BasicAliasAnalysis.cpp revision c10ecd8f23ebb4541acbe18563b7f19c4f79e721
1//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the primary stateless implementation of the
11// Alias Analysis interface that implements identities (two different
12// globals cannot alias, etc), but does no stateful analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Pass.h"
28#include "llvm/Analysis/CaptureTracking.h"
29#include "llvm/Analysis/MemoryBuiltins.h"
30#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/GetElementPtrTypeIterator.h"
37#include <algorithm>
38using namespace llvm;
39
40//===----------------------------------------------------------------------===//
41// Useful predicates
42//===----------------------------------------------------------------------===//
43
44/// isKnownNonNull - Return true if we know that the specified value is never
45/// null.
46static bool isKnownNonNull(const Value *V) {
47  // Alloca never returns null, malloc might.
48  if (isa<AllocaInst>(V)) return true;
49
50  // A byval argument is never null.
51  if (const Argument *A = dyn_cast<Argument>(V))
52    return A->hasByValAttr();
53
54  // Global values are not null unless extern weak.
55  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
56    return !GV->hasExternalWeakLinkage();
57  return false;
58}
59
60/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
61/// object that never escapes from the function.
62static bool isNonEscapingLocalObject(const Value *V) {
63  // If this is a local allocation, check to see if it escapes.
64  if (isa<AllocaInst>(V) || isNoAliasCall(V))
65    // Set StoreCaptures to True so that we can assume in our callers that the
66    // pointer is not the result of a load instruction. Currently
67    // PointerMayBeCaptured doesn't have any special analysis for the
68    // StoreCaptures=false case; if it did, our callers could be refined to be
69    // more precise.
70    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
71
72  // If this is an argument that corresponds to a byval or noalias argument,
73  // then it has not escaped before entering the function.  Check if it escapes
74  // inside the function.
75  if (const Argument *A = dyn_cast<Argument>(V))
76    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
77      // Don't bother analyzing arguments already known not to escape.
78      if (A->hasNoCaptureAttr())
79        return true;
80      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
81    }
82  return false;
83}
84
85/// isEscapeSource - Return true if the pointer is one which would have
86/// been considered an escape by isNonEscapingLocalObject.
87static bool isEscapeSource(const Value *V) {
88  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
89    return true;
90
91  // The load case works because isNonEscapingLocalObject considers all
92  // stores to be escapes (it passes true for the StoreCaptures argument
93  // to PointerMayBeCaptured).
94  if (isa<LoadInst>(V))
95    return true;
96
97  return false;
98}
99
100/// getObjectSize - Return the size of the object specified by V, or
101/// UnknownSize if unknown.
102static uint64_t getObjectSize(const Value *V, const TargetData &TD) {
103  const Type *AccessTy;
104  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
105    if (!GV->hasDefinitiveInitializer())
106      return AliasAnalysis::UnknownSize;
107    AccessTy = GV->getType()->getElementType();
108  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
109    if (!AI->isArrayAllocation())
110      AccessTy = AI->getType()->getElementType();
111    else
112      return AliasAnalysis::UnknownSize;
113  } else if (const CallInst* CI = extractMallocCall(V)) {
114    if (!isArrayMalloc(V, &TD))
115      // The size is the argument to the malloc call.
116      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
117        return C->getZExtValue();
118    return AliasAnalysis::UnknownSize;
119  } else if (const Argument *A = dyn_cast<Argument>(V)) {
120    if (A->hasByValAttr())
121      AccessTy = cast<PointerType>(A->getType())->getElementType();
122    else
123      return AliasAnalysis::UnknownSize;
124  } else {
125    return AliasAnalysis::UnknownSize;
126  }
127
128  if (AccessTy->isSized())
129    return TD.getTypeAllocSize(AccessTy);
130  return AliasAnalysis::UnknownSize;
131}
132
133/// isObjectSmallerThan - Return true if we can prove that the object specified
134/// by V is smaller than Size.
135static bool isObjectSmallerThan(const Value *V, uint64_t Size,
136                                const TargetData &TD) {
137  uint64_t ObjectSize = getObjectSize(V, TD);
138  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
139}
140
141/// isObjectSize - Return true if we can prove that the object specified
142/// by V has size Size.
143static bool isObjectSize(const Value *V, uint64_t Size,
144                         const TargetData &TD) {
145  uint64_t ObjectSize = getObjectSize(V, TD);
146  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
147}
148
149//===----------------------------------------------------------------------===//
150// GetElementPtr Instruction Decomposition and Analysis
151//===----------------------------------------------------------------------===//
152
153namespace {
154  enum ExtensionKind {
155    EK_NotExtended,
156    EK_SignExt,
157    EK_ZeroExt
158  };
159
160  struct VariableGEPIndex {
161    const Value *V;
162    ExtensionKind Extension;
163    int64_t Scale;
164  };
165}
166
167
168/// GetLinearExpression - Analyze the specified value as a linear expression:
169/// "A*V + B", where A and B are constant integers.  Return the scale and offset
170/// values as APInts and return V as a Value*, and return whether we looked
171/// through any sign or zero extends.  The incoming Value is known to have
172/// IntegerType and it may already be sign or zero extended.
173///
174/// Note that this looks through extends, so the high bits may not be
175/// represented in the result.
176static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
177                                  ExtensionKind &Extension,
178                                  const TargetData &TD, unsigned Depth) {
179  assert(V->getType()->isIntegerTy() && "Not an integer value");
180
181  // Limit our recursion depth.
182  if (Depth == 6) {
183    Scale = 1;
184    Offset = 0;
185    return V;
186  }
187
188  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
189    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
190      switch (BOp->getOpcode()) {
191      default: break;
192      case Instruction::Or:
193        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
194        // analyze it.
195        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
196          break;
197        // FALL THROUGH.
198      case Instruction::Add:
199        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
200                                TD, Depth+1);
201        Offset += RHSC->getValue();
202        return V;
203      case Instruction::Mul:
204        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
205                                TD, Depth+1);
206        Offset *= RHSC->getValue();
207        Scale *= RHSC->getValue();
208        return V;
209      case Instruction::Shl:
210        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
211                                TD, Depth+1);
212        Offset <<= RHSC->getValue().getLimitedValue();
213        Scale <<= RHSC->getValue().getLimitedValue();
214        return V;
215      }
216    }
217  }
218
219  // Since GEP indices are sign extended anyway, we don't care about the high
220  // bits of a sign or zero extended value - just scales and offsets.  The
221  // extensions have to be consistent though.
222  if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
223      (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
224    Value *CastOp = cast<CastInst>(V)->getOperand(0);
225    unsigned OldWidth = Scale.getBitWidth();
226    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
227    Scale = Scale.trunc(SmallWidth);
228    Offset = Offset.trunc(SmallWidth);
229    Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
230
231    Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
232                                        TD, Depth+1);
233    Scale = Scale.zext(OldWidth);
234    Offset = Offset.zext(OldWidth);
235
236    return Result;
237  }
238
239  Scale = 1;
240  Offset = 0;
241  return V;
242}
243
244/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
245/// into a base pointer with a constant offset and a number of scaled symbolic
246/// offsets.
247///
248/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
249/// the VarIndices vector) are Value*'s that are known to be scaled by the
250/// specified amount, but which may have other unrepresented high bits. As such,
251/// the gep cannot necessarily be reconstructed from its decomposed form.
252///
253/// When TargetData is around, this function is capable of analyzing everything
254/// that GetUnderlyingObject can look through.  When not, it just looks
255/// through pointer casts.
256///
257static const Value *
258DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
259                       SmallVectorImpl<VariableGEPIndex> &VarIndices,
260                       const TargetData *TD) {
261  // Limit recursion depth to limit compile time in crazy cases.
262  unsigned MaxLookup = 6;
263
264  BaseOffs = 0;
265  do {
266    // See if this is a bitcast or GEP.
267    const Operator *Op = dyn_cast<Operator>(V);
268    if (Op == 0) {
269      // The only non-operator case we can handle are GlobalAliases.
270      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
271        if (!GA->mayBeOverridden()) {
272          V = GA->getAliasee();
273          continue;
274        }
275      }
276      return V;
277    }
278
279    if (Op->getOpcode() == Instruction::BitCast) {
280      V = Op->getOperand(0);
281      continue;
282    }
283
284    if (const Instruction *I = dyn_cast<Instruction>(V))
285      // TODO: Get a DominatorTree and use it here.
286      if (const Value *Simplified =
287            SimplifyInstruction(const_cast<Instruction *>(I), TD)) {
288        V = Simplified;
289        continue;
290      }
291
292    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
293    if (GEPOp == 0)
294      return V;
295
296    // Don't attempt to analyze GEPs over unsized objects.
297    if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
298        ->getElementType()->isSized())
299      return V;
300
301    // If we are lacking TargetData information, we can't compute the offets of
302    // elements computed by GEPs.  However, we can handle bitcast equivalent
303    // GEPs.
304    if (TD == 0) {
305      if (!GEPOp->hasAllZeroIndices())
306        return V;
307      V = GEPOp->getOperand(0);
308      continue;
309    }
310
311    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
312    gep_type_iterator GTI = gep_type_begin(GEPOp);
313    for (User::const_op_iterator I = GEPOp->op_begin()+1,
314         E = GEPOp->op_end(); I != E; ++I) {
315      Value *Index = *I;
316      // Compute the (potentially symbolic) offset in bytes for this index.
317      if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
318        // For a struct, add the member offset.
319        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
320        if (FieldNo == 0) continue;
321
322        BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
323        continue;
324      }
325
326      // For an array/pointer, add the element offset, explicitly scaled.
327      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
328        if (CIdx->isZero()) continue;
329        BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
330        continue;
331      }
332
333      uint64_t Scale = TD->getTypeAllocSize(*GTI);
334      ExtensionKind Extension = EK_NotExtended;
335
336      // If the integer type is smaller than the pointer size, it is implicitly
337      // sign extended to pointer size.
338      unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
339      if (TD->getPointerSizeInBits() > Width)
340        Extension = EK_SignExt;
341
342      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
343      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
344      Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
345                                  *TD, 0);
346
347      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
348      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
349      BaseOffs += IndexOffset.getSExtValue()*Scale;
350      Scale *= IndexScale.getSExtValue();
351
352
353      // If we already had an occurrence of this index variable, merge this
354      // scale into it.  For example, we want to handle:
355      //   A[x][x] -> x*16 + x*4 -> x*20
356      // This also ensures that 'x' only appears in the index list once.
357      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
358        if (VarIndices[i].V == Index &&
359            VarIndices[i].Extension == Extension) {
360          Scale += VarIndices[i].Scale;
361          VarIndices.erase(VarIndices.begin()+i);
362          break;
363        }
364      }
365
366      // Make sure that we have a scale that makes sense for this target's
367      // pointer size.
368      if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
369        Scale <<= ShiftBits;
370        Scale = (int64_t)Scale >> ShiftBits;
371      }
372
373      if (Scale) {
374        VariableGEPIndex Entry = {Index, Extension, Scale};
375        VarIndices.push_back(Entry);
376      }
377    }
378
379    // Analyze the base pointer next.
380    V = GEPOp->getOperand(0);
381  } while (--MaxLookup);
382
383  // If the chain of expressions is too deep, just return early.
384  return V;
385}
386
387/// GetIndexDifference - Dest and Src are the variable indices from two
388/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
389/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
390/// difference between the two pointers.
391static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
392                               const SmallVectorImpl<VariableGEPIndex> &Src) {
393  if (Src.empty()) return;
394
395  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
396    const Value *V = Src[i].V;
397    ExtensionKind Extension = Src[i].Extension;
398    int64_t Scale = Src[i].Scale;
399
400    // Find V in Dest.  This is N^2, but pointer indices almost never have more
401    // than a few variable indexes.
402    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
403      if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
404
405      // If we found it, subtract off Scale V's from the entry in Dest.  If it
406      // goes to zero, remove the entry.
407      if (Dest[j].Scale != Scale)
408        Dest[j].Scale -= Scale;
409      else
410        Dest.erase(Dest.begin()+j);
411      Scale = 0;
412      break;
413    }
414
415    // If we didn't consume this entry, add it to the end of the Dest list.
416    if (Scale) {
417      VariableGEPIndex Entry = { V, Extension, -Scale };
418      Dest.push_back(Entry);
419    }
420  }
421}
422
423//===----------------------------------------------------------------------===//
424// BasicAliasAnalysis Pass
425//===----------------------------------------------------------------------===//
426
427#ifndef NDEBUG
428static const Function *getParent(const Value *V) {
429  if (const Instruction *inst = dyn_cast<Instruction>(V))
430    return inst->getParent()->getParent();
431
432  if (const Argument *arg = dyn_cast<Argument>(V))
433    return arg->getParent();
434
435  return NULL;
436}
437
438static bool notDifferentParent(const Value *O1, const Value *O2) {
439
440  const Function *F1 = getParent(O1);
441  const Function *F2 = getParent(O2);
442
443  return !F1 || !F2 || F1 == F2;
444}
445#endif
446
447namespace {
448  /// BasicAliasAnalysis - This is the primary alias analysis implementation.
449  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
450    static char ID; // Class identification, replacement for typeinfo
451    BasicAliasAnalysis() : ImmutablePass(ID) {
452      initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
453    }
454
455    virtual void initializePass() {
456      InitializeAliasAnalysis(this);
457    }
458
459    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
460      AU.addRequired<AliasAnalysis>();
461    }
462
463    virtual AliasResult alias(const Location &LocA,
464                              const Location &LocB) {
465      assert(Visited.empty() && "Visited must be cleared after use!");
466      assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
467             "BasicAliasAnalysis doesn't support interprocedural queries.");
468      AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
469                                     LocB.Ptr, LocB.Size, LocB.TBAATag);
470      Visited.clear();
471      return Alias;
472    }
473
474    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
475                                       const Location &Loc);
476
477    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
478                                       ImmutableCallSite CS2) {
479      // The AliasAnalysis base class has some smarts, lets use them.
480      return AliasAnalysis::getModRefInfo(CS1, CS2);
481    }
482
483    /// pointsToConstantMemory - Chase pointers until we find a (constant
484    /// global) or not.
485    virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
486
487    /// getModRefBehavior - Return the behavior when calling the given
488    /// call site.
489    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
490
491    /// getModRefBehavior - Return the behavior when calling the given function.
492    /// For use when the call site is not known.
493    virtual ModRefBehavior getModRefBehavior(const Function *F);
494
495    /// getAdjustedAnalysisPointer - This method is used when a pass implements
496    /// an analysis interface through multiple inheritance.  If needed, it
497    /// should override this to adjust the this pointer as needed for the
498    /// specified pass info.
499    virtual void *getAdjustedAnalysisPointer(const void *ID) {
500      if (ID == &AliasAnalysis::ID)
501        return (AliasAnalysis*)this;
502      return this;
503    }
504
505  private:
506    // Visited - Track instructions visited by a aliasPHI, aliasSelect(), and aliasGEP().
507    SmallPtrSet<const Value*, 16> Visited;
508
509    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
510    // instruction against another.
511    AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
512                         const Value *V2, uint64_t V2Size,
513                         const MDNode *V2TBAAInfo,
514                         const Value *UnderlyingV1, const Value *UnderlyingV2);
515
516    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
517    // instruction against another.
518    AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
519                         const MDNode *PNTBAAInfo,
520                         const Value *V2, uint64_t V2Size,
521                         const MDNode *V2TBAAInfo);
522
523    /// aliasSelect - Disambiguate a Select instruction against another value.
524    AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
525                            const MDNode *SITBAAInfo,
526                            const Value *V2, uint64_t V2Size,
527                            const MDNode *V2TBAAInfo);
528
529    AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
530                           const MDNode *V1TBAATag,
531                           const Value *V2, uint64_t V2Size,
532                           const MDNode *V2TBAATag);
533  };
534}  // End of anonymous namespace
535
536// Register this pass...
537char BasicAliasAnalysis::ID = 0;
538INITIALIZE_AG_PASS(BasicAliasAnalysis, AliasAnalysis, "basicaa",
539                   "Basic Alias Analysis (stateless AA impl)",
540                   false, true, false)
541
542ImmutablePass *llvm::createBasicAliasAnalysisPass() {
543  return new BasicAliasAnalysis();
544}
545
546/// pointsToConstantMemory - Returns whether the given pointer value
547/// points to memory that is local to the function, with global constants being
548/// considered local to all functions.
549bool
550BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
551  assert(Visited.empty() && "Visited must be cleared after use!");
552
553  unsigned MaxLookup = 8;
554  SmallVector<const Value *, 16> Worklist;
555  Worklist.push_back(Loc.Ptr);
556  do {
557    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD);
558    if (!Visited.insert(V)) {
559      Visited.clear();
560      return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
561    }
562
563    // An alloca instruction defines local memory.
564    if (OrLocal && isa<AllocaInst>(V))
565      continue;
566
567    // A global constant counts as local memory for our purposes.
568    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
569      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
570      // global to be marked constant in some modules and non-constant in
571      // others.  GV may even be a declaration, not a definition.
572      if (!GV->isConstant()) {
573        Visited.clear();
574        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
575      }
576      continue;
577    }
578
579    // If both select values point to local memory, then so does the select.
580    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
581      Worklist.push_back(SI->getTrueValue());
582      Worklist.push_back(SI->getFalseValue());
583      continue;
584    }
585
586    // If all values incoming to a phi node point to local memory, then so does
587    // the phi.
588    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
589      // Don't bother inspecting phi nodes with many operands.
590      if (PN->getNumIncomingValues() > MaxLookup) {
591        Visited.clear();
592        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
593      }
594      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
595        Worklist.push_back(PN->getIncomingValue(i));
596      continue;
597    }
598
599    // Otherwise be conservative.
600    Visited.clear();
601    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
602
603  } while (!Worklist.empty() && --MaxLookup);
604
605  Visited.clear();
606  return Worklist.empty();
607}
608
609/// getModRefBehavior - Return the behavior when calling the given call site.
610AliasAnalysis::ModRefBehavior
611BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
612  if (CS.doesNotAccessMemory())
613    // Can't do better than this.
614    return DoesNotAccessMemory;
615
616  ModRefBehavior Min = UnknownModRefBehavior;
617
618  // If the callsite knows it only reads memory, don't return worse
619  // than that.
620  if (CS.onlyReadsMemory())
621    Min = OnlyReadsMemory;
622
623  // The AliasAnalysis base class has some smarts, lets use them.
624  return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
625}
626
627/// getModRefBehavior - Return the behavior when calling the given function.
628/// For use when the call site is not known.
629AliasAnalysis::ModRefBehavior
630BasicAliasAnalysis::getModRefBehavior(const Function *F) {
631  // If the function declares it doesn't access memory, we can't do better.
632  if (F->doesNotAccessMemory())
633    return DoesNotAccessMemory;
634
635  // For intrinsics, we can check the table.
636  if (unsigned iid = F->getIntrinsicID()) {
637#define GET_INTRINSIC_MODREF_BEHAVIOR
638#include "llvm/Intrinsics.gen"
639#undef GET_INTRINSIC_MODREF_BEHAVIOR
640  }
641
642  ModRefBehavior Min = UnknownModRefBehavior;
643
644  // If the function declares it only reads memory, go with that.
645  if (F->onlyReadsMemory())
646    Min = OnlyReadsMemory;
647
648  // Otherwise be conservative.
649  return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
650}
651
652/// getModRefInfo - Check to see if the specified callsite can clobber the
653/// specified memory object.  Since we only look at local properties of this
654/// function, we really can't say much about this query.  We do, however, use
655/// simple "address taken" analysis on local objects.
656AliasAnalysis::ModRefResult
657BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
658                                  const Location &Loc) {
659  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
660         "AliasAnalysis query involving multiple functions!");
661
662  const Value *Object = GetUnderlyingObject(Loc.Ptr, TD);
663
664  // If this is a tail call and Loc.Ptr points to a stack location, we know that
665  // the tail call cannot access or modify the local stack.
666  // We cannot exclude byval arguments here; these belong to the caller of
667  // the current function not to the current function, and a tail callee
668  // may reference them.
669  if (isa<AllocaInst>(Object))
670    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
671      if (CI->isTailCall())
672        return NoModRef;
673
674  // If the pointer is to a locally allocated object that does not escape,
675  // then the call can not mod/ref the pointer unless the call takes the pointer
676  // as an argument, and itself doesn't capture it.
677  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
678      isNonEscapingLocalObject(Object)) {
679    bool PassedAsArg = false;
680    unsigned ArgNo = 0;
681    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
682         CI != CE; ++CI, ++ArgNo) {
683      // Only look at the no-capture or byval pointer arguments.  If this
684      // pointer were passed to arguments that were neither of these, then it
685      // couldn't be no-capture.
686      if (!(*CI)->getType()->isPointerTy() ||
687          (!CS.paramHasAttr(ArgNo+1, Attribute::NoCapture) &&
688           !CS.paramHasAttr(ArgNo+1, Attribute::ByVal)))
689        continue;
690
691      // If this is a no-capture pointer argument, see if we can tell that it
692      // is impossible to alias the pointer we're checking.  If not, we have to
693      // assume that the call could touch the pointer, even though it doesn't
694      // escape.
695      if (!isNoAlias(Location(cast<Value>(CI)), Loc)) {
696        PassedAsArg = true;
697        break;
698      }
699    }
700
701    if (!PassedAsArg)
702      return NoModRef;
703  }
704
705  ModRefResult Min = ModRef;
706
707  // Finally, handle specific knowledge of intrinsics.
708  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
709  if (II != 0)
710    switch (II->getIntrinsicID()) {
711    default: break;
712    case Intrinsic::memcpy:
713    case Intrinsic::memmove: {
714      uint64_t Len = UnknownSize;
715      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
716        Len = LenCI->getZExtValue();
717      Value *Dest = II->getArgOperand(0);
718      Value *Src = II->getArgOperand(1);
719      // If it can't overlap the source dest, then it doesn't modref the loc.
720      if (isNoAlias(Location(Dest, Len), Loc)) {
721        if (isNoAlias(Location(Src, Len), Loc))
722          return NoModRef;
723        // If it can't overlap the dest, then worst case it reads the loc.
724        Min = Ref;
725      } else if (isNoAlias(Location(Src, Len), Loc)) {
726        // If it can't overlap the source, then worst case it mutates the loc.
727        Min = Mod;
728      }
729      break;
730    }
731    case Intrinsic::memset:
732      // Since memset is 'accesses arguments' only, the AliasAnalysis base class
733      // will handle it for the variable length case.
734      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
735        uint64_t Len = LenCI->getZExtValue();
736        Value *Dest = II->getArgOperand(0);
737        if (isNoAlias(Location(Dest, Len), Loc))
738          return NoModRef;
739      }
740      // We know that memset doesn't load anything.
741      Min = Mod;
742      break;
743    case Intrinsic::atomic_cmp_swap:
744    case Intrinsic::atomic_swap:
745    case Intrinsic::atomic_load_add:
746    case Intrinsic::atomic_load_sub:
747    case Intrinsic::atomic_load_and:
748    case Intrinsic::atomic_load_nand:
749    case Intrinsic::atomic_load_or:
750    case Intrinsic::atomic_load_xor:
751    case Intrinsic::atomic_load_max:
752    case Intrinsic::atomic_load_min:
753    case Intrinsic::atomic_load_umax:
754    case Intrinsic::atomic_load_umin:
755      if (TD) {
756        Value *Op1 = II->getArgOperand(0);
757        uint64_t Op1Size = TD->getTypeStoreSize(Op1->getType());
758        MDNode *Tag = II->getMetadata(LLVMContext::MD_tbaa);
759        if (isNoAlias(Location(Op1, Op1Size, Tag), Loc))
760          return NoModRef;
761      }
762      break;
763    case Intrinsic::lifetime_start:
764    case Intrinsic::lifetime_end:
765    case Intrinsic::invariant_start: {
766      uint64_t PtrSize =
767        cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
768      if (isNoAlias(Location(II->getArgOperand(1),
769                             PtrSize,
770                             II->getMetadata(LLVMContext::MD_tbaa)),
771                    Loc))
772        return NoModRef;
773      break;
774    }
775    case Intrinsic::invariant_end: {
776      uint64_t PtrSize =
777        cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
778      if (isNoAlias(Location(II->getArgOperand(2),
779                             PtrSize,
780                             II->getMetadata(LLVMContext::MD_tbaa)),
781                    Loc))
782        return NoModRef;
783      break;
784    }
785    case Intrinsic::arm_neon_vld1: {
786      // LLVM's vld1 and vst1 intrinsics currently only support a single
787      // vector register.
788      uint64_t Size =
789        TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize;
790      if (isNoAlias(Location(II->getArgOperand(0), Size,
791                             II->getMetadata(LLVMContext::MD_tbaa)),
792                    Loc))
793        return NoModRef;
794      break;
795    }
796    case Intrinsic::arm_neon_vst1: {
797      uint64_t Size =
798        TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize;
799      if (isNoAlias(Location(II->getArgOperand(0), Size,
800                             II->getMetadata(LLVMContext::MD_tbaa)),
801                    Loc))
802        return NoModRef;
803      break;
804    }
805    }
806
807  // The AliasAnalysis base class has some smarts, lets use them.
808  return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min);
809}
810
811/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
812/// against another pointer.  We know that V1 is a GEP, but we don't know
813/// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, TD),
814/// UnderlyingV2 is the same for V2.
815///
816AliasAnalysis::AliasResult
817BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
818                             const Value *V2, uint64_t V2Size,
819                             const MDNode *V2TBAAInfo,
820                             const Value *UnderlyingV1,
821                             const Value *UnderlyingV2) {
822  // If this GEP has been visited before, we're on a use-def cycle.
823  // Such cycles are only valid when PHI nodes are involved or in unreachable
824  // code. The visitPHI function catches cycles containing PHIs, but there
825  // could still be a cycle without PHIs in unreachable code.
826  if (!Visited.insert(GEP1))
827    return MayAlias;
828
829  int64_t GEP1BaseOffset;
830  SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
831
832  // If we have two gep instructions with must-alias'ing base pointers, figure
833  // out if the indexes to the GEP tell us anything about the derived pointer.
834  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
835    // Do the base pointers alias?
836    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
837                                       UnderlyingV2, UnknownSize, 0);
838
839    // If we get a No or May, then return it immediately, no amount of analysis
840    // will improve this situation.
841    if (BaseAlias != MustAlias) return BaseAlias;
842
843    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
844    // exactly, see if the computed offset from the common pointer tells us
845    // about the relation of the resulting pointer.
846    const Value *GEP1BasePtr =
847      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
848
849    int64_t GEP2BaseOffset;
850    SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
851    const Value *GEP2BasePtr =
852      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
853
854    // If DecomposeGEPExpression isn't able to look all the way through the
855    // addressing operation, we must not have TD and this is too complex for us
856    // to handle without it.
857    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
858      assert(TD == 0 &&
859             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
860      return MayAlias;
861    }
862
863    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
864    // symbolic difference.
865    GEP1BaseOffset -= GEP2BaseOffset;
866    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
867
868  } else {
869    // Check to see if these two pointers are related by the getelementptr
870    // instruction.  If one pointer is a GEP with a non-zero index of the other
871    // pointer, we know they cannot alias.
872
873    // If both accesses are unknown size, we can't do anything useful here.
874    if (V1Size == UnknownSize && V2Size == UnknownSize)
875      return MayAlias;
876
877    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
878                               V2, V2Size, V2TBAAInfo);
879    if (R != MustAlias)
880      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
881      // If V2 is known not to alias GEP base pointer, then the two values
882      // cannot alias per GEP semantics: "A pointer value formed from a
883      // getelementptr instruction is associated with the addresses associated
884      // with the first operand of the getelementptr".
885      return R;
886
887    const Value *GEP1BasePtr =
888      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
889
890    // If DecomposeGEPExpression isn't able to look all the way through the
891    // addressing operation, we must not have TD and this is too complex for us
892    // to handle without it.
893    if (GEP1BasePtr != UnderlyingV1) {
894      assert(TD == 0 &&
895             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
896      return MayAlias;
897    }
898  }
899
900  // In the two GEP Case, if there is no difference in the offsets of the
901  // computed pointers, the resultant pointers are a must alias.  This
902  // hapens when we have two lexically identical GEP's (for example).
903  //
904  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
905  // must aliases the GEP, the end result is a must alias also.
906  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
907    return MustAlias;
908
909  // If there is a difference between the pointers, but the difference is
910  // less than the size of the associated memory object, then we know
911  // that the objects are partially overlapping.
912  if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
913    if (GEP1BaseOffset >= 0 ?
914        (V2Size != UnknownSize && (uint64_t)GEP1BaseOffset < V2Size) :
915        (V1Size != UnknownSize && -(uint64_t)GEP1BaseOffset < V1Size &&
916         GEP1BaseOffset != INT64_MIN))
917      return PartialAlias;
918  }
919
920  // If we have a known constant offset, see if this offset is larger than the
921  // access size being queried.  If so, and if no variable indices can remove
922  // pieces of this constant, then we know we have a no-alias.  For example,
923  //   &A[100] != &A.
924
925  // In order to handle cases like &A[100][i] where i is an out of range
926  // subscript, we have to ignore all constant offset pieces that are a multiple
927  // of a scaled index.  Do this by removing constant offsets that are a
928  // multiple of any of our variable indices.  This allows us to transform
929  // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1
930  // provides an offset of 4 bytes (assuming a <= 4 byte access).
931  for (unsigned i = 0, e = GEP1VariableIndices.size();
932       i != e && GEP1BaseOffset;++i)
933    if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].Scale)
934      GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].Scale;
935
936  // If our known offset is bigger than the access size, we know we don't have
937  // an alias.
938  if (GEP1BaseOffset) {
939    if (GEP1BaseOffset >= 0 ?
940        (V2Size != UnknownSize && (uint64_t)GEP1BaseOffset >= V2Size) :
941        (V1Size != UnknownSize && -(uint64_t)GEP1BaseOffset >= V1Size &&
942         GEP1BaseOffset != INT64_MIN))
943      return NoAlias;
944  }
945
946  return MayAlias;
947}
948
949/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
950/// instruction against another.
951AliasAnalysis::AliasResult
952BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
953                                const MDNode *SITBAAInfo,
954                                const Value *V2, uint64_t V2Size,
955                                const MDNode *V2TBAAInfo) {
956  // If this select has been visited before, we're on a use-def cycle.
957  // Such cycles are only valid when PHI nodes are involved or in unreachable
958  // code. The visitPHI function catches cycles containing PHIs, but there
959  // could still be a cycle without PHIs in unreachable code.
960  if (!Visited.insert(SI))
961    return MayAlias;
962
963  // If the values are Selects with the same condition, we can do a more precise
964  // check: just check for aliases between the values on corresponding arms.
965  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
966    if (SI->getCondition() == SI2->getCondition()) {
967      AliasResult Alias =
968        aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
969                   SI2->getTrueValue(), V2Size, V2TBAAInfo);
970      if (Alias == MayAlias)
971        return MayAlias;
972      AliasResult ThisAlias =
973        aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
974                   SI2->getFalseValue(), V2Size, V2TBAAInfo);
975      if (ThisAlias != Alias)
976        return MayAlias;
977      return Alias;
978    }
979
980  // If both arms of the Select node NoAlias or MustAlias V2, then returns
981  // NoAlias / MustAlias. Otherwise, returns MayAlias.
982  AliasResult Alias =
983    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
984  if (Alias == MayAlias)
985    return MayAlias;
986
987  // If V2 is visited, the recursive case will have been caught in the
988  // above aliasCheck call, so these subsequent calls to aliasCheck
989  // don't need to assume that V2 is being visited recursively.
990  Visited.erase(V2);
991
992  AliasResult ThisAlias =
993    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
994  if (ThisAlias != Alias)
995    return MayAlias;
996  return Alias;
997}
998
999// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
1000// against another.
1001AliasAnalysis::AliasResult
1002BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
1003                             const MDNode *PNTBAAInfo,
1004                             const Value *V2, uint64_t V2Size,
1005                             const MDNode *V2TBAAInfo) {
1006  // The PHI node has already been visited, avoid recursion any further.
1007  if (!Visited.insert(PN))
1008    return MayAlias;
1009
1010  // If the values are PHIs in the same block, we can do a more precise
1011  // as well as efficient check: just check for aliases between the values
1012  // on corresponding edges.
1013  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1014    if (PN2->getParent() == PN->getParent()) {
1015      AliasResult Alias =
1016        aliasCheck(PN->getIncomingValue(0), PNSize, PNTBAAInfo,
1017                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
1018                   V2Size, V2TBAAInfo);
1019      if (Alias == MayAlias)
1020        return MayAlias;
1021      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1022        AliasResult ThisAlias =
1023          aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
1024                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1025                     V2Size, V2TBAAInfo);
1026        if (ThisAlias != Alias)
1027          return MayAlias;
1028      }
1029      return Alias;
1030    }
1031
1032  SmallPtrSet<Value*, 4> UniqueSrc;
1033  SmallVector<Value*, 4> V1Srcs;
1034  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1035    Value *PV1 = PN->getIncomingValue(i);
1036    if (isa<PHINode>(PV1))
1037      // If any of the source itself is a PHI, return MayAlias conservatively
1038      // to avoid compile time explosion. The worst possible case is if both
1039      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1040      // and 'n' are the number of PHI sources.
1041      return MayAlias;
1042    if (UniqueSrc.insert(PV1))
1043      V1Srcs.push_back(PV1);
1044  }
1045
1046  AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
1047                                 V1Srcs[0], PNSize, PNTBAAInfo);
1048  // Early exit if the check of the first PHI source against V2 is MayAlias.
1049  // Other results are not possible.
1050  if (Alias == MayAlias)
1051    return MayAlias;
1052
1053  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1054  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1055  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1056    Value *V = V1Srcs[i];
1057
1058    // If V2 is visited, the recursive case will have been caught in the
1059    // above aliasCheck call, so these subsequent calls to aliasCheck
1060    // don't need to assume that V2 is being visited recursively.
1061    Visited.erase(V2);
1062
1063    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
1064                                       V, PNSize, PNTBAAInfo);
1065    if (ThisAlias != Alias || ThisAlias == MayAlias)
1066      return MayAlias;
1067  }
1068
1069  return Alias;
1070}
1071
1072// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
1073// such as array references.
1074//
1075AliasAnalysis::AliasResult
1076BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
1077                               const MDNode *V1TBAAInfo,
1078                               const Value *V2, uint64_t V2Size,
1079                               const MDNode *V2TBAAInfo) {
1080  // If either of the memory references is empty, it doesn't matter what the
1081  // pointer values are.
1082  if (V1Size == 0 || V2Size == 0)
1083    return NoAlias;
1084
1085  // Strip off any casts if they exist.
1086  V1 = V1->stripPointerCasts();
1087  V2 = V2->stripPointerCasts();
1088
1089  // Are we checking for alias of the same value?
1090  if (V1 == V2) return MustAlias;
1091
1092  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1093    return NoAlias;  // Scalars cannot alias each other
1094
1095  // Figure out what objects these things are pointing to if we can.
1096  const Value *O1 = GetUnderlyingObject(V1, TD);
1097  const Value *O2 = GetUnderlyingObject(V2, TD);
1098
1099  // Null values in the default address space don't point to any object, so they
1100  // don't alias any other pointer.
1101  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1102    if (CPN->getType()->getAddressSpace() == 0)
1103      return NoAlias;
1104  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1105    if (CPN->getType()->getAddressSpace() == 0)
1106      return NoAlias;
1107
1108  if (O1 != O2) {
1109    // If V1/V2 point to two different objects we know that we have no alias.
1110    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1111      return NoAlias;
1112
1113    // Constant pointers can't alias with non-const isIdentifiedObject objects.
1114    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1115        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1116      return NoAlias;
1117
1118    // Arguments can't alias with local allocations or noalias calls
1119    // in the same function.
1120    if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
1121         (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
1122      return NoAlias;
1123
1124    // Most objects can't alias null.
1125    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1126        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1127      return NoAlias;
1128
1129    // If one pointer is the result of a call/invoke or load and the other is a
1130    // non-escaping local object within the same function, then we know the
1131    // object couldn't escape to a point where the call could return it.
1132    //
1133    // Note that if the pointers are in different functions, there are a
1134    // variety of complications. A call with a nocapture argument may still
1135    // temporary store the nocapture argument's value in a temporary memory
1136    // location if that memory location doesn't escape. Or it may pass a
1137    // nocapture value to other functions as long as they don't capture it.
1138    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1139      return NoAlias;
1140    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1141      return NoAlias;
1142  }
1143
1144  // If the size of one access is larger than the entire object on the other
1145  // side, then we know such behavior is undefined and can assume no alias.
1146  if (TD)
1147    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) ||
1148        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD)))
1149      return NoAlias;
1150
1151  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1152  // GEP can't simplify, we don't even look at the PHI cases.
1153  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1154    std::swap(V1, V2);
1155    std::swap(V1Size, V2Size);
1156    std::swap(O1, O2);
1157  }
1158  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1159    AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, V2TBAAInfo, O1, O2);
1160    if (Result != MayAlias) return Result;
1161  }
1162
1163  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1164    std::swap(V1, V2);
1165    std::swap(V1Size, V2Size);
1166  }
1167  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1168    AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
1169                                  V2, V2Size, V2TBAAInfo);
1170    if (Result != MayAlias) return Result;
1171  }
1172
1173  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1174    std::swap(V1, V2);
1175    std::swap(V1Size, V2Size);
1176  }
1177  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1178    AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
1179                                     V2, V2Size, V2TBAAInfo);
1180    if (Result != MayAlias) return Result;
1181  }
1182
1183  // If both pointers are pointing into the same object and one of them
1184  // accesses is accessing the entire object, then the accesses must
1185  // overlap in some way.
1186  if (TD && O1 == O2)
1187    if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD)) ||
1188        (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD)))
1189      return PartialAlias;
1190
1191  return AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
1192                              Location(V2, V2Size, V2TBAAInfo));
1193}
1194