BasicAliasAnalysis.cpp revision 6eb88d44c93f782a988039a047a9b80354a81887
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14// FIXME: This could be extended for a very simple form of mod/ref information.
15// If a pointer is locally allocated (either malloc or alloca) and never passed
16// into a call or stored to memory, then we know that calls will not mod/ref the
17// memory.  This can be important for tailcallelim.
18//
19//===----------------------------------------------------------------------===//
20
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Pass.h"
23#include "llvm/Argument.h"
24#include "llvm/iOther.h"
25#include "llvm/Constants.h"
26#include "llvm/GlobalValue.h"
27#include "llvm/DerivedTypes.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Support/GetElementPtrTypeIterator.h"
30using namespace llvm;
31
32// Make sure that anything that uses AliasAnalysis pulls in this file...
33void llvm::BasicAAStub() {}
34
35namespace {
36  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
37
38    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
39      AliasAnalysis::getAnalysisUsage(AU);
40    }
41
42    virtual void initializePass();
43
44    // alias - This is the only method here that does anything interesting...
45    //
46    AliasResult alias(const Value *V1, unsigned V1Size,
47                      const Value *V2, unsigned V2Size);
48  private:
49    // CheckGEPInstructions - Check two GEP instructions with known
50    // must-aliasing base pointers.  This checks to see if the index expressions
51    // preclude the pointers from aliasing...
52    AliasResult
53    CheckGEPInstructions(const Type* BasePtr1Ty, std::vector<Value*> &GEP1Ops,
54                         unsigned G1Size,
55                         const Type *BasePtr2Ty, std::vector<Value*> &GEP2Ops,
56                         unsigned G2Size);
57  };
58
59  // Register this pass...
60  RegisterOpt<BasicAliasAnalysis>
61  X("basicaa", "Basic Alias Analysis (default AA impl)");
62
63  // Declare that we implement the AliasAnalysis interface
64  RegisterAnalysisGroup<AliasAnalysis, BasicAliasAnalysis, true> Y;
65}  // End of anonymous namespace
66
67void BasicAliasAnalysis::initializePass() {
68  InitializeAliasAnalysis(this);
69}
70
71// hasUniqueAddress - Return true if the specified value points to something
72// with a unique, discernable, address.
73static inline bool hasUniqueAddress(const Value *V) {
74  return isa<GlobalValue>(V) || isa<AllocationInst>(V);
75}
76
77// getUnderlyingObject - This traverses the use chain to figure out what object
78// the specified value points to.  If the value points to, or is derived from, a
79// unique object or an argument, return it.
80static const Value *getUnderlyingObject(const Value *V) {
81  if (!isa<PointerType>(V->getType())) return 0;
82
83  // If we are at some type of object... return it.
84  if (hasUniqueAddress(V) || isa<Argument>(V)) return V;
85
86  // Traverse through different addressing mechanisms...
87  if (const Instruction *I = dyn_cast<Instruction>(V)) {
88    if (isa<CastInst>(I) || isa<GetElementPtrInst>(I))
89      return getUnderlyingObject(I->getOperand(0));
90  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
91    if (CE->getOpcode() == Instruction::Cast ||
92        CE->getOpcode() == Instruction::GetElementPtr)
93      return getUnderlyingObject(CE->getOperand(0));
94  } else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V)) {
95    return CPR->getValue();
96  }
97  return 0;
98}
99
100static const User *isGEP(const Value *V) {
101  if (isa<GetElementPtrInst>(V) ||
102      (isa<ConstantExpr>(V) &&
103       cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
104    return cast<User>(V);
105  return 0;
106}
107
108static const Value *GetGEPOperands(const Value *V, std::vector<Value*> &GEPOps){
109  assert(GEPOps.empty() && "Expect empty list to populate!");
110  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
111                cast<User>(V)->op_end());
112
113  // Accumulate all of the chained indexes into the operand array
114  V = cast<User>(V)->getOperand(0);
115
116  while (const User *G = isGEP(V)) {
117    if (!isa<Constant>(GEPOps[0]) ||
118        !cast<Constant>(GEPOps[0])->isNullValue())
119      break;  // Don't handle folding arbitrary pointer offsets yet...
120    GEPOps.erase(GEPOps.begin());   // Drop the zero index
121    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
122    V = G->getOperand(0);
123  }
124  return V;
125}
126
127
128// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
129// as array references.  Note that this function is heavily tail recursive.
130// Hopefully we have a smart C++ compiler.  :)
131//
132AliasAnalysis::AliasResult
133BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
134                          const Value *V2, unsigned V2Size) {
135  // Strip off any constant expression casts if they exist
136  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
137    if (CE->getOpcode() == Instruction::Cast)
138      V1 = CE->getOperand(0);
139  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
140    if (CE->getOpcode() == Instruction::Cast)
141      V2 = CE->getOperand(0);
142
143  // Strip off constant pointer refs if they exist
144  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1))
145    V1 = CPR->getValue();
146  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V2))
147    V2 = CPR->getValue();
148
149  // Are we checking for alias of the same value?
150  if (V1 == V2) return MustAlias;
151
152  if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
153      V1->getType() != Type::LongTy && V2->getType() != Type::LongTy)
154    return NoAlias;  // Scalars cannot alias each other
155
156  // Strip off cast instructions...
157  if (const Instruction *I = dyn_cast<CastInst>(V1))
158    return alias(I->getOperand(0), V1Size, V2, V2Size);
159  if (const Instruction *I = dyn_cast<CastInst>(V2))
160    return alias(V1, V1Size, I->getOperand(0), V2Size);
161
162  // Figure out what objects these things are pointing to if we can...
163  const Value *O1 = getUnderlyingObject(V1);
164  const Value *O2 = getUnderlyingObject(V2);
165
166  // Pointing at a discernible object?
167  if (O1 && O2) {
168    if (isa<Argument>(O1)) {
169      // Incoming argument cannot alias locally allocated object!
170      if (isa<AllocationInst>(O2)) return NoAlias;
171      // Otherwise, nothing is known...
172    } else if (isa<Argument>(O2)) {
173      // Incoming argument cannot alias locally allocated object!
174      if (isa<AllocationInst>(O1)) return NoAlias;
175      // Otherwise, nothing is known...
176    } else {
177      // If they are two different objects, we know that we have no alias...
178      if (O1 != O2) return NoAlias;
179    }
180
181    // If they are the same object, they we can look at the indexes.  If they
182    // index off of the object is the same for both pointers, they must alias.
183    // If they are provably different, they must not alias.  Otherwise, we can't
184    // tell anything.
185  } else if (O1 && !isa<Argument>(O1) && isa<ConstantPointerNull>(V2)) {
186    return NoAlias;                    // Unique values don't alias null
187  } else if (O2 && !isa<Argument>(O2) && isa<ConstantPointerNull>(V1)) {
188    return NoAlias;                    // Unique values don't alias null
189  }
190
191  // If we have two gep instructions with must-alias'ing base pointers, figure
192  // out if the indexes to the GEP tell us anything about the derived pointer.
193  // Note that we also handle chains of getelementptr instructions as well as
194  // constant expression getelementptrs here.
195  //
196  if (isGEP(V1) && isGEP(V2)) {
197    // Drill down into the first non-gep value, to test for must-aliasing of
198    // the base pointers.
199    const Value *BasePtr1 = V1, *BasePtr2 = V2;
200    do {
201      BasePtr1 = cast<User>(BasePtr1)->getOperand(0);
202    } while (isGEP(BasePtr1) &&
203             cast<User>(BasePtr1)->getOperand(1) ==
204       Constant::getNullValue(cast<User>(BasePtr1)->getOperand(1)->getType()));
205    do {
206      BasePtr2 = cast<User>(BasePtr2)->getOperand(0);
207    } while (isGEP(BasePtr2) &&
208             cast<User>(BasePtr2)->getOperand(1) ==
209       Constant::getNullValue(cast<User>(BasePtr2)->getOperand(1)->getType()));
210
211    // Do the base pointers alias?
212    AliasResult BaseAlias = alias(BasePtr1, V1Size, BasePtr2, V2Size);
213    if (BaseAlias == NoAlias) return NoAlias;
214    if (BaseAlias == MustAlias) {
215      // If the base pointers alias each other exactly, check to see if we can
216      // figure out anything about the resultant pointers, to try to prove
217      // non-aliasing.
218
219      // Collect all of the chained GEP operands together into one simple place
220      std::vector<Value*> GEP1Ops, GEP2Ops;
221      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
222      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
223
224      AliasResult GAlias =
225        CheckGEPInstructions(BasePtr1->getType(), GEP1Ops, V1Size,
226                             BasePtr2->getType(), GEP2Ops, V2Size);
227      if (GAlias != MayAlias)
228        return GAlias;
229    }
230  }
231
232  // Check to see if these two pointers are related by a getelementptr
233  // instruction.  If one pointer is a GEP with a non-zero index of the other
234  // pointer, we know they cannot alias.
235  //
236  if (isGEP(V2)) {
237    std::swap(V1, V2);
238    std::swap(V1Size, V2Size);
239  }
240
241  if (V1Size != ~0U && V2Size != ~0U)
242    if (const User *GEP = isGEP(V1)) {
243      std::vector<Value*> GEPOperands;
244      const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
245
246      AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
247      if (R == MustAlias) {
248        // If there is at least one non-zero constant index, we know they cannot
249        // alias.
250        bool ConstantFound = false;
251        bool AllZerosFound = true;
252        for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
253          if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
254            if (!C->isNullValue()) {
255              ConstantFound = true;
256              AllZerosFound = false;
257              break;
258            }
259          } else {
260            AllZerosFound = false;
261          }
262
263        // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
264        // the ptr, the end result is a must alias also.
265        if (AllZerosFound)
266          return MustAlias;
267
268        if (ConstantFound) {
269          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
270            return NoAlias;
271
272          // Otherwise we have to check to see that the distance is more than
273          // the size of the argument... build an index vector that is equal to
274          // the arguments provided, except substitute 0's for any variable
275          // indexes we find...
276          for (unsigned i = 0; i != GEPOperands.size(); ++i)
277            if (!isa<Constant>(GEPOperands[i]) ||
278                isa<ConstantExpr>(GEPOperands[i]))
279              GEPOperands[i] =Constant::getNullValue(GEPOperands[i]->getType());
280          int64_t Offset = getTargetData().getIndexedOffset(BasePtr->getType(),
281                                                            GEPOperands);
282          if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
283            return NoAlias;
284        }
285      }
286    }
287
288  return MayAlias;
289}
290
291/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
292/// base pointers.  This checks to see if the index expressions preclude the
293/// pointers from aliasing...
294AliasAnalysis::AliasResult BasicAliasAnalysis::
295CheckGEPInstructions(const Type* BasePtr1Ty, std::vector<Value*> &GEP1Ops,
296                     unsigned G1S,
297                     const Type *BasePtr2Ty, std::vector<Value*> &GEP2Ops,
298                     unsigned G2S) {
299  // We currently can't handle the case when the base pointers have different
300  // primitive types.  Since this is uncommon anyway, we are happy being
301  // extremely conservative.
302  if (BasePtr1Ty != BasePtr2Ty)
303    return MayAlias;
304
305  const Type *GEPPointerTy = BasePtr1Ty;
306
307  // Find the (possibly empty) initial sequence of equal values... which are not
308  // necessarily constants.
309  unsigned NumGEP1Operands = GEP1Ops.size(), NumGEP2Operands = GEP2Ops.size();
310  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
311  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
312  unsigned UnequalOper = 0;
313  while (UnequalOper != MinOperands &&
314         GEP1Ops[UnequalOper] == GEP2Ops[UnequalOper]) {
315    // Advance through the type as we go...
316    ++UnequalOper;
317    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
318      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
319    else {
320      // If all operands equal each other, then the derived pointers must
321      // alias each other...
322      BasePtr1Ty = 0;
323      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
324             "Ran out of type nesting, but not out of operands?");
325      return MustAlias;
326    }
327  }
328
329  // If we have seen all constant operands, and run out of indexes on one of the
330  // getelementptrs, check to see if the tail of the leftover one is all zeros.
331  // If so, return mustalias.
332  if (UnequalOper == MinOperands) {
333    if (GEP1Ops.size() < GEP2Ops.size()) std::swap(GEP1Ops, GEP2Ops);
334
335    bool AllAreZeros = true;
336    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
337      if (!isa<Constant>(GEP1Ops[i]) ||
338          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
339        AllAreZeros = false;
340        break;
341      }
342    if (AllAreZeros) return MustAlias;
343  }
344
345
346  // So now we know that the indexes derived from the base pointers,
347  // which are known to alias, are different.  We can still determine a
348  // no-alias result if there are differing constant pairs in the index
349  // chain.  For example:
350  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
351  //
352  unsigned SizeMax = std::max(G1S, G2S);
353  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work...
354
355  // Scan for the first operand that is constant and unequal in the
356  // two getelemenptrs...
357  unsigned FirstConstantOper = UnequalOper;
358  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
359    const Value *G1Oper = GEP1Ops[FirstConstantOper];
360    const Value *G2Oper = GEP2Ops[FirstConstantOper];
361
362    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
363      if (Constant *G1OC = dyn_cast<Constant>(const_cast<Value*>(G1Oper)))
364        if (Constant *G2OC = dyn_cast<Constant>(const_cast<Value*>(G2Oper))) {
365          // Make sure they are comparable (ie, not constant expressions)...
366          // and make sure the GEP with the smaller leading constant is GEP1.
367          Constant *Compare = ConstantExpr::get(Instruction::SetGT, G1OC, G2OC);
368          if (ConstantBool *CV = dyn_cast<ConstantBool>(Compare)) {
369            if (CV->getValue())   // If they are comparable and G2 > G1
370              std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
371            break;
372          }
373        }
374    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
375  }
376
377  // No shared constant operands, and we ran out of common operands.  At this
378  // point, the GEP instructions have run through all of their operands, and we
379  // haven't found evidence that there are any deltas between the GEP's.
380  // However, one GEP may have more operands than the other.  If this is the
381  // case, there may still be hope.  This this now.
382  if (FirstConstantOper == MinOperands) {
383    // Make GEP1Ops be the longer one if there is a longer one.
384    if (GEP1Ops.size() < GEP2Ops.size())
385      std::swap(GEP1Ops, GEP2Ops);
386
387    // Is there anything to check?
388    if (GEP1Ops.size() > MinOperands) {
389      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
390        if (isa<Constant>(GEP1Ops[i]) && !isa<ConstantExpr>(GEP1Ops[i]) &&
391            !cast<Constant>(GEP1Ops[i])->isNullValue()) {
392          // Yup, there's a constant in the tail.  Set all variables to
393          // constants in the GEP instruction to make it suiteable for
394          // TargetData::getIndexedOffset.
395          for (i = 0; i != MaxOperands; ++i)
396            if (!isa<Constant>(GEP1Ops[i]) || isa<ConstantExpr>(GEP1Ops[i]))
397              GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
398          // Okay, now get the offset.  This is the relative offset for the full
399          // instruction.
400          const TargetData &TD = getTargetData();
401          int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops);
402
403          // Now crop off any constants from the end...
404          GEP1Ops.resize(MinOperands);
405          int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops);
406
407          // If the tail provided a bit enough offset, return noalias!
408          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
409            return NoAlias;
410        }
411    }
412
413    // Couldn't find anything useful.
414    return MayAlias;
415  }
416
417  // If there are non-equal constants arguments, then we can figure
418  // out a minimum known delta between the two index expressions... at
419  // this point we know that the first constant index of GEP1 is less
420  // than the first constant index of GEP2.
421
422  // Advance BasePtr[12]Ty over this first differing constant operand.
423  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(GEP2Ops[FirstConstantOper]);
424  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(GEP1Ops[FirstConstantOper]);
425
426  // We are going to be using TargetData::getIndexedOffset to determine the
427  // offset that each of the GEP's is reaching.  To do this, we have to convert
428  // all variable references to constant references.  To do this, we convert the
429  // initial equal sequence of variables into constant zeros to start with.
430  for (unsigned i = 0; i != FirstConstantOper; ++i) {
431    if (!isa<Constant>(GEP1Ops[i]) || isa<ConstantExpr>(GEP1Ops[i]) ||
432        !isa<Constant>(GEP2Ops[i]) || isa<ConstantExpr>(GEP2Ops[i])) {
433      GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
434      GEP2Ops[i] = Constant::getNullValue(GEP2Ops[i]->getType());
435    }
436  }
437
438  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
439
440  // Loop over the rest of the operands...
441  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
442    const Value *Op1 = i < GEP1Ops.size() ? GEP1Ops[i] : 0;
443    const Value *Op2 = i < GEP2Ops.size() ? GEP2Ops[i] : 0;
444    // If they are equal, use a zero index...
445    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
446      if (!isa<Constant>(Op1) || isa<ConstantExpr>(Op1))
447        GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
448      // Otherwise, just keep the constants we have.
449    } else {
450      if (Op1) {
451        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
452          // If this is an array index, make sure the array element is in range.
453          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
454            if (Op1C->getRawValue() >= AT->getNumElements())
455              return MayAlias;  // Be conservative with out-of-range accesses
456
457        } else {
458          // GEP1 is known to produce a value less than GEP2.  To be
459          // conservatively correct, we must assume the largest possible
460          // constant is used in this position.  This cannot be the initial
461          // index to the GEP instructions (because we know we have at least one
462          // element before this one with the different constant arguments), so
463          // we know that the current index must be into either a struct or
464          // array.  Because we know it's not constant, this cannot be a
465          // structure index.  Because of this, we can calculate the maximum
466          // value possible.
467          //
468          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
469            GEP1Ops[i] = ConstantSInt::get(Type::LongTy,AT->getNumElements()-1);
470        }
471      }
472
473      if (Op2) {
474        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
475          // If this is an array index, make sure the array element is in range.
476          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
477            if (Op2C->getRawValue() >= AT->getNumElements())
478              return MayAlias;  // Be conservative with out-of-range accesses
479        } else {  // Conservatively assume the minimum value for this index
480          GEP2Ops[i] = Constant::getNullValue(Op2->getType());
481        }
482      }
483    }
484
485    if (BasePtr1Ty && Op1) {
486      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
487        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
488      else
489        BasePtr1Ty = 0;
490    }
491
492    if (BasePtr2Ty && Op2) {
493      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
494        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
495      else
496        BasePtr2Ty = 0;
497    }
498  }
499
500  int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops);
501  int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops);
502  assert(Offset1 < Offset2 &&"There is at least one different constant here!");
503
504  if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
505    //std::cerr << "Determined that these two GEP's don't alias ["
506    //          << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
507    return NoAlias;
508  }
509  return MayAlias;
510}
511
512