BasicAliasAnalysis.cpp revision 69acc93b3de6854732a6d91b581c3c29b59bb315
1//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the primary stateless implementation of the
11// Alias Analysis interface that implements identities (two different
12// globals cannot alias, etc), but does no stateful analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Pass.h"
28#include "llvm/Analysis/CaptureTracking.h"
29#include "llvm/Analysis/MemoryBuiltins.h"
30#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetLibraryInfo.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/GetElementPtrTypeIterator.h"
38#include <algorithm>
39using namespace llvm;
40
41//===----------------------------------------------------------------------===//
42// Useful predicates
43//===----------------------------------------------------------------------===//
44
45/// isKnownNonNull - Return true if we know that the specified value is never
46/// null.
47static bool isKnownNonNull(const Value *V) {
48  // Alloca never returns null, malloc might.
49  if (isa<AllocaInst>(V)) return true;
50
51  // A byval argument is never null.
52  if (const Argument *A = dyn_cast<Argument>(V))
53    return A->hasByValAttr();
54
55  // Global values are not null unless extern weak.
56  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
57    return !GV->hasExternalWeakLinkage();
58  return false;
59}
60
61/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
62/// object that never escapes from the function.
63static bool isNonEscapingLocalObject(const Value *V) {
64  // If this is a local allocation, check to see if it escapes.
65  if (isa<AllocaInst>(V) || isNoAliasCall(V))
66    // Set StoreCaptures to True so that we can assume in our callers that the
67    // pointer is not the result of a load instruction. Currently
68    // PointerMayBeCaptured doesn't have any special analysis for the
69    // StoreCaptures=false case; if it did, our callers could be refined to be
70    // more precise.
71    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
72
73  // If this is an argument that corresponds to a byval or noalias argument,
74  // then it has not escaped before entering the function.  Check if it escapes
75  // inside the function.
76  if (const Argument *A = dyn_cast<Argument>(V))
77    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
78      // Don't bother analyzing arguments already known not to escape.
79      if (A->hasNoCaptureAttr())
80        return true;
81      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
82    }
83  return false;
84}
85
86/// isEscapeSource - Return true if the pointer is one which would have
87/// been considered an escape by isNonEscapingLocalObject.
88static bool isEscapeSource(const Value *V) {
89  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
90    return true;
91
92  // The load case works because isNonEscapingLocalObject considers all
93  // stores to be escapes (it passes true for the StoreCaptures argument
94  // to PointerMayBeCaptured).
95  if (isa<LoadInst>(V))
96    return true;
97
98  return false;
99}
100
101/// getObjectSize - Return the size of the object specified by V, or
102/// UnknownSize if unknown.
103static uint64_t getObjectSize(const Value *V, const TargetData &TD) {
104  Type *AccessTy;
105  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
106    if (!GV->hasDefinitiveInitializer())
107      return AliasAnalysis::UnknownSize;
108    AccessTy = GV->getType()->getElementType();
109  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
110    if (!AI->isArrayAllocation())
111      AccessTy = AI->getType()->getElementType();
112    else
113      return AliasAnalysis::UnknownSize;
114  } else if (const CallInst* CI = extractMallocCall(V)) {
115    if (!isArrayMalloc(V, &TD))
116      // The size is the argument to the malloc call.
117      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
118        return C->getZExtValue();
119    return AliasAnalysis::UnknownSize;
120  } else if (const Argument *A = dyn_cast<Argument>(V)) {
121    if (A->hasByValAttr())
122      AccessTy = cast<PointerType>(A->getType())->getElementType();
123    else
124      return AliasAnalysis::UnknownSize;
125  } else {
126    return AliasAnalysis::UnknownSize;
127  }
128
129  if (AccessTy->isSized())
130    return TD.getTypeAllocSize(AccessTy);
131  return AliasAnalysis::UnknownSize;
132}
133
134/// isObjectSmallerThan - Return true if we can prove that the object specified
135/// by V is smaller than Size.
136static bool isObjectSmallerThan(const Value *V, uint64_t Size,
137                                const TargetData &TD) {
138  uint64_t ObjectSize = getObjectSize(V, TD);
139  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
140}
141
142/// isObjectSize - Return true if we can prove that the object specified
143/// by V has size Size.
144static bool isObjectSize(const Value *V, uint64_t Size,
145                         const TargetData &TD) {
146  uint64_t ObjectSize = getObjectSize(V, TD);
147  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
148}
149
150//===----------------------------------------------------------------------===//
151// GetElementPtr Instruction Decomposition and Analysis
152//===----------------------------------------------------------------------===//
153
154namespace {
155  enum ExtensionKind {
156    EK_NotExtended,
157    EK_SignExt,
158    EK_ZeroExt
159  };
160
161  struct VariableGEPIndex {
162    const Value *V;
163    ExtensionKind Extension;
164    int64_t Scale;
165  };
166}
167
168
169/// GetLinearExpression - Analyze the specified value as a linear expression:
170/// "A*V + B", where A and B are constant integers.  Return the scale and offset
171/// values as APInts and return V as a Value*, and return whether we looked
172/// through any sign or zero extends.  The incoming Value is known to have
173/// IntegerType and it may already be sign or zero extended.
174///
175/// Note that this looks through extends, so the high bits may not be
176/// represented in the result.
177static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
178                                  ExtensionKind &Extension,
179                                  const TargetData &TD, unsigned Depth) {
180  assert(V->getType()->isIntegerTy() && "Not an integer value");
181
182  // Limit our recursion depth.
183  if (Depth == 6) {
184    Scale = 1;
185    Offset = 0;
186    return V;
187  }
188
189  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
190    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
191      switch (BOp->getOpcode()) {
192      default: break;
193      case Instruction::Or:
194        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
195        // analyze it.
196        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
197          break;
198        // FALL THROUGH.
199      case Instruction::Add:
200        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
201                                TD, Depth+1);
202        Offset += RHSC->getValue();
203        return V;
204      case Instruction::Mul:
205        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
206                                TD, Depth+1);
207        Offset *= RHSC->getValue();
208        Scale *= RHSC->getValue();
209        return V;
210      case Instruction::Shl:
211        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
212                                TD, Depth+1);
213        Offset <<= RHSC->getValue().getLimitedValue();
214        Scale <<= RHSC->getValue().getLimitedValue();
215        return V;
216      }
217    }
218  }
219
220  // Since GEP indices are sign extended anyway, we don't care about the high
221  // bits of a sign or zero extended value - just scales and offsets.  The
222  // extensions have to be consistent though.
223  if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
224      (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
225    Value *CastOp = cast<CastInst>(V)->getOperand(0);
226    unsigned OldWidth = Scale.getBitWidth();
227    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
228    Scale = Scale.trunc(SmallWidth);
229    Offset = Offset.trunc(SmallWidth);
230    Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
231
232    Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
233                                        TD, Depth+1);
234    Scale = Scale.zext(OldWidth);
235    Offset = Offset.zext(OldWidth);
236
237    return Result;
238  }
239
240  Scale = 1;
241  Offset = 0;
242  return V;
243}
244
245/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
246/// into a base pointer with a constant offset and a number of scaled symbolic
247/// offsets.
248///
249/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
250/// the VarIndices vector) are Value*'s that are known to be scaled by the
251/// specified amount, but which may have other unrepresented high bits. As such,
252/// the gep cannot necessarily be reconstructed from its decomposed form.
253///
254/// When TargetData is around, this function is capable of analyzing everything
255/// that GetUnderlyingObject can look through.  When not, it just looks
256/// through pointer casts.
257///
258static const Value *
259DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
260                       SmallVectorImpl<VariableGEPIndex> &VarIndices,
261                       const TargetData *TD) {
262  // Limit recursion depth to limit compile time in crazy cases.
263  unsigned MaxLookup = 6;
264
265  BaseOffs = 0;
266  do {
267    // See if this is a bitcast or GEP.
268    const Operator *Op = dyn_cast<Operator>(V);
269    if (Op == 0) {
270      // The only non-operator case we can handle are GlobalAliases.
271      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
272        if (!GA->mayBeOverridden()) {
273          V = GA->getAliasee();
274          continue;
275        }
276      }
277      return V;
278    }
279
280    if (Op->getOpcode() == Instruction::BitCast) {
281      V = Op->getOperand(0);
282      continue;
283    }
284
285    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
286    if (GEPOp == 0) {
287      // If it's not a GEP, hand it off to SimplifyInstruction to see if it
288      // can come up with something. This matches what GetUnderlyingObject does.
289      if (const Instruction *I = dyn_cast<Instruction>(V))
290        // TODO: Get a DominatorTree and use it here.
291        if (const Value *Simplified =
292              SimplifyInstruction(const_cast<Instruction *>(I), TD)) {
293          V = Simplified;
294          continue;
295        }
296
297      return V;
298    }
299
300    // Don't attempt to analyze GEPs over unsized objects.
301    if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
302        ->getElementType()->isSized())
303      return V;
304
305    // If we are lacking TargetData information, we can't compute the offets of
306    // elements computed by GEPs.  However, we can handle bitcast equivalent
307    // GEPs.
308    if (TD == 0) {
309      if (!GEPOp->hasAllZeroIndices())
310        return V;
311      V = GEPOp->getOperand(0);
312      continue;
313    }
314
315    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
316    gep_type_iterator GTI = gep_type_begin(GEPOp);
317    for (User::const_op_iterator I = GEPOp->op_begin()+1,
318         E = GEPOp->op_end(); I != E; ++I) {
319      Value *Index = *I;
320      // Compute the (potentially symbolic) offset in bytes for this index.
321      if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
322        // For a struct, add the member offset.
323        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
324        if (FieldNo == 0) continue;
325
326        BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
327        continue;
328      }
329
330      // For an array/pointer, add the element offset, explicitly scaled.
331      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
332        if (CIdx->isZero()) continue;
333        BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
334        continue;
335      }
336
337      uint64_t Scale = TD->getTypeAllocSize(*GTI);
338      ExtensionKind Extension = EK_NotExtended;
339
340      // If the integer type is smaller than the pointer size, it is implicitly
341      // sign extended to pointer size.
342      unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
343      if (TD->getPointerSizeInBits() > Width)
344        Extension = EK_SignExt;
345
346      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
347      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
348      Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
349                                  *TD, 0);
350
351      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
352      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
353      BaseOffs += IndexOffset.getSExtValue()*Scale;
354      Scale *= IndexScale.getSExtValue();
355
356
357      // If we already had an occurrence of this index variable, merge this
358      // scale into it.  For example, we want to handle:
359      //   A[x][x] -> x*16 + x*4 -> x*20
360      // This also ensures that 'x' only appears in the index list once.
361      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
362        if (VarIndices[i].V == Index &&
363            VarIndices[i].Extension == Extension) {
364          Scale += VarIndices[i].Scale;
365          VarIndices.erase(VarIndices.begin()+i);
366          break;
367        }
368      }
369
370      // Make sure that we have a scale that makes sense for this target's
371      // pointer size.
372      if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
373        Scale <<= ShiftBits;
374        Scale = (int64_t)Scale >> ShiftBits;
375      }
376
377      if (Scale) {
378        VariableGEPIndex Entry = {Index, Extension,
379                                  static_cast<int64_t>(Scale)};
380        VarIndices.push_back(Entry);
381      }
382    }
383
384    // Analyze the base pointer next.
385    V = GEPOp->getOperand(0);
386  } while (--MaxLookup);
387
388  // If the chain of expressions is too deep, just return early.
389  return V;
390}
391
392/// GetIndexDifference - Dest and Src are the variable indices from two
393/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
394/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
395/// difference between the two pointers.
396static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
397                               const SmallVectorImpl<VariableGEPIndex> &Src) {
398  if (Src.empty()) return;
399
400  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
401    const Value *V = Src[i].V;
402    ExtensionKind Extension = Src[i].Extension;
403    int64_t Scale = Src[i].Scale;
404
405    // Find V in Dest.  This is N^2, but pointer indices almost never have more
406    // than a few variable indexes.
407    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
408      if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
409
410      // If we found it, subtract off Scale V's from the entry in Dest.  If it
411      // goes to zero, remove the entry.
412      if (Dest[j].Scale != Scale)
413        Dest[j].Scale -= Scale;
414      else
415        Dest.erase(Dest.begin()+j);
416      Scale = 0;
417      break;
418    }
419
420    // If we didn't consume this entry, add it to the end of the Dest list.
421    if (Scale) {
422      VariableGEPIndex Entry = { V, Extension, -Scale };
423      Dest.push_back(Entry);
424    }
425  }
426}
427
428//===----------------------------------------------------------------------===//
429// BasicAliasAnalysis Pass
430//===----------------------------------------------------------------------===//
431
432#ifndef NDEBUG
433static const Function *getParent(const Value *V) {
434  if (const Instruction *inst = dyn_cast<Instruction>(V))
435    return inst->getParent()->getParent();
436
437  if (const Argument *arg = dyn_cast<Argument>(V))
438    return arg->getParent();
439
440  return NULL;
441}
442
443static bool notDifferentParent(const Value *O1, const Value *O2) {
444
445  const Function *F1 = getParent(O1);
446  const Function *F2 = getParent(O2);
447
448  return !F1 || !F2 || F1 == F2;
449}
450#endif
451
452namespace {
453  /// BasicAliasAnalysis - This is the primary alias analysis implementation.
454  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
455    static char ID; // Class identification, replacement for typeinfo
456    BasicAliasAnalysis() : ImmutablePass(ID),
457                           // AliasCache rarely has more than 1 or 2 elements,
458                           // so start it off fairly small so that clear()
459                           // doesn't have to tromp through 64 (the default)
460                           // elements on each alias query. This really wants
461                           // something like a SmallDenseMap.
462                           AliasCache(8) {
463      initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
464    }
465
466    virtual void initializePass() {
467      InitializeAliasAnalysis(this);
468    }
469
470    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
471      AU.addRequired<AliasAnalysis>();
472      AU.addRequired<TargetLibraryInfo>();
473    }
474
475    virtual AliasResult alias(const Location &LocA,
476                              const Location &LocB) {
477      assert(AliasCache.empty() && "AliasCache must be cleared after use!");
478      assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
479             "BasicAliasAnalysis doesn't support interprocedural queries.");
480      AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
481                                     LocB.Ptr, LocB.Size, LocB.TBAATag);
482      AliasCache.clear();
483      return Alias;
484    }
485
486    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
487                                       const Location &Loc);
488
489    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
490                                       ImmutableCallSite CS2) {
491      // The AliasAnalysis base class has some smarts, lets use them.
492      return AliasAnalysis::getModRefInfo(CS1, CS2);
493    }
494
495    /// pointsToConstantMemory - Chase pointers until we find a (constant
496    /// global) or not.
497    virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
498
499    /// getModRefBehavior - Return the behavior when calling the given
500    /// call site.
501    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
502
503    /// getModRefBehavior - Return the behavior when calling the given function.
504    /// For use when the call site is not known.
505    virtual ModRefBehavior getModRefBehavior(const Function *F);
506
507    /// getAdjustedAnalysisPointer - This method is used when a pass implements
508    /// an analysis interface through multiple inheritance.  If needed, it
509    /// should override this to adjust the this pointer as needed for the
510    /// specified pass info.
511    virtual void *getAdjustedAnalysisPointer(const void *ID) {
512      if (ID == &AliasAnalysis::ID)
513        return (AliasAnalysis*)this;
514      return this;
515    }
516
517  private:
518    // AliasCache - Track alias queries to guard against recursion.
519    typedef std::pair<Location, Location> LocPair;
520    typedef DenseMap<LocPair, AliasResult> AliasCacheTy;
521    AliasCacheTy AliasCache;
522
523    // Visited - Track instructions visited by pointsToConstantMemory.
524    SmallPtrSet<const Value*, 16> Visited;
525
526    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
527    // instruction against another.
528    AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
529                         const Value *V2, uint64_t V2Size,
530                         const MDNode *V2TBAAInfo,
531                         const Value *UnderlyingV1, const Value *UnderlyingV2);
532
533    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
534    // instruction against another.
535    AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
536                         const MDNode *PNTBAAInfo,
537                         const Value *V2, uint64_t V2Size,
538                         const MDNode *V2TBAAInfo);
539
540    /// aliasSelect - Disambiguate a Select instruction against another value.
541    AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
542                            const MDNode *SITBAAInfo,
543                            const Value *V2, uint64_t V2Size,
544                            const MDNode *V2TBAAInfo);
545
546    AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
547                           const MDNode *V1TBAATag,
548                           const Value *V2, uint64_t V2Size,
549                           const MDNode *V2TBAATag);
550  };
551}  // End of anonymous namespace
552
553// Register this pass...
554char BasicAliasAnalysis::ID = 0;
555INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
556                   "Basic Alias Analysis (stateless AA impl)",
557                   false, true, false)
558INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
559INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
560                   "Basic Alias Analysis (stateless AA impl)",
561                   false, true, false)
562
563
564ImmutablePass *llvm::createBasicAliasAnalysisPass() {
565  return new BasicAliasAnalysis();
566}
567
568/// pointsToConstantMemory - Returns whether the given pointer value
569/// points to memory that is local to the function, with global constants being
570/// considered local to all functions.
571bool
572BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
573  assert(Visited.empty() && "Visited must be cleared after use!");
574
575  unsigned MaxLookup = 8;
576  SmallVector<const Value *, 16> Worklist;
577  Worklist.push_back(Loc.Ptr);
578  do {
579    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD);
580    if (!Visited.insert(V)) {
581      Visited.clear();
582      return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
583    }
584
585    // An alloca instruction defines local memory.
586    if (OrLocal && isa<AllocaInst>(V))
587      continue;
588
589    // A global constant counts as local memory for our purposes.
590    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
591      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
592      // global to be marked constant in some modules and non-constant in
593      // others.  GV may even be a declaration, not a definition.
594      if (!GV->isConstant()) {
595        Visited.clear();
596        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
597      }
598      continue;
599    }
600
601    // If both select values point to local memory, then so does the select.
602    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
603      Worklist.push_back(SI->getTrueValue());
604      Worklist.push_back(SI->getFalseValue());
605      continue;
606    }
607
608    // If all values incoming to a phi node point to local memory, then so does
609    // the phi.
610    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
611      // Don't bother inspecting phi nodes with many operands.
612      if (PN->getNumIncomingValues() > MaxLookup) {
613        Visited.clear();
614        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
615      }
616      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
617        Worklist.push_back(PN->getIncomingValue(i));
618      continue;
619    }
620
621    // Otherwise be conservative.
622    Visited.clear();
623    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
624
625  } while (!Worklist.empty() && --MaxLookup);
626
627  Visited.clear();
628  return Worklist.empty();
629}
630
631/// getModRefBehavior - Return the behavior when calling the given call site.
632AliasAnalysis::ModRefBehavior
633BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
634  if (CS.doesNotAccessMemory())
635    // Can't do better than this.
636    return DoesNotAccessMemory;
637
638  ModRefBehavior Min = UnknownModRefBehavior;
639
640  // If the callsite knows it only reads memory, don't return worse
641  // than that.
642  if (CS.onlyReadsMemory())
643    Min = OnlyReadsMemory;
644
645  // The AliasAnalysis base class has some smarts, lets use them.
646  return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
647}
648
649/// getModRefBehavior - Return the behavior when calling the given function.
650/// For use when the call site is not known.
651AliasAnalysis::ModRefBehavior
652BasicAliasAnalysis::getModRefBehavior(const Function *F) {
653  // If the function declares it doesn't access memory, we can't do better.
654  if (F->doesNotAccessMemory())
655    return DoesNotAccessMemory;
656
657  // For intrinsics, we can check the table.
658  if (unsigned iid = F->getIntrinsicID()) {
659#define GET_INTRINSIC_MODREF_BEHAVIOR
660#include "llvm/Intrinsics.gen"
661#undef GET_INTRINSIC_MODREF_BEHAVIOR
662  }
663
664  ModRefBehavior Min = UnknownModRefBehavior;
665
666  // If the function declares it only reads memory, go with that.
667  if (F->onlyReadsMemory())
668    Min = OnlyReadsMemory;
669
670  // Otherwise be conservative.
671  return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
672}
673
674/// getModRefInfo - Check to see if the specified callsite can clobber the
675/// specified memory object.  Since we only look at local properties of this
676/// function, we really can't say much about this query.  We do, however, use
677/// simple "address taken" analysis on local objects.
678AliasAnalysis::ModRefResult
679BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
680                                  const Location &Loc) {
681  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
682         "AliasAnalysis query involving multiple functions!");
683
684  const Value *Object = GetUnderlyingObject(Loc.Ptr, TD);
685
686  // If this is a tail call and Loc.Ptr points to a stack location, we know that
687  // the tail call cannot access or modify the local stack.
688  // We cannot exclude byval arguments here; these belong to the caller of
689  // the current function not to the current function, and a tail callee
690  // may reference them.
691  if (isa<AllocaInst>(Object))
692    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
693      if (CI->isTailCall())
694        return NoModRef;
695
696  // If the pointer is to a locally allocated object that does not escape,
697  // then the call can not mod/ref the pointer unless the call takes the pointer
698  // as an argument, and itself doesn't capture it.
699  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
700      isNonEscapingLocalObject(Object)) {
701    bool PassedAsArg = false;
702    unsigned ArgNo = 0;
703    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
704         CI != CE; ++CI, ++ArgNo) {
705      // Only look at the no-capture or byval pointer arguments.  If this
706      // pointer were passed to arguments that were neither of these, then it
707      // couldn't be no-capture.
708      if (!(*CI)->getType()->isPointerTy() ||
709          (!CS.paramHasAttr(ArgNo+1, Attribute::NoCapture) &&
710           !CS.paramHasAttr(ArgNo+1, Attribute::ByVal)))
711        continue;
712
713      // If this is a no-capture pointer argument, see if we can tell that it
714      // is impossible to alias the pointer we're checking.  If not, we have to
715      // assume that the call could touch the pointer, even though it doesn't
716      // escape.
717      if (!isNoAlias(Location(cast<Value>(CI)), Loc)) {
718        PassedAsArg = true;
719        break;
720      }
721    }
722
723    if (!PassedAsArg)
724      return NoModRef;
725  }
726
727  const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
728  ModRefResult Min = ModRef;
729
730  // Finally, handle specific knowledge of intrinsics.
731  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
732  if (II != 0)
733    switch (II->getIntrinsicID()) {
734    default: break;
735    case Intrinsic::memcpy:
736    case Intrinsic::memmove: {
737      uint64_t Len = UnknownSize;
738      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
739        Len = LenCI->getZExtValue();
740      Value *Dest = II->getArgOperand(0);
741      Value *Src = II->getArgOperand(1);
742      // If it can't overlap the source dest, then it doesn't modref the loc.
743      if (isNoAlias(Location(Dest, Len), Loc)) {
744        if (isNoAlias(Location(Src, Len), Loc))
745          return NoModRef;
746        // If it can't overlap the dest, then worst case it reads the loc.
747        Min = Ref;
748      } else if (isNoAlias(Location(Src, Len), Loc)) {
749        // If it can't overlap the source, then worst case it mutates the loc.
750        Min = Mod;
751      }
752      break;
753    }
754    case Intrinsic::memset:
755      // Since memset is 'accesses arguments' only, the AliasAnalysis base class
756      // will handle it for the variable length case.
757      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
758        uint64_t Len = LenCI->getZExtValue();
759        Value *Dest = II->getArgOperand(0);
760        if (isNoAlias(Location(Dest, Len), Loc))
761          return NoModRef;
762      }
763      // We know that memset doesn't load anything.
764      Min = Mod;
765      break;
766    case Intrinsic::atomic_cmp_swap:
767    case Intrinsic::atomic_swap:
768    case Intrinsic::atomic_load_add:
769    case Intrinsic::atomic_load_sub:
770    case Intrinsic::atomic_load_and:
771    case Intrinsic::atomic_load_nand:
772    case Intrinsic::atomic_load_or:
773    case Intrinsic::atomic_load_xor:
774    case Intrinsic::atomic_load_max:
775    case Intrinsic::atomic_load_min:
776    case Intrinsic::atomic_load_umax:
777    case Intrinsic::atomic_load_umin:
778      if (TD) {
779        Value *Op1 = II->getArgOperand(0);
780        uint64_t Op1Size = TD->getTypeStoreSize(Op1->getType());
781        MDNode *Tag = II->getMetadata(LLVMContext::MD_tbaa);
782        if (isNoAlias(Location(Op1, Op1Size, Tag), Loc))
783          return NoModRef;
784      }
785      break;
786    case Intrinsic::lifetime_start:
787    case Intrinsic::lifetime_end:
788    case Intrinsic::invariant_start: {
789      uint64_t PtrSize =
790        cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
791      if (isNoAlias(Location(II->getArgOperand(1),
792                             PtrSize,
793                             II->getMetadata(LLVMContext::MD_tbaa)),
794                    Loc))
795        return NoModRef;
796      break;
797    }
798    case Intrinsic::invariant_end: {
799      uint64_t PtrSize =
800        cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
801      if (isNoAlias(Location(II->getArgOperand(2),
802                             PtrSize,
803                             II->getMetadata(LLVMContext::MD_tbaa)),
804                    Loc))
805        return NoModRef;
806      break;
807    }
808    case Intrinsic::arm_neon_vld1: {
809      // LLVM's vld1 and vst1 intrinsics currently only support a single
810      // vector register.
811      uint64_t Size =
812        TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize;
813      if (isNoAlias(Location(II->getArgOperand(0), Size,
814                             II->getMetadata(LLVMContext::MD_tbaa)),
815                    Loc))
816        return NoModRef;
817      break;
818    }
819    case Intrinsic::arm_neon_vst1: {
820      uint64_t Size =
821        TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize;
822      if (isNoAlias(Location(II->getArgOperand(0), Size,
823                             II->getMetadata(LLVMContext::MD_tbaa)),
824                    Loc))
825        return NoModRef;
826      break;
827    }
828    }
829
830  // We can bound the aliasing properties of memset_pattern16 just as we can
831  // for memcpy/memset.  This is particularly important because the
832  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
833  // whenever possible.
834  else if (TLI.has(LibFunc::memset_pattern16) &&
835           CS.getCalledFunction() &&
836           CS.getCalledFunction()->getName() == "memset_pattern16") {
837    const Function *MS = CS.getCalledFunction();
838    FunctionType *MemsetType = MS->getFunctionType();
839    if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
840        isa<PointerType>(MemsetType->getParamType(0)) &&
841        isa<PointerType>(MemsetType->getParamType(1)) &&
842        isa<IntegerType>(MemsetType->getParamType(2))) {
843      uint64_t Len = UnknownSize;
844      if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2)))
845        Len = LenCI->getZExtValue();
846      const Value *Dest = CS.getArgument(0);
847      const Value *Src = CS.getArgument(1);
848      // If it can't overlap the source dest, then it doesn't modref the loc.
849      if (isNoAlias(Location(Dest, Len), Loc)) {
850        if (isNoAlias(Location(Src, 2), Loc))
851          return NoModRef;
852        // If it can't overlap the dest, then worst case it reads the loc.
853        Min = Ref;
854      } else if (isNoAlias(Location(Src, 2), Loc)) {
855        // If it can't overlap the source, then worst case it mutates the loc.
856        Min = Mod;
857      }
858    }
859  }
860
861  // The AliasAnalysis base class has some smarts, lets use them.
862  return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min);
863}
864
865/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
866/// against another pointer.  We know that V1 is a GEP, but we don't know
867/// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, TD),
868/// UnderlyingV2 is the same for V2.
869///
870AliasAnalysis::AliasResult
871BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
872                             const Value *V2, uint64_t V2Size,
873                             const MDNode *V2TBAAInfo,
874                             const Value *UnderlyingV1,
875                             const Value *UnderlyingV2) {
876  int64_t GEP1BaseOffset;
877  SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
878
879  // If we have two gep instructions with must-alias'ing base pointers, figure
880  // out if the indexes to the GEP tell us anything about the derived pointer.
881  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
882    // Do the base pointers alias?
883    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
884                                       UnderlyingV2, UnknownSize, 0);
885
886    // If we get a No or May, then return it immediately, no amount of analysis
887    // will improve this situation.
888    if (BaseAlias != MustAlias) return BaseAlias;
889
890    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
891    // exactly, see if the computed offset from the common pointer tells us
892    // about the relation of the resulting pointer.
893    const Value *GEP1BasePtr =
894      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
895
896    int64_t GEP2BaseOffset;
897    SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
898    const Value *GEP2BasePtr =
899      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
900
901    // If DecomposeGEPExpression isn't able to look all the way through the
902    // addressing operation, we must not have TD and this is too complex for us
903    // to handle without it.
904    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
905      assert(TD == 0 &&
906             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
907      return MayAlias;
908    }
909
910    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
911    // symbolic difference.
912    GEP1BaseOffset -= GEP2BaseOffset;
913    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
914
915  } else {
916    // Check to see if these two pointers are related by the getelementptr
917    // instruction.  If one pointer is a GEP with a non-zero index of the other
918    // pointer, we know they cannot alias.
919
920    // If both accesses are unknown size, we can't do anything useful here.
921    if (V1Size == UnknownSize && V2Size == UnknownSize)
922      return MayAlias;
923
924    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
925                               V2, V2Size, V2TBAAInfo);
926    if (R != MustAlias)
927      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
928      // If V2 is known not to alias GEP base pointer, then the two values
929      // cannot alias per GEP semantics: "A pointer value formed from a
930      // getelementptr instruction is associated with the addresses associated
931      // with the first operand of the getelementptr".
932      return R;
933
934    const Value *GEP1BasePtr =
935      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
936
937    // If DecomposeGEPExpression isn't able to look all the way through the
938    // addressing operation, we must not have TD and this is too complex for us
939    // to handle without it.
940    if (GEP1BasePtr != UnderlyingV1) {
941      assert(TD == 0 &&
942             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
943      return MayAlias;
944    }
945  }
946
947  // In the two GEP Case, if there is no difference in the offsets of the
948  // computed pointers, the resultant pointers are a must alias.  This
949  // hapens when we have two lexically identical GEP's (for example).
950  //
951  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
952  // must aliases the GEP, the end result is a must alias also.
953  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
954    return MustAlias;
955
956  // If there is a difference between the pointers, but the difference is
957  // less than the size of the associated memory object, then we know
958  // that the objects are partially overlapping.
959  if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
960    if (GEP1BaseOffset >= 0 ?
961        (V2Size != UnknownSize && (uint64_t)GEP1BaseOffset < V2Size) :
962        (V1Size != UnknownSize && -(uint64_t)GEP1BaseOffset < V1Size &&
963         GEP1BaseOffset != INT64_MIN))
964      return PartialAlias;
965  }
966
967  // If we have a known constant offset, see if this offset is larger than the
968  // access size being queried.  If so, and if no variable indices can remove
969  // pieces of this constant, then we know we have a no-alias.  For example,
970  //   &A[100] != &A.
971
972  // In order to handle cases like &A[100][i] where i is an out of range
973  // subscript, we have to ignore all constant offset pieces that are a multiple
974  // of a scaled index.  Do this by removing constant offsets that are a
975  // multiple of any of our variable indices.  This allows us to transform
976  // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
977  // provides an offset of 4 bytes (assuming a <= 4 byte access).
978  for (unsigned i = 0, e = GEP1VariableIndices.size();
979       i != e && GEP1BaseOffset;++i)
980    if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].Scale)
981      GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].Scale;
982
983  // If our known offset is bigger than the access size, we know we don't have
984  // an alias.
985  if (GEP1BaseOffset) {
986    if (GEP1BaseOffset >= 0 ?
987        (V2Size != UnknownSize && (uint64_t)GEP1BaseOffset >= V2Size) :
988        (V1Size != UnknownSize && -(uint64_t)GEP1BaseOffset >= V1Size &&
989         GEP1BaseOffset != INT64_MIN))
990      return NoAlias;
991  }
992
993  // Statically, we can see that the base objects are the same, but the
994  // pointers have dynamic offsets which we can't resolve. And none of our
995  // little tricks above worked.
996  //
997  // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
998  // practical effect of this is protecting TBAA in the case of dynamic
999  // indices into arrays of unions. An alternative way to solve this would
1000  // be to have clang emit extra metadata for unions and/or union accesses.
1001  // A union-specific solution wouldn't handle the problem for malloc'd
1002  // memory however.
1003  return PartialAlias;
1004}
1005
1006static AliasAnalysis::AliasResult
1007MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
1008  // If the results agree, take it.
1009  if (A == B)
1010    return A;
1011  // A mix of PartialAlias and MustAlias is PartialAlias.
1012  if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
1013      (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
1014    return AliasAnalysis::PartialAlias;
1015  // Otherwise, we don't know anything.
1016  return AliasAnalysis::MayAlias;
1017}
1018
1019/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
1020/// instruction against another.
1021AliasAnalysis::AliasResult
1022BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
1023                                const MDNode *SITBAAInfo,
1024                                const Value *V2, uint64_t V2Size,
1025                                const MDNode *V2TBAAInfo) {
1026  // If the values are Selects with the same condition, we can do a more precise
1027  // check: just check for aliases between the values on corresponding arms.
1028  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1029    if (SI->getCondition() == SI2->getCondition()) {
1030      AliasResult Alias =
1031        aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
1032                   SI2->getTrueValue(), V2Size, V2TBAAInfo);
1033      if (Alias == MayAlias)
1034        return MayAlias;
1035      AliasResult ThisAlias =
1036        aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
1037                   SI2->getFalseValue(), V2Size, V2TBAAInfo);
1038      return MergeAliasResults(ThisAlias, Alias);
1039    }
1040
1041  // If both arms of the Select node NoAlias or MustAlias V2, then returns
1042  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1043  AliasResult Alias =
1044    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
1045  if (Alias == MayAlias)
1046    return MayAlias;
1047
1048  AliasResult ThisAlias =
1049    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
1050  return MergeAliasResults(ThisAlias, Alias);
1051}
1052
1053// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
1054// against another.
1055AliasAnalysis::AliasResult
1056BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
1057                             const MDNode *PNTBAAInfo,
1058                             const Value *V2, uint64_t V2Size,
1059                             const MDNode *V2TBAAInfo) {
1060  // If the values are PHIs in the same block, we can do a more precise
1061  // as well as efficient check: just check for aliases between the values
1062  // on corresponding edges.
1063  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1064    if (PN2->getParent() == PN->getParent()) {
1065      AliasResult Alias =
1066        aliasCheck(PN->getIncomingValue(0), PNSize, PNTBAAInfo,
1067                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
1068                   V2Size, V2TBAAInfo);
1069      if (Alias == MayAlias)
1070        return MayAlias;
1071      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1072        AliasResult ThisAlias =
1073          aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
1074                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1075                     V2Size, V2TBAAInfo);
1076        Alias = MergeAliasResults(ThisAlias, Alias);
1077        if (Alias == MayAlias)
1078          break;
1079      }
1080      return Alias;
1081    }
1082
1083  SmallPtrSet<Value*, 4> UniqueSrc;
1084  SmallVector<Value*, 4> V1Srcs;
1085  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1086    Value *PV1 = PN->getIncomingValue(i);
1087    if (isa<PHINode>(PV1))
1088      // If any of the source itself is a PHI, return MayAlias conservatively
1089      // to avoid compile time explosion. The worst possible case is if both
1090      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1091      // and 'n' are the number of PHI sources.
1092      return MayAlias;
1093    if (UniqueSrc.insert(PV1))
1094      V1Srcs.push_back(PV1);
1095  }
1096
1097  AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
1098                                 V1Srcs[0], PNSize, PNTBAAInfo);
1099  // Early exit if the check of the first PHI source against V2 is MayAlias.
1100  // Other results are not possible.
1101  if (Alias == MayAlias)
1102    return MayAlias;
1103
1104  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1105  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1106  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1107    Value *V = V1Srcs[i];
1108
1109    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
1110                                       V, PNSize, PNTBAAInfo);
1111    Alias = MergeAliasResults(ThisAlias, Alias);
1112    if (Alias == MayAlias)
1113      break;
1114  }
1115
1116  return Alias;
1117}
1118
1119// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
1120// such as array references.
1121//
1122AliasAnalysis::AliasResult
1123BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
1124                               const MDNode *V1TBAAInfo,
1125                               const Value *V2, uint64_t V2Size,
1126                               const MDNode *V2TBAAInfo) {
1127  // If either of the memory references is empty, it doesn't matter what the
1128  // pointer values are.
1129  if (V1Size == 0 || V2Size == 0)
1130    return NoAlias;
1131
1132  // Strip off any casts if they exist.
1133  V1 = V1->stripPointerCasts();
1134  V2 = V2->stripPointerCasts();
1135
1136  // Are we checking for alias of the same value?
1137  if (V1 == V2) return MustAlias;
1138
1139  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1140    return NoAlias;  // Scalars cannot alias each other
1141
1142  // Figure out what objects these things are pointing to if we can.
1143  const Value *O1 = GetUnderlyingObject(V1, TD);
1144  const Value *O2 = GetUnderlyingObject(V2, TD);
1145
1146  // Null values in the default address space don't point to any object, so they
1147  // don't alias any other pointer.
1148  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1149    if (CPN->getType()->getAddressSpace() == 0)
1150      return NoAlias;
1151  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1152    if (CPN->getType()->getAddressSpace() == 0)
1153      return NoAlias;
1154
1155  if (O1 != O2) {
1156    // If V1/V2 point to two different objects we know that we have no alias.
1157    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1158      return NoAlias;
1159
1160    // Constant pointers can't alias with non-const isIdentifiedObject objects.
1161    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1162        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1163      return NoAlias;
1164
1165    // Arguments can't alias with local allocations or noalias calls
1166    // in the same function.
1167    if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
1168         (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
1169      return NoAlias;
1170
1171    // Most objects can't alias null.
1172    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1173        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1174      return NoAlias;
1175
1176    // If one pointer is the result of a call/invoke or load and the other is a
1177    // non-escaping local object within the same function, then we know the
1178    // object couldn't escape to a point where the call could return it.
1179    //
1180    // Note that if the pointers are in different functions, there are a
1181    // variety of complications. A call with a nocapture argument may still
1182    // temporary store the nocapture argument's value in a temporary memory
1183    // location if that memory location doesn't escape. Or it may pass a
1184    // nocapture value to other functions as long as they don't capture it.
1185    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1186      return NoAlias;
1187    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1188      return NoAlias;
1189  }
1190
1191  // If the size of one access is larger than the entire object on the other
1192  // side, then we know such behavior is undefined and can assume no alias.
1193  if (TD)
1194    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) ||
1195        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD)))
1196      return NoAlias;
1197
1198  // Check the cache before climbing up use-def chains. This also terminates
1199  // otherwise infinitely recursive queries.
1200  LocPair Locs(Location(V1, V1Size, V1TBAAInfo),
1201               Location(V2, V2Size, V2TBAAInfo));
1202  if (V1 > V2)
1203    std::swap(Locs.first, Locs.second);
1204  std::pair<AliasCacheTy::iterator, bool> Pair =
1205    AliasCache.insert(std::make_pair(Locs, MayAlias));
1206  if (!Pair.second)
1207    return Pair.first->second;
1208
1209  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1210  // GEP can't simplify, we don't even look at the PHI cases.
1211  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1212    std::swap(V1, V2);
1213    std::swap(V1Size, V2Size);
1214    std::swap(O1, O2);
1215  }
1216  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1217    AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, V2TBAAInfo, O1, O2);
1218    if (Result != MayAlias) return AliasCache[Locs] = Result;
1219  }
1220
1221  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1222    std::swap(V1, V2);
1223    std::swap(V1Size, V2Size);
1224  }
1225  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1226    AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
1227                                  V2, V2Size, V2TBAAInfo);
1228    if (Result != MayAlias) return AliasCache[Locs] = Result;
1229  }
1230
1231  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1232    std::swap(V1, V2);
1233    std::swap(V1Size, V2Size);
1234  }
1235  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1236    AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
1237                                     V2, V2Size, V2TBAAInfo);
1238    if (Result != MayAlias) return AliasCache[Locs] = Result;
1239  }
1240
1241  // If both pointers are pointing into the same object and one of them
1242  // accesses is accessing the entire object, then the accesses must
1243  // overlap in some way.
1244  if (TD && O1 == O2)
1245    if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD)) ||
1246        (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD)))
1247      return AliasCache[Locs] = PartialAlias;
1248
1249  AliasResult Result =
1250    AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
1251                         Location(V2, V2Size, V2TBAAInfo));
1252  return AliasCache[Locs] = Result;
1253}
1254