BasicAliasAnalysis.cpp revision 001dbfebcbbded8c8e74b19e838b50da2b6c6fb5
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/CaptureTracking.h"
18#include "llvm/Analysis/Passes.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Pass.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include <algorithm>
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37// Useful predicates
38//===----------------------------------------------------------------------===//
39
40static const User *isGEP(const Value *V) {
41  if (isa<GetElementPtrInst>(V) ||
42      (isa<ConstantExpr>(V) &&
43       cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
44    return cast<User>(V);
45  return 0;
46}
47
48static const Value *GetGEPOperands(const Value *V,
49                                   SmallVector<Value*, 16> &GEPOps) {
50  assert(GEPOps.empty() && "Expect empty list to populate!");
51  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
52                cast<User>(V)->op_end());
53
54  // Accumulate all of the chained indexes into the operand array
55  V = cast<User>(V)->getOperand(0);
56
57  while (const User *G = isGEP(V)) {
58    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
59        !cast<Constant>(GEPOps[0])->isNullValue())
60      break;  // Don't handle folding arbitrary pointer offsets yet...
61    GEPOps.erase(GEPOps.begin());   // Drop the zero index
62    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
63    V = G->getOperand(0);
64  }
65  return V;
66}
67
68/// isKnownNonNull - Return true if we know that the specified value is never
69/// null.
70static bool isKnownNonNull(const Value *V) {
71  // Alloca never returns null, malloc might.
72  if (isa<AllocaInst>(V)) return true;
73
74  // A byval argument is never null.
75  if (const Argument *A = dyn_cast<Argument>(V))
76    return A->hasByValAttr();
77
78  // Global values are not null unless extern weak.
79  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
80    return !GV->hasExternalWeakLinkage();
81  return false;
82}
83
84/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
85/// object that never escapes from the function.
86static bool isNonEscapingLocalObject(const Value *V) {
87  // If this is a local allocation, check to see if it escapes.
88  if (isa<AllocationInst>(V) || isNoAliasCall(V))
89    return !PointerMayBeCaptured(V, false);
90
91  // If this is an argument that corresponds to a byval or noalias argument,
92  // then it has not escaped before entering the function.  Check if it escapes
93  // inside the function.
94  if (const Argument *A = dyn_cast<Argument>(V))
95    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
96      // Don't bother analyzing arguments already known not to escape.
97      if (A->hasNoCaptureAttr())
98        return true;
99      return !PointerMayBeCaptured(V, false);
100    }
101  return false;
102}
103
104
105/// isObjectSmallerThan - Return true if we can prove that the object specified
106/// by V is smaller than Size.
107static bool isObjectSmallerThan(const Value *V, unsigned Size,
108                                const TargetData &TD) {
109  const Type *AccessTy;
110  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
111    AccessTy = GV->getType()->getElementType();
112  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
113    if (!AI->isArrayAllocation())
114      AccessTy = AI->getType()->getElementType();
115    else
116      return false;
117  } else if (const Argument *A = dyn_cast<Argument>(V)) {
118    if (A->hasByValAttr())
119      AccessTy = cast<PointerType>(A->getType())->getElementType();
120    else
121      return false;
122  } else {
123    return false;
124  }
125
126  if (AccessTy->isSized())
127    return TD.getTypeAllocSize(AccessTy) < Size;
128  return false;
129}
130
131//===----------------------------------------------------------------------===//
132// NoAA Pass
133//===----------------------------------------------------------------------===//
134
135namespace {
136  /// NoAA - This class implements the -no-aa pass, which always returns "I
137  /// don't know" for alias queries.  NoAA is unlike other alias analysis
138  /// implementations, in that it does not chain to a previous analysis.  As
139  /// such it doesn't follow many of the rules that other alias analyses must.
140  ///
141  struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
142    static char ID; // Class identification, replacement for typeinfo
143    NoAA() : ImmutablePass(&ID) {}
144    explicit NoAA(void *PID) : ImmutablePass(PID) { }
145
146    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
147      AU.addRequired<TargetData>();
148    }
149
150    virtual void initializePass() {
151      TD = &getAnalysis<TargetData>();
152    }
153
154    virtual AliasResult alias(const Value *V1, unsigned V1Size,
155                              const Value *V2, unsigned V2Size) {
156      return MayAlias;
157    }
158
159    virtual void getArgumentAccesses(Function *F, CallSite CS,
160                                     std::vector<PointerAccessInfo> &Info) {
161      llvm_unreachable("This method may not be called on this function!");
162    }
163
164    virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
165    virtual bool pointsToConstantMemory(const Value *P) { return false; }
166    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
167      return ModRef;
168    }
169    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
170      return ModRef;
171    }
172    virtual bool hasNoModRefInfoForCalls() const { return true; }
173
174    virtual void deleteValue(Value *V) {}
175    virtual void copyValue(Value *From, Value *To) {}
176  };
177}  // End of anonymous namespace
178
179// Register this pass...
180char NoAA::ID = 0;
181static RegisterPass<NoAA>
182U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
183
184// Declare that we implement the AliasAnalysis interface
185static RegisterAnalysisGroup<AliasAnalysis> V(U);
186
187ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
188
189//===----------------------------------------------------------------------===//
190// BasicAA Pass
191//===----------------------------------------------------------------------===//
192
193namespace {
194  /// BasicAliasAnalysis - This is the default alias analysis implementation.
195  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
196  /// derives from the NoAA class.
197  struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
198    static char ID; // Class identification, replacement for typeinfo
199    BasicAliasAnalysis() : NoAA(&ID) {}
200    AliasResult alias(const Value *V1, unsigned V1Size,
201                      const Value *V2, unsigned V2Size);
202
203    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
204    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
205
206    /// hasNoModRefInfoForCalls - We can provide mod/ref information against
207    /// non-escaping allocations.
208    virtual bool hasNoModRefInfoForCalls() const { return false; }
209
210    /// pointsToConstantMemory - Chase pointers until we find a (constant
211    /// global) or not.
212    bool pointsToConstantMemory(const Value *P);
213
214  private:
215    // CheckGEPInstructions - Check two GEP instructions with known
216    // must-aliasing base pointers.  This checks to see if the index expressions
217    // preclude the pointers from aliasing...
218    AliasResult
219    CheckGEPInstructions(const Type* BasePtr1Ty,
220                         Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
221                         const Type *BasePtr2Ty,
222                         Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
223  };
224}  // End of anonymous namespace
225
226// Register this pass...
227char BasicAliasAnalysis::ID = 0;
228static RegisterPass<BasicAliasAnalysis>
229X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
230
231// Declare that we implement the AliasAnalysis interface
232static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
233
234ImmutablePass *llvm::createBasicAliasAnalysisPass() {
235  return new BasicAliasAnalysis();
236}
237
238
239/// pointsToConstantMemory - Chase pointers until we find a (constant
240/// global) or not.
241bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
242  if (const GlobalVariable *GV =
243        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
244    return GV->isConstant();
245  return false;
246}
247
248
249// getModRefInfo - Check to see if the specified callsite can clobber the
250// specified memory object.  Since we only look at local properties of this
251// function, we really can't say much about this query.  We do, however, use
252// simple "address taken" analysis on local objects.
253//
254AliasAnalysis::ModRefResult
255BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
256  if (!isa<Constant>(P)) {
257    const Value *Object = P->getUnderlyingObject();
258
259    // If this is a tail call and P points to a stack location, we know that
260    // the tail call cannot access or modify the local stack.
261    // We cannot exclude byval arguments here; these belong to the caller of
262    // the current function not to the current function, and a tail callee
263    // may reference them.
264    if (isa<AllocaInst>(Object))
265      if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
266        if (CI->isTailCall())
267          return NoModRef;
268
269    // If the pointer is to a locally allocated object that does not escape,
270    // then the call can not mod/ref the pointer unless the call takes the
271    // argument without capturing it.
272    if (isNonEscapingLocalObject(Object) && CS.getInstruction() != Object) {
273      bool passedAsArg = false;
274      // TODO: Eventually only check 'nocapture' arguments.
275      for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
276           CI != CE; ++CI)
277        if (isa<PointerType>((*CI)->getType()) &&
278            alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
279          passedAsArg = true;
280
281      if (!passedAsArg)
282        return NoModRef;
283    }
284  }
285
286  // The AliasAnalysis base class has some smarts, lets use them.
287  return AliasAnalysis::getModRefInfo(CS, P, Size);
288}
289
290
291AliasAnalysis::ModRefResult
292BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
293  // If CS1 or CS2 are readnone, they don't interact.
294  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
295  if (CS1B == DoesNotAccessMemory) return NoModRef;
296
297  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
298  if (CS2B == DoesNotAccessMemory) return NoModRef;
299
300  // If they both only read from memory, just return ref.
301  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
302    return Ref;
303
304  // Otherwise, fall back to NoAA (mod+ref).
305  return NoAA::getModRefInfo(CS1, CS2);
306}
307
308
309// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
310// as array references.
311//
312AliasAnalysis::AliasResult
313BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
314                          const Value *V2, unsigned V2Size) {
315  Context = &V1->getType()->getContext();
316
317  // Strip off any constant expression casts if they exist
318  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
319    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
320      V1 = CE->getOperand(0);
321  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
322    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
323      V2 = CE->getOperand(0);
324
325  // Are we checking for alias of the same value?
326  if (V1 == V2) return MustAlias;
327
328  if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
329    return NoAlias;  // Scalars cannot alias each other
330
331  // Strip off cast instructions.   Since V1 and V2 are pointers, they must be
332  // pointer<->pointer bitcasts.
333  if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
334    return alias(I->getOperand(0), V1Size, V2, V2Size);
335  if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
336    return alias(V1, V1Size, I->getOperand(0), V2Size);
337
338  // Figure out what objects these things are pointing to if we can.
339  const Value *O1 = V1->getUnderlyingObject();
340  const Value *O2 = V2->getUnderlyingObject();
341
342  if (O1 != O2) {
343    // If V1/V2 point to two different objects we know that we have no alias.
344    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
345      return NoAlias;
346
347    // Arguments can't alias with local allocations or noalias calls.
348    if ((isa<Argument>(O1) && (isa<AllocationInst>(O2) || isNoAliasCall(O2))) ||
349        (isa<Argument>(O2) && (isa<AllocationInst>(O1) || isNoAliasCall(O1))))
350      return NoAlias;
351
352    // Most objects can't alias null.
353    if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
354        (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
355      return NoAlias;
356  }
357
358  // If the size of one access is larger than the entire object on the other
359  // side, then we know such behavior is undefined and can assume no alias.
360  const TargetData &TD = getTargetData();
361  if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, TD)) ||
362      (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, TD)))
363    return NoAlias;
364
365  // If one pointer is the result of a call/invoke and the other is a
366  // non-escaping local object, then we know the object couldn't escape to a
367  // point where the call could return it.
368  if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
369      isNonEscapingLocalObject(O2) && O1 != O2)
370    return NoAlias;
371  if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
372      isNonEscapingLocalObject(O1) && O1 != O2)
373    return NoAlias;
374
375  // If we have two gep instructions with must-alias'ing base pointers, figure
376  // out if the indexes to the GEP tell us anything about the derived pointer.
377  // Note that we also handle chains of getelementptr instructions as well as
378  // constant expression getelementptrs here.
379  //
380  if (isGEP(V1) && isGEP(V2)) {
381    const User *GEP1 = cast<User>(V1);
382    const User *GEP2 = cast<User>(V2);
383
384    // If V1 and V2 are identical GEPs, just recurse down on both of them.
385    // This allows us to analyze things like:
386    //   P = gep A, 0, i, 1
387    //   Q = gep B, 0, i, 1
388    // by just analyzing A and B.  This is even safe for variable indices.
389    if (GEP1->getType() == GEP2->getType() &&
390        GEP1->getNumOperands() == GEP2->getNumOperands() &&
391        GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
392        // All operands are the same, ignoring the base.
393        std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
394      return alias(GEP1->getOperand(0), V1Size, GEP2->getOperand(0), V2Size);
395
396
397    // Drill down into the first non-gep value, to test for must-aliasing of
398    // the base pointers.
399    while (isGEP(GEP1->getOperand(0)) &&
400           GEP1->getOperand(1) ==
401           Context->getNullValue(GEP1->getOperand(1)->getType()))
402      GEP1 = cast<User>(GEP1->getOperand(0));
403    const Value *BasePtr1 = GEP1->getOperand(0);
404
405    while (isGEP(GEP2->getOperand(0)) &&
406           GEP2->getOperand(1) ==
407           Context->getNullValue(GEP2->getOperand(1)->getType()))
408      GEP2 = cast<User>(GEP2->getOperand(0));
409    const Value *BasePtr2 = GEP2->getOperand(0);
410
411    // Do the base pointers alias?
412    AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
413    if (BaseAlias == NoAlias) return NoAlias;
414    if (BaseAlias == MustAlias) {
415      // If the base pointers alias each other exactly, check to see if we can
416      // figure out anything about the resultant pointers, to try to prove
417      // non-aliasing.
418
419      // Collect all of the chained GEP operands together into one simple place
420      SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
421      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
422      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
423
424      // If GetGEPOperands were able to fold to the same must-aliased pointer,
425      // do the comparison.
426      if (BasePtr1 == BasePtr2) {
427        AliasResult GAlias =
428          CheckGEPInstructions(BasePtr1->getType(),
429                               &GEP1Ops[0], GEP1Ops.size(), V1Size,
430                               BasePtr2->getType(),
431                               &GEP2Ops[0], GEP2Ops.size(), V2Size);
432        if (GAlias != MayAlias)
433          return GAlias;
434      }
435    }
436  }
437
438  // Check to see if these two pointers are related by a getelementptr
439  // instruction.  If one pointer is a GEP with a non-zero index of the other
440  // pointer, we know they cannot alias.
441  //
442  if (isGEP(V2)) {
443    std::swap(V1, V2);
444    std::swap(V1Size, V2Size);
445  }
446
447  if (V1Size != ~0U && V2Size != ~0U)
448    if (isGEP(V1)) {
449      SmallVector<Value*, 16> GEPOperands;
450      const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
451
452      AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
453      if (R == MustAlias) {
454        // If there is at least one non-zero constant index, we know they cannot
455        // alias.
456        bool ConstantFound = false;
457        bool AllZerosFound = true;
458        for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
459          if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
460            if (!C->isNullValue()) {
461              ConstantFound = true;
462              AllZerosFound = false;
463              break;
464            }
465          } else {
466            AllZerosFound = false;
467          }
468
469        // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
470        // the ptr, the end result is a must alias also.
471        if (AllZerosFound)
472          return MustAlias;
473
474        if (ConstantFound) {
475          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
476            return NoAlias;
477
478          // Otherwise we have to check to see that the distance is more than
479          // the size of the argument... build an index vector that is equal to
480          // the arguments provided, except substitute 0's for any variable
481          // indexes we find...
482          if (cast<PointerType>(
483                BasePtr->getType())->getElementType()->isSized()) {
484            for (unsigned i = 0; i != GEPOperands.size(); ++i)
485              if (!isa<ConstantInt>(GEPOperands[i]))
486                GEPOperands[i] =
487                  Context->getNullValue(GEPOperands[i]->getType());
488            int64_t Offset =
489              getTargetData().getIndexedOffset(BasePtr->getType(),
490                                               &GEPOperands[0],
491                                               GEPOperands.size());
492
493            if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
494              return NoAlias;
495          }
496        }
497      }
498    }
499
500  return MayAlias;
501}
502
503// This function is used to determine if the indices of two GEP instructions are
504// equal. V1 and V2 are the indices.
505static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext *Context) {
506  if (V1->getType() == V2->getType())
507    return V1 == V2;
508  if (Constant *C1 = dyn_cast<Constant>(V1))
509    if (Constant *C2 = dyn_cast<Constant>(V2)) {
510      // Sign extend the constants to long types, if necessary
511      if (C1->getType() != Type::Int64Ty)
512        C1 = Context->getConstantExprSExt(C1, Type::Int64Ty);
513      if (C2->getType() != Type::Int64Ty)
514        C2 = Context->getConstantExprSExt(C2, Type::Int64Ty);
515      return C1 == C2;
516    }
517  return false;
518}
519
520/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
521/// base pointers.  This checks to see if the index expressions preclude the
522/// pointers from aliasing...
523AliasAnalysis::AliasResult
524BasicAliasAnalysis::CheckGEPInstructions(
525  const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
526  const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
527  // We currently can't handle the case when the base pointers have different
528  // primitive types.  Since this is uncommon anyway, we are happy being
529  // extremely conservative.
530  if (BasePtr1Ty != BasePtr2Ty)
531    return MayAlias;
532
533  const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
534
535  Context = &GEPPointerTy->getContext();
536
537  // Find the (possibly empty) initial sequence of equal values... which are not
538  // necessarily constants.
539  unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
540  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
541  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
542  unsigned UnequalOper = 0;
543  while (UnequalOper != MinOperands &&
544         IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper],
545         Context)) {
546    // Advance through the type as we go...
547    ++UnequalOper;
548    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
549      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
550    else {
551      // If all operands equal each other, then the derived pointers must
552      // alias each other...
553      BasePtr1Ty = 0;
554      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
555             "Ran out of type nesting, but not out of operands?");
556      return MustAlias;
557    }
558  }
559
560  // If we have seen all constant operands, and run out of indexes on one of the
561  // getelementptrs, check to see if the tail of the leftover one is all zeros.
562  // If so, return mustalias.
563  if (UnequalOper == MinOperands) {
564    if (NumGEP1Ops < NumGEP2Ops) {
565      std::swap(GEP1Ops, GEP2Ops);
566      std::swap(NumGEP1Ops, NumGEP2Ops);
567    }
568
569    bool AllAreZeros = true;
570    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
571      if (!isa<Constant>(GEP1Ops[i]) ||
572          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
573        AllAreZeros = false;
574        break;
575      }
576    if (AllAreZeros) return MustAlias;
577  }
578
579
580  // So now we know that the indexes derived from the base pointers,
581  // which are known to alias, are different.  We can still determine a
582  // no-alias result if there are differing constant pairs in the index
583  // chain.  For example:
584  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
585  //
586  // We have to be careful here about array accesses.  In particular, consider:
587  //        A[1][0] vs A[0][i]
588  // In this case, we don't *know* that the array will be accessed in bounds:
589  // the index could even be negative.  Because of this, we have to
590  // conservatively *give up* and return may alias.  We disregard differing
591  // array subscripts that are followed by a variable index without going
592  // through a struct.
593  //
594  unsigned SizeMax = std::max(G1S, G2S);
595  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
596
597  // Scan for the first operand that is constant and unequal in the
598  // two getelementptrs...
599  unsigned FirstConstantOper = UnequalOper;
600  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
601    const Value *G1Oper = GEP1Ops[FirstConstantOper];
602    const Value *G2Oper = GEP2Ops[FirstConstantOper];
603
604    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
605      if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
606        if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
607          if (G1OC->getType() != G2OC->getType()) {
608            // Sign extend both operands to long.
609            if (G1OC->getType() != Type::Int64Ty)
610              G1OC = Context->getConstantExprSExt(G1OC, Type::Int64Ty);
611            if (G2OC->getType() != Type::Int64Ty)
612              G2OC = Context->getConstantExprSExt(G2OC, Type::Int64Ty);
613            GEP1Ops[FirstConstantOper] = G1OC;
614            GEP2Ops[FirstConstantOper] = G2OC;
615          }
616
617          if (G1OC != G2OC) {
618            // Handle the "be careful" case above: if this is an array/vector
619            // subscript, scan for a subsequent variable array index.
620            if (const SequentialType *STy =
621                  dyn_cast<SequentialType>(BasePtr1Ty)) {
622              const Type *NextTy = STy;
623              bool isBadCase = false;
624
625              for (unsigned Idx = FirstConstantOper;
626                   Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
627                const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
628                if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
629                  isBadCase = true;
630                  break;
631                }
632                // If the array is indexed beyond the bounds of the static type
633                // at this level, it will also fall into the "be careful" case.
634                // It would theoretically be possible to analyze these cases,
635                // but for now just be conservatively correct.
636                if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
637                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
638                        ATy->getNumElements() ||
639                      cast<ConstantInt>(G2OC)->getZExtValue() >=
640                        ATy->getNumElements()) {
641                    isBadCase = true;
642                    break;
643                  }
644                if (const VectorType *VTy = dyn_cast<VectorType>(STy))
645                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
646                        VTy->getNumElements() ||
647                      cast<ConstantInt>(G2OC)->getZExtValue() >=
648                        VTy->getNumElements()) {
649                    isBadCase = true;
650                    break;
651                  }
652                STy = cast<SequentialType>(NextTy);
653                NextTy = cast<SequentialType>(NextTy)->getElementType();
654              }
655
656              if (isBadCase) G1OC = 0;
657            }
658
659            // Make sure they are comparable (ie, not constant expressions), and
660            // make sure the GEP with the smaller leading constant is GEP1.
661            if (G1OC) {
662              Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
663                                                        G1OC, G2OC);
664              if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
665                if (CV->getZExtValue()) {  // If they are comparable and G2 > G1
666                  std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
667                  std::swap(NumGEP1Ops, NumGEP2Ops);
668                }
669                break;
670              }
671            }
672          }
673        }
674    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
675  }
676
677  // No shared constant operands, and we ran out of common operands.  At this
678  // point, the GEP instructions have run through all of their operands, and we
679  // haven't found evidence that there are any deltas between the GEP's.
680  // However, one GEP may have more operands than the other.  If this is the
681  // case, there may still be hope.  Check this now.
682  if (FirstConstantOper == MinOperands) {
683    // Make GEP1Ops be the longer one if there is a longer one.
684    if (NumGEP1Ops < NumGEP2Ops) {
685      std::swap(GEP1Ops, GEP2Ops);
686      std::swap(NumGEP1Ops, NumGEP2Ops);
687    }
688
689    // Is there anything to check?
690    if (NumGEP1Ops > MinOperands) {
691      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
692        if (isa<ConstantInt>(GEP1Ops[i]) &&
693            !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
694          // Yup, there's a constant in the tail.  Set all variables to
695          // constants in the GEP instruction to make it suitable for
696          // TargetData::getIndexedOffset.
697          for (i = 0; i != MaxOperands; ++i)
698            if (!isa<ConstantInt>(GEP1Ops[i]))
699              GEP1Ops[i] = Context->getNullValue(GEP1Ops[i]->getType());
700          // Okay, now get the offset.  This is the relative offset for the full
701          // instruction.
702          const TargetData &TD = getTargetData();
703          int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
704                                                NumGEP1Ops);
705
706          // Now check without any constants at the end.
707          int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
708                                                MinOperands);
709
710          // Make sure we compare the absolute difference.
711          if (Offset1 > Offset2)
712            std::swap(Offset1, Offset2);
713
714          // If the tail provided a bit enough offset, return noalias!
715          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
716            return NoAlias;
717          // Otherwise break - we don't look for another constant in the tail.
718          break;
719        }
720    }
721
722    // Couldn't find anything useful.
723    return MayAlias;
724  }
725
726  // If there are non-equal constants arguments, then we can figure
727  // out a minimum known delta between the two index expressions... at
728  // this point we know that the first constant index of GEP1 is less
729  // than the first constant index of GEP2.
730
731  // Advance BasePtr[12]Ty over this first differing constant operand.
732  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
733      getTypeAtIndex(GEP2Ops[FirstConstantOper]);
734  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
735      getTypeAtIndex(GEP1Ops[FirstConstantOper]);
736
737  // We are going to be using TargetData::getIndexedOffset to determine the
738  // offset that each of the GEP's is reaching.  To do this, we have to convert
739  // all variable references to constant references.  To do this, we convert the
740  // initial sequence of array subscripts into constant zeros to start with.
741  const Type *ZeroIdxTy = GEPPointerTy;
742  for (unsigned i = 0; i != FirstConstantOper; ++i) {
743    if (!isa<StructType>(ZeroIdxTy))
744      GEP1Ops[i] = GEP2Ops[i] = Context->getNullValue(Type::Int32Ty);
745
746    if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
747      ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
748  }
749
750  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
751
752  // Loop over the rest of the operands...
753  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
754    const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
755    const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
756    // If they are equal, use a zero index...
757    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
758      if (!isa<ConstantInt>(Op1))
759        GEP1Ops[i] = GEP2Ops[i] = Context->getNullValue(Op1->getType());
760      // Otherwise, just keep the constants we have.
761    } else {
762      if (Op1) {
763        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
764          // If this is an array index, make sure the array element is in range.
765          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
766            if (Op1C->getZExtValue() >= AT->getNumElements())
767              return MayAlias;  // Be conservative with out-of-range accesses
768          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
769            if (Op1C->getZExtValue() >= VT->getNumElements())
770              return MayAlias;  // Be conservative with out-of-range accesses
771          }
772
773        } else {
774          // GEP1 is known to produce a value less than GEP2.  To be
775          // conservatively correct, we must assume the largest possible
776          // constant is used in this position.  This cannot be the initial
777          // index to the GEP instructions (because we know we have at least one
778          // element before this one with the different constant arguments), so
779          // we know that the current index must be into either a struct or
780          // array.  Because we know it's not constant, this cannot be a
781          // structure index.  Because of this, we can calculate the maximum
782          // value possible.
783          //
784          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
785            GEP1Ops[i] =
786                  Context->getConstantInt(Type::Int64Ty,AT->getNumElements()-1);
787          else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
788            GEP1Ops[i] =
789                  Context->getConstantInt(Type::Int64Ty,VT->getNumElements()-1);
790        }
791      }
792
793      if (Op2) {
794        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
795          // If this is an array index, make sure the array element is in range.
796          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
797            if (Op2C->getZExtValue() >= AT->getNumElements())
798              return MayAlias;  // Be conservative with out-of-range accesses
799          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
800            if (Op2C->getZExtValue() >= VT->getNumElements())
801              return MayAlias;  // Be conservative with out-of-range accesses
802          }
803        } else {  // Conservatively assume the minimum value for this index
804          GEP2Ops[i] = Context->getNullValue(Op2->getType());
805        }
806      }
807    }
808
809    if (BasePtr1Ty && Op1) {
810      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
811        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
812      else
813        BasePtr1Ty = 0;
814    }
815
816    if (BasePtr2Ty && Op2) {
817      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
818        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
819      else
820        BasePtr2Ty = 0;
821    }
822  }
823
824  if (GEPPointerTy->getElementType()->isSized()) {
825    int64_t Offset1 =
826      getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
827    int64_t Offset2 =
828      getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
829    assert(Offset1 != Offset2 &&
830           "There is at least one different constant here!");
831
832    // Make sure we compare the absolute difference.
833    if (Offset1 > Offset2)
834      std::swap(Offset1, Offset2);
835
836    if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
837      //cerr << "Determined that these two GEP's don't alias ["
838      //     << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
839      return NoAlias;
840    }
841  }
842  return MayAlias;
843}
844
845// Make sure that anything that uses AliasAnalysis pulls in this file...
846DEFINING_FILE_FOR(BasicAliasAnalysis)
847