BasicAliasAnalysis.cpp revision b27db37ed05a846bd2e0fcdaf592e5bb1a573f8b
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/CaptureTracking.h"
18#include "llvm/Analysis/MemoryBuiltins.h"
19#include "llvm/Analysis/Passes.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/Operator.h"
27#include "llvm/Pass.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/GetElementPtrTypeIterator.h"
34#include <algorithm>
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38// Useful predicates
39//===----------------------------------------------------------------------===//
40
41static const Value *GetGEPOperands(const Value *V,
42                                   SmallVector<Value*, 16> &GEPOps) {
43  assert(GEPOps.empty() && "Expect empty list to populate!");
44  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
45                cast<User>(V)->op_end());
46
47  // Accumulate all of the chained indexes into the operand array
48  V = cast<User>(V)->getOperand(0);
49
50  while (const GEPOperator *G = dyn_cast<GEPOperator>(V)) {
51    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
52        !cast<Constant>(GEPOps[0])->isNullValue())
53      break;  // Don't handle folding arbitrary pointer offsets yet...
54    GEPOps.erase(GEPOps.begin());   // Drop the zero index
55    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
56    V = G->getOperand(0);
57  }
58  return V;
59}
60
61/// isKnownNonNull - Return true if we know that the specified value is never
62/// null.
63static bool isKnownNonNull(const Value *V) {
64  // Alloca never returns null, malloc might.
65  if (isa<AllocaInst>(V)) return true;
66
67  // A byval argument is never null.
68  if (const Argument *A = dyn_cast<Argument>(V))
69    return A->hasByValAttr();
70
71  // Global values are not null unless extern weak.
72  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
73    return !GV->hasExternalWeakLinkage();
74  return false;
75}
76
77/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
78/// object that never escapes from the function.
79static bool isNonEscapingLocalObject(const Value *V) {
80  // If this is a local allocation, check to see if it escapes.
81  if (isa<AllocaInst>(V) || isNoAliasCall(V))
82    // Set StoreCaptures to True so that we can assume in our callers that the
83    // pointer is not the result of a load instruction. Currently
84    // PointerMayBeCaptured doesn't have any special analysis for the
85    // StoreCaptures=false case; if it did, our callers could be refined to be
86    // more precise.
87    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
88
89  // If this is an argument that corresponds to a byval or noalias argument,
90  // then it has not escaped before entering the function.  Check if it escapes
91  // inside the function.
92  if (const Argument *A = dyn_cast<Argument>(V))
93    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
94      // Don't bother analyzing arguments already known not to escape.
95      if (A->hasNoCaptureAttr())
96        return true;
97      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
98    }
99  return false;
100}
101
102
103/// isObjectSmallerThan - Return true if we can prove that the object specified
104/// by V is smaller than Size.
105static bool isObjectSmallerThan(const Value *V, unsigned Size,
106                                const TargetData &TD) {
107  const Type *AccessTy;
108  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
109    AccessTy = GV->getType()->getElementType();
110  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
111    if (!AI->isArrayAllocation())
112      AccessTy = AI->getType()->getElementType();
113    else
114      return false;
115  } else if (const CallInst* CI = extractMallocCall(V)) {
116    if (!isArrayMalloc(V, &TD))
117      // The size is the argument to the malloc call.
118      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getOperand(1)))
119        return (C->getZExtValue() < Size);
120    return false;
121  } else if (const Argument *A = dyn_cast<Argument>(V)) {
122    if (A->hasByValAttr())
123      AccessTy = cast<PointerType>(A->getType())->getElementType();
124    else
125      return false;
126  } else {
127    return false;
128  }
129
130  if (AccessTy->isSized())
131    return TD.getTypeAllocSize(AccessTy) < Size;
132  return false;
133}
134
135//===----------------------------------------------------------------------===//
136// NoAA Pass
137//===----------------------------------------------------------------------===//
138
139namespace {
140  /// NoAA - This class implements the -no-aa pass, which always returns "I
141  /// don't know" for alias queries.  NoAA is unlike other alias analysis
142  /// implementations, in that it does not chain to a previous analysis.  As
143  /// such it doesn't follow many of the rules that other alias analyses must.
144  ///
145  struct NoAA : public ImmutablePass, public AliasAnalysis {
146    static char ID; // Class identification, replacement for typeinfo
147    NoAA() : ImmutablePass(&ID) {}
148    explicit NoAA(void *PID) : ImmutablePass(PID) { }
149
150    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
151    }
152
153    virtual void initializePass() {
154      TD = getAnalysisIfAvailable<TargetData>();
155    }
156
157    virtual AliasResult alias(const Value *V1, unsigned V1Size,
158                              const Value *V2, unsigned V2Size) {
159      return MayAlias;
160    }
161
162    virtual void getArgumentAccesses(Function *F, CallSite CS,
163                                     std::vector<PointerAccessInfo> &Info) {
164      llvm_unreachable("This method may not be called on this function!");
165    }
166
167    virtual bool pointsToConstantMemory(const Value *P) { return false; }
168    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
169      return ModRef;
170    }
171    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
172      return ModRef;
173    }
174
175    virtual void deleteValue(Value *V) {}
176    virtual void copyValue(Value *From, Value *To) {}
177  };
178}  // End of anonymous namespace
179
180// Register this pass...
181char NoAA::ID = 0;
182static RegisterPass<NoAA>
183U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
184
185// Declare that we implement the AliasAnalysis interface
186static RegisterAnalysisGroup<AliasAnalysis> V(U);
187
188ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
189
190//===----------------------------------------------------------------------===//
191// BasicAA Pass
192//===----------------------------------------------------------------------===//
193
194namespace {
195  /// BasicAliasAnalysis - This is the default alias analysis implementation.
196  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
197  /// derives from the NoAA class.
198  struct BasicAliasAnalysis : public NoAA {
199    static char ID; // Class identification, replacement for typeinfo
200    BasicAliasAnalysis() : NoAA(&ID) {}
201    AliasResult alias(const Value *V1, unsigned V1Size,
202                      const Value *V2, unsigned V2Size) {
203      assert(VisitedPHIs.empty() && "VisitedPHIs must be cleared after use!");
204      AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size);
205      VisitedPHIs.clear();
206      return Alias;
207    }
208
209    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
210    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
211
212    /// pointsToConstantMemory - Chase pointers until we find a (constant
213    /// global) or not.
214    bool pointsToConstantMemory(const Value *P);
215
216  private:
217    // VisitedPHIs - Track PHI nodes visited by a aliasCheck() call.
218    SmallPtrSet<const Value*, 16> VisitedPHIs;
219
220    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
221    // instruction against another.
222    AliasResult aliasGEP(const Value *V1, unsigned V1Size,
223                         const Value *V2, unsigned V2Size);
224
225    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
226    // instruction against another.
227    AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
228                         const Value *V2, unsigned V2Size);
229
230    /// aliasSelect - Disambiguate a Select instruction against another value.
231    AliasResult aliasSelect(const SelectInst *SI, unsigned SISize,
232                            const Value *V2, unsigned V2Size);
233
234    AliasResult aliasCheck(const Value *V1, unsigned V1Size,
235                           const Value *V2, unsigned V2Size);
236
237    // CheckGEPInstructions - Check two GEP instructions with known
238    // must-aliasing base pointers.  This checks to see if the index expressions
239    // preclude the pointers from aliasing.
240    AliasResult
241    CheckGEPInstructions(const Type* BasePtr1Ty,
242                         Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
243                         const Type *BasePtr2Ty,
244                         Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
245  };
246}  // End of anonymous namespace
247
248// Register this pass...
249char BasicAliasAnalysis::ID = 0;
250static RegisterPass<BasicAliasAnalysis>
251X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
252
253// Declare that we implement the AliasAnalysis interface
254static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
255
256ImmutablePass *llvm::createBasicAliasAnalysisPass() {
257  return new BasicAliasAnalysis();
258}
259
260
261/// pointsToConstantMemory - Chase pointers until we find a (constant
262/// global) or not.
263bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
264  if (const GlobalVariable *GV =
265        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
266    // Note: this doesn't require GV to be "ODR" because it isn't legal for a
267    // global to be marked constant in some modules and non-constant in others.
268    // GV may even be a declaration, not a definition.
269    return GV->isConstant();
270  return false;
271}
272
273
274/// getModRefInfo - Check to see if the specified callsite can clobber the
275/// specified memory object.  Since we only look at local properties of this
276/// function, we really can't say much about this query.  We do, however, use
277/// simple "address taken" analysis on local objects.
278AliasAnalysis::ModRefResult
279BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
280  const Value *Object = P->getUnderlyingObject();
281
282  // If this is a tail call and P points to a stack location, we know that
283  // the tail call cannot access or modify the local stack.
284  // We cannot exclude byval arguments here; these belong to the caller of
285  // the current function not to the current function, and a tail callee
286  // may reference them.
287  if (isa<AllocaInst>(Object))
288    if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
289      if (CI->isTailCall())
290        return NoModRef;
291
292  // If the pointer is to a locally allocated object that does not escape,
293  // then the call can not mod/ref the pointer unless the call takes the pointer
294  // as an argument, and itself doesn't capture it.
295  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
296      isNonEscapingLocalObject(Object)) {
297    bool PassedAsArg = false;
298    unsigned ArgNo = 0;
299    for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
300         CI != CE; ++CI, ++ArgNo) {
301      // Only look at the no-capture pointer arguments.
302      if (!isa<PointerType>((*CI)->getType()) ||
303          !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture))
304        continue;
305
306      // If  this is a no-capture pointer argument, see if we can tell that it
307      // is impossible to alias the pointer we're checking.  If not, we have to
308      // assume that the call could touch the pointer, even though it doesn't
309      // escape.
310      if (!isNoAlias(cast<Value>(CI), ~0U, P, ~0U)) {
311        PassedAsArg = true;
312        break;
313      }
314    }
315
316    if (!PassedAsArg)
317      return NoModRef;
318  }
319
320  // Finally, handle specific knowledge of intrinsics.
321  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
322  if (II == 0)
323    return AliasAnalysis::getModRefInfo(CS, P, Size);
324
325  switch (II->getIntrinsicID()) {
326  default: break;
327  case Intrinsic::memcpy:
328  case Intrinsic::memmove: {
329    unsigned Len = ~0U;
330    if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3)))
331      Len = LenCI->getZExtValue();
332    Value *Dest = II->getOperand(1);
333    Value *Src = II->getOperand(2);
334    if (isNoAlias(Dest, Len, P, Size)) {
335      if (isNoAlias(Src, Len, P, Size))
336        return NoModRef;
337      return Ref;
338    }
339    break;
340  }
341  case Intrinsic::memset:
342    // Since memset is 'accesses arguments' only, the AliasAnalysis base class
343    // will handle it for the variable length case.
344    if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getOperand(3))) {
345      unsigned Len = LenCI->getZExtValue();
346      Value *Dest = II->getOperand(1);
347      if (isNoAlias(Dest, Len, P, Size))
348        return NoModRef;
349    }
350    break;
351  case Intrinsic::atomic_cmp_swap:
352  case Intrinsic::atomic_swap:
353  case Intrinsic::atomic_load_add:
354  case Intrinsic::atomic_load_sub:
355  case Intrinsic::atomic_load_and:
356  case Intrinsic::atomic_load_nand:
357  case Intrinsic::atomic_load_or:
358  case Intrinsic::atomic_load_xor:
359  case Intrinsic::atomic_load_max:
360  case Intrinsic::atomic_load_min:
361  case Intrinsic::atomic_load_umax:
362  case Intrinsic::atomic_load_umin:
363    if (TD) {
364      Value *Op1 = II->getOperand(1);
365      unsigned Op1Size = TD->getTypeStoreSize(Op1->getType());
366      if (isNoAlias(Op1, Op1Size, P, Size))
367        return NoModRef;
368    }
369    break;
370  case Intrinsic::lifetime_start:
371  case Intrinsic::lifetime_end:
372  case Intrinsic::invariant_start: {
373    unsigned PtrSize = cast<ConstantInt>(II->getOperand(1))->getZExtValue();
374    if (isNoAlias(II->getOperand(2), PtrSize, P, Size))
375      return NoModRef;
376    break;
377  }
378  case Intrinsic::invariant_end: {
379    unsigned PtrSize = cast<ConstantInt>(II->getOperand(2))->getZExtValue();
380    if (isNoAlias(II->getOperand(3), PtrSize, P, Size))
381      return NoModRef;
382    break;
383  }
384  }
385
386  // The AliasAnalysis base class has some smarts, lets use them.
387  return AliasAnalysis::getModRefInfo(CS, P, Size);
388}
389
390
391AliasAnalysis::ModRefResult
392BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
393  // If CS1 or CS2 are readnone, they don't interact.
394  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
395  if (CS1B == DoesNotAccessMemory) return NoModRef;
396
397  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
398  if (CS2B == DoesNotAccessMemory) return NoModRef;
399
400  // If they both only read from memory, just return ref.
401  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
402    return Ref;
403
404  // Otherwise, fall back to NoAA (mod+ref).
405  return NoAA::getModRefInfo(CS1, CS2);
406}
407
408// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
409// against another.
410//
411AliasAnalysis::AliasResult
412BasicAliasAnalysis::aliasGEP(const Value *V1, unsigned V1Size,
413                             const Value *V2, unsigned V2Size) {
414  // If we have two gep instructions with must-alias'ing base pointers, figure
415  // out if the indexes to the GEP tell us anything about the derived pointer.
416  // Note that we also handle chains of getelementptr instructions as well as
417  // constant expression getelementptrs here.
418  //
419  if (isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
420    const User *GEP1 = cast<User>(V1);
421    const User *GEP2 = cast<User>(V2);
422
423    // If V1 and V2 are identical GEPs, just recurse down on both of them.
424    // This allows us to analyze things like:
425    //   P = gep A, 0, i, 1
426    //   Q = gep B, 0, i, 1
427    // by just analyzing A and B.  This is even safe for variable indices.
428    if (GEP1->getType() == GEP2->getType() &&
429        GEP1->getNumOperands() == GEP2->getNumOperands() &&
430        GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
431        // All operands are the same, ignoring the base.
432        std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
433      return aliasCheck(GEP1->getOperand(0), V1Size,
434                        GEP2->getOperand(0), V2Size);
435
436    // Drill down into the first non-gep value, to test for must-aliasing of
437    // the base pointers.
438    while (isa<GEPOperator>(GEP1->getOperand(0)) &&
439           GEP1->getOperand(1) ==
440           Constant::getNullValue(GEP1->getOperand(1)->getType()))
441      GEP1 = cast<User>(GEP1->getOperand(0));
442    const Value *BasePtr1 = GEP1->getOperand(0);
443
444    while (isa<GEPOperator>(GEP2->getOperand(0)) &&
445           GEP2->getOperand(1) ==
446           Constant::getNullValue(GEP2->getOperand(1)->getType()))
447      GEP2 = cast<User>(GEP2->getOperand(0));
448    const Value *BasePtr2 = GEP2->getOperand(0);
449
450    // Do the base pointers alias?
451    AliasResult BaseAlias = aliasCheck(BasePtr1, ~0U, BasePtr2, ~0U);
452    if (BaseAlias == NoAlias) return NoAlias;
453    if (BaseAlias == MustAlias) {
454      // If the base pointers alias each other exactly, check to see if we can
455      // figure out anything about the resultant pointers, to try to prove
456      // non-aliasing.
457
458      // Collect all of the chained GEP operands together into one simple place
459      SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
460      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
461      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
462
463      // If GetGEPOperands were able to fold to the same must-aliased pointer,
464      // do the comparison.
465      if (BasePtr1 == BasePtr2) {
466        AliasResult GAlias =
467          CheckGEPInstructions(BasePtr1->getType(),
468                               &GEP1Ops[0], GEP1Ops.size(), V1Size,
469                               BasePtr2->getType(),
470                               &GEP2Ops[0], GEP2Ops.size(), V2Size);
471        if (GAlias != MayAlias)
472          return GAlias;
473      }
474    }
475  }
476
477  // Check to see if these two pointers are related by a getelementptr
478  // instruction.  If one pointer is a GEP with a non-zero index of the other
479  // pointer, we know they cannot alias.
480  //
481  if (V1Size == ~0U || V2Size == ~0U)
482    return MayAlias;
483
484  SmallVector<Value*, 16> GEPOperands;
485  const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
486
487  AliasResult R = aliasCheck(BasePtr, ~0U, V2, V2Size);
488  if (R != MustAlias)
489    // If V2 may alias GEP base pointer, conservatively returns MayAlias.
490    // If V2 is known not to alias GEP base pointer, then the two values
491    // cannot alias per GEP semantics: "A pointer value formed from a
492    // getelementptr instruction is associated with the addresses associated
493    // with the first operand of the getelementptr".
494    return R;
495
496  // If there is at least one non-zero constant index, we know they cannot
497  // alias.
498  bool ConstantFound = false;
499  bool AllZerosFound = true;
500  for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
501    if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
502      if (!C->isNullValue()) {
503        ConstantFound = true;
504        AllZerosFound = false;
505        break;
506      }
507    } else {
508      AllZerosFound = false;
509    }
510
511  // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
512  // the ptr, the end result is a must alias also.
513  if (AllZerosFound)
514    return MustAlias;
515
516  if (ConstantFound) {
517    if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
518      return NoAlias;
519
520    // Otherwise we have to check to see that the distance is more than
521    // the size of the argument... build an index vector that is equal to
522    // the arguments provided, except substitute 0's for any variable
523    // indexes we find...
524    if (TD &&
525        cast<PointerType>(BasePtr->getType())->getElementType()->isSized()) {
526      for (unsigned i = 0; i != GEPOperands.size(); ++i)
527        if (!isa<ConstantInt>(GEPOperands[i]))
528          GEPOperands[i] = Constant::getNullValue(GEPOperands[i]->getType());
529      int64_t Offset = TD->getIndexedOffset(BasePtr->getType(),
530                                            &GEPOperands[0],
531                                            GEPOperands.size());
532
533      if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
534        return NoAlias;
535    }
536  }
537
538  return MayAlias;
539}
540
541/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
542/// instruction against another.
543AliasAnalysis::AliasResult
544BasicAliasAnalysis::aliasSelect(const SelectInst *SI, unsigned SISize,
545                                const Value *V2, unsigned V2Size) {
546  // If the values are Selects with the same condition, we can do a more precise
547  // check: just check for aliases between the values on corresponding arms.
548  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
549    if (SI->getCondition() == SI2->getCondition()) {
550      AliasResult Alias =
551        aliasCheck(SI->getTrueValue(), SISize,
552                   SI2->getTrueValue(), V2Size);
553      if (Alias == MayAlias)
554        return MayAlias;
555      AliasResult ThisAlias =
556        aliasCheck(SI->getFalseValue(), SISize,
557                   SI2->getFalseValue(), V2Size);
558      if (ThisAlias != Alias)
559        return MayAlias;
560      return Alias;
561    }
562
563  // If both arms of the Select node NoAlias or MustAlias V2, then returns
564  // NoAlias / MustAlias. Otherwise, returns MayAlias.
565  AliasResult Alias =
566    aliasCheck(SI->getTrueValue(), SISize, V2, V2Size);
567  if (Alias == MayAlias)
568    return MayAlias;
569  AliasResult ThisAlias =
570    aliasCheck(SI->getFalseValue(), SISize, V2, V2Size);
571  if (ThisAlias != Alias)
572    return MayAlias;
573  return Alias;
574}
575
576// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
577// against another.
578AliasAnalysis::AliasResult
579BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize,
580                             const Value *V2, unsigned V2Size) {
581  // The PHI node has already been visited, avoid recursion any further.
582  if (!VisitedPHIs.insert(PN))
583    return MayAlias;
584
585  // If the values are PHIs in the same block, we can do a more precise
586  // as well as efficient check: just check for aliases between the values
587  // on corresponding edges.
588  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
589    if (PN2->getParent() == PN->getParent()) {
590      AliasResult Alias =
591        aliasCheck(PN->getIncomingValue(0), PNSize,
592                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
593                   V2Size);
594      if (Alias == MayAlias)
595        return MayAlias;
596      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
597        AliasResult ThisAlias =
598          aliasCheck(PN->getIncomingValue(i), PNSize,
599                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
600                     V2Size);
601        if (ThisAlias != Alias)
602          return MayAlias;
603      }
604      return Alias;
605    }
606
607  SmallPtrSet<Value*, 4> UniqueSrc;
608  SmallVector<Value*, 4> V1Srcs;
609  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
610    Value *PV1 = PN->getIncomingValue(i);
611    if (isa<PHINode>(PV1))
612      // If any of the source itself is a PHI, return MayAlias conservatively
613      // to avoid compile time explosion. The worst possible case is if both
614      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
615      // and 'n' are the number of PHI sources.
616      return MayAlias;
617    if (UniqueSrc.insert(PV1))
618      V1Srcs.push_back(PV1);
619  }
620
621  AliasResult Alias = aliasCheck(V2, V2Size, V1Srcs[0], PNSize);
622  // Early exit if the check of the first PHI source against V2 is MayAlias.
623  // Other results are not possible.
624  if (Alias == MayAlias)
625    return MayAlias;
626
627  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
628  // NoAlias / MustAlias. Otherwise, returns MayAlias.
629  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
630    Value *V = V1Srcs[i];
631
632    // If V2 is a PHI, the recursive case will have been caught in the
633    // above aliasCheck call, so these subsequent calls to aliasCheck
634    // don't need to assume that V2 is being visited recursively.
635    VisitedPHIs.erase(V2);
636
637    AliasResult ThisAlias = aliasCheck(V2, V2Size, V, PNSize);
638    if (ThisAlias != Alias || ThisAlias == MayAlias)
639      return MayAlias;
640  }
641
642  return Alias;
643}
644
645// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
646// such as array references.
647//
648AliasAnalysis::AliasResult
649BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
650                               const Value *V2, unsigned V2Size) {
651  // Strip off any casts if they exist.
652  V1 = V1->stripPointerCasts();
653  V2 = V2->stripPointerCasts();
654
655  // Are we checking for alias of the same value?
656  if (V1 == V2) return MustAlias;
657
658  if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
659    return NoAlias;  // Scalars cannot alias each other
660
661  // Figure out what objects these things are pointing to if we can.
662  const Value *O1 = V1->getUnderlyingObject();
663  const Value *O2 = V2->getUnderlyingObject();
664
665  // Null values in the default address space don't point to any object, so they
666  // don't alias any other pointer.
667  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
668    if (CPN->getType()->getAddressSpace() == 0)
669      return NoAlias;
670  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
671    if (CPN->getType()->getAddressSpace() == 0)
672      return NoAlias;
673
674  if (O1 != O2) {
675    // If V1/V2 point to two different objects we know that we have no alias.
676    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
677      return NoAlias;
678
679    // Constant pointers can't alias with non-const isIdentifiedObject objects.
680    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
681        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
682      return NoAlias;
683
684    // Arguments can't alias with local allocations or noalias calls.
685    if ((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
686        (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1))))
687      return NoAlias;
688
689    // Most objects can't alias null.
690    if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
691        (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
692      return NoAlias;
693  }
694
695  // If the size of one access is larger than the entire object on the other
696  // side, then we know such behavior is undefined and can assume no alias.
697  if (TD)
698    if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, *TD)) ||
699        (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, *TD)))
700      return NoAlias;
701
702  // If one pointer is the result of a call/invoke or load and the other is a
703  // non-escaping local object, then we know the object couldn't escape to a
704  // point where the call could return it. The load case works because
705  // isNonEscapingLocalObject considers all stores to be escapes (it
706  // passes true for the StoreCaptures argument to PointerMayBeCaptured).
707  if (O1 != O2) {
708    if ((isa<CallInst>(O1) || isa<InvokeInst>(O1) || isa<LoadInst>(O1) ||
709         isa<Argument>(O1)) &&
710        isNonEscapingLocalObject(O2))
711      return NoAlias;
712    if ((isa<CallInst>(O2) || isa<InvokeInst>(O2) || isa<LoadInst>(O2) ||
713         isa<Argument>(O2)) &&
714        isNonEscapingLocalObject(O1))
715      return NoAlias;
716  }
717
718  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
719    std::swap(V1, V2);
720    std::swap(V1Size, V2Size);
721  }
722  if (isa<GEPOperator>(V1))
723    return aliasGEP(V1, V1Size, V2, V2Size);
724
725  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
726    std::swap(V1, V2);
727    std::swap(V1Size, V2Size);
728  }
729  if (const PHINode *PN = dyn_cast<PHINode>(V1))
730    return aliasPHI(PN, V1Size, V2, V2Size);
731
732  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
733    std::swap(V1, V2);
734    std::swap(V1Size, V2Size);
735  }
736  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1))
737    return aliasSelect(S1, V1Size, V2, V2Size);
738
739  return MayAlias;
740}
741
742// This function is used to determine if the indices of two GEP instructions are
743// equal. V1 and V2 are the indices.
744static bool IndexOperandsEqual(Value *V1, Value *V2) {
745  if (V1->getType() == V2->getType())
746    return V1 == V2;
747  if (Constant *C1 = dyn_cast<Constant>(V1))
748    if (Constant *C2 = dyn_cast<Constant>(V2)) {
749      // Sign extend the constants to long types, if necessary
750      if (C1->getType() != Type::getInt64Ty(C1->getContext()))
751        C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
752      if (C2->getType() != Type::getInt64Ty(C1->getContext()))
753        C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
754      return C1 == C2;
755    }
756  return false;
757}
758
759/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
760/// base pointers.  This checks to see if the index expressions preclude the
761/// pointers from aliasing.
762AliasAnalysis::AliasResult
763BasicAliasAnalysis::CheckGEPInstructions(
764  const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
765  const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
766  // We currently can't handle the case when the base pointers have different
767  // primitive types.  Since this is uncommon anyway, we are happy being
768  // extremely conservative.
769  if (BasePtr1Ty != BasePtr2Ty)
770    return MayAlias;
771
772  const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
773
774  // Find the (possibly empty) initial sequence of equal values... which are not
775  // necessarily constants.
776  unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
777  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
778  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
779  unsigned UnequalOper = 0;
780  while (UnequalOper != MinOperands &&
781         IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper])) {
782    // Advance through the type as we go...
783    ++UnequalOper;
784    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
785      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
786    else {
787      // If all operands equal each other, then the derived pointers must
788      // alias each other...
789      BasePtr1Ty = 0;
790      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
791             "Ran out of type nesting, but not out of operands?");
792      return MustAlias;
793    }
794  }
795
796  // If we have seen all constant operands, and run out of indexes on one of the
797  // getelementptrs, check to see if the tail of the leftover one is all zeros.
798  // If so, return mustalias.
799  if (UnequalOper == MinOperands) {
800    if (NumGEP1Ops < NumGEP2Ops) {
801      std::swap(GEP1Ops, GEP2Ops);
802      std::swap(NumGEP1Ops, NumGEP2Ops);
803    }
804
805    bool AllAreZeros = true;
806    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
807      if (!isa<Constant>(GEP1Ops[i]) ||
808          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
809        AllAreZeros = false;
810        break;
811      }
812    if (AllAreZeros) return MustAlias;
813  }
814
815
816  // So now we know that the indexes derived from the base pointers,
817  // which are known to alias, are different.  We can still determine a
818  // no-alias result if there are differing constant pairs in the index
819  // chain.  For example:
820  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
821  //
822  // We have to be careful here about array accesses.  In particular, consider:
823  //        A[1][0] vs A[0][i]
824  // In this case, we don't *know* that the array will be accessed in bounds:
825  // the index could even be negative.  Because of this, we have to
826  // conservatively *give up* and return may alias.  We disregard differing
827  // array subscripts that are followed by a variable index without going
828  // through a struct.
829  //
830  unsigned SizeMax = std::max(G1S, G2S);
831  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
832
833  // Scan for the first operand that is constant and unequal in the
834  // two getelementptrs...
835  unsigned FirstConstantOper = UnequalOper;
836  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
837    const Value *G1Oper = GEP1Ops[FirstConstantOper];
838    const Value *G2Oper = GEP2Ops[FirstConstantOper];
839
840    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
841      if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
842        if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
843          if (G1OC->getType() != G2OC->getType()) {
844            // Sign extend both operands to long.
845            const Type *Int64Ty = Type::getInt64Ty(G1OC->getContext());
846            if (G1OC->getType() != Int64Ty)
847              G1OC = ConstantExpr::getSExt(G1OC, Int64Ty);
848            if (G2OC->getType() != Int64Ty)
849              G2OC = ConstantExpr::getSExt(G2OC, Int64Ty);
850            GEP1Ops[FirstConstantOper] = G1OC;
851            GEP2Ops[FirstConstantOper] = G2OC;
852          }
853
854          if (G1OC != G2OC) {
855            // Handle the "be careful" case above: if this is an array/vector
856            // subscript, scan for a subsequent variable array index.
857            if (const SequentialType *STy =
858                  dyn_cast<SequentialType>(BasePtr1Ty)) {
859              const Type *NextTy = STy;
860              bool isBadCase = false;
861
862              for (unsigned Idx = FirstConstantOper;
863                   Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
864                const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
865                if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
866                  isBadCase = true;
867                  break;
868                }
869                // If the array is indexed beyond the bounds of the static type
870                // at this level, it will also fall into the "be careful" case.
871                // It would theoretically be possible to analyze these cases,
872                // but for now just be conservatively correct.
873                if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
874                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
875                        ATy->getNumElements() ||
876                      cast<ConstantInt>(G2OC)->getZExtValue() >=
877                        ATy->getNumElements()) {
878                    isBadCase = true;
879                    break;
880                  }
881                if (const VectorType *VTy = dyn_cast<VectorType>(STy))
882                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
883                        VTy->getNumElements() ||
884                      cast<ConstantInt>(G2OC)->getZExtValue() >=
885                        VTy->getNumElements()) {
886                    isBadCase = true;
887                    break;
888                  }
889                STy = cast<SequentialType>(NextTy);
890                NextTy = cast<SequentialType>(NextTy)->getElementType();
891              }
892
893              if (isBadCase) G1OC = 0;
894            }
895
896            // Make sure they are comparable (ie, not constant expressions), and
897            // make sure the GEP with the smaller leading constant is GEP1.
898            if (G1OC) {
899              Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
900                                                        G1OC, G2OC);
901              if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
902                if (CV->getZExtValue()) {  // If they are comparable and G2 > G1
903                  std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
904                  std::swap(NumGEP1Ops, NumGEP2Ops);
905                }
906                break;
907              }
908            }
909          }
910        }
911    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
912  }
913
914  // No shared constant operands, and we ran out of common operands.  At this
915  // point, the GEP instructions have run through all of their operands, and we
916  // haven't found evidence that there are any deltas between the GEP's.
917  // However, one GEP may have more operands than the other.  If this is the
918  // case, there may still be hope.  Check this now.
919  if (FirstConstantOper == MinOperands) {
920    // Without TargetData, we won't know what the offsets are.
921    if (!TD)
922      return MayAlias;
923
924    // Make GEP1Ops be the longer one if there is a longer one.
925    if (NumGEP1Ops < NumGEP2Ops) {
926      std::swap(GEP1Ops, GEP2Ops);
927      std::swap(NumGEP1Ops, NumGEP2Ops);
928    }
929
930    // Is there anything to check?
931    if (NumGEP1Ops > MinOperands) {
932      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
933        if (isa<ConstantInt>(GEP1Ops[i]) &&
934            !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
935          // Yup, there's a constant in the tail.  Set all variables to
936          // constants in the GEP instruction to make it suitable for
937          // TargetData::getIndexedOffset.
938          for (i = 0; i != MaxOperands; ++i)
939            if (!isa<ConstantInt>(GEP1Ops[i]))
940              GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
941          // Okay, now get the offset.  This is the relative offset for the full
942          // instruction.
943          int64_t Offset1 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
944                                                 NumGEP1Ops);
945
946          // Now check without any constants at the end.
947          int64_t Offset2 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
948                                                 MinOperands);
949
950          // Make sure we compare the absolute difference.
951          if (Offset1 > Offset2)
952            std::swap(Offset1, Offset2);
953
954          // If the tail provided a bit enough offset, return noalias!
955          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
956            return NoAlias;
957          // Otherwise break - we don't look for another constant in the tail.
958          break;
959        }
960    }
961
962    // Couldn't find anything useful.
963    return MayAlias;
964  }
965
966  // If there are non-equal constants arguments, then we can figure
967  // out a minimum known delta between the two index expressions... at
968  // this point we know that the first constant index of GEP1 is less
969  // than the first constant index of GEP2.
970
971  // Advance BasePtr[12]Ty over this first differing constant operand.
972  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
973      getTypeAtIndex(GEP2Ops[FirstConstantOper]);
974  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
975      getTypeAtIndex(GEP1Ops[FirstConstantOper]);
976
977  // We are going to be using TargetData::getIndexedOffset to determine the
978  // offset that each of the GEP's is reaching.  To do this, we have to convert
979  // all variable references to constant references.  To do this, we convert the
980  // initial sequence of array subscripts into constant zeros to start with.
981  const Type *ZeroIdxTy = GEPPointerTy;
982  for (unsigned i = 0; i != FirstConstantOper; ++i) {
983    if (!isa<StructType>(ZeroIdxTy))
984      GEP1Ops[i] = GEP2Ops[i] =
985              Constant::getNullValue(Type::getInt32Ty(ZeroIdxTy->getContext()));
986
987    if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
988      ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
989  }
990
991  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
992
993  // Loop over the rest of the operands...
994  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
995    const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
996    const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
997    // If they are equal, use a zero index...
998    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
999      if (!isa<ConstantInt>(Op1))
1000        GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
1001      // Otherwise, just keep the constants we have.
1002    } else {
1003      if (Op1) {
1004        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1005          // If this is an array index, make sure the array element is in range.
1006          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
1007            if (Op1C->getZExtValue() >= AT->getNumElements())
1008              return MayAlias;  // Be conservative with out-of-range accesses
1009          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
1010            if (Op1C->getZExtValue() >= VT->getNumElements())
1011              return MayAlias;  // Be conservative with out-of-range accesses
1012          }
1013
1014        } else {
1015          // GEP1 is known to produce a value less than GEP2.  To be
1016          // conservatively correct, we must assume the largest possible
1017          // constant is used in this position.  This cannot be the initial
1018          // index to the GEP instructions (because we know we have at least one
1019          // element before this one with the different constant arguments), so
1020          // we know that the current index must be into either a struct or
1021          // array.  Because we know it's not constant, this cannot be a
1022          // structure index.  Because of this, we can calculate the maximum
1023          // value possible.
1024          //
1025          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
1026            GEP1Ops[i] =
1027                  ConstantInt::get(Type::getInt64Ty(AT->getContext()),
1028                                   AT->getNumElements()-1);
1029          else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
1030            GEP1Ops[i] =
1031                  ConstantInt::get(Type::getInt64Ty(VT->getContext()),
1032                                   VT->getNumElements()-1);
1033        }
1034      }
1035
1036      if (Op2) {
1037        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
1038          // If this is an array index, make sure the array element is in range.
1039          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
1040            if (Op2C->getZExtValue() >= AT->getNumElements())
1041              return MayAlias;  // Be conservative with out-of-range accesses
1042          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
1043            if (Op2C->getZExtValue() >= VT->getNumElements())
1044              return MayAlias;  // Be conservative with out-of-range accesses
1045          }
1046        } else {  // Conservatively assume the minimum value for this index
1047          GEP2Ops[i] = Constant::getNullValue(Op2->getType());
1048        }
1049      }
1050    }
1051
1052    if (BasePtr1Ty && Op1) {
1053      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
1054        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
1055      else
1056        BasePtr1Ty = 0;
1057    }
1058
1059    if (BasePtr2Ty && Op2) {
1060      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
1061        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
1062      else
1063        BasePtr2Ty = 0;
1064    }
1065  }
1066
1067  if (TD && GEPPointerTy->getElementType()->isSized()) {
1068    int64_t Offset1 =
1069      TD->getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
1070    int64_t Offset2 =
1071      TD->getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
1072    assert(Offset1 != Offset2 &&
1073           "There is at least one different constant here!");
1074
1075    // Make sure we compare the absolute difference.
1076    if (Offset1 > Offset2)
1077      std::swap(Offset1, Offset2);
1078
1079    if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
1080      //cerr << "Determined that these two GEP's don't alias ["
1081      //     << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
1082      return NoAlias;
1083    }
1084  }
1085  return MayAlias;
1086}
1087
1088// Make sure that anything that uses AliasAnalysis pulls in this file.
1089DEFINING_FILE_FOR(BasicAliasAnalysis)
1090