SemaTemplateDeduction.cpp revision 33500955d731c73717af52088b7fc0e7a85681e7
1//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===/
12
13#include "Sema.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclTemplate.h"
16#include "clang/AST/StmtVisitor.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/Parse/DeclSpec.h"
20#include <algorithm>
21
22namespace clang {
23  /// \brief Various flags that control template argument deduction.
24  ///
25  /// These flags can be bitwise-OR'd together.
26  enum TemplateDeductionFlags {
27    /// \brief No template argument deduction flags, which indicates the
28    /// strictest results for template argument deduction (as used for, e.g.,
29    /// matching class template partial specializations).
30    TDF_None = 0,
31    /// \brief Within template argument deduction from a function call, we are
32    /// matching with a parameter type for which the original parameter was
33    /// a reference.
34    TDF_ParamWithReferenceType = 0x1,
35    /// \brief Within template argument deduction from a function call, we
36    /// are matching in a case where we ignore cv-qualifiers.
37    TDF_IgnoreQualifiers = 0x02,
38    /// \brief Within template argument deduction from a function call,
39    /// we are matching in a case where we can perform template argument
40    /// deduction from a template-id of a derived class of the argument type.
41    TDF_DerivedClass = 0x04,
42    /// \brief Allow non-dependent types to differ, e.g., when performing
43    /// template argument deduction from a function call where conversions
44    /// may apply.
45    TDF_SkipNonDependent = 0x08
46  };
47}
48
49using namespace clang;
50
51/// \brief Compare two APSInts, extending and switching the sign as
52/// necessary to compare their values regardless of underlying type.
53static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
54  if (Y.getBitWidth() > X.getBitWidth())
55    X.extend(Y.getBitWidth());
56  else if (Y.getBitWidth() < X.getBitWidth())
57    Y.extend(X.getBitWidth());
58
59  // If there is a signedness mismatch, correct it.
60  if (X.isSigned() != Y.isSigned()) {
61    // If the signed value is negative, then the values cannot be the same.
62    if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
63      return false;
64
65    Y.setIsSigned(true);
66    X.setIsSigned(true);
67  }
68
69  return X == Y;
70}
71
72static Sema::TemplateDeductionResult
73DeduceTemplateArguments(Sema &S,
74                        TemplateParameterList *TemplateParams,
75                        const TemplateArgument &Param,
76                        const TemplateArgument &Arg,
77                        Sema::TemplateDeductionInfo &Info,
78                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced);
79
80/// \brief If the given expression is of a form that permits the deduction
81/// of a non-type template parameter, return the declaration of that
82/// non-type template parameter.
83static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
84  if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
85    E = IC->getSubExpr();
86
87  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
88    return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
89
90  return 0;
91}
92
93/// \brief Deduce the value of the given non-type template parameter
94/// from the given constant.
95static Sema::TemplateDeductionResult
96DeduceNonTypeTemplateArgument(Sema &S,
97                              NonTypeTemplateParmDecl *NTTP,
98                              llvm::APSInt Value, QualType ValueType,
99                              bool DeducedFromArrayBound,
100                              Sema::TemplateDeductionInfo &Info,
101                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
102  assert(NTTP->getDepth() == 0 &&
103         "Cannot deduce non-type template argument with depth > 0");
104
105  if (Deduced[NTTP->getIndex()].isNull()) {
106    Deduced[NTTP->getIndex()] = DeducedTemplateArgument(Value, ValueType,
107                                                        DeducedFromArrayBound);
108    return Sema::TDK_Success;
109  }
110
111  if (Deduced[NTTP->getIndex()].getKind() != TemplateArgument::Integral) {
112    Info.Param = NTTP;
113    Info.FirstArg = Deduced[NTTP->getIndex()];
114    Info.SecondArg = TemplateArgument(Value, ValueType);
115    return Sema::TDK_Inconsistent;
116  }
117
118  // Extent the smaller of the two values.
119  llvm::APSInt PrevValue = *Deduced[NTTP->getIndex()].getAsIntegral();
120  if (!hasSameExtendedValue(PrevValue, Value)) {
121    Info.Param = NTTP;
122    Info.FirstArg = Deduced[NTTP->getIndex()];
123    Info.SecondArg = TemplateArgument(Value, ValueType);
124    return Sema::TDK_Inconsistent;
125  }
126
127  if (!DeducedFromArrayBound)
128    Deduced[NTTP->getIndex()].setDeducedFromArrayBound(false);
129
130  return Sema::TDK_Success;
131}
132
133/// \brief Deduce the value of the given non-type template parameter
134/// from the given type- or value-dependent expression.
135///
136/// \returns true if deduction succeeded, false otherwise.
137static Sema::TemplateDeductionResult
138DeduceNonTypeTemplateArgument(Sema &S,
139                              NonTypeTemplateParmDecl *NTTP,
140                              Expr *Value,
141                              Sema::TemplateDeductionInfo &Info,
142                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
143  assert(NTTP->getDepth() == 0 &&
144         "Cannot deduce non-type template argument with depth > 0");
145  assert((Value->isTypeDependent() || Value->isValueDependent()) &&
146         "Expression template argument must be type- or value-dependent.");
147
148  if (Deduced[NTTP->getIndex()].isNull()) {
149    Deduced[NTTP->getIndex()] = TemplateArgument(Value->Retain());
150    return Sema::TDK_Success;
151  }
152
153  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral) {
154    // Okay, we deduced a constant in one case and a dependent expression
155    // in another case. FIXME: Later, we will check that instantiating the
156    // dependent expression gives us the constant value.
157    return Sema::TDK_Success;
158  }
159
160  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
161    // Compare the expressions for equality
162    llvm::FoldingSetNodeID ID1, ID2;
163    Deduced[NTTP->getIndex()].getAsExpr()->Profile(ID1, S.Context, true);
164    Value->Profile(ID2, S.Context, true);
165    if (ID1 == ID2)
166      return Sema::TDK_Success;
167
168    // FIXME: Fill in argument mismatch information
169    return Sema::TDK_NonDeducedMismatch;
170  }
171
172  return Sema::TDK_Success;
173}
174
175/// \brief Deduce the value of the given non-type template parameter
176/// from the given declaration.
177///
178/// \returns true if deduction succeeded, false otherwise.
179static Sema::TemplateDeductionResult
180DeduceNonTypeTemplateArgument(Sema &S,
181                              NonTypeTemplateParmDecl *NTTP,
182                              Decl *D,
183                              Sema::TemplateDeductionInfo &Info,
184                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
185  assert(NTTP->getDepth() == 0 &&
186         "Cannot deduce non-type template argument with depth > 0");
187
188  if (Deduced[NTTP->getIndex()].isNull()) {
189    Deduced[NTTP->getIndex()] = TemplateArgument(D->getCanonicalDecl());
190    return Sema::TDK_Success;
191  }
192
193  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
194    // Okay, we deduced a declaration in one case and a dependent expression
195    // in another case.
196    return Sema::TDK_Success;
197  }
198
199  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Declaration) {
200    // Compare the declarations for equality
201    if (Deduced[NTTP->getIndex()].getAsDecl()->getCanonicalDecl() ==
202          D->getCanonicalDecl())
203      return Sema::TDK_Success;
204
205    // FIXME: Fill in argument mismatch information
206    return Sema::TDK_NonDeducedMismatch;
207  }
208
209  return Sema::TDK_Success;
210}
211
212static Sema::TemplateDeductionResult
213DeduceTemplateArguments(Sema &S,
214                        TemplateParameterList *TemplateParams,
215                        TemplateName Param,
216                        TemplateName Arg,
217                        Sema::TemplateDeductionInfo &Info,
218                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
219  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
220  if (!ParamDecl) {
221    // The parameter type is dependent and is not a template template parameter,
222    // so there is nothing that we can deduce.
223    return Sema::TDK_Success;
224  }
225
226  if (TemplateTemplateParmDecl *TempParam
227        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
228    // Bind the template template parameter to the given template name.
229    TemplateArgument &ExistingArg = Deduced[TempParam->getIndex()];
230    if (ExistingArg.isNull()) {
231      // This is the first deduction for this template template parameter.
232      ExistingArg = TemplateArgument(S.Context.getCanonicalTemplateName(Arg));
233      return Sema::TDK_Success;
234    }
235
236    // Verify that the previous binding matches this deduction.
237    assert(ExistingArg.getKind() == TemplateArgument::Template);
238    if (S.Context.hasSameTemplateName(ExistingArg.getAsTemplate(), Arg))
239      return Sema::TDK_Success;
240
241    // Inconsistent deduction.
242    Info.Param = TempParam;
243    Info.FirstArg = ExistingArg;
244    Info.SecondArg = TemplateArgument(Arg);
245    return Sema::TDK_Inconsistent;
246  }
247
248  // Verify that the two template names are equivalent.
249  if (S.Context.hasSameTemplateName(Param, Arg))
250    return Sema::TDK_Success;
251
252  // Mismatch of non-dependent template parameter to argument.
253  Info.FirstArg = TemplateArgument(Param);
254  Info.SecondArg = TemplateArgument(Arg);
255  return Sema::TDK_NonDeducedMismatch;
256}
257
258/// \brief Deduce the template arguments by comparing the template parameter
259/// type (which is a template-id) with the template argument type.
260///
261/// \param S the Sema
262///
263/// \param TemplateParams the template parameters that we are deducing
264///
265/// \param Param the parameter type
266///
267/// \param Arg the argument type
268///
269/// \param Info information about the template argument deduction itself
270///
271/// \param Deduced the deduced template arguments
272///
273/// \returns the result of template argument deduction so far. Note that a
274/// "success" result means that template argument deduction has not yet failed,
275/// but it may still fail, later, for other reasons.
276static Sema::TemplateDeductionResult
277DeduceTemplateArguments(Sema &S,
278                        TemplateParameterList *TemplateParams,
279                        const TemplateSpecializationType *Param,
280                        QualType Arg,
281                        Sema::TemplateDeductionInfo &Info,
282                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
283  assert(Arg.isCanonical() && "Argument type must be canonical");
284
285  // Check whether the template argument is a dependent template-id.
286  if (const TemplateSpecializationType *SpecArg
287        = dyn_cast<TemplateSpecializationType>(Arg)) {
288    // Perform template argument deduction for the template name.
289    if (Sema::TemplateDeductionResult Result
290          = DeduceTemplateArguments(S, TemplateParams,
291                                    Param->getTemplateName(),
292                                    SpecArg->getTemplateName(),
293                                    Info, Deduced))
294      return Result;
295
296
297    // Perform template argument deduction on each template
298    // argument.
299    unsigned NumArgs = std::min(SpecArg->getNumArgs(), Param->getNumArgs());
300    for (unsigned I = 0; I != NumArgs; ++I)
301      if (Sema::TemplateDeductionResult Result
302            = DeduceTemplateArguments(S, TemplateParams,
303                                      Param->getArg(I),
304                                      SpecArg->getArg(I),
305                                      Info, Deduced))
306        return Result;
307
308    return Sema::TDK_Success;
309  }
310
311  // If the argument type is a class template specialization, we
312  // perform template argument deduction using its template
313  // arguments.
314  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
315  if (!RecordArg)
316    return Sema::TDK_NonDeducedMismatch;
317
318  ClassTemplateSpecializationDecl *SpecArg
319    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
320  if (!SpecArg)
321    return Sema::TDK_NonDeducedMismatch;
322
323  // Perform template argument deduction for the template name.
324  if (Sema::TemplateDeductionResult Result
325        = DeduceTemplateArguments(S,
326                                  TemplateParams,
327                                  Param->getTemplateName(),
328                               TemplateName(SpecArg->getSpecializedTemplate()),
329                                  Info, Deduced))
330    return Result;
331
332  unsigned NumArgs = Param->getNumArgs();
333  const TemplateArgumentList &ArgArgs = SpecArg->getTemplateArgs();
334  if (NumArgs != ArgArgs.size())
335    return Sema::TDK_NonDeducedMismatch;
336
337  for (unsigned I = 0; I != NumArgs; ++I)
338    if (Sema::TemplateDeductionResult Result
339          = DeduceTemplateArguments(S, TemplateParams,
340                                    Param->getArg(I),
341                                    ArgArgs.get(I),
342                                    Info, Deduced))
343      return Result;
344
345  return Sema::TDK_Success;
346}
347
348/// \brief Deduce the template arguments by comparing the parameter type and
349/// the argument type (C++ [temp.deduct.type]).
350///
351/// \param S the semantic analysis object within which we are deducing
352///
353/// \param TemplateParams the template parameters that we are deducing
354///
355/// \param ParamIn the parameter type
356///
357/// \param ArgIn the argument type
358///
359/// \param Info information about the template argument deduction itself
360///
361/// \param Deduced the deduced template arguments
362///
363/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
364/// how template argument deduction is performed.
365///
366/// \returns the result of template argument deduction so far. Note that a
367/// "success" result means that template argument deduction has not yet failed,
368/// but it may still fail, later, for other reasons.
369static Sema::TemplateDeductionResult
370DeduceTemplateArguments(Sema &S,
371                        TemplateParameterList *TemplateParams,
372                        QualType ParamIn, QualType ArgIn,
373                        Sema::TemplateDeductionInfo &Info,
374                     llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
375                        unsigned TDF) {
376  // We only want to look at the canonical types, since typedefs and
377  // sugar are not part of template argument deduction.
378  QualType Param = S.Context.getCanonicalType(ParamIn);
379  QualType Arg = S.Context.getCanonicalType(ArgIn);
380
381  // C++0x [temp.deduct.call]p4 bullet 1:
382  //   - If the original P is a reference type, the deduced A (i.e., the type
383  //     referred to by the reference) can be more cv-qualified than the
384  //     transformed A.
385  if (TDF & TDF_ParamWithReferenceType) {
386    Qualifiers Quals;
387    QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
388    Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
389                           Arg.getCVRQualifiersThroughArrayTypes());
390    Param = S.Context.getQualifiedType(UnqualParam, Quals);
391  }
392
393  // If the parameter type is not dependent, there is nothing to deduce.
394  if (!Param->isDependentType()) {
395    if (!(TDF & TDF_SkipNonDependent) && Param != Arg) {
396
397      return Sema::TDK_NonDeducedMismatch;
398    }
399
400    return Sema::TDK_Success;
401  }
402
403  // C++ [temp.deduct.type]p9:
404  //   A template type argument T, a template template argument TT or a
405  //   template non-type argument i can be deduced if P and A have one of
406  //   the following forms:
407  //
408  //     T
409  //     cv-list T
410  if (const TemplateTypeParmType *TemplateTypeParm
411        = Param->getAs<TemplateTypeParmType>()) {
412    unsigned Index = TemplateTypeParm->getIndex();
413    bool RecanonicalizeArg = false;
414
415    // If the argument type is an array type, move the qualifiers up to the
416    // top level, so they can be matched with the qualifiers on the parameter.
417    // FIXME: address spaces, ObjC GC qualifiers
418    if (isa<ArrayType>(Arg)) {
419      Qualifiers Quals;
420      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
421      if (Quals) {
422        Arg = S.Context.getQualifiedType(Arg, Quals);
423        RecanonicalizeArg = true;
424      }
425    }
426
427    // The argument type can not be less qualified than the parameter
428    // type.
429    if (Param.isMoreQualifiedThan(Arg) && !(TDF & TDF_IgnoreQualifiers)) {
430      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
431      Info.FirstArg = Deduced[Index];
432      Info.SecondArg = TemplateArgument(Arg);
433      return Sema::TDK_InconsistentQuals;
434    }
435
436    assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
437    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
438    QualType DeducedType = Arg;
439    DeducedType.removeCVRQualifiers(Param.getCVRQualifiers());
440    if (RecanonicalizeArg)
441      DeducedType = S.Context.getCanonicalType(DeducedType);
442
443    if (Deduced[Index].isNull())
444      Deduced[Index] = TemplateArgument(DeducedType);
445    else {
446      // C++ [temp.deduct.type]p2:
447      //   [...] If type deduction cannot be done for any P/A pair, or if for
448      //   any pair the deduction leads to more than one possible set of
449      //   deduced values, or if different pairs yield different deduced
450      //   values, or if any template argument remains neither deduced nor
451      //   explicitly specified, template argument deduction fails.
452      if (Deduced[Index].getAsType() != DeducedType) {
453        Info.Param
454          = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
455        Info.FirstArg = Deduced[Index];
456        Info.SecondArg = TemplateArgument(Arg);
457        return Sema::TDK_Inconsistent;
458      }
459    }
460    return Sema::TDK_Success;
461  }
462
463  // Set up the template argument deduction information for a failure.
464  Info.FirstArg = TemplateArgument(ParamIn);
465  Info.SecondArg = TemplateArgument(ArgIn);
466
467  // Check the cv-qualifiers on the parameter and argument types.
468  if (!(TDF & TDF_IgnoreQualifiers)) {
469    if (TDF & TDF_ParamWithReferenceType) {
470      if (Param.isMoreQualifiedThan(Arg))
471        return Sema::TDK_NonDeducedMismatch;
472    } else {
473      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
474        return Sema::TDK_NonDeducedMismatch;
475    }
476  }
477
478  switch (Param->getTypeClass()) {
479    // No deduction possible for these types
480    case Type::Builtin:
481      return Sema::TDK_NonDeducedMismatch;
482
483    //     T *
484    case Type::Pointer: {
485      QualType PointeeType;
486      if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
487        PointeeType = PointerArg->getPointeeType();
488      } else if (const ObjCObjectPointerType *PointerArg
489                   = Arg->getAs<ObjCObjectPointerType>()) {
490        PointeeType = PointerArg->getPointeeType();
491      } else {
492        return Sema::TDK_NonDeducedMismatch;
493      }
494
495      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
496      return DeduceTemplateArguments(S, TemplateParams,
497                                   cast<PointerType>(Param)->getPointeeType(),
498                                     PointeeType,
499                                     Info, Deduced, SubTDF);
500    }
501
502    //     T &
503    case Type::LValueReference: {
504      const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
505      if (!ReferenceArg)
506        return Sema::TDK_NonDeducedMismatch;
507
508      return DeduceTemplateArguments(S, TemplateParams,
509                           cast<LValueReferenceType>(Param)->getPointeeType(),
510                                     ReferenceArg->getPointeeType(),
511                                     Info, Deduced, 0);
512    }
513
514    //     T && [C++0x]
515    case Type::RValueReference: {
516      const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
517      if (!ReferenceArg)
518        return Sema::TDK_NonDeducedMismatch;
519
520      return DeduceTemplateArguments(S, TemplateParams,
521                           cast<RValueReferenceType>(Param)->getPointeeType(),
522                                     ReferenceArg->getPointeeType(),
523                                     Info, Deduced, 0);
524    }
525
526    //     T [] (implied, but not stated explicitly)
527    case Type::IncompleteArray: {
528      const IncompleteArrayType *IncompleteArrayArg =
529        S.Context.getAsIncompleteArrayType(Arg);
530      if (!IncompleteArrayArg)
531        return Sema::TDK_NonDeducedMismatch;
532
533      return DeduceTemplateArguments(S, TemplateParams,
534                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
535                                     IncompleteArrayArg->getElementType(),
536                                     Info, Deduced, 0);
537    }
538
539    //     T [integer-constant]
540    case Type::ConstantArray: {
541      const ConstantArrayType *ConstantArrayArg =
542        S.Context.getAsConstantArrayType(Arg);
543      if (!ConstantArrayArg)
544        return Sema::TDK_NonDeducedMismatch;
545
546      const ConstantArrayType *ConstantArrayParm =
547        S.Context.getAsConstantArrayType(Param);
548      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
549        return Sema::TDK_NonDeducedMismatch;
550
551      return DeduceTemplateArguments(S, TemplateParams,
552                                     ConstantArrayParm->getElementType(),
553                                     ConstantArrayArg->getElementType(),
554                                     Info, Deduced, 0);
555    }
556
557    //     type [i]
558    case Type::DependentSizedArray: {
559      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
560      if (!ArrayArg)
561        return Sema::TDK_NonDeducedMismatch;
562
563      // Check the element type of the arrays
564      const DependentSizedArrayType *DependentArrayParm
565        = S.Context.getAsDependentSizedArrayType(Param);
566      if (Sema::TemplateDeductionResult Result
567            = DeduceTemplateArguments(S, TemplateParams,
568                                      DependentArrayParm->getElementType(),
569                                      ArrayArg->getElementType(),
570                                      Info, Deduced, 0))
571        return Result;
572
573      // Determine the array bound is something we can deduce.
574      NonTypeTemplateParmDecl *NTTP
575        = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
576      if (!NTTP)
577        return Sema::TDK_Success;
578
579      // We can perform template argument deduction for the given non-type
580      // template parameter.
581      assert(NTTP->getDepth() == 0 &&
582             "Cannot deduce non-type template argument at depth > 0");
583      if (const ConstantArrayType *ConstantArrayArg
584            = dyn_cast<ConstantArrayType>(ArrayArg)) {
585        llvm::APSInt Size(ConstantArrayArg->getSize());
586        return DeduceNonTypeTemplateArgument(S, NTTP, Size,
587                                             S.Context.getSizeType(),
588                                             /*ArrayBound=*/true,
589                                             Info, Deduced);
590      }
591      if (const DependentSizedArrayType *DependentArrayArg
592            = dyn_cast<DependentSizedArrayType>(ArrayArg))
593        return DeduceNonTypeTemplateArgument(S, NTTP,
594                                             DependentArrayArg->getSizeExpr(),
595                                             Info, Deduced);
596
597      // Incomplete type does not match a dependently-sized array type
598      return Sema::TDK_NonDeducedMismatch;
599    }
600
601    //     type(*)(T)
602    //     T(*)()
603    //     T(*)(T)
604    case Type::FunctionProto: {
605      const FunctionProtoType *FunctionProtoArg =
606        dyn_cast<FunctionProtoType>(Arg);
607      if (!FunctionProtoArg)
608        return Sema::TDK_NonDeducedMismatch;
609
610      const FunctionProtoType *FunctionProtoParam =
611        cast<FunctionProtoType>(Param);
612
613      if (FunctionProtoParam->getTypeQuals() !=
614          FunctionProtoArg->getTypeQuals())
615        return Sema::TDK_NonDeducedMismatch;
616
617      if (FunctionProtoParam->getNumArgs() != FunctionProtoArg->getNumArgs())
618        return Sema::TDK_NonDeducedMismatch;
619
620      if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
621        return Sema::TDK_NonDeducedMismatch;
622
623      // Check return types.
624      if (Sema::TemplateDeductionResult Result
625            = DeduceTemplateArguments(S, TemplateParams,
626                                      FunctionProtoParam->getResultType(),
627                                      FunctionProtoArg->getResultType(),
628                                      Info, Deduced, 0))
629        return Result;
630
631      for (unsigned I = 0, N = FunctionProtoParam->getNumArgs(); I != N; ++I) {
632        // Check argument types.
633        if (Sema::TemplateDeductionResult Result
634              = DeduceTemplateArguments(S, TemplateParams,
635                                        FunctionProtoParam->getArgType(I),
636                                        FunctionProtoArg->getArgType(I),
637                                        Info, Deduced, 0))
638          return Result;
639      }
640
641      return Sema::TDK_Success;
642    }
643
644    case Type::InjectedClassName: {
645      // Treat a template's injected-class-name as if the template
646      // specialization type had been used.
647      Param = cast<InjectedClassNameType>(Param)
648        ->getInjectedSpecializationType();
649      assert(isa<TemplateSpecializationType>(Param) &&
650             "injected class name is not a template specialization type");
651      // fall through
652    }
653
654    //     template-name<T> (where template-name refers to a class template)
655    //     template-name<i>
656    //     TT<T>
657    //     TT<i>
658    //     TT<>
659    case Type::TemplateSpecialization: {
660      const TemplateSpecializationType *SpecParam
661        = cast<TemplateSpecializationType>(Param);
662
663      // Try to deduce template arguments from the template-id.
664      Sema::TemplateDeductionResult Result
665        = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
666                                  Info, Deduced);
667
668      if (Result && (TDF & TDF_DerivedClass)) {
669        // C++ [temp.deduct.call]p3b3:
670        //   If P is a class, and P has the form template-id, then A can be a
671        //   derived class of the deduced A. Likewise, if P is a pointer to a
672        //   class of the form template-id, A can be a pointer to a derived
673        //   class pointed to by the deduced A.
674        //
675        // More importantly:
676        //   These alternatives are considered only if type deduction would
677        //   otherwise fail.
678        if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
679          // We cannot inspect base classes as part of deduction when the type
680          // is incomplete, so either instantiate any templates necessary to
681          // complete the type, or skip over it if it cannot be completed.
682          if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
683            return Result;
684
685          // Use data recursion to crawl through the list of base classes.
686          // Visited contains the set of nodes we have already visited, while
687          // ToVisit is our stack of records that we still need to visit.
688          llvm::SmallPtrSet<const RecordType *, 8> Visited;
689          llvm::SmallVector<const RecordType *, 8> ToVisit;
690          ToVisit.push_back(RecordT);
691          bool Successful = false;
692          while (!ToVisit.empty()) {
693            // Retrieve the next class in the inheritance hierarchy.
694            const RecordType *NextT = ToVisit.back();
695            ToVisit.pop_back();
696
697            // If we have already seen this type, skip it.
698            if (!Visited.insert(NextT))
699              continue;
700
701            // If this is a base class, try to perform template argument
702            // deduction from it.
703            if (NextT != RecordT) {
704              Sema::TemplateDeductionResult BaseResult
705                = DeduceTemplateArguments(S, TemplateParams, SpecParam,
706                                          QualType(NextT, 0), Info, Deduced);
707
708              // If template argument deduction for this base was successful,
709              // note that we had some success.
710              if (BaseResult == Sema::TDK_Success)
711                Successful = true;
712            }
713
714            // Visit base classes
715            CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
716            for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
717                                                 BaseEnd = Next->bases_end();
718                 Base != BaseEnd; ++Base) {
719              assert(Base->getType()->isRecordType() &&
720                     "Base class that isn't a record?");
721              ToVisit.push_back(Base->getType()->getAs<RecordType>());
722            }
723          }
724
725          if (Successful)
726            return Sema::TDK_Success;
727        }
728
729      }
730
731      return Result;
732    }
733
734    //     T type::*
735    //     T T::*
736    //     T (type::*)()
737    //     type (T::*)()
738    //     type (type::*)(T)
739    //     type (T::*)(T)
740    //     T (type::*)(T)
741    //     T (T::*)()
742    //     T (T::*)(T)
743    case Type::MemberPointer: {
744      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
745      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
746      if (!MemPtrArg)
747        return Sema::TDK_NonDeducedMismatch;
748
749      if (Sema::TemplateDeductionResult Result
750            = DeduceTemplateArguments(S, TemplateParams,
751                                      MemPtrParam->getPointeeType(),
752                                      MemPtrArg->getPointeeType(),
753                                      Info, Deduced,
754                                      TDF & TDF_IgnoreQualifiers))
755        return Result;
756
757      return DeduceTemplateArguments(S, TemplateParams,
758                                     QualType(MemPtrParam->getClass(), 0),
759                                     QualType(MemPtrArg->getClass(), 0),
760                                     Info, Deduced, 0);
761    }
762
763    //     (clang extension)
764    //
765    //     type(^)(T)
766    //     T(^)()
767    //     T(^)(T)
768    case Type::BlockPointer: {
769      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
770      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
771
772      if (!BlockPtrArg)
773        return Sema::TDK_NonDeducedMismatch;
774
775      return DeduceTemplateArguments(S, TemplateParams,
776                                     BlockPtrParam->getPointeeType(),
777                                     BlockPtrArg->getPointeeType(), Info,
778                                     Deduced, 0);
779    }
780
781    case Type::TypeOfExpr:
782    case Type::TypeOf:
783    case Type::DependentName:
784      // No template argument deduction for these types
785      return Sema::TDK_Success;
786
787    default:
788      break;
789  }
790
791  // FIXME: Many more cases to go (to go).
792  return Sema::TDK_Success;
793}
794
795static Sema::TemplateDeductionResult
796DeduceTemplateArguments(Sema &S,
797                        TemplateParameterList *TemplateParams,
798                        const TemplateArgument &Param,
799                        const TemplateArgument &Arg,
800                        Sema::TemplateDeductionInfo &Info,
801                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
802  switch (Param.getKind()) {
803  case TemplateArgument::Null:
804    assert(false && "Null template argument in parameter list");
805    break;
806
807  case TemplateArgument::Type:
808    if (Arg.getKind() == TemplateArgument::Type)
809      return DeduceTemplateArguments(S, TemplateParams, Param.getAsType(),
810                                     Arg.getAsType(), Info, Deduced, 0);
811    Info.FirstArg = Param;
812    Info.SecondArg = Arg;
813    return Sema::TDK_NonDeducedMismatch;
814
815  case TemplateArgument::Template:
816    if (Arg.getKind() == TemplateArgument::Template)
817      return DeduceTemplateArguments(S, TemplateParams,
818                                     Param.getAsTemplate(),
819                                     Arg.getAsTemplate(), Info, Deduced);
820    Info.FirstArg = Param;
821    Info.SecondArg = Arg;
822    return Sema::TDK_NonDeducedMismatch;
823
824  case TemplateArgument::Declaration:
825    if (Arg.getKind() == TemplateArgument::Declaration &&
826        Param.getAsDecl()->getCanonicalDecl() ==
827          Arg.getAsDecl()->getCanonicalDecl())
828      return Sema::TDK_Success;
829
830    Info.FirstArg = Param;
831    Info.SecondArg = Arg;
832    return Sema::TDK_NonDeducedMismatch;
833
834  case TemplateArgument::Integral:
835    if (Arg.getKind() == TemplateArgument::Integral) {
836      if (hasSameExtendedValue(*Param.getAsIntegral(), *Arg.getAsIntegral()))
837        return Sema::TDK_Success;
838
839      Info.FirstArg = Param;
840      Info.SecondArg = Arg;
841      return Sema::TDK_NonDeducedMismatch;
842    }
843
844    if (Arg.getKind() == TemplateArgument::Expression) {
845      Info.FirstArg = Param;
846      Info.SecondArg = Arg;
847      return Sema::TDK_NonDeducedMismatch;
848    }
849
850    assert(false && "Type/value mismatch");
851    Info.FirstArg = Param;
852    Info.SecondArg = Arg;
853    return Sema::TDK_NonDeducedMismatch;
854
855  case TemplateArgument::Expression: {
856    if (NonTypeTemplateParmDecl *NTTP
857          = getDeducedParameterFromExpr(Param.getAsExpr())) {
858      if (Arg.getKind() == TemplateArgument::Integral)
859        return DeduceNonTypeTemplateArgument(S, NTTP,
860                                             *Arg.getAsIntegral(),
861                                             Arg.getIntegralType(),
862                                             /*ArrayBound=*/false,
863                                             Info, Deduced);
864      if (Arg.getKind() == TemplateArgument::Expression)
865        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
866                                             Info, Deduced);
867      if (Arg.getKind() == TemplateArgument::Declaration)
868        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
869                                             Info, Deduced);
870
871      assert(false && "Type/value mismatch");
872      Info.FirstArg = Param;
873      Info.SecondArg = Arg;
874      return Sema::TDK_NonDeducedMismatch;
875    }
876
877    // Can't deduce anything, but that's okay.
878    return Sema::TDK_Success;
879  }
880  case TemplateArgument::Pack:
881    assert(0 && "FIXME: Implement!");
882    break;
883  }
884
885  return Sema::TDK_Success;
886}
887
888static Sema::TemplateDeductionResult
889DeduceTemplateArguments(Sema &S,
890                        TemplateParameterList *TemplateParams,
891                        const TemplateArgumentList &ParamList,
892                        const TemplateArgumentList &ArgList,
893                        Sema::TemplateDeductionInfo &Info,
894                    llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
895  assert(ParamList.size() == ArgList.size());
896  for (unsigned I = 0, N = ParamList.size(); I != N; ++I) {
897    if (Sema::TemplateDeductionResult Result
898          = DeduceTemplateArguments(S, TemplateParams,
899                                    ParamList[I], ArgList[I],
900                                    Info, Deduced))
901      return Result;
902  }
903  return Sema::TDK_Success;
904}
905
906/// \brief Determine whether two template arguments are the same.
907static bool isSameTemplateArg(ASTContext &Context,
908                              const TemplateArgument &X,
909                              const TemplateArgument &Y) {
910  if (X.getKind() != Y.getKind())
911    return false;
912
913  switch (X.getKind()) {
914    case TemplateArgument::Null:
915      assert(false && "Comparing NULL template argument");
916      break;
917
918    case TemplateArgument::Type:
919      return Context.getCanonicalType(X.getAsType()) ==
920             Context.getCanonicalType(Y.getAsType());
921
922    case TemplateArgument::Declaration:
923      return X.getAsDecl()->getCanonicalDecl() ==
924             Y.getAsDecl()->getCanonicalDecl();
925
926    case TemplateArgument::Template:
927      return Context.getCanonicalTemplateName(X.getAsTemplate())
928               .getAsVoidPointer() ==
929             Context.getCanonicalTemplateName(Y.getAsTemplate())
930               .getAsVoidPointer();
931
932    case TemplateArgument::Integral:
933      return *X.getAsIntegral() == *Y.getAsIntegral();
934
935    case TemplateArgument::Expression: {
936      llvm::FoldingSetNodeID XID, YID;
937      X.getAsExpr()->Profile(XID, Context, true);
938      Y.getAsExpr()->Profile(YID, Context, true);
939      return XID == YID;
940    }
941
942    case TemplateArgument::Pack:
943      if (X.pack_size() != Y.pack_size())
944        return false;
945
946      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
947                                        XPEnd = X.pack_end(),
948                                           YP = Y.pack_begin();
949           XP != XPEnd; ++XP, ++YP)
950        if (!isSameTemplateArg(Context, *XP, *YP))
951          return false;
952
953      return true;
954  }
955
956  return false;
957}
958
959/// \brief Helper function to build a TemplateParameter when we don't
960/// know its type statically.
961static TemplateParameter makeTemplateParameter(Decl *D) {
962  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
963    return TemplateParameter(TTP);
964  else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
965    return TemplateParameter(NTTP);
966
967  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
968}
969
970/// Complete template argument deduction for a class template partial
971/// specialization.
972static Sema::TemplateDeductionResult
973FinishTemplateArgumentDeduction(Sema &S,
974                                ClassTemplatePartialSpecializationDecl *Partial,
975                                const TemplateArgumentList &TemplateArgs,
976                      llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
977                                Sema::TemplateDeductionInfo &Info) {
978  // Trap errors.
979  Sema::SFINAETrap Trap(S);
980
981  Sema::ContextRAII SavedContext(S, Partial);
982
983  // C++ [temp.deduct.type]p2:
984  //   [...] or if any template argument remains neither deduced nor
985  //   explicitly specified, template argument deduction fails.
986  TemplateArgumentListBuilder Builder(Partial->getTemplateParameters(),
987                                      Deduced.size());
988  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
989    if (Deduced[I].isNull()) {
990      Decl *Param
991      = const_cast<NamedDecl *>(
992                                Partial->getTemplateParameters()->getParam(I));
993      Info.Param = makeTemplateParameter(Param);
994      return Sema::TDK_Incomplete;
995    }
996
997    Builder.Append(Deduced[I]);
998  }
999
1000  // Form the template argument list from the deduced template arguments.
1001  TemplateArgumentList *DeducedArgumentList
1002    = new (S.Context) TemplateArgumentList(S.Context, Builder,
1003                                           /*TakeArgs=*/true);
1004  Info.reset(DeducedArgumentList);
1005
1006  // Substitute the deduced template arguments into the template
1007  // arguments of the class template partial specialization, and
1008  // verify that the instantiated template arguments are both valid
1009  // and are equivalent to the template arguments originally provided
1010  // to the class template.
1011  // FIXME: Do we have to correct the types of deduced non-type template
1012  // arguments (in particular, integral non-type template arguments?).
1013  Sema::LocalInstantiationScope InstScope(S);
1014  ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
1015  const TemplateArgumentLoc *PartialTemplateArgs
1016    = Partial->getTemplateArgsAsWritten();
1017  unsigned N = Partial->getNumTemplateArgsAsWritten();
1018
1019  // Note that we don't provide the langle and rangle locations.
1020  TemplateArgumentListInfo InstArgs;
1021
1022  for (unsigned I = 0; I != N; ++I) {
1023    Decl *Param = const_cast<NamedDecl *>(
1024                    ClassTemplate->getTemplateParameters()->getParam(I));
1025    TemplateArgumentLoc InstArg;
1026    if (S.Subst(PartialTemplateArgs[I], InstArg,
1027                MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
1028      Info.Param = makeTemplateParameter(Param);
1029      Info.FirstArg = PartialTemplateArgs[I].getArgument();
1030      return Sema::TDK_SubstitutionFailure;
1031    }
1032    InstArgs.addArgument(InstArg);
1033  }
1034
1035  TemplateArgumentListBuilder ConvertedInstArgs(
1036                                  ClassTemplate->getTemplateParameters(), N);
1037
1038  if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
1039                                InstArgs, false, ConvertedInstArgs))
1040    return Sema::TDK_SubstitutionFailure;
1041
1042  for (unsigned I = 0, E = ConvertedInstArgs.flatSize(); I != E; ++I) {
1043    TemplateArgument InstArg = ConvertedInstArgs.getFlatArguments()[I];
1044
1045    Decl *Param = const_cast<NamedDecl *>(
1046                    ClassTemplate->getTemplateParameters()->getParam(I));
1047
1048    if (InstArg.getKind() == TemplateArgument::Expression) {
1049      // When the argument is an expression, check the expression result
1050      // against the actual template parameter to get down to the canonical
1051      // template argument.
1052      Expr *InstExpr = InstArg.getAsExpr();
1053      if (NonTypeTemplateParmDecl *NTTP
1054            = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1055        if (S.CheckTemplateArgument(NTTP, NTTP->getType(), InstExpr, InstArg)) {
1056          Info.Param = makeTemplateParameter(Param);
1057          Info.FirstArg = Partial->getTemplateArgs()[I];
1058          return Sema::TDK_SubstitutionFailure;
1059        }
1060      }
1061    }
1062
1063    if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
1064      Info.Param = makeTemplateParameter(Param);
1065      Info.FirstArg = TemplateArgs[I];
1066      Info.SecondArg = InstArg;
1067      return Sema::TDK_NonDeducedMismatch;
1068    }
1069  }
1070
1071  if (Trap.hasErrorOccurred())
1072    return Sema::TDK_SubstitutionFailure;
1073
1074  return Sema::TDK_Success;
1075}
1076
1077/// \brief Perform template argument deduction to determine whether
1078/// the given template arguments match the given class template
1079/// partial specialization per C++ [temp.class.spec.match].
1080Sema::TemplateDeductionResult
1081Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
1082                              const TemplateArgumentList &TemplateArgs,
1083                              TemplateDeductionInfo &Info) {
1084  // C++ [temp.class.spec.match]p2:
1085  //   A partial specialization matches a given actual template
1086  //   argument list if the template arguments of the partial
1087  //   specialization can be deduced from the actual template argument
1088  //   list (14.8.2).
1089  SFINAETrap Trap(*this);
1090  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1091  Deduced.resize(Partial->getTemplateParameters()->size());
1092  if (TemplateDeductionResult Result
1093        = ::DeduceTemplateArguments(*this,
1094                                    Partial->getTemplateParameters(),
1095                                    Partial->getTemplateArgs(),
1096                                    TemplateArgs, Info, Deduced))
1097    return Result;
1098
1099  InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
1100                             Deduced.data(), Deduced.size());
1101  if (Inst)
1102    return TDK_InstantiationDepth;
1103
1104  if (Trap.hasErrorOccurred())
1105    return Sema::TDK_SubstitutionFailure;
1106
1107  return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
1108                                           Deduced, Info);
1109}
1110
1111/// \brief Determine whether the given type T is a simple-template-id type.
1112static bool isSimpleTemplateIdType(QualType T) {
1113  if (const TemplateSpecializationType *Spec
1114        = T->getAs<TemplateSpecializationType>())
1115    return Spec->getTemplateName().getAsTemplateDecl() != 0;
1116
1117  return false;
1118}
1119
1120/// \brief Substitute the explicitly-provided template arguments into the
1121/// given function template according to C++ [temp.arg.explicit].
1122///
1123/// \param FunctionTemplate the function template into which the explicit
1124/// template arguments will be substituted.
1125///
1126/// \param ExplicitTemplateArguments the explicitly-specified template
1127/// arguments.
1128///
1129/// \param Deduced the deduced template arguments, which will be populated
1130/// with the converted and checked explicit template arguments.
1131///
1132/// \param ParamTypes will be populated with the instantiated function
1133/// parameters.
1134///
1135/// \param FunctionType if non-NULL, the result type of the function template
1136/// will also be instantiated and the pointed-to value will be updated with
1137/// the instantiated function type.
1138///
1139/// \param Info if substitution fails for any reason, this object will be
1140/// populated with more information about the failure.
1141///
1142/// \returns TDK_Success if substitution was successful, or some failure
1143/// condition.
1144Sema::TemplateDeductionResult
1145Sema::SubstituteExplicitTemplateArguments(
1146                                      FunctionTemplateDecl *FunctionTemplate,
1147                        const TemplateArgumentListInfo &ExplicitTemplateArgs,
1148                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1149                                 llvm::SmallVectorImpl<QualType> &ParamTypes,
1150                                          QualType *FunctionType,
1151                                          TemplateDeductionInfo &Info) {
1152  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1153  TemplateParameterList *TemplateParams
1154    = FunctionTemplate->getTemplateParameters();
1155
1156  if (ExplicitTemplateArgs.size() == 0) {
1157    // No arguments to substitute; just copy over the parameter types and
1158    // fill in the function type.
1159    for (FunctionDecl::param_iterator P = Function->param_begin(),
1160                                   PEnd = Function->param_end();
1161         P != PEnd;
1162         ++P)
1163      ParamTypes.push_back((*P)->getType());
1164
1165    if (FunctionType)
1166      *FunctionType = Function->getType();
1167    return TDK_Success;
1168  }
1169
1170  // Substitution of the explicit template arguments into a function template
1171  /// is a SFINAE context. Trap any errors that might occur.
1172  SFINAETrap Trap(*this);
1173
1174  // C++ [temp.arg.explicit]p3:
1175  //   Template arguments that are present shall be specified in the
1176  //   declaration order of their corresponding template-parameters. The
1177  //   template argument list shall not specify more template-arguments than
1178  //   there are corresponding template-parameters.
1179  TemplateArgumentListBuilder Builder(TemplateParams,
1180                                      ExplicitTemplateArgs.size());
1181
1182  // Enter a new template instantiation context where we check the
1183  // explicitly-specified template arguments against this function template,
1184  // and then substitute them into the function parameter types.
1185  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1186                             FunctionTemplate, Deduced.data(), Deduced.size(),
1187           ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution);
1188  if (Inst)
1189    return TDK_InstantiationDepth;
1190
1191  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
1192
1193  if (CheckTemplateArgumentList(FunctionTemplate,
1194                                SourceLocation(),
1195                                ExplicitTemplateArgs,
1196                                true,
1197                                Builder) || Trap.hasErrorOccurred()) {
1198    unsigned Index = Builder.structuredSize();
1199    if (Index >= TemplateParams->size())
1200      Index = TemplateParams->size() - 1;
1201    Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
1202    return TDK_InvalidExplicitArguments;
1203  }
1204
1205  // Form the template argument list from the explicitly-specified
1206  // template arguments.
1207  TemplateArgumentList *ExplicitArgumentList
1208    = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
1209  Info.reset(ExplicitArgumentList);
1210
1211  // Instantiate the types of each of the function parameters given the
1212  // explicitly-specified template arguments.
1213  for (FunctionDecl::param_iterator P = Function->param_begin(),
1214                                PEnd = Function->param_end();
1215       P != PEnd;
1216       ++P) {
1217    QualType ParamType
1218      = SubstType((*P)->getType(),
1219                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1220                  (*P)->getLocation(), (*P)->getDeclName());
1221    if (ParamType.isNull() || Trap.hasErrorOccurred())
1222      return TDK_SubstitutionFailure;
1223
1224    ParamTypes.push_back(ParamType);
1225  }
1226
1227  // If the caller wants a full function type back, instantiate the return
1228  // type and form that function type.
1229  if (FunctionType) {
1230    // FIXME: exception-specifications?
1231    const FunctionProtoType *Proto
1232      = Function->getType()->getAs<FunctionProtoType>();
1233    assert(Proto && "Function template does not have a prototype?");
1234
1235    QualType ResultType
1236      = SubstType(Proto->getResultType(),
1237                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
1238                  Function->getTypeSpecStartLoc(),
1239                  Function->getDeclName());
1240    if (ResultType.isNull() || Trap.hasErrorOccurred())
1241      return TDK_SubstitutionFailure;
1242
1243    *FunctionType = BuildFunctionType(ResultType,
1244                                      ParamTypes.data(), ParamTypes.size(),
1245                                      Proto->isVariadic(),
1246                                      Proto->getTypeQuals(),
1247                                      Function->getLocation(),
1248                                      Function->getDeclName());
1249    if (FunctionType->isNull() || Trap.hasErrorOccurred())
1250      return TDK_SubstitutionFailure;
1251  }
1252
1253  // C++ [temp.arg.explicit]p2:
1254  //   Trailing template arguments that can be deduced (14.8.2) may be
1255  //   omitted from the list of explicit template-arguments. If all of the
1256  //   template arguments can be deduced, they may all be omitted; in this
1257  //   case, the empty template argument list <> itself may also be omitted.
1258  //
1259  // Take all of the explicitly-specified arguments and put them into the
1260  // set of deduced template arguments.
1261  Deduced.reserve(TemplateParams->size());
1262  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I)
1263    Deduced.push_back(ExplicitArgumentList->get(I));
1264
1265  return TDK_Success;
1266}
1267
1268/// \brief Allocate a TemplateArgumentLoc where all locations have
1269/// been initialized to the given location.
1270///
1271/// \param S The semantic analysis object.
1272///
1273/// \param The template argument we are producing template argument
1274/// location information for.
1275///
1276/// \param NTTPType For a declaration template argument, the type of
1277/// the non-type template parameter that corresponds to this template
1278/// argument.
1279///
1280/// \param Loc The source location to use for the resulting template
1281/// argument.
1282static TemplateArgumentLoc
1283getTrivialTemplateArgumentLoc(Sema &S,
1284                              const TemplateArgument &Arg,
1285                              QualType NTTPType,
1286                              SourceLocation Loc) {
1287  switch (Arg.getKind()) {
1288  case TemplateArgument::Null:
1289    llvm_unreachable("Can't get a NULL template argument here");
1290    break;
1291
1292  case TemplateArgument::Type:
1293    return TemplateArgumentLoc(Arg,
1294                    S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
1295
1296  case TemplateArgument::Declaration: {
1297    Expr *E
1298      = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
1299                                                              .takeAs<Expr>();
1300    return TemplateArgumentLoc(TemplateArgument(E), E);
1301  }
1302
1303  case TemplateArgument::Integral: {
1304    Expr *E
1305      = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
1306    return TemplateArgumentLoc(TemplateArgument(E), E);
1307  }
1308
1309  case TemplateArgument::Template:
1310    return TemplateArgumentLoc(Arg, SourceRange(), Loc);
1311
1312  case TemplateArgument::Expression:
1313    return TemplateArgumentLoc(Arg, Arg.getAsExpr());
1314
1315  case TemplateArgument::Pack:
1316    llvm_unreachable("Template parameter packs are not yet supported");
1317  }
1318
1319  return TemplateArgumentLoc();
1320}
1321
1322/// \brief Finish template argument deduction for a function template,
1323/// checking the deduced template arguments for completeness and forming
1324/// the function template specialization.
1325Sema::TemplateDeductionResult
1326Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
1327                       llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1328                                      unsigned NumExplicitlySpecified,
1329                                      FunctionDecl *&Specialization,
1330                                      TemplateDeductionInfo &Info) {
1331  TemplateParameterList *TemplateParams
1332    = FunctionTemplate->getTemplateParameters();
1333
1334  // Template argument deduction for function templates in a SFINAE context.
1335  // Trap any errors that might occur.
1336  SFINAETrap Trap(*this);
1337
1338  // Enter a new template instantiation context while we instantiate the
1339  // actual function declaration.
1340  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
1341                             FunctionTemplate, Deduced.data(), Deduced.size(),
1342              ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution);
1343  if (Inst)
1344    return TDK_InstantiationDepth;
1345
1346  ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
1347
1348  // C++ [temp.deduct.type]p2:
1349  //   [...] or if any template argument remains neither deduced nor
1350  //   explicitly specified, template argument deduction fails.
1351  TemplateArgumentListBuilder Builder(TemplateParams, Deduced.size());
1352  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
1353    NamedDecl *Param = FunctionTemplate->getTemplateParameters()->getParam(I);
1354    if (!Deduced[I].isNull()) {
1355      if (I < NumExplicitlySpecified ||
1356          Deduced[I].getKind() == TemplateArgument::Type) {
1357        // We have already fully type-checked and converted this
1358        // argument (because it was explicitly-specified) or no
1359        // additional checking is necessary (because it's a template
1360        // type parameter). Just record the presence of this
1361        // parameter.
1362        Builder.Append(Deduced[I]);
1363        continue;
1364      }
1365
1366      // We have deduced this argument, so it still needs to be
1367      // checked and converted.
1368
1369      // First, for a non-type template parameter type that is
1370      // initialized by a declaration, we need the type of the
1371      // corresponding non-type template parameter.
1372      QualType NTTPType;
1373      if (NonTypeTemplateParmDecl *NTTP
1374                                = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
1375        if (Deduced[I].getKind() == TemplateArgument::Declaration) {
1376          NTTPType = NTTP->getType();
1377          if (NTTPType->isDependentType()) {
1378            TemplateArgumentList TemplateArgs(Context, Builder,
1379                                              /*TakeArgs=*/false);
1380            NTTPType = SubstType(NTTPType,
1381                                 MultiLevelTemplateArgumentList(TemplateArgs),
1382                                 NTTP->getLocation(),
1383                                 NTTP->getDeclName());
1384            if (NTTPType.isNull()) {
1385              Info.Param = makeTemplateParameter(Param);
1386              Info.reset(new (Context) TemplateArgumentList(Context, Builder,
1387                                                            /*TakeArgs=*/true));
1388              return TDK_SubstitutionFailure;
1389            }
1390          }
1391        }
1392      }
1393
1394      // Convert the deduced template argument into a template
1395      // argument that we can check, almost as if the user had written
1396      // the template argument explicitly.
1397      TemplateArgumentLoc Arg = getTrivialTemplateArgumentLoc(*this,
1398                                                              Deduced[I],
1399                                                              NTTPType,
1400                                                           SourceLocation());
1401
1402      // Check the template argument, converting it as necessary.
1403      if (CheckTemplateArgument(Param, Arg,
1404                                FunctionTemplate,
1405                                FunctionTemplate->getLocation(),
1406                                FunctionTemplate->getSourceRange().getEnd(),
1407                                Builder,
1408                                Deduced[I].wasDeducedFromArrayBound()
1409                                  ? CTAK_DeducedFromArrayBound
1410                                  : CTAK_Deduced)) {
1411        Info.Param = makeTemplateParameter(
1412                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1413        Info.reset(new (Context) TemplateArgumentList(Context, Builder,
1414                                                      /*TakeArgs=*/true));
1415        return TDK_SubstitutionFailure;
1416      }
1417
1418      continue;
1419    }
1420
1421    // Substitute into the default template argument, if available.
1422    TemplateArgumentLoc DefArg
1423      = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
1424                                              FunctionTemplate->getLocation(),
1425                                  FunctionTemplate->getSourceRange().getEnd(),
1426                                                Param,
1427                                                Builder);
1428
1429    // If there was no default argument, deduction is incomplete.
1430    if (DefArg.getArgument().isNull()) {
1431      Info.Param = makeTemplateParameter(
1432                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1433      return TDK_Incomplete;
1434    }
1435
1436    // Check whether we can actually use the default argument.
1437    if (CheckTemplateArgument(Param, DefArg,
1438                              FunctionTemplate,
1439                              FunctionTemplate->getLocation(),
1440                              FunctionTemplate->getSourceRange().getEnd(),
1441                              Builder,
1442                              CTAK_Deduced)) {
1443      Info.Param = makeTemplateParameter(
1444                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
1445      Info.reset(new (Context) TemplateArgumentList(Context, Builder,
1446                                                    /*TakeArgs=*/true));
1447      return TDK_SubstitutionFailure;
1448    }
1449
1450    // If we get here, we successfully used the default template argument.
1451  }
1452
1453  // Form the template argument list from the deduced template arguments.
1454  TemplateArgumentList *DeducedArgumentList
1455    = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
1456  Info.reset(DeducedArgumentList);
1457
1458  // Substitute the deduced template arguments into the function template
1459  // declaration to produce the function template specialization.
1460  DeclContext *Owner = FunctionTemplate->getDeclContext();
1461  if (FunctionTemplate->getFriendObjectKind())
1462    Owner = FunctionTemplate->getLexicalDeclContext();
1463  Specialization = cast_or_null<FunctionDecl>(
1464                      SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
1465                         MultiLevelTemplateArgumentList(*DeducedArgumentList)));
1466  if (!Specialization)
1467    return TDK_SubstitutionFailure;
1468
1469  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
1470         FunctionTemplate->getCanonicalDecl());
1471
1472  // If the template argument list is owned by the function template
1473  // specialization, release it.
1474  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
1475      !Trap.hasErrorOccurred())
1476    Info.take();
1477
1478  // There may have been an error that did not prevent us from constructing a
1479  // declaration. Mark the declaration invalid and return with a substitution
1480  // failure.
1481  if (Trap.hasErrorOccurred()) {
1482    Specialization->setInvalidDecl(true);
1483    return TDK_SubstitutionFailure;
1484  }
1485
1486  return TDK_Success;
1487}
1488
1489static QualType GetTypeOfFunction(ASTContext &Context,
1490                                  bool isAddressOfOperand,
1491                                  FunctionDecl *Fn) {
1492  if (!isAddressOfOperand) return Fn->getType();
1493  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
1494    if (Method->isInstance())
1495      return Context.getMemberPointerType(Fn->getType(),
1496               Context.getTypeDeclType(Method->getParent()).getTypePtr());
1497  return Context.getPointerType(Fn->getType());
1498}
1499
1500/// Apply the deduction rules for overload sets.
1501///
1502/// \return the null type if this argument should be treated as an
1503/// undeduced context
1504static QualType
1505ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
1506                            Expr *Arg, QualType ParamType) {
1507  llvm::PointerIntPair<OverloadExpr*,1> R = OverloadExpr::find(Arg);
1508
1509  bool isAddressOfOperand = bool(R.getInt());
1510  OverloadExpr *Ovl = R.getPointer();
1511
1512  // If there were explicit template arguments, we can only find
1513  // something via C++ [temp.arg.explicit]p3, i.e. if the arguments
1514  // unambiguously name a full specialization.
1515  if (Ovl->hasExplicitTemplateArgs()) {
1516    // But we can still look for an explicit specialization.
1517    if (FunctionDecl *ExplicitSpec
1518          = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
1519      return GetTypeOfFunction(S.Context, isAddressOfOperand, ExplicitSpec);
1520    return QualType();
1521  }
1522
1523  // C++0x [temp.deduct.call]p6:
1524  //   When P is a function type, pointer to function type, or pointer
1525  //   to member function type:
1526
1527  if (!ParamType->isFunctionType() &&
1528      !ParamType->isFunctionPointerType() &&
1529      !ParamType->isMemberFunctionPointerType())
1530    return QualType();
1531
1532  QualType Match;
1533  for (UnresolvedSetIterator I = Ovl->decls_begin(),
1534         E = Ovl->decls_end(); I != E; ++I) {
1535    NamedDecl *D = (*I)->getUnderlyingDecl();
1536
1537    //   - If the argument is an overload set containing one or more
1538    //     function templates, the parameter is treated as a
1539    //     non-deduced context.
1540    if (isa<FunctionTemplateDecl>(D))
1541      return QualType();
1542
1543    FunctionDecl *Fn = cast<FunctionDecl>(D);
1544    QualType ArgType = GetTypeOfFunction(S.Context, isAddressOfOperand, Fn);
1545
1546    //   - If the argument is an overload set (not containing function
1547    //     templates), trial argument deduction is attempted using each
1548    //     of the members of the set. If deduction succeeds for only one
1549    //     of the overload set members, that member is used as the
1550    //     argument value for the deduction. If deduction succeeds for
1551    //     more than one member of the overload set the parameter is
1552    //     treated as a non-deduced context.
1553
1554    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
1555    //   Type deduction is done independently for each P/A pair, and
1556    //   the deduced template argument values are then combined.
1557    // So we do not reject deductions which were made elsewhere.
1558    llvm::SmallVector<DeducedTemplateArgument, 8>
1559      Deduced(TemplateParams->size());
1560    Sema::TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
1561    unsigned TDF = 0;
1562
1563    Sema::TemplateDeductionResult Result
1564      = DeduceTemplateArguments(S, TemplateParams,
1565                                ParamType, ArgType,
1566                                Info, Deduced, TDF);
1567    if (Result) continue;
1568    if (!Match.isNull()) return QualType();
1569    Match = ArgType;
1570  }
1571
1572  return Match;
1573}
1574
1575/// \brief Perform template argument deduction from a function call
1576/// (C++ [temp.deduct.call]).
1577///
1578/// \param FunctionTemplate the function template for which we are performing
1579/// template argument deduction.
1580///
1581/// \param ExplicitTemplateArguments the explicit template arguments provided
1582/// for this call.
1583///
1584/// \param Args the function call arguments
1585///
1586/// \param NumArgs the number of arguments in Args
1587///
1588/// \param Name the name of the function being called. This is only significant
1589/// when the function template is a conversion function template, in which
1590/// case this routine will also perform template argument deduction based on
1591/// the function to which
1592///
1593/// \param Specialization if template argument deduction was successful,
1594/// this will be set to the function template specialization produced by
1595/// template argument deduction.
1596///
1597/// \param Info the argument will be updated to provide additional information
1598/// about template argument deduction.
1599///
1600/// \returns the result of template argument deduction.
1601Sema::TemplateDeductionResult
1602Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1603                          const TemplateArgumentListInfo *ExplicitTemplateArgs,
1604                              Expr **Args, unsigned NumArgs,
1605                              FunctionDecl *&Specialization,
1606                              TemplateDeductionInfo &Info) {
1607  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1608
1609  // C++ [temp.deduct.call]p1:
1610  //   Template argument deduction is done by comparing each function template
1611  //   parameter type (call it P) with the type of the corresponding argument
1612  //   of the call (call it A) as described below.
1613  unsigned CheckArgs = NumArgs;
1614  if (NumArgs < Function->getMinRequiredArguments())
1615    return TDK_TooFewArguments;
1616  else if (NumArgs > Function->getNumParams()) {
1617    const FunctionProtoType *Proto
1618      = Function->getType()->getAs<FunctionProtoType>();
1619    if (!Proto->isVariadic())
1620      return TDK_TooManyArguments;
1621
1622    CheckArgs = Function->getNumParams();
1623  }
1624
1625  // The types of the parameters from which we will perform template argument
1626  // deduction.
1627  Sema::LocalInstantiationScope InstScope(*this);
1628  TemplateParameterList *TemplateParams
1629    = FunctionTemplate->getTemplateParameters();
1630  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1631  llvm::SmallVector<QualType, 4> ParamTypes;
1632  unsigned NumExplicitlySpecified = 0;
1633  if (ExplicitTemplateArgs) {
1634    TemplateDeductionResult Result =
1635      SubstituteExplicitTemplateArguments(FunctionTemplate,
1636                                          *ExplicitTemplateArgs,
1637                                          Deduced,
1638                                          ParamTypes,
1639                                          0,
1640                                          Info);
1641    if (Result)
1642      return Result;
1643
1644    NumExplicitlySpecified = Deduced.size();
1645  } else {
1646    // Just fill in the parameter types from the function declaration.
1647    for (unsigned I = 0; I != CheckArgs; ++I)
1648      ParamTypes.push_back(Function->getParamDecl(I)->getType());
1649  }
1650
1651  // Deduce template arguments from the function parameters.
1652  Deduced.resize(TemplateParams->size());
1653  for (unsigned I = 0; I != CheckArgs; ++I) {
1654    QualType ParamType = ParamTypes[I];
1655    QualType ArgType = Args[I]->getType();
1656
1657    // Overload sets usually make this parameter an undeduced
1658    // context, but there are sometimes special circumstances.
1659    if (ArgType == Context.OverloadTy) {
1660      ArgType = ResolveOverloadForDeduction(*this, TemplateParams,
1661                                            Args[I], ParamType);
1662      if (ArgType.isNull())
1663        continue;
1664    }
1665
1666    // C++ [temp.deduct.call]p2:
1667    //   If P is not a reference type:
1668    QualType CanonParamType = Context.getCanonicalType(ParamType);
1669    bool ParamWasReference = isa<ReferenceType>(CanonParamType);
1670    if (!ParamWasReference) {
1671      //   - If A is an array type, the pointer type produced by the
1672      //     array-to-pointer standard conversion (4.2) is used in place of
1673      //     A for type deduction; otherwise,
1674      if (ArgType->isArrayType())
1675        ArgType = Context.getArrayDecayedType(ArgType);
1676      //   - If A is a function type, the pointer type produced by the
1677      //     function-to-pointer standard conversion (4.3) is used in place
1678      //     of A for type deduction; otherwise,
1679      else if (ArgType->isFunctionType())
1680        ArgType = Context.getPointerType(ArgType);
1681      else {
1682        // - If A is a cv-qualified type, the top level cv-qualifiers of A’s
1683        //   type are ignored for type deduction.
1684        QualType CanonArgType = Context.getCanonicalType(ArgType);
1685        if (CanonArgType.getLocalCVRQualifiers())
1686          ArgType = CanonArgType.getLocalUnqualifiedType();
1687      }
1688    }
1689
1690    // C++0x [temp.deduct.call]p3:
1691    //   If P is a cv-qualified type, the top level cv-qualifiers of P’s type
1692    //   are ignored for type deduction.
1693    if (CanonParamType.getLocalCVRQualifiers())
1694      ParamType = CanonParamType.getLocalUnqualifiedType();
1695    if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
1696      //   [...] If P is a reference type, the type referred to by P is used
1697      //   for type deduction.
1698      ParamType = ParamRefType->getPointeeType();
1699
1700      //   [...] If P is of the form T&&, where T is a template parameter, and
1701      //   the argument is an lvalue, the type A& is used in place of A for
1702      //   type deduction.
1703      if (isa<RValueReferenceType>(ParamRefType) &&
1704          ParamRefType->getAs<TemplateTypeParmType>() &&
1705          Args[I]->isLvalue(Context) == Expr::LV_Valid)
1706        ArgType = Context.getLValueReferenceType(ArgType);
1707    }
1708
1709    // C++0x [temp.deduct.call]p4:
1710    //   In general, the deduction process attempts to find template argument
1711    //   values that will make the deduced A identical to A (after the type A
1712    //   is transformed as described above). [...]
1713    unsigned TDF = TDF_SkipNonDependent;
1714
1715    //     - If the original P is a reference type, the deduced A (i.e., the
1716    //       type referred to by the reference) can be more cv-qualified than
1717    //       the transformed A.
1718    if (ParamWasReference)
1719      TDF |= TDF_ParamWithReferenceType;
1720    //     - The transformed A can be another pointer or pointer to member
1721    //       type that can be converted to the deduced A via a qualification
1722    //       conversion (4.4).
1723    if (ArgType->isPointerType() || ArgType->isMemberPointerType())
1724      TDF |= TDF_IgnoreQualifiers;
1725    //     - If P is a class and P has the form simple-template-id, then the
1726    //       transformed A can be a derived class of the deduced A. Likewise,
1727    //       if P is a pointer to a class of the form simple-template-id, the
1728    //       transformed A can be a pointer to a derived class pointed to by
1729    //       the deduced A.
1730    if (isSimpleTemplateIdType(ParamType) ||
1731        (isa<PointerType>(ParamType) &&
1732         isSimpleTemplateIdType(
1733                              ParamType->getAs<PointerType>()->getPointeeType())))
1734      TDF |= TDF_DerivedClass;
1735
1736    if (TemplateDeductionResult Result
1737        = ::DeduceTemplateArguments(*this, TemplateParams,
1738                                    ParamType, ArgType, Info, Deduced,
1739                                    TDF))
1740      return Result;
1741
1742    // FIXME: we need to check that the deduced A is the same as A,
1743    // modulo the various allowed differences.
1744  }
1745
1746  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
1747                                         NumExplicitlySpecified,
1748                                         Specialization, Info);
1749}
1750
1751/// \brief Deduce template arguments when taking the address of a function
1752/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
1753/// a template.
1754///
1755/// \param FunctionTemplate the function template for which we are performing
1756/// template argument deduction.
1757///
1758/// \param ExplicitTemplateArguments the explicitly-specified template
1759/// arguments.
1760///
1761/// \param ArgFunctionType the function type that will be used as the
1762/// "argument" type (A) when performing template argument deduction from the
1763/// function template's function type. This type may be NULL, if there is no
1764/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
1765///
1766/// \param Specialization if template argument deduction was successful,
1767/// this will be set to the function template specialization produced by
1768/// template argument deduction.
1769///
1770/// \param Info the argument will be updated to provide additional information
1771/// about template argument deduction.
1772///
1773/// \returns the result of template argument deduction.
1774Sema::TemplateDeductionResult
1775Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1776                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
1777                              QualType ArgFunctionType,
1778                              FunctionDecl *&Specialization,
1779                              TemplateDeductionInfo &Info) {
1780  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
1781  TemplateParameterList *TemplateParams
1782    = FunctionTemplate->getTemplateParameters();
1783  QualType FunctionType = Function->getType();
1784
1785  // Substitute any explicit template arguments.
1786  Sema::LocalInstantiationScope InstScope(*this);
1787  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1788  unsigned NumExplicitlySpecified = 0;
1789  llvm::SmallVector<QualType, 4> ParamTypes;
1790  if (ExplicitTemplateArgs) {
1791    if (TemplateDeductionResult Result
1792          = SubstituteExplicitTemplateArguments(FunctionTemplate,
1793                                                *ExplicitTemplateArgs,
1794                                                Deduced, ParamTypes,
1795                                                &FunctionType, Info))
1796      return Result;
1797
1798    NumExplicitlySpecified = Deduced.size();
1799  }
1800
1801  // Template argument deduction for function templates in a SFINAE context.
1802  // Trap any errors that might occur.
1803  SFINAETrap Trap(*this);
1804
1805  Deduced.resize(TemplateParams->size());
1806
1807  if (!ArgFunctionType.isNull()) {
1808    // Deduce template arguments from the function type.
1809    if (TemplateDeductionResult Result
1810          = ::DeduceTemplateArguments(*this, TemplateParams,
1811                                      FunctionType, ArgFunctionType, Info,
1812                                      Deduced, 0))
1813      return Result;
1814  }
1815
1816  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
1817                                         NumExplicitlySpecified,
1818                                         Specialization, Info);
1819}
1820
1821/// \brief Deduce template arguments for a templated conversion
1822/// function (C++ [temp.deduct.conv]) and, if successful, produce a
1823/// conversion function template specialization.
1824Sema::TemplateDeductionResult
1825Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1826                              QualType ToType,
1827                              CXXConversionDecl *&Specialization,
1828                              TemplateDeductionInfo &Info) {
1829  CXXConversionDecl *Conv
1830    = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
1831  QualType FromType = Conv->getConversionType();
1832
1833  // Canonicalize the types for deduction.
1834  QualType P = Context.getCanonicalType(FromType);
1835  QualType A = Context.getCanonicalType(ToType);
1836
1837  // C++0x [temp.deduct.conv]p3:
1838  //   If P is a reference type, the type referred to by P is used for
1839  //   type deduction.
1840  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
1841    P = PRef->getPointeeType();
1842
1843  // C++0x [temp.deduct.conv]p3:
1844  //   If A is a reference type, the type referred to by A is used
1845  //   for type deduction.
1846  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
1847    A = ARef->getPointeeType();
1848  // C++ [temp.deduct.conv]p2:
1849  //
1850  //   If A is not a reference type:
1851  else {
1852    assert(!A->isReferenceType() && "Reference types were handled above");
1853
1854    //   - If P is an array type, the pointer type produced by the
1855    //     array-to-pointer standard conversion (4.2) is used in place
1856    //     of P for type deduction; otherwise,
1857    if (P->isArrayType())
1858      P = Context.getArrayDecayedType(P);
1859    //   - If P is a function type, the pointer type produced by the
1860    //     function-to-pointer standard conversion (4.3) is used in
1861    //     place of P for type deduction; otherwise,
1862    else if (P->isFunctionType())
1863      P = Context.getPointerType(P);
1864    //   - If P is a cv-qualified type, the top level cv-qualifiers of
1865    //     P’s type are ignored for type deduction.
1866    else
1867      P = P.getUnqualifiedType();
1868
1869    // C++0x [temp.deduct.conv]p3:
1870    //   If A is a cv-qualified type, the top level cv-qualifiers of A’s
1871    //   type are ignored for type deduction.
1872    A = A.getUnqualifiedType();
1873  }
1874
1875  // Template argument deduction for function templates in a SFINAE context.
1876  // Trap any errors that might occur.
1877  SFINAETrap Trap(*this);
1878
1879  // C++ [temp.deduct.conv]p1:
1880  //   Template argument deduction is done by comparing the return
1881  //   type of the template conversion function (call it P) with the
1882  //   type that is required as the result of the conversion (call it
1883  //   A) as described in 14.8.2.4.
1884  TemplateParameterList *TemplateParams
1885    = FunctionTemplate->getTemplateParameters();
1886  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
1887  Deduced.resize(TemplateParams->size());
1888
1889  // C++0x [temp.deduct.conv]p4:
1890  //   In general, the deduction process attempts to find template
1891  //   argument values that will make the deduced A identical to
1892  //   A. However, there are two cases that allow a difference:
1893  unsigned TDF = 0;
1894  //     - If the original A is a reference type, A can be more
1895  //       cv-qualified than the deduced A (i.e., the type referred to
1896  //       by the reference)
1897  if (ToType->isReferenceType())
1898    TDF |= TDF_ParamWithReferenceType;
1899  //     - The deduced A can be another pointer or pointer to member
1900  //       type that can be converted to A via a qualification
1901  //       conversion.
1902  //
1903  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
1904  // both P and A are pointers or member pointers. In this case, we
1905  // just ignore cv-qualifiers completely).
1906  if ((P->isPointerType() && A->isPointerType()) ||
1907      (P->isMemberPointerType() && P->isMemberPointerType()))
1908    TDF |= TDF_IgnoreQualifiers;
1909  if (TemplateDeductionResult Result
1910        = ::DeduceTemplateArguments(*this, TemplateParams,
1911                                    P, A, Info, Deduced, TDF))
1912    return Result;
1913
1914  // FIXME: we need to check that the deduced A is the same as A,
1915  // modulo the various allowed differences.
1916
1917  // Finish template argument deduction.
1918  Sema::LocalInstantiationScope InstScope(*this);
1919  FunctionDecl *Spec = 0;
1920  TemplateDeductionResult Result
1921    = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
1922                                      Info);
1923  Specialization = cast_or_null<CXXConversionDecl>(Spec);
1924  return Result;
1925}
1926
1927/// \brief Deduce template arguments for a function template when there is
1928/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
1929///
1930/// \param FunctionTemplate the function template for which we are performing
1931/// template argument deduction.
1932///
1933/// \param ExplicitTemplateArguments the explicitly-specified template
1934/// arguments.
1935///
1936/// \param Specialization if template argument deduction was successful,
1937/// this will be set to the function template specialization produced by
1938/// template argument deduction.
1939///
1940/// \param Info the argument will be updated to provide additional information
1941/// about template argument deduction.
1942///
1943/// \returns the result of template argument deduction.
1944Sema::TemplateDeductionResult
1945Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
1946                           const TemplateArgumentListInfo *ExplicitTemplateArgs,
1947                              FunctionDecl *&Specialization,
1948                              TemplateDeductionInfo &Info) {
1949  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
1950                                 QualType(), Specialization, Info);
1951}
1952
1953/// \brief Stores the result of comparing the qualifiers of two types.
1954enum DeductionQualifierComparison {
1955  NeitherMoreQualified = 0,
1956  ParamMoreQualified,
1957  ArgMoreQualified
1958};
1959
1960/// \brief Deduce the template arguments during partial ordering by comparing
1961/// the parameter type and the argument type (C++0x [temp.deduct.partial]).
1962///
1963/// \param S the semantic analysis object within which we are deducing
1964///
1965/// \param TemplateParams the template parameters that we are deducing
1966///
1967/// \param ParamIn the parameter type
1968///
1969/// \param ArgIn the argument type
1970///
1971/// \param Info information about the template argument deduction itself
1972///
1973/// \param Deduced the deduced template arguments
1974///
1975/// \returns the result of template argument deduction so far. Note that a
1976/// "success" result means that template argument deduction has not yet failed,
1977/// but it may still fail, later, for other reasons.
1978static Sema::TemplateDeductionResult
1979DeduceTemplateArgumentsDuringPartialOrdering(Sema &S,
1980                                        TemplateParameterList *TemplateParams,
1981                                             QualType ParamIn, QualType ArgIn,
1982                                             Sema::TemplateDeductionInfo &Info,
1983                      llvm::SmallVectorImpl<DeducedTemplateArgument> &Deduced,
1984   llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
1985  CanQualType Param = S.Context.getCanonicalType(ParamIn);
1986  CanQualType Arg = S.Context.getCanonicalType(ArgIn);
1987
1988  // C++0x [temp.deduct.partial]p5:
1989  //   Before the partial ordering is done, certain transformations are
1990  //   performed on the types used for partial ordering:
1991  //     - If P is a reference type, P is replaced by the type referred to.
1992  CanQual<ReferenceType> ParamRef = Param->getAs<ReferenceType>();
1993  if (!ParamRef.isNull())
1994    Param = ParamRef->getPointeeType();
1995
1996  //     - If A is a reference type, A is replaced by the type referred to.
1997  CanQual<ReferenceType> ArgRef = Arg->getAs<ReferenceType>();
1998  if (!ArgRef.isNull())
1999    Arg = ArgRef->getPointeeType();
2000
2001  if (QualifierComparisons && !ParamRef.isNull() && !ArgRef.isNull()) {
2002    // C++0x [temp.deduct.partial]p6:
2003    //   If both P and A were reference types (before being replaced with the
2004    //   type referred to above), determine which of the two types (if any) is
2005    //   more cv-qualified than the other; otherwise the types are considered to
2006    //   be equally cv-qualified for partial ordering purposes. The result of this
2007    //   determination will be used below.
2008    //
2009    // We save this information for later, using it only when deduction
2010    // succeeds in both directions.
2011    DeductionQualifierComparison QualifierResult = NeitherMoreQualified;
2012    if (Param.isMoreQualifiedThan(Arg))
2013      QualifierResult = ParamMoreQualified;
2014    else if (Arg.isMoreQualifiedThan(Param))
2015      QualifierResult = ArgMoreQualified;
2016    QualifierComparisons->push_back(QualifierResult);
2017  }
2018
2019  // C++0x [temp.deduct.partial]p7:
2020  //   Remove any top-level cv-qualifiers:
2021  //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
2022  //       version of P.
2023  Param = Param.getUnqualifiedType();
2024  //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
2025  //       version of A.
2026  Arg = Arg.getUnqualifiedType();
2027
2028  // C++0x [temp.deduct.partial]p8:
2029  //   Using the resulting types P and A the deduction is then done as
2030  //   described in 14.9.2.5. If deduction succeeds for a given type, the type
2031  //   from the argument template is considered to be at least as specialized
2032  //   as the type from the parameter template.
2033  return DeduceTemplateArguments(S, TemplateParams, Param, Arg, Info,
2034                                 Deduced, TDF_None);
2035}
2036
2037static void
2038MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
2039                           bool OnlyDeduced,
2040                           unsigned Level,
2041                           llvm::SmallVectorImpl<bool> &Deduced);
2042
2043/// \brief Determine whether the function template \p FT1 is at least as
2044/// specialized as \p FT2.
2045static bool isAtLeastAsSpecializedAs(Sema &S,
2046                                     SourceLocation Loc,
2047                                     FunctionTemplateDecl *FT1,
2048                                     FunctionTemplateDecl *FT2,
2049                                     TemplatePartialOrderingContext TPOC,
2050    llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
2051  FunctionDecl *FD1 = FT1->getTemplatedDecl();
2052  FunctionDecl *FD2 = FT2->getTemplatedDecl();
2053  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
2054  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
2055
2056  assert(Proto1 && Proto2 && "Function templates must have prototypes");
2057  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
2058  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2059  Deduced.resize(TemplateParams->size());
2060
2061  // C++0x [temp.deduct.partial]p3:
2062  //   The types used to determine the ordering depend on the context in which
2063  //   the partial ordering is done:
2064  Sema::TemplateDeductionInfo Info(S.Context, Loc);
2065  switch (TPOC) {
2066  case TPOC_Call: {
2067    //   - In the context of a function call, the function parameter types are
2068    //     used.
2069    unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
2070    for (unsigned I = 0; I != NumParams; ++I)
2071      if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2072                                                       TemplateParams,
2073                                                       Proto2->getArgType(I),
2074                                                       Proto1->getArgType(I),
2075                                                       Info,
2076                                                       Deduced,
2077                                                       QualifierComparisons))
2078        return false;
2079
2080    break;
2081  }
2082
2083  case TPOC_Conversion:
2084    //   - In the context of a call to a conversion operator, the return types
2085    //     of the conversion function templates are used.
2086    if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2087                                                     TemplateParams,
2088                                                     Proto2->getResultType(),
2089                                                     Proto1->getResultType(),
2090                                                     Info,
2091                                                     Deduced,
2092                                                     QualifierComparisons))
2093      return false;
2094    break;
2095
2096  case TPOC_Other:
2097    //   - In other contexts (14.6.6.2) the function template’s function type
2098    //     is used.
2099    if (DeduceTemplateArgumentsDuringPartialOrdering(S,
2100                                                     TemplateParams,
2101                                                     FD2->getType(),
2102                                                     FD1->getType(),
2103                                                     Info,
2104                                                     Deduced,
2105                                                     QualifierComparisons))
2106      return false;
2107    break;
2108  }
2109
2110  // C++0x [temp.deduct.partial]p11:
2111  //   In most cases, all template parameters must have values in order for
2112  //   deduction to succeed, but for partial ordering purposes a template
2113  //   parameter may remain without a value provided it is not used in the
2114  //   types being used for partial ordering. [ Note: a template parameter used
2115  //   in a non-deduced context is considered used. -end note]
2116  unsigned ArgIdx = 0, NumArgs = Deduced.size();
2117  for (; ArgIdx != NumArgs; ++ArgIdx)
2118    if (Deduced[ArgIdx].isNull())
2119      break;
2120
2121  if (ArgIdx == NumArgs) {
2122    // All template arguments were deduced. FT1 is at least as specialized
2123    // as FT2.
2124    return true;
2125  }
2126
2127  // Figure out which template parameters were used.
2128  llvm::SmallVector<bool, 4> UsedParameters;
2129  UsedParameters.resize(TemplateParams->size());
2130  switch (TPOC) {
2131  case TPOC_Call: {
2132    unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
2133    for (unsigned I = 0; I != NumParams; ++I)
2134      ::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false,
2135                                   TemplateParams->getDepth(),
2136                                   UsedParameters);
2137    break;
2138  }
2139
2140  case TPOC_Conversion:
2141    ::MarkUsedTemplateParameters(S, Proto2->getResultType(), false,
2142                                 TemplateParams->getDepth(),
2143                                 UsedParameters);
2144    break;
2145
2146  case TPOC_Other:
2147    ::MarkUsedTemplateParameters(S, FD2->getType(), false,
2148                                 TemplateParams->getDepth(),
2149                                 UsedParameters);
2150    break;
2151  }
2152
2153  for (; ArgIdx != NumArgs; ++ArgIdx)
2154    // If this argument had no value deduced but was used in one of the types
2155    // used for partial ordering, then deduction fails.
2156    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
2157      return false;
2158
2159  return true;
2160}
2161
2162
2163/// \brief Returns the more specialized function template according
2164/// to the rules of function template partial ordering (C++ [temp.func.order]).
2165///
2166/// \param FT1 the first function template
2167///
2168/// \param FT2 the second function template
2169///
2170/// \param TPOC the context in which we are performing partial ordering of
2171/// function templates.
2172///
2173/// \returns the more specialized function template. If neither
2174/// template is more specialized, returns NULL.
2175FunctionTemplateDecl *
2176Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
2177                                 FunctionTemplateDecl *FT2,
2178                                 SourceLocation Loc,
2179                                 TemplatePartialOrderingContext TPOC) {
2180  llvm::SmallVector<DeductionQualifierComparison, 4> QualifierComparisons;
2181  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 0);
2182  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
2183                                          &QualifierComparisons);
2184
2185  if (Better1 != Better2) // We have a clear winner
2186    return Better1? FT1 : FT2;
2187
2188  if (!Better1 && !Better2) // Neither is better than the other
2189    return 0;
2190
2191
2192  // C++0x [temp.deduct.partial]p10:
2193  //   If for each type being considered a given template is at least as
2194  //   specialized for all types and more specialized for some set of types and
2195  //   the other template is not more specialized for any types or is not at
2196  //   least as specialized for any types, then the given template is more
2197  //   specialized than the other template. Otherwise, neither template is more
2198  //   specialized than the other.
2199  Better1 = false;
2200  Better2 = false;
2201  for (unsigned I = 0, N = QualifierComparisons.size(); I != N; ++I) {
2202    // C++0x [temp.deduct.partial]p9:
2203    //   If, for a given type, deduction succeeds in both directions (i.e., the
2204    //   types are identical after the transformations above) and if the type
2205    //   from the argument template is more cv-qualified than the type from the
2206    //   parameter template (as described above) that type is considered to be
2207    //   more specialized than the other. If neither type is more cv-qualified
2208    //   than the other then neither type is more specialized than the other.
2209    switch (QualifierComparisons[I]) {
2210      case NeitherMoreQualified:
2211        break;
2212
2213      case ParamMoreQualified:
2214        Better1 = true;
2215        if (Better2)
2216          return 0;
2217        break;
2218
2219      case ArgMoreQualified:
2220        Better2 = true;
2221        if (Better1)
2222          return 0;
2223        break;
2224    }
2225  }
2226
2227  assert(!(Better1 && Better2) && "Should have broken out in the loop above");
2228  if (Better1)
2229    return FT1;
2230  else if (Better2)
2231    return FT2;
2232  else
2233    return 0;
2234}
2235
2236/// \brief Determine if the two templates are equivalent.
2237static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
2238  if (T1 == T2)
2239    return true;
2240
2241  if (!T1 || !T2)
2242    return false;
2243
2244  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
2245}
2246
2247/// \brief Retrieve the most specialized of the given function template
2248/// specializations.
2249///
2250/// \param SpecBegin the start iterator of the function template
2251/// specializations that we will be comparing.
2252///
2253/// \param SpecEnd the end iterator of the function template
2254/// specializations, paired with \p SpecBegin.
2255///
2256/// \param TPOC the partial ordering context to use to compare the function
2257/// template specializations.
2258///
2259/// \param Loc the location where the ambiguity or no-specializations
2260/// diagnostic should occur.
2261///
2262/// \param NoneDiag partial diagnostic used to diagnose cases where there are
2263/// no matching candidates.
2264///
2265/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
2266/// occurs.
2267///
2268/// \param CandidateDiag partial diagnostic used for each function template
2269/// specialization that is a candidate in the ambiguous ordering. One parameter
2270/// in this diagnostic should be unbound, which will correspond to the string
2271/// describing the template arguments for the function template specialization.
2272///
2273/// \param Index if non-NULL and the result of this function is non-nULL,
2274/// receives the index corresponding to the resulting function template
2275/// specialization.
2276///
2277/// \returns the most specialized function template specialization, if
2278/// found. Otherwise, returns SpecEnd.
2279///
2280/// \todo FIXME: Consider passing in the "also-ran" candidates that failed
2281/// template argument deduction.
2282UnresolvedSetIterator
2283Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
2284                         UnresolvedSetIterator SpecEnd,
2285                         TemplatePartialOrderingContext TPOC,
2286                         SourceLocation Loc,
2287                         const PartialDiagnostic &NoneDiag,
2288                         const PartialDiagnostic &AmbigDiag,
2289                         const PartialDiagnostic &CandidateDiag) {
2290  if (SpecBegin == SpecEnd) {
2291    Diag(Loc, NoneDiag);
2292    return SpecEnd;
2293  }
2294
2295  if (SpecBegin + 1 == SpecEnd)
2296    return SpecBegin;
2297
2298  // Find the function template that is better than all of the templates it
2299  // has been compared to.
2300  UnresolvedSetIterator Best = SpecBegin;
2301  FunctionTemplateDecl *BestTemplate
2302    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
2303  assert(BestTemplate && "Not a function template specialization?");
2304  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
2305    FunctionTemplateDecl *Challenger
2306      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2307    assert(Challenger && "Not a function template specialization?");
2308    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2309                                                  Loc, TPOC),
2310                       Challenger)) {
2311      Best = I;
2312      BestTemplate = Challenger;
2313    }
2314  }
2315
2316  // Make sure that the "best" function template is more specialized than all
2317  // of the others.
2318  bool Ambiguous = false;
2319  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
2320    FunctionTemplateDecl *Challenger
2321      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
2322    if (I != Best &&
2323        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
2324                                                   Loc, TPOC),
2325                        BestTemplate)) {
2326      Ambiguous = true;
2327      break;
2328    }
2329  }
2330
2331  if (!Ambiguous) {
2332    // We found an answer. Return it.
2333    return Best;
2334  }
2335
2336  // Diagnose the ambiguity.
2337  Diag(Loc, AmbigDiag);
2338
2339  // FIXME: Can we order the candidates in some sane way?
2340  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I)
2341    Diag((*I)->getLocation(), CandidateDiag)
2342      << getTemplateArgumentBindingsText(
2343        cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
2344                    *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
2345
2346  return SpecEnd;
2347}
2348
2349/// \brief Returns the more specialized class template partial specialization
2350/// according to the rules of partial ordering of class template partial
2351/// specializations (C++ [temp.class.order]).
2352///
2353/// \param PS1 the first class template partial specialization
2354///
2355/// \param PS2 the second class template partial specialization
2356///
2357/// \returns the more specialized class template partial specialization. If
2358/// neither partial specialization is more specialized, returns NULL.
2359ClassTemplatePartialSpecializationDecl *
2360Sema::getMoreSpecializedPartialSpecialization(
2361                                  ClassTemplatePartialSpecializationDecl *PS1,
2362                                  ClassTemplatePartialSpecializationDecl *PS2,
2363                                              SourceLocation Loc) {
2364  // C++ [temp.class.order]p1:
2365  //   For two class template partial specializations, the first is at least as
2366  //   specialized as the second if, given the following rewrite to two
2367  //   function templates, the first function template is at least as
2368  //   specialized as the second according to the ordering rules for function
2369  //   templates (14.6.6.2):
2370  //     - the first function template has the same template parameters as the
2371  //       first partial specialization and has a single function parameter
2372  //       whose type is a class template specialization with the template
2373  //       arguments of the first partial specialization, and
2374  //     - the second function template has the same template parameters as the
2375  //       second partial specialization and has a single function parameter
2376  //       whose type is a class template specialization with the template
2377  //       arguments of the second partial specialization.
2378  //
2379  // Rather than synthesize function templates, we merely perform the
2380  // equivalent partial ordering by performing deduction directly on
2381  // the template arguments of the class template partial
2382  // specializations. This computation is slightly simpler than the
2383  // general problem of function template partial ordering, because
2384  // class template partial specializations are more constrained. We
2385  // know that every template parameter is deducible from the class
2386  // template partial specialization's template arguments, for
2387  // example.
2388  llvm::SmallVector<DeducedTemplateArgument, 4> Deduced;
2389  Sema::TemplateDeductionInfo Info(Context, Loc);
2390
2391  QualType PT1 = PS1->getInjectedSpecializationType();
2392  QualType PT2 = PS2->getInjectedSpecializationType();
2393
2394  // Determine whether PS1 is at least as specialized as PS2
2395  Deduced.resize(PS2->getTemplateParameters()->size());
2396  bool Better1 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2397                                                  PS2->getTemplateParameters(),
2398                                                               PT2,
2399                                                               PT1,
2400                                                               Info,
2401                                                               Deduced,
2402                                                               0);
2403  if (Better1)
2404    Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
2405                                                 PS1->getTemplateArgs(),
2406                                                 Deduced, Info);
2407
2408  // Determine whether PS2 is at least as specialized as PS1
2409  Deduced.clear();
2410  Deduced.resize(PS1->getTemplateParameters()->size());
2411  bool Better2 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
2412                                                  PS1->getTemplateParameters(),
2413                                                               PT1,
2414                                                               PT2,
2415                                                               Info,
2416                                                               Deduced,
2417                                                               0);
2418  if (Better2)
2419    Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
2420                                                 PS2->getTemplateArgs(),
2421                                                 Deduced, Info);
2422
2423  if (Better1 == Better2)
2424    return 0;
2425
2426  return Better1? PS1 : PS2;
2427}
2428
2429static void
2430MarkUsedTemplateParameters(Sema &SemaRef,
2431                           const TemplateArgument &TemplateArg,
2432                           bool OnlyDeduced,
2433                           unsigned Depth,
2434                           llvm::SmallVectorImpl<bool> &Used);
2435
2436/// \brief Mark the template parameters that are used by the given
2437/// expression.
2438static void
2439MarkUsedTemplateParameters(Sema &SemaRef,
2440                           const Expr *E,
2441                           bool OnlyDeduced,
2442                           unsigned Depth,
2443                           llvm::SmallVectorImpl<bool> &Used) {
2444  // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
2445  // find other occurrences of template parameters.
2446  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
2447  if (!DRE)
2448    return;
2449
2450  const NonTypeTemplateParmDecl *NTTP
2451    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2452  if (!NTTP)
2453    return;
2454
2455  if (NTTP->getDepth() == Depth)
2456    Used[NTTP->getIndex()] = true;
2457}
2458
2459/// \brief Mark the template parameters that are used by the given
2460/// nested name specifier.
2461static void
2462MarkUsedTemplateParameters(Sema &SemaRef,
2463                           NestedNameSpecifier *NNS,
2464                           bool OnlyDeduced,
2465                           unsigned Depth,
2466                           llvm::SmallVectorImpl<bool> &Used) {
2467  if (!NNS)
2468    return;
2469
2470  MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth,
2471                             Used);
2472  MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0),
2473                             OnlyDeduced, Depth, Used);
2474}
2475
2476/// \brief Mark the template parameters that are used by the given
2477/// template name.
2478static void
2479MarkUsedTemplateParameters(Sema &SemaRef,
2480                           TemplateName Name,
2481                           bool OnlyDeduced,
2482                           unsigned Depth,
2483                           llvm::SmallVectorImpl<bool> &Used) {
2484  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2485    if (TemplateTemplateParmDecl *TTP
2486          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
2487      if (TTP->getDepth() == Depth)
2488        Used[TTP->getIndex()] = true;
2489    }
2490    return;
2491  }
2492
2493  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
2494    MarkUsedTemplateParameters(SemaRef, QTN->getQualifier(), OnlyDeduced,
2495                               Depth, Used);
2496  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
2497    MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced,
2498                               Depth, Used);
2499}
2500
2501/// \brief Mark the template parameters that are used by the given
2502/// type.
2503static void
2504MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
2505                           bool OnlyDeduced,
2506                           unsigned Depth,
2507                           llvm::SmallVectorImpl<bool> &Used) {
2508  if (T.isNull())
2509    return;
2510
2511  // Non-dependent types have nothing deducible
2512  if (!T->isDependentType())
2513    return;
2514
2515  T = SemaRef.Context.getCanonicalType(T);
2516  switch (T->getTypeClass()) {
2517  case Type::Pointer:
2518    MarkUsedTemplateParameters(SemaRef,
2519                               cast<PointerType>(T)->getPointeeType(),
2520                               OnlyDeduced,
2521                               Depth,
2522                               Used);
2523    break;
2524
2525  case Type::BlockPointer:
2526    MarkUsedTemplateParameters(SemaRef,
2527                               cast<BlockPointerType>(T)->getPointeeType(),
2528                               OnlyDeduced,
2529                               Depth,
2530                               Used);
2531    break;
2532
2533  case Type::LValueReference:
2534  case Type::RValueReference:
2535    MarkUsedTemplateParameters(SemaRef,
2536                               cast<ReferenceType>(T)->getPointeeType(),
2537                               OnlyDeduced,
2538                               Depth,
2539                               Used);
2540    break;
2541
2542  case Type::MemberPointer: {
2543    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
2544    MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced,
2545                               Depth, Used);
2546    MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
2547                               OnlyDeduced, Depth, Used);
2548    break;
2549  }
2550
2551  case Type::DependentSizedArray:
2552    MarkUsedTemplateParameters(SemaRef,
2553                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
2554                               OnlyDeduced, Depth, Used);
2555    // Fall through to check the element type
2556
2557  case Type::ConstantArray:
2558  case Type::IncompleteArray:
2559    MarkUsedTemplateParameters(SemaRef,
2560                               cast<ArrayType>(T)->getElementType(),
2561                               OnlyDeduced, Depth, Used);
2562    break;
2563
2564  case Type::Vector:
2565  case Type::ExtVector:
2566    MarkUsedTemplateParameters(SemaRef,
2567                               cast<VectorType>(T)->getElementType(),
2568                               OnlyDeduced, Depth, Used);
2569    break;
2570
2571  case Type::DependentSizedExtVector: {
2572    const DependentSizedExtVectorType *VecType
2573      = cast<DependentSizedExtVectorType>(T);
2574    MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced,
2575                               Depth, Used);
2576    MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced,
2577                               Depth, Used);
2578    break;
2579  }
2580
2581  case Type::FunctionProto: {
2582    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2583    MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced,
2584                               Depth, Used);
2585    for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
2586      MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced,
2587                                 Depth, Used);
2588    break;
2589  }
2590
2591  case Type::TemplateTypeParm: {
2592    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
2593    if (TTP->getDepth() == Depth)
2594      Used[TTP->getIndex()] = true;
2595    break;
2596  }
2597
2598  case Type::InjectedClassName:
2599    T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
2600    // fall through
2601
2602  case Type::TemplateSpecialization: {
2603    const TemplateSpecializationType *Spec
2604      = cast<TemplateSpecializationType>(T);
2605    MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced,
2606                               Depth, Used);
2607    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
2608      MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
2609                                 Used);
2610    break;
2611  }
2612
2613  case Type::Complex:
2614    if (!OnlyDeduced)
2615      MarkUsedTemplateParameters(SemaRef,
2616                                 cast<ComplexType>(T)->getElementType(),
2617                                 OnlyDeduced, Depth, Used);
2618    break;
2619
2620  case Type::DependentName:
2621    if (!OnlyDeduced)
2622      MarkUsedTemplateParameters(SemaRef,
2623                                 cast<DependentNameType>(T)->getQualifier(),
2624                                 OnlyDeduced, Depth, Used);
2625    break;
2626
2627  case Type::DependentTemplateSpecialization: {
2628    const DependentTemplateSpecializationType *Spec
2629      = cast<DependentTemplateSpecializationType>(T);
2630    if (!OnlyDeduced)
2631      MarkUsedTemplateParameters(SemaRef, Spec->getQualifier(),
2632                                 OnlyDeduced, Depth, Used);
2633    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
2634      MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
2635                                 Used);
2636    break;
2637  }
2638
2639  case Type::TypeOf:
2640    if (!OnlyDeduced)
2641      MarkUsedTemplateParameters(SemaRef,
2642                                 cast<TypeOfType>(T)->getUnderlyingType(),
2643                                 OnlyDeduced, Depth, Used);
2644    break;
2645
2646  case Type::TypeOfExpr:
2647    if (!OnlyDeduced)
2648      MarkUsedTemplateParameters(SemaRef,
2649                                 cast<TypeOfExprType>(T)->getUnderlyingExpr(),
2650                                 OnlyDeduced, Depth, Used);
2651    break;
2652
2653  case Type::Decltype:
2654    if (!OnlyDeduced)
2655      MarkUsedTemplateParameters(SemaRef,
2656                                 cast<DecltypeType>(T)->getUnderlyingExpr(),
2657                                 OnlyDeduced, Depth, Used);
2658    break;
2659
2660  // None of these types have any template parameters in them.
2661  case Type::Builtin:
2662  case Type::VariableArray:
2663  case Type::FunctionNoProto:
2664  case Type::Record:
2665  case Type::Enum:
2666  case Type::ObjCInterface:
2667  case Type::ObjCObject:
2668  case Type::ObjCObjectPointer:
2669  case Type::UnresolvedUsing:
2670#define TYPE(Class, Base)
2671#define ABSTRACT_TYPE(Class, Base)
2672#define DEPENDENT_TYPE(Class, Base)
2673#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2674#include "clang/AST/TypeNodes.def"
2675    break;
2676  }
2677}
2678
2679/// \brief Mark the template parameters that are used by this
2680/// template argument.
2681static void
2682MarkUsedTemplateParameters(Sema &SemaRef,
2683                           const TemplateArgument &TemplateArg,
2684                           bool OnlyDeduced,
2685                           unsigned Depth,
2686                           llvm::SmallVectorImpl<bool> &Used) {
2687  switch (TemplateArg.getKind()) {
2688  case TemplateArgument::Null:
2689  case TemplateArgument::Integral:
2690    case TemplateArgument::Declaration:
2691    break;
2692
2693  case TemplateArgument::Type:
2694    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced,
2695                               Depth, Used);
2696    break;
2697
2698  case TemplateArgument::Template:
2699    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsTemplate(),
2700                               OnlyDeduced, Depth, Used);
2701    break;
2702
2703  case TemplateArgument::Expression:
2704    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced,
2705                               Depth, Used);
2706    break;
2707
2708  case TemplateArgument::Pack:
2709    for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
2710                                      PEnd = TemplateArg.pack_end();
2711         P != PEnd; ++P)
2712      MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used);
2713    break;
2714  }
2715}
2716
2717/// \brief Mark the template parameters can be deduced by the given
2718/// template argument list.
2719///
2720/// \param TemplateArgs the template argument list from which template
2721/// parameters will be deduced.
2722///
2723/// \param Deduced a bit vector whose elements will be set to \c true
2724/// to indicate when the corresponding template parameter will be
2725/// deduced.
2726void
2727Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
2728                                 bool OnlyDeduced, unsigned Depth,
2729                                 llvm::SmallVectorImpl<bool> &Used) {
2730  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2731    ::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced,
2732                                 Depth, Used);
2733}
2734
2735/// \brief Marks all of the template parameters that will be deduced by a
2736/// call to the given function template.
2737void
2738Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate,
2739                                    llvm::SmallVectorImpl<bool> &Deduced) {
2740  TemplateParameterList *TemplateParams
2741    = FunctionTemplate->getTemplateParameters();
2742  Deduced.clear();
2743  Deduced.resize(TemplateParams->size());
2744
2745  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
2746  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
2747    ::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(),
2748                                 true, TemplateParams->getDepth(), Deduced);
2749}
2750