SemaTemplateDeduction.cpp revision f67875d5addf36b951ad37fb04509ab2b572c88a
1//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//===----------------------------------------------------------------------===/
8//
9//  This file implements C++ template argument deduction.
10//
11//===----------------------------------------------------------------------===/
12
13#include "Sema.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclTemplate.h"
16#include "clang/AST/StmtVisitor.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/Parse/DeclSpec.h"
20#include "llvm/Support/Compiler.h"
21using namespace clang;
22
23static Sema::TemplateDeductionResult
24DeduceTemplateArguments(ASTContext &Context,
25                        TemplateParameterList *TemplateParams,
26                        const TemplateArgument &Param,
27                        const TemplateArgument &Arg,
28                        Sema::TemplateDeductionInfo &Info,
29                        llvm::SmallVectorImpl<TemplateArgument> &Deduced);
30
31/// \brief If the given expression is of a form that permits the deduction
32/// of a non-type template parameter, return the declaration of that
33/// non-type template parameter.
34static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
35  if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
36    E = IC->getSubExpr();
37
38  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
39    return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
40
41  return 0;
42}
43
44/// \brief Deduce the value of the given non-type template parameter
45/// from the given constant.
46static Sema::TemplateDeductionResult
47DeduceNonTypeTemplateArgument(ASTContext &Context,
48                              NonTypeTemplateParmDecl *NTTP,
49                              llvm::APInt Value,
50                              Sema::TemplateDeductionInfo &Info,
51                              llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
52  assert(NTTP->getDepth() == 0 &&
53         "Cannot deduce non-type template argument with depth > 0");
54
55  if (Deduced[NTTP->getIndex()].isNull()) {
56    Deduced[NTTP->getIndex()] = TemplateArgument(SourceLocation(),
57                                                 llvm::APSInt(Value),
58                                                 NTTP->getType());
59    return Sema::TDK_Success;
60  }
61
62  assert(Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral);
63
64  // If the template argument was previously deduced to a negative value,
65  // then our deduction fails.
66  const llvm::APSInt *PrevValuePtr = Deduced[NTTP->getIndex()].getAsIntegral();
67  if (PrevValuePtr->isSigned() && PrevValuePtr->isNegative()) {
68    // FIXME: This is wacky; we should be dealing with APSInts and
69    // checking the actual signs.
70    Info.Param = NTTP;
71    Info.FirstArg = Deduced[NTTP->getIndex()];
72    Info.SecondArg = TemplateArgument(SourceLocation(),
73                                      llvm::APSInt(Value),
74                                      NTTP->getType());
75    return Sema::TDK_Inconsistent;
76  }
77
78  llvm::APInt PrevValue = *PrevValuePtr;
79  if (Value.getBitWidth() > PrevValue.getBitWidth())
80    PrevValue.zext(Value.getBitWidth());
81  else if (Value.getBitWidth() < PrevValue.getBitWidth())
82    Value.zext(PrevValue.getBitWidth());
83
84  if (Value != PrevValue) {
85    Info.Param = NTTP;
86    Info.FirstArg = Deduced[NTTP->getIndex()];
87    Info.SecondArg = TemplateArgument(SourceLocation(),
88                                      llvm::APSInt(Value),
89                                      NTTP->getType());
90    return Sema::TDK_Inconsistent;
91  }
92
93  return Sema::TDK_Success;
94}
95
96/// \brief Deduce the value of the given non-type template parameter
97/// from the given type- or value-dependent expression.
98///
99/// \returns true if deduction succeeded, false otherwise.
100
101static Sema::TemplateDeductionResult
102DeduceNonTypeTemplateArgument(ASTContext &Context,
103                              NonTypeTemplateParmDecl *NTTP,
104                              Expr *Value,
105                              Sema::TemplateDeductionInfo &Info,
106                           llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
107  assert(NTTP->getDepth() == 0 &&
108         "Cannot deduce non-type template argument with depth > 0");
109  assert((Value->isTypeDependent() || Value->isValueDependent()) &&
110         "Expression template argument must be type- or value-dependent.");
111
112  if (Deduced[NTTP->getIndex()].isNull()) {
113    // FIXME: Clone the Value?
114    Deduced[NTTP->getIndex()] = TemplateArgument(Value);
115    return Sema::TDK_Success;
116  }
117
118  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral) {
119    // Okay, we deduced a constant in one case and a dependent expression
120    // in another case. FIXME: Later, we will check that instantiating the
121    // dependent expression gives us the constant value.
122    return Sema::TDK_Success;
123  }
124
125  // FIXME: Compare the expressions for equality!
126  return Sema::TDK_Success;
127}
128
129static Sema::TemplateDeductionResult
130DeduceTemplateArguments(ASTContext &Context,
131                        TemplateName Param,
132                        TemplateName Arg,
133                        Sema::TemplateDeductionInfo &Info,
134                        llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
135  // FIXME: Implement template argument deduction for template
136  // template parameters.
137
138  // FIXME: this routine does not have enough information to produce
139  // good diagnostics.
140
141  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
142  TemplateDecl *ArgDecl = Arg.getAsTemplateDecl();
143
144  if (!ParamDecl || !ArgDecl) {
145    // FIXME: fill in Info.Param/Info.FirstArg
146    return Sema::TDK_Inconsistent;
147  }
148
149  ParamDecl = cast<TemplateDecl>(Context.getCanonicalDecl(ParamDecl));
150  ArgDecl = cast<TemplateDecl>(Context.getCanonicalDecl(ArgDecl));
151  if (ParamDecl != ArgDecl) {
152    // FIXME: fill in Info.Param/Info.FirstArg
153    return Sema::TDK_Inconsistent;
154  }
155
156  return Sema::TDK_Success;
157}
158
159static Sema::TemplateDeductionResult
160DeduceTemplateArguments(ASTContext &Context,
161                        TemplateParameterList *TemplateParams,
162                        QualType ParamIn, QualType ArgIn,
163                        Sema::TemplateDeductionInfo &Info,
164                        llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
165  // We only want to look at the canonical types, since typedefs and
166  // sugar are not part of template argument deduction.
167  QualType Param = Context.getCanonicalType(ParamIn);
168  QualType Arg = Context.getCanonicalType(ArgIn);
169
170  // If the parameter type is not dependent, just compare the types
171  // directly.
172  if (!Param->isDependentType()) {
173    if (Param == Arg)
174      return Sema::TDK_Success;
175
176    Info.FirstArg = TemplateArgument(SourceLocation(), ParamIn);
177    Info.SecondArg = TemplateArgument(SourceLocation(), ArgIn);
178    return Sema::TDK_NonDeducedMismatch;
179  }
180
181  // C++ [temp.deduct.type]p9:
182  //   A template type argument T, a template template argument TT or a
183  //   template non-type argument i can be deduced if P and A have one of
184  //   the following forms:
185  //
186  //     T
187  //     cv-list T
188  if (const TemplateTypeParmType *TemplateTypeParm
189        = Param->getAsTemplateTypeParmType()) {
190    unsigned Index = TemplateTypeParm->getIndex();
191
192    // The argument type can not be less qualified than the parameter
193    // type.
194    if (Param.isMoreQualifiedThan(Arg)) {
195      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
196      Info.FirstArg = Deduced[Index];
197      Info.SecondArg = TemplateArgument(SourceLocation(), Arg);
198      return Sema::TDK_InconsistentQuals;
199    }
200
201    assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
202
203    unsigned Quals = Arg.getCVRQualifiers() & ~Param.getCVRQualifiers();
204    QualType DeducedType = Arg.getQualifiedType(Quals);
205
206    if (Deduced[Index].isNull())
207      Deduced[Index] = TemplateArgument(SourceLocation(), DeducedType);
208    else {
209      // C++ [temp.deduct.type]p2:
210      //   [...] If type deduction cannot be done for any P/A pair, or if for
211      //   any pair the deduction leads to more than one possible set of
212      //   deduced values, or if different pairs yield different deduced
213      //   values, or if any template argument remains neither deduced nor
214      //   explicitly specified, template argument deduction fails.
215      if (Deduced[Index].getAsType() != DeducedType) {
216        Info.Param
217          = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
218        Info.FirstArg = Deduced[Index];
219        Info.SecondArg = TemplateArgument(SourceLocation(), Arg);
220        return Sema::TDK_Inconsistent;
221      }
222    }
223    return Sema::TDK_Success;
224  }
225
226  // Set up the template argument deduction information for a failure.
227  Info.FirstArg = TemplateArgument(SourceLocation(), ParamIn);
228  Info.SecondArg = TemplateArgument(SourceLocation(), ArgIn);
229
230  if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
231    return Sema::TDK_NonDeducedMismatch;
232
233  switch (Param->getTypeClass()) {
234    // No deduction possible for these types
235    case Type::Builtin:
236      return Sema::TDK_NonDeducedMismatch;
237
238    //     T *
239    case Type::Pointer: {
240      const PointerType *PointerArg = Arg->getAsPointerType();
241      if (!PointerArg)
242        return Sema::TDK_NonDeducedMismatch;
243
244      return DeduceTemplateArguments(Context, TemplateParams,
245                                   cast<PointerType>(Param)->getPointeeType(),
246                                     PointerArg->getPointeeType(),
247                                     Info, Deduced);
248    }
249
250    //     T &
251    case Type::LValueReference: {
252      const LValueReferenceType *ReferenceArg = Arg->getAsLValueReferenceType();
253      if (!ReferenceArg)
254        return Sema::TDK_NonDeducedMismatch;
255
256      return DeduceTemplateArguments(Context, TemplateParams,
257                           cast<LValueReferenceType>(Param)->getPointeeType(),
258                                     ReferenceArg->getPointeeType(),
259                                     Info, Deduced);
260    }
261
262    //     T && [C++0x]
263    case Type::RValueReference: {
264      const RValueReferenceType *ReferenceArg = Arg->getAsRValueReferenceType();
265      if (!ReferenceArg)
266        return Sema::TDK_NonDeducedMismatch;
267
268      return DeduceTemplateArguments(Context, TemplateParams,
269                           cast<RValueReferenceType>(Param)->getPointeeType(),
270                                     ReferenceArg->getPointeeType(),
271                                     Info, Deduced);
272    }
273
274    //     T [] (implied, but not stated explicitly)
275    case Type::IncompleteArray: {
276      const IncompleteArrayType *IncompleteArrayArg =
277        Context.getAsIncompleteArrayType(Arg);
278      if (!IncompleteArrayArg)
279        return Sema::TDK_NonDeducedMismatch;
280
281      return DeduceTemplateArguments(Context, TemplateParams,
282                     Context.getAsIncompleteArrayType(Param)->getElementType(),
283                                     IncompleteArrayArg->getElementType(),
284                                     Info, Deduced);
285    }
286
287    //     T [integer-constant]
288    case Type::ConstantArray: {
289      const ConstantArrayType *ConstantArrayArg =
290        Context.getAsConstantArrayType(Arg);
291      if (!ConstantArrayArg)
292        return Sema::TDK_NonDeducedMismatch;
293
294      const ConstantArrayType *ConstantArrayParm =
295        Context.getAsConstantArrayType(Param);
296      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
297        return Sema::TDK_NonDeducedMismatch;
298
299      return DeduceTemplateArguments(Context, TemplateParams,
300                                     ConstantArrayParm->getElementType(),
301                                     ConstantArrayArg->getElementType(),
302                                     Info, Deduced);
303    }
304
305    //     type [i]
306    case Type::DependentSizedArray: {
307      const ArrayType *ArrayArg = dyn_cast<ArrayType>(Arg);
308      if (!ArrayArg)
309        return Sema::TDK_NonDeducedMismatch;
310
311      // Check the element type of the arrays
312      const DependentSizedArrayType *DependentArrayParm
313        = cast<DependentSizedArrayType>(Param);
314      if (Sema::TemplateDeductionResult Result
315            = DeduceTemplateArguments(Context, TemplateParams,
316                                      DependentArrayParm->getElementType(),
317                                      ArrayArg->getElementType(),
318                                      Info, Deduced))
319        return Result;
320
321      // Determine the array bound is something we can deduce.
322      NonTypeTemplateParmDecl *NTTP
323        = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
324      if (!NTTP)
325        return Sema::TDK_Success;
326
327      // We can perform template argument deduction for the given non-type
328      // template parameter.
329      assert(NTTP->getDepth() == 0 &&
330             "Cannot deduce non-type template argument at depth > 0");
331      if (const ConstantArrayType *ConstantArrayArg
332            = dyn_cast<ConstantArrayType>(ArrayArg))
333        return DeduceNonTypeTemplateArgument(Context, NTTP,
334                                             ConstantArrayArg->getSize(),
335                                             Info, Deduced);
336      if (const DependentSizedArrayType *DependentArrayArg
337            = dyn_cast<DependentSizedArrayType>(ArrayArg))
338        return DeduceNonTypeTemplateArgument(Context, NTTP,
339                                             DependentArrayArg->getSizeExpr(),
340                                             Info, Deduced);
341
342      // Incomplete type does not match a dependently-sized array type
343      return Sema::TDK_NonDeducedMismatch;
344    }
345
346    //     type(*)(T)
347    //     T(*)()
348    //     T(*)(T)
349    case Type::FunctionProto: {
350      const FunctionProtoType *FunctionProtoArg =
351        dyn_cast<FunctionProtoType>(Arg);
352      if (!FunctionProtoArg)
353        return Sema::TDK_NonDeducedMismatch;
354
355      const FunctionProtoType *FunctionProtoParam =
356        cast<FunctionProtoType>(Param);
357
358      if (FunctionProtoParam->getTypeQuals() !=
359          FunctionProtoArg->getTypeQuals())
360        return Sema::TDK_NonDeducedMismatch;
361
362      if (FunctionProtoParam->getNumArgs() != FunctionProtoArg->getNumArgs())
363        return Sema::TDK_NonDeducedMismatch;
364
365      if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
366        return Sema::TDK_NonDeducedMismatch;
367
368      // Check return types.
369      if (Sema::TemplateDeductionResult Result
370            = DeduceTemplateArguments(Context, TemplateParams,
371                                      FunctionProtoParam->getResultType(),
372                                      FunctionProtoArg->getResultType(),
373                                      Info, Deduced))
374        return Result;
375
376      for (unsigned I = 0, N = FunctionProtoParam->getNumArgs(); I != N; ++I) {
377        // Check argument types.
378        if (Sema::TemplateDeductionResult Result
379              = DeduceTemplateArguments(Context, TemplateParams,
380                                        FunctionProtoParam->getArgType(I),
381                                        FunctionProtoArg->getArgType(I),
382                                        Info, Deduced))
383          return Result;
384      }
385
386      return Sema::TDK_Success;
387    }
388
389    //     template-name<T> (wheretemplate-name refers to a class template)
390    //     template-name<i>
391    //     TT<T> (TODO)
392    //     TT<i> (TODO)
393    //     TT<> (TODO)
394    case Type::TemplateSpecialization: {
395      const TemplateSpecializationType *SpecParam
396        = cast<TemplateSpecializationType>(Param);
397
398      // Check whether the template argument is a dependent template-id.
399      // FIXME: This is untested code; it can be tested when we implement
400      // partial ordering of class template partial specializations.
401      if (const TemplateSpecializationType *SpecArg
402            = dyn_cast<TemplateSpecializationType>(Arg)) {
403        // Perform template argument deduction for the template name.
404        if (Sema::TemplateDeductionResult Result
405              = DeduceTemplateArguments(Context,
406                                        SpecParam->getTemplateName(),
407                                        SpecArg->getTemplateName(),
408                                        Info, Deduced))
409          return Result;
410
411        unsigned NumArgs = SpecParam->getNumArgs();
412
413        // FIXME: When one of the template-names refers to a
414        // declaration with default template arguments, do we need to
415        // fill in those default template arguments here? Most likely,
416        // the answer is "yes", but I don't see any references. This
417        // issue may be resolved elsewhere, because we may want to
418        // instantiate default template arguments when
419        if (SpecArg->getNumArgs() != NumArgs)
420          return Sema::TDK_NonDeducedMismatch;
421
422        // Perform template argument deduction on each template
423        // argument.
424        for (unsigned I = 0; I != NumArgs; ++I)
425          if (Sema::TemplateDeductionResult Result
426                = DeduceTemplateArguments(Context, TemplateParams,
427                                          SpecParam->getArg(I),
428                                          SpecArg->getArg(I),
429                                          Info, Deduced))
430            return Result;
431
432        return Sema::TDK_Success;
433      }
434
435      // If the argument type is a class template specialization, we
436      // perform template argument deduction using its template
437      // arguments.
438      const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
439      if (!RecordArg)
440        return Sema::TDK_NonDeducedMismatch;
441
442      ClassTemplateSpecializationDecl *SpecArg
443        = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
444      if (!SpecArg)
445        return Sema::TDK_NonDeducedMismatch;
446
447      // Perform template argument deduction for the template name.
448      if (Sema::TemplateDeductionResult Result
449            = DeduceTemplateArguments(Context,
450                                      SpecParam->getTemplateName(),
451                              TemplateName(SpecArg->getSpecializedTemplate()),
452                                      Info, Deduced))
453          return Result;
454
455      // FIXME: Can the # of arguments in the parameter and the argument differ?
456      unsigned NumArgs = SpecParam->getNumArgs();
457      const TemplateArgumentList &ArgArgs = SpecArg->getTemplateArgs();
458      if (NumArgs != ArgArgs.size())
459        return Sema::TDK_NonDeducedMismatch;
460
461      for (unsigned I = 0; I != NumArgs; ++I)
462        if (Sema::TemplateDeductionResult Result
463              = DeduceTemplateArguments(Context, TemplateParams,
464                                        SpecParam->getArg(I),
465                                        ArgArgs.get(I),
466                                        Info, Deduced))
467          return Result;
468
469      return Sema::TDK_Success;
470    }
471
472    //     T type::*
473    //     T T::*
474    //     T (type::*)()
475    //     type (T::*)()
476    //     type (type::*)(T)
477    //     type (T::*)(T)
478    //     T (type::*)(T)
479    //     T (T::*)()
480    //     T (T::*)(T)
481    case Type::MemberPointer: {
482      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
483      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
484      if (!MemPtrArg)
485        return Sema::TDK_NonDeducedMismatch;
486
487      if (Sema::TemplateDeductionResult Result
488            = DeduceTemplateArguments(Context, TemplateParams,
489                                      MemPtrParam->getPointeeType(),
490                                      MemPtrArg->getPointeeType(),
491                                      Info, Deduced))
492        return Result;
493
494      return DeduceTemplateArguments(Context, TemplateParams,
495                                     QualType(MemPtrParam->getClass(), 0),
496                                     QualType(MemPtrArg->getClass(), 0),
497                                     Info, Deduced);
498    }
499
500    //     type(^)(T)
501    //     T(^)()
502    //     T(^)(T)
503    case Type::BlockPointer: {
504      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
505      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
506
507      if (!BlockPtrArg)
508        return Sema::TDK_NonDeducedMismatch;
509
510      return DeduceTemplateArguments(Context, TemplateParams,
511                                     BlockPtrParam->getPointeeType(),
512                                     BlockPtrArg->getPointeeType(), Info,
513                                     Deduced);
514    }
515
516    case Type::TypeOfExpr:
517    case Type::TypeOf:
518    case Type::Typename:
519      // No template argument deduction for these types
520      return Sema::TDK_Success;
521
522    default:
523      break;
524  }
525
526  // FIXME: Many more cases to go (to go).
527  return Sema::TDK_NonDeducedMismatch;
528}
529
530static Sema::TemplateDeductionResult
531DeduceTemplateArguments(ASTContext &Context,
532                        TemplateParameterList *TemplateParams,
533                        const TemplateArgument &Param,
534                        const TemplateArgument &Arg,
535                        Sema::TemplateDeductionInfo &Info,
536                        llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
537  switch (Param.getKind()) {
538  case TemplateArgument::Null:
539    assert(false && "Null template argument in parameter list");
540    break;
541
542  case TemplateArgument::Type:
543    assert(Arg.getKind() == TemplateArgument::Type && "Type/value mismatch");
544    return DeduceTemplateArguments(Context, TemplateParams,
545                                   Param.getAsType(),
546                                   Arg.getAsType(), Info, Deduced);
547
548  case TemplateArgument::Declaration:
549    // FIXME: Implement this check
550    assert(false && "Unimplemented template argument deduction case");
551    Info.FirstArg = Param;
552    Info.SecondArg = Arg;
553    return Sema::TDK_NonDeducedMismatch;
554
555  case TemplateArgument::Integral:
556    if (Arg.getKind() == TemplateArgument::Integral) {
557      // FIXME: Zero extension + sign checking here?
558      if (*Param.getAsIntegral() == *Arg.getAsIntegral())
559        return Sema::TDK_Success;
560
561      Info.FirstArg = Param;
562      Info.SecondArg = Arg;
563      return Sema::TDK_NonDeducedMismatch;
564    }
565
566    if (Arg.getKind() == TemplateArgument::Expression) {
567      Info.FirstArg = Param;
568      Info.SecondArg = Arg;
569      return Sema::TDK_NonDeducedMismatch;
570    }
571
572    assert(false && "Type/value mismatch");
573    Info.FirstArg = Param;
574    Info.SecondArg = Arg;
575    return Sema::TDK_NonDeducedMismatch;
576
577  case TemplateArgument::Expression: {
578    if (NonTypeTemplateParmDecl *NTTP
579          = getDeducedParameterFromExpr(Param.getAsExpr())) {
580      if (Arg.getKind() == TemplateArgument::Integral)
581        // FIXME: Sign problems here
582        return DeduceNonTypeTemplateArgument(Context, NTTP,
583                                             *Arg.getAsIntegral(),
584                                             Info, Deduced);
585      if (Arg.getKind() == TemplateArgument::Expression)
586        return DeduceNonTypeTemplateArgument(Context, NTTP, Arg.getAsExpr(),
587                                             Info, Deduced);
588
589      assert(false && "Type/value mismatch");
590      Info.FirstArg = Param;
591      Info.SecondArg = Arg;
592      return Sema::TDK_NonDeducedMismatch;
593    }
594
595    // Can't deduce anything, but that's okay.
596    return Sema::TDK_Success;
597  }
598  }
599
600  return Sema::TDK_Success;
601}
602
603static Sema::TemplateDeductionResult
604DeduceTemplateArguments(ASTContext &Context,
605                        TemplateParameterList *TemplateParams,
606                        const TemplateArgumentList &ParamList,
607                        const TemplateArgumentList &ArgList,
608                        Sema::TemplateDeductionInfo &Info,
609                        llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
610  assert(ParamList.size() == ArgList.size());
611  for (unsigned I = 0, N = ParamList.size(); I != N; ++I) {
612    if (Sema::TemplateDeductionResult Result
613          = DeduceTemplateArguments(Context, TemplateParams,
614                                    ParamList[I], ArgList[I],
615                                    Info, Deduced))
616      return Result;
617  }
618  return Sema::TDK_Success;
619}
620
621
622Sema::TemplateDeductionResult
623Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
624                              const TemplateArgumentList &TemplateArgs,
625                              TemplateDeductionInfo &Info) {
626  // Deduce the template arguments for the partial specialization
627  llvm::SmallVector<TemplateArgument, 4> Deduced;
628  Deduced.resize(Partial->getTemplateParameters()->size());
629  if (TemplateDeductionResult Result
630        = ::DeduceTemplateArguments(Context,
631                                    Partial->getTemplateParameters(),
632                                    Partial->getTemplateArgs(),
633                                    TemplateArgs, Info, Deduced))
634    return Result;
635
636  InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
637                             Deduced.data(), Deduced.size());
638  if (Inst)
639    return TDK_InstantiationDepth;
640
641  // C++ [temp.deduct.type]p2:
642  //   [...] or if any template argument remains neither deduced nor
643  //   explicitly specified, template argument deduction fails.
644  TemplateArgumentListBuilder Builder(Context);
645  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
646    if (Deduced[I].isNull()) {
647      Decl *Param
648        = const_cast<Decl *>(Partial->getTemplateParameters()->getParam(I));
649      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
650        Info.Param = TTP;
651      else if (NonTypeTemplateParmDecl *NTTP
652                 = dyn_cast<NonTypeTemplateParmDecl>(Param))
653        Info.Param = NTTP;
654      else
655        Info.Param = cast<TemplateTemplateParmDecl>(Param);
656      return TDK_Incomplete;
657    }
658
659    Builder.push_back(Deduced[I]);
660  }
661
662  // Form the template argument list from the deduced template arguments.
663  TemplateArgumentList *DeducedArgumentList
664    = new (Context) TemplateArgumentList(Context, Builder, /*CopyArgs=*/true,
665                                         /*FlattenArgs=*/true);
666  Info.reset(DeducedArgumentList);
667
668  // Now that we have all of the deduced template arguments, take
669  // another pass through them to convert any integral template
670  // arguments to the appropriate type.
671  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
672    TemplateArgument &Arg = Deduced[I];
673    if (Arg.getKind() == TemplateArgument::Integral) {
674      const NonTypeTemplateParmDecl *Parm
675        = cast<NonTypeTemplateParmDecl>(Partial->getTemplateParameters()
676                                          ->getParam(I));
677      QualType T = InstantiateType(Parm->getType(), *DeducedArgumentList,
678                                   Parm->getLocation(), Parm->getDeclName());
679      if (T.isNull()) {
680        Info.Param = const_cast<NonTypeTemplateParmDecl*>(Parm);
681        Info.FirstArg = TemplateArgument(Parm->getLocation(), Parm->getType());
682        return TDK_SubstitutionFailure;
683      }
684
685      // FIXME: Make sure we didn't overflow our data type!
686      llvm::APSInt &Value = *Arg.getAsIntegral();
687      unsigned AllowedBits = Context.getTypeSize(T);
688      if (Value.getBitWidth() != AllowedBits)
689        Value.extOrTrunc(AllowedBits);
690      Value.setIsSigned(T->isSignedIntegerType());
691      Arg.setIntegralType(T);
692    }
693
694    (*DeducedArgumentList)[I] = Arg;
695  }
696
697  // Substitute the deduced template arguments into the template
698  // arguments of the class template partial specialization, and
699  // verify that the instantiated template arguments are both valid
700  // and are equivalent to the template arguments originally provided
701  // to the class template.
702  ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
703  const TemplateArgumentList &PartialTemplateArgs = Partial->getTemplateArgs();
704  for (unsigned I = 0, N = PartialTemplateArgs.flat_size(); I != N; ++I) {
705    TemplateArgument InstArg = Instantiate(PartialTemplateArgs[I],
706                                           *DeducedArgumentList);
707    if (InstArg.isNull()) {
708      Decl *Param = const_cast<Decl *>(
709                         ClassTemplate->getTemplateParameters()->getParam(I));
710      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
711        Info.Param = TTP;
712      else if (NonTypeTemplateParmDecl *NTTP
713                 = dyn_cast<NonTypeTemplateParmDecl>(Param))
714        Info.Param = NTTP;
715      else
716        Info.Param = cast<TemplateTemplateParmDecl>(Param);
717      Info.FirstArg = PartialTemplateArgs[I];
718      return TDK_SubstitutionFailure;
719    }
720
721    Decl *Param
722      = const_cast<Decl *>(ClassTemplate->getTemplateParameters()->getParam(I));
723    if (isa<TemplateTypeParmDecl>(Param)) {
724      if (InstArg.getKind() != TemplateArgument::Type ||
725          Context.getCanonicalType(InstArg.getAsType())
726            != Context.getCanonicalType(TemplateArgs[I].getAsType())) {
727        Info.Param = cast<TemplateTypeParmDecl>(Param);
728        Info.FirstArg = TemplateArgs[I];
729        Info.SecondArg = InstArg;
730        return TDK_NonDeducedMismatch;
731      }
732    } else if (NonTypeTemplateParmDecl *NTTP
733                 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
734      QualType T = InstantiateType(NTTP->getType(), TemplateArgs,
735                                   NTTP->getLocation(), NTTP->getDeclName());
736      if (T.isNull()) {
737        Info.Param = NTTP;
738        Info.FirstArg = TemplateArgs[I];
739        Info.SecondArg = InstArg;
740        return TDK_NonDeducedMismatch;
741      }
742
743      if (InstArg.getKind() == TemplateArgument::Declaration ||
744          InstArg.getKind() == TemplateArgument::Expression) {
745        // Turn the template argument into an expression, so that we can
746        // perform type checking on it and convert it to the type of the
747        // non-type template parameter. FIXME: Will this expression be
748        // leaked? It's hard to tell, since our ownership model for
749        // expressions in template arguments is so poor.
750        Expr *E = 0;
751        if (InstArg.getKind() == TemplateArgument::Declaration) {
752          NamedDecl *D = cast<NamedDecl>(InstArg.getAsDecl());
753          QualType T = Context.OverloadTy;
754          if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
755            T = VD->getType().getNonReferenceType();
756          E = new (Context) DeclRefExpr(D, T, InstArg.getLocation());
757        } else {
758          E = InstArg.getAsExpr();
759        }
760
761        // Check that the template argument can be used to initialize
762        // the corresponding template parameter.
763        if (CheckTemplateArgument(NTTP, T, E, InstArg)) {
764          // FIXME: This isn't precisely the problem, but since it
765          // can't actually happen in well-formed C++ we don't care at
766          // the moment. Revisit this when we have template argument
767          // deduction for function templates.
768          Info.Param = NTTP;
769          Info.FirstArg = TemplateArgs[I];
770          Info.SecondArg = InstArg;
771          return TDK_NonDeducedMismatch;
772        }
773      }
774
775      switch (InstArg.getKind()) {
776      case TemplateArgument::Null:
777        assert(false && "Null template arguments cannot get here");
778        return TDK_NonDeducedMismatch;
779
780      case TemplateArgument::Type:
781        assert(false && "Type/value mismatch");
782        return TDK_NonDeducedMismatch;
783
784      case TemplateArgument::Integral: {
785        llvm::APSInt &Value = *InstArg.getAsIntegral();
786        if (T->isIntegralType() || T->isEnumeralType()) {
787          QualType IntegerType = Context.getCanonicalType(T);
788          if (const EnumType *Enum = dyn_cast<EnumType>(IntegerType))
789            IntegerType = Context.getCanonicalType(
790                                           Enum->getDecl()->getIntegerType());
791
792          // Check that an unsigned parameter does not receive a negative
793          // value.
794          if (IntegerType->isUnsignedIntegerType()
795              && (Value.isSigned() && Value.isNegative())) {
796            Info.Param = NTTP;
797            Info.FirstArg = TemplateArgs[I];
798            Info.SecondArg = InstArg;
799            return TDK_NonDeducedMismatch;
800          }
801
802          // Check for truncation. If the number of bits in the
803          // instantiated template argument exceeds what is allowed by
804          // the type, template argument deduction fails.
805          unsigned AllowedBits = Context.getTypeSize(IntegerType);
806          if (Value.getActiveBits() > AllowedBits) {
807            Info.Param = NTTP;
808            Info.FirstArg = TemplateArgs[I];
809            Info.SecondArg = InstArg;
810            return TDK_NonDeducedMismatch;
811          }
812
813          if (Value.getBitWidth() != AllowedBits)
814            Value.extOrTrunc(AllowedBits);
815          Value.setIsSigned(IntegerType->isSignedIntegerType());
816
817          // Check that the instantiated value is the same as the
818          // value provided as a template argument.
819          if (Value != *TemplateArgs[I].getAsIntegral()) {
820            Info.Param = NTTP;
821            Info.FirstArg = TemplateArgs[I];
822            Info.SecondArg = InstArg;
823            return TDK_NonDeducedMismatch;
824          }
825        } else if (T->isPointerType() || T->isMemberPointerType()) {
826          // Deal with NULL pointers that are used to initialize
827          // pointer and pointer-to-member non-type template
828          // parameters (C++0x).
829          if (TemplateArgs[I].getAsDecl()) {
830            // Not a NULL declaration
831            Info.Param = NTTP;
832            Info.FirstArg = TemplateArgs[I];
833            Info.SecondArg = InstArg;
834            return TDK_NonDeducedMismatch;
835          }
836          // Check that the integral value is 0, the NULL pointer
837          // constant.
838          if (Value != 0) {
839            Info.Param = NTTP;
840            Info.FirstArg = TemplateArgs[I];
841            Info.SecondArg = InstArg;
842            return TDK_NonDeducedMismatch;
843          }
844        } else {
845          Info.Param = NTTP;
846          Info.FirstArg = TemplateArgs[I];
847          Info.SecondArg = InstArg;
848          return TDK_NonDeducedMismatch;
849        }
850
851        break;
852      }
853
854      case TemplateArgument::Declaration:
855        if (Context.getCanonicalDecl(InstArg.getAsDecl())
856              != Context.getCanonicalDecl(TemplateArgs[I].getAsDecl())) {
857          Info.Param = NTTP;
858          Info.FirstArg = TemplateArgs[I];
859          Info.SecondArg = InstArg;
860          return TDK_NonDeducedMismatch;
861        }
862        break;
863
864      case TemplateArgument::Expression:
865        // FIXME: Check equality of expressions
866        break;
867      }
868    } else {
869      assert(isa<TemplateTemplateParmDecl>(Param));
870      // FIXME: Check template template arguments
871    }
872  }
873
874  return TDK_Success;
875}
876