BasicAliasAnalysis.cpp revision b581148bd9d3fea008b5fdd58681671a3d738f19
1//===- llvm/Analysis/BasicAliasAnalysis.h - Alias Analysis Impl -*- C++ -*-===//
2//
3// This file defines the default implementation of the Alias Analysis interface
4// that simply implements a few identities (two different globals cannot alias,
5// etc), but otherwise does no analysis.
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Analysis/AliasAnalysis.h"
10#include "llvm/Pass.h"
11#include "llvm/iMemory.h"
12#include "llvm/iOther.h"
13#include "llvm/ConstantHandling.h"
14#include "llvm/GlobalValue.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Target/TargetData.h"
17
18// Make sure that anything that uses AliasAnalysis pulls in this file...
19void BasicAAStub() {}
20
21
22namespace {
23  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
24
25    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
26      AliasAnalysis::getAnalysisUsage(AU);
27    }
28
29    virtual void initializePass();
30
31    // alias - This is the only method here that does anything interesting...
32    //
33    AliasResult alias(const Value *V1, unsigned V1Size,
34                      const Value *V2, unsigned V2Size);
35  private:
36    // CheckGEPInstructions - Check two GEP instructions of compatible types and
37    // equal number of arguments.  This checks to see if the index expressions
38    // preclude the pointers from aliasing...
39    AliasResult CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1Size,
40                                     GetElementPtrInst *GEP2, unsigned G2Size);
41  };
42
43  // Register this pass...
44  RegisterOpt<BasicAliasAnalysis>
45  X("basicaa", "Basic Alias Analysis (default AA impl)");
46
47  // Declare that we implement the AliasAnalysis interface
48  RegisterAnalysisGroup<AliasAnalysis, BasicAliasAnalysis, true> Y;
49}  // End of anonymous namespace
50
51void BasicAliasAnalysis::initializePass() {
52  InitializeAliasAnalysis(this);
53}
54
55
56
57// hasUniqueAddress - Return true if the
58static inline bool hasUniqueAddress(const Value *V) {
59  return isa<GlobalValue>(V) || isa<MallocInst>(V) || isa<AllocaInst>(V);
60}
61
62static const Value *getUnderlyingObject(const Value *V) {
63  if (!isa<PointerType>(V->getType())) return 0;
64
65  // If we are at some type of object... return it.
66  if (hasUniqueAddress(V)) return V;
67
68  // Traverse through different addressing mechanisms...
69  if (const Instruction *I = dyn_cast<Instruction>(V)) {
70    if (isa<CastInst>(I) || isa<GetElementPtrInst>(I))
71      return getUnderlyingObject(I->getOperand(0));
72  }
73  return 0;
74}
75
76
77// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
78// as array references.  Note that this function is heavily tail recursive.
79// Hopefully we have a smart C++ compiler.  :)
80//
81AliasAnalysis::AliasResult
82BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
83                          const Value *V2, unsigned V2Size) {
84  // Strip off constant pointer refs if they exist
85  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1))
86    V1 = CPR->getValue();
87  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V2))
88    V2 = CPR->getValue();
89
90  // Are we checking for alias of the same value?
91  if (V1 == V2) return MustAlias;
92
93  if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
94      V1->getType() != Type::LongTy && V2->getType() != Type::LongTy)
95    return NoAlias;  // Scalars cannot alias each other
96
97  // Strip off cast instructions...
98  if (const Instruction *I = dyn_cast<CastInst>(V1))
99    return alias(I->getOperand(0), V1Size, V2, V2Size);
100  if (const Instruction *I = dyn_cast<CastInst>(V2))
101    return alias(V1, V1Size, I->getOperand(0), V2Size);
102
103  // Figure out what objects these things are pointing to if we can...
104  const Value *O1 = getUnderlyingObject(V1);
105  const Value *O2 = getUnderlyingObject(V2);
106
107  // Pointing at a discernable object?
108  if (O1 && O2) {
109    // If they are two different objects, we know that we have no alias...
110    if (O1 != O2) return NoAlias;
111
112    // If they are the same object, they we can look at the indexes.  If they
113    // index off of the object is the same for both pointers, they must alias.
114    // If they are provably different, they must not alias.  Otherwise, we can't
115    // tell anything.
116  } else if (O1 && isa<ConstantPointerNull>(V2)) {
117    return NoAlias;                    // Unique values don't alias null
118  } else if (O2 && isa<ConstantPointerNull>(V1)) {
119    return NoAlias;                    // Unique values don't alias null
120  }
121
122  // If we have two gep instructions with identical indices, return an alias
123  // result equal to the alias result of the original pointer...
124  //
125  if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(V1))
126    if (const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(V2))
127      if (GEP1->getNumOperands() == GEP2->getNumOperands() &&
128          GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType()) {
129        AliasResult GAlias =
130          CheckGEPInstructions((GetElementPtrInst*)GEP1, V1Size,
131                               (GetElementPtrInst*)GEP2, V2Size);
132        if (GAlias != MayAlias)
133          return GAlias;
134      }
135
136  // Check to see if these two pointers are related by a getelementptr
137  // instruction.  If one pointer is a GEP with a non-zero index of the other
138  // pointer, we know they cannot alias.
139  //
140  if (isa<GetElementPtrInst>(V2)) {
141    std::swap(V1, V2);
142    std::swap(V1Size, V2Size);
143  }
144
145  if (V1Size != ~0U && V2Size != ~0U)
146    if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V1)) {
147      AliasResult R = alias(GEP->getOperand(0), V1Size, V2, V2Size);
148      if (R == MustAlias) {
149        // If there is at least one non-zero constant index, we know they cannot
150        // alias.
151        bool ConstantFound = false;
152        for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
153          if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i)))
154            if (!C->isNullValue()) {
155              ConstantFound = true;
156              break;
157          }
158        if (ConstantFound) {
159          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
160            return NoAlias;
161
162          // Otherwise we have to check to see that the distance is more than
163          // the size of the argument... build an index vector that is equal to
164          // the arguments provided, except substitute 0's for any variable
165          // indexes we find...
166
167          std::vector<Value*> Indices;
168          Indices.reserve(GEP->getNumOperands()-1);
169          for (unsigned i = 1; i != GEP->getNumOperands(); ++i)
170            if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i)))
171              Indices.push_back((Value*)C);
172            else
173              Indices.push_back(Constant::getNullValue(Type::LongTy));
174          const Type *Ty = GEP->getOperand(0)->getType();
175          int Offset = getTargetData().getIndexedOffset(Ty, Indices);
176          if (Offset >= (int)V2Size || Offset <= -(int)V1Size)
177            return NoAlias;
178        }
179      }
180    }
181
182  return MayAlias;
183}
184
185// CheckGEPInstructions - Check two GEP instructions of compatible types and
186// equal number of arguments.  This checks to see if the index expressions
187// preclude the pointers from aliasing...
188//
189AliasAnalysis::AliasResult
190BasicAliasAnalysis::CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1S,
191                                         GetElementPtrInst *GEP2, unsigned G2S){
192  // Do the base pointers alias?
193  AliasResult BaseAlias = alias(GEP1->getOperand(0), G1S,
194                                GEP2->getOperand(0), G2S);
195  if (BaseAlias != MustAlias)   // No or May alias: We cannot add anything...
196    return BaseAlias;
197
198  // Find the (possibly empty) initial sequence of equal values...
199  unsigned NumGEPOperands = GEP1->getNumOperands();
200  unsigned UnequalOper = 1;
201  while (UnequalOper != NumGEPOperands &&
202         GEP1->getOperand(UnequalOper) == GEP2->getOperand(UnequalOper))
203    ++UnequalOper;
204
205  // If all operands equal each other, then the derived pointers must
206  // alias each other...
207  if (UnequalOper == NumGEPOperands) return MustAlias;
208
209  // So now we know that the indexes derived from the base pointers,
210  // which are known to alias, are different.  We can still determine a
211  // no-alias result if there are differing constant pairs in the index
212  // chain.  For example:
213  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
214  //
215  unsigned SizeMax = std::max(G1S, G2S);
216  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work...
217
218  // Scan for the first operand that is constant and unequal in the
219  // two getelemenptrs...
220  unsigned FirstConstantOper = UnequalOper;
221  for (; FirstConstantOper != NumGEPOperands; ++FirstConstantOper) {
222    const Value *G1Oper = GEP1->getOperand(FirstConstantOper);
223    const Value *G2Oper = GEP2->getOperand(FirstConstantOper);
224    if (G1Oper != G2Oper &&   // Found non-equal constant indexes...
225        isa<Constant>(G1Oper) && isa<Constant>(G2Oper)) {
226      // Make sure they are comparable...  and make sure the GEP with
227      // the smaller leading constant is GEP1.
228      ConstantBool *Compare =
229        *cast<Constant>(GEP1->getOperand(FirstConstantOper)) >
230        *cast<Constant>(GEP2->getOperand(FirstConstantOper));
231      if (Compare) {  // If they are comparable...
232        if (Compare->getValue())
233          std::swap(GEP1, GEP2);  // Make GEP1 < GEP2
234        break;
235      }
236    }
237  }
238
239  // No constant operands, we cannot tell anything...
240  if (FirstConstantOper == NumGEPOperands) return MayAlias;
241
242  // If there are non-equal constants arguments, then we can figure
243  // out a minimum known delta between the two index expressions... at
244  // this point we know that the first constant index of GEP1 is less
245  // than the first constant index of GEP2.
246  //
247  std::vector<Value*> Indices1;
248  Indices1.reserve(NumGEPOperands-1);
249  for (unsigned i = 1; i != FirstConstantOper; ++i)
250    if (GEP1->getOperand(i)->getType() == Type::UByteTy)
251      Indices1.push_back(GEP1->getOperand(i));
252    else
253      Indices1.push_back(Constant::getNullValue(Type::LongTy));
254  std::vector<Value*> Indices2;
255  Indices2.reserve(NumGEPOperands-1);
256  Indices2 = Indices1;           // Copy the zeros prefix...
257
258  // Add the two known constant operands...
259  Indices1.push_back((Value*)GEP1->getOperand(FirstConstantOper));
260  Indices2.push_back((Value*)GEP2->getOperand(FirstConstantOper));
261
262  const Type *GEPPointerTy = GEP1->getOperand(0)->getType();
263
264  // Loop over the rest of the operands...
265  for (unsigned i = FirstConstantOper+1; i!=NumGEPOperands; ++i){
266    const Value *Op1 = GEP1->getOperand(i);
267    const Value *Op2 = GEP2->getOperand(i);
268    if (Op1 == Op2) {   // If they are equal, use a zero index...
269      Indices1.push_back(Constant::getNullValue(Op1->getType()));
270      Indices2.push_back(Indices1.back());
271    } else {
272      if (isa<Constant>(Op1))
273        Indices1.push_back((Value*)Op1);
274      else {
275        // GEP1 is known to produce a value less than GEP2.  To be
276        // conservatively correct, we must assume the largest possible constant
277        // is used in this position.  This cannot be the initial index to the
278        // GEP instructions (because we know we have at least one element before
279        // this one with the different constant arguments), so we know that the
280        // current index must be into either a struct or array.  Because we know
281        // it's not constant, this cannot be a structure index.  Because of
282        // this, we can calculate the maximum value possible.
283        //
284        const ArrayType *ElTy =
285          cast<ArrayType>(GEP1->getIndexedType(GEPPointerTy, Indices1, true));
286        Indices1.push_back(ConstantSInt::get(Type::LongTy,
287                                             ElTy->getNumElements()-1));
288      }
289
290      if (isa<Constant>(Op2))
291        Indices2.push_back((Value*)Op2);
292      else // Conservatively assume the minimum value for this index
293        Indices2.push_back(Constant::getNullValue(Op1->getType()));
294    }
295  }
296
297  int Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, Indices1);
298  int Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, Indices2);
299  assert(Offset1 < Offset2 &&"There is at least one different constant here!");
300
301  if ((unsigned)(Offset2-Offset1) >= SizeMax) {
302    //std::cerr << "Determined that these two GEP's don't alias ["
303    //          << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
304    return NoAlias;
305  }
306  return MayAlias;
307}
308
309