AliasAnalysis.cpp revision b9db52dcbcf4279270eab972f3d560b4e5654260
1//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the generic AliasAnalysis interface which is used as the
11// common interface used by all clients and implementations of alias analysis.
12//
13// This file also implements the default version of the AliasAnalysis interface
14// that is to be used when no other implementation is specified.  This does some
15// simple tests that detect obvious cases: two different global pointers cannot
16// alias, a global cannot alias a malloc, two different mallocs cannot alias,
17// etc.
18//
19// This alias analysis implementation really isn't very good for anything, but
20// it is very fast, and makes a nice clean default implementation.  Because it
21// handles lots of little corner cases, other, more complex, alias analysis
22// implementations may choose to rely on this pass to resolve these simple and
23// easy cases.
24//
25//===----------------------------------------------------------------------===//
26
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/Pass.h"
29#include "llvm/BasicBlock.h"
30#include "llvm/Function.h"
31#include "llvm/IntrinsicInst.h"
32#include "llvm/Instructions.h"
33#include "llvm/Type.h"
34#include "llvm/Target/TargetData.h"
35using namespace llvm;
36
37// Register the AliasAnalysis interface, providing a nice name to refer to.
38static RegisterAnalysisGroup<AliasAnalysis> Z("Alias Analysis");
39char AliasAnalysis::ID = 0;
40
41//===----------------------------------------------------------------------===//
42// Default chaining methods
43//===----------------------------------------------------------------------===//
44
45AliasAnalysis::AliasResult
46AliasAnalysis::alias(const Value *V1, unsigned V1Size,
47                     const Value *V2, unsigned V2Size) {
48  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
49  return AA->alias(V1, V1Size, V2, V2Size);
50}
51
52bool AliasAnalysis::pointsToConstantMemory(const Value *P) {
53  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
54  return AA->pointsToConstantMemory(P);
55}
56
57void AliasAnalysis::deleteValue(Value *V) {
58  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
59  AA->deleteValue(V);
60}
61
62void AliasAnalysis::copyValue(Value *From, Value *To) {
63  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
64  AA->copyValue(From, To);
65}
66
67AliasAnalysis::ModRefResult
68AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
69                             const Value *P, unsigned Size) {
70  // Don't assert AA because BasicAA calls us in order to make use of the
71  // logic here.
72
73  ModRefBehavior MRB = getModRefBehavior(CS);
74  if (MRB == DoesNotAccessMemory)
75    return NoModRef;
76
77  ModRefResult Mask = ModRef;
78  if (MRB == OnlyReadsMemory)
79    Mask = Ref;
80  else if (MRB == AliasAnalysis::AccessesArguments) {
81    bool doesAlias = false;
82    for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
83         AI != AE; ++AI)
84      if (!isNoAlias(*AI, ~0U, P, Size)) {
85        doesAlias = true;
86        break;
87      }
88
89    if (!doesAlias)
90      return NoModRef;
91  }
92
93  // If P points to a constant memory location, the call definitely could not
94  // modify the memory location.
95  if ((Mask & Mod) && pointsToConstantMemory(P))
96    Mask = ModRefResult(Mask & ~Mod);
97
98  // If this is BasicAA, don't forward.
99  if (!AA) return Mask;
100
101  // Otherwise, fall back to the next AA in the chain. But we can merge
102  // in any mask we've managed to compute.
103  return ModRefResult(AA->getModRefInfo(CS, P, Size) & Mask);
104}
105
106AliasAnalysis::ModRefResult
107AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
108  // Don't assert AA because BasicAA calls us in order to make use of the
109  // logic here.
110
111  // If CS1 or CS2 are readnone, they don't interact.
112  ModRefBehavior CS1B = getModRefBehavior(CS1);
113  if (CS1B == DoesNotAccessMemory) return NoModRef;
114
115  ModRefBehavior CS2B = getModRefBehavior(CS2);
116  if (CS2B == DoesNotAccessMemory) return NoModRef;
117
118  // If they both only read from memory, there is no dependence.
119  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
120    return NoModRef;
121
122  AliasAnalysis::ModRefResult Mask = ModRef;
123
124  // If CS1 only reads memory, the only dependence on CS2 can be
125  // from CS1 reading memory written by CS2.
126  if (CS1B == OnlyReadsMemory)
127    Mask = ModRefResult(Mask & Ref);
128
129  // If CS2 only access memory through arguments, accumulate the mod/ref
130  // information from CS1's references to the memory referenced by
131  // CS2's arguments.
132  if (CS2B == AccessesArguments) {
133    AliasAnalysis::ModRefResult R = NoModRef;
134    for (ImmutableCallSite::arg_iterator
135         I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
136      R = ModRefResult((R | getModRefInfo(CS1, *I, UnknownSize)) & Mask);
137      if (R == Mask)
138        break;
139    }
140    return R;
141  }
142
143  // If CS1 only accesses memory through arguments, check if CS2 references
144  // any of the memory referenced by CS1's arguments. If not, return NoModRef.
145  if (CS1B == AccessesArguments) {
146    AliasAnalysis::ModRefResult R = NoModRef;
147    for (ImmutableCallSite::arg_iterator
148         I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I)
149      if (getModRefInfo(CS2, *I, UnknownSize) != NoModRef) {
150        R = Mask;
151        break;
152      }
153    if (R == NoModRef)
154      return R;
155  }
156
157  // If this is BasicAA, don't forward.
158  if (!AA) return Mask;
159
160  // Otherwise, fall back to the next AA in the chain. But we can merge
161  // in any mask we've managed to compute.
162  return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
163}
164
165AliasAnalysis::ModRefBehavior
166AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
167  // Don't assert AA because BasicAA calls us in order to make use of the
168  // logic here.
169
170  ModRefBehavior Min = UnknownModRefBehavior;
171
172  // Call back into the alias analysis with the other form of getModRefBehavior
173  // to see if it can give a better response.
174  if (const Function *F = CS.getCalledFunction())
175    Min = getModRefBehavior(F);
176
177  // If this is BasicAA, don't forward.
178  if (!AA) return Min;
179
180  // Otherwise, fall back to the next AA in the chain. But we can merge
181  // in any result we've managed to compute.
182  return std::min(AA->getModRefBehavior(CS), Min);
183}
184
185AliasAnalysis::ModRefBehavior
186AliasAnalysis::getModRefBehavior(const Function *F) {
187  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
188  return AA->getModRefBehavior(F);
189}
190
191
192//===----------------------------------------------------------------------===//
193// AliasAnalysis non-virtual helper method implementation
194//===----------------------------------------------------------------------===//
195
196AliasAnalysis::ModRefResult
197AliasAnalysis::getModRefInfo(const LoadInst *L, const Value *P, unsigned Size) {
198  // Be conservative in the face of volatile.
199  if (L->isVolatile())
200    return ModRef;
201
202  // If the load address doesn't alias the given address, it doesn't read
203  // or write the specified memory.
204  if (!alias(L->getOperand(0), getTypeStoreSize(L->getType()), P, Size))
205    return NoModRef;
206
207  // Otherwise, a load just reads.
208  return Ref;
209}
210
211AliasAnalysis::ModRefResult
212AliasAnalysis::getModRefInfo(const StoreInst *S, const Value *P, unsigned Size) {
213  // Be conservative in the face of volatile.
214  if (S->isVolatile())
215    return ModRef;
216
217  // If the store address cannot alias the pointer in question, then the
218  // specified memory cannot be modified by the store.
219  if (!alias(S->getOperand(1),
220             getTypeStoreSize(S->getOperand(0)->getType()), P, Size))
221    return NoModRef;
222
223  // If the pointer is a pointer to constant memory, then it could not have been
224  // modified by this store.
225  if (pointsToConstantMemory(P))
226    return NoModRef;
227
228  // Otherwise, a store just writes.
229  return Mod;
230}
231
232AliasAnalysis::ModRefBehavior
233AliasAnalysis::getIntrinsicModRefBehavior(unsigned iid) {
234#define GET_INTRINSIC_MODREF_BEHAVIOR
235#include "llvm/Intrinsics.gen"
236#undef GET_INTRINSIC_MODREF_BEHAVIOR
237}
238
239// AliasAnalysis destructor: DO NOT move this to the header file for
240// AliasAnalysis or else clients of the AliasAnalysis class may not depend on
241// the AliasAnalysis.o file in the current .a file, causing alias analysis
242// support to not be included in the tool correctly!
243//
244AliasAnalysis::~AliasAnalysis() {}
245
246/// InitializeAliasAnalysis - Subclasses must call this method to initialize the
247/// AliasAnalysis interface before any other methods are called.
248///
249void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
250  TD = P->getAnalysisIfAvailable<TargetData>();
251  AA = &P->getAnalysis<AliasAnalysis>();
252}
253
254// getAnalysisUsage - All alias analysis implementations should invoke this
255// directly (using AliasAnalysis::getAnalysisUsage(AU)).
256void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
257  AU.addRequired<AliasAnalysis>();         // All AA's chain
258}
259
260/// getTypeStoreSize - Return the TargetData store size for the given type,
261/// if known, or a conservative value otherwise.
262///
263unsigned AliasAnalysis::getTypeStoreSize(const Type *Ty) {
264  return TD ? TD->getTypeStoreSize(Ty) : ~0u;
265}
266
267/// canBasicBlockModify - Return true if it is possible for execution of the
268/// specified basic block to modify the value pointed to by Ptr.
269///
270bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
271                                        const Value *Ptr, unsigned Size) {
272  return canInstructionRangeModify(BB.front(), BB.back(), Ptr, Size);
273}
274
275/// canInstructionRangeModify - Return true if it is possible for the execution
276/// of the specified instructions to modify the value pointed to by Ptr.  The
277/// instructions to consider are all of the instructions in the range of [I1,I2]
278/// INCLUSIVE.  I1 and I2 must be in the same basic block.
279///
280bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1,
281                                              const Instruction &I2,
282                                              const Value *Ptr, unsigned Size) {
283  assert(I1.getParent() == I2.getParent() &&
284         "Instructions not in same basic block!");
285  BasicBlock::const_iterator I = &I1;
286  BasicBlock::const_iterator E = &I2;
287  ++E;  // Convert from inclusive to exclusive range.
288
289  for (; I != E; ++I) // Check every instruction in range
290    if (getModRefInfo(I, Ptr, Size) & Mod)
291      return true;
292  return false;
293}
294
295/// isNoAliasCall - Return true if this pointer is returned by a noalias
296/// function.
297bool llvm::isNoAliasCall(const Value *V) {
298  if (isa<CallInst>(V) || isa<InvokeInst>(V))
299    return ImmutableCallSite(cast<Instruction>(V))
300      .paramHasAttr(0, Attribute::NoAlias);
301  return false;
302}
303
304/// isIdentifiedObject - Return true if this pointer refers to a distinct and
305/// identifiable object.  This returns true for:
306///    Global Variables and Functions (but not Global Aliases)
307///    Allocas and Mallocs
308///    ByVal and NoAlias Arguments
309///    NoAlias returns
310///
311bool llvm::isIdentifiedObject(const Value *V) {
312  if (isa<AllocaInst>(V))
313    return true;
314  if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
315    return true;
316  if (isNoAliasCall(V))
317    return true;
318  if (const Argument *A = dyn_cast<Argument>(V))
319    return A->hasNoAliasAttr() || A->hasByValAttr();
320  return false;
321}
322
323// Because of the way .a files work, we must force the BasicAA implementation to
324// be pulled in if the AliasAnalysis classes are pulled in.  Otherwise we run
325// the risk of AliasAnalysis being used, but the default implementation not
326// being linked into the tool that uses it.
327DEFINING_FILE_FOR(AliasAnalysis)
328