Pass.h revision b42295df4da77a34519d0c49840a8b997d3f0b7c
1//===- llvm/Pass.h - Base class for Passes ----------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a base class that indicates that a specified class is a
11// transformation pass implementation.
12//
13// Passes are designed this way so that it is possible to run passes in a cache
14// and organizationally optimal order without having to specify it at the front
15// end.  This allows arbitrary passes to be strung together and have them
16// executed as effeciently as possible.
17//
18// Passes should extend one of the classes below, depending on the guarantees
19// that it can make about what will be modified as it is run.  For example, most
20// global optimizations should derive from FunctionPass, because they do not add
21// or delete functions, they operate on the internals of the function.
22//
23// Note that this file #includes PassSupport.h and PassAnalysisSupport.h (at the
24// bottom), so the APIs exposed by these files are also automatically available
25// to all users of this file.
26//
27//===----------------------------------------------------------------------===//
28
29#ifndef LLVM_PASS_H
30#define LLVM_PASS_H
31
32#include "llvm/Support/Streams.h"
33#include <vector>
34#include <deque>
35#include <map>
36#include <iosfwd>
37#include <cassert>
38
39namespace llvm {
40
41class Value;
42class BasicBlock;
43class Function;
44class Module;
45class AnalysisUsage;
46class PassInfo;
47class ImmutablePass;
48class PMStack;
49class AnalysisResolver;
50class PMDataManager;
51
52// AnalysisID - Use the PassInfo to identify a pass...
53typedef const PassInfo* AnalysisID;
54
55/// Different types of internal pass managers. External pass managers
56/// (PassManager and FunctionPassManager) are not represented here.
57/// Ordering of pass manager types is important here.
58enum PassManagerType {
59  PMT_Unknown = 0,
60  PMT_ModulePassManager = 1, /// MPPassManager
61  PMT_CallGraphPassManager,  /// CGPassManager
62  PMT_FunctionPassManager,   /// FPPassManager
63  PMT_LoopPassManager,       /// LPPassManager
64  PMT_BasicBlockPassManager, /// BBPassManager
65  PMT_Last
66};
67
68typedef enum PassManagerType PassManagerType;
69
70//===----------------------------------------------------------------------===//
71/// Pass interface - Implemented by all 'passes'.  Subclass this if you are an
72/// interprocedural optimization or you do not fit into any of the more
73/// constrained passes described below.
74///
75class Pass {
76  AnalysisResolver *Resolver;  // Used to resolve analysis
77  intptr_t PassID;
78
79  // AnalysisImpls - This keeps track of which passes implement the interfaces
80  // that are required by the current pass (to implement getAnalysis()).
81  //
82  std::vector<std::pair<const PassInfo*, Pass*> > AnalysisImpls;
83
84  void operator=(const Pass&);  // DO NOT IMPLEMENT
85  Pass(const Pass &);           // DO NOT IMPLEMENT
86public:
87  explicit Pass(intptr_t pid) : Resolver(0), PassID(pid) {}
88  virtual ~Pass();
89
90  /// getPassName - Return a nice clean name for a pass.  This usually
91  /// implemented in terms of the name that is registered by one of the
92  /// Registration templates, but can be overloaded directly, and if nothing
93  /// else is available, C++ RTTI will be consulted to get a SOMEWHAT
94  /// intelligible name for the pass.
95  ///
96  virtual const char *getPassName() const;
97
98  /// getPassInfo - Return the PassInfo data structure that corresponds to this
99  /// pass...  If the pass has not been registered, this will return null.
100  ///
101  const PassInfo *getPassInfo() const;
102
103  /// runPass - Run this pass, returning true if a modification was made to the
104  /// module argument.  This should be implemented by all concrete subclasses.
105  ///
106  virtual bool runPass(Module &M) { return false; }
107  virtual bool runPass(BasicBlock&) { return false; }
108
109  /// print - Print out the internal state of the pass.  This is called by
110  /// Analyze to print out the contents of an analysis.  Otherwise it is not
111  /// necessary to implement this method.  Beware that the module pointer MAY be
112  /// null.  This automatically forwards to a virtual function that does not
113  /// provide the Module* in case the analysis doesn't need it it can just be
114  /// ignored.
115  ///
116  virtual void print(std::ostream &O, const Module *M) const;
117  void print(std::ostream *O, const Module *M) const { if (O) print(*O, M); }
118  void dump() const; // dump - call print(std::cerr, 0);
119
120  /// Each pass is responsible for assigning a pass manager to itself.
121  /// PMS is the stack of available pass manager.
122  virtual void assignPassManager(PMStack &PMS,
123                                 PassManagerType T = PMT_Unknown) {}
124  /// Check if available pass managers are suitable for this pass or not.
125  virtual void preparePassManager(PMStack &PMS) {}
126
127  ///  Return what kind of Pass Manager can manage this pass.
128  virtual PassManagerType getPotentialPassManagerType() const {
129    return PMT_Unknown;
130  }
131
132  // Access AnalysisResolver
133  inline void setResolver(AnalysisResolver *AR) {
134    assert (!Resolver && "Resolver is already set");
135    Resolver = AR;
136  }
137  inline AnalysisResolver *getResolver() {
138    assert (Resolver && "Resolver is not set");
139    return Resolver;
140  }
141
142  /// getAnalysisUsage - This function should be overriden by passes that need
143  /// analysis information to do their job.  If a pass specifies that it uses a
144  /// particular analysis result to this function, it can then use the
145  /// getAnalysis<AnalysisType>() function, below.
146  ///
147  virtual void getAnalysisUsage(AnalysisUsage &Info) const {
148    // By default, no analysis results are used, all are invalidated.
149  }
150
151  /// releaseMemory() - This member can be implemented by a pass if it wants to
152  /// be able to release its memory when it is no longer needed.  The default
153  /// behavior of passes is to hold onto memory for the entire duration of their
154  /// lifetime (which is the entire compile time).  For pipelined passes, this
155  /// is not a big deal because that memory gets recycled every time the pass is
156  /// invoked on another program unit.  For IP passes, it is more important to
157  /// free memory when it is unused.
158  ///
159  /// Optionally implement this function to release pass memory when it is no
160  /// longer used.
161  ///
162  virtual void releaseMemory() {}
163
164  // dumpPassStructure - Implement the -debug-passes=PassStructure option
165  virtual void dumpPassStructure(unsigned Offset = 0);
166
167  template<typename AnalysisClass>
168  static const PassInfo *getClassPassInfo() {
169    return lookupPassInfo((intptr_t)&AnalysisClass::ID);
170  }
171
172  // lookupPassInfo - Return the pass info object for the specified pass class,
173  // or null if it is not known.
174  static const PassInfo *lookupPassInfo(intptr_t TI);
175
176  /// getAnalysisToUpdate<AnalysisType>() - This function is used by subclasses
177  /// to get to the analysis information that might be around that needs to be
178  /// updated.  This is different than getAnalysis in that it can fail (ie the
179  /// analysis results haven't been computed), so should only be used if you
180  /// provide the capability to update an analysis that exists.  This method is
181  /// often used by transformation APIs to update analysis results for a pass
182  /// automatically as the transform is performed.
183  ///
184  template<typename AnalysisType>
185  AnalysisType *getAnalysisToUpdate() const; // Defined in PassAnalysisSupport.h
186
187  /// mustPreserveAnalysisID - This method serves the same function as
188  /// getAnalysisToUpdate, but works if you just have an AnalysisID.  This
189  /// obviously cannot give you a properly typed instance of the class if you
190  /// don't have the class name available (use getAnalysisToUpdate if you do),
191  /// but it can tell you if you need to preserve the pass at least.
192  ///
193  bool mustPreserveAnalysisID(const PassInfo *AnalysisID) const;
194
195  /// getAnalysis<AnalysisType>() - This function is used by subclasses to get
196  /// to the analysis information that they claim to use by overriding the
197  /// getAnalysisUsage function.
198  ///
199  template<typename AnalysisType>
200  AnalysisType &getAnalysis() const; // Defined in PassAnalysisSupport.h
201
202  template<typename AnalysisType>
203  AnalysisType &getAnalysis(Function &F); // Defined in PassanalysisSupport.h
204
205  template<typename AnalysisType>
206  AnalysisType &getAnalysisID(const PassInfo *PI) const;
207
208  template<typename AnalysisType>
209  AnalysisType &getAnalysisID(const PassInfo *PI, Function &F);
210};
211
212inline std::ostream &operator<<(std::ostream &OS, const Pass &P) {
213  P.print(OS, 0); return OS;
214}
215
216//===----------------------------------------------------------------------===//
217/// ModulePass class - This class is used to implement unstructured
218/// interprocedural optimizations and analyses.  ModulePasses may do anything
219/// they want to the program.
220///
221class ModulePass : public Pass {
222public:
223  /// runOnModule - Virtual method overriden by subclasses to process the module
224  /// being operated on.
225  virtual bool runOnModule(Module &M) = 0;
226
227  virtual bool runPass(Module &M) { return runOnModule(M); }
228  virtual bool runPass(BasicBlock&) { return false; }
229
230  virtual void assignPassManager(PMStack &PMS,
231                                 PassManagerType T = PMT_ModulePassManager);
232
233  ///  Return what kind of Pass Manager can manage this pass.
234  virtual PassManagerType getPotentialPassManagerType() const {
235    return PMT_ModulePassManager;
236  }
237
238  explicit ModulePass(intptr_t pid) : Pass(pid) {}
239  // Force out-of-line virtual method.
240  virtual ~ModulePass();
241};
242
243
244//===----------------------------------------------------------------------===//
245/// ImmutablePass class - This class is used to provide information that does
246/// not need to be run.  This is useful for things like target information and
247/// "basic" versions of AnalysisGroups.
248///
249class ImmutablePass : public ModulePass {
250public:
251  /// initializePass - This method may be overriden by immutable passes to allow
252  /// them to perform various initialization actions they require.  This is
253  /// primarily because an ImmutablePass can "require" another ImmutablePass,
254  /// and if it does, the overloaded version of initializePass may get access to
255  /// these passes with getAnalysis<>.
256  ///
257  virtual void initializePass() {}
258
259  /// ImmutablePasses are never run.
260  ///
261  virtual bool runOnModule(Module &M) { return false; }
262
263  explicit ImmutablePass(intptr_t pid) : ModulePass(pid) {}
264  // Force out-of-line virtual method.
265  virtual ~ImmutablePass();
266};
267
268//===----------------------------------------------------------------------===//
269/// FunctionPass class - This class is used to implement most global
270/// optimizations.  Optimizations should subclass this class if they meet the
271/// following constraints:
272///
273///  1. Optimizations are organized globally, i.e., a function at a time
274///  2. Optimizing a function does not cause the addition or removal of any
275///     functions in the module
276///
277class FunctionPass : public Pass {
278public:
279  explicit FunctionPass(intptr_t pid) : Pass(pid) {}
280
281  /// doInitialization - Virtual method overridden by subclasses to do
282  /// any necessary per-module initialization.
283  ///
284  virtual bool doInitialization(Module &M) { return false; }
285
286  /// runOnFunction - Virtual method overriden by subclasses to do the
287  /// per-function processing of the pass.
288  ///
289  virtual bool runOnFunction(Function &F) = 0;
290
291  /// doFinalization - Virtual method overriden by subclasses to do any post
292  /// processing needed after all passes have run.
293  ///
294  virtual bool doFinalization(Module &M) { return false; }
295
296  /// runOnModule - On a module, we run this pass by initializing,
297  /// ronOnFunction'ing once for every function in the module, then by
298  /// finalizing.
299  ///
300  virtual bool runOnModule(Module &M);
301
302  /// run - On a function, we simply initialize, run the function, then
303  /// finalize.
304  ///
305  bool run(Function &F);
306
307  virtual void assignPassManager(PMStack &PMS,
308                                 PassManagerType T = PMT_FunctionPassManager);
309
310  ///  Return what kind of Pass Manager can manage this pass.
311  virtual PassManagerType getPotentialPassManagerType() const {
312    return PMT_FunctionPassManager;
313  }
314};
315
316
317
318//===----------------------------------------------------------------------===//
319/// BasicBlockPass class - This class is used to implement most local
320/// optimizations.  Optimizations should subclass this class if they
321/// meet the following constraints:
322///   1. Optimizations are local, operating on either a basic block or
323///      instruction at a time.
324///   2. Optimizations do not modify the CFG of the contained function, or any
325///      other basic block in the function.
326///   3. Optimizations conform to all of the constraints of FunctionPasses.
327///
328class BasicBlockPass : public Pass {
329public:
330  explicit BasicBlockPass(intptr_t pid) : Pass(pid) {}
331
332  /// doInitialization - Virtual method overridden by subclasses to do
333  /// any necessary per-module initialization.
334  ///
335  virtual bool doInitialization(Module &M) { return false; }
336
337  /// doInitialization - Virtual method overridden by BasicBlockPass subclasses
338  /// to do any necessary per-function initialization.
339  ///
340  virtual bool doInitialization(Function &F) { return false; }
341
342  /// runOnBasicBlock - Virtual method overriden by subclasses to do the
343  /// per-basicblock processing of the pass.
344  ///
345  virtual bool runOnBasicBlock(BasicBlock &BB) = 0;
346
347  /// doFinalization - Virtual method overriden by BasicBlockPass subclasses to
348  /// do any post processing needed after all passes have run.
349  ///
350  virtual bool doFinalization(Function &F) { return false; }
351
352  /// doFinalization - Virtual method overriden by subclasses to do any post
353  /// processing needed after all passes have run.
354  ///
355  virtual bool doFinalization(Module &M) { return false; }
356
357
358  // To run this pass on a function, we simply call runOnBasicBlock once for
359  // each function.
360  //
361  bool runOnFunction(Function &F);
362
363  /// To run directly on the basic block, we initialize, runOnBasicBlock, then
364  /// finalize.
365  ///
366  virtual bool runPass(Module &M) { return false; }
367  virtual bool runPass(BasicBlock &BB);
368
369  virtual void assignPassManager(PMStack &PMS,
370                                 PassManagerType T = PMT_BasicBlockPassManager);
371
372  ///  Return what kind of Pass Manager can manage this pass.
373  virtual PassManagerType getPotentialPassManagerType() const {
374    return PMT_BasicBlockPassManager;
375  }
376};
377
378/// PMStack
379/// Top level pass manager (see PasManager.cpp) maintains active Pass Managers
380/// using PMStack. Each Pass implements assignPassManager() to connect itself
381/// with appropriate manager. assignPassManager() walks PMStack to find
382/// suitable manager.
383///
384/// PMStack is just a wrapper around standard deque that overrides pop() and
385/// push() methods.
386class PMStack {
387public:
388  typedef std::deque<PMDataManager *>::reverse_iterator iterator;
389  iterator begin() { return S.rbegin(); }
390  iterator end() { return S.rend(); }
391
392  void handleLastUserOverflow();
393
394  void pop();
395  inline PMDataManager *top() { return S.back(); }
396  void push(Pass *P);
397  inline bool empty() { return S.empty(); }
398
399  void dump();
400private:
401  std::deque<PMDataManager *> S;
402};
403
404
405/// If the user specifies the -time-passes argument on an LLVM tool command line
406/// then the value of this boolean will be true, otherwise false.
407/// @brief This is the storage for the -time-passes option.
408extern bool TimePassesIsEnabled;
409
410} // End llvm namespace
411
412// Include support files that contain important APIs commonly used by Passes,
413// but that we want to separate out to make it easier to read the header files.
414//
415#include "llvm/PassSupport.h"
416#include "llvm/PassAnalysisSupport.h"
417
418#endif
419