BasicAliasAnalysis.cpp revision ae708a3d91a9babfa171760f15d0fdcedd674d0d
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/ParameterAttributes.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/Pass.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/ManagedStatic.h"
32#include <algorithm>
33using namespace llvm;
34
35namespace {
36  /// NoAA - This class implements the -no-aa pass, which always returns "I
37  /// don't know" for alias queries.  NoAA is unlike other alias analysis
38  /// implementations, in that it does not chain to a previous analysis.  As
39  /// such it doesn't follow many of the rules that other alias analyses must.
40  ///
41  struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
42    static char ID; // Class identification, replacement for typeinfo
43    NoAA() : ImmutablePass((intptr_t)&ID) {}
44    explicit NoAA(intptr_t PID) : ImmutablePass(PID) { }
45
46    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
47      AU.addRequired<TargetData>();
48    }
49
50    virtual void initializePass() {
51      TD = &getAnalysis<TargetData>();
52    }
53
54    virtual AliasResult alias(const Value *V1, unsigned V1Size,
55                              const Value *V2, unsigned V2Size) {
56      return MayAlias;
57    }
58
59    virtual ModRefBehavior getModRefBehavior(Function *F, CallSite CS,
60                                         std::vector<PointerAccessInfo> *Info) {
61      return UnknownModRefBehavior;
62    }
63
64    virtual void getArgumentAccesses(Function *F, CallSite CS,
65                                     std::vector<PointerAccessInfo> &Info) {
66      assert(0 && "This method may not be called on this function!");
67    }
68
69    virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
70    virtual bool pointsToConstantMemory(const Value *P) { return false; }
71    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
72      return ModRef;
73    }
74    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
75      return ModRef;
76    }
77    virtual bool hasNoModRefInfoForCalls() const { return true; }
78
79    virtual void deleteValue(Value *V) {}
80    virtual void copyValue(Value *From, Value *To) {}
81  };
82
83  // Register this pass...
84  char NoAA::ID = 0;
85  RegisterPass<NoAA>
86  U("no-aa", "No Alias Analysis (always returns 'may' alias)");
87
88  // Declare that we implement the AliasAnalysis interface
89  RegisterAnalysisGroup<AliasAnalysis> V(U);
90}  // End of anonymous namespace
91
92ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
93
94namespace {
95  /// BasicAliasAnalysis - This is the default alias analysis implementation.
96  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
97  /// derives from the NoAA class.
98  struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
99    static char ID; // Class identification, replacement for typeinfo
100    BasicAliasAnalysis() : NoAA((intptr_t)&ID) { }
101    AliasResult alias(const Value *V1, unsigned V1Size,
102                      const Value *V2, unsigned V2Size);
103
104    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
105    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
106      return NoAA::getModRefInfo(CS1,CS2);
107    }
108
109    /// hasNoModRefInfoForCalls - We can provide mod/ref information against
110    /// non-escaping allocations.
111    virtual bool hasNoModRefInfoForCalls() const { return false; }
112
113    /// pointsToConstantMemory - Chase pointers until we find a (constant
114    /// global) or not.
115    bool pointsToConstantMemory(const Value *P);
116
117  private:
118    // CheckGEPInstructions - Check two GEP instructions with known
119    // must-aliasing base pointers.  This checks to see if the index expressions
120    // preclude the pointers from aliasing...
121    AliasResult
122    CheckGEPInstructions(const Type* BasePtr1Ty,
123                         Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
124                         const Type *BasePtr2Ty,
125                         Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
126  };
127
128  // Register this pass...
129  char BasicAliasAnalysis::ID = 0;
130  RegisterPass<BasicAliasAnalysis>
131  X("basicaa", "Basic Alias Analysis (default AA impl)");
132
133  // Declare that we implement the AliasAnalysis interface
134  RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
135}  // End of anonymous namespace
136
137ImmutablePass *llvm::createBasicAliasAnalysisPass() {
138  return new BasicAliasAnalysis();
139}
140
141/// getUnderlyingObject - This traverses the use chain to figure out what object
142/// the specified value points to.  If the value points to, or is derived from,
143/// a unique object or an argument, return it.  This returns:
144///    Arguments, GlobalVariables, Functions, Allocas, Mallocs.
145static const Value *getUnderlyingObject(const Value *V) {
146  if (!isa<PointerType>(V->getType())) return 0;
147
148  // If we are at some type of object, return it. GlobalValues and Allocations
149  // have unique addresses.
150  if (isa<GlobalValue>(V) || isa<AllocationInst>(V) || isa<Argument>(V))
151    return V;
152
153  // Traverse through different addressing mechanisms...
154  if (const Instruction *I = dyn_cast<Instruction>(V)) {
155    if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I))
156      return getUnderlyingObject(I->getOperand(0));
157  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
158    if (CE->getOpcode() == Instruction::BitCast ||
159        CE->getOpcode() == Instruction::GetElementPtr)
160      return getUnderlyingObject(CE->getOperand(0));
161  }
162  return 0;
163}
164
165static const User *isGEP(const Value *V) {
166  if (isa<GetElementPtrInst>(V) ||
167      (isa<ConstantExpr>(V) &&
168       cast<ConstantExpr>(V)->getOpcode() == Instruction::GetElementPtr))
169    return cast<User>(V);
170  return 0;
171}
172
173static const Value *GetGEPOperands(const Value *V,
174                                   SmallVector<Value*, 16> &GEPOps){
175  assert(GEPOps.empty() && "Expect empty list to populate!");
176  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
177                cast<User>(V)->op_end());
178
179  // Accumulate all of the chained indexes into the operand array
180  V = cast<User>(V)->getOperand(0);
181
182  while (const User *G = isGEP(V)) {
183    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
184        !cast<Constant>(GEPOps[0])->isNullValue())
185      break;  // Don't handle folding arbitrary pointer offsets yet...
186    GEPOps.erase(GEPOps.begin());   // Drop the zero index
187    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
188    V = G->getOperand(0);
189  }
190  return V;
191}
192
193/// pointsToConstantMemory - Chase pointers until we find a (constant
194/// global) or not.
195bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
196  if (const Value *V = getUnderlyingObject(P))
197    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
198      return GV->isConstant();
199  return false;
200}
201
202// Determine if an AllocationInst instruction escapes from the function it is
203// contained in. If it does not escape, there is no way for another function to
204// mod/ref it.  We do this by looking at its uses and determining if the uses
205// can escape (recursively).
206static bool AddressMightEscape(const Value *V) {
207  for (Value::use_const_iterator UI = V->use_begin(), E = V->use_end();
208       UI != E; ++UI) {
209    const Instruction *I = cast<Instruction>(*UI);
210    switch (I->getOpcode()) {
211    case Instruction::Load:
212      break; //next use.
213    case Instruction::Store:
214      if (I->getOperand(0) == V)
215        return true; // Escapes if the pointer is stored.
216      break; // next use.
217    case Instruction::GetElementPtr:
218      if (AddressMightEscape(I))
219        return true;
220      break; // next use.
221    case Instruction::BitCast:
222      if (AddressMightEscape(I))
223        return true;
224      break; // next use
225    case Instruction::Ret:
226      // If returned, the address will escape to calling functions, but no
227      // callees could modify it.
228      break; // next use
229    case Instruction::Call:
230      // If the call is to a few known safe intrinsics, we know that it does
231      // not escape
232      if (!isa<MemIntrinsic>(I))
233        return true;
234      break;  // next use
235    default:
236      return true;
237    }
238  }
239  return false;
240}
241
242// getModRefInfo - Check to see if the specified callsite can clobber the
243// specified memory object.  Since we only look at local properties of this
244// function, we really can't say much about this query.  We do, however, use
245// simple "address taken" analysis on local objects.
246//
247AliasAnalysis::ModRefResult
248BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
249  if (!isa<Constant>(P)) {
250    const Value *Object = getUnderlyingObject(P);
251    // Allocations and byval arguments are "new" objects.
252    if (Object &&
253        (isa<AllocationInst>(Object) || isa<Argument>(Object))) {
254      // Okay, the pointer is to a stack allocated (or effectively so, for
255      // for noalias parameters) object.  If the address of this object doesn't
256      // escape from this function body to a callee, then we know that no
257      // callees can mod/ref it unless they are actually passed it.
258      if (isa<AllocationInst>(Object) ||
259          cast<Argument>(Object)->hasByValAttr() ||
260          cast<Argument>(Object)->hasNoAliasAttr())
261        if (!AddressMightEscape(Object)) {
262          bool passedAsArg = false;
263          for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
264              CI != CE; ++CI)
265            if (getUnderlyingObject(CI->get()) == P)
266              passedAsArg = true;
267
268          if (!passedAsArg)
269            return NoModRef;
270        }
271
272      // If this is a tail call and P points to a stack location, we know that
273      // the tail call cannot access or modify the local stack.
274      if (isa<AllocationInst>(Object) ||
275          cast<Argument>(Object)->hasByValAttr())
276        if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
277          if (CI->isTailCall() && !isa<MallocInst>(Object))
278            return NoModRef;
279    }
280  }
281
282  // The AliasAnalysis base class has some smarts, lets use them.
283  return AliasAnalysis::getModRefInfo(CS, P, Size);
284}
285
286// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
287// as array references.  Note that this function is heavily tail recursive.
288// Hopefully we have a smart C++ compiler.  :)
289//
290AliasAnalysis::AliasResult
291BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
292                          const Value *V2, unsigned V2Size) {
293  // Strip off any constant expression casts if they exist
294  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
295    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
296      V1 = CE->getOperand(0);
297  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
298    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
299      V2 = CE->getOperand(0);
300
301  // Are we checking for alias of the same value?
302  if (V1 == V2) return MustAlias;
303
304  if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
305      V1->getType() != Type::Int64Ty && V2->getType() != Type::Int64Ty)
306    return NoAlias;  // Scalars cannot alias each other
307
308  // Strip off cast instructions...
309  if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
310    return alias(I->getOperand(0), V1Size, V2, V2Size);
311  if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
312    return alias(V1, V1Size, I->getOperand(0), V2Size);
313
314  // Figure out what objects these things are pointing to if we can...
315  const Value *O1 = getUnderlyingObject(V1);
316  const Value *O2 = getUnderlyingObject(V2);
317
318  // Pointing at a discernible object?
319  if (O1) {
320    if (O2) {
321      if (const Argument *O1Arg = dyn_cast<Argument>(O1)) {
322        // Incoming argument cannot alias locally allocated object!
323        if (isa<AllocationInst>(O2)) return NoAlias;
324
325        // If they are two different objects, and one is a noalias argument
326        // then they do not alias.
327        if (O1 != O2 && O1Arg->hasNoAliasAttr())
328          return NoAlias;
329
330        // Byval arguments can't alias globals or other arguments.
331        if (O1 != O2 && O1Arg->hasByValAttr()) return NoAlias;
332
333        // Otherwise, nothing is known...
334      }
335
336      if (const Argument *O2Arg = dyn_cast<Argument>(O2)) {
337        // Incoming argument cannot alias locally allocated object!
338        if (isa<AllocationInst>(O1)) return NoAlias;
339
340        // If they are two different objects, and one is a noalias argument
341        // then they do not alias.
342        if (O1 != O2 && O2Arg->hasNoAliasAttr())
343          return NoAlias;
344
345        // Byval arguments can't alias globals or other arguments.
346        if (O1 != O2 && O2Arg->hasByValAttr()) return NoAlias;
347
348        // Otherwise, nothing is known...
349
350      } else if (O1 != O2 && !isa<Argument>(O1)) {
351        // If they are two different objects, and neither is an argument,
352        // we know that we have no alias.
353        return NoAlias;
354      }
355
356      // If they are the same object, they we can look at the indexes.  If they
357      // index off of the object is the same for both pointers, they must alias.
358      // If they are provably different, they must not alias.  Otherwise, we
359      // can't tell anything.
360    }
361
362    // Unique values don't alias null, except non-byval arguments.
363    if (isa<ConstantPointerNull>(V2)) {
364      if (const Argument *O1Arg = dyn_cast<Argument>(O1)) {
365        if (O1Arg->hasByValAttr())
366          return NoAlias;
367      } else {
368        return NoAlias;
369      }
370    }
371
372    if (isa<GlobalVariable>(O1) ||
373        (isa<AllocationInst>(O1) &&
374         !cast<AllocationInst>(O1)->isArrayAllocation()))
375      if (cast<PointerType>(O1->getType())->getElementType()->isSized()) {
376        // If the size of the other access is larger than the total size of the
377        // global/alloca/malloc, it cannot be accessing the global (it's
378        // undefined to load or store bytes before or after an object).
379        const Type *ElTy = cast<PointerType>(O1->getType())->getElementType();
380        unsigned GlobalSize = getTargetData().getABITypeSize(ElTy);
381        if (GlobalSize < V2Size && V2Size != ~0U)
382          return NoAlias;
383      }
384  }
385
386  if (O2) {
387    if (!isa<Argument>(O2) && isa<ConstantPointerNull>(V1))
388      return NoAlias;                    // Unique values don't alias null
389
390    if (isa<GlobalVariable>(O2) ||
391        (isa<AllocationInst>(O2) &&
392         !cast<AllocationInst>(O2)->isArrayAllocation()))
393      if (cast<PointerType>(O2->getType())->getElementType()->isSized()) {
394        // If the size of the other access is larger than the total size of the
395        // global/alloca/malloc, it cannot be accessing the object (it's
396        // undefined to load or store bytes before or after an object).
397        const Type *ElTy = cast<PointerType>(O2->getType())->getElementType();
398        unsigned GlobalSize = getTargetData().getABITypeSize(ElTy);
399        if (GlobalSize < V1Size && V1Size != ~0U)
400          return NoAlias;
401      }
402  }
403
404  // If we have two gep instructions with must-alias'ing base pointers, figure
405  // out if the indexes to the GEP tell us anything about the derived pointer.
406  // Note that we also handle chains of getelementptr instructions as well as
407  // constant expression getelementptrs here.
408  //
409  if (isGEP(V1) && isGEP(V2)) {
410    // Drill down into the first non-gep value, to test for must-aliasing of
411    // the base pointers.
412    const User *G = cast<User>(V1);
413    while (isGEP(G->getOperand(0)) &&
414           G->getOperand(1) ==
415           Constant::getNullValue(G->getOperand(1)->getType()))
416      G = cast<User>(G->getOperand(0));
417    const Value *BasePtr1 = G->getOperand(0);
418
419    G = cast<User>(V2);
420    while (isGEP(G->getOperand(0)) &&
421           G->getOperand(1) ==
422           Constant::getNullValue(G->getOperand(1)->getType()))
423      G = cast<User>(G->getOperand(0));
424    const Value *BasePtr2 = G->getOperand(0);
425
426    // Do the base pointers alias?
427    AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
428    if (BaseAlias == NoAlias) return NoAlias;
429    if (BaseAlias == MustAlias) {
430      // If the base pointers alias each other exactly, check to see if we can
431      // figure out anything about the resultant pointers, to try to prove
432      // non-aliasing.
433
434      // Collect all of the chained GEP operands together into one simple place
435      SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
436      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
437      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
438
439      // If GetGEPOperands were able to fold to the same must-aliased pointer,
440      // do the comparison.
441      if (BasePtr1 == BasePtr2) {
442        AliasResult GAlias =
443          CheckGEPInstructions(BasePtr1->getType(),
444                               &GEP1Ops[0], GEP1Ops.size(), V1Size,
445                               BasePtr2->getType(),
446                               &GEP2Ops[0], GEP2Ops.size(), V2Size);
447        if (GAlias != MayAlias)
448          return GAlias;
449      }
450    }
451  }
452
453  // Check to see if these two pointers are related by a getelementptr
454  // instruction.  If one pointer is a GEP with a non-zero index of the other
455  // pointer, we know they cannot alias.
456  //
457  if (isGEP(V2)) {
458    std::swap(V1, V2);
459    std::swap(V1Size, V2Size);
460  }
461
462  if (V1Size != ~0U && V2Size != ~0U)
463    if (isGEP(V1)) {
464      SmallVector<Value*, 16> GEPOperands;
465      const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
466
467      AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
468      if (R == MustAlias) {
469        // If there is at least one non-zero constant index, we know they cannot
470        // alias.
471        bool ConstantFound = false;
472        bool AllZerosFound = true;
473        for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
474          if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
475            if (!C->isNullValue()) {
476              ConstantFound = true;
477              AllZerosFound = false;
478              break;
479            }
480          } else {
481            AllZerosFound = false;
482          }
483
484        // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
485        // the ptr, the end result is a must alias also.
486        if (AllZerosFound)
487          return MustAlias;
488
489        if (ConstantFound) {
490          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
491            return NoAlias;
492
493          // Otherwise we have to check to see that the distance is more than
494          // the size of the argument... build an index vector that is equal to
495          // the arguments provided, except substitute 0's for any variable
496          // indexes we find...
497          if (cast<PointerType>(
498                BasePtr->getType())->getElementType()->isSized()) {
499            for (unsigned i = 0; i != GEPOperands.size(); ++i)
500              if (!isa<ConstantInt>(GEPOperands[i]))
501                GEPOperands[i] =
502                  Constant::getNullValue(GEPOperands[i]->getType());
503            int64_t Offset =
504              getTargetData().getIndexedOffset(BasePtr->getType(),
505                                               &GEPOperands[0],
506                                               GEPOperands.size());
507
508            if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
509              return NoAlias;
510          }
511        }
512      }
513    }
514
515  return MayAlias;
516}
517
518// This function is used to determin if the indices of two GEP instructions are
519// equal. V1 and V2 are the indices.
520static bool IndexOperandsEqual(Value *V1, Value *V2) {
521  if (V1->getType() == V2->getType())
522    return V1 == V2;
523  if (Constant *C1 = dyn_cast<Constant>(V1))
524    if (Constant *C2 = dyn_cast<Constant>(V2)) {
525      // Sign extend the constants to long types, if necessary
526      if (C1->getType() != Type::Int64Ty)
527        C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
528      if (C2->getType() != Type::Int64Ty)
529        C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
530      return C1 == C2;
531    }
532  return false;
533}
534
535/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
536/// base pointers.  This checks to see if the index expressions preclude the
537/// pointers from aliasing...
538AliasAnalysis::AliasResult
539BasicAliasAnalysis::CheckGEPInstructions(
540  const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
541  const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
542  // We currently can't handle the case when the base pointers have different
543  // primitive types.  Since this is uncommon anyway, we are happy being
544  // extremely conservative.
545  if (BasePtr1Ty != BasePtr2Ty)
546    return MayAlias;
547
548  const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
549
550  // Find the (possibly empty) initial sequence of equal values... which are not
551  // necessarily constants.
552  unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
553  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
554  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
555  unsigned UnequalOper = 0;
556  while (UnequalOper != MinOperands &&
557         IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
558    // Advance through the type as we go...
559    ++UnequalOper;
560    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
561      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
562    else {
563      // If all operands equal each other, then the derived pointers must
564      // alias each other...
565      BasePtr1Ty = 0;
566      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
567             "Ran out of type nesting, but not out of operands?");
568      return MustAlias;
569    }
570  }
571
572  // If we have seen all constant operands, and run out of indexes on one of the
573  // getelementptrs, check to see if the tail of the leftover one is all zeros.
574  // If so, return mustalias.
575  if (UnequalOper == MinOperands) {
576    if (NumGEP1Ops < NumGEP2Ops) {
577      std::swap(GEP1Ops, GEP2Ops);
578      std::swap(NumGEP1Ops, NumGEP2Ops);
579    }
580
581    bool AllAreZeros = true;
582    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
583      if (!isa<Constant>(GEP1Ops[i]) ||
584          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
585        AllAreZeros = false;
586        break;
587      }
588    if (AllAreZeros) return MustAlias;
589  }
590
591
592  // So now we know that the indexes derived from the base pointers,
593  // which are known to alias, are different.  We can still determine a
594  // no-alias result if there are differing constant pairs in the index
595  // chain.  For example:
596  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
597  //
598  // We have to be careful here about array accesses.  In particular, consider:
599  //        A[1][0] vs A[0][i]
600  // In this case, we don't *know* that the array will be accessed in bounds:
601  // the index could even be negative.  Because of this, we have to
602  // conservatively *give up* and return may alias.  We disregard differing
603  // array subscripts that are followed by a variable index without going
604  // through a struct.
605  //
606  unsigned SizeMax = std::max(G1S, G2S);
607  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
608
609  // Scan for the first operand that is constant and unequal in the
610  // two getelementptrs...
611  unsigned FirstConstantOper = UnequalOper;
612  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
613    const Value *G1Oper = GEP1Ops[FirstConstantOper];
614    const Value *G2Oper = GEP2Ops[FirstConstantOper];
615
616    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
617      if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
618        if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
619          if (G1OC->getType() != G2OC->getType()) {
620            // Sign extend both operands to long.
621            if (G1OC->getType() != Type::Int64Ty)
622              G1OC = ConstantExpr::getSExt(G1OC, Type::Int64Ty);
623            if (G2OC->getType() != Type::Int64Ty)
624              G2OC = ConstantExpr::getSExt(G2OC, Type::Int64Ty);
625            GEP1Ops[FirstConstantOper] = G1OC;
626            GEP2Ops[FirstConstantOper] = G2OC;
627          }
628
629          if (G1OC != G2OC) {
630            // Handle the "be careful" case above: if this is an array/vector
631            // subscript, scan for a subsequent variable array index.
632            if (isa<SequentialType>(BasePtr1Ty))  {
633              const Type *NextTy =
634                cast<SequentialType>(BasePtr1Ty)->getElementType();
635              bool isBadCase = false;
636
637              for (unsigned Idx = FirstConstantOper+1;
638                   Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
639                const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
640                if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
641                  isBadCase = true;
642                  break;
643                }
644                NextTy = cast<SequentialType>(NextTy)->getElementType();
645              }
646
647              if (isBadCase) G1OC = 0;
648            }
649
650            // Make sure they are comparable (ie, not constant expressions), and
651            // make sure the GEP with the smaller leading constant is GEP1.
652            if (G1OC) {
653              Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
654                                                        G1OC, G2OC);
655              if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
656                if (CV->getZExtValue()) {  // If they are comparable and G2 > G1
657                  std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
658                  std::swap(NumGEP1Ops, NumGEP2Ops);
659                }
660                break;
661              }
662            }
663          }
664        }
665    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
666  }
667
668  // No shared constant operands, and we ran out of common operands.  At this
669  // point, the GEP instructions have run through all of their operands, and we
670  // haven't found evidence that there are any deltas between the GEP's.
671  // However, one GEP may have more operands than the other.  If this is the
672  // case, there may still be hope.  Check this now.
673  if (FirstConstantOper == MinOperands) {
674    // Make GEP1Ops be the longer one if there is a longer one.
675    if (NumGEP1Ops < NumGEP2Ops) {
676      std::swap(GEP1Ops, GEP2Ops);
677      std::swap(NumGEP1Ops, NumGEP2Ops);
678    }
679
680    // Is there anything to check?
681    if (NumGEP1Ops > MinOperands) {
682      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
683        if (isa<ConstantInt>(GEP1Ops[i]) &&
684            !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
685          // Yup, there's a constant in the tail.  Set all variables to
686          // constants in the GEP instruction to make it suiteable for
687          // TargetData::getIndexedOffset.
688          for (i = 0; i != MaxOperands; ++i)
689            if (!isa<ConstantInt>(GEP1Ops[i]))
690              GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
691          // Okay, now get the offset.  This is the relative offset for the full
692          // instruction.
693          const TargetData &TD = getTargetData();
694          int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
695                                                NumGEP1Ops);
696
697          // Now check without any constants at the end.
698          int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
699                                                MinOperands);
700
701          // If the tail provided a bit enough offset, return noalias!
702          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
703            return NoAlias;
704        }
705    }
706
707    // Couldn't find anything useful.
708    return MayAlias;
709  }
710
711  // If there are non-equal constants arguments, then we can figure
712  // out a minimum known delta between the two index expressions... at
713  // this point we know that the first constant index of GEP1 is less
714  // than the first constant index of GEP2.
715
716  // Advance BasePtr[12]Ty over this first differing constant operand.
717  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
718      getTypeAtIndex(GEP2Ops[FirstConstantOper]);
719  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
720      getTypeAtIndex(GEP1Ops[FirstConstantOper]);
721
722  // We are going to be using TargetData::getIndexedOffset to determine the
723  // offset that each of the GEP's is reaching.  To do this, we have to convert
724  // all variable references to constant references.  To do this, we convert the
725  // initial sequence of array subscripts into constant zeros to start with.
726  const Type *ZeroIdxTy = GEPPointerTy;
727  for (unsigned i = 0; i != FirstConstantOper; ++i) {
728    if (!isa<StructType>(ZeroIdxTy))
729      GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Type::Int32Ty);
730
731    if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
732      ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
733  }
734
735  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
736
737  // Loop over the rest of the operands...
738  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
739    const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
740    const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
741    // If they are equal, use a zero index...
742    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
743      if (!isa<ConstantInt>(Op1))
744        GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
745      // Otherwise, just keep the constants we have.
746    } else {
747      if (Op1) {
748        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
749          // If this is an array index, make sure the array element is in range.
750          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
751            if (Op1C->getZExtValue() >= AT->getNumElements())
752              return MayAlias;  // Be conservative with out-of-range accesses
753          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
754            if (Op1C->getZExtValue() >= VT->getNumElements())
755              return MayAlias;  // Be conservative with out-of-range accesses
756          }
757
758        } else {
759          // GEP1 is known to produce a value less than GEP2.  To be
760          // conservatively correct, we must assume the largest possible
761          // constant is used in this position.  This cannot be the initial
762          // index to the GEP instructions (because we know we have at least one
763          // element before this one with the different constant arguments), so
764          // we know that the current index must be into either a struct or
765          // array.  Because we know it's not constant, this cannot be a
766          // structure index.  Because of this, we can calculate the maximum
767          // value possible.
768          //
769          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
770            GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
771          else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
772            GEP1Ops[i] = ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
773        }
774      }
775
776      if (Op2) {
777        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
778          // If this is an array index, make sure the array element is in range.
779          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
780            if (Op2C->getZExtValue() >= AT->getNumElements())
781              return MayAlias;  // Be conservative with out-of-range accesses
782          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
783            if (Op2C->getZExtValue() >= VT->getNumElements())
784              return MayAlias;  // Be conservative with out-of-range accesses
785          }
786        } else {  // Conservatively assume the minimum value for this index
787          GEP2Ops[i] = Constant::getNullValue(Op2->getType());
788        }
789      }
790    }
791
792    if (BasePtr1Ty && Op1) {
793      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
794        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
795      else
796        BasePtr1Ty = 0;
797    }
798
799    if (BasePtr2Ty && Op2) {
800      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
801        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
802      else
803        BasePtr2Ty = 0;
804    }
805  }
806
807  if (GEPPointerTy->getElementType()->isSized()) {
808    int64_t Offset1 =
809      getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
810    int64_t Offset2 =
811      getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
812    assert(Offset1 != Offset2 &&
813           "There is at least one different constant here!");
814
815    // Make sure we compare the absolute difference.
816    if (Offset1 > Offset2)
817      std::swap(Offset1, Offset2);
818
819    if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
820      //cerr << "Determined that these two GEP's don't alias ["
821      //     << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
822      return NoAlias;
823    }
824  }
825  return MayAlias;
826}
827
828// Make sure that anything that uses AliasAnalysis pulls in this file...
829DEFINING_FILE_FOR(BasicAliasAnalysis)
830