BasicAliasAnalysis.cpp revision 1f74590e9d1b9cf0f1f81a156efea73f76546e05
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/Operator.h"
25#include "llvm/Pass.h"
26#include "llvm/Analysis/CaptureTracking.h"
27#include "llvm/Analysis/MemoryBuiltins.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/Support/ErrorHandling.h"
33#include <algorithm>
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37// Useful predicates
38//===----------------------------------------------------------------------===//
39
40/// isKnownNonNull - Return true if we know that the specified value is never
41/// null.
42static bool isKnownNonNull(const Value *V) {
43  // Alloca never returns null, malloc might.
44  if (isa<AllocaInst>(V)) return true;
45
46  // A byval argument is never null.
47  if (const Argument *A = dyn_cast<Argument>(V))
48    return A->hasByValAttr();
49
50  // Global values are not null unless extern weak.
51  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
52    return !GV->hasExternalWeakLinkage();
53  return false;
54}
55
56/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
57/// object that never escapes from the function.
58static bool isNonEscapingLocalObject(const Value *V) {
59  // If this is a local allocation, check to see if it escapes.
60  if (isa<AllocaInst>(V) || isNoAliasCall(V))
61    // Set StoreCaptures to True so that we can assume in our callers that the
62    // pointer is not the result of a load instruction. Currently
63    // PointerMayBeCaptured doesn't have any special analysis for the
64    // StoreCaptures=false case; if it did, our callers could be refined to be
65    // more precise.
66    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
67
68  // If this is an argument that corresponds to a byval or noalias argument,
69  // then it has not escaped before entering the function.  Check if it escapes
70  // inside the function.
71  if (const Argument *A = dyn_cast<Argument>(V))
72    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
73      // Don't bother analyzing arguments already known not to escape.
74      if (A->hasNoCaptureAttr())
75        return true;
76      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
77    }
78  return false;
79}
80
81/// isEscapeSource - Return true if the pointer is one which would have
82/// been considered an escape by isNonEscapingLocalObject.
83static bool isEscapeSource(const Value *V) {
84  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
85    return true;
86
87  // The load case works because isNonEscapingLocalObject considers all
88  // stores to be escapes (it passes true for the StoreCaptures argument
89  // to PointerMayBeCaptured).
90  if (isa<LoadInst>(V))
91    return true;
92
93  return false;
94}
95
96/// isObjectSmallerThan - Return true if we can prove that the object specified
97/// by V is smaller than Size.
98static bool isObjectSmallerThan(const Value *V, unsigned Size,
99                                const TargetData &TD) {
100  const Type *AccessTy;
101  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
102    AccessTy = GV->getType()->getElementType();
103  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
104    if (!AI->isArrayAllocation())
105      AccessTy = AI->getType()->getElementType();
106    else
107      return false;
108  } else if (const CallInst* CI = extractMallocCall(V)) {
109    if (!isArrayMalloc(V, &TD))
110      // The size is the argument to the malloc call.
111      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
112        return (C->getZExtValue() < Size);
113    return false;
114  } else if (const Argument *A = dyn_cast<Argument>(V)) {
115    if (A->hasByValAttr())
116      AccessTy = cast<PointerType>(A->getType())->getElementType();
117    else
118      return false;
119  } else {
120    return false;
121  }
122
123  if (AccessTy->isSized())
124    return TD.getTypeAllocSize(AccessTy) < Size;
125  return false;
126}
127
128//===----------------------------------------------------------------------===//
129// NoAA Pass
130//===----------------------------------------------------------------------===//
131
132namespace {
133  /// NoAA - This class implements the -no-aa pass, which always returns "I
134  /// don't know" for alias queries.  NoAA is unlike other alias analysis
135  /// implementations, in that it does not chain to a previous analysis.  As
136  /// such it doesn't follow many of the rules that other alias analyses must.
137  ///
138  struct NoAA : public ImmutablePass, public AliasAnalysis {
139    static char ID; // Class identification, replacement for typeinfo
140    NoAA() : ImmutablePass(&ID) {}
141    explicit NoAA(void *PID) : ImmutablePass(PID) { }
142
143    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
144    }
145
146    virtual void initializePass() {
147      TD = getAnalysisIfAvailable<TargetData>();
148    }
149
150    virtual AliasResult alias(const Value *V1, unsigned V1Size,
151                              const Value *V2, unsigned V2Size) {
152      return MayAlias;
153    }
154
155    virtual bool pointsToConstantMemory(const Value *P) { return false; }
156    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
157                                       const Value *P, unsigned Size) {
158      return ModRef;
159    }
160    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
161                                       ImmutableCallSite CS2) {
162      return ModRef;
163    }
164
165    virtual void deleteValue(Value *V) {}
166    virtual void copyValue(Value *From, Value *To) {}
167
168    /// getAdjustedAnalysisPointer - This method is used when a pass implements
169    /// an analysis interface through multiple inheritance.  If needed, it
170    /// should override this to adjust the this pointer as needed for the
171    /// specified pass info.
172    virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
173      if (PI ==  &AliasAnalysis::ID)
174        return (AliasAnalysis*)this;
175      return this;
176    }
177  };
178}  // End of anonymous namespace
179
180// Register this pass...
181char NoAA::ID = 0;
182INITIALIZE_AG_PASS(NoAA, AliasAnalysis, "no-aa",
183                   "No Alias Analysis (always returns 'may' alias)",
184                   true, true, false);
185
186ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
187
188//===----------------------------------------------------------------------===//
189// BasicAliasAnalysis Pass
190//===----------------------------------------------------------------------===//
191
192#ifndef NDEBUG
193static const Function *getParent(const Value *V) {
194  if (const Instruction *inst = dyn_cast<Instruction>(V))
195    return inst->getParent()->getParent();
196
197  if (const Argument *arg = dyn_cast<Argument>(V))
198    return arg->getParent();
199
200  return NULL;
201}
202
203static bool notDifferentParent(const Value *O1, const Value *O2) {
204
205  const Function *F1 = getParent(O1);
206  const Function *F2 = getParent(O2);
207
208  return !F1 || !F2 || F1 == F2;
209}
210#endif
211
212namespace {
213  /// BasicAliasAnalysis - This is the default alias analysis implementation.
214  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
215  /// derives from the NoAA class.
216  struct BasicAliasAnalysis : public NoAA {
217    static char ID; // Class identification, replacement for typeinfo
218    BasicAliasAnalysis() : NoAA(&ID) {}
219
220    AliasResult alias(const Value *V1, unsigned V1Size,
221                      const Value *V2, unsigned V2Size) {
222      assert(Visited.empty() && "Visited must be cleared after use!");
223      assert(notDifferentParent(V1, V2) &&
224             "BasicAliasAnalysis doesn't support interprocedural queries.");
225      AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size);
226      Visited.clear();
227      return Alias;
228    }
229
230    ModRefResult getModRefInfo(ImmutableCallSite CS,
231                               const Value *P, unsigned Size);
232    ModRefResult getModRefInfo(ImmutableCallSite CS1,
233                               ImmutableCallSite CS2);
234
235    /// pointsToConstantMemory - Chase pointers until we find a (constant
236    /// global) or not.
237    bool pointsToConstantMemory(const Value *P);
238
239    /// getAdjustedAnalysisPointer - This method is used when a pass implements
240    /// an analysis interface through multiple inheritance.  If needed, it
241    /// should override this to adjust the this pointer as needed for the
242    /// specified pass info.
243    virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
244      if (PI == &AliasAnalysis::ID)
245        return (AliasAnalysis*)this;
246      return this;
247    }
248
249  private:
250    // Visited - Track instructions visited by a aliasPHI, aliasSelect(), and aliasGEP().
251    SmallPtrSet<const Value*, 16> Visited;
252
253    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
254    // instruction against another.
255    AliasResult aliasGEP(const GEPOperator *V1, unsigned V1Size,
256                         const Value *V2, unsigned V2Size,
257                         const Value *UnderlyingV1, const Value *UnderlyingV2);
258
259    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
260    // instruction against another.
261    AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
262                         const Value *V2, unsigned V2Size);
263
264    /// aliasSelect - Disambiguate a Select instruction against another value.
265    AliasResult aliasSelect(const SelectInst *SI, unsigned SISize,
266                            const Value *V2, unsigned V2Size);
267
268    AliasResult aliasCheck(const Value *V1, unsigned V1Size,
269                           const Value *V2, unsigned V2Size);
270  };
271}  // End of anonymous namespace
272
273// Register this pass...
274char BasicAliasAnalysis::ID = 0;
275INITIALIZE_AG_PASS(BasicAliasAnalysis, AliasAnalysis, "basicaa",
276                   "Basic Alias Analysis (default AA impl)",
277                   false, true, true);
278
279ImmutablePass *llvm::createBasicAliasAnalysisPass() {
280  return new BasicAliasAnalysis();
281}
282
283
284/// pointsToConstantMemory - Chase pointers until we find a (constant
285/// global) or not.
286bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
287  if (const GlobalVariable *GV =
288        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
289    // Note: this doesn't require GV to be "ODR" because it isn't legal for a
290    // global to be marked constant in some modules and non-constant in others.
291    // GV may even be a declaration, not a definition.
292    return GV->isConstant();
293  return false;
294}
295
296
297/// getModRefInfo - Check to see if the specified callsite can clobber the
298/// specified memory object.  Since we only look at local properties of this
299/// function, we really can't say much about this query.  We do, however, use
300/// simple "address taken" analysis on local objects.
301AliasAnalysis::ModRefResult
302BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
303                                  const Value *P, unsigned Size) {
304  assert(notDifferentParent(CS.getInstruction(), P) &&
305         "AliasAnalysis query involving multiple functions!");
306
307  const Value *Object = P->getUnderlyingObject();
308
309  // If this is a tail call and P points to a stack location, we know that
310  // the tail call cannot access or modify the local stack.
311  // We cannot exclude byval arguments here; these belong to the caller of
312  // the current function not to the current function, and a tail callee
313  // may reference them.
314  if (isa<AllocaInst>(Object))
315    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
316      if (CI->isTailCall())
317        return NoModRef;
318
319  // If the pointer is to a locally allocated object that does not escape,
320  // then the call can not mod/ref the pointer unless the call takes the pointer
321  // as an argument, and itself doesn't capture it.
322  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
323      isNonEscapingLocalObject(Object)) {
324    bool PassedAsArg = false;
325    unsigned ArgNo = 0;
326    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
327         CI != CE; ++CI, ++ArgNo) {
328      // Only look at the no-capture pointer arguments.
329      if (!(*CI)->getType()->isPointerTy() ||
330          !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture))
331        continue;
332
333      // If  this is a no-capture pointer argument, see if we can tell that it
334      // is impossible to alias the pointer we're checking.  If not, we have to
335      // assume that the call could touch the pointer, even though it doesn't
336      // escape.
337      if (!isNoAlias(cast<Value>(CI), UnknownSize, P, UnknownSize)) {
338        PassedAsArg = true;
339        break;
340      }
341    }
342
343    if (!PassedAsArg)
344      return NoModRef;
345  }
346
347  // Finally, handle specific knowledge of intrinsics.
348  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
349  if (II == 0)
350    return AliasAnalysis::getModRefInfo(CS, P, Size);
351
352  switch (II->getIntrinsicID()) {
353  default: break;
354  case Intrinsic::memcpy:
355  case Intrinsic::memmove: {
356    unsigned Len = UnknownSize;
357    if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
358      Len = LenCI->getZExtValue();
359    Value *Dest = II->getArgOperand(0);
360    Value *Src = II->getArgOperand(1);
361    if (isNoAlias(Dest, Len, P, Size)) {
362      if (isNoAlias(Src, Len, P, Size))
363        return NoModRef;
364      return Ref;
365    }
366    break;
367  }
368  case Intrinsic::memset:
369    // Since memset is 'accesses arguments' only, the AliasAnalysis base class
370    // will handle it for the variable length case.
371    if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
372      unsigned Len = LenCI->getZExtValue();
373      Value *Dest = II->getArgOperand(0);
374      if (isNoAlias(Dest, Len, P, Size))
375        return NoModRef;
376    }
377    break;
378  case Intrinsic::atomic_cmp_swap:
379  case Intrinsic::atomic_swap:
380  case Intrinsic::atomic_load_add:
381  case Intrinsic::atomic_load_sub:
382  case Intrinsic::atomic_load_and:
383  case Intrinsic::atomic_load_nand:
384  case Intrinsic::atomic_load_or:
385  case Intrinsic::atomic_load_xor:
386  case Intrinsic::atomic_load_max:
387  case Intrinsic::atomic_load_min:
388  case Intrinsic::atomic_load_umax:
389  case Intrinsic::atomic_load_umin:
390    if (TD) {
391      Value *Op1 = II->getArgOperand(0);
392      unsigned Op1Size = TD->getTypeStoreSize(Op1->getType());
393      if (isNoAlias(Op1, Op1Size, P, Size))
394        return NoModRef;
395    }
396    break;
397  case Intrinsic::lifetime_start:
398  case Intrinsic::lifetime_end:
399  case Intrinsic::invariant_start: {
400    unsigned PtrSize = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
401    if (isNoAlias(II->getArgOperand(1), PtrSize, P, Size))
402      return NoModRef;
403    break;
404  }
405  case Intrinsic::invariant_end: {
406    unsigned PtrSize = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
407    if (isNoAlias(II->getArgOperand(2), PtrSize, P, Size))
408      return NoModRef;
409    break;
410  }
411  }
412
413  // The AliasAnalysis base class has some smarts, lets use them.
414  return AliasAnalysis::getModRefInfo(CS, P, Size);
415}
416
417
418AliasAnalysis::ModRefResult
419BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
420                                  ImmutableCallSite CS2) {
421  // If CS1 or CS2 are readnone, they don't interact.
422  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
423  if (CS1B == DoesNotAccessMemory) return NoModRef;
424
425  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
426  if (CS2B == DoesNotAccessMemory) return NoModRef;
427
428  // If they both only read from memory, there is no dependence.
429  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
430    return NoModRef;
431
432  AliasAnalysis::ModRefResult Mask = ModRef;
433
434  // If CS1 only reads memory, the only dependence on CS2 can be
435  // from CS1 reading memory written by CS2.
436  if (CS1B == OnlyReadsMemory)
437    Mask = ModRefResult(Mask & Ref);
438
439  // If CS2 only access memory through arguments, accumulate the mod/ref
440  // information from CS1's references to the memory referenced by
441  // CS2's arguments.
442  if (CS2B == AccessesArguments) {
443    AliasAnalysis::ModRefResult R = NoModRef;
444    for (ImmutableCallSite::arg_iterator
445         I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
446      R = ModRefResult((R | getModRefInfo(CS1, *I, UnknownSize)) & Mask);
447      if (R == Mask)
448        break;
449    }
450    return R;
451  }
452
453  // If CS1 only accesses memory through arguments, check if CS2 references
454  // any of the memory referenced by CS1's arguments. If not, return NoModRef.
455  if (CS1B == AccessesArguments) {
456    AliasAnalysis::ModRefResult R = NoModRef;
457    for (ImmutableCallSite::arg_iterator
458         I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I)
459      if (getModRefInfo(CS2, *I, UnknownSize) != NoModRef) {
460        R = Mask;
461        break;
462      }
463    if (R == NoModRef)
464      return R;
465  }
466
467  // Otherwise, fall back to NoAA (mod+ref).
468  return ModRefResult(NoAA::getModRefInfo(CS1, CS2) & Mask);
469}
470
471/// GetIndexDifference - Dest and Src are the variable indices from two
472/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
473/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
474/// difference between the two pointers.
475static void GetIndexDifference(
476                      SmallVectorImpl<std::pair<const Value*, int64_t> > &Dest,
477                const SmallVectorImpl<std::pair<const Value*, int64_t> > &Src) {
478  if (Src.empty()) return;
479
480  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
481    const Value *V = Src[i].first;
482    int64_t Scale = Src[i].second;
483
484    // Find V in Dest.  This is N^2, but pointer indices almost never have more
485    // than a few variable indexes.
486    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
487      if (Dest[j].first != V) continue;
488
489      // If we found it, subtract off Scale V's from the entry in Dest.  If it
490      // goes to zero, remove the entry.
491      if (Dest[j].second != Scale)
492        Dest[j].second -= Scale;
493      else
494        Dest.erase(Dest.begin()+j);
495      Scale = 0;
496      break;
497    }
498
499    // If we didn't consume this entry, add it to the end of the Dest list.
500    if (Scale)
501      Dest.push_back(std::make_pair(V, -Scale));
502  }
503}
504
505/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
506/// against another pointer.  We know that V1 is a GEP, but we don't know
507/// anything about V2.  UnderlyingV1 is GEP1->getUnderlyingObject(),
508/// UnderlyingV2 is the same for V2.
509///
510AliasAnalysis::AliasResult
511BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size,
512                             const Value *V2, unsigned V2Size,
513                             const Value *UnderlyingV1,
514                             const Value *UnderlyingV2) {
515  // If this GEP has been visited before, we're on a use-def cycle.
516  // Such cycles are only valid when PHI nodes are involved or in unreachable
517  // code. The visitPHI function catches cycles containing PHIs, but there
518  // could still be a cycle without PHIs in unreachable code.
519  if (!Visited.insert(GEP1))
520    return MayAlias;
521
522  int64_t GEP1BaseOffset;
523  SmallVector<std::pair<const Value*, int64_t>, 4> GEP1VariableIndices;
524
525  // If we have two gep instructions with must-alias'ing base pointers, figure
526  // out if the indexes to the GEP tell us anything about the derived pointer.
527  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
528    // Do the base pointers alias?
529    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize,
530                                       UnderlyingV2, UnknownSize);
531
532    // If we get a No or May, then return it immediately, no amount of analysis
533    // will improve this situation.
534    if (BaseAlias != MustAlias) return BaseAlias;
535
536    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
537    // exactly, see if the computed offset from the common pointer tells us
538    // about the relation of the resulting pointer.
539    const Value *GEP1BasePtr =
540      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
541
542    int64_t GEP2BaseOffset;
543    SmallVector<std::pair<const Value*, int64_t>, 4> GEP2VariableIndices;
544    const Value *GEP2BasePtr =
545      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
546
547    // If DecomposeGEPExpression isn't able to look all the way through the
548    // addressing operation, we must not have TD and this is too complex for us
549    // to handle without it.
550    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
551      assert(TD == 0 &&
552             "DecomposeGEPExpression and getUnderlyingObject disagree!");
553      return MayAlias;
554    }
555
556    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
557    // symbolic difference.
558    GEP1BaseOffset -= GEP2BaseOffset;
559    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
560
561  } else {
562    // Check to see if these two pointers are related by the getelementptr
563    // instruction.  If one pointer is a GEP with a non-zero index of the other
564    // pointer, we know they cannot alias.
565
566    // If both accesses are unknown size, we can't do anything useful here.
567    if (V1Size == UnknownSize && V2Size == UnknownSize)
568      return MayAlias;
569
570    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, V2, V2Size);
571    if (R != MustAlias)
572      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
573      // If V2 is known not to alias GEP base pointer, then the two values
574      // cannot alias per GEP semantics: "A pointer value formed from a
575      // getelementptr instruction is associated with the addresses associated
576      // with the first operand of the getelementptr".
577      return R;
578
579    const Value *GEP1BasePtr =
580      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
581
582    // If DecomposeGEPExpression isn't able to look all the way through the
583    // addressing operation, we must not have TD and this is too complex for us
584    // to handle without it.
585    if (GEP1BasePtr != UnderlyingV1) {
586      assert(TD == 0 &&
587             "DecomposeGEPExpression and getUnderlyingObject disagree!");
588      return MayAlias;
589    }
590  }
591
592  // In the two GEP Case, if there is no difference in the offsets of the
593  // computed pointers, the resultant pointers are a must alias.  This
594  // hapens when we have two lexically identical GEP's (for example).
595  //
596  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
597  // must aliases the GEP, the end result is a must alias also.
598  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
599    return MustAlias;
600
601  // If we have a known constant offset, see if this offset is larger than the
602  // access size being queried.  If so, and if no variable indices can remove
603  // pieces of this constant, then we know we have a no-alias.  For example,
604  //   &A[100] != &A.
605
606  // In order to handle cases like &A[100][i] where i is an out of range
607  // subscript, we have to ignore all constant offset pieces that are a multiple
608  // of a scaled index.  Do this by removing constant offsets that are a
609  // multiple of any of our variable indices.  This allows us to transform
610  // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
611  // provides an offset of 4 bytes (assuming a <= 4 byte access).
612  for (unsigned i = 0, e = GEP1VariableIndices.size();
613       i != e && GEP1BaseOffset;++i)
614    if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].second)
615      GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].second;
616
617  // If our known offset is bigger than the access size, we know we don't have
618  // an alias.
619  if (GEP1BaseOffset) {
620    if (GEP1BaseOffset >= (int64_t)V2Size ||
621        GEP1BaseOffset <= -(int64_t)V1Size)
622      return NoAlias;
623  }
624
625  return MayAlias;
626}
627
628/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
629/// instruction against another.
630AliasAnalysis::AliasResult
631BasicAliasAnalysis::aliasSelect(const SelectInst *SI, unsigned SISize,
632                                const Value *V2, unsigned V2Size) {
633  // If this select has been visited before, we're on a use-def cycle.
634  // Such cycles are only valid when PHI nodes are involved or in unreachable
635  // code. The visitPHI function catches cycles containing PHIs, but there
636  // could still be a cycle without PHIs in unreachable code.
637  if (!Visited.insert(SI))
638    return MayAlias;
639
640  // If the values are Selects with the same condition, we can do a more precise
641  // check: just check for aliases between the values on corresponding arms.
642  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
643    if (SI->getCondition() == SI2->getCondition()) {
644      AliasResult Alias =
645        aliasCheck(SI->getTrueValue(), SISize,
646                   SI2->getTrueValue(), V2Size);
647      if (Alias == MayAlias)
648        return MayAlias;
649      AliasResult ThisAlias =
650        aliasCheck(SI->getFalseValue(), SISize,
651                   SI2->getFalseValue(), V2Size);
652      if (ThisAlias != Alias)
653        return MayAlias;
654      return Alias;
655    }
656
657  // If both arms of the Select node NoAlias or MustAlias V2, then returns
658  // NoAlias / MustAlias. Otherwise, returns MayAlias.
659  AliasResult Alias =
660    aliasCheck(V2, V2Size, SI->getTrueValue(), SISize);
661  if (Alias == MayAlias)
662    return MayAlias;
663
664  // If V2 is visited, the recursive case will have been caught in the
665  // above aliasCheck call, so these subsequent calls to aliasCheck
666  // don't need to assume that V2 is being visited recursively.
667  Visited.erase(V2);
668
669  AliasResult ThisAlias =
670    aliasCheck(V2, V2Size, SI->getFalseValue(), SISize);
671  if (ThisAlias != Alias)
672    return MayAlias;
673  return Alias;
674}
675
676// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
677// against another.
678AliasAnalysis::AliasResult
679BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize,
680                             const Value *V2, unsigned V2Size) {
681  // The PHI node has already been visited, avoid recursion any further.
682  if (!Visited.insert(PN))
683    return MayAlias;
684
685  // If the values are PHIs in the same block, we can do a more precise
686  // as well as efficient check: just check for aliases between the values
687  // on corresponding edges.
688  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
689    if (PN2->getParent() == PN->getParent()) {
690      AliasResult Alias =
691        aliasCheck(PN->getIncomingValue(0), PNSize,
692                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
693                   V2Size);
694      if (Alias == MayAlias)
695        return MayAlias;
696      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
697        AliasResult ThisAlias =
698          aliasCheck(PN->getIncomingValue(i), PNSize,
699                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
700                     V2Size);
701        if (ThisAlias != Alias)
702          return MayAlias;
703      }
704      return Alias;
705    }
706
707  SmallPtrSet<Value*, 4> UniqueSrc;
708  SmallVector<Value*, 4> V1Srcs;
709  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
710    Value *PV1 = PN->getIncomingValue(i);
711    if (isa<PHINode>(PV1))
712      // If any of the source itself is a PHI, return MayAlias conservatively
713      // to avoid compile time explosion. The worst possible case is if both
714      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
715      // and 'n' are the number of PHI sources.
716      return MayAlias;
717    if (UniqueSrc.insert(PV1))
718      V1Srcs.push_back(PV1);
719  }
720
721  AliasResult Alias = aliasCheck(V2, V2Size, V1Srcs[0], PNSize);
722  // Early exit if the check of the first PHI source against V2 is MayAlias.
723  // Other results are not possible.
724  if (Alias == MayAlias)
725    return MayAlias;
726
727  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
728  // NoAlias / MustAlias. Otherwise, returns MayAlias.
729  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
730    Value *V = V1Srcs[i];
731
732    // If V2 is visited, the recursive case will have been caught in the
733    // above aliasCheck call, so these subsequent calls to aliasCheck
734    // don't need to assume that V2 is being visited recursively.
735    Visited.erase(V2);
736
737    AliasResult ThisAlias = aliasCheck(V2, V2Size, V, PNSize);
738    if (ThisAlias != Alias || ThisAlias == MayAlias)
739      return MayAlias;
740  }
741
742  return Alias;
743}
744
745// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
746// such as array references.
747//
748AliasAnalysis::AliasResult
749BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
750                               const Value *V2, unsigned V2Size) {
751  // If either of the memory references is empty, it doesn't matter what the
752  // pointer values are.
753  if (V1Size == 0 || V2Size == 0)
754    return NoAlias;
755
756  // Strip off any casts if they exist.
757  V1 = V1->stripPointerCasts();
758  V2 = V2->stripPointerCasts();
759
760  // Are we checking for alias of the same value?
761  if (V1 == V2) return MustAlias;
762
763  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
764    return NoAlias;  // Scalars cannot alias each other
765
766  // Figure out what objects these things are pointing to if we can.
767  const Value *O1 = V1->getUnderlyingObject();
768  const Value *O2 = V2->getUnderlyingObject();
769
770  // Null values in the default address space don't point to any object, so they
771  // don't alias any other pointer.
772  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
773    if (CPN->getType()->getAddressSpace() == 0)
774      return NoAlias;
775  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
776    if (CPN->getType()->getAddressSpace() == 0)
777      return NoAlias;
778
779  if (O1 != O2) {
780    // If V1/V2 point to two different objects we know that we have no alias.
781    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
782      return NoAlias;
783
784    // Constant pointers can't alias with non-const isIdentifiedObject objects.
785    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
786        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
787      return NoAlias;
788
789    // Arguments can't alias with local allocations or noalias calls
790    // in the same function.
791    if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
792         (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
793      return NoAlias;
794
795    // Most objects can't alias null.
796    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
797        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
798      return NoAlias;
799
800    // If one pointer is the result of a call/invoke or load and the other is a
801    // non-escaping local object within the same function, then we know the
802    // object couldn't escape to a point where the call could return it.
803    //
804    // Note that if the pointers are in different functions, there are a
805    // variety of complications. A call with a nocapture argument may still
806    // temporary store the nocapture argument's value in a temporary memory
807    // location if that memory location doesn't escape. Or it may pass a
808    // nocapture value to other functions as long as they don't capture it.
809    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
810      return NoAlias;
811    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
812      return NoAlias;
813  }
814
815  // If the size of one access is larger than the entire object on the other
816  // side, then we know such behavior is undefined and can assume no alias.
817  if (TD)
818    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) ||
819        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD)))
820      return NoAlias;
821
822  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
823  // GEP can't simplify, we don't even look at the PHI cases.
824  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
825    std::swap(V1, V2);
826    std::swap(V1Size, V2Size);
827    std::swap(O1, O2);
828  }
829  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1))
830    return aliasGEP(GV1, V1Size, V2, V2Size, O1, O2);
831
832  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
833    std::swap(V1, V2);
834    std::swap(V1Size, V2Size);
835  }
836  if (const PHINode *PN = dyn_cast<PHINode>(V1))
837    return aliasPHI(PN, V1Size, V2, V2Size);
838
839  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
840    std::swap(V1, V2);
841    std::swap(V1Size, V2Size);
842  }
843  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1))
844    return aliasSelect(S1, V1Size, V2, V2Size);
845
846  return MayAlias;
847}
848
849// Make sure that anything that uses AliasAnalysis pulls in this file.
850DEFINING_FILE_FOR(BasicAliasAnalysis)
851