BasicAliasAnalysis.cpp revision 895ace08e01578b5490ed9d064df6d89acf5420a
1//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the primary stateless implementation of the
11// Alias Analysis interface that implements identities (two different
12// globals cannot alias, etc), but does no stateful analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Pass.h"
28#include "llvm/Analysis/CaptureTracking.h"
29#include "llvm/Analysis/MemoryBuiltins.h"
30#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/GetElementPtrTypeIterator.h"
37#include <algorithm>
38using namespace llvm;
39
40//===----------------------------------------------------------------------===//
41// Useful predicates
42//===----------------------------------------------------------------------===//
43
44/// isKnownNonNull - Return true if we know that the specified value is never
45/// null.
46static bool isKnownNonNull(const Value *V) {
47  // Alloca never returns null, malloc might.
48  if (isa<AllocaInst>(V)) return true;
49
50  // A byval argument is never null.
51  if (const Argument *A = dyn_cast<Argument>(V))
52    return A->hasByValAttr();
53
54  // Global values are not null unless extern weak.
55  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
56    return !GV->hasExternalWeakLinkage();
57  return false;
58}
59
60/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
61/// object that never escapes from the function.
62static bool isNonEscapingLocalObject(const Value *V) {
63  // If this is a local allocation, check to see if it escapes.
64  if (isa<AllocaInst>(V) || isNoAliasCall(V))
65    // Set StoreCaptures to True so that we can assume in our callers that the
66    // pointer is not the result of a load instruction. Currently
67    // PointerMayBeCaptured doesn't have any special analysis for the
68    // StoreCaptures=false case; if it did, our callers could be refined to be
69    // more precise.
70    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
71
72  // If this is an argument that corresponds to a byval or noalias argument,
73  // then it has not escaped before entering the function.  Check if it escapes
74  // inside the function.
75  if (const Argument *A = dyn_cast<Argument>(V))
76    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
77      // Don't bother analyzing arguments already known not to escape.
78      if (A->hasNoCaptureAttr())
79        return true;
80      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
81    }
82  return false;
83}
84
85/// isEscapeSource - Return true if the pointer is one which would have
86/// been considered an escape by isNonEscapingLocalObject.
87static bool isEscapeSource(const Value *V) {
88  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
89    return true;
90
91  // The load case works because isNonEscapingLocalObject considers all
92  // stores to be escapes (it passes true for the StoreCaptures argument
93  // to PointerMayBeCaptured).
94  if (isa<LoadInst>(V))
95    return true;
96
97  return false;
98}
99
100/// isObjectSmallerThan - Return true if we can prove that the object specified
101/// by V is smaller than Size.
102static bool isObjectSmallerThan(const Value *V, uint64_t Size,
103                                const TargetData &TD) {
104  const Type *AccessTy;
105  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
106    if (!GV->hasDefinitiveInitializer())
107      return false;
108    AccessTy = GV->getType()->getElementType();
109  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
110    if (!AI->isArrayAllocation())
111      AccessTy = AI->getType()->getElementType();
112    else
113      return false;
114  } else if (const CallInst* CI = extractMallocCall(V)) {
115    if (!isArrayMalloc(V, &TD))
116      // The size is the argument to the malloc call.
117      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
118        return (C->getZExtValue() < Size);
119    return false;
120  } else if (const Argument *A = dyn_cast<Argument>(V)) {
121    if (A->hasByValAttr())
122      AccessTy = cast<PointerType>(A->getType())->getElementType();
123    else
124      return false;
125  } else {
126    return false;
127  }
128
129  if (AccessTy->isSized())
130    return TD.getTypeAllocSize(AccessTy) < Size;
131  return false;
132}
133
134//===----------------------------------------------------------------------===//
135// GetElementPtr Instruction Decomposition and Analysis
136//===----------------------------------------------------------------------===//
137
138namespace {
139  enum ExtensionKind {
140    EK_NotExtended,
141    EK_SignExt,
142    EK_ZeroExt
143  };
144
145  struct VariableGEPIndex {
146    const Value *V;
147    ExtensionKind Extension;
148    int64_t Scale;
149  };
150}
151
152
153/// GetLinearExpression - Analyze the specified value as a linear expression:
154/// "A*V + B", where A and B are constant integers.  Return the scale and offset
155/// values as APInts and return V as a Value*, and return whether we looked
156/// through any sign or zero extends.  The incoming Value is known to have
157/// IntegerType and it may already be sign or zero extended.
158///
159/// Note that this looks through extends, so the high bits may not be
160/// represented in the result.
161static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
162                                  ExtensionKind &Extension,
163                                  const TargetData &TD, unsigned Depth) {
164  assert(V->getType()->isIntegerTy() && "Not an integer value");
165
166  // Limit our recursion depth.
167  if (Depth == 6) {
168    Scale = 1;
169    Offset = 0;
170    return V;
171  }
172
173  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
174    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
175      switch (BOp->getOpcode()) {
176      default: break;
177      case Instruction::Or:
178        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
179        // analyze it.
180        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
181          break;
182        // FALL THROUGH.
183      case Instruction::Add:
184        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
185                                TD, Depth+1);
186        Offset += RHSC->getValue();
187        return V;
188      case Instruction::Mul:
189        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
190                                TD, Depth+1);
191        Offset *= RHSC->getValue();
192        Scale *= RHSC->getValue();
193        return V;
194      case Instruction::Shl:
195        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
196                                TD, Depth+1);
197        Offset <<= RHSC->getValue().getLimitedValue();
198        Scale <<= RHSC->getValue().getLimitedValue();
199        return V;
200      }
201    }
202  }
203
204  // Since GEP indices are sign extended anyway, we don't care about the high
205  // bits of a sign or zero extended value - just scales and offsets.  The
206  // extensions have to be consistent though.
207  if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
208      (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
209    Value *CastOp = cast<CastInst>(V)->getOperand(0);
210    unsigned OldWidth = Scale.getBitWidth();
211    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
212    Scale = Scale.trunc(SmallWidth);
213    Offset = Offset.trunc(SmallWidth);
214    Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
215
216    Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
217                                        TD, Depth+1);
218    Scale = Scale.zext(OldWidth);
219    Offset = Offset.zext(OldWidth);
220
221    return Result;
222  }
223
224  Scale = 1;
225  Offset = 0;
226  return V;
227}
228
229/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
230/// into a base pointer with a constant offset and a number of scaled symbolic
231/// offsets.
232///
233/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
234/// the VarIndices vector) are Value*'s that are known to be scaled by the
235/// specified amount, but which may have other unrepresented high bits. As such,
236/// the gep cannot necessarily be reconstructed from its decomposed form.
237///
238/// When TargetData is around, this function is capable of analyzing everything
239/// that GetUnderlyingObject can look through.  When not, it just looks
240/// through pointer casts.
241///
242static const Value *
243DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
244                       SmallVectorImpl<VariableGEPIndex> &VarIndices,
245                       const TargetData *TD) {
246  // Limit recursion depth to limit compile time in crazy cases.
247  unsigned MaxLookup = 6;
248
249  BaseOffs = 0;
250  do {
251    // See if this is a bitcast or GEP.
252    const Operator *Op = dyn_cast<Operator>(V);
253    if (Op == 0) {
254      // The only non-operator case we can handle are GlobalAliases.
255      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
256        if (!GA->mayBeOverridden()) {
257          V = GA->getAliasee();
258          continue;
259        }
260      }
261      return V;
262    }
263
264    if (Op->getOpcode() == Instruction::BitCast) {
265      V = Op->getOperand(0);
266      continue;
267    }
268
269    if (const Instruction *I = dyn_cast<Instruction>(V))
270      // TODO: Get a DominatorTree and use it here.
271      if (const Value *Simplified =
272            SimplifyInstruction(const_cast<Instruction *>(I), TD)) {
273        V = Simplified;
274        continue;
275      }
276
277    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
278    if (GEPOp == 0)
279      return V;
280
281    // Don't attempt to analyze GEPs over unsized objects.
282    if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
283        ->getElementType()->isSized())
284      return V;
285
286    // If we are lacking TargetData information, we can't compute the offets of
287    // elements computed by GEPs.  However, we can handle bitcast equivalent
288    // GEPs.
289    if (TD == 0) {
290      if (!GEPOp->hasAllZeroIndices())
291        return V;
292      V = GEPOp->getOperand(0);
293      continue;
294    }
295
296    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
297    gep_type_iterator GTI = gep_type_begin(GEPOp);
298    for (User::const_op_iterator I = GEPOp->op_begin()+1,
299         E = GEPOp->op_end(); I != E; ++I) {
300      Value *Index = *I;
301      // Compute the (potentially symbolic) offset in bytes for this index.
302      if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
303        // For a struct, add the member offset.
304        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
305        if (FieldNo == 0) continue;
306
307        BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
308        continue;
309      }
310
311      // For an array/pointer, add the element offset, explicitly scaled.
312      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
313        if (CIdx->isZero()) continue;
314        BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
315        continue;
316      }
317
318      uint64_t Scale = TD->getTypeAllocSize(*GTI);
319      ExtensionKind Extension = EK_NotExtended;
320
321      // If the integer type is smaller than the pointer size, it is implicitly
322      // sign extended to pointer size.
323      unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
324      if (TD->getPointerSizeInBits() > Width)
325        Extension = EK_SignExt;
326
327      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
328      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
329      Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
330                                  *TD, 0);
331
332      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
333      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
334      BaseOffs += IndexOffset.getSExtValue()*Scale;
335      Scale *= IndexScale.getSExtValue();
336
337
338      // If we already had an occurrance of this index variable, merge this
339      // scale into it.  For example, we want to handle:
340      //   A[x][x] -> x*16 + x*4 -> x*20
341      // This also ensures that 'x' only appears in the index list once.
342      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
343        if (VarIndices[i].V == Index &&
344            VarIndices[i].Extension == Extension) {
345          Scale += VarIndices[i].Scale;
346          VarIndices.erase(VarIndices.begin()+i);
347          break;
348        }
349      }
350
351      // Make sure that we have a scale that makes sense for this target's
352      // pointer size.
353      if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
354        Scale <<= ShiftBits;
355        Scale = (int64_t)Scale >> ShiftBits;
356      }
357
358      if (Scale) {
359        VariableGEPIndex Entry = {Index, Extension, Scale};
360        VarIndices.push_back(Entry);
361      }
362    }
363
364    // Analyze the base pointer next.
365    V = GEPOp->getOperand(0);
366  } while (--MaxLookup);
367
368  // If the chain of expressions is too deep, just return early.
369  return V;
370}
371
372/// GetIndexDifference - Dest and Src are the variable indices from two
373/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
374/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
375/// difference between the two pointers.
376static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
377                               const SmallVectorImpl<VariableGEPIndex> &Src) {
378  if (Src.empty()) return;
379
380  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
381    const Value *V = Src[i].V;
382    ExtensionKind Extension = Src[i].Extension;
383    int64_t Scale = Src[i].Scale;
384
385    // Find V in Dest.  This is N^2, but pointer indices almost never have more
386    // than a few variable indexes.
387    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
388      if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
389
390      // If we found it, subtract off Scale V's from the entry in Dest.  If it
391      // goes to zero, remove the entry.
392      if (Dest[j].Scale != Scale)
393        Dest[j].Scale -= Scale;
394      else
395        Dest.erase(Dest.begin()+j);
396      Scale = 0;
397      break;
398    }
399
400    // If we didn't consume this entry, add it to the end of the Dest list.
401    if (Scale) {
402      VariableGEPIndex Entry = { V, Extension, -Scale };
403      Dest.push_back(Entry);
404    }
405  }
406}
407
408//===----------------------------------------------------------------------===//
409// BasicAliasAnalysis Pass
410//===----------------------------------------------------------------------===//
411
412#ifndef NDEBUG
413static const Function *getParent(const Value *V) {
414  if (const Instruction *inst = dyn_cast<Instruction>(V))
415    return inst->getParent()->getParent();
416
417  if (const Argument *arg = dyn_cast<Argument>(V))
418    return arg->getParent();
419
420  return NULL;
421}
422
423static bool notDifferentParent(const Value *O1, const Value *O2) {
424
425  const Function *F1 = getParent(O1);
426  const Function *F2 = getParent(O2);
427
428  return !F1 || !F2 || F1 == F2;
429}
430#endif
431
432namespace {
433  /// BasicAliasAnalysis - This is the primary alias analysis implementation.
434  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
435    static char ID; // Class identification, replacement for typeinfo
436    BasicAliasAnalysis() : ImmutablePass(ID) {
437      initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
438    }
439
440    virtual void initializePass() {
441      InitializeAliasAnalysis(this);
442    }
443
444    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
445      AU.addRequired<AliasAnalysis>();
446    }
447
448    virtual AliasResult alias(const Location &LocA,
449                              const Location &LocB) {
450      assert(Visited.empty() && "Visited must be cleared after use!");
451      assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
452             "BasicAliasAnalysis doesn't support interprocedural queries.");
453      AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
454                                     LocB.Ptr, LocB.Size, LocB.TBAATag);
455      Visited.clear();
456      return Alias;
457    }
458
459    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
460                                       const Location &Loc);
461
462    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
463                                       ImmutableCallSite CS2) {
464      // The AliasAnalysis base class has some smarts, lets use them.
465      return AliasAnalysis::getModRefInfo(CS1, CS2);
466    }
467
468    /// pointsToConstantMemory - Chase pointers until we find a (constant
469    /// global) or not.
470    virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
471
472    /// getModRefBehavior - Return the behavior when calling the given
473    /// call site.
474    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
475
476    /// getModRefBehavior - Return the behavior when calling the given function.
477    /// For use when the call site is not known.
478    virtual ModRefBehavior getModRefBehavior(const Function *F);
479
480    /// getAdjustedAnalysisPointer - This method is used when a pass implements
481    /// an analysis interface through multiple inheritance.  If needed, it
482    /// should override this to adjust the this pointer as needed for the
483    /// specified pass info.
484    virtual void *getAdjustedAnalysisPointer(const void *ID) {
485      if (ID == &AliasAnalysis::ID)
486        return (AliasAnalysis*)this;
487      return this;
488    }
489
490  private:
491    // Visited - Track instructions visited by a aliasPHI, aliasSelect(), and aliasGEP().
492    SmallPtrSet<const Value*, 16> Visited;
493
494    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
495    // instruction against another.
496    AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
497                         const Value *V2, uint64_t V2Size,
498                         const MDNode *V2TBAAInfo,
499                         const Value *UnderlyingV1, const Value *UnderlyingV2);
500
501    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
502    // instruction against another.
503    AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
504                         const MDNode *PNTBAAInfo,
505                         const Value *V2, uint64_t V2Size,
506                         const MDNode *V2TBAAInfo);
507
508    /// aliasSelect - Disambiguate a Select instruction against another value.
509    AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
510                            const MDNode *SITBAAInfo,
511                            const Value *V2, uint64_t V2Size,
512                            const MDNode *V2TBAAInfo);
513
514    AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
515                           const MDNode *V1TBAATag,
516                           const Value *V2, uint64_t V2Size,
517                           const MDNode *V2TBAATag);
518  };
519}  // End of anonymous namespace
520
521// Register this pass...
522char BasicAliasAnalysis::ID = 0;
523INITIALIZE_AG_PASS(BasicAliasAnalysis, AliasAnalysis, "basicaa",
524                   "Basic Alias Analysis (stateless AA impl)",
525                   false, true, false)
526
527ImmutablePass *llvm::createBasicAliasAnalysisPass() {
528  return new BasicAliasAnalysis();
529}
530
531/// pointsToConstantMemory - Returns whether the given pointer value
532/// points to memory that is local to the function, with global constants being
533/// considered local to all functions.
534bool
535BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
536  assert(Visited.empty() && "Visited must be cleared after use!");
537
538  unsigned MaxLookup = 8;
539  SmallVector<const Value *, 16> Worklist;
540  Worklist.push_back(Loc.Ptr);
541  do {
542    const Value *V = GetUnderlyingObject(Worklist.pop_back_val());
543    if (!Visited.insert(V)) {
544      Visited.clear();
545      return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
546    }
547
548    // An alloca instruction defines local memory.
549    if (OrLocal && isa<AllocaInst>(V))
550      continue;
551
552    // A global constant counts as local memory for our purposes.
553    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
554      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
555      // global to be marked constant in some modules and non-constant in
556      // others.  GV may even be a declaration, not a definition.
557      if (!GV->isConstant()) {
558        Visited.clear();
559        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
560      }
561      continue;
562    }
563
564    // If both select values point to local memory, then so does the select.
565    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
566      Worklist.push_back(SI->getTrueValue());
567      Worklist.push_back(SI->getFalseValue());
568      continue;
569    }
570
571    // If all values incoming to a phi node point to local memory, then so does
572    // the phi.
573    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
574      // Don't bother inspecting phi nodes with many operands.
575      if (PN->getNumIncomingValues() > MaxLookup) {
576        Visited.clear();
577        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
578      }
579      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
580        Worklist.push_back(PN->getIncomingValue(i));
581      continue;
582    }
583
584    // Otherwise be conservative.
585    Visited.clear();
586    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
587
588  } while (!Worklist.empty() && --MaxLookup);
589
590  Visited.clear();
591  return Worklist.empty();
592}
593
594/// getModRefBehavior - Return the behavior when calling the given call site.
595AliasAnalysis::ModRefBehavior
596BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
597  if (CS.doesNotAccessMemory())
598    // Can't do better than this.
599    return DoesNotAccessMemory;
600
601  ModRefBehavior Min = UnknownModRefBehavior;
602
603  // If the callsite knows it only reads memory, don't return worse
604  // than that.
605  if (CS.onlyReadsMemory())
606    Min = OnlyReadsMemory;
607
608  // The AliasAnalysis base class has some smarts, lets use them.
609  return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
610}
611
612/// getModRefBehavior - Return the behavior when calling the given function.
613/// For use when the call site is not known.
614AliasAnalysis::ModRefBehavior
615BasicAliasAnalysis::getModRefBehavior(const Function *F) {
616  // If the function declares it doesn't access memory, we can't do better.
617  if (F->doesNotAccessMemory())
618    return DoesNotAccessMemory;
619
620  // For intrinsics, we can check the table.
621  if (unsigned iid = F->getIntrinsicID()) {
622#define GET_INTRINSIC_MODREF_BEHAVIOR
623#include "llvm/Intrinsics.gen"
624#undef GET_INTRINSIC_MODREF_BEHAVIOR
625  }
626
627  ModRefBehavior Min = UnknownModRefBehavior;
628
629  // If the function declares it only reads memory, go with that.
630  if (F->onlyReadsMemory())
631    Min = OnlyReadsMemory;
632
633  // Otherwise be conservative.
634  return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
635}
636
637/// getModRefInfo - Check to see if the specified callsite can clobber the
638/// specified memory object.  Since we only look at local properties of this
639/// function, we really can't say much about this query.  We do, however, use
640/// simple "address taken" analysis on local objects.
641AliasAnalysis::ModRefResult
642BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
643                                  const Location &Loc) {
644  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
645         "AliasAnalysis query involving multiple functions!");
646
647  const Value *Object = GetUnderlyingObject(Loc.Ptr);
648
649  // If this is a tail call and Loc.Ptr points to a stack location, we know that
650  // the tail call cannot access or modify the local stack.
651  // We cannot exclude byval arguments here; these belong to the caller of
652  // the current function not to the current function, and a tail callee
653  // may reference them.
654  if (isa<AllocaInst>(Object))
655    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
656      if (CI->isTailCall())
657        return NoModRef;
658
659  // If the pointer is to a locally allocated object that does not escape,
660  // then the call can not mod/ref the pointer unless the call takes the pointer
661  // as an argument, and itself doesn't capture it.
662  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
663      isNonEscapingLocalObject(Object)) {
664    bool PassedAsArg = false;
665    unsigned ArgNo = 0;
666    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
667         CI != CE; ++CI, ++ArgNo) {
668      // Only look at the no-capture pointer arguments.
669      if (!(*CI)->getType()->isPointerTy() ||
670          !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture))
671        continue;
672
673      // If this is a no-capture pointer argument, see if we can tell that it
674      // is impossible to alias the pointer we're checking.  If not, we have to
675      // assume that the call could touch the pointer, even though it doesn't
676      // escape.
677      if (!isNoAlias(Location(cast<Value>(CI)), Loc)) {
678        PassedAsArg = true;
679        break;
680      }
681    }
682
683    if (!PassedAsArg)
684      return NoModRef;
685  }
686
687  ModRefResult Min = ModRef;
688
689  // Finally, handle specific knowledge of intrinsics.
690  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
691  if (II != 0)
692    switch (II->getIntrinsicID()) {
693    default: break;
694    case Intrinsic::memcpy:
695    case Intrinsic::memmove: {
696      uint64_t Len = UnknownSize;
697      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
698        Len = LenCI->getZExtValue();
699      Value *Dest = II->getArgOperand(0);
700      Value *Src = II->getArgOperand(1);
701      // If it can't overlap the source dest, then it doesn't modref the loc.
702      if (isNoAlias(Location(Dest, Len), Loc)) {
703        if (isNoAlias(Location(Src, Len), Loc))
704          return NoModRef;
705        // If it can't overlap the dest, then worst case it reads the loc.
706        Min = Ref;
707      } else if (isNoAlias(Location(Src, Len), Loc)) {
708        // If it can't overlap the source, then worst case it mutates the loc.
709        Min = Mod;
710      }
711      break;
712    }
713    case Intrinsic::memset:
714      // Since memset is 'accesses arguments' only, the AliasAnalysis base class
715      // will handle it for the variable length case.
716      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
717        uint64_t Len = LenCI->getZExtValue();
718        Value *Dest = II->getArgOperand(0);
719        if (isNoAlias(Location(Dest, Len), Loc))
720          return NoModRef;
721      }
722      // We know that memset doesn't load anything.
723      Min = Mod;
724      break;
725    case Intrinsic::atomic_cmp_swap:
726    case Intrinsic::atomic_swap:
727    case Intrinsic::atomic_load_add:
728    case Intrinsic::atomic_load_sub:
729    case Intrinsic::atomic_load_and:
730    case Intrinsic::atomic_load_nand:
731    case Intrinsic::atomic_load_or:
732    case Intrinsic::atomic_load_xor:
733    case Intrinsic::atomic_load_max:
734    case Intrinsic::atomic_load_min:
735    case Intrinsic::atomic_load_umax:
736    case Intrinsic::atomic_load_umin:
737      if (TD) {
738        Value *Op1 = II->getArgOperand(0);
739        uint64_t Op1Size = TD->getTypeStoreSize(Op1->getType());
740        MDNode *Tag = II->getMetadata(LLVMContext::MD_tbaa);
741        if (isNoAlias(Location(Op1, Op1Size, Tag), Loc))
742          return NoModRef;
743      }
744      break;
745    case Intrinsic::lifetime_start:
746    case Intrinsic::lifetime_end:
747    case Intrinsic::invariant_start: {
748      uint64_t PtrSize =
749        cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
750      if (isNoAlias(Location(II->getArgOperand(1),
751                             PtrSize,
752                             II->getMetadata(LLVMContext::MD_tbaa)),
753                    Loc))
754        return NoModRef;
755      break;
756    }
757    case Intrinsic::invariant_end: {
758      uint64_t PtrSize =
759        cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
760      if (isNoAlias(Location(II->getArgOperand(2),
761                             PtrSize,
762                             II->getMetadata(LLVMContext::MD_tbaa)),
763                    Loc))
764        return NoModRef;
765      break;
766    }
767    }
768
769  // The AliasAnalysis base class has some smarts, lets use them.
770  return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min);
771}
772
773/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
774/// against another pointer.  We know that V1 is a GEP, but we don't know
775/// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1),
776/// UnderlyingV2 is the same for V2.
777///
778AliasAnalysis::AliasResult
779BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
780                             const Value *V2, uint64_t V2Size,
781                             const MDNode *V2TBAAInfo,
782                             const Value *UnderlyingV1,
783                             const Value *UnderlyingV2) {
784  // If this GEP has been visited before, we're on a use-def cycle.
785  // Such cycles are only valid when PHI nodes are involved or in unreachable
786  // code. The visitPHI function catches cycles containing PHIs, but there
787  // could still be a cycle without PHIs in unreachable code.
788  if (!Visited.insert(GEP1))
789    return MayAlias;
790
791  int64_t GEP1BaseOffset;
792  SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
793
794  // If we have two gep instructions with must-alias'ing base pointers, figure
795  // out if the indexes to the GEP tell us anything about the derived pointer.
796  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
797    // Do the base pointers alias?
798    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
799                                       UnderlyingV2, UnknownSize, 0);
800
801    // If we get a No or May, then return it immediately, no amount of analysis
802    // will improve this situation.
803    if (BaseAlias != MustAlias) return BaseAlias;
804
805    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
806    // exactly, see if the computed offset from the common pointer tells us
807    // about the relation of the resulting pointer.
808    const Value *GEP1BasePtr =
809      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
810
811    int64_t GEP2BaseOffset;
812    SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
813    const Value *GEP2BasePtr =
814      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
815
816    // If DecomposeGEPExpression isn't able to look all the way through the
817    // addressing operation, we must not have TD and this is too complex for us
818    // to handle without it.
819    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
820      assert(TD == 0 &&
821             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
822      return MayAlias;
823    }
824
825    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
826    // symbolic difference.
827    GEP1BaseOffset -= GEP2BaseOffset;
828    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
829
830  } else {
831    // Check to see if these two pointers are related by the getelementptr
832    // instruction.  If one pointer is a GEP with a non-zero index of the other
833    // pointer, we know they cannot alias.
834
835    // If both accesses are unknown size, we can't do anything useful here.
836    if (V1Size == UnknownSize && V2Size == UnknownSize)
837      return MayAlias;
838
839    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
840                               V2, V2Size, V2TBAAInfo);
841    if (R != MustAlias)
842      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
843      // If V2 is known not to alias GEP base pointer, then the two values
844      // cannot alias per GEP semantics: "A pointer value formed from a
845      // getelementptr instruction is associated with the addresses associated
846      // with the first operand of the getelementptr".
847      return R;
848
849    const Value *GEP1BasePtr =
850      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
851
852    // If DecomposeGEPExpression isn't able to look all the way through the
853    // addressing operation, we must not have TD and this is too complex for us
854    // to handle without it.
855    if (GEP1BasePtr != UnderlyingV1) {
856      assert(TD == 0 &&
857             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
858      return MayAlias;
859    }
860  }
861
862  // In the two GEP Case, if there is no difference in the offsets of the
863  // computed pointers, the resultant pointers are a must alias.  This
864  // hapens when we have two lexically identical GEP's (for example).
865  //
866  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
867  // must aliases the GEP, the end result is a must alias also.
868  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
869    return MustAlias;
870
871  // If there is a difference betwen the pointers, but the difference is
872  // less than the size of the associated memory object, then we know
873  // that the objects are partially overlapping.
874  if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
875    if (GEP1BaseOffset >= 0 ?
876        (V2Size != UnknownSize && (uint64_t)GEP1BaseOffset < V2Size) :
877        (V1Size != UnknownSize && -(uint64_t)GEP1BaseOffset < V1Size &&
878         GEP1BaseOffset != INT64_MIN))
879      return PartialAlias;
880  }
881
882  // If we have a known constant offset, see if this offset is larger than the
883  // access size being queried.  If so, and if no variable indices can remove
884  // pieces of this constant, then we know we have a no-alias.  For example,
885  //   &A[100] != &A.
886
887  // In order to handle cases like &A[100][i] where i is an out of range
888  // subscript, we have to ignore all constant offset pieces that are a multiple
889  // of a scaled index.  Do this by removing constant offsets that are a
890  // multiple of any of our variable indices.  This allows us to transform
891  // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
892  // provides an offset of 4 bytes (assuming a <= 4 byte access).
893  for (unsigned i = 0, e = GEP1VariableIndices.size();
894       i != e && GEP1BaseOffset;++i)
895    if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].Scale)
896      GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].Scale;
897
898  // If our known offset is bigger than the access size, we know we don't have
899  // an alias.
900  if (GEP1BaseOffset) {
901    if (GEP1BaseOffset >= 0 ?
902        (V2Size != UnknownSize && (uint64_t)GEP1BaseOffset >= V2Size) :
903        (V1Size != UnknownSize && -(uint64_t)GEP1BaseOffset >= V1Size &&
904         GEP1BaseOffset != INT64_MIN))
905      return NoAlias;
906  }
907
908  return MayAlias;
909}
910
911/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
912/// instruction against another.
913AliasAnalysis::AliasResult
914BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
915                                const MDNode *SITBAAInfo,
916                                const Value *V2, uint64_t V2Size,
917                                const MDNode *V2TBAAInfo) {
918  // If this select has been visited before, we're on a use-def cycle.
919  // Such cycles are only valid when PHI nodes are involved or in unreachable
920  // code. The visitPHI function catches cycles containing PHIs, but there
921  // could still be a cycle without PHIs in unreachable code.
922  if (!Visited.insert(SI))
923    return MayAlias;
924
925  // If the values are Selects with the same condition, we can do a more precise
926  // check: just check for aliases between the values on corresponding arms.
927  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
928    if (SI->getCondition() == SI2->getCondition()) {
929      AliasResult Alias =
930        aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
931                   SI2->getTrueValue(), V2Size, V2TBAAInfo);
932      if (Alias == MayAlias)
933        return MayAlias;
934      AliasResult ThisAlias =
935        aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
936                   SI2->getFalseValue(), V2Size, V2TBAAInfo);
937      if (ThisAlias != Alias)
938        return MayAlias;
939      return Alias;
940    }
941
942  // If both arms of the Select node NoAlias or MustAlias V2, then returns
943  // NoAlias / MustAlias. Otherwise, returns MayAlias.
944  AliasResult Alias =
945    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
946  if (Alias == MayAlias)
947    return MayAlias;
948
949  // If V2 is visited, the recursive case will have been caught in the
950  // above aliasCheck call, so these subsequent calls to aliasCheck
951  // don't need to assume that V2 is being visited recursively.
952  Visited.erase(V2);
953
954  AliasResult ThisAlias =
955    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
956  if (ThisAlias != Alias)
957    return MayAlias;
958  return Alias;
959}
960
961// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
962// against another.
963AliasAnalysis::AliasResult
964BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
965                             const MDNode *PNTBAAInfo,
966                             const Value *V2, uint64_t V2Size,
967                             const MDNode *V2TBAAInfo) {
968  // The PHI node has already been visited, avoid recursion any further.
969  if (!Visited.insert(PN))
970    return MayAlias;
971
972  // If the values are PHIs in the same block, we can do a more precise
973  // as well as efficient check: just check for aliases between the values
974  // on corresponding edges.
975  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
976    if (PN2->getParent() == PN->getParent()) {
977      AliasResult Alias =
978        aliasCheck(PN->getIncomingValue(0), PNSize, PNTBAAInfo,
979                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
980                   V2Size, V2TBAAInfo);
981      if (Alias == MayAlias)
982        return MayAlias;
983      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
984        AliasResult ThisAlias =
985          aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
986                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
987                     V2Size, V2TBAAInfo);
988        if (ThisAlias != Alias)
989          return MayAlias;
990      }
991      return Alias;
992    }
993
994  SmallPtrSet<Value*, 4> UniqueSrc;
995  SmallVector<Value*, 4> V1Srcs;
996  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
997    Value *PV1 = PN->getIncomingValue(i);
998    if (isa<PHINode>(PV1))
999      // If any of the source itself is a PHI, return MayAlias conservatively
1000      // to avoid compile time explosion. The worst possible case is if both
1001      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1002      // and 'n' are the number of PHI sources.
1003      return MayAlias;
1004    if (UniqueSrc.insert(PV1))
1005      V1Srcs.push_back(PV1);
1006  }
1007
1008  AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
1009                                 V1Srcs[0], PNSize, PNTBAAInfo);
1010  // Early exit if the check of the first PHI source against V2 is MayAlias.
1011  // Other results are not possible.
1012  if (Alias == MayAlias)
1013    return MayAlias;
1014
1015  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1016  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1017  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1018    Value *V = V1Srcs[i];
1019
1020    // If V2 is visited, the recursive case will have been caught in the
1021    // above aliasCheck call, so these subsequent calls to aliasCheck
1022    // don't need to assume that V2 is being visited recursively.
1023    Visited.erase(V2);
1024
1025    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
1026                                       V, PNSize, PNTBAAInfo);
1027    if (ThisAlias != Alias || ThisAlias == MayAlias)
1028      return MayAlias;
1029  }
1030
1031  return Alias;
1032}
1033
1034// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
1035// such as array references.
1036//
1037AliasAnalysis::AliasResult
1038BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
1039                               const MDNode *V1TBAAInfo,
1040                               const Value *V2, uint64_t V2Size,
1041                               const MDNode *V2TBAAInfo) {
1042  // If either of the memory references is empty, it doesn't matter what the
1043  // pointer values are.
1044  if (V1Size == 0 || V2Size == 0)
1045    return NoAlias;
1046
1047  // Strip off any casts if they exist.
1048  V1 = V1->stripPointerCasts();
1049  V2 = V2->stripPointerCasts();
1050
1051  // Are we checking for alias of the same value?
1052  if (V1 == V2) return MustAlias;
1053
1054  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1055    return NoAlias;  // Scalars cannot alias each other
1056
1057  // Figure out what objects these things are pointing to if we can.
1058  const Value *O1 = GetUnderlyingObject(V1);
1059  const Value *O2 = GetUnderlyingObject(V2);
1060
1061  // Null values in the default address space don't point to any object, so they
1062  // don't alias any other pointer.
1063  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1064    if (CPN->getType()->getAddressSpace() == 0)
1065      return NoAlias;
1066  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1067    if (CPN->getType()->getAddressSpace() == 0)
1068      return NoAlias;
1069
1070  if (O1 != O2) {
1071    // If V1/V2 point to two different objects we know that we have no alias.
1072    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1073      return NoAlias;
1074
1075    // Constant pointers can't alias with non-const isIdentifiedObject objects.
1076    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1077        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1078      return NoAlias;
1079
1080    // Arguments can't alias with local allocations or noalias calls
1081    // in the same function.
1082    if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
1083         (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
1084      return NoAlias;
1085
1086    // Most objects can't alias null.
1087    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1088        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1089      return NoAlias;
1090
1091    // If one pointer is the result of a call/invoke or load and the other is a
1092    // non-escaping local object within the same function, then we know the
1093    // object couldn't escape to a point where the call could return it.
1094    //
1095    // Note that if the pointers are in different functions, there are a
1096    // variety of complications. A call with a nocapture argument may still
1097    // temporary store the nocapture argument's value in a temporary memory
1098    // location if that memory location doesn't escape. Or it may pass a
1099    // nocapture value to other functions as long as they don't capture it.
1100    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1101      return NoAlias;
1102    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1103      return NoAlias;
1104  }
1105
1106  // If the size of one access is larger than the entire object on the other
1107  // side, then we know such behavior is undefined and can assume no alias.
1108  if (TD)
1109    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) ||
1110        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD)))
1111      return NoAlias;
1112
1113  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1114  // GEP can't simplify, we don't even look at the PHI cases.
1115  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1116    std::swap(V1, V2);
1117    std::swap(V1Size, V2Size);
1118    std::swap(O1, O2);
1119  }
1120  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1121    AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, V2TBAAInfo, O1, O2);
1122    if (Result != MayAlias) return Result;
1123  }
1124
1125  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1126    std::swap(V1, V2);
1127    std::swap(V1Size, V2Size);
1128  }
1129  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1130    AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
1131                                  V2, V2Size, V2TBAAInfo);
1132    if (Result != MayAlias) return Result;
1133  }
1134
1135  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1136    std::swap(V1, V2);
1137    std::swap(V1Size, V2Size);
1138  }
1139  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1140    AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
1141                                     V2, V2Size, V2TBAAInfo);
1142    if (Result != MayAlias) return Result;
1143  }
1144
1145  return AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
1146                              Location(V2, V2Size, V2TBAAInfo));
1147}
1148