Pass.h revision 276222a5ae189ed5c6a2afb248d4c8f0335585b4
1//===- llvm/Pass.h - Base class for Passes ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a base class that indicates that a specified class is a
11// transformation pass implementation.
12//
13// Passes are designed this way so that it is possible to run passes in a cache
14// and organizationally optimal order without having to specify it at the front
15// end.  This allows arbitrary passes to be strung together and have them
16// executed as effeciently as possible.
17//
18// Passes should extend one of the classes below, depending on the guarantees
19// that it can make about what will be modified as it is run.  For example, most
20// global optimizations should derive from FunctionPass, because they do not add
21// or delete functions, they operate on the internals of the function.
22//
23// Note that this file #includes PassSupport.h and PassAnalysisSupport.h (at the
24// bottom), so the APIs exposed by these files are also automatically available
25// to all users of this file.
26//
27//===----------------------------------------------------------------------===//
28
29#ifndef LLVM_PASS_H
30#define LLVM_PASS_H
31
32#include "llvm/Support/Streams.h"
33#include <vector>
34#include <deque>
35#include <map>
36#include <iosfwd>
37#include <cassert>
38
39namespace llvm {
40
41class Value;
42class BasicBlock;
43class Function;
44class Module;
45class AnalysisUsage;
46class PassInfo;
47class ImmutablePass;
48class PMStack;
49class AnalysisResolver;
50class PMDataManager;
51
52// AnalysisID - Use the PassInfo to identify a pass...
53typedef const PassInfo* AnalysisID;
54
55/// Different types of internal pass managers. External pass managers
56/// (PassManager and FunctionPassManager) are not represented here.
57/// Ordering of pass manager types is important here.
58enum PassManagerType {
59  PMT_Unknown = 0,
60  PMT_ModulePassManager = 1, /// MPPassManager
61  PMT_CallGraphPassManager,  /// CGPassManager
62  PMT_FunctionPassManager,   /// FPPassManager
63  PMT_LoopPassManager,       /// LPPassManager
64  PMT_BasicBlockPassManager, /// BBPassManager
65  PMT_Last
66};
67
68typedef enum PassManagerType PassManagerType;
69
70//===----------------------------------------------------------------------===//
71/// Pass interface - Implemented by all 'passes'.  Subclass this if you are an
72/// interprocedural optimization or you do not fit into any of the more
73/// constrained passes described below.
74///
75class Pass {
76  AnalysisResolver *Resolver;  // Used to resolve analysis
77  intptr_t PassID;
78
79  // AnalysisImpls - This keeps track of which passes implement the interfaces
80  // that are required by the current pass (to implement getAnalysis()).
81  //
82  std::vector<std::pair<const PassInfo*, Pass*> > AnalysisImpls;
83
84  void operator=(const Pass&);  // DO NOT IMPLEMENT
85  Pass(const Pass &);           // DO NOT IMPLEMENT
86public:
87  explicit Pass(intptr_t pid) : Resolver(0), PassID(pid) {}
88  virtual ~Pass();
89
90  /// getPassName - Return a nice clean name for a pass.  This usually
91  /// implemented in terms of the name that is registered by one of the
92  /// Registration templates, but can be overloaded directly, and if nothing
93  /// else is available, C++ RTTI will be consulted to get a SOMEWHAT
94  /// intelligible name for the pass.
95  ///
96  virtual const char *getPassName() const;
97
98  /// getPassInfo - Return the PassInfo data structure that corresponds to this
99  /// pass...  If the pass has not been registered, this will return null.
100  ///
101  const PassInfo *getPassInfo() const;
102
103  /// runPass - Run this pass, returning true if a modification was made to the
104  /// module argument.  This should be implemented by all concrete subclasses.
105  ///
106  virtual bool runPass(Module &M) { return false; }
107  virtual bool runPass(BasicBlock&) { return false; }
108
109  /// print - Print out the internal state of the pass.  This is called by
110  /// Analyze to print out the contents of an analysis.  Otherwise it is not
111  /// necessary to implement this method.  Beware that the module pointer MAY be
112  /// null.  This automatically forwards to a virtual function that does not
113  /// provide the Module* in case the analysis doesn't need it it can just be
114  /// ignored.
115  ///
116  virtual void print(std::ostream &O, const Module *M) const;
117  void print(std::ostream *O, const Module *M) const { if (O) print(*O, M); }
118  void dump() const; // dump - call print(std::cerr, 0);
119
120  /// Each pass is responsible for assigning a pass manager to itself.
121  /// PMS is the stack of available pass manager.
122  virtual void assignPassManager(PMStack &PMS,
123                                 PassManagerType T = PMT_Unknown) {}
124  /// Check if available pass managers are suitable for this pass or not.
125  virtual void preparePassManager(PMStack &PMS) {}
126
127  ///  Return what kind of Pass Manager can manage this pass.
128  virtual PassManagerType getPotentialPassManagerType() const {
129    return PMT_Unknown;
130  }
131
132  // Access AnalysisResolver
133  inline void setResolver(AnalysisResolver *AR) {
134    assert (!Resolver && "Resolver is already set");
135    Resolver = AR;
136  }
137  inline AnalysisResolver *getResolver() {
138    assert (Resolver && "Resolver is not set");
139    return Resolver;
140  }
141
142  /// getAnalysisUsage - This function should be overriden by passes that need
143  /// analysis information to do their job.  If a pass specifies that it uses a
144  /// particular analysis result to this function, it can then use the
145  /// getAnalysis<AnalysisType>() function, below.
146  ///
147  virtual void getAnalysisUsage(AnalysisUsage &Info) const {
148    // By default, no analysis results are used, all are invalidated.
149  }
150
151  /// releaseMemory() - This member can be implemented by a pass if it wants to
152  /// be able to release its memory when it is no longer needed.  The default
153  /// behavior of passes is to hold onto memory for the entire duration of their
154  /// lifetime (which is the entire compile time).  For pipelined passes, this
155  /// is not a big deal because that memory gets recycled every time the pass is
156  /// invoked on another program unit.  For IP passes, it is more important to
157  /// free memory when it is unused.
158  ///
159  /// Optionally implement this function to release pass memory when it is no
160  /// longer used.
161  ///
162  virtual void releaseMemory() {}
163
164  /// verifyAnalysis() - This member can be implemented by a analysis pass to
165  /// check state of analysis information.
166  virtual void verifyAnalysis() const {}
167
168  // dumpPassStructure - Implement the -debug-passes=PassStructure option
169  virtual void dumpPassStructure(unsigned Offset = 0);
170
171  template<typename AnalysisClass>
172  static const PassInfo *getClassPassInfo() {
173    return lookupPassInfo(intptr_t(&AnalysisClass::ID));
174  }
175
176  // lookupPassInfo - Return the pass info object for the specified pass class,
177  // or null if it is not known.
178  static const PassInfo *lookupPassInfo(intptr_t TI);
179
180  /// getAnalysisToUpdate<AnalysisType>() - This function is used by subclasses
181  /// to get to the analysis information that might be around that needs to be
182  /// updated.  This is different than getAnalysis in that it can fail (ie the
183  /// analysis results haven't been computed), so should only be used if you
184  /// provide the capability to update an analysis that exists.  This method is
185  /// often used by transformation APIs to update analysis results for a pass
186  /// automatically as the transform is performed.
187  ///
188  template<typename AnalysisType>
189  AnalysisType *getAnalysisToUpdate() const; // Defined in PassAnalysisSupport.h
190
191  /// mustPreserveAnalysisID - This method serves the same function as
192  /// getAnalysisToUpdate, but works if you just have an AnalysisID.  This
193  /// obviously cannot give you a properly typed instance of the class if you
194  /// don't have the class name available (use getAnalysisToUpdate if you do),
195  /// but it can tell you if you need to preserve the pass at least.
196  ///
197  bool mustPreserveAnalysisID(const PassInfo *AnalysisID) const;
198
199  /// getAnalysis<AnalysisType>() - This function is used by subclasses to get
200  /// to the analysis information that they claim to use by overriding the
201  /// getAnalysisUsage function.
202  ///
203  template<typename AnalysisType>
204  AnalysisType &getAnalysis() const; // Defined in PassAnalysisSupport.h
205
206  template<typename AnalysisType>
207  AnalysisType &getAnalysis(Function &F); // Defined in PassanalysisSupport.h
208
209  template<typename AnalysisType>
210  AnalysisType &getAnalysisID(const PassInfo *PI) const;
211
212  template<typename AnalysisType>
213  AnalysisType &getAnalysisID(const PassInfo *PI, Function &F);
214};
215
216inline std::ostream &operator<<(std::ostream &OS, const Pass &P) {
217  P.print(OS, 0); return OS;
218}
219
220//===----------------------------------------------------------------------===//
221/// ModulePass class - This class is used to implement unstructured
222/// interprocedural optimizations and analyses.  ModulePasses may do anything
223/// they want to the program.
224///
225class ModulePass : public Pass {
226public:
227  /// runOnModule - Virtual method overriden by subclasses to process the module
228  /// being operated on.
229  virtual bool runOnModule(Module &M) = 0;
230
231  virtual bool runPass(Module &M) { return runOnModule(M); }
232  virtual bool runPass(BasicBlock&) { return false; }
233
234  virtual void assignPassManager(PMStack &PMS,
235                                 PassManagerType T = PMT_ModulePassManager);
236
237  ///  Return what kind of Pass Manager can manage this pass.
238  virtual PassManagerType getPotentialPassManagerType() const {
239    return PMT_ModulePassManager;
240  }
241
242  explicit ModulePass(intptr_t pid) : Pass(pid) {}
243  // Force out-of-line virtual method.
244  virtual ~ModulePass();
245};
246
247
248//===----------------------------------------------------------------------===//
249/// ImmutablePass class - This class is used to provide information that does
250/// not need to be run.  This is useful for things like target information and
251/// "basic" versions of AnalysisGroups.
252///
253class ImmutablePass : public ModulePass {
254public:
255  /// initializePass - This method may be overriden by immutable passes to allow
256  /// them to perform various initialization actions they require.  This is
257  /// primarily because an ImmutablePass can "require" another ImmutablePass,
258  /// and if it does, the overloaded version of initializePass may get access to
259  /// these passes with getAnalysis<>.
260  ///
261  virtual void initializePass() {}
262
263  /// ImmutablePasses are never run.
264  ///
265  bool runOnModule(Module &M) { return false; }
266
267  explicit ImmutablePass(intptr_t pid) : ModulePass(pid) {}
268  // Force out-of-line virtual method.
269  virtual ~ImmutablePass();
270};
271
272//===----------------------------------------------------------------------===//
273/// FunctionPass class - This class is used to implement most global
274/// optimizations.  Optimizations should subclass this class if they meet the
275/// following constraints:
276///
277///  1. Optimizations are organized globally, i.e., a function at a time
278///  2. Optimizing a function does not cause the addition or removal of any
279///     functions in the module
280///
281class FunctionPass : public Pass {
282public:
283  explicit FunctionPass(intptr_t pid) : Pass(pid) {}
284
285  /// doInitialization - Virtual method overridden by subclasses to do
286  /// any necessary per-module initialization.
287  ///
288  virtual bool doInitialization(Module &M) { return false; }
289
290  /// runOnFunction - Virtual method overriden by subclasses to do the
291  /// per-function processing of the pass.
292  ///
293  virtual bool runOnFunction(Function &F) = 0;
294
295  /// doFinalization - Virtual method overriden by subclasses to do any post
296  /// processing needed after all passes have run.
297  ///
298  virtual bool doFinalization(Module &M) { return false; }
299
300  /// runOnModule - On a module, we run this pass by initializing,
301  /// ronOnFunction'ing once for every function in the module, then by
302  /// finalizing.
303  ///
304  virtual bool runOnModule(Module &M);
305
306  /// run - On a function, we simply initialize, run the function, then
307  /// finalize.
308  ///
309  bool run(Function &F);
310
311  virtual void assignPassManager(PMStack &PMS,
312                                 PassManagerType T = PMT_FunctionPassManager);
313
314  ///  Return what kind of Pass Manager can manage this pass.
315  virtual PassManagerType getPotentialPassManagerType() const {
316    return PMT_FunctionPassManager;
317  }
318};
319
320
321
322//===----------------------------------------------------------------------===//
323/// BasicBlockPass class - This class is used to implement most local
324/// optimizations.  Optimizations should subclass this class if they
325/// meet the following constraints:
326///   1. Optimizations are local, operating on either a basic block or
327///      instruction at a time.
328///   2. Optimizations do not modify the CFG of the contained function, or any
329///      other basic block in the function.
330///   3. Optimizations conform to all of the constraints of FunctionPasses.
331///
332class BasicBlockPass : public Pass {
333public:
334  explicit BasicBlockPass(intptr_t pid) : Pass(pid) {}
335
336  /// doInitialization - Virtual method overridden by subclasses to do
337  /// any necessary per-module initialization.
338  ///
339  virtual bool doInitialization(Module &M) { return false; }
340
341  /// doInitialization - Virtual method overridden by BasicBlockPass subclasses
342  /// to do any necessary per-function initialization.
343  ///
344  virtual bool doInitialization(Function &F) { return false; }
345
346  /// runOnBasicBlock - Virtual method overriden by subclasses to do the
347  /// per-basicblock processing of the pass.
348  ///
349  virtual bool runOnBasicBlock(BasicBlock &BB) = 0;
350
351  /// doFinalization - Virtual method overriden by BasicBlockPass subclasses to
352  /// do any post processing needed after all passes have run.
353  ///
354  virtual bool doFinalization(Function &F) { return false; }
355
356  /// doFinalization - Virtual method overriden by subclasses to do any post
357  /// processing needed after all passes have run.
358  ///
359  virtual bool doFinalization(Module &M) { return false; }
360
361
362  // To run this pass on a function, we simply call runOnBasicBlock once for
363  // each function.
364  //
365  bool runOnFunction(Function &F);
366
367  /// To run directly on the basic block, we initialize, runOnBasicBlock, then
368  /// finalize.
369  ///
370  virtual bool runPass(Module &M) { return false; }
371  virtual bool runPass(BasicBlock &BB);
372
373  virtual void assignPassManager(PMStack &PMS,
374                                 PassManagerType T = PMT_BasicBlockPassManager);
375
376  ///  Return what kind of Pass Manager can manage this pass.
377  virtual PassManagerType getPotentialPassManagerType() const {
378    return PMT_BasicBlockPassManager;
379  }
380};
381
382/// PMStack
383/// Top level pass manager (see PasManager.cpp) maintains active Pass Managers
384/// using PMStack. Each Pass implements assignPassManager() to connect itself
385/// with appropriate manager. assignPassManager() walks PMStack to find
386/// suitable manager.
387///
388/// PMStack is just a wrapper around standard deque that overrides pop() and
389/// push() methods.
390class PMStack {
391public:
392  typedef std::deque<PMDataManager *>::reverse_iterator iterator;
393  iterator begin() { return S.rbegin(); }
394  iterator end() { return S.rend(); }
395
396  void handleLastUserOverflow();
397
398  void pop();
399  inline PMDataManager *top() { return S.back(); }
400  void push(Pass *P);
401  inline bool empty() { return S.empty(); }
402
403  void dump();
404private:
405  std::deque<PMDataManager *> S;
406};
407
408
409/// If the user specifies the -time-passes argument on an LLVM tool command line
410/// then the value of this boolean will be true, otherwise false.
411/// @brief This is the storage for the -time-passes option.
412extern bool TimePassesIsEnabled;
413
414} // End llvm namespace
415
416// Include support files that contain important APIs commonly used by Passes,
417// but that we want to separate out to make it easier to read the header files.
418//
419#include "llvm/PassSupport.h"
420#include "llvm/PassAnalysisSupport.h"
421
422#endif
423