TargetLowering.h revision 1608769abeb1430dc34f31ffac0d9850f99ae36a
1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Attributes.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/CodeGen/SelectionDAGNodes.h"
30#include "llvm/CodeGen/RuntimeLibcalls.h"
31#include "llvm/Support/DebugLoc.h"
32#include "llvm/Target/TargetCallingConv.h"
33#include "llvm/Target/TargetMachine.h"
34#include <climits>
35#include <map>
36#include <vector>
37
38namespace llvm {
39  class AllocaInst;
40  class APFloat;
41  class CallInst;
42  class CCState;
43  class Function;
44  class FastISel;
45  class FunctionLoweringInfo;
46  class ImmutableCallSite;
47  class MachineBasicBlock;
48  class MachineFunction;
49  class MachineFrameInfo;
50  class MachineInstr;
51  class MachineJumpTableInfo;
52  class MCContext;
53  class MCExpr;
54  class SDNode;
55  class SDValue;
56  class SelectionDAG;
57  template<typename T> class SmallVectorImpl;
58  class TargetData;
59  class TargetMachine;
60  class TargetRegisterClass;
61  class TargetLoweringObjectFile;
62  class Value;
63
64  // FIXME: should this be here?
65  namespace TLSModel {
66    enum Model {
67      GeneralDynamic,
68      LocalDynamic,
69      InitialExec,
70      LocalExec
71    };
72  }
73  TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc);
74
75
76//===----------------------------------------------------------------------===//
77/// TargetLowering - This class defines information used to lower LLVM code to
78/// legal SelectionDAG operators that the target instruction selector can accept
79/// natively.
80///
81/// This class also defines callbacks that targets must implement to lower
82/// target-specific constructs to SelectionDAG operators.
83///
84class TargetLowering {
85  TargetLowering(const TargetLowering&);  // DO NOT IMPLEMENT
86  void operator=(const TargetLowering&);  // DO NOT IMPLEMENT
87public:
88  /// LegalizeAction - This enum indicates whether operations are valid for a
89  /// target, and if not, what action should be used to make them valid.
90  enum LegalizeAction {
91    Legal,      // The target natively supports this operation.
92    Promote,    // This operation should be executed in a larger type.
93    Expand,     // Try to expand this to other ops, otherwise use a libcall.
94    Custom      // Use the LowerOperation hook to implement custom lowering.
95  };
96
97  /// LegalizeTypeAction - This enum indicates whether a types are legal for a
98  /// target, and if not, what action should be used to make them valid.
99  enum LegalizeTypeAction {
100    TypeLegal,           // The target natively supports this type.
101    TypePromoteInteger,  // Replace this integer with a larger one.
102    TypeExpandInteger,   // Split this integer into two of half the size.
103    TypeSoftenFloat,     // Convert this float to a same size integer type.
104    TypeExpandFloat,     // Split this float into two of half the size.
105    TypeScalarizeVector, // Replace this one-element vector with its element.
106    TypeSplitVector,     // Split this vector into two of half the size.
107    TypeWidenVector      // This vector should be widened into a larger vector.
108  };
109
110  enum BooleanContent { // How the target represents true/false values.
111    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
112    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
113    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
114  };
115
116  static ISD::NodeType getExtendForContent(BooleanContent Content) {
117    switch (Content) {
118    default:
119      assert(false && "Unknown BooleanContent!");
120    case UndefinedBooleanContent:
121      // Extend by adding rubbish bits.
122      return ISD::ANY_EXTEND;
123    case ZeroOrOneBooleanContent:
124      // Extend by adding zero bits.
125      return ISD::ZERO_EXTEND;
126    case ZeroOrNegativeOneBooleanContent:
127      // Extend by copying the sign bit.
128      return ISD::SIGN_EXTEND;
129    }
130  }
131
132  /// NOTE: The constructor takes ownership of TLOF.
133  explicit TargetLowering(const TargetMachine &TM,
134                          const TargetLoweringObjectFile *TLOF);
135  virtual ~TargetLowering();
136
137  const TargetMachine &getTargetMachine() const { return TM; }
138  const TargetData *getTargetData() const { return TD; }
139  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
140
141  bool isBigEndian() const { return !IsLittleEndian; }
142  bool isLittleEndian() const { return IsLittleEndian; }
143  MVT getPointerTy() const { return PointerTy; }
144  virtual MVT getShiftAmountTy(EVT LHSTy) const;
145
146  /// isSelectExpensive - Return true if the select operation is expensive for
147  /// this target.
148  bool isSelectExpensive() const { return SelectIsExpensive; }
149
150  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
151  /// a sequence of several shifts, adds, and multiplies for this target.
152  bool isIntDivCheap() const { return IntDivIsCheap; }
153
154  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
155  /// srl/add/sra.
156  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
157
158  /// isJumpExpensive() - Return true if Flow Control is an expensive operation
159  /// that should be avoided.
160  bool isJumpExpensive() const { return JumpIsExpensive; }
161
162  /// getSetCCResultType - Return the ValueType of the result of SETCC
163  /// operations.  Also used to obtain the target's preferred type for
164  /// the condition operand of SELECT and BRCOND nodes.  In the case of
165  /// BRCOND the argument passed is MVT::Other since there are no other
166  /// operands to get a type hint from.
167  virtual EVT getSetCCResultType(EVT VT) const;
168
169  /// getCmpLibcallReturnType - Return the ValueType for comparison
170  /// libcalls. Comparions libcalls include floating point comparion calls,
171  /// and Ordered/Unordered check calls on floating point numbers.
172  virtual
173  MVT::SimpleValueType getCmpLibcallReturnType() const;
174
175  /// getBooleanContents - For targets without i1 registers, this gives the
176  /// nature of the high-bits of boolean values held in types wider than i1.
177  /// "Boolean values" are special true/false values produced by nodes like
178  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
179  /// Not to be confused with general values promoted from i1.
180  /// Some cpus distinguish between vectors of boolean and scalars; the isVec
181  /// parameter selects between the two kinds.  For example on X86 a scalar
182  /// boolean should be zero extended from i1, while the elements of a vector
183  /// of booleans should be sign extended from i1.
184  BooleanContent getBooleanContents(bool isVec) const {
185    return isVec ? BooleanVectorContents : BooleanContents;
186  }
187
188  /// getSchedulingPreference - Return target scheduling preference.
189  Sched::Preference getSchedulingPreference() const {
190    return SchedPreferenceInfo;
191  }
192
193  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
194  /// different scheduling heuristics for different nodes. This function returns
195  /// the preference (or none) for the given node.
196  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
197    return Sched::None;
198  }
199
200  /// getRegClassFor - Return the register class that should be used for the
201  /// specified value type.
202  virtual TargetRegisterClass *getRegClassFor(EVT VT) const {
203    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
204    TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
205    assert(RC && "This value type is not natively supported!");
206    return RC;
207  }
208
209  /// getRepRegClassFor - Return the 'representative' register class for the
210  /// specified value type. The 'representative' register class is the largest
211  /// legal super-reg register class for the register class of the value type.
212  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
213  /// while the rep register class is GR64 on x86_64.
214  virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
215    assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
216    const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
217    return RC;
218  }
219
220  /// getRepRegClassCostFor - Return the cost of the 'representative' register
221  /// class for the specified value type.
222  virtual uint8_t getRepRegClassCostFor(EVT VT) const {
223    assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
224    return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
225  }
226
227  /// isTypeLegal - Return true if the target has native support for the
228  /// specified value type.  This means that it has a register that directly
229  /// holds it without promotions or expansions.
230  bool isTypeLegal(EVT VT) const {
231    assert(!VT.isSimple() ||
232           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
233    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
234  }
235
236  class ValueTypeActionImpl {
237    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
238    /// that indicates how instruction selection should deal with the type.
239    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
240
241  public:
242    ValueTypeActionImpl() {
243      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
244    }
245
246    LegalizeTypeAction getTypeAction(MVT VT) const {
247      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
248    }
249
250    void setTypeAction(EVT VT, LegalizeTypeAction Action) {
251      unsigned I = VT.getSimpleVT().SimpleTy;
252      ValueTypeActions[I] = Action;
253    }
254  };
255
256  const ValueTypeActionImpl &getValueTypeActions() const {
257    return ValueTypeActions;
258  }
259
260  /// getTypeAction - Return how we should legalize values of this type, either
261  /// it is already legal (return 'Legal') or we need to promote it to a larger
262  /// type (return 'Promote'), or we need to expand it into multiple registers
263  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
264  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
265    return getTypeConversion(Context, VT).first;
266  }
267  LegalizeTypeAction getTypeAction(MVT VT) const {
268    return ValueTypeActions.getTypeAction(VT);
269  }
270
271  /// getTypeToTransformTo - For types supported by the target, this is an
272  /// identity function.  For types that must be promoted to larger types, this
273  /// returns the larger type to promote to.  For integer types that are larger
274  /// than the largest integer register, this contains one step in the expansion
275  /// to get to the smaller register. For illegal floating point types, this
276  /// returns the integer type to transform to.
277  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
278    return getTypeConversion(Context, VT).second;
279  }
280
281  /// getTypeToExpandTo - For types supported by the target, this is an
282  /// identity function.  For types that must be expanded (i.e. integer types
283  /// that are larger than the largest integer register or illegal floating
284  /// point types), this returns the largest legal type it will be expanded to.
285  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
286    assert(!VT.isVector());
287    while (true) {
288      switch (getTypeAction(Context, VT)) {
289      case TypeLegal:
290        return VT;
291      case TypeExpandInteger:
292        VT = getTypeToTransformTo(Context, VT);
293        break;
294      default:
295        assert(false && "Type is not legal nor is it to be expanded!");
296        return VT;
297      }
298    }
299    return VT;
300  }
301
302  /// getVectorTypeBreakdown - Vector types are broken down into some number of
303  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
304  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
305  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
306  ///
307  /// This method returns the number of registers needed, and the VT for each
308  /// register.  It also returns the VT and quantity of the intermediate values
309  /// before they are promoted/expanded.
310  ///
311  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
312                                  EVT &IntermediateVT,
313                                  unsigned &NumIntermediates,
314                                  EVT &RegisterVT) const;
315
316  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
317  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
318  /// this is the case, it returns true and store the intrinsic
319  /// information into the IntrinsicInfo that was passed to the function.
320  struct IntrinsicInfo {
321    unsigned     opc;         // target opcode
322    EVT          memVT;       // memory VT
323    const Value* ptrVal;      // value representing memory location
324    int          offset;      // offset off of ptrVal
325    unsigned     align;       // alignment
326    bool         vol;         // is volatile?
327    bool         readMem;     // reads memory?
328    bool         writeMem;    // writes memory?
329  };
330
331  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
332                                  unsigned /*Intrinsic*/) const {
333    return false;
334  }
335
336  /// isFPImmLegal - Returns true if the target can instruction select the
337  /// specified FP immediate natively. If false, the legalizer will materialize
338  /// the FP immediate as a load from a constant pool.
339  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
340    return false;
341  }
342
343  /// isShuffleMaskLegal - Targets can use this to indicate that they only
344  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
345  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
346  /// are assumed to be legal.
347  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
348                                  EVT /*VT*/) const {
349    return true;
350  }
351
352  /// canOpTrap - Returns true if the operation can trap for the value type.
353  /// VT must be a legal type. By default, we optimistically assume most
354  /// operations don't trap except for divide and remainder.
355  virtual bool canOpTrap(unsigned Op, EVT VT) const;
356
357  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
358  /// used by Targets can use this to indicate if there is a suitable
359  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
360  /// pool entry.
361  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
362                                      EVT /*VT*/) const {
363    return false;
364  }
365
366  /// getOperationAction - Return how this operation should be treated: either
367  /// it is legal, needs to be promoted to a larger size, needs to be
368  /// expanded to some other code sequence, or the target has a custom expander
369  /// for it.
370  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
371    if (VT.isExtended()) return Expand;
372    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
373    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
374    return (LegalizeAction)OpActions[I][Op];
375  }
376
377  /// isOperationLegalOrCustom - Return true if the specified operation is
378  /// legal on this target or can be made legal with custom lowering. This
379  /// is used to help guide high-level lowering decisions.
380  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
381    return (VT == MVT::Other || isTypeLegal(VT)) &&
382      (getOperationAction(Op, VT) == Legal ||
383       getOperationAction(Op, VT) == Custom);
384  }
385
386  /// isOperationLegal - Return true if the specified operation is legal on this
387  /// target.
388  bool isOperationLegal(unsigned Op, EVT VT) const {
389    return (VT == MVT::Other || isTypeLegal(VT)) &&
390           getOperationAction(Op, VT) == Legal;
391  }
392
393  /// getLoadExtAction - Return how this load with extension should be treated:
394  /// either it is legal, needs to be promoted to a larger size, needs to be
395  /// expanded to some other code sequence, or the target has a custom expander
396  /// for it.
397  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
398    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
399           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
400           "Table isn't big enough!");
401    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
402  }
403
404  /// isLoadExtLegal - Return true if the specified load with extension is legal
405  /// on this target.
406  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
407    return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal;
408  }
409
410  /// getTruncStoreAction - Return how this store with truncation should be
411  /// treated: either it is legal, needs to be promoted to a larger size, needs
412  /// to be expanded to some other code sequence, or the target has a custom
413  /// expander for it.
414  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
415    assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
416           MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
417           "Table isn't big enough!");
418    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
419                                            [MemVT.getSimpleVT().SimpleTy];
420  }
421
422  /// isTruncStoreLegal - Return true if the specified store with truncation is
423  /// legal on this target.
424  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
425    return isTypeLegal(ValVT) && MemVT.isSimple() &&
426           getTruncStoreAction(ValVT, MemVT) == Legal;
427  }
428
429  /// getIndexedLoadAction - Return how the indexed load should be treated:
430  /// either it is legal, needs to be promoted to a larger size, needs to be
431  /// expanded to some other code sequence, or the target has a custom expander
432  /// for it.
433  LegalizeAction
434  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
435    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
436           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
437           "Table isn't big enough!");
438    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
439    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
440  }
441
442  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
443  /// on this target.
444  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
445    return VT.isSimple() &&
446      (getIndexedLoadAction(IdxMode, VT) == Legal ||
447       getIndexedLoadAction(IdxMode, VT) == Custom);
448  }
449
450  /// getIndexedStoreAction - Return how the indexed store should be treated:
451  /// either it is legal, needs to be promoted to a larger size, needs to be
452  /// expanded to some other code sequence, or the target has a custom expander
453  /// for it.
454  LegalizeAction
455  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
456    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
457           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
458           "Table isn't big enough!");
459    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
460    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
461  }
462
463  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
464  /// on this target.
465  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
466    return VT.isSimple() &&
467      (getIndexedStoreAction(IdxMode, VT) == Legal ||
468       getIndexedStoreAction(IdxMode, VT) == Custom);
469  }
470
471  /// getCondCodeAction - Return how the condition code should be treated:
472  /// either it is legal, needs to be expanded to some other code sequence,
473  /// or the target has a custom expander for it.
474  LegalizeAction
475  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
476    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
477           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
478           "Table isn't big enough!");
479    LegalizeAction Action = (LegalizeAction)
480      ((CondCodeActions[CC] >> (2*VT.getSimpleVT().SimpleTy)) & 3);
481    assert(Action != Promote && "Can't promote condition code!");
482    return Action;
483  }
484
485  /// isCondCodeLegal - Return true if the specified condition code is legal
486  /// on this target.
487  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
488    return getCondCodeAction(CC, VT) == Legal ||
489           getCondCodeAction(CC, VT) == Custom;
490  }
491
492
493  /// getTypeToPromoteTo - If the action for this operation is to promote, this
494  /// method returns the ValueType to promote to.
495  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
496    assert(getOperationAction(Op, VT) == Promote &&
497           "This operation isn't promoted!");
498
499    // See if this has an explicit type specified.
500    std::map<std::pair<unsigned, MVT::SimpleValueType>,
501             MVT::SimpleValueType>::const_iterator PTTI =
502      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
503    if (PTTI != PromoteToType.end()) return PTTI->second;
504
505    assert((VT.isInteger() || VT.isFloatingPoint()) &&
506           "Cannot autopromote this type, add it with AddPromotedToType.");
507
508    EVT NVT = VT;
509    do {
510      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
511      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
512             "Didn't find type to promote to!");
513    } while (!isTypeLegal(NVT) ||
514              getOperationAction(Op, NVT) == Promote);
515    return NVT;
516  }
517
518  /// getValueType - Return the EVT corresponding to this LLVM type.
519  /// This is fixed by the LLVM operations except for the pointer size.  If
520  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
521  /// counterpart (e.g. structs), otherwise it will assert.
522  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
523    // Lower scalar pointers to native pointer types.
524    if (Ty->isPointerTy()) return PointerTy;
525
526    if (Ty->isVectorTy()) {
527      VectorType *VTy = cast<VectorType>(Ty);
528      Type *Elm = VTy->getElementType();
529      // Lower vectors of pointers to native pointer types.
530      if (Elm->isPointerTy())
531        Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext());
532      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
533                       VTy->getNumElements());
534    }
535    return EVT::getEVT(Ty, AllowUnknown);
536  }
537
538  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
539  /// function arguments in the caller parameter area.  This is the actual
540  /// alignment, not its logarithm.
541  virtual unsigned getByValTypeAlignment(Type *Ty) const;
542
543  /// getRegisterType - Return the type of registers that this ValueType will
544  /// eventually require.
545  EVT getRegisterType(MVT VT) const {
546    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
547    return RegisterTypeForVT[VT.SimpleTy];
548  }
549
550  /// getRegisterType - Return the type of registers that this ValueType will
551  /// eventually require.
552  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
553    if (VT.isSimple()) {
554      assert((unsigned)VT.getSimpleVT().SimpleTy <
555                array_lengthof(RegisterTypeForVT));
556      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
557    }
558    if (VT.isVector()) {
559      EVT VT1, RegisterVT;
560      unsigned NumIntermediates;
561      (void)getVectorTypeBreakdown(Context, VT, VT1,
562                                   NumIntermediates, RegisterVT);
563      return RegisterVT;
564    }
565    if (VT.isInteger()) {
566      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
567    }
568    assert(0 && "Unsupported extended type!");
569    return EVT(MVT::Other); // Not reached
570  }
571
572  /// getNumRegisters - Return the number of registers that this ValueType will
573  /// eventually require.  This is one for any types promoted to live in larger
574  /// registers, but may be more than one for types (like i64) that are split
575  /// into pieces.  For types like i140, which are first promoted then expanded,
576  /// it is the number of registers needed to hold all the bits of the original
577  /// type.  For an i140 on a 32 bit machine this means 5 registers.
578  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
579    if (VT.isSimple()) {
580      assert((unsigned)VT.getSimpleVT().SimpleTy <
581                array_lengthof(NumRegistersForVT));
582      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
583    }
584    if (VT.isVector()) {
585      EVT VT1, VT2;
586      unsigned NumIntermediates;
587      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
588    }
589    if (VT.isInteger()) {
590      unsigned BitWidth = VT.getSizeInBits();
591      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
592      return (BitWidth + RegWidth - 1) / RegWidth;
593    }
594    assert(0 && "Unsupported extended type!");
595    return 0; // Not reached
596  }
597
598  /// ShouldShrinkFPConstant - If true, then instruction selection should
599  /// seek to shrink the FP constant of the specified type to a smaller type
600  /// in order to save space and / or reduce runtime.
601  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
602
603  /// hasTargetDAGCombine - If true, the target has custom DAG combine
604  /// transformations that it can perform for the specified node.
605  bool hasTargetDAGCombine(ISD::NodeType NT) const {
606    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
607    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
608  }
609
610  /// This function returns the maximum number of store operations permitted
611  /// to replace a call to llvm.memset. The value is set by the target at the
612  /// performance threshold for such a replacement. If OptSize is true,
613  /// return the limit for functions that have OptSize attribute.
614  /// @brief Get maximum # of store operations permitted for llvm.memset
615  unsigned getMaxStoresPerMemset(bool OptSize) const {
616    return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
617  }
618
619  /// This function returns the maximum number of store operations permitted
620  /// to replace a call to llvm.memcpy. The value is set by the target at the
621  /// performance threshold for such a replacement. If OptSize is true,
622  /// return the limit for functions that have OptSize attribute.
623  /// @brief Get maximum # of store operations permitted for llvm.memcpy
624  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
625    return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
626  }
627
628  /// This function returns the maximum number of store operations permitted
629  /// to replace a call to llvm.memmove. The value is set by the target at the
630  /// performance threshold for such a replacement. If OptSize is true,
631  /// return the limit for functions that have OptSize attribute.
632  /// @brief Get maximum # of store operations permitted for llvm.memmove
633  unsigned getMaxStoresPerMemmove(bool OptSize) const {
634    return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
635  }
636
637  /// This function returns true if the target allows unaligned memory accesses.
638  /// of the specified type. This is used, for example, in situations where an
639  /// array copy/move/set is  converted to a sequence of store operations. It's
640  /// use helps to ensure that such replacements don't generate code that causes
641  /// an alignment error  (trap) on the target machine.
642  /// @brief Determine if the target supports unaligned memory accesses.
643  virtual bool allowsUnalignedMemoryAccesses(EVT) const {
644    return false;
645  }
646
647  /// This function returns true if the target would benefit from code placement
648  /// optimization.
649  /// @brief Determine if the target should perform code placement optimization.
650  bool shouldOptimizeCodePlacement() const {
651    return benefitFromCodePlacementOpt;
652  }
653
654  /// getOptimalMemOpType - Returns the target specific optimal type for load
655  /// and store operations as a result of memset, memcpy, and memmove
656  /// lowering. If DstAlign is zero that means it's safe to destination
657  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
658  /// means there isn't a need to check it against alignment requirement,
659  /// probably because the source does not need to be loaded. If
660  /// 'IsZeroVal' is true, that means it's safe to return a
661  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
662  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
663  /// constant so it does not need to be loaded.
664  /// It returns EVT::Other if the type should be determined using generic
665  /// target-independent logic.
666  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
667                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
668                                  bool /*IsZeroVal*/,
669                                  bool /*MemcpyStrSrc*/,
670                                  MachineFunction &/*MF*/) const {
671    return MVT::Other;
672  }
673
674  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
675  /// to implement llvm.setjmp.
676  bool usesUnderscoreSetJmp() const {
677    return UseUnderscoreSetJmp;
678  }
679
680  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
681  /// to implement llvm.longjmp.
682  bool usesUnderscoreLongJmp() const {
683    return UseUnderscoreLongJmp;
684  }
685
686  /// getStackPointerRegisterToSaveRestore - If a physical register, this
687  /// specifies the register that llvm.savestack/llvm.restorestack should save
688  /// and restore.
689  unsigned getStackPointerRegisterToSaveRestore() const {
690    return StackPointerRegisterToSaveRestore;
691  }
692
693  /// getExceptionAddressRegister - If a physical register, this returns
694  /// the register that receives the exception address on entry to a landing
695  /// pad.
696  unsigned getExceptionAddressRegister() const {
697    return ExceptionPointerRegister;
698  }
699
700  /// getExceptionSelectorRegister - If a physical register, this returns
701  /// the register that receives the exception typeid on entry to a landing
702  /// pad.
703  unsigned getExceptionSelectorRegister() const {
704    return ExceptionSelectorRegister;
705  }
706
707  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
708  /// set, the default is 200)
709  unsigned getJumpBufSize() const {
710    return JumpBufSize;
711  }
712
713  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
714  /// (if never set, the default is 0)
715  unsigned getJumpBufAlignment() const {
716    return JumpBufAlignment;
717  }
718
719  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
720  /// argument.
721  unsigned getMinStackArgumentAlignment() const {
722    return MinStackArgumentAlignment;
723  }
724
725  /// getMinFunctionAlignment - return the minimum function alignment.
726  ///
727  unsigned getMinFunctionAlignment() const {
728    return MinFunctionAlignment;
729  }
730
731  /// getPrefFunctionAlignment - return the preferred function alignment.
732  ///
733  unsigned getPrefFunctionAlignment() const {
734    return PrefFunctionAlignment;
735  }
736
737  /// getPrefLoopAlignment - return the preferred loop alignment.
738  ///
739  unsigned getPrefLoopAlignment() const {
740    return PrefLoopAlignment;
741  }
742
743  /// getShouldFoldAtomicFences - return whether the combiner should fold
744  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
745  ///
746  bool getShouldFoldAtomicFences() const {
747    return ShouldFoldAtomicFences;
748  }
749
750  /// getInsertFencesFor - return whether the DAG builder should automatically
751  /// insert fences and reduce ordering for atomics.
752  ///
753  bool getInsertFencesForAtomic() const {
754    return InsertFencesForAtomic;
755  }
756
757  /// getPreIndexedAddressParts - returns true by value, base pointer and
758  /// offset pointer and addressing mode by reference if the node's address
759  /// can be legally represented as pre-indexed load / store address.
760  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
761                                         SDValue &/*Offset*/,
762                                         ISD::MemIndexedMode &/*AM*/,
763                                         SelectionDAG &/*DAG*/) const {
764    return false;
765  }
766
767  /// getPostIndexedAddressParts - returns true by value, base pointer and
768  /// offset pointer and addressing mode by reference if this node can be
769  /// combined with a load / store to form a post-indexed load / store.
770  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
771                                          SDValue &/*Base*/, SDValue &/*Offset*/,
772                                          ISD::MemIndexedMode &/*AM*/,
773                                          SelectionDAG &/*DAG*/) const {
774    return false;
775  }
776
777  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
778  /// current function.  The returned value is a member of the
779  /// MachineJumpTableInfo::JTEntryKind enum.
780  virtual unsigned getJumpTableEncoding() const;
781
782  virtual const MCExpr *
783  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
784                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
785                            MCContext &/*Ctx*/) const {
786    assert(0 && "Need to implement this hook if target has custom JTIs");
787    return 0;
788  }
789
790  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
791  /// jumptable.
792  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
793                                           SelectionDAG &DAG) const;
794
795  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
796  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
797  /// MCExpr.
798  virtual const MCExpr *
799  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
800                               unsigned JTI, MCContext &Ctx) const;
801
802  /// isOffsetFoldingLegal - Return true if folding a constant offset
803  /// with the given GlobalAddress is legal.  It is frequently not legal in
804  /// PIC relocation models.
805  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
806
807  /// getStackCookieLocation - Return true if the target stores stack
808  /// protector cookies at a fixed offset in some non-standard address
809  /// space, and populates the address space and offset as
810  /// appropriate.
811  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
812                                      unsigned &/*Offset*/) const {
813    return false;
814  }
815
816  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
817  /// used for loads / stores from the global.
818  virtual unsigned getMaximalGlobalOffset() const {
819    return 0;
820  }
821
822  //===--------------------------------------------------------------------===//
823  // TargetLowering Optimization Methods
824  //
825
826  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
827  /// SDValues for returning information from TargetLowering to its clients
828  /// that want to combine
829  struct TargetLoweringOpt {
830    SelectionDAG &DAG;
831    bool LegalTys;
832    bool LegalOps;
833    SDValue Old;
834    SDValue New;
835
836    explicit TargetLoweringOpt(SelectionDAG &InDAG,
837                               bool LT, bool LO) :
838      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
839
840    bool LegalTypes() const { return LegalTys; }
841    bool LegalOperations() const { return LegalOps; }
842
843    bool CombineTo(SDValue O, SDValue N) {
844      Old = O;
845      New = N;
846      return true;
847    }
848
849    /// ShrinkDemandedConstant - Check to see if the specified operand of the
850    /// specified instruction is a constant integer.  If so, check to see if
851    /// there are any bits set in the constant that are not demanded.  If so,
852    /// shrink the constant and return true.
853    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
854
855    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
856    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
857    /// cast, but it could be generalized for targets with other types of
858    /// implicit widening casts.
859    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
860                          DebugLoc dl);
861  };
862
863  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
864  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
865  /// use this information to simplify Op, create a new simplified DAG node and
866  /// return true, returning the original and new nodes in Old and New.
867  /// Otherwise, analyze the expression and return a mask of KnownOne and
868  /// KnownZero bits for the expression (used to simplify the caller).
869  /// The KnownZero/One bits may only be accurate for those bits in the
870  /// DemandedMask.
871  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
872                            APInt &KnownZero, APInt &KnownOne,
873                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
874
875  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
876  /// Mask are known to be either zero or one and return them in the
877  /// KnownZero/KnownOne bitsets.
878  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
879                                              const APInt &Mask,
880                                              APInt &KnownZero,
881                                              APInt &KnownOne,
882                                              const SelectionDAG &DAG,
883                                              unsigned Depth = 0) const;
884
885  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
886  /// targets that want to expose additional information about sign bits to the
887  /// DAG Combiner.
888  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
889                                                   unsigned Depth = 0) const;
890
891  struct DAGCombinerInfo {
892    void *DC;  // The DAG Combiner object.
893    bool BeforeLegalize;
894    bool BeforeLegalizeOps;
895    bool CalledByLegalizer;
896  public:
897    SelectionDAG &DAG;
898
899    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
900      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
901        CalledByLegalizer(cl), DAG(dag) {}
902
903    bool isBeforeLegalize() const { return BeforeLegalize; }
904    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
905    bool isCalledByLegalizer() const { return CalledByLegalizer; }
906
907    void AddToWorklist(SDNode *N);
908    void RemoveFromWorklist(SDNode *N);
909    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
910                      bool AddTo = true);
911    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
912    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
913
914    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
915  };
916
917  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
918  /// and cc. If it is unable to simplify it, return a null SDValue.
919  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
920                          ISD::CondCode Cond, bool foldBooleans,
921                          DAGCombinerInfo &DCI, DebugLoc dl) const;
922
923  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
924  /// node is a GlobalAddress + offset.
925  virtual bool
926  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
927
928  /// PerformDAGCombine - This method will be invoked for all target nodes and
929  /// for any target-independent nodes that the target has registered with
930  /// invoke it for.
931  ///
932  /// The semantics are as follows:
933  /// Return Value:
934  ///   SDValue.Val == 0   - No change was made
935  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
936  ///   otherwise          - N should be replaced by the returned Operand.
937  ///
938  /// In addition, methods provided by DAGCombinerInfo may be used to perform
939  /// more complex transformations.
940  ///
941  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
942
943  /// isTypeDesirableForOp - Return true if the target has native support for
944  /// the specified value type and it is 'desirable' to use the type for the
945  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
946  /// instruction encodings are longer and some i16 instructions are slow.
947  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
948    // By default, assume all legal types are desirable.
949    return isTypeLegal(VT);
950  }
951
952  /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
953  /// to transform a floating point op of specified opcode to a equivalent op of
954  /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
955  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
956                                                 EVT /*VT*/) const {
957    return false;
958  }
959
960  /// IsDesirableToPromoteOp - This method query the target whether it is
961  /// beneficial for dag combiner to promote the specified node. If true, it
962  /// should return the desired promotion type by reference.
963  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
964    return false;
965  }
966
967  //===--------------------------------------------------------------------===//
968  // TargetLowering Configuration Methods - These methods should be invoked by
969  // the derived class constructor to configure this object for the target.
970  //
971
972protected:
973  /// setBooleanContents - Specify how the target extends the result of a
974  /// boolean value from i1 to a wider type.  See getBooleanContents.
975  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
976  /// setBooleanVectorContents - Specify how the target extends the result
977  /// of a vector boolean value from a vector of i1 to a wider type.  See
978  /// getBooleanContents.
979  void setBooleanVectorContents(BooleanContent Ty) {
980    BooleanVectorContents = Ty;
981  }
982
983  /// setSchedulingPreference - Specify the target scheduling preference.
984  void setSchedulingPreference(Sched::Preference Pref) {
985    SchedPreferenceInfo = Pref;
986  }
987
988  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
989  /// use _setjmp to implement llvm.setjmp or the non _ version.
990  /// Defaults to false.
991  void setUseUnderscoreSetJmp(bool Val) {
992    UseUnderscoreSetJmp = Val;
993  }
994
995  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
996  /// use _longjmp to implement llvm.longjmp or the non _ version.
997  /// Defaults to false.
998  void setUseUnderscoreLongJmp(bool Val) {
999    UseUnderscoreLongJmp = Val;
1000  }
1001
1002  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
1003  /// specifies the register that llvm.savestack/llvm.restorestack should save
1004  /// and restore.
1005  void setStackPointerRegisterToSaveRestore(unsigned R) {
1006    StackPointerRegisterToSaveRestore = R;
1007  }
1008
1009  /// setExceptionPointerRegister - If set to a physical register, this sets
1010  /// the register that receives the exception address on entry to a landing
1011  /// pad.
1012  void setExceptionPointerRegister(unsigned R) {
1013    ExceptionPointerRegister = R;
1014  }
1015
1016  /// setExceptionSelectorRegister - If set to a physical register, this sets
1017  /// the register that receives the exception typeid on entry to a landing
1018  /// pad.
1019  void setExceptionSelectorRegister(unsigned R) {
1020    ExceptionSelectorRegister = R;
1021  }
1022
1023  /// SelectIsExpensive - Tells the code generator not to expand operations
1024  /// into sequences that use the select operations if possible.
1025  void setSelectIsExpensive(bool isExpensive = true) {
1026    SelectIsExpensive = isExpensive;
1027  }
1028
1029  /// JumpIsExpensive - Tells the code generator not to expand sequence of
1030  /// operations into a separate sequences that increases the amount of
1031  /// flow control.
1032  void setJumpIsExpensive(bool isExpensive = true) {
1033    JumpIsExpensive = isExpensive;
1034  }
1035
1036  /// setIntDivIsCheap - Tells the code generator that integer divide is
1037  /// expensive, and if possible, should be replaced by an alternate sequence
1038  /// of instructions not containing an integer divide.
1039  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1040
1041  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1042  /// srl/add/sra for a signed divide by power of two, and let the target handle
1043  /// it.
1044  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1045
1046  /// addRegisterClass - Add the specified register class as an available
1047  /// regclass for the specified value type.  This indicates the selector can
1048  /// handle values of that class natively.
1049  void addRegisterClass(EVT VT, TargetRegisterClass *RC) {
1050    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
1051    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1052    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
1053  }
1054
1055  /// findRepresentativeClass - Return the largest legal super-reg register class
1056  /// of the register class for the specified type and its associated "cost".
1057  virtual std::pair<const TargetRegisterClass*, uint8_t>
1058  findRepresentativeClass(EVT VT) const;
1059
1060  /// computeRegisterProperties - Once all of the register classes are added,
1061  /// this allows us to compute derived properties we expose.
1062  void computeRegisterProperties();
1063
1064  /// setOperationAction - Indicate that the specified operation does not work
1065  /// with the specified type and indicate what to do about it.
1066  void setOperationAction(unsigned Op, MVT VT,
1067                          LegalizeAction Action) {
1068    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1069    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1070  }
1071
1072  /// setLoadExtAction - Indicate that the specified load with extension does
1073  /// not work with the specified type and indicate what to do about it.
1074  void setLoadExtAction(unsigned ExtType, MVT VT,
1075                        LegalizeAction Action) {
1076    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1077           "Table isn't big enough!");
1078    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1079  }
1080
1081  /// setTruncStoreAction - Indicate that the specified truncating store does
1082  /// not work with the specified type and indicate what to do about it.
1083  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1084                           LegalizeAction Action) {
1085    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1086           "Table isn't big enough!");
1087    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1088  }
1089
1090  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1091  /// does not work with the specified type and indicate what to do abort
1092  /// it. NOTE: All indexed mode loads are initialized to Expand in
1093  /// TargetLowering.cpp
1094  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1095                            LegalizeAction Action) {
1096    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1097           (unsigned)Action < 0xf && "Table isn't big enough!");
1098    // Load action are kept in the upper half.
1099    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1100    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1101  }
1102
1103  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1104  /// does not work with the specified type and indicate what to do about
1105  /// it. NOTE: All indexed mode stores are initialized to Expand in
1106  /// TargetLowering.cpp
1107  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1108                             LegalizeAction Action) {
1109    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1110           (unsigned)Action < 0xf && "Table isn't big enough!");
1111    // Store action are kept in the lower half.
1112    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1113    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1114  }
1115
1116  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1117  /// supported on the target and indicate what to do about it.
1118  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1119                         LegalizeAction Action) {
1120    assert(VT < MVT::LAST_VALUETYPE &&
1121           (unsigned)CC < array_lengthof(CondCodeActions) &&
1122           "Table isn't big enough!");
1123    CondCodeActions[(unsigned)CC] &= ~(uint64_t(3UL)  << VT.SimpleTy*2);
1124    CondCodeActions[(unsigned)CC] |= (uint64_t)Action << VT.SimpleTy*2;
1125  }
1126
1127  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1128  /// promotion code defaults to trying a larger integer/fp until it can find
1129  /// one that works.  If that default is insufficient, this method can be used
1130  /// by the target to override the default.
1131  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1132    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1133  }
1134
1135  /// setTargetDAGCombine - Targets should invoke this method for each target
1136  /// independent node that they want to provide a custom DAG combiner for by
1137  /// implementing the PerformDAGCombine virtual method.
1138  void setTargetDAGCombine(ISD::NodeType NT) {
1139    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1140    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1141  }
1142
1143  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1144  /// bytes); default is 200
1145  void setJumpBufSize(unsigned Size) {
1146    JumpBufSize = Size;
1147  }
1148
1149  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1150  /// alignment (in bytes); default is 0
1151  void setJumpBufAlignment(unsigned Align) {
1152    JumpBufAlignment = Align;
1153  }
1154
1155  /// setMinFunctionAlignment - Set the target's minimum function alignment (in
1156  /// log2(bytes))
1157  void setMinFunctionAlignment(unsigned Align) {
1158    MinFunctionAlignment = Align;
1159  }
1160
1161  /// setPrefFunctionAlignment - Set the target's preferred function alignment.
1162  /// This should be set if there is a performance benefit to
1163  /// higher-than-minimum alignment (in log2(bytes))
1164  void setPrefFunctionAlignment(unsigned Align) {
1165    PrefFunctionAlignment = Align;
1166  }
1167
1168  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1169  /// alignment is zero, it means the target does not care about loop alignment.
1170  /// The alignment is specified in log2(bytes).
1171  void setPrefLoopAlignment(unsigned Align) {
1172    PrefLoopAlignment = Align;
1173  }
1174
1175  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1176  /// argument (in log2(bytes)).
1177  void setMinStackArgumentAlignment(unsigned Align) {
1178    MinStackArgumentAlignment = Align;
1179  }
1180
1181  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1182  /// atomic operation intrinsics includes locking. Default is false.
1183  void setShouldFoldAtomicFences(bool fold) {
1184    ShouldFoldAtomicFences = fold;
1185  }
1186
1187  /// setInsertFencesForAtomic - Set if the the DAG builder should
1188  /// automatically insert fences and reduce the order of atomic memory
1189  /// operations to Monotonic.
1190  void setInsertFencesForAtomic(bool fence) {
1191    InsertFencesForAtomic = fence;
1192  }
1193
1194public:
1195  //===--------------------------------------------------------------------===//
1196  // Lowering methods - These methods must be implemented by targets so that
1197  // the SelectionDAGLowering code knows how to lower these.
1198  //
1199
1200  /// LowerFormalArguments - This hook must be implemented to lower the
1201  /// incoming (formal) arguments, described by the Ins array, into the
1202  /// specified DAG. The implementation should fill in the InVals array
1203  /// with legal-type argument values, and return the resulting token
1204  /// chain value.
1205  ///
1206  virtual SDValue
1207    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1208                         bool /*isVarArg*/,
1209                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1210                         DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1211                         SmallVectorImpl<SDValue> &/*InVals*/) const {
1212    assert(0 && "Not Implemented");
1213    return SDValue();    // this is here to silence compiler errors
1214  }
1215
1216  /// LowerCallTo - This function lowers an abstract call to a function into an
1217  /// actual call.  This returns a pair of operands.  The first element is the
1218  /// return value for the function (if RetTy is not VoidTy).  The second
1219  /// element is the outgoing token chain. It calls LowerCall to do the actual
1220  /// lowering.
1221  struct ArgListEntry {
1222    SDValue Node;
1223    Type* Ty;
1224    bool isSExt  : 1;
1225    bool isZExt  : 1;
1226    bool isInReg : 1;
1227    bool isSRet  : 1;
1228    bool isNest  : 1;
1229    bool isByVal : 1;
1230    uint16_t Alignment;
1231
1232    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1233      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1234  };
1235  typedef std::vector<ArgListEntry> ArgListTy;
1236  std::pair<SDValue, SDValue>
1237  LowerCallTo(SDValue Chain, Type *RetTy, bool RetSExt, bool RetZExt,
1238              bool isVarArg, bool isInreg, unsigned NumFixedArgs,
1239              CallingConv::ID CallConv, bool isTailCall,
1240              bool isReturnValueUsed, SDValue Callee, ArgListTy &Args,
1241              SelectionDAG &DAG, DebugLoc dl) const;
1242
1243  /// LowerCall - This hook must be implemented to lower calls into the
1244  /// the specified DAG. The outgoing arguments to the call are described
1245  /// by the Outs array, and the values to be returned by the call are
1246  /// described by the Ins array. The implementation should fill in the
1247  /// InVals array with legal-type return values from the call, and return
1248  /// the resulting token chain value.
1249  virtual SDValue
1250    LowerCall(SDValue /*Chain*/, SDValue /*Callee*/,
1251              CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
1252              bool &/*isTailCall*/,
1253              const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1254              const SmallVectorImpl<SDValue> &/*OutVals*/,
1255              const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1256              DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1257              SmallVectorImpl<SDValue> &/*InVals*/) const {
1258    assert(0 && "Not Implemented");
1259    return SDValue();    // this is here to silence compiler errors
1260  }
1261
1262  /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
1263  virtual void HandleByVal(CCState *, unsigned &) const {}
1264
1265  /// CanLowerReturn - This hook should be implemented to check whether the
1266  /// return values described by the Outs array can fit into the return
1267  /// registers.  If false is returned, an sret-demotion is performed.
1268  ///
1269  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
1270			      MachineFunction &/*MF*/, bool /*isVarArg*/,
1271               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1272               LLVMContext &/*Context*/) const
1273  {
1274    // Return true by default to get preexisting behavior.
1275    return true;
1276  }
1277
1278  /// LowerReturn - This hook must be implemented to lower outgoing
1279  /// return values, described by the Outs array, into the specified
1280  /// DAG. The implementation should return the resulting token chain
1281  /// value.
1282  ///
1283  virtual SDValue
1284    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1285                bool /*isVarArg*/,
1286                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1287                const SmallVectorImpl<SDValue> &/*OutVals*/,
1288                DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
1289    assert(0 && "Not Implemented");
1290    return SDValue();    // this is here to silence compiler errors
1291  }
1292
1293  /// isUsedByReturnOnly - Return true if result of the specified node is used
1294  /// by a return node only. This is used to determine whether it is possible
1295  /// to codegen a libcall as tail call at legalization time.
1296  virtual bool isUsedByReturnOnly(SDNode *) const {
1297    return false;
1298  }
1299
1300  /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
1301  /// call instruction as a tail call. This is used by optimization passes to
1302  /// determine if it's profitable to duplicate return instructions to enable
1303  /// tailcall optimization.
1304  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
1305    return false;
1306  }
1307
1308  /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
1309  /// sign extend a zeroext/signext integer argument or return value.
1310  /// FIXME: Most C calling convention requires the return type to be promoted,
1311  /// but this is not true all the time, e.g. i1 on x86-64. It is also not
1312  /// necessary for non-C calling conventions. The frontend should handle this
1313  /// and include all of the necessary information.
1314  virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1315                                       ISD::NodeType /*ExtendKind*/) const {
1316    EVT MinVT = getRegisterType(Context, MVT::i32);
1317    return VT.bitsLT(MinVT) ? MinVT : VT;
1318  }
1319
1320  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1321  /// to legalize nodes with an illegal operand type but legal result types.
1322  /// It replaces the LowerOperation callback in the type Legalizer.
1323  /// The reason we can not do away with LowerOperation entirely is that
1324  /// LegalizeDAG isn't yet ready to use this callback.
1325  /// TODO: Consider merging with ReplaceNodeResults.
1326
1327  /// The target places new result values for the node in Results (their number
1328  /// and types must exactly match those of the original return values of
1329  /// the node), or leaves Results empty, which indicates that the node is not
1330  /// to be custom lowered after all.
1331  /// The default implementation calls LowerOperation.
1332  virtual void LowerOperationWrapper(SDNode *N,
1333                                     SmallVectorImpl<SDValue> &Results,
1334                                     SelectionDAG &DAG) const;
1335
1336  /// LowerOperation - This callback is invoked for operations that are
1337  /// unsupported by the target, which are registered to use 'custom' lowering,
1338  /// and whose defined values are all legal.
1339  /// If the target has no operations that require custom lowering, it need not
1340  /// implement this.  The default implementation of this aborts.
1341  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1342
1343  /// ReplaceNodeResults - This callback is invoked when a node result type is
1344  /// illegal for the target, and the operation was registered to use 'custom'
1345  /// lowering for that result type.  The target places new result values for
1346  /// the node in Results (their number and types must exactly match those of
1347  /// the original return values of the node), or leaves Results empty, which
1348  /// indicates that the node is not to be custom lowered after all.
1349  ///
1350  /// If the target has no operations that require custom lowering, it need not
1351  /// implement this.  The default implementation aborts.
1352  virtual void ReplaceNodeResults(SDNode * /*N*/,
1353                                  SmallVectorImpl<SDValue> &/*Results*/,
1354                                  SelectionDAG &/*DAG*/) const {
1355    assert(0 && "ReplaceNodeResults not implemented for this target!");
1356  }
1357
1358  /// getTargetNodeName() - This method returns the name of a target specific
1359  /// DAG node.
1360  virtual const char *getTargetNodeName(unsigned Opcode) const;
1361
1362  /// createFastISel - This method returns a target specific FastISel object,
1363  /// or null if the target does not support "fast" ISel.
1364  virtual FastISel *createFastISel(FunctionLoweringInfo &) const {
1365    return 0;
1366  }
1367
1368  //===--------------------------------------------------------------------===//
1369  // Inline Asm Support hooks
1370  //
1371
1372  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1373  /// call to be explicit llvm code if it wants to.  This is useful for
1374  /// turning simple inline asms into LLVM intrinsics, which gives the
1375  /// compiler more information about the behavior of the code.
1376  virtual bool ExpandInlineAsm(CallInst *) const {
1377    return false;
1378  }
1379
1380  enum ConstraintType {
1381    C_Register,            // Constraint represents specific register(s).
1382    C_RegisterClass,       // Constraint represents any of register(s) in class.
1383    C_Memory,              // Memory constraint.
1384    C_Other,               // Something else.
1385    C_Unknown              // Unsupported constraint.
1386  };
1387
1388  enum ConstraintWeight {
1389    // Generic weights.
1390    CW_Invalid  = -1,     // No match.
1391    CW_Okay     = 0,      // Acceptable.
1392    CW_Good     = 1,      // Good weight.
1393    CW_Better   = 2,      // Better weight.
1394    CW_Best     = 3,      // Best weight.
1395
1396    // Well-known weights.
1397    CW_SpecificReg  = CW_Okay,    // Specific register operands.
1398    CW_Register     = CW_Good,    // Register operands.
1399    CW_Memory       = CW_Better,  // Memory operands.
1400    CW_Constant     = CW_Best,    // Constant operand.
1401    CW_Default      = CW_Okay     // Default or don't know type.
1402  };
1403
1404  /// AsmOperandInfo - This contains information for each constraint that we are
1405  /// lowering.
1406  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1407    /// ConstraintCode - This contains the actual string for the code, like "m".
1408    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1409    /// most closely matches the operand.
1410    std::string ConstraintCode;
1411
1412    /// ConstraintType - Information about the constraint code, e.g. Register,
1413    /// RegisterClass, Memory, Other, Unknown.
1414    TargetLowering::ConstraintType ConstraintType;
1415
1416    /// CallOperandval - If this is the result output operand or a
1417    /// clobber, this is null, otherwise it is the incoming operand to the
1418    /// CallInst.  This gets modified as the asm is processed.
1419    Value *CallOperandVal;
1420
1421    /// ConstraintVT - The ValueType for the operand value.
1422    EVT ConstraintVT;
1423
1424    /// isMatchingInputConstraint - Return true of this is an input operand that
1425    /// is a matching constraint like "4".
1426    bool isMatchingInputConstraint() const;
1427
1428    /// getMatchedOperand - If this is an input matching constraint, this method
1429    /// returns the output operand it matches.
1430    unsigned getMatchedOperand() const;
1431
1432    /// Copy constructor for copying from an AsmOperandInfo.
1433    AsmOperandInfo(const AsmOperandInfo &info)
1434      : InlineAsm::ConstraintInfo(info),
1435        ConstraintCode(info.ConstraintCode),
1436        ConstraintType(info.ConstraintType),
1437        CallOperandVal(info.CallOperandVal),
1438        ConstraintVT(info.ConstraintVT) {
1439    }
1440
1441    /// Copy constructor for copying from a ConstraintInfo.
1442    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1443      : InlineAsm::ConstraintInfo(info),
1444        ConstraintType(TargetLowering::C_Unknown),
1445        CallOperandVal(0), ConstraintVT(MVT::Other) {
1446    }
1447  };
1448
1449  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
1450
1451  /// ParseConstraints - Split up the constraint string from the inline
1452  /// assembly value into the specific constraints and their prefixes,
1453  /// and also tie in the associated operand values.
1454  /// If this returns an empty vector, and if the constraint string itself
1455  /// isn't empty, there was an error parsing.
1456  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
1457
1458  /// Examine constraint type and operand type and determine a weight value.
1459  /// The operand object must already have been set up with the operand type.
1460  virtual ConstraintWeight getMultipleConstraintMatchWeight(
1461      AsmOperandInfo &info, int maIndex) const;
1462
1463  /// Examine constraint string and operand type and determine a weight value.
1464  /// The operand object must already have been set up with the operand type.
1465  virtual ConstraintWeight getSingleConstraintMatchWeight(
1466      AsmOperandInfo &info, const char *constraint) const;
1467
1468  /// ComputeConstraintToUse - Determines the constraint code and constraint
1469  /// type to use for the specific AsmOperandInfo, setting
1470  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1471  /// being passed in is available, it can be passed in as Op, otherwise an
1472  /// empty SDValue can be passed.
1473  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1474                                      SDValue Op,
1475                                      SelectionDAG *DAG = 0) const;
1476
1477  /// getConstraintType - Given a constraint, return the type of constraint it
1478  /// is for this target.
1479  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1480
1481  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1482  /// {edx}), return the register number and the register class for the
1483  /// register.
1484  ///
1485  /// Given a register class constraint, like 'r', if this corresponds directly
1486  /// to an LLVM register class, return a register of 0 and the register class
1487  /// pointer.
1488  ///
1489  /// This should only be used for C_Register constraints.  On error,
1490  /// this returns a register number of 0 and a null register class pointer..
1491  virtual std::pair<unsigned, const TargetRegisterClass*>
1492    getRegForInlineAsmConstraint(const std::string &Constraint,
1493                                 EVT VT) const;
1494
1495  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1496  /// with another that has more specific requirements based on the type of the
1497  /// corresponding operand.  This returns null if there is no replacement to
1498  /// make.
1499  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1500
1501  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1502  /// vector.  If it is invalid, don't add anything to Ops.
1503  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1504                                            std::vector<SDValue> &Ops,
1505                                            SelectionDAG &DAG) const;
1506
1507  //===--------------------------------------------------------------------===//
1508  // Instruction Emitting Hooks
1509  //
1510
1511  // EmitInstrWithCustomInserter - This method should be implemented by targets
1512  // that mark instructions with the 'usesCustomInserter' flag.  These
1513  // instructions are special in various ways, which require special support to
1514  // insert.  The specified MachineInstr is created but not inserted into any
1515  // basic blocks, and this method is called to expand it into a sequence of
1516  // instructions, potentially also creating new basic blocks and control flow.
1517  virtual MachineBasicBlock *
1518    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1519
1520  /// AdjustInstrPostInstrSelection - This method should be implemented by
1521  /// targets that mark instructions with the 'hasPostISelHook' flag. These
1522  /// instructions must be adjusted after instruction selection by target hooks.
1523  /// e.g. To fill in optional defs for ARM 's' setting instructions.
1524  virtual void
1525  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
1526
1527  //===--------------------------------------------------------------------===//
1528  // Addressing mode description hooks (used by LSR etc).
1529  //
1530
1531  /// AddrMode - This represents an addressing mode of:
1532  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1533  /// If BaseGV is null,  there is no BaseGV.
1534  /// If BaseOffs is zero, there is no base offset.
1535  /// If HasBaseReg is false, there is no base register.
1536  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1537  /// no scale.
1538  ///
1539  struct AddrMode {
1540    GlobalValue *BaseGV;
1541    int64_t      BaseOffs;
1542    bool         HasBaseReg;
1543    int64_t      Scale;
1544    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1545  };
1546
1547  /// isLegalAddressingMode - Return true if the addressing mode represented by
1548  /// AM is legal for this target, for a load/store of the specified type.
1549  /// The type may be VoidTy, in which case only return true if the addressing
1550  /// mode is legal for a load/store of any legal type.
1551  /// TODO: Handle pre/postinc as well.
1552  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1553
1554  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1555  /// icmp immediate, that is the target has icmp instructions which can compare
1556  /// a register against the immediate without having to materialize the
1557  /// immediate into a register.
1558  virtual bool isLegalICmpImmediate(int64_t) const {
1559    return true;
1560  }
1561
1562  /// isLegalAddImmediate - Return true if the specified immediate is legal
1563  /// add immediate, that is the target has add instructions which can add
1564  /// a register with the immediate without having to materialize the
1565  /// immediate into a register.
1566  virtual bool isLegalAddImmediate(int64_t) const {
1567    return true;
1568  }
1569
1570  /// isTruncateFree - Return true if it's free to truncate a value of
1571  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1572  /// register EAX to i16 by referencing its sub-register AX.
1573  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1574    return false;
1575  }
1576
1577  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1578    return false;
1579  }
1580
1581  /// isZExtFree - Return true if any actual instruction that defines a
1582  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1583  /// register. This does not necessarily include registers defined in
1584  /// unknown ways, such as incoming arguments, or copies from unknown
1585  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1586  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1587  /// all instructions that define 32-bit values implicit zero-extend the
1588  /// result out to 64 bits.
1589  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1590    return false;
1591  }
1592
1593  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1594    return false;
1595  }
1596
1597  /// isNarrowingProfitable - Return true if it's profitable to narrow
1598  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1599  /// from i32 to i8 but not from i32 to i16.
1600  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1601    return false;
1602  }
1603
1604  //===--------------------------------------------------------------------===//
1605  // Div utility functions
1606  //
1607  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
1608                         SelectionDAG &DAG) const;
1609  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1610                      std::vector<SDNode*>* Created) const;
1611  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1612                      std::vector<SDNode*>* Created) const;
1613
1614
1615  //===--------------------------------------------------------------------===//
1616  // Runtime Library hooks
1617  //
1618
1619  /// setLibcallName - Rename the default libcall routine name for the specified
1620  /// libcall.
1621  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1622    LibcallRoutineNames[Call] = Name;
1623  }
1624
1625  /// getLibcallName - Get the libcall routine name for the specified libcall.
1626  ///
1627  const char *getLibcallName(RTLIB::Libcall Call) const {
1628    return LibcallRoutineNames[Call];
1629  }
1630
1631  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1632  /// result of the comparison libcall against zero.
1633  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1634    CmpLibcallCCs[Call] = CC;
1635  }
1636
1637  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1638  /// the comparison libcall against zero.
1639  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1640    return CmpLibcallCCs[Call];
1641  }
1642
1643  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1644  /// specified libcall.
1645  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1646    LibcallCallingConvs[Call] = CC;
1647  }
1648
1649  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1650  /// specified libcall.
1651  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1652    return LibcallCallingConvs[Call];
1653  }
1654
1655private:
1656  const TargetMachine &TM;
1657  const TargetData *TD;
1658  const TargetLoweringObjectFile &TLOF;
1659
1660  /// We are in the process of implementing a new TypeLegalization action
1661  /// which is the promotion of vector elements. This feature is under
1662  /// development. Until this feature is complete, it is only enabled using a
1663  /// flag. We pass this flag using a member because of circular dep issues.
1664  /// This member will be removed with the flag once we complete the transition.
1665  bool mayPromoteElements;
1666
1667  /// PointerTy - The type to use for pointers, usually i32 or i64.
1668  ///
1669  MVT PointerTy;
1670
1671  /// IsLittleEndian - True if this is a little endian target.
1672  ///
1673  bool IsLittleEndian;
1674
1675  /// SelectIsExpensive - Tells the code generator not to expand operations
1676  /// into sequences that use the select operations if possible.
1677  bool SelectIsExpensive;
1678
1679  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1680  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1681  /// a real cost model is in place.  If we ever optimize for size, this will be
1682  /// set to true unconditionally.
1683  bool IntDivIsCheap;
1684
1685  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1686  /// srl/add/sra for a signed divide by power of two, and let the target handle
1687  /// it.
1688  bool Pow2DivIsCheap;
1689
1690  /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1691  /// extra flow control instructions and should attempt to combine flow
1692  /// control instructions via predication.
1693  bool JumpIsExpensive;
1694
1695  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1696  /// llvm.setjmp.  Defaults to false.
1697  bool UseUnderscoreSetJmp;
1698
1699  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1700  /// llvm.longjmp.  Defaults to false.
1701  bool UseUnderscoreLongJmp;
1702
1703  /// BooleanContents - Information about the contents of the high-bits in
1704  /// boolean values held in a type wider than i1.  See getBooleanContents.
1705  BooleanContent BooleanContents;
1706  /// BooleanVectorContents - Information about the contents of the high-bits
1707  /// in boolean vector values when the element type is wider than i1.  See
1708  /// getBooleanContents.
1709  BooleanContent BooleanVectorContents;
1710
1711  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1712  /// total cycles or lowest register usage.
1713  Sched::Preference SchedPreferenceInfo;
1714
1715  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1716  unsigned JumpBufSize;
1717
1718  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1719  /// buffers
1720  unsigned JumpBufAlignment;
1721
1722  /// MinStackArgumentAlignment - The minimum alignment that any argument
1723  /// on the stack needs to have.
1724  ///
1725  unsigned MinStackArgumentAlignment;
1726
1727  /// MinFunctionAlignment - The minimum function alignment (used when
1728  /// optimizing for size, and to prevent explicitly provided alignment
1729  /// from leading to incorrect code).
1730  ///
1731  unsigned MinFunctionAlignment;
1732
1733  /// PrefFunctionAlignment - The preferred function alignment (used when
1734  /// alignment unspecified and optimizing for speed).
1735  ///
1736  unsigned PrefFunctionAlignment;
1737
1738  /// PrefLoopAlignment - The preferred loop alignment.
1739  ///
1740  unsigned PrefLoopAlignment;
1741
1742  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1743  /// be folded into the enclosed atomic intrinsic instruction by the
1744  /// combiner.
1745  bool ShouldFoldAtomicFences;
1746
1747  /// InsertFencesForAtomic - Whether the DAG builder should automatically
1748  /// insert fences and reduce ordering for atomics.  (This will be set for
1749  /// for most architectures with weak memory ordering.)
1750  bool InsertFencesForAtomic;
1751
1752  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1753  /// specifies the register that llvm.savestack/llvm.restorestack should save
1754  /// and restore.
1755  unsigned StackPointerRegisterToSaveRestore;
1756
1757  /// ExceptionPointerRegister - If set to a physical register, this specifies
1758  /// the register that receives the exception address on entry to a landing
1759  /// pad.
1760  unsigned ExceptionPointerRegister;
1761
1762  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1763  /// the register that receives the exception typeid on entry to a landing
1764  /// pad.
1765  unsigned ExceptionSelectorRegister;
1766
1767  /// RegClassForVT - This indicates the default register class to use for
1768  /// each ValueType the target supports natively.
1769  TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1770  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1771  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1772
1773  /// RepRegClassForVT - This indicates the "representative" register class to
1774  /// use for each ValueType the target supports natively. This information is
1775  /// used by the scheduler to track register pressure. By default, the
1776  /// representative register class is the largest legal super-reg register
1777  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1778  /// and i32's representative class would be GR32.
1779  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1780
1781  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1782  /// register class for each ValueType. The cost is used by the scheduler to
1783  /// approximate register pressure.
1784  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1785
1786  /// TransformToType - For any value types we are promoting or expanding, this
1787  /// contains the value type that we are changing to.  For Expanded types, this
1788  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1789  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1790  /// by the system, this holds the same type (e.g. i32 -> i32).
1791  EVT TransformToType[MVT::LAST_VALUETYPE];
1792
1793  /// OpActions - For each operation and each value type, keep a LegalizeAction
1794  /// that indicates how instruction selection should deal with the operation.
1795  /// Most operations are Legal (aka, supported natively by the target), but
1796  /// operations that are not should be described.  Note that operations on
1797  /// non-legal value types are not described here.
1798  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1799
1800  /// LoadExtActions - For each load extension type and each value type,
1801  /// keep a LegalizeAction that indicates how instruction selection should deal
1802  /// with a load of a specific value type and extension type.
1803  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1804
1805  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1806  /// indicates whether a truncating store of a specific value type and
1807  /// truncating type is legal.
1808  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1809
1810  /// IndexedModeActions - For each indexed mode and each value type,
1811  /// keep a pair of LegalizeAction that indicates how instruction
1812  /// selection should deal with the load / store.  The first dimension is the
1813  /// value_type for the reference. The second dimension represents the various
1814  /// modes for load store.
1815  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1816
1817  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1818  /// LegalizeAction that indicates how instruction selection should
1819  /// deal with the condition code.
1820  uint64_t CondCodeActions[ISD::SETCC_INVALID];
1821
1822  ValueTypeActionImpl ValueTypeActions;
1823
1824  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
1825
1826  LegalizeKind
1827  getTypeConversion(LLVMContext &Context, EVT VT) const {
1828    // If this is a simple type, use the ComputeRegisterProp mechanism.
1829    if (VT.isSimple()) {
1830      assert((unsigned)VT.getSimpleVT().SimpleTy <
1831             array_lengthof(TransformToType));
1832      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
1833      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
1834
1835      assert(
1836        (!(NVT.isSimple() && LA != TypeLegal) ||
1837         ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
1838         && "Promote may not follow Expand or Promote");
1839
1840      return LegalizeKind(LA, NVT);
1841    }
1842
1843    // Handle Extended Scalar Types.
1844    if (!VT.isVector()) {
1845      assert(VT.isInteger() && "Float types must be simple");
1846      unsigned BitSize = VT.getSizeInBits();
1847      // First promote to a power-of-two size, then expand if necessary.
1848      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1849        EVT NVT = VT.getRoundIntegerType(Context);
1850        assert(NVT != VT && "Unable to round integer VT");
1851        LegalizeKind NextStep = getTypeConversion(Context, NVT);
1852        // Avoid multi-step promotion.
1853        if (NextStep.first == TypePromoteInteger) return NextStep;
1854        // Return rounded integer type.
1855        return LegalizeKind(TypePromoteInteger, NVT);
1856      }
1857
1858      return LegalizeKind(TypeExpandInteger,
1859                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
1860    }
1861
1862    // Handle vector types.
1863    unsigned NumElts = VT.getVectorNumElements();
1864    EVT EltVT = VT.getVectorElementType();
1865
1866    // Vectors with only one element are always scalarized.
1867    if (NumElts == 1)
1868      return LegalizeKind(TypeScalarizeVector, EltVT);
1869
1870    // If we allow the promotion of vector elements using a flag,
1871    // then try to widen vector elements until a legal type is found.
1872    if (mayPromoteElements && EltVT.isInteger()) {
1873      // Vectors with a number of elements that is not a power of two are always
1874      // widened, for example <3 x float> -> <4 x float>.
1875      if (!VT.isPow2VectorType()) {
1876        NumElts = (unsigned)NextPowerOf2(NumElts);
1877        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1878        return LegalizeKind(TypeWidenVector, NVT);
1879      }
1880
1881      // Examine the element type.
1882      LegalizeKind LK = getTypeConversion(Context, EltVT);
1883
1884      // If type is to be expanded, split the vector.
1885      //  <4 x i140> -> <2 x i140>
1886      if (LK.first == TypeExpandInteger)
1887        return LegalizeKind(TypeSplitVector,
1888                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
1889
1890      // Promote the integer element types until a legal vector type is found
1891      // or until the element integer type is too big. If a legal type was not
1892      // found, fallback to the usual mechanism of widening/splitting the
1893      // vector.
1894      while (1) {
1895        // Increase the bitwidth of the element to the next pow-of-two
1896        // (which is greater than 8 bits).
1897        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
1898                                 ).getRoundIntegerType(Context);
1899
1900        // Stop trying when getting a non-simple element type.
1901        // Note that vector elements may be greater than legal vector element
1902        // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
1903        if (!EltVT.isSimple()) break;
1904
1905        // Build a new vector type and check if it is legal.
1906        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1907        // Found a legal promoted vector type.
1908        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1909          return LegalizeKind(TypePromoteInteger,
1910                              EVT::getVectorVT(Context, EltVT, NumElts));
1911      }
1912    }
1913
1914    // Try to widen the vector until a legal type is found.
1915    // If there is no wider legal type, split the vector.
1916    while (1) {
1917      // Round up to the next power of 2.
1918      NumElts = (unsigned)NextPowerOf2(NumElts);
1919
1920      // If there is no simple vector type with this many elements then there
1921      // cannot be a larger legal vector type.  Note that this assumes that
1922      // there are no skipped intermediate vector types in the simple types.
1923      if (!EltVT.isSimple()) break;
1924      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1925      if (LargerVector == MVT()) break;
1926
1927      // If this type is legal then widen the vector.
1928      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1929        return LegalizeKind(TypeWidenVector, LargerVector);
1930    }
1931
1932    // Widen odd vectors to next power of two.
1933    if (!VT.isPow2VectorType()) {
1934      EVT NVT = VT.getPow2VectorType(Context);
1935      return LegalizeKind(TypeWidenVector, NVT);
1936    }
1937
1938    // Vectors with illegal element types are expanded.
1939    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1940    return LegalizeKind(TypeSplitVector, NVT);
1941
1942    assert(false && "Unable to handle this kind of vector type");
1943    return LegalizeKind(TypeLegal, VT);
1944  }
1945
1946  std::vector<std::pair<EVT, TargetRegisterClass*> > AvailableRegClasses;
1947
1948  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
1949  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
1950  /// which sets a bit in this array.
1951  unsigned char
1952  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
1953
1954  /// PromoteToType - For operations that must be promoted to a specific type,
1955  /// this holds the destination type.  This map should be sparse, so don't hold
1956  /// it as an array.
1957  ///
1958  /// Targets add entries to this map with AddPromotedToType(..), clients access
1959  /// this with getTypeToPromoteTo(..).
1960  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
1961    PromoteToType;
1962
1963  /// LibcallRoutineNames - Stores the name each libcall.
1964  ///
1965  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
1966
1967  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
1968  /// of each of the comparison libcall against zero.
1969  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
1970
1971  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
1972  /// libcall.
1973  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
1974
1975protected:
1976  /// When lowering \@llvm.memset this field specifies the maximum number of
1977  /// store operations that may be substituted for the call to memset. Targets
1978  /// must set this value based on the cost threshold for that target. Targets
1979  /// should assume that the memset will be done using as many of the largest
1980  /// store operations first, followed by smaller ones, if necessary, per
1981  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
1982  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
1983  /// store.  This only applies to setting a constant array of a constant size.
1984  /// @brief Specify maximum number of store instructions per memset call.
1985  unsigned maxStoresPerMemset;
1986
1987  /// Maximum number of stores operations that may be substituted for the call
1988  /// to memset, used for functions with OptSize attribute.
1989  unsigned maxStoresPerMemsetOptSize;
1990
1991  /// When lowering \@llvm.memcpy this field specifies the maximum number of
1992  /// store operations that may be substituted for a call to memcpy. Targets
1993  /// must set this value based on the cost threshold for that target. Targets
1994  /// should assume that the memcpy will be done using as many of the largest
1995  /// store operations first, followed by smaller ones, if necessary, per
1996  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
1997  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
1998  /// and one 1-byte store. This only applies to copying a constant array of
1999  /// constant size.
2000  /// @brief Specify maximum bytes of store instructions per memcpy call.
2001  unsigned maxStoresPerMemcpy;
2002
2003  /// Maximum number of store operations that may be substituted for a call
2004  /// to memcpy, used for functions with OptSize attribute.
2005  unsigned maxStoresPerMemcpyOptSize;
2006
2007  /// When lowering \@llvm.memmove this field specifies the maximum number of
2008  /// store instructions that may be substituted for a call to memmove. Targets
2009  /// must set this value based on the cost threshold for that target. Targets
2010  /// should assume that the memmove will be done using as many of the largest
2011  /// store operations first, followed by smaller ones, if necessary, per
2012  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2013  /// with 8-bit alignment would result in nine 1-byte stores.  This only
2014  /// applies to copying a constant array of constant size.
2015  /// @brief Specify maximum bytes of store instructions per memmove call.
2016  unsigned maxStoresPerMemmove;
2017
2018  /// Maximum number of store instructions that may be substituted for a call
2019  /// to memmove, used for functions with OpSize attribute.
2020  unsigned maxStoresPerMemmoveOptSize;
2021
2022  /// This field specifies whether the target can benefit from code placement
2023  /// optimization.
2024  bool benefitFromCodePlacementOpt;
2025
2026private:
2027  /// isLegalRC - Return true if the value types that can be represented by the
2028  /// specified register class are all legal.
2029  bool isLegalRC(const TargetRegisterClass *RC) const;
2030
2031  /// hasLegalSuperRegRegClasses - Return true if the specified register class
2032  /// has one or more super-reg register classes that are legal.
2033  bool hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const;
2034};
2035
2036/// GetReturnInfo - Given an LLVM IR type and return type attributes,
2037/// compute the return value EVTs and flags, and optionally also
2038/// the offsets, if the return value is being lowered to memory.
2039void GetReturnInfo(Type* ReturnType, Attributes attr,
2040                   SmallVectorImpl<ISD::OutputArg> &Outs,
2041                   const TargetLowering &TLI,
2042                   SmallVectorImpl<uint64_t> *Offsets = 0);
2043
2044} // end llvm namespace
2045
2046#endif
2047