arg;
1380      return Sema::TDK_NonDeducedMismatch;
1381    }
1382
1383    // Can't deduce anything, but that's okay.
1384    return Sema::TDK_Success;
1385  }
1386  case TemplateArgument::Pack:
1387    llvm_unreachable("Argument packs should be expanded by the caller!");
1388  }
1389
1390  return Sema::TDK_Success;
1391}
1392
1393/// \brief Determine whether there is a template argument to be used for
1394/// deduction.
1395///
1396/// This routine "expands" argument packs in-place, overriding its input
1397/// parameters so that \c Args[ArgIdx] will be the available template argument.
1398///
1399/// \returns true if there is another template argument (which will be at
1400/// \c Args[ArgIdx]), false otherwise.
1401static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
1402                                            unsigned &ArgIdx,
1403                                            unsigned &NumArgs) {
1404  if (ArgIdx == NumArgs)
1405    return false;
1406
1407  const TemplateArgument &Arg = Args[ArgIdx];
1408  if (Arg.getKind() != TemplateArgument::Pack)
1409    return true;
1410
1411  assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
1412  Args = Arg.pack_begin();
1413  NumArgs = Arg.pack_size();
1414  ArgIdx = 0;
1415  return ArgIdx < NumArgs;
1416}
1417
1418/// \brief Determine whether the given set of template arguments has a pack
1419/// expansion that is not the last template argument.
1420static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
1421                                      unsigned NumArgs) {
1422  unsigned ArgIdx = 0;
1423  while (ArgIdx < NumArgs) {
1424    const TemplateArgument &Arg = Args[ArgIdx];
1425
1426    // Unwrap argument packs.
1427    if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
1428      Args = Arg.pack_begin();
1429      NumArgs = Arg.pack_size();
1430      ArgIdx = 0;
1431      continue;
1432    }
1433
1434    ++ArgIdx;
1435    if (ArgIdx == NumArgs)
1436      return false;
1437
1438    if (Arg.isPackExpansion())
1439      return true;
1440  }
1441
1442  return false;
1443}
1444
1445static Sema::TemplateDeductionResult
1446DeduceTemplateArguments(Sema &S,
1447                        TemplateParameterList *TemplateParams,
1448                        const TemplateArgument *Params, unsigned NumParams,
1449                        const TemplateArgument *Args, unsigned NumArgs,
1450                        TemplateDeductionInfo &Info,
1451                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1452                        bool NumberOfArgumentsMustMatch) {
1453  // C++0x [temp.deduct.type]p9:
1454  //   If the template argument list of P contains a pack expansion that is not
1455  //   the last template argument, the entire template argument list is a
1456  //   non-deduced context.
1457  if (hasPackExpansionBeforeEnd(Params, NumParams))
1458    return Sema::TDK_Success;
1459
1460  // C++0x [temp.deduct.type]p9:
1461  //   If P has a form that contains <T> or <i>, then each argument Pi of the
1462  //   respective template argument list P is compared with the corresponding
1463  //   argument Ai of the corresponding template argument list of A.
1464  unsigned ArgIdx = 0, ParamIdx = 0;
1465  for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
1466       ++ParamIdx) {
1467    if (!Params[ParamIdx].isPackExpansion()) {
1468      // The simple case: deduce template arguments by matching Pi and Ai.
1469
1470      // Check whether we have enough arguments.
1471      if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1472        return NumberOfArgumentsMustMatch? Sema::TDK_NonDeducedMismatch
1473                                         : Sema::TDK_Success;
1474
1475      if (Args[ArgIdx].isPackExpansion()) {
1476        // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
1477        // but applied to pack expansions that are template arguments.
1478        return Sema::TDK_NonDeducedMismatch;
1479      }
1480
1481      // Perform deduction for this Pi/Ai pair.
1482      if (Sema::TemplateDeductionResult Result
1483            = DeduceTemplateArguments(S, TemplateParams,
1484                                      Params[ParamIdx], Args[ArgIdx],
1485                                      Info, Deduced))
1486        return Result;
1487
1488      // Move to the next argument.
1489      ++ArgIdx;
1490      continue;
1491    }
1492
1493    // The parameter is a pack expansion.
1494
1495    // C++0x [temp.deduct.type]p9:
1496    //   If Pi is a pack expansion, then the pattern of Pi is compared with
1497    //   each remaining argument in the template argument list of A. Each
1498    //   comparison deduces template arguments for subsequent positions in the
1499    //   template parameter packs expanded by Pi.
1500    TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
1501
1502    // Compute the set of template parameter indices that correspond to
1503    // parameter packs expanded by the pack expansion.
1504    llvm::SmallVector<unsigned, 2> PackIndices;
1505    {
1506      llvm::BitVector SawIndices(TemplateParams->size());
1507      llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
1508      S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
1509      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
1510        unsigned Depth, Index;
1511        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
1512        if (Depth == 0 && !SawIndices[Index]) {
1513          SawIndices[Index] = true;
1514          PackIndices.push_back(Index);
1515        }
1516      }
1517    }
1518    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
1519
1520    // FIXME: If there are no remaining arguments, we can bail out early
1521    // and set any deduced parameter packs to an empty argument pack.
1522    // The latter part of this is a (minor) correctness issue.
1523
1524    // Save the deduced template arguments for each parameter pack expanded
1525    // by this pack expansion, then clear out the deduction.
1526    llvm::SmallVector<DeducedTemplateArgument, 2>
1527      SavedPacks(PackIndices.size());
1528    llvm::SmallVector<llvm::SmallVector<DeducedTemplateArgument, 4>, 2>
1529      NewlyDeducedPacks(PackIndices.size());
1530    PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
1531                                 NewlyDeducedPacks);
1532
1533    // Keep track of the deduced template arguments for each parameter pack
1534    // expanded by this pack expansion (the outer index) and for each
1535    // template argument (the inner SmallVectors).
1536    bool HasAnyArguments = false;
1537    while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
1538      HasAnyArguments = true;
1539
1540      // Deduce template arguments from the pattern.
1541      if (Sema::TemplateDeductionResult Result
1542            = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
1543                                      Info, Deduced))
1544        return Result;
1545
1546      // Capture the deduced template arguments for each parameter pack expanded
1547      // by this pack expansion, add them to the list of arguments we've deduced
1548      // for that pack, then clear out the deduced argument.
1549      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
1550        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
1551        if (!DeducedArg.isNull()) {
1552          NewlyDeducedPacks[I].push_back(DeducedArg);
1553          DeducedArg = DeducedTemplateArgument();
1554        }
1555      }
1556
1557      ++ArgIdx;
1558    }
1559
1560    // Build argument packs for each of the parameter packs expanded by this
1561    // pack expansion.
1562    if (Sema::TemplateDeductionResult Result
1563          = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
1564                                        Deduced, PackIndices, SavedPacks,
1565                                        NewlyDeducedPacks, Info))
1566      return Result;
1567  }
1568
1569  // If there is an argument remaining, then we had too many arguments.
1570  if (NumberOfArgumentsMustMatch &&
1571      hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
1572    return Sema::TDK_NonDeducedMismatch;
1573
1574  return Sema::TDK_Success;
1575}
1576
1577static Sema::TemplateDeductionResult
1578DeduceTemplateArguments(Sema &S,
1579                        TemplateParameterList *TemplateParams,
1580                        const TemplateArgumentList &ParamList,
1581                        const TemplateArgumentList &ArgList,
1582                        TemplateDeductionInfo &Info,
1583                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
1584  return DeduceTemplateArguments(S, TemplateParams,
1585                                 ParamList.data(), ParamList.size(),
1586                                 ArgList.data(), ArgList.size(),
1587                                 Info, Deduced);
1588}
1589
1590/// \brief Determine whether two template arguments are the same.
1591static bool isSameTemplateArg(ASTContext &Context,
1592                              const TemplateArgument &X,
1593                              const TemplateArgument &Y) {
1594  if (X.getKind() != Y.getKind())
1595    return false;
1596
1597  switch (X.getKind()) {
1598    case TemplateArgument::Null:
1599      assert(false && "Comparing NULL template argument");
1600      break;
1601
1602    case TemplateArgument::Type:
1603      return Context.getCanonicalType(X.getAsType()) ==
1604             Context.getCanonicalType(Y.getAsType());
1605
1606    case TemplateArgument::Declaration:
1607      return X.getAsDecl()->getCanonicalDecl() ==
1608             Y.getAsDecl()->getCanonicalDecl();
1609
1610    case TemplateArgument::Template:
1611    case TemplateArgument::TemplateExpansion:
1612      return Context.getCanonicalTemplateName(
1613                    X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
1614             Context.getCanonicalTemplateName(
1615                    Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
1616
1617    case TemplateArgument::Integral:
1618      return *X.getAsIntegral() == *Y.getAsIntegral();
1619
1620    case TemplateArgument::Expression: {
1621      llvm::FoldingSetNodeID XID, YID;
1622      X.getAsExpr()->Profile(XID, Context, true);
1623      Y.getAsExpr()->Profile(YID, Context, true);
1624      return XID == YID;
1625    }
1626
1627    case TemplateArgument::Pack:
1628      if (X.pack_size() != Y.pack_size())
1629        return false;
1630
1631      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
1632                                        XPEnd = X.pack_end(),
1633                                           YP = Y.pack_begin();
1634           XP != XPEnd; ++XP, ++YP)
1635        if (!isSameTemplateArg(Context, *XP, *YP))
1636          return false;
1637
1638      return true;
1639  }
1640
1641  return false;
1642}
1643
1644/// \brief Allocate a TemplateArgumentLoc where all locations have
1645/// been initialized to the given location.
1646///
1647/// \param S The semantic analysis object.
1648///
1649/// \param The template argument we are producing template argument
1650/// location information for.
1651///
1652/// \param NTTPType For a declaration template argument, the type of
1653/// the non-type template parameter that corresponds to this template
1654/// argument.
1655///
1656/// \param Loc The source location to use for the resulting template
1657/// argument.
1658static TemplateArgumentLoc
1659getTrivialTemplateArgumentLoc(Sema &S,
1660                              const TemplateArgument &Arg,
1661                              QualType NTTPType,
1662                              SourceLocation Loc) {
1663  switch (Arg.getKind()) {
1664  case TemplateArgument::Null:
1665    llvm_unreachable("Can't get a NULL template argument here");
1666    break;
1667
1668  case TemplateArgument::Type:
1669    return TemplateArgumentLoc(Arg,
1670                     S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
1671
1672  case TemplateArgument::Declaration: {
1673    Expr *E
1674      = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
1675    .takeAs<Expr>();
1676    return TemplateArgumentLoc(TemplateArgument(E), E);
1677  }
1678
1679  case TemplateArgument::Integral: {
1680    Expr *E
1681      = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
1682    return TemplateArgumentLoc(TemplateArgument(E), E);
1683  }
1684
1685  case TemplateArgument::Template:
1686    return TemplateArgumentLoc(Arg, SourceRange(), Loc);
1687
1688  case TemplateArgument::TemplateExpansion:
1689    return TemplateArgumentLoc(Arg, SourceRange(), Loc, Loc);
1690
1691  case TemplateArgument::Expression:
1692    return TemplateArgumentLoc(Arg, Arg.getAsExpr());
1693
1694  case TemplateArgument::Pack:
1695    return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
1696  }
1697
1698  return TemplateArgumentLoc();
1699}
1700
1701
1702/// \brief Convert the given deduced template argument and add it to the set of
1703/// fully-converted template arguments.
1704static bool ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
1705                                           DeducedTemplateArgument Arg,
1706                                           NamedDecl *Template,
1707                                           QualType NTTPType,
1708                                           unsigned ArgumentPackIndex,
1709                                           TemplateDeductionInfo &Info,
1710                                           bool InFunctionTemplate,
1711                             llvm::SmallVectorImpl<TemplateArgument> &Output) {
1712  if (Arg.getKind() == TemplateArgument::Pack) {
1713    // This is a template argument pack, so check each of its arguments against
1714    // the template parameter.
1715    llvm::SmallVector<TemplateArgument, 2> PackedArgsBuilder;
1716    for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
1717                                      PAEnd = Arg.pack_end();
1718         PA != PAEnd; ++PA) {
1719      // When converting the deduced template argument, append it to the
1720      // general output list. We need to do this so that the template argument
1721      // checking logic has all of the prior template arguments available.
1722      DeducedTemplateArgument InnerArg(*PA);
1723      InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
1724      if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
1725                                         NTTPType, PackedArgsBuilder.size(),
1726                                         Info, InFunctionTemplate, Output))
1727        return true;
1728
1729      // Move the converted template argument into our argument pack.
1730      PackedArgsBuilder.push_back(Output.back());
1731      Output.pop_back();
1732    }
1733
1734    // Create the resulting argument pack.
1735    Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
1736                                                      PackedArgsBuilder.data(),
1737                                                     PackedArgsBuilder.size()));
1738    return false;
1739  }
1740
1741  // Convert the deduced template argument into a template
1742  // argument that we can check, almost as if the user had written
1743  // the template argument explicitly.
1744  TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
1745                                                             Info.getLocation());
1746
1747  // Check the template argument, converting it as necessary.
1748  return S.CheckTemplateArgument(Param, ArgLoc,
1749                                 Template,
1750                                 Template->getLocation(),
1751                                 Template->getSourceRange().getEnd(),
1752                                 ArgumentPackIndex,
1753                                 Output,
1754                                 InFunctionTemplate
1755                                  ? (Arg.wasDeducedFromArrayBound()
1756                                       ? Sema::CTAK_DeducedFromArrayBound
1757                                       : Sema::CTAK_Deduced)
1758                                 : Sema::CTAK_Specified);
1759}
1760
1761/// Complete template argument deduction for a class template partial
1762/// specialization.
1763static Sema::TemplateDeductionResult
1764FinishTemplateArgumentDeduction(Sema &S,
1765                                ClassTemplatePartialSpecializationDecl *Partial,
1766                                const TemplateArgumentList &TemplateArgs,
1767                      llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1768                                TemplateDeductionInfo &Info) {
1769  // Trap errors.
1770  Sema::SFINAETrap Trap(S);
1771
1772  Sema::ContextRAII SavedContext(S, Partial);
1773
1774  // C++ [temp.deduct.type]p2:
1775  //   [...] or if any template argument remains neither deduced nor
1776  //   explicitly specified, template argument deduction fails.
1777  llvm::SmallVector<TemplateArgument, 4> Builder;
1778  TemplateParameterList *PartialParams = Partial->getTemplateParameters();
1779  for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
1780    NamedDecl *Param = PartialParams->getParam(I);
1781    if (Deduced[I].isNull()) {
1782      Info.Param = makeTemplateParameter(Param);
1783      return Sema::TDK_Incomplete;
1784    }
1785
1786    // We have deduced this argument, so it still needs to be
1787    // checked and converted.
1788
1789    // First, for a non-type template parameter type that is
1790    // initialized by a declaration, we need the type of the
1791    // corresponding non-type template parameter.
1792    QualType NTTPType;
1793    if (NonTypeTemplateParmDecl *NTTP
1794                                  = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1795      NTTPType = NTTP->getType();
1796      if (NTTPType->isDependentType()) {
1797        TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
1798                                          Builder.data(), Builder.size());
1799        NTTPType = S.SubstType(NTTPType,
1800                               MultiLevelTemplateArgumentList(TemplateArgs),
1801                               NTTP->getLocation(),
1802                               NTTP->getDeclName());
1803        if (NTTPType.isNull()) {
1804          Info.Param = makeTemplateParameter(Param);
1805          // FIXME: These template arguments are temporary. Free them!
1806          Info.reset(TemplateArgumentList::CreateCopy(S.Context,
1807                                                      Builder.data(),
1808                                                      Builder.size()));
1809          return Sema::TDK_SubstitutionFailure;
1810        }
1811      }
1812    }
1813
1814    if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
1815                                       Partial, NTTPType, 0, Info, false,
1816                                       Builder)) {
1817      Info.Param = makeTemplateParameter(Param);
1818      // FIXME: These template arguments are temporary. Free them!
1819      Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
1820                                                  Builder.size()));
1821      return Sema::TDK_SubstitutionFailure;
1822    }
1823  }
1824
1825  // Form the template argument list from the deduced template arguments.
1826  TemplateArgumentList *DeducedArgumentList
1827    = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
1828                                       Builder.size());
1829
1830  Info.reset(DeducedArgumentList);
1831
1832  // Substitute the deduced template arguments into the template
1833  // arguments of the class template partial specialization, and
1834  // verify that the instantiated template arguments are both valid
1835  // and are equivalent to the template arguments originally provided
1836  // to the class template.
1837  LocalInstantiationScope InstScope(S);
1838  ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
1839  const TemplateArgumentLoc *PartialTemplateArgs
1840    = Partial->getTemplateArgsAsWritten();
1841
1842  // Note that we don't provide the langle and rangle locations.
1843  TemplateArgumentListInfo InstArgs;
1844
1845  if (S.Subst(PartialTemplateArgs,
1846              Partial->getNumTemplateArgsAsWritten(),
1847              InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
1848    unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
1849    if (ParamIdx >= Partial->getTemplateParameters()->size())
1850      ParamIdx = Partial->getTemplateParameters()->size() - 1;
1851
1852    Decl *Param
1853      = const_cast<NamedDecl *>(
1854                          Partial->getTemplateParameters()->getParam(ParamIdx));
1855    Info.Param = makeTemplateParameter(Param);
1856    Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
1857    return Sema::TDK_SubstitutionFailure;
1858  }
1859
1860  llvm::SmallVector<TemplateArgument, 4> ConvertedInstArgs;
1861  if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
1862                                  InstArgs, false, ConvertedInstArgs))
1863    return Sema::TDK_SubstitutionFailure;
1864
1865  TemplateParameterList *TemplateParams
1866    = ClassTemplate->getTemplateParameters();
1867  for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
1868    TemplateArgument InstArg = ConvertedInstArgs.data()[I];
1869    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
1870      Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
1871      Info.FirstArg = TemplateArgs[I];
1872      Info.SecondArg = InstArg;
1873      return Sema::TDK_NonDeducedMismatch;
1874    }
1875  }
1876
1877  if (Trap.hasErrorOccurred())
1878    return Sema::TDK_SubstitutionFailure;
1879
1880  return Sema::TDK_Success;
1881}
1882
1883/// \brief Perform template argument deduction to determine whether
1884/// the given template arguments match the given class template
1885/// partial specialization per C++ [temp.class.spec.match].
1886Sema::TemplateDeductionResult
1887Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
1888                              const TemplateArgumentList &TemplateArgs,
1889                              TemplateDeductionInfo &Info) {
1890  // C++ [temp.class.spec.match]p2:
1891  //   A partial specialization matches a given actual template
1892  //   argument list if the template arguments of the partial
1893  //   specialization can be deduced from the actual template argument
1894  //   list (14.8.2).
1895  SFINAETrap Trap(*this);
1896  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1897  Deduced.resize(Partial->getTemplateParameters()->size());
1898  if (TemplateDeductionResult Result
1899        = ::DeduceTemplateArguments(*this,
1900                                    Partial->getTemplateParameters(),
1901                                    Partial->getTemplateArgs(),
1902                                    TemplateArgs, Info, Deduced))
1903    return Result;
1904
1905  InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
1906                             Deduced.data(), Deduced.size(), Info);
1907  if (Inst)
1908    return TDK_InstantiationDepth;
1909
1910  if (Trap.hasErrorOccurred())
1911    return Sema::TDK_SubstitutionFailure;
1912
1913  return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
1914                                           Deduced, Info);
1915}
1916
1917/// \brief Determine whether the given type T is a simple-template-id type.
1918static bool isSimpleTemplateIdType(QualType T) {
1919  if (const TemplateSpecializationType *Spec
1920        = T->getAs<TemplateSpecializationType>())
1921    return Spec->getTemplateName().getAsTemplateDecl() != 0;
1922
1923  return false;
1924}
1925
1926/// \brief Substitute the explicitly-provided template arguments into the
1927/// given function template according to C++ [temp.arg.explicit].
1928///
1929/// \param FunctionTemplate the function template into which the explicit
1930/// template arguments will be substituted.
1931///
1932/// \param ExplicitTemplateArguments the explicitly-specified template
1933/// arguments.
1934///
1935/// \param Deduced the deduced template arguments, which will be populated
1936/// with the converted and checked explicit template arguments.
1937///
1938/// \param ParamTypes will be populated with the instantiated function
1939/// parameters.
1940///
1941/// \param FunctionType if non-NULL, the result type of the function template
1942/// will also be instantiated and the pointed-to value will be updated with
1943/// the instantiated function type.
1944///
1945/// \param Info if substitution fails for any reason, this object will be
1946/// populated with more information about the failure.
1947///
1948/// \returns TDK_Success if substitution was successful, or some failure
1949/// condition.
1950Sema::TemplateDeductionResult
1951Sema::SubstituteExplicitTemplateArguments(
1952                                      FunctionTemplateDecl *FunctionTemplate,
1953                        const TemplateArgumentListInfo &ExplicitTemplateArgs,
1954                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1955                                 llvm::SmallVectorImpl<QualType> &ParamTypes,
1956                                          QualType *FunctionType,
1957                                          TemplateDeductionInfo &Info) {
1958  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1959  TemplateParameterList *TemplateParams
1960    = FunctionTemplate->getTemplateParameters();
1961
1962  if (ExplicitTemplateArgs.size() == 0) {
1963    // No arguments to substitute; just copy over the parameter types and
1964    // fill in the function type.
1965    for (FunctionDecl::param_iterator P = Function->param_begin(),
1966                                   PEnd = Function->param_end();
1967         P != PEnd;
1968         ++P)
1969      ParamTypes.push_back((*P)->getType());
1970
1971    if (FunctionType)
1972      *FunctionType = Function->getType();
1973    return TDK_Success;
1974  }
1975
1976  // Substitution of the explicit template arguments into a function template
1977  /// is a SFINAE context. Trap any errors that might occur.
1978  SFINAETrap Trap(*this);
1979
1980  // C++ [temp.arg.explicit]p3:
1981  //   Template arguments that are present shall be specified in the
1982  //   declaration order of their corresponding template-parameters. The
1983  //   template argument list shall not specify more template-arguments than
1984  //   there are corresponding template-parameters.
1985  llvm::SmallVector<TemplateArgument, 4> Builder;
1986
1987  // Enter a new template instantiation context where we check the
1988  // explicitly-specified template arguments against this function template,
1989  // and then substitute them into the function parameter types.
1990  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1991                             FunctionTemplate, Deduced.data(), Deduced.size(),
1992           ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
1993                             Info);
1994  if (Inst)
1995    return TDK_InstantiationDepth;
1996
1997  if (CheckTemplateArgumentList(FunctionTemplate,
1998                                SourceLocation(),
1999                                ExplicitTemplateArgs,
2000                                true,
2001                                Builder) || Trap.hasErrorOccurred()) {
2002    unsigned Index = Builder.size();
2003    if (Index >= TemplateParams->size())
2004      Index = TemplateParams->size() - 1;
2005    Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
2006    return TDK_InvalidExplicitArguments;
2007  }
2008
2009  // Form the template argument list from the explicitly-specified
2010  // template arguments.
2011  TemplateArgumentList *ExplicitArgumentList
2012    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2013  Info.reset(ExplicitArgumentList);
2014
2015  // Template argument deduction and the final substitution should be
2016  // done in the context of the templated declaration.  Explicit
2017  // argument substitution, on the other hand, needs to happen in the
2018  // calling context.
2019  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2020
2021  // If we deduced template arguments for a template parameter pack,
2022  // note that the template argument pack is partially substituted and record
2023  // the explicit template arguments. They'll be used as part of deduction
2024  // for this template parameter pack.
2025  for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
2026    const TemplateArgument &Arg = Builder[I];
2027    if (Arg.getKind() == TemplateArgument::Pack) {
2028      CurrentInstantiationScope->SetPartiallySubstitutedPack(
2029                                                 TemplateParams->getParam(I),
2030                                                             Arg.pack_begin(),
2031                                                             Arg.pack_size());
2032      break;
2033    }
2034  }
2035
2036  // Instantiate the types of each of the function parameters given the
2037  // explicitly-specified template arguments.
2038  if (SubstParmTypes(Function->getLocation(),
2039                     Function->param_begin(), Function->getNumParams(),
2040                     MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2041                     ParamTypes))
2042    return TDK_SubstitutionFailure;
2043
2044  // If the caller wants a full function type back, instantiate the return
2045  // type and form that function type.
2046  if (FunctionType) {
2047    // FIXME: exception-specifications?
2048    const FunctionProtoType *Proto
2049      = Function->getType()->getAs<FunctionProtoType>();
2050    assert(Proto && "Function template does not have a prototype?");
2051
2052    QualType ResultType
2053      = SubstType(Proto->getResultType(),
2054                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
2055                  Function->getTypeSpecStartLoc(),
2056                  Function->getDeclName());
2057    if (ResultType.isNull() || Trap.hasErrorOccurred())
2058      return TDK_SubstitutionFailure;
2059
2060    *FunctionType = BuildFunctionType(ResultType,
2061                                      ParamTypes.data(), ParamTypes.size(),
2062                                      Proto->isVariadic(),
2063                                      Proto->getTypeQuals(),
2064                                      Function->getLocation(),
2065                                      Function->getDeclName(),
2066                                      Proto->getExtInfo());
2067    if (FunctionType->isNull() || Trap.hasErrorOccurred())
2068      return TDK_SubstitutionFailure;
2069  }
2070
2071  // C++ [temp.arg.explicit]p2:
2072  //   Trailing template arguments that can be deduced (14.8.2) may be
2073  //   omitted from the list of explicit template-arguments. If all of the
2074  //   template arguments can be deduced, they may all be omitted; in this
2075  //   case, the empty template argument list <> itself may also be omitted.
2076  //
2077  // Take all of the explicitly-specified arguments and put them into
2078  // the set of deduced template arguments. Explicitly-specified
2079  // parameter packs, however, will be set to NULL since the deduction
2080  // mechanisms handle explicitly-specified argument packs directly.
2081  Deduced.reserve(TemplateParams->size());
2082  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
2083    const TemplateArgument &Arg = ExplicitArgumentList->get(I);
2084    if (Arg.getKind() == TemplateArgument::Pack)
2085      Deduced.push_back(DeducedTemplateArgument());
2086    else
2087      Deduced.push_back(Arg);
2088  }
2089
2090  return TDK_Success;
2091}
2092
2093/// \brief Finish template argument deduction for a function template,
2094/// checking the deduced template arguments for completeness and forming
2095/// the function template specialization.
2096Sema::TemplateDeductionResult
2097Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
2098                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
2099                                      unsigned NumExplicitlySpecified,
2100                                      FunctionDecl *&Specialization,
2101                                      TemplateDeductionInfo &Info) {
2102  TemplateParameterList *TemplateParams
2103    = FunctionTemplate->getTemplateParameters();
2104
2105  // Template argument deduction for function templates in a SFINAE context.
2106  // Trap any errors that might occur.
2107  SFINAETrap Trap(*this);
2108
2109  // Enter a new template instantiation context while we instantiate the
2110  // actual function declaration.
2111  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
2112                             FunctionTemplate, Deduced.data(), Deduced.size(),
2113              ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
2114                             Info);
2115  if (Inst)
2116    return TDK_InstantiationDepth;
2117
2118  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
2119
2120  // C++ [temp.deduct.type]p2:
2121  //   [...] or if any template argument remains neither deduced nor
2122  //   explicitly specified, template argument deduction fails.
2123  llvm::SmallVector<TemplateArgument, 4> Builder;
2124  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
2125    NamedDecl *Param = TemplateParams->getParam(I);
2126
2127    if (!Deduced[I].isNull()) {
2128      if (I < NumExplicitlySpecified) {
2129        // We have already fully type-checked and converted this
2130        // argument, because it was explicitly-specified. Just record the
2131        // presence of this argument.
2132        Builder.push_back(Deduced[I]);
2133        continue;
2134      }
2135
2136      // We have deduced this argument, so it still needs to be
2137      // checked and converted.
2138
2139      // First, for a non-type template parameter type that is
2140      // initialized by a declaration, we need the type of the
2141      // corresponding non-type template parameter.
2142      QualType NTTPType;
2143      if (NonTypeTemplateParmDecl *NTTP
2144                                = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
2145        NTTPType = NTTP->getType();
2146        if (NTTPType->isDependentType()) {
2147          TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2148                                            Builder.data(), Builder.size());
2149          NTTPType = SubstType(NTTPType,
2150                               MultiLevelTemplateArgumentList(TemplateArgs),
2151                               NTTP->getLocation(),
2152                               NTTP->getDeclName());
2153          if (NTTPType.isNull()) {
2154            Info.Param = makeTemplateParameter(Param);
2155            // FIXME: These template arguments are temporary. Free them!
2156            Info.reset(TemplateArgumentList::CreateCopy(Context,
2157                                                        Builder.data(),
2158                                                        Builder.size()));
2159            return TDK_SubstitutionFailure;
2160          }
2161        }
2162      }
2163
2164      if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
2165                                         FunctionTemplate, NTTPType, 0, Info,
2166                                         true, Builder)) {
2167        Info.Param = makeTemplateParameter(Param);
2168        // FIXME: These template arguments are temporary. Free them!
2169        Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2170                                                    Builder.size()));
2171        return TDK_SubstitutionFailure;
2172      }
2173
2174      continue;
2175    }
2176
2177    // C++0x [temp.arg.explicit]p3:
2178    //    A trailing template parameter pack (14.5.3) not otherwise deduced will
2179    //    be deduced to an empty sequence of template arguments.
2180    // FIXME: Where did the word "trailing" come from?
2181    if (Param->isTemplateParameterPack()) {
2182      // We may have had explicitly-specified template arguments for this
2183      // template parameter pack. If so, our empty deduction extends the
2184      // explicitly-specified set (C++0x [temp.arg.explicit]p9).
2185      const TemplateArgument *ExplicitArgs;
2186      unsigned NumExplicitArgs;
2187      if (CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
2188                                                             &NumExplicitArgs)
2189          == Param)
2190        Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
2191      else
2192        Builder.push_back(TemplateArgument(0, 0));
2193
2194      continue;
2195    }
2196
2197    // Substitute into the default template argument, if available.
2198    TemplateArgumentLoc DefArg
2199      = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
2200                                              FunctionTemplate->getLocation(),
2201                                  FunctionTemplate->getSourceRange().getEnd(),
2202                                                Param,
2203                                                Builder);
2204
2205    // If there was no default argument, deduction is incomplete.
2206    if (DefArg.getArgument().isNull()) {
2207      Info.Param = makeTemplateParameter(
2208                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2209      return TDK_Incomplete;
2210    }
2211
2212    // Check whether we can actually use the default argument.
2213    if (CheckTemplateArgument(Param, DefArg,
2214                              FunctionTemplate,
2215                              FunctionTemplate->getLocation(),
2216                              FunctionTemplate->getSourceRange().getEnd(),
2217                              0, Builder,
2218                              CTAK_Deduced)) {
2219      Info.Param = makeTemplateParameter(
2220                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
2221      // FIXME: These template arguments are temporary. Free them!
2222      Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
2223                                                  Builder.size()));
2224      return TDK_SubstitutionFailure;
2225    }
2226
2227    // If we get here, we successfully used the default template argument.
2228  }
2229
2230  // Form the template argument list from the deduced template arguments.
2231  TemplateArgumentList *DeducedArgumentList
2232    = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
2233  Info.reset(DeducedArgumentList);
2234
2235  // Substitute the deduced template arguments into the function template
2236  // declaration to produce the function template specialization.
2237  DeclContext *Owner = FunctionTemplate->getDeclContext();
2238  if (FunctionTemplate->getFriendObjectKind())
2239    Owner = FunctionTemplate->getLexicalDeclContext();
2240  Specialization = cast_or_null<FunctionDecl>(
2241                      SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
2242                         MultiLevelTemplateArgumentList(*DeducedArgumentList)));
2243  if (!Specialization)
2244    return TDK_SubstitutionFailure;
2245
2246  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
2247         FunctionTemplate->getCanonicalDecl());
2248
2249  // If the template argument list is owned by the function template
2250  // specialization, release it.
2251  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
2252      !Trap.hasErrorOccurred())
2253    Info.take();
2254
2255  // There may have been an error that did not prevent us from constructing a
2256  // declaration. Mark the declaration invalid and return with a substitution
2257  // failure.
2258  if (Trap.hasErrorOccurred()) {
2259    Specialization->setInvalidDecl(true);
2260    return TDK_SubstitutionFailure;
2261  }
2262
2263  // If we suppressed any diagnostics while performing template argument
2264  // deduction, and if we haven't already instantiated this declaration,
2265  // keep track of these diagnostics. They'll be emitted if this specialization
2266  // is actually used.
2267  if (Info.diag_begin() != Info.diag_end()) {
2268    llvm::DenseMap<Decl *, llvm::SmallVector<PartialDiagnosticAt, 1> >::iterator
2269      Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
2270    if (Pos == SuppressedDiagnostics.end())
2271        SuppressedDiagnostics[Specialization->getCanonicalDecl()]
2272          .append(Info.diag_begin(), Info.diag_end());
2273  }
2274
2275  return TDK_Success;
2276}
2277
2278/// Gets the type of a function for template-argument-deducton
2279/// purposes when it's considered as part of an overload set.
2280static QualType GetTypeOfFunction(ASTContext &Context,
2281                                  const OverloadExpr::FindResult &R,
2282                                  FunctionDecl *Fn) {
2283  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
2284    if (Method->isInstance()) {
2285      // An instance method that's referenced in a form that doesn't
2286      // look like a member pointer is just invalid.
2287      if (!R.HasFormOfMemberPointer) return QualType();
2288
2289      return Context.getMemberPointerType(Fn->getType(),
2290               Context.getTypeDeclType(Method->getParent()).getTypePtr());
2291    }
2292
2293  if (!R.IsAddressOfOperand) return Fn->getType();
2294  return Context.getPointerType(Fn->getType());
2295}
2296
2297/// Apply the deduction rules for overload sets.
2298///
2299/// \return the null type if this argument should be treated as an
2300/// undeduced context
2301static QualType
2302ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
2303                            Expr *Arg, QualType ParamType,
2304                            bool ParamWasReference) {
2305
2306  OverloadExpr::FindResult R = OverloadExpr::find(Arg);
2307
2308  OverloadExpr *Ovl = R.Expression;
2309
2310  // C++0x [temp.deduct.call]p4
2311  unsigned TDF = 0;
2312  if (ParamWasReference)
2313    TDF |= TDF_ParamWithReferenceType;
2314  if (R.IsAddressOfOperand)
2315    TDF |= TDF_IgnoreQualifiers;
2316
2317  // If there were explicit template arguments, we can only find
2318  // something via C++ [temp.arg.explicit]p3, i.e. if the arguments
2319  // unambiguously name a full specialization.
2320  if (Ovl->hasExplicitTemplateArgs()) {
2321    // But we can still look for an explicit specialization.
2322    if (FunctionDecl *ExplicitSpec
2323          = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
2324      return GetTypeOfFunction(S.Context, R, ExplicitSpec);
2325    return QualType();
2326  }
2327
2328  // C++0x [temp.deduct.call]p6:
2329  //   When P is a function type, pointer to function type, or pointer
2330  //   to member function type:
2331
2332  if (!ParamType->isFunctionType() &&
2333      !ParamType->isFunctionPointerType() &&
2334      !ParamType->isMemberFunctionPointerType())
2335    return QualType();
2336
2337  QualType Match;
2338  for (UnresolvedSetIterator I = Ovl->decls_begin(),
2339         E = Ovl->decls_end(); I != E; ++I) {
2340    NamedDecl *D = (*I)->getUnderlyingDecl();
2341
2342    //   - If the argument is an overload set containing one or more
2343    //     function templates, the parameter is treated as a
2344    //     non-deduced context.
2345    if (isa<FunctionTemplateDecl>(D))
2346      return QualType();
2347
2348    FunctionDecl *Fn = cast<FunctionDecl>(D);
2349    QualType ArgType = GetTypeOfFunction(S.Context, R, Fn);
2350    if (ArgType.isNull()) continue;
2351
2352    // Function-to-pointer conversion.
2353    if (!ParamWasReference && ParamType->isPointerType() &&
2354        ArgType->isFunctionType())
2355      ArgType = S.Context.getPointerType(ArgType);
2356
2357    //   - If the argument is an overload set (not containing function
2358    //     templates), trial argument deduction is attempted using each
2359    //     of the members of the set. If deduction succeeds for only one
2360    //     of the overload set members, that member is used as the
2361    //     argument value for the deduction. If deduction succeeds for
2362    //     more than one member of the overload set the parameter is
2363    //     treated as a non-deduced context.
2364
2365    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
2366    //   Type deduction is done independently for each P/A pair, and
2367    //   the deduced template argument values are then combined.
2368    // So we do not reject deductions which were made elsewhere.
2369    llvm::SmallVector<DeducedTemplateArgument, 8>
2370      Deduced(TemplateParams->size());
2371    TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
2372    Sema::TemplateDeductionResult Result
2373      = DeduceTemplateArguments(S, TemplateParams,
2374                                ParamType, ArgType,
2375                                Info, Deduced, TDF);
2376    if (Result) continue;
2377    if (!Match.isNull()) return QualType();
2378    Match = ArgType;
2379  }
2380
2381  return Match;
2382}
2383
2384/// \brief Perform the adjustments to the parameter and argument types
2385/// described in C++ [temp.deduct.call].
2386///
2387/// \returns true if the caller should not attempt to perform any template
2388/// argument deduction based on this P/A pair.
2389static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
2390                                          TemplateParameterList *TemplateParams,
2391                                                      QualType &ParamType,
2392                                                      QualType &ArgType,
2393                                                      Expr *Arg,
2394                                                      unsigned &TDF) {
2395  // C++0x [temp.deduct.call]p3:
2396  //   If P is a cv-qualified type, the top level cv-qualifiers of P’s type
2397  //   are ignored for type deduction.
2398  if (ParamType.getCVRQualifiers())
2399    ParamType = ParamType.getLocalUnqualifiedType();
2400  const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
2401  if (ParamRefType) {
2402    //   [C++0x] If P is an rvalue reference to a cv-unqualified
2403    //   template parameter and the argument is an lvalue, the type
2404    //   "lvalue reference to A" is used in place of A for type
2405    //   deduction.
2406    if (const RValueReferenceType *RValueRef
2407                                   = dyn_cast<RValueReferenceType>(ParamType)) {
2408      if (!RValueRef->getPointeeType().getQualifiers() &&
2409          isa<TemplateTypeParmType>(RValueRef->getPointeeType()) &&
2410          Arg->Classify(S.Context).isLValue())
2411        ArgType = S.Context.getLValueReferenceType(ArgType);
2412    }
2413
2414    //   [...] If P is a reference type, the type referred to by P is used
2415    //   for type deduction.
2416    ParamType = ParamRefType->getPointeeType();
2417  }
2418
2419  // Overload sets usually make this parameter an undeduced
2420  // context, but there are sometimes special circumstances.
2421  if (ArgType == S.Context.OverloadTy) {
2422    ArgType = ResolveOverloadForDeduction(S, TemplateParams,
2423                                          Arg, ParamType,
2424                                          ParamRefType != 0);
2425    if (ArgType.isNull())
2426      return true;
2427  }
2428
2429  if (ParamRefType) {
2430    // C++0x [temp.deduct.call]p3:
2431    //   [...] If P is of the form T&&, where T is a template parameter, and
2432    //   the argument is an lvalue, the type A& is used in place of A for
2433    //   type deduction.
2434    if (ParamRefType->isRValueReferenceType() &&
2435        ParamRefType->getAs<TemplateTypeParmType>() &&
2436        Arg->isLValue())
2437      ArgType = S.Context.getLValueReferenceType(ArgType);
2438  } else {
2439    // C++ [temp.deduct.call]p2:
2440    //   If P is not a reference type:
2441    //   - If A is an array type, the pointer type produced by the
2442    //     array-to-pointer standard conversion (4.2) is used in place of
2443    //     A for type deduction; otherwise,
2444    if (ArgType->isArrayType())
2445      ArgType = S.Context.getArrayDecayedType(ArgType);
2446    //   - If A is a function type, the pointer type produced by the
2447    //     function-to-pointer standard conversion (4.3) is used in place
2448    //     of A for type deduction; otherwise,
2449    else if (ArgType->isFunctionType())
2450      ArgType = S.Context.getPointerType(ArgType);
2451    else {
2452      // - If A is a cv-qualified type, the top level cv-qualifiers of A’s
2453      //   type are ignored for type deduction.
2454      if (ArgType.getCVRQualifiers())
2455        ArgType = ArgType.getUnqualifiedType();
2456    }
2457  }
2458
2459  // C++0x [temp.deduct.call]p4:
2460  //   In general, the deduction process attempts to find template argument
2461  //   values that will make the deduced A identical to A (after the type A
2462  //   is transformed as described above). [...]
2463  TDF = TDF_SkipNonDependent;
2464
2465  //     - If the original P is a reference type, the deduced A (i.e., the
2466  //       type referred to by the reference) can be more cv-qualified than
2467  //       the transformed A.
2468  if (ParamRefType)
2469    TDF |= TDF_ParamWithReferenceType;
2470  //     - The transformed A can be another pointer or pointer to member
2471  //       type that can be converted to the deduced A via a qualification
2472  //       conversion (4.4).
2473  if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
2474      ArgType->isObjCObjectPointerType())
2475    TDF |= TDF_IgnoreQualifiers;
2476  //     - If P is a class and P has the form simple-template-id, then the
2477  //       transformed A can be a derived class of the deduced A. Likewise,
2478  //       if P is a pointer to a class of the form simple-template-id, the
2479  //       transformed A can be a pointer to a derived class pointed to by
2480  //       the deduced A.
2481  if (isSimpleTemplateIdType(ParamType) ||
2482      (isa<PointerType>(ParamType) &&
2483       isSimpleTemplateIdType(
2484                              ParamType->getAs<PointerType>()->getPointeeType())))
2485    TDF |= TDF_DerivedClass;
2486
2487  return false;
2488}
2489
2490/// \brief Perform template argument deduction from a function call
2491/// (C++ [temp.deduct.call]).
2492///
2493/// \param FunctionTemplate the function template for which we are performing
2494/// template argument deduction.
2495///
2496/// \param ExplicitTemplateArguments the explicit template arguments provided
2497/// for this call.
2498///
2499/// \param Args the function call arguments
2500///
2501/// \param NumArgs the number of arguments in Args
2502///
2503/// \param Name the name of the function being called. This is only significant
2504/// when the function template is a conversion function template, in which
2505/// case this routine will also perform template argument deduction based on
2506/// the function to which
2507///
2508/// \param Specialization if template argument deduction was successful,
2509/// this will be set to the function template specialization produced by
2510/// template argument deduction.
2511///
2512/// \param Info the argument will be updated to provide additional information
2513/// about template argument deduction.
2514///
2515/// \returns the result of template argument deduction.
2516Sema::TemplateDeductionResult
2517Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2518                          const TemplateArgumentListInfo *ExplicitTemplateArgs,
2519                              Expr **Args, unsigned NumArgs,
2520                              FunctionDecl *&Specialization,
2521                              TemplateDeductionInfo &Info) {
2522  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2523
2524  // C++ [temp.deduct.call]p1:
2525  //   Template argument deduction is done by comparing each function template
2526  //   parameter type (call it P) with the type of the corresponding argument
2527  //   of the call (call it A) as described below.
2528  unsigned CheckArgs = NumArgs;
2529  if (NumArgs < Function->getMinRequiredArguments())
2530    return TDK_TooFewArguments;
2531  else if (NumArgs > Function->getNumParams()) {
2532    const FunctionProtoType *Proto
2533      = Function->getType()->getAs<FunctionProtoType>();
2534    if (Proto->isTemplateVariadic())
2535      /* Do nothing */;
2536    else if (Proto->isVariadic())
2537      CheckArgs = Function->getNumParams();
2538    else
2539      return TDK_TooManyArguments;
2540  }
2541
2542  // The types of the parameters from which we will perform template argument
2543  // deduction.
2544  LocalInstantiationScope InstScope(*this);
2545  TemplateParameterList *TemplateParams
2546    = FunctionTemplate->getTemplateParameters();
2547  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2548  llvm::SmallVector<QualType, 4> ParamTypes;
2549  unsigned NumExplicitlySpecified = 0;
2550  if (ExplicitTemplateArgs) {
2551    TemplateDeductionResult Result =
2552      SubstituteExplicitTemplateArguments(FunctionTemplate,
2553                                          *ExplicitTemplateArgs,
2554                                          Deduced,
2555                                          ParamTypes,
2556                                          0,
2557                                          Info);
2558    if (Result)
2559      return Result;
2560
2561    NumExplicitlySpecified = Deduced.size();
2562  } else {
2563    // Just fill in the parameter types from the function declaration.
2564    for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
2565      ParamTypes.push_back(Function->getParamDecl(I)->getType());
2566  }
2567
2568  // Deduce template arguments from the function parameters.
2569  Deduced.resize(TemplateParams->size());
2570  unsigned ArgIdx = 0;
2571  for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
2572       ParamIdx != NumParams; ++ParamIdx) {
2573    QualType ParamType = ParamTypes[ParamIdx];
2574
2575    const PackExpansionType *ParamExpansion
2576      = dyn_cast<PackExpansionType>(ParamType);
2577    if (!ParamExpansion) {
2578      // Simple case: matching a function parameter to a function argument.
2579      if (ArgIdx >= CheckArgs)
2580        break;
2581
2582      Expr *Arg = Args[ArgIdx++];
2583      QualType ArgType = Arg->getType();
2584      unsigned TDF = 0;
2585      if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
2586                                                    ParamType, ArgType, Arg,
2587                                                    TDF))
2588        continue;
2589
2590      if (TemplateDeductionResult Result
2591          = ::DeduceTemplateArguments(*this, TemplateParams,
2592                                      ParamType, ArgType, Info, Deduced,
2593                                      TDF))
2594        return Result;
2595
2596      // FIXME: we need to check that the deduced A is the same as A,
2597      // modulo the various allowed differences.
2598      continue;
2599    }
2600
2601    // C++0x [temp.deduct.call]p1:
2602    //   For a function parameter pack that occurs at the end of the
2603    //   parameter-declaration-list, the type A of each remaining argument of
2604    //   the call is compared with the type P of the declarator-id of the
2605    //   function parameter pack. Each comparison deduces template arguments
2606    //   for subsequent positions in the template parameter packs expanded by
2607    //   the function parameter pack. For a function parameter pack that does
2608    //   not occur at the end of the parameter-declaration-list, the type of
2609    //   the parameter pack is a non-deduced context.
2610    if (ParamIdx + 1 < NumParams)
2611      break;
2612
2613    QualType ParamPattern = ParamExpansion->getPattern();
2614    llvm::SmallVector<unsigned, 2> PackIndices;
2615    {
2616      llvm::BitVector SawIndices(TemplateParams->size());
2617      llvm::SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2618      collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
2619      for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
2620        unsigned Depth, Index;
2621        llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
2622        if (Depth == 0 && !SawIndices[Index]) {
2623          SawIndices[Index] = true;
2624          PackIndices.push_back(Index);
2625        }
2626      }
2627    }
2628    assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
2629
2630    // Keep track of the deduced template arguments for each parameter pack
2631    // expanded by this pack expansion (the outer index) and for each
2632    // template argument (the inner SmallVectors).
2633    llvm::SmallVector<llvm::SmallVector<DeducedTemplateArgument, 4>, 2>
2634      NewlyDeducedPacks(PackIndices.size());
2635    llvm::SmallVector<DeducedTemplateArgument, 2>
2636      SavedPacks(PackIndices.size());
2637    PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
2638                                 NewlyDeducedPacks);
2639    bool HasAnyArguments = false;
2640    for (; ArgIdx < NumArgs; ++ArgIdx) {
2641      HasAnyArguments = true;
2642
2643      ParamType = ParamPattern;
2644      Expr *Arg = Args[ArgIdx];
2645      QualType ArgType = Arg->getType();
2646      unsigned TDF = 0;
2647      if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
2648                                                    ParamType, ArgType, Arg,
2649                                                    TDF)) {
2650        // We can't actually perform any deduction for this argument, so stop
2651        // deduction at this point.
2652        ++ArgIdx;
2653        break;
2654      }
2655
2656      if (TemplateDeductionResult Result
2657          = ::DeduceTemplateArguments(*this, TemplateParams,
2658                                      ParamType, ArgType, Info, Deduced,
2659                                      TDF))
2660        return Result;
2661
2662      // Capture the deduced template arguments for each parameter pack expanded
2663      // by this pack expansion, add them to the list of arguments we've deduced
2664      // for that pack, then clear out the deduced argument.
2665      for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
2666        DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
2667        if (!DeducedArg.isNull()) {
2668          NewlyDeducedPacks[I].push_back(DeducedArg);
2669          DeducedArg = DeducedTemplateArgument();
2670        }
2671      }
2672    }
2673
2674    // Build argument packs for each of the parameter packs expanded by this
2675    // pack expansion.
2676    if (Sema::TemplateDeductionResult Result
2677          = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
2678                                        Deduced, PackIndices, SavedPacks,
2679                                        NewlyDeducedPacks, Info))
2680      return Result;
2681
2682    // After we've matching against a parameter pack, we're done.
2683    break;
2684  }
2685
2686  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
2687                                         NumExplicitlySpecified,
2688                                         Specialization, Info);
2689}
2690
2691/// \brief Deduce template arguments when taking the address of a function
2692/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
2693/// a template.
2694///
2695/// \param FunctionTemplate the function template for which we are performing
2696/// template argument deduction.
2697///
2698/// \param ExplicitTemplateArguments the explicitly-specified template
2699/// arguments.
2700///
2701/// \param ArgFunctionType the function type that will be used as the
2702/// "argument" type (A) when performing template argument deduction from the
2703/// function template's function type. This type may be NULL, if there is no
2704/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
2705///
2706/// \param Specialization if template argument deduction was successful,
2707/// this will be set to the function template specialization produced by
2708/// template argument deduction.
2709///
2710/// \param Info the argument will be updated to provide additional information
2711/// about template argument deduction.
2712///
2713/// \returns the result of template argument deduction.
2714Sema::TemplateDeductionResult
2715Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2716                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
2717                              QualType ArgFunctionType,
2718                              FunctionDecl *&Specialization,
2719                              TemplateDeductionInfo &Info) {
2720  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2721  TemplateParameterList *TemplateParams
2722    = FunctionTemplate->getTemplateParameters();
2723  QualType FunctionType = Function->getType();
2724
2725  // Substitute any explicit template arguments.
2726  LocalInstantiationScope InstScope(*this);
2727  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2728  unsigned NumExplicitlySpecified = 0;
2729  llvm::SmallVector<QualType, 4> ParamTypes;
2730  if (ExplicitTemplateArgs) {
2731    if (TemplateDeductionResult Result
2732          = SubstituteExplicitTemplateArguments(FunctionTemplate,
2733                                                *ExplicitTemplateArgs,
2734                                                Deduced, ParamTypes,
2735                                                &FunctionType, Info))
2736      return Result;
2737
2738    NumExplicitlySpecified = Deduced.size();
2739  }
2740
2741  // Template argument deduction for function templates in a SFINAE context.
2742  // Trap any errors that might occur.
2743  SFINAETrap Trap(*this);
2744
2745  Deduced.resize(TemplateParams->size());
2746
2747  if (!ArgFunctionType.isNull()) {
2748    // Deduce template arguments from the function type.
2749    if (TemplateDeductionResult Result
2750          = ::DeduceTemplateArguments(*this, TemplateParams,
2751                                      FunctionType, ArgFunctionType, Info,
2752                                      Deduced, 0))
2753      return Result;
2754  }
2755
2756  if (TemplateDeductionResult Result
2757        = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
2758                                          NumExplicitlySpecified,
2759                                          Specialization, Info))
2760    return Result;
2761
2762  // If the requested function type does not match the actual type of the
2763  // specialization, template argument deduction fails.
2764  if (!ArgFunctionType.isNull() &&
2765      !Context.hasSameType(ArgFunctionType, Specialization->getType()))
2766    return TDK_NonDeducedMismatch;
2767
2768  return TDK_Success;
2769}
2770
2771/// \brief Deduce template arguments for a templated conversion
2772/// function (C++ [temp.deduct.conv]) and, if successful, produce a
2773/// conversion function template specialization.
2774Sema::TemplateDeductionResult
2775Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2776                              QualType ToType,
2777                              CXXConversionDecl *&Specialization,
2778                              TemplateDeductionInfo &Info) {
2779  CXXConversionDecl *Conv
2780    = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
2781  QualType FromType = Conv->getConversionType();
2782
2783  // Canonicalize the types for deduction.
2784  QualType P = Context.getCanonicalType(FromType);
2785  QualType A = Context.getCanonicalType(ToType);
2786
2787  // C++0x [temp.deduct.conv]p3:
2788  //   If P is a reference type, the type referred to by P is used for
2789  //   type deduction.
2790  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
2791    P = PRef->getPointeeType();
2792
2793  // C++0x [temp.deduct.conv]p3:
2794  //   If A is a reference type, the type referred to by A is used
2795  //   for type deduction.
2796  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
2797    A = ARef->getPointeeType();
2798  // C++ [temp.deduct.conv]p2:
2799  //
2800  //   If A is not a reference type:
2801  else {
2802    assert(!A->isReferenceType() && "Reference types were handled above");
2803
2804    //   - If P is an array type, the pointer type produced by the
2805    //     array-to-pointer standard conversion (4.2) is used in place
2806    //     of P for type deduction; otherwise,
2807    if (P->isArrayType())
2808      P = Context.getArrayDecayedType(P);
2809    //   - If P is a function type, the pointer type produced by the
2810    //     function-to-pointer standard conversion (4.3) is used in
2811    //     place of P for type deduction; otherwise,
2812    else if (P->isFunctionType())
2813      P = Context.getPointerType(P);
2814    //   - If P is a cv-qualified type, the top level cv-qualifiers of
2815    //     P’s type are ignored for type deduction.
2816    else
2817      P = P.getUnqualifiedType();
2818
2819    // C++0x [temp.deduct.conv]p3:
2820    //   If A is a cv-qualified type, the top level cv-qualifiers of A’s
2821    //   type are ignored for type deduction.
2822    A = A.getUnqualifiedType();
2823  }
2824
2825  // Template argument deduction for function templates in a SFINAE context.
2826  // Trap any errors that might occur.
2827  SFINAETrap Trap(*this);
2828
2829  // C++ [temp.deduct.conv]p1:
2830  //   Template argument deduction is done by comparing the return
2831  //   type of the template conversion function (call it P) with the
2832  //   type that is required as the result of the conversion (call it
2833  //   A) as described in 14.8.2.4.
2834  TemplateParameterList *TemplateParams
2835    = FunctionTemplate->getTemplateParameters();
2836  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2837  Deduced.resize(TemplateParams->size());
2838
2839  // C++0x [temp.deduct.conv]p4:
2840  //   In general, the deduction process attempts to find template
2841  //   argument values that will make the deduced A identical to
2842  //   A. However, there are two cases that allow a difference:
2843  unsigned TDF = 0;
2844  //     - If the original A is a reference type, A can be more
2845  //       cv-qualified than the deduced A (i.e., the type referred to
2846  //       by the reference)
2847  if (ToType->isReferenceType())
2848    TDF |= TDF_ParamWithReferenceType;
2849  //     - The deduced A can be another pointer or pointer to member
2850  //       type that can be converted to A via a qualification
2851  //       conversion.
2852  //
2853  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
2854  // both P and A are pointers or member pointers. In this case, we
2855  // just ignore cv-qualifiers completely).
2856  if ((P->isPointerType() && A->isPointerType()) ||
2857      (P->isMemberPointerType() && P->isMemberPointerType()))
2858    TDF |= TDF_IgnoreQualifiers;
2859  if (TemplateDeductionResult Result
2860        = ::DeduceTemplateArguments(*this, TemplateParams,
2861                                    P, A, Info, Deduced, TDF))
2862    return Result;
2863
2864  // FIXME: we need to check that the deduced A is the same as A,
2865  // modulo the various allowed differences.
2866
2867  // Finish template argument deduction.
2868  LocalInstantiationScope InstScope(*this);
2869  FunctionDecl *Spec = 0;
2870  TemplateDeductionResult Result
2871    = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
2872                                      Info);
2873  Specialization = cast_or_null<CXXConversionDecl>(Spec);
2874  return Result;
2875}
2876
2877/// \brief Deduce template arguments for a function template when there is
2878/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
2879///
2880/// \param FunctionTemplate the function template for which we are performing
2881/// template argument deduction.
2882///
2883/// \param ExplicitTemplateArguments the explicitly-specified template
2884/// arguments.
2885///
2886/// \param Specialization if template argument deduction was successful,
2887/// this will be set to the function template specialization produced by
2888/// template argument deduction.
2889///
2890/// \param Info the argument will be updated to provide additional information
2891/// about template argument deduction.
2892///
2893/// \returns the result of template argument deduction.
2894Sema::TemplateDeductionResult
2895Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
2896                           const TemplateArgumentListInfo *ExplicitTemplateArgs,
2897                              FunctionDecl *&Specialization,
2898                              TemplateDeductionInfo &Info) {
2899  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
2900                                 QualType(), Specialization, Info);
2901}
2902
2903static void
2904MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
2905                           bool OnlyDeduced,
2906                           unsigned Level,
2907                           llvm::SmallVectorImpl<bool> &Deduced);
2908
2909/// \brief If this is a non-static member function,
2910static void MaybeAddImplicitObjectParameterType(ASTContext &Context,
2911                                                CXXMethodDecl *Method,
2912                                 llvm::SmallVectorImpl<QualType> &ArgTypes) {
2913  if (Method->isStatic())
2914    return;
2915
2916  // C++ [over.match.funcs]p4:
2917  //
2918  //   For non-static member functions, the type of the implicit
2919  //   object parameter is
2920  //     — "lvalue reference to cv X" for functions declared without a
2921  //       ref-qualifier or with the & ref-qualifier
2922  //     - "rvalue reference to cv X" for functions declared with the
2923  //       && ref-qualifier
2924  //
2925  // FIXME: We don't have ref-qualifiers yet, so we don't do that part.
2926  QualType ArgTy = Context.getTypeDeclType(Method->getParent());
2927  ArgTy = Context.getQualifiedType(ArgTy,
2928                        Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
2929  ArgTy = Context.getLValueReferenceType(ArgTy);
2930  ArgTypes.push_back(ArgTy);
2931}
2932
2933/// \brief Determine whether the function template \p FT1 is at least as
2934/// specialized as \p FT2.
2935static bool isAtLeastAsSpecializedAs(Sema &S,
2936                                     SourceLocation Loc,
2937                                     FunctionTemplateDecl *FT1,
2938                                     FunctionTemplateDecl *FT2,
2939                                     TemplatePartialOrderingContext TPOC,
2940                                     unsigned NumCallArguments,
2941    llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
2942  FunctionDecl *FD1 = FT1->getTemplatedDecl();
2943  FunctionDecl *FD2 = FT2->getTemplatedDecl();
2944  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
2945  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
2946
2947  assert(Proto1 && Proto2 && "Function templates must have prototypes");
2948  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
2949  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2950  Deduced.resize(TemplateParams->size());
2951
2952  // C++0x [temp.deduct.partial]p3:
2953  //   The types used to determine the ordering depend on the context in which
2954  //   the partial ordering is done:
2955  TemplateDeductionInfo Info(S.Context, Loc);
2956  CXXMethodDecl *Method1 = 0;
2957  CXXMethodDecl *Method2 = 0;
2958  bool IsNonStatic2 = false;
2959  bool IsNonStatic1 = false;
2960  unsigned Skip2 = 0;
2961  switch (TPOC) {
2962  case TPOC_Call: {
2963    //   - In the context of a function call, the function parameter types are
2964    //     used.
2965    Method1 = dyn_cast<CXXMethodDecl>(FD1);
2966    Method2 = dyn_cast<CXXMethodDecl>(FD2);
2967    IsNonStatic1 = Method1 && !Method1->isStatic();
2968    IsNonStatic2 = Method2 && !Method2->isStatic();
2969
2970    // C++0x [temp.func.order]p3:
2971    //   [...] If only one of the function templates is a non-static
2972    //   member, that function template is considered to have a new
2973    //   first parameter inserted in its function parameter list. The
2974    //   new parameter is of type "reference to cv A," where cv are
2975    //   the cv-qualifiers of the function template (if any) and A is
2976    //   the class of which the function template is a member.
2977    //
2978    // C++98/03 doesn't have this provision, so instead we drop the
2979    // first argument of the free function or static member, which
2980    // seems to match existing practice.
2981    llvm::SmallVector<QualType, 4> Args1;
2982    unsigned Skip1 = !S.getLangOptions().CPlusPlus0x &&
2983      IsNonStatic2 && !IsNonStatic1;
2984    if (S.getLangOptions().CPlusPlus0x && IsNonStatic1 && !IsNonStatic2)
2985      MaybeAddImplicitObjectParameterType(S.Context, Method1, Args1);
2986    Args1.insert(Args1.end(),
2987                 Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
2988
2989    llvm::SmallVector<QualType, 4> Args2;
2990    Skip2 = !S.getLangOptions().CPlusPlus0x &&
2991      IsNonStatic1 && !IsNonStatic2;
2992    if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
2993      MaybeAddImplicitObjectParameterType(S.Context, Method2, Args2);
2994    Args2.insert(Args2.end(),
2995                 Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
2996
2997    // C++ [temp.func.order]p5:
2998    //   The presence of unused ellipsis and default arguments has no effect on
2999    //   the partial ordering of function templates.
3000    if (Args1.size() > NumCallArguments)
3001      Args1.resize(NumCallArguments);
3002    if (Args2.size() > NumCallArguments)
3003      Args2.resize(NumCallArguments);
3004    if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
3005                                Args1.data(), Args1.size(), Info, Deduced,
3006                                TDF_None, /*PartialOrdering=*/true,
3007                                QualifierComparisons))
3008        return false;
3009
3010    break;
3011  }
3012
3013  case TPOC_Conversion:
3014    //   - In the context of a call to a conversion operator, the return types
3015    //     of the conversion function templates are used.
3016    if (DeduceTemplateArguments(S, TemplateParams, Proto2->getResultType(),
3017                                Proto1->getResultType(), Info, Deduced,
3018                                TDF_None, /*PartialOrdering=*/true,
3019                                QualifierComparisons))
3020      return false;
3021    break;
3022
3023  case TPOC_Other:
3024    //   - In other contexts (14.6.6.2) the function template’s function type
3025    //     is used.
3026    // FIXME: Don't we actually want to perform the adjustments on the parameter
3027    // types?
3028    if (DeduceTemplateArguments(S, TemplateParams, FD2->getType(),
3029                                FD1->getType(), Info, Deduced, TDF_None,
3030                                /*PartialOrdering=*/true, QualifierComparisons))
3031      return false;
3032    break;
3033  }
3034
3035  // C++0x [temp.deduct.partial]p11:
3036  //   In most cases, all template parameters must have values in order for
3037  //   deduction to succeed, but for partial ordering purposes a template
3038  //   parameter may remain without a value provided it is not used in the
3039  //   types being used for partial ordering. [ Note: a template parameter used
3040  //   in a non-deduced context is considered used. -end note]
3041  unsigned ArgIdx = 0, NumArgs = Deduced.size();
3042  for (; ArgIdx != NumArgs; ++ArgIdx)
3043    if (Deduced[ArgIdx].isNull())
3044      break;
3045
3046  if (ArgIdx == NumArgs) {
3047    // All template arguments were deduced. FT1 is at least as specialized
3048    // as FT2.
3049    return true;
3050  }
3051
3052  // Figure out which template parameters were used.
3053  llvm::SmallVector<bool, 4> UsedParameters;
3054  UsedParameters.resize(TemplateParams->size());
3055  switch (TPOC) {
3056  case TPOC_Call: {
3057    unsigned NumParams = std::min(NumCallArguments,
3058                                  std::min(Proto1->getNumArgs(),
3059                                           Proto2->getNumArgs()));
3060    if (S.getLangOptions().CPlusPlus0x && IsNonStatic2 && !IsNonStatic1)
3061      ::MarkUsedTemplateParameters(S, Method2->getThisType(S.Context), false,
3062                                   TemplateParams->getDepth(), UsedParameters);
3063    for (unsigned I = Skip2; I < NumParams; ++I)
3064      ::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false,
3065                                   TemplateParams->getDepth(),
3066                                   UsedParameters);
3067    break;
3068  }
3069
3070  case TPOC_Conversion:
3071    ::MarkUsedTemplateParameters(S, Proto2->getResultType(), false,
3072                                 TemplateParams->getDepth(),
3073                                 UsedParameters);
3074    break;
3075
3076  case TPOC_Other:
3077    ::MarkUsedTemplateParameters(S, FD2->getType(), false,
3078                                 TemplateParams->getDepth(),
3079                                 UsedParameters);
3080    break;
3081  }
3082
3083  for (; ArgIdx != NumArgs; ++ArgIdx)
3084    // If this argument had no value deduced but was used in one of the types
3085    // used for partial ordering, then deduction fails.
3086    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
3087      return false;
3088
3089  return true;
3090}
3091
3092/// \brief Determine whether this a function template whose parameter-type-list
3093/// ends with a function parameter pack.
3094static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
3095  FunctionDecl *Function = FunTmpl->getTemplatedDecl();
3096  unsigned NumParams = Function->getNumParams();
3097  if (NumParams == 0)
3098    return false;
3099
3100  ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
3101  if (!Last->isParameterPack())
3102    return false;
3103
3104  // Make sure that no previous parameter is a parameter pack.
3105  while (--NumParams > 0) {
3106    if (Function->getParamDecl(NumParams - 1)->isParameterPack())
3107      return false;
3108  }
3109
3110  return true;
3111}
3112
3113/// \brief Returns the more specialized function template according
3114/// to the rules of function template partial ordering (C++ [temp.func.order]).
3115///
3116/// \param FT1 the first function template
3117///
3118/// \param FT2 the second function template
3119///
3120/// \param TPOC the context in which we are performing partial ordering of
3121/// function templates.
3122///
3123/// \param NumCallArguments The number of arguments in a call, used only
3124/// when \c TPOC is \c TPOC_Call.
3125///
3126/// \returns the more specialized function template. If neither
3127/// template is more specialized, returns NULL.
3128FunctionTemplateDecl *
3129Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
3130                                 FunctionTemplateDecl *FT2,
3131                                 SourceLocation Loc,
3132                                 TemplatePartialOrderingContext TPOC,
3133                                 unsigned NumCallArguments) {
3134  llvm::SmallVector<DeductionQualifierComparison, 4> QualifierComparisons;
3135  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
3136                                          NumCallArguments, 0);
3137  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
3138                                          NumCallArguments,
3139                                          &QualifierComparisons);
3140
3141  if (Better1 != Better2) // We have a clear winner
3142    return Better1? FT1 : FT2;
3143
3144  if (!Better1 && !Better2) // Neither is better than the other
3145    return 0;
3146
3147
3148  // C++0x [temp.deduct.partial]p10:
3149  //   If for each type being considered a given template is at least as
3150  //   specialized for all types and more specialized for some set of types and
3151  //   the other template is not more specialized for any types or is not at
3152  //   least as specialized for any types, then the given template is more
3153  //   specialized than the other template. Otherwise, neither template is more
3154  //   specialized than the other.
3155  Better1 = false;
3156  Better2 = false;
3157  for (unsigned I = 0, N = QualifierComparisons.size(); I != N; ++I) {
3158    // C++0x [temp.deduct.partial]p9:
3159    //   If, for a given type, deduction succeeds in both directions (i.e., the
3160    //   types are identical after the transformations above) and if the type
3161    //   from the argument template is more cv-qualified than the type from the
3162    //   parameter template (as described above) that type is considered to be
3163    //   more specialized than the other. If neither type is more cv-qualified
3164    //   than the other then neither type is more specialized than the other.
3165    switch (QualifierComparisons[I]) {
3166      case NeitherMoreQualified:
3167        break;
3168
3169      case ParamMoreQualified:
3170        Better1 = true;
3171        if (Better2)
3172          return 0;
3173        break;
3174
3175      case ArgMoreQualified:
3176        Better2 = true;
3177        if (Better1)
3178          return 0;
3179        break;
3180    }
3181  }
3182
3183  assert(!(Better1 && Better2) && "Should have broken out in the loop above");
3184  if (Better1)
3185    return FT1;
3186  else if (Better2)
3187    return FT2;
3188
3189  // FIXME: This mimics what GCC implements, but doesn't match up with the
3190  // proposed resolution for core issue 692. This area needs to be sorted out,
3191  // but for now we attempt to maintain compatibility.
3192  bool Variadic1 = isVariadicFunctionTemplate(FT1);
3193  bool Variadic2 = isVariadicFunctionTemplate(FT2);
3194  if (Variadic1 != Variadic2)
3195    return Variadic1? FT2 : FT1;
3196
3197  return 0;
3198}
3199
3200/// \brief Determine if the two templates are equivalent.
3201static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
3202  if (T1 == T2)
3203    return true;
3204
3205  if (!T1 || !T2)
3206    return false;
3207
3208  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
3209}
3210
3211/// \brief Retrieve the most specialized of the given function template
3212/// specializations.
3213///
3214/// \param SpecBegin the start iterator of the function template
3215/// specializations that we will be comparing.
3216///
3217/// \param SpecEnd the end iterator of the function template
3218/// specializations, paired with \p SpecBegin.
3219///
3220/// \param TPOC the partial ordering context to use to compare the function
3221/// template specializations.
3222///
3223/// \param NumCallArguments The number of arguments in a call, used only
3224/// when \c TPOC is \c TPOC_Call.
3225///
3226/// \param Loc the location where the ambiguity or no-specializations
3227/// diagnostic should occur.
3228///
3229/// \param NoneDiag partial diagnostic used to diagnose cases where there are
3230/// no matching candidates.
3231///
3232/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
3233/// occurs.
3234///
3235/// \param CandidateDiag partial diagnostic used for each function template
3236/// specialization that is a candidate in the ambiguous ordering. One parameter
3237/// in this diagnostic should be unbound, which will correspond to the string
3238/// describing the template arguments for the function template specialization.
3239///
3240/// \param Index if non-NULL and the result of this function is non-nULL,
3241/// receives the index corresponding to the resulting function template
3242/// specialization.
3243///
3244/// \returns the most specialized function template specialization, if
3245/// found. Otherwise, returns SpecEnd.
3246///
3247/// \todo FIXME: Consider passing in the "also-ran" candidates that failed
3248/// template argument deduction.
3249UnresolvedSetIterator
3250Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
3251                        UnresolvedSetIterator SpecEnd,
3252                         TemplatePartialOrderingContext TPOC,
3253                         unsigned NumCallArguments,
3254                         SourceLocation Loc,
3255                         const PartialDiagnostic &NoneDiag,
3256                         const PartialDiagnostic &AmbigDiag,
3257                         const PartialDiagnostic &CandidateDiag) {
3258  if (SpecBegin == SpecEnd) {
3259    Diag(Loc, NoneDiag);
3260    return SpecEnd;
3261  }
3262
3263  if (SpecBegin + 1 == SpecEnd)
3264    return SpecBegin;
3265
3266  // Find the function template that is better than all of the templates it
3267  // has been compared to.
3268  UnresolvedSetIterator Best = SpecBegin;
3269  FunctionTemplateDecl *BestTemplate
3270    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
3271  assert(BestTemplate && "Not a function template specialization?");
3272  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
3273    FunctionTemplateDecl *Challenger
3274      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
3275    assert(Challenger && "Not a function template specialization?");
3276    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
3277                                                  Loc, TPOC, NumCallArguments),
3278                       Challenger)) {
3279      Best = I;
3280      BestTemplate = Challenger;
3281    }
3282  }
3283
3284  // Make sure that the "best" function template is more specialized than all
3285  // of the others.
3286  bool Ambiguous = false;
3287  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
3288    FunctionTemplateDecl *Challenger
3289      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
3290    if (I != Best &&
3291        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
3292                                                   Loc, TPOC, NumCallArguments),
3293                        BestTemplate)) {
3294      Ambiguous = true;
3295      break;
3296    }
3297  }
3298
3299  if (!Ambiguous) {
3300    // We found an answer. Return it.
3301    return Best;
3302  }
3303
3304  // Diagnose the ambiguity.
3305  Diag(Loc, AmbigDiag);
3306
3307  // FIXME: Can we order the candidates in some sane way?
3308  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I)
3309    Diag((*I)->getLocation(), CandidateDiag)
3310      << getTemplateArgumentBindingsText(
3311        cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
3312                    *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
3313
3314  return SpecEnd;
3315}
3316
3317/// \brief Returns the more specialized class template partial specialization
3318/// according to the rules of partial ordering of class template partial
3319/// specializations (C++ [temp.class.order]).
3320///
3321/// \param PS1 the first class template partial specialization
3322///
3323/// \param PS2 the second class template partial specialization
3324///
3325/// \returns the more specialized class template partial specialization. If
3326/// neither partial specialization is more specialized, returns NULL.
3327ClassTemplatePartialSpecializationDecl *
3328Sema::getMoreSpecializedPartialSpecialization(
3329                                  ClassTemplatePartialSpecializationDecl *PS1,
3330                                  ClassTemplatePartialSpecializationDecl *PS2,
3331                                              SourceLocation Loc) {
3332  // C++ [temp.class.order]p1:
3333  //   For two class template partial specializations, the first is at least as
3334  //   specialized as the second if, given the following rewrite to two
3335  //   function templates, the first function template is at least as
3336  //   specialized as the second according to the ordering rules for function
3337  //   templates (14.6.6.2):
3338  //     - the first function template has the same template parameters as the
3339  //       first partial specialization and has a single function parameter
3340  //       whose type is a class template specialization with the template
3341  //       arguments of the first partial specialization, and
3342  //     - the second function template has the same template parameters as the
3343  //       second partial specialization and has a single function parameter
3344  //       whose type is a class template specialization with the template
3345  //       arguments of the second partial specialization.
3346  //
3347  // Rather than synthesize function templates, we merely perform the
3348  // equivalent partial ordering by performing deduction directly on
3349  // the template arguments of the class template partial
3350  // specializations. This computation is slightly simpler than the
3351  // general problem of function template partial ordering, because
3352  // class template partial specializations are more constrained. We
3353  // know that every template parameter is deducible from the class
3354  // template partial specialization's template arguments, for
3355  // example.
3356  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
3357  TemplateDeductionInfo Info(Context, Loc);
3358
3359  QualType PT1 = PS1->getInjectedSpecializationType();
3360  QualType PT2 = PS2->getInjectedSpecializationType();
3361
3362  // Determine whether PS1 is at least as specialized as PS2
3363  Deduced.resize(PS2->getTemplateParameters()->size());
3364  bool Better1 = !::DeduceTemplateArguments(*this, PS2->getTemplateParameters(),
3365                                            PT2, PT1, Info, Deduced, TDF_None,
3366                                            /*PartialOrdering=*/true,
3367                                            /*QualifierComparisons=*/0);
3368  if (Better1) {
3369    InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
3370                               Deduced.data(), Deduced.size(), Info);
3371    Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
3372                                                 PS1->getTemplateArgs(),
3373                                                 Deduced, Info);
3374  }
3375
3376  // Determine whether PS2 is at least as specialized as PS1
3377  Deduced.clear();
3378  Deduced.resize(PS1->getTemplateParameters()->size());
3379  bool Better2 = !::DeduceTemplateArguments(*this, PS1->getTemplateParameters(),
3380                                            PT1, PT2, Info, Deduced, TDF_None,
3381                                            /*PartialOrdering=*/true,
3382                                            /*QualifierComparisons=*/0);
3383  if (Better2) {
3384    InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
3385                               Deduced.data(), Deduced.size(), Info);
3386    Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
3387                                                 PS2->getTemplateArgs(),
3388                                                 Deduced, Info);
3389  }
3390
3391  if (Better1 == Better2)
3392    return 0;
3393
3394  return Better1? PS1 : PS2;
3395}
3396
3397static void
3398MarkUsedTemplateParameters(Sema &SemaRef,
3399                           const TemplateArgument &TemplateArg,
3400                           bool OnlyDeduced,
3401                           unsigned Depth,
3402                           llvm::SmallVectorImpl<bool> &Used);
3403
3404/// \brief Mark the template parameters that are used by the given
3405/// expression.
3406static void
3407MarkUsedTemplateParameters(Sema &SemaRef,
3408                           const Expr *E,
3409                           bool OnlyDeduced,
3410                           unsigned Depth,
3411                           llvm::SmallVectorImpl<bool> &Used) {
3412  // We can deduce from a pack expansion.
3413  if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
3414    E = Expansion->getPattern();
3415
3416  // Skip through any implicit casts we added while type-checking.
3417  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3418    E = ICE->getSubExpr();
3419
3420  // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
3421  // find other occurrences of template parameters.
3422  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3423  if (!DRE)
3424    return;
3425
3426  const NonTypeTemplateParmDecl *NTTP
3427    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
3428  if (!NTTP)
3429    return;
3430
3431  if (NTTP->getDepth() == Depth)
3432    Used[NTTP->getIndex()] = true;
3433}
3434
3435/// \brief Mark the template parameters that are used by the given
3436/// nested name specifier.
3437static void
3438MarkUsedTemplateParameters(Sema &SemaRef,
3439                           NestedNameSpecifier *NNS,
3440                           bool OnlyDeduced,
3441                           unsigned Depth,
3442                           llvm::SmallVectorImpl<bool> &Used) {
3443  if (!NNS)
3444    return;
3445
3446  MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth,
3447                             Used);
3448  MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0),
3449                             OnlyDeduced, Depth, Used);
3450}
3451
3452/// \brief Mark the template parameters that are used by the given
3453/// template name.
3454static void
3455MarkUsedTemplateParameters(Sema &SemaRef,
3456                           TemplateName Name,
3457                           bool OnlyDeduced,
3458                           unsigned Depth,
3459                           llvm::SmallVectorImpl<bool> &Used) {
3460  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3461    if (TemplateTemplateParmDecl *TTP
3462          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
3463      if (TTP->getDepth() == Depth)
3464        Used[TTP->getIndex()] = true;
3465    }
3466    return;
3467  }
3468
3469  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
3470    MarkUsedTemplateParameters(SemaRef, QTN->getQualifier(), OnlyDeduced,
3471                               Depth, Used);
3472  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
3473    MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced,
3474                               Depth, Used);
3475}
3476
3477/// \brief Mark the template parameters that are used by the given
3478/// type.
3479static void
3480MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
3481                           bool OnlyDeduced,
3482                           unsigned Depth,
3483                           llvm::SmallVectorImpl<bool> &Used) {
3484  if (T.isNull())
3485    return;
3486
3487  // Non-dependent types have nothing deducible
3488  if (!T->isDependentType())
3489    return;
3490
3491  T = SemaRef.Context.getCanonicalType(T);
3492  switch (T->getTypeClass()) {
3493  case Type::Pointer:
3494    MarkUsedTemplateParameters(SemaRef,
3495                               cast<PointerType>(T)->getPointeeType(),
3496                               OnlyDeduced,
3497                               Depth,
3498                               Used);
3499    break;
3500
3501  case Type::BlockPointer:
3502    MarkUsedTemplateParameters(SemaRef,
3503                               cast<BlockPointerType>(T)->getPointeeType(),
3504                               OnlyDeduced,
3505                               Depth,
3506                               Used);
3507    break;
3508
3509  case Type::LValueReference:
3510  case Type::RValueReference:
3511    MarkUsedTemplateParameters(SemaRef,
3512                               cast<ReferenceType>(T)->getPointeeType(),
3513                               OnlyDeduced,
3514                               Depth,
3515                               Used);
3516    break;
3517
3518  case Type::MemberPointer: {
3519    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
3520    MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced,
3521                               Depth, Used);
3522    MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
3523                               OnlyDeduced, Depth, Used);
3524    break;
3525  }
3526
3527  case Type::DependentSizedArray:
3528    MarkUsedTemplateParameters(SemaRef,
3529                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
3530                               OnlyDeduced, Depth, Used);
3531    // Fall through to check the element type
3532
3533  case Type::ConstantArray:
3534  case Type::IncompleteArray:
3535    MarkUsedTemplateParameters(SemaRef,
3536                               cast<ArrayType>(T)->getElementType(),
3537                               OnlyDeduced, Depth, Used);
3538    break;
3539
3540  case Type::Vector:
3541  case Type::ExtVector:
3542    MarkUsedTemplateParameters(SemaRef,
3543                               cast<VectorType>(T)->getElementType(),
3544                               OnlyDeduced, Depth, Used);
3545    break;
3546
3547  case Type::DependentSizedExtVector: {
3548    const DependentSizedExtVectorType *VecType
3549      = cast<DependentSizedExtVectorType>(T);
3550    MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced,
3551                               Depth, Used);
3552    MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced,
3553                               Depth, Used);
3554    break;
3555  }
3556
3557  case Type::FunctionProto: {
3558    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
3559    MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced,
3560                               Depth, Used);
3561    for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
3562      MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced,
3563                                 Depth, Used);
3564    break;
3565  }
3566
3567  case Type::TemplateTypeParm: {
3568    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
3569    if (TTP->getDepth() == Depth)
3570      Used[TTP->getIndex()] = true;
3571    break;
3572  }
3573
3574  case Type::SubstTemplateTypeParmPack: {
3575    const SubstTemplateTypeParmPackType *Subst
3576      = cast<SubstTemplateTypeParmPackType>(T);
3577    MarkUsedTemplateParameters(SemaRef,
3578                               QualType(Subst->getReplacedParameter(), 0),
3579                               OnlyDeduced, Depth, Used);
3580    MarkUsedTemplateParameters(SemaRef, Subst->getArgumentPack(),
3581                               OnlyDeduced, Depth, Used);
3582    break;
3583  }
3584
3585  case Type::InjectedClassName:
3586    T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
3587    // fall through
3588
3589  case Type::TemplateSpecialization: {
3590    const TemplateSpecializationType *Spec
3591      = cast<TemplateSpecializationType>(T);
3592    MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced,
3593                               Depth, Used);
3594
3595    // C++0x [temp.deduct.type]p9:
3596    //   If the template argument list of P contains a pack expansion that is not
3597    //   the last template argument, the entire template argument list is a
3598    //   non-deduced context.
3599    if (OnlyDeduced &&
3600        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
3601      break;
3602
3603    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
3604      MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
3605                                 Used);
3606    break;
3607  }
3608
3609  case Type::Complex:
3610    if (!OnlyDeduced)
3611      MarkUsedTemplateParameters(SemaRef,
3612                                 cast<ComplexType>(T)->getElementType(),
3613                                 OnlyDeduced, Depth, Used);
3614    break;
3615
3616  case Type::DependentName:
3617    if (!OnlyDeduced)
3618      MarkUsedTemplateParameters(SemaRef,
3619                                 cast<DependentNameType>(T)->getQualifier(),
3620                                 OnlyDeduced, Depth, Used);
3621    break;
3622
3623  case Type::DependentTemplateSpecialization: {
3624    const DependentTemplateSpecializationType *Spec
3625      = cast<DependentTemplateSpecializationType>(T);
3626    if (!OnlyDeduced)
3627      MarkUsedTemplateParameters(SemaRef, Spec->getQualifier(),
3628                                 OnlyDeduced, Depth, Used);
3629
3630    // C++0x [temp.deduct.type]p9:
3631    //   If the template argument list of P contains a pack expansion that is not
3632    //   the last template argument, the entire template argument list is a
3633    //   non-deduced context.
3634    if (OnlyDeduced &&
3635        hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
3636      break;
3637
3638    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
3639      MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
3640                                 Used);
3641    break;
3642  }
3643
3644  case Type::TypeOf:
3645    if (!OnlyDeduced)
3646      MarkUsedTemplateParameters(SemaRef,
3647                                 cast<TypeOfType>(T)->getUnderlyingType(),
3648                                 OnlyDeduced, Depth, Used);
3649    break;
3650
3651  case Type::TypeOfExpr:
3652    if (!OnlyDeduced)
3653      MarkUsedTemplateParameters(SemaRef,
3654                                 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
3655                                 OnlyDeduced, Depth, Used);
3656    break;
3657
3658  case Type::Decltype:
3659    if (!OnlyDeduced)
3660      MarkUsedTemplateParameters(SemaRef,
3661                                 cast<DecltypeType>(T)->getUnderlyingExpr(),
3662                                 OnlyDeduced, Depth, Used);
3663    break;
3664
3665  case Type::PackExpansion:
3666    MarkUsedTemplateParameters(SemaRef,
3667                               cast<PackExpansionType>(T)->getPattern(),
3668                               OnlyDeduced, Depth, Used);
3669    break;
3670
3671  // None of these types have any template parameters in them.
3672  case Type::Builtin:
3673  case Type::VariableArray:
3674  case Type::FunctionNoProto:
3675  case Type::Record:
3676  case Type::Enum:
3677  case Type::ObjCInterface:
3678  case Type::ObjCObject:
3679  case Type::ObjCObjectPointer:
3680  case Type::UnresolvedUsing:
3681#define TYPE(Class, Base)
3682#define ABSTRACT_TYPE(Class, Base)
3683#define DEPENDENT_TYPE(Class, Base)
3684#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3685#include "clang/AST/TypeNodes.def"
3686    break;
3687  }
3688}
3689
3690/// \brief Mark the template parameters that are used by this
3691/// template argument.
3692static void
3693MarkUsedTemplateParameters(Sema &SemaRef,
3694                           const TemplateArgument &TemplateArg,
3695                           bool OnlyDeduced,
3696                           unsigned Depth,
3697                           llvm::SmallVectorImpl<bool> &Used) {
3698  switch (TemplateArg.getKind()) {
3699  case TemplateArgument::Null:
3700  case TemplateArgument::Integral:
3701    case TemplateArgument::Declaration:
3702    break;
3703
3704  case TemplateArgument::Type:
3705    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced,
3706                               Depth, Used);
3707    break;
3708
3709  case TemplateArgument::Template:
3710  case TemplateArgument::TemplateExpansion:
3711    MarkUsedTemplateParameters(SemaRef,
3712                               TemplateArg.getAsTemplateOrTemplatePattern(),
3713                               OnlyDeduced, Depth, Used);
3714    break;
3715
3716  case TemplateArgument::Expression:
3717    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced,
3718                               Depth, Used);
3719    break;
3720
3721  case TemplateArgument::Pack:
3722    for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
3723                                      PEnd = TemplateArg.pack_end();
3724         P != PEnd; ++P)
3725      MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used);
3726    break;
3727  }
3728}
3729
3730/// \brief Mark the template parameters can be deduced by the given
3731/// template argument list.
3732///
3733/// \param TemplateArgs the template argument list from which template
3734/// parameters will be deduced.
3735///
3736/// \param Deduced a bit vector whose elements will be set to \c true
3737/// to indicate when the corresponding template parameter will be
3738/// deduced.
3739void
3740Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
3741                                 bool OnlyDeduced, unsigned Depth,
3742                                 llvm::SmallVectorImpl<bool> &Used) {
3743  // C++0x [temp.deduct.type]p9:
3744  //   If the template argument list of P contains a pack expansion that is not
3745  //   the last template argument, the entire template argument list is a
3746  //   non-deduced context.
3747  if (OnlyDeduced &&
3748      hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
3749    return;
3750
3751  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3752    ::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced,
3753                                 Depth, Used);
3754}
3755
3756/// \brief Marks all of the template parameters that will be deduced by a
3757/// call to the given function template.
3758void
3759Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate,
3760                                    llvm::SmallVectorImpl<bool> &Deduced) {
3761  TemplateParameterList *TemplateParams
3762    = FunctionTemplate->getTemplateParameters();
3763  Deduced.clear();
3764  Deduced.resize(TemplateParams->size());
3765
3766  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
3767  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
3768    ::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(),
3769                                 true, TemplateParams->getDepth(), Deduced);
3770}
3771