BasicAliasAnalysis.cpp revision 07cf79ef537caff6d39145f190a28a336e629b6f
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/CaptureTracking.h"
18#include "llvm/Analysis/Passes.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Pass.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include <algorithm>
33using namespace llvm;
34
35//===----------------------------------------------------------------------===//
36// Useful predicates
37//===----------------------------------------------------------------------===//
38
39static const User *isGEP(const Value *V) {
40  if (isa<GetElementPtrInst>(V) ||
41      (isa<ConstantExpr>(V) &&
42       cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
43    return cast<User>(V);
44  return 0;
45}
46
47static const Value *GetGEPOperands(const Value *V,
48                                   SmallVector<Value*, 16> &GEPOps) {
49  assert(GEPOps.empty() && "Expect empty list to populate!");
50  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
51                cast<User>(V)->op_end());
52
53  // Accumulate all of the chained indexes into the operand array
54  V = cast<User>(V)->getOperand(0);
55
56  while (const User *G = isGEP(V)) {
57    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
58        !cast<Constant>(GEPOps[0])->isNullValue())
59      break;  // Don't handle folding arbitrary pointer offsets yet...
60    GEPOps.erase(GEPOps.begin());   // Drop the zero index
61    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
62    V = G->getOperand(0);
63  }
64  return V;
65}
66
67/// isKnownNonNull - Return true if we know that the specified value is never
68/// null.
69static bool isKnownNonNull(const Value *V) {
70  // Alloca never returns null, malloc might.
71  if (isa<AllocaInst>(V)) return true;
72
73  // A byval argument is never null.
74  if (const Argument *A = dyn_cast<Argument>(V))
75    return A->hasByValAttr();
76
77  // Global values are not null unless extern weak.
78  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
79    return !GV->hasExternalWeakLinkage();
80  return false;
81}
82
83/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
84/// object that never escapes from the function.
85static bool isNonEscapingLocalObject(const Value *V) {
86  // If this is a local allocation, check to see if it escapes.
87  if (isa<AllocationInst>(V) || isNoAliasCall(V))
88    return !PointerMayBeCaptured(V, false);
89
90  // If this is an argument that corresponds to a byval or noalias argument,
91  // then it has not escaped before entering the function.  Check if it escapes
92  // inside the function.
93  if (const Argument *A = dyn_cast<Argument>(V))
94    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
95      // Don't bother analyzing arguments already known not to escape.
96      if (A->hasNoCaptureAttr())
97        return true;
98      return !PointerMayBeCaptured(V, false);
99    }
100  return false;
101}
102
103
104/// isObjectSmallerThan - Return true if we can prove that the object specified
105/// by V is smaller than Size.
106static bool isObjectSmallerThan(const Value *V, unsigned Size,
107                                const TargetData &TD) {
108  const Type *AccessTy;
109  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
110    AccessTy = GV->getType()->getElementType();
111  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
112    if (!AI->isArrayAllocation())
113      AccessTy = AI->getType()->getElementType();
114    else
115      return false;
116  } else if (const Argument *A = dyn_cast<Argument>(V)) {
117    if (A->hasByValAttr())
118      AccessTy = cast<PointerType>(A->getType())->getElementType();
119    else
120      return false;
121  } else {
122    return false;
123  }
124
125  if (AccessTy->isSized())
126    return TD.getTypeAllocSize(AccessTy) < Size;
127  return false;
128}
129
130//===----------------------------------------------------------------------===//
131// NoAA Pass
132//===----------------------------------------------------------------------===//
133
134namespace {
135  /// NoAA - This class implements the -no-aa pass, which always returns "I
136  /// don't know" for alias queries.  NoAA is unlike other alias analysis
137  /// implementations, in that it does not chain to a previous analysis.  As
138  /// such it doesn't follow many of the rules that other alias analyses must.
139  ///
140  struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
141    static char ID; // Class identification, replacement for typeinfo
142    NoAA() : ImmutablePass(&ID) {}
143    explicit NoAA(void *PID) : ImmutablePass(PID) { }
144
145    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
146      AU.addRequired<TargetData>();
147    }
148
149    virtual void initializePass() {
150      TD = &getAnalysis<TargetData>();
151    }
152
153    virtual AliasResult alias(const Value *V1, unsigned V1Size,
154                              const Value *V2, unsigned V2Size) {
155      return MayAlias;
156    }
157
158    virtual void getArgumentAccesses(Function *F, CallSite CS,
159                                     std::vector<PointerAccessInfo> &Info) {
160      assert(0 && "This method may not be called on this function!");
161    }
162
163    virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
164    virtual bool pointsToConstantMemory(const Value *P) { return false; }
165    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
166      return ModRef;
167    }
168    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
169      return ModRef;
170    }
171    virtual bool hasNoModRefInfoForCalls() const { return true; }
172
173    virtual void deleteValue(Value *V) {}
174    virtual void copyValue(Value *From, Value *To) {}
175  };
176}  // End of anonymous namespace
177
178// Register this pass...
179char NoAA::ID = 0;
180static RegisterPass<NoAA>
181U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
182
183// Declare that we implement the AliasAnalysis interface
184static RegisterAnalysisGroup<AliasAnalysis> V(U);
185
186ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
187
188//===----------------------------------------------------------------------===//
189// BasicAA Pass
190//===----------------------------------------------------------------------===//
191
192namespace {
193  /// BasicAliasAnalysis - This is the default alias analysis implementation.
194  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
195  /// derives from the NoAA class.
196  struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
197    static char ID; // Class identification, replacement for typeinfo
198    BasicAliasAnalysis() : NoAA(&ID) {}
199    AliasResult alias(const Value *V1, unsigned V1Size,
200                      const Value *V2, unsigned V2Size);
201
202    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
203    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
204
205    /// hasNoModRefInfoForCalls - We can provide mod/ref information against
206    /// non-escaping allocations.
207    virtual bool hasNoModRefInfoForCalls() const { return false; }
208
209    /// pointsToConstantMemory - Chase pointers until we find a (constant
210    /// global) or not.
211    bool pointsToConstantMemory(const Value *P);
212
213  private:
214    // CheckGEPInstructions - Check two GEP instructions with known
215    // must-aliasing base pointers.  This checks to see if the index expressions
216    // preclude the pointers from aliasing...
217    AliasResult
218    CheckGEPInstructions(const Type* BasePtr1Ty,
219                         Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
220                         const Type *BasePtr2Ty,
221                         Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
222  };
223}  // End of anonymous namespace
224
225// Register this pass...
226char BasicAliasAnalysis::ID = 0;
227static RegisterPass<BasicAliasAnalysis>
228X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
229
230// Declare that we implement the AliasAnalysis interface
231static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
232
233ImmutablePass *llvm::createBasicAliasAnalysisPass() {
234  return new BasicAliasAnalysis();
235}
236
237
238/// pointsToConstantMemory - Chase pointers until we find a (constant
239/// global) or not.
240bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
241  if (const GlobalVariable *GV =
242        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
243    return GV->isConstant();
244  return false;
245}
246
247
248// getModRefInfo - Check to see if the specified callsite can clobber the
249// specified memory object.  Since we only look at local properties of this
250// function, we really can't say much about this query.  We do, however, use
251// simple "address taken" analysis on local objects.
252//
253AliasAnalysis::ModRefResult
254BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
255  if (!isa<Constant>(P)) {
256    const Value *Object = P->getUnderlyingObject();
257
258    // If this is a tail call and P points to a stack location, we know that
259    // the tail call cannot access or modify the local stack.
260    // We cannot exclude byval arguments here; these belong to the caller of
261    // the current function not to the current function, and a tail callee
262    // may reference them.
263    if (isa<AllocaInst>(Object))
264      if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
265        if (CI->isTailCall())
266          return NoModRef;
267
268    // If the pointer is to a locally allocated object that does not escape,
269    // then the call can not mod/ref the pointer unless the call takes the
270    // argument without capturing it.
271    if (isNonEscapingLocalObject(Object) && CS.getInstruction() != Object) {
272      bool passedAsArg = false;
273      // TODO: Eventually only check 'nocapture' arguments.
274      for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
275           CI != CE; ++CI)
276        if (isa<PointerType>((*CI)->getType()) &&
277            alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
278          passedAsArg = true;
279
280      if (!passedAsArg)
281        return NoModRef;
282    }
283  }
284
285  // The AliasAnalysis base class has some smarts, lets use them.
286  return AliasAnalysis::getModRefInfo(CS, P, Size);
287}
288
289
290AliasAnalysis::ModRefResult
291BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
292  // If CS1 or CS2 are readnone, they don't interact.
293  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
294  if (CS1B == DoesNotAccessMemory) return NoModRef;
295
296  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
297  if (CS2B == DoesNotAccessMemory) return NoModRef;
298
299  // If they both only read from memory, just return ref.
300  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
301    return Ref;
302
303  // Otherwise, fall back to NoAA (mod+ref).
304  return NoAA::getModRefInfo(CS1, CS2);
305}
306
307
308// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
309// as array references.
310//
311AliasAnalysis::AliasResult
312BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
313                          const Value *V2, unsigned V2Size) {
314  // Strip off any constant expression casts if they exist
315  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
316    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
317      V1 = CE->getOperand(0);
318  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
319    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
320      V2 = CE->getOperand(0);
321
322  // Are we checking for alias of the same value?
323  if (V1 == V2) return MustAlias;
324
325  if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
326    return NoAlias;  // Scalars cannot alias each other
327
328  // Strip off cast instructions.   Since V1 and V2 are pointers, they must be
329  // pointer<->pointer bitcasts.
330  if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
331    return alias(I->getOperand(0), V1Size, V2, V2Size);
332  if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
333    return alias(V1, V1Size, I->getOperand(0), V2Size);
334
335  // Figure out what objects these things are pointing to if we can.
336  const Value *O1 = V1->getUnderlyingObject();
337  const Value *O2 = V2->getUnderlyingObject();
338
339  if (O1 != O2) {
340    // If V1/V2 point to two different objects we know that we have no alias.
341    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
342      return NoAlias;
343
344    // Arguments can't alias with local allocations or noalias calls.
345    if ((isa<Argument>(O1) && (isa<AllocationInst>(O2) || isNoAliasCall(O2))) ||
346        (isa<Argument>(O2) && (isa<AllocationInst>(O1) || isNoAliasCall(O1))))
347      return NoAlias;
348
349    // Most objects can't alias null.
350    if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
351        (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
352      return NoAlias;
353  }
354
355  // If the size of one access is larger than the entire object on the other
356  // side, then we know such behavior is undefined and can assume no alias.
357  const TargetData &TD = getTargetData();
358  if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, TD)) ||
359      (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, TD)))
360    return NoAlias;
361
362  // If one pointer is the result of a call/invoke and the other is a
363  // non-escaping local object, then we know the object couldn't escape to a
364  // point where the call could return it.
365  if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
366      isNonEscapingLocalObject(O2) && O1 != O2)
367    return NoAlias;
368  if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
369      isNonEscapingLocalObject(O1) && O1 != O2)
370    return NoAlias;
371
372  // If we have two gep instructions with must-alias'ing base pointers, figure
373  // out if the indexes to the GEP tell us anything about the derived pointer.
374  // Note that we also handle chains of getelementptr instructions as well as
375  // constant expression getelementptrs here.
376  //
377  if (isGEP(V1) && isGEP(V2)) {
378    const User *GEP1 = cast<User>(V1);
379    const User *GEP2 = cast<User>(V2);
380
381    // If V1 and V2 are identical GEPs, just recurse down on both of them.
382    // This allows us to analyze things like:
383    //   P = gep A, 0, i, 1
384    //   Q = gep B, 0, i, 1
385    // by just analyzing A and B.  This is even safe for variable indices.
386    if (GEP1->getType() == GEP2->getType() &&
387        GEP1->getNumOperands() == GEP2->getNumOperands() &&
388        GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
389        // All operands are the same, ignoring the base.
390        std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
391      return alias(GEP1->getOperand(0), V1Size, GEP2->getOperand(0), V2Size);
392
393
394    // Drill down into the first non-gep value, to test for must-aliasing of
395    // the base pointers.
396    while (isGEP(GEP1->getOperand(0)) &&
397           GEP1->getOperand(1) ==
398           Context->getNullValue(GEP1->getOperand(1)->getType()))
399      GEP1 = cast<User>(GEP1->getOperand(0));
400    const Value *BasePtr1 = GEP1->getOperand(0);
401
402    while (isGEP(GEP2->getOperand(0)) &&
403           GEP2->getOperand(1) ==
404           Context->getNullValue(GEP2->getOperand(1)->getType()))
405      GEP2 = cast<User>(GEP2->getOperand(0));
406    const Value *BasePtr2 = GEP2->getOperand(0);
407
408    // Do the base pointers alias?
409    AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
410    if (BaseAlias == NoAlias) return NoAlias;
411    if (BaseAlias == MustAlias) {
412      // If the base pointers alias each other exactly, check to see if we can
413      // figure out anything about the resultant pointers, to try to prove
414      // non-aliasing.
415
416      // Collect all of the chained GEP operands together into one simple place
417      SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
418      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
419      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
420
421      // If GetGEPOperands were able to fold to the same must-aliased pointer,
422      // do the comparison.
423      if (BasePtr1 == BasePtr2) {
424        AliasResult GAlias =
425          CheckGEPInstructions(BasePtr1->getType(),
426                               &GEP1Ops[0], GEP1Ops.size(), V1Size,
427                               BasePtr2->getType(),
428                               &GEP2Ops[0], GEP2Ops.size(), V2Size);
429        if (GAlias != MayAlias)
430          return GAlias;
431      }
432    }
433  }
434
435  // Check to see if these two pointers are related by a getelementptr
436  // instruction.  If one pointer is a GEP with a non-zero index of the other
437  // pointer, we know they cannot alias.
438  //
439  if (isGEP(V2)) {
440    std::swap(V1, V2);
441    std::swap(V1Size, V2Size);
442  }
443
444  if (V1Size != ~0U && V2Size != ~0U)
445    if (isGEP(V1)) {
446      SmallVector<Value*, 16> GEPOperands;
447      const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
448
449      AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
450      if (R == MustAlias) {
451        // If there is at least one non-zero constant index, we know they cannot
452        // alias.
453        bool ConstantFound = false;
454        bool AllZerosFound = true;
455        for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
456          if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
457            if (!C->isNullValue()) {
458              ConstantFound = true;
459              AllZerosFound = false;
460              break;
461            }
462          } else {
463            AllZerosFound = false;
464          }
465
466        // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
467        // the ptr, the end result is a must alias also.
468        if (AllZerosFound)
469          return MustAlias;
470
471        if (ConstantFound) {
472          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
473            return NoAlias;
474
475          // Otherwise we have to check to see that the distance is more than
476          // the size of the argument... build an index vector that is equal to
477          // the arguments provided, except substitute 0's for any variable
478          // indexes we find...
479          if (cast<PointerType>(
480                BasePtr->getType())->getElementType()->isSized()) {
481            for (unsigned i = 0; i != GEPOperands.size(); ++i)
482              if (!isa<ConstantInt>(GEPOperands[i]))
483                GEPOperands[i] =
484                  Context->getNullValue(GEPOperands[i]->getType());
485            int64_t Offset =
486              getTargetData().getIndexedOffset(BasePtr->getType(),
487                                               &GEPOperands[0],
488                                               GEPOperands.size());
489
490            if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
491              return NoAlias;
492          }
493        }
494      }
495    }
496
497  return MayAlias;
498}
499
500// This function is used to determine if the indices of two GEP instructions are
501// equal. V1 and V2 are the indices.
502static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext *Context) {
503  if (V1->getType() == V2->getType())
504    return V1 == V2;
505  if (Constant *C1 = dyn_cast<Constant>(V1))
506    if (Constant *C2 = dyn_cast<Constant>(V2)) {
507      // Sign extend the constants to long types, if necessary
508      if (C1->getType() != Type::Int64Ty)
509        C1 = Context->getConstantExprSExt(C1, Type::Int64Ty);
510      if (C2->getType() != Type::Int64Ty)
511        C2 = Context->getConstantExprSExt(C2, Type::Int64Ty);
512      return C1 == C2;
513    }
514  return false;
515}
516
517/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
518/// base pointers.  This checks to see if the index expressions preclude the
519/// pointers from aliasing...
520AliasAnalysis::AliasResult
521BasicAliasAnalysis::CheckGEPInstructions(
522  const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
523  const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
524  // We currently can't handle the case when the base pointers have different
525  // primitive types.  Since this is uncommon anyway, we are happy being
526  // extremely conservative.
527  if (BasePtr1Ty != BasePtr2Ty)
528    return MayAlias;
529
530  const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
531
532  // Find the (possibly empty) initial sequence of equal values... which are not
533  // necessarily constants.
534  unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
535  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
536  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
537  unsigned UnequalOper = 0;
538  while (UnequalOper != MinOperands &&
539         IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper],
540         Context)) {
541    // Advance through the type as we go...
542    ++UnequalOper;
543    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
544      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
545    else {
546      // If all operands equal each other, then the derived pointers must
547      // alias each other...
548      BasePtr1Ty = 0;
549      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
550             "Ran out of type nesting, but not out of operands?");
551      return MustAlias;
552    }
553  }
554
555  // If we have seen all constant operands, and run out of indexes on one of the
556  // getelementptrs, check to see if the tail of the leftover one is all zeros.
557  // If so, return mustalias.
558  if (UnequalOper == MinOperands) {
559    if (NumGEP1Ops < NumGEP2Ops) {
560      std::swap(GEP1Ops, GEP2Ops);
561      std::swap(NumGEP1Ops, NumGEP2Ops);
562    }
563
564    bool AllAreZeros = true;
565    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
566      if (!isa<Constant>(GEP1Ops[i]) ||
567          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
568        AllAreZeros = false;
569        break;
570      }
571    if (AllAreZeros) return MustAlias;
572  }
573
574
575  // So now we know that the indexes derived from the base pointers,
576  // which are known to alias, are different.  We can still determine a
577  // no-alias result if there are differing constant pairs in the index
578  // chain.  For example:
579  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
580  //
581  // We have to be careful here about array accesses.  In particular, consider:
582  //        A[1][0] vs A[0][i]
583  // In this case, we don't *know* that the array will be accessed in bounds:
584  // the index could even be negative.  Because of this, we have to
585  // conservatively *give up* and return may alias.  We disregard differing
586  // array subscripts that are followed by a variable index without going
587  // through a struct.
588  //
589  unsigned SizeMax = std::max(G1S, G2S);
590  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
591
592  // Scan for the first operand that is constant and unequal in the
593  // two getelementptrs...
594  unsigned FirstConstantOper = UnequalOper;
595  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
596    const Value *G1Oper = GEP1Ops[FirstConstantOper];
597    const Value *G2Oper = GEP2Ops[FirstConstantOper];
598
599    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
600      if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
601        if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
602          if (G1OC->getType() != G2OC->getType()) {
603            // Sign extend both operands to long.
604            if (G1OC->getType() != Type::Int64Ty)
605              G1OC = Context->getConstantExprSExt(G1OC, Type::Int64Ty);
606            if (G2OC->getType() != Type::Int64Ty)
607              G2OC = Context->getConstantExprSExt(G2OC, Type::Int64Ty);
608            GEP1Ops[FirstConstantOper] = G1OC;
609            GEP2Ops[FirstConstantOper] = G2OC;
610          }
611
612          if (G1OC != G2OC) {
613            // Handle the "be careful" case above: if this is an array/vector
614            // subscript, scan for a subsequent variable array index.
615            if (const SequentialType *STy =
616                  dyn_cast<SequentialType>(BasePtr1Ty)) {
617              const Type *NextTy = STy;
618              bool isBadCase = false;
619
620              for (unsigned Idx = FirstConstantOper;
621                   Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
622                const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
623                if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
624                  isBadCase = true;
625                  break;
626                }
627                // If the array is indexed beyond the bounds of the static type
628                // at this level, it will also fall into the "be careful" case.
629                // It would theoretically be possible to analyze these cases,
630                // but for now just be conservatively correct.
631                if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
632                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
633                        ATy->getNumElements() ||
634                      cast<ConstantInt>(G2OC)->getZExtValue() >=
635                        ATy->getNumElements()) {
636                    isBadCase = true;
637                    break;
638                  }
639                if (const VectorType *VTy = dyn_cast<VectorType>(STy))
640                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
641                        VTy->getNumElements() ||
642                      cast<ConstantInt>(G2OC)->getZExtValue() >=
643                        VTy->getNumElements()) {
644                    isBadCase = true;
645                    break;
646                  }
647                STy = cast<SequentialType>(NextTy);
648                NextTy = cast<SequentialType>(NextTy)->getElementType();
649              }
650
651              if (isBadCase) G1OC = 0;
652            }
653
654            // Make sure they are comparable (ie, not constant expressions), and
655            // make sure the GEP with the smaller leading constant is GEP1.
656            if (G1OC) {
657              Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
658                                                        G1OC, G2OC);
659              if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
660                if (CV->getZExtValue()) {  // If they are comparable and G2 > G1
661                  std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
662                  std::swap(NumGEP1Ops, NumGEP2Ops);
663                }
664                break;
665              }
666            }
667          }
668        }
669    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
670  }
671
672  // No shared constant operands, and we ran out of common operands.  At this
673  // point, the GEP instructions have run through all of their operands, and we
674  // haven't found evidence that there are any deltas between the GEP's.
675  // However, one GEP may have more operands than the other.  If this is the
676  // case, there may still be hope.  Check this now.
677  if (FirstConstantOper == MinOperands) {
678    // Make GEP1Ops be the longer one if there is a longer one.
679    if (NumGEP1Ops < NumGEP2Ops) {
680      std::swap(GEP1Ops, GEP2Ops);
681      std::swap(NumGEP1Ops, NumGEP2Ops);
682    }
683
684    // Is there anything to check?
685    if (NumGEP1Ops > MinOperands) {
686      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
687        if (isa<ConstantInt>(GEP1Ops[i]) &&
688            !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
689          // Yup, there's a constant in the tail.  Set all variables to
690          // constants in the GEP instruction to make it suitable for
691          // TargetData::getIndexedOffset.
692          for (i = 0; i != MaxOperands; ++i)
693            if (!isa<ConstantInt>(GEP1Ops[i]))
694              GEP1Ops[i] = Context->getNullValue(GEP1Ops[i]->getType());
695          // Okay, now get the offset.  This is the relative offset for the full
696          // instruction.
697          const TargetData &TD = getTargetData();
698          int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
699                                                NumGEP1Ops);
700
701          // Now check without any constants at the end.
702          int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
703                                                MinOperands);
704
705          // Make sure we compare the absolute difference.
706          if (Offset1 > Offset2)
707            std::swap(Offset1, Offset2);
708
709          // If the tail provided a bit enough offset, return noalias!
710          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
711            return NoAlias;
712          // Otherwise break - we don't look for another constant in the tail.
713          break;
714        }
715    }
716
717    // Couldn't find anything useful.
718    return MayAlias;
719  }
720
721  // If there are non-equal constants arguments, then we can figure
722  // out a minimum known delta between the two index expressions... at
723  // this point we know that the first constant index of GEP1 is less
724  // than the first constant index of GEP2.
725
726  // Advance BasePtr[12]Ty over this first differing constant operand.
727  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
728      getTypeAtIndex(GEP2Ops[FirstConstantOper]);
729  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
730      getTypeAtIndex(GEP1Ops[FirstConstantOper]);
731
732  // We are going to be using TargetData::getIndexedOffset to determine the
733  // offset that each of the GEP's is reaching.  To do this, we have to convert
734  // all variable references to constant references.  To do this, we convert the
735  // initial sequence of array subscripts into constant zeros to start with.
736  const Type *ZeroIdxTy = GEPPointerTy;
737  for (unsigned i = 0; i != FirstConstantOper; ++i) {
738    if (!isa<StructType>(ZeroIdxTy))
739      GEP1Ops[i] = GEP2Ops[i] = Context->getNullValue(Type::Int32Ty);
740
741    if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
742      ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
743  }
744
745  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
746
747  // Loop over the rest of the operands...
748  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
749    const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
750    const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
751    // If they are equal, use a zero index...
752    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
753      if (!isa<ConstantInt>(Op1))
754        GEP1Ops[i] = GEP2Ops[i] = Context->getNullValue(Op1->getType());
755      // Otherwise, just keep the constants we have.
756    } else {
757      if (Op1) {
758        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
759          // If this is an array index, make sure the array element is in range.
760          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
761            if (Op1C->getZExtValue() >= AT->getNumElements())
762              return MayAlias;  // Be conservative with out-of-range accesses
763          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
764            if (Op1C->getZExtValue() >= VT->getNumElements())
765              return MayAlias;  // Be conservative with out-of-range accesses
766          }
767
768        } else {
769          // GEP1 is known to produce a value less than GEP2.  To be
770          // conservatively correct, we must assume the largest possible
771          // constant is used in this position.  This cannot be the initial
772          // index to the GEP instructions (because we know we have at least one
773          // element before this one with the different constant arguments), so
774          // we know that the current index must be into either a struct or
775          // array.  Because we know it's not constant, this cannot be a
776          // structure index.  Because of this, we can calculate the maximum
777          // value possible.
778          //
779          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
780            GEP1Ops[i] =
781                  Context->getConstantInt(Type::Int64Ty,AT->getNumElements()-1);
782          else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
783            GEP1Ops[i] =
784                  Context->getConstantInt(Type::Int64Ty,VT->getNumElements()-1);
785        }
786      }
787
788      if (Op2) {
789        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
790          // If this is an array index, make sure the array element is in range.
791          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
792            if (Op2C->getZExtValue() >= AT->getNumElements())
793              return MayAlias;  // Be conservative with out-of-range accesses
794          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
795            if (Op2C->getZExtValue() >= VT->getNumElements())
796              return MayAlias;  // Be conservative with out-of-range accesses
797          }
798        } else {  // Conservatively assume the minimum value for this index
799          GEP2Ops[i] = Context->getNullValue(Op2->getType());
800        }
801      }
802    }
803
804    if (BasePtr1Ty && Op1) {
805      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
806        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
807      else
808        BasePtr1Ty = 0;
809    }
810
811    if (BasePtr2Ty && Op2) {
812      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
813        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
814      else
815        BasePtr2Ty = 0;
816    }
817  }
818
819  if (GEPPointerTy->getElementType()->isSized()) {
820    int64_t Offset1 =
821      getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
822    int64_t Offset2 =
823      getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
824    assert(Offset1 != Offset2 &&
825           "There is at least one different constant here!");
826
827    // Make sure we compare the absolute difference.
828    if (Offset1 > Offset2)
829      std::swap(Offset1, Offset2);
830
831    if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
832      //cerr << "Determined that these two GEP's don't alias ["
833      //     << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
834      return NoAlias;
835    }
836  }
837  return MayAlias;
838}
839
840// Make sure that anything that uses AliasAnalysis pulls in this file...
841DEFINING_FILE_FOR(BasicAliasAnalysis)
842