BasicAliasAnalysis.cpp revision c1820036bdedea566c89d2bd47bbbbe4384bdc73
1//===- llvm/Analysis/BasicAliasAnalysis.h - Alias Analysis Impl -*- C++ -*-===//
2//
3// This file defines the default implementation of the Alias Analysis interface
4// that simply implements a few identities (two different globals cannot alias,
5// etc), but otherwise does no analysis.
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Analysis/AliasAnalysis.h"
10#include "llvm/Pass.h"
11#include "llvm/Argument.h"
12#include "llvm/iMemory.h"
13#include "llvm/iOther.h"
14#include "llvm/ConstantHandling.h"
15#include "llvm/GlobalValue.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Target/TargetData.h"
18
19// Make sure that anything that uses AliasAnalysis pulls in this file...
20void BasicAAStub() {}
21
22
23namespace {
24  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
25
26    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
27      AliasAnalysis::getAnalysisUsage(AU);
28    }
29
30    virtual void initializePass();
31
32    // alias - This is the only method here that does anything interesting...
33    //
34    AliasResult alias(const Value *V1, unsigned V1Size,
35                      const Value *V2, unsigned V2Size);
36  private:
37    // CheckGEPInstructions - Check two GEP instructions of compatible types and
38    // equal number of arguments.  This checks to see if the index expressions
39    // preclude the pointers from aliasing...
40    AliasResult CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1Size,
41                                     GetElementPtrInst *GEP2, unsigned G2Size);
42  };
43
44  // Register this pass...
45  RegisterOpt<BasicAliasAnalysis>
46  X("basicaa", "Basic Alias Analysis (default AA impl)");
47
48  // Declare that we implement the AliasAnalysis interface
49  RegisterAnalysisGroup<AliasAnalysis, BasicAliasAnalysis, true> Y;
50}  // End of anonymous namespace
51
52void BasicAliasAnalysis::initializePass() {
53  InitializeAliasAnalysis(this);
54}
55
56
57
58// hasUniqueAddress - Return true if the specified value points to something
59// with a unique, discernable, address.
60static inline bool hasUniqueAddress(const Value *V) {
61  return isa<GlobalValue>(V) || isa<AllocationInst>(V);
62}
63
64// getUnderlyingObject - This traverses the use chain to figure out what object
65// the specified value points to.  If the value points to, or is derived from, a
66// unique object or an argument, return it.
67static const Value *getUnderlyingObject(const Value *V) {
68  if (!isa<PointerType>(V->getType())) return 0;
69
70  // If we are at some type of object... return it.
71  if (hasUniqueAddress(V) || isa<Argument>(V)) return V;
72
73  // Traverse through different addressing mechanisms...
74  if (const Instruction *I = dyn_cast<Instruction>(V)) {
75    if (isa<CastInst>(I) || isa<GetElementPtrInst>(I))
76      return getUnderlyingObject(I->getOperand(0));
77  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
78    if (CE->getOpcode() == Instruction::Cast ||
79        CE->getOpcode() == Instruction::GetElementPtr)
80      return getUnderlyingObject(CE->getOperand(0));
81  } else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V)) {
82    return CPR->getValue();
83  }
84  return 0;
85}
86
87
88// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
89// as array references.  Note that this function is heavily tail recursive.
90// Hopefully we have a smart C++ compiler.  :)
91//
92AliasAnalysis::AliasResult
93BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
94                          const Value *V2, unsigned V2Size) {
95  // Strip off constant pointer refs if they exist
96  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1))
97    V1 = CPR->getValue();
98  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V2))
99    V2 = CPR->getValue();
100
101  // Are we checking for alias of the same value?
102  if (V1 == V2) return MustAlias;
103
104  if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
105      V1->getType() != Type::LongTy && V2->getType() != Type::LongTy)
106    return NoAlias;  // Scalars cannot alias each other
107
108  // Strip off cast instructions...
109  if (const Instruction *I = dyn_cast<CastInst>(V1))
110    return alias(I->getOperand(0), V1Size, V2, V2Size);
111  if (const Instruction *I = dyn_cast<CastInst>(V2))
112    return alias(V1, V1Size, I->getOperand(0), V2Size);
113
114  // Figure out what objects these things are pointing to if we can...
115  const Value *O1 = getUnderlyingObject(V1);
116  const Value *O2 = getUnderlyingObject(V2);
117
118  // Pointing at a discernible object?
119  if (O1 && O2) {
120    if (isa<Argument>(O1)) {
121      // Incoming argument cannot alias locally allocated object!
122      if (isa<AllocationInst>(O2)) return NoAlias;
123      // Otherwise, nothing is known...
124    } else if (isa<Argument>(O2)) {
125      // Incoming argument cannot alias locally allocated object!
126      if (isa<AllocationInst>(O1)) return NoAlias;
127      // Otherwise, nothing is known...
128    } else {
129      // If they are two different objects, we know that we have no alias...
130      if (O1 != O2) return NoAlias;
131    }
132
133    // If they are the same object, they we can look at the indexes.  If they
134    // index off of the object is the same for both pointers, they must alias.
135    // If they are provably different, they must not alias.  Otherwise, we can't
136    // tell anything.
137  } else if (O1 && !isa<Argument>(O1) && isa<ConstantPointerNull>(V2)) {
138    return NoAlias;                    // Unique values don't alias null
139  } else if (O2 && !isa<Argument>(O2) && isa<ConstantPointerNull>(V1)) {
140    return NoAlias;                    // Unique values don't alias null
141  }
142
143  // If we have two gep instructions with identical indices, return an alias
144  // result equal to the alias result of the original pointer...
145  //
146  if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(V1))
147    if (const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(V2))
148      if (GEP1->getNumOperands() == GEP2->getNumOperands() &&
149          GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType()) {
150        AliasResult GAlias =
151          CheckGEPInstructions((GetElementPtrInst*)GEP1, V1Size,
152                               (GetElementPtrInst*)GEP2, V2Size);
153        if (GAlias != MayAlias)
154          return GAlias;
155      }
156
157  // Check to see if these two pointers are related by a getelementptr
158  // instruction.  If one pointer is a GEP with a non-zero index of the other
159  // pointer, we know they cannot alias.
160  //
161  if (isa<GetElementPtrInst>(V2)) {
162    std::swap(V1, V2);
163    std::swap(V1Size, V2Size);
164  }
165
166  if (V1Size != ~0U && V2Size != ~0U)
167    if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V1)) {
168      AliasResult R = alias(GEP->getOperand(0), V1Size, V2, V2Size);
169      if (R == MustAlias) {
170        // If there is at least one non-zero constant index, we know they cannot
171        // alias.
172        bool ConstantFound = false;
173        for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
174          if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i)))
175            if (!C->isNullValue()) {
176              ConstantFound = true;
177              break;
178          }
179        if (ConstantFound) {
180          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
181            return NoAlias;
182
183          // Otherwise we have to check to see that the distance is more than
184          // the size of the argument... build an index vector that is equal to
185          // the arguments provided, except substitute 0's for any variable
186          // indexes we find...
187
188          std::vector<Value*> Indices;
189          Indices.reserve(GEP->getNumOperands()-1);
190          for (unsigned i = 1; i != GEP->getNumOperands(); ++i)
191            if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i)))
192              Indices.push_back((Value*)C);
193            else
194              Indices.push_back(Constant::getNullValue(Type::LongTy));
195          const Type *Ty = GEP->getOperand(0)->getType();
196          int Offset = getTargetData().getIndexedOffset(Ty, Indices);
197          if (Offset >= (int)V2Size || Offset <= -(int)V1Size)
198            return NoAlias;
199        }
200      }
201    }
202
203  return MayAlias;
204}
205
206static Value *CheckArrayIndicesForOverflow(const Type *PtrTy,
207                                           const std::vector<Value*> &Indices,
208                                           const ConstantInt *Idx) {
209  if (const ConstantSInt *IdxS = dyn_cast<ConstantSInt>(Idx)) {
210    if (IdxS->getValue() < 0)   // Underflow on the array subscript?
211      return Constant::getNullValue(Type::LongTy);
212    else {                       // Check for overflow
213      const ArrayType *ATy =
214        cast<ArrayType>(GetElementPtrInst::getIndexedType(PtrTy, Indices,true));
215      if (IdxS->getValue() >= (int64_t)ATy->getNumElements())
216        return ConstantSInt::get(Type::LongTy, ATy->getNumElements()-1);
217    }
218  }
219  return (Value*)Idx;  // Everything is acceptable.
220}
221
222// CheckGEPInstructions - Check two GEP instructions of compatible types and
223// equal number of arguments.  This checks to see if the index expressions
224// preclude the pointers from aliasing...
225//
226AliasAnalysis::AliasResult
227BasicAliasAnalysis::CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1S,
228                                         GetElementPtrInst *GEP2, unsigned G2S){
229  // Do the base pointers alias?
230  AliasResult BaseAlias = alias(GEP1->getOperand(0), G1S,
231                                GEP2->getOperand(0), G2S);
232  if (BaseAlias != MustAlias)   // No or May alias: We cannot add anything...
233    return BaseAlias;
234
235  // Find the (possibly empty) initial sequence of equal values...
236  unsigned NumGEPOperands = GEP1->getNumOperands();
237  unsigned UnequalOper = 1;
238  while (UnequalOper != NumGEPOperands &&
239         GEP1->getOperand(UnequalOper) == GEP2->getOperand(UnequalOper))
240    ++UnequalOper;
241
242  // If all operands equal each other, then the derived pointers must
243  // alias each other...
244  if (UnequalOper == NumGEPOperands) return MustAlias;
245
246  // So now we know that the indexes derived from the base pointers,
247  // which are known to alias, are different.  We can still determine a
248  // no-alias result if there are differing constant pairs in the index
249  // chain.  For example:
250  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
251  //
252  unsigned SizeMax = std::max(G1S, G2S);
253  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work...
254
255  // Scan for the first operand that is constant and unequal in the
256  // two getelemenptrs...
257  unsigned FirstConstantOper = UnequalOper;
258  for (; FirstConstantOper != NumGEPOperands; ++FirstConstantOper) {
259    const Value *G1Oper = GEP1->getOperand(FirstConstantOper);
260    const Value *G2Oper = GEP2->getOperand(FirstConstantOper);
261    if (G1Oper != G2Oper &&   // Found non-equal constant indexes...
262        isa<Constant>(G1Oper) && isa<Constant>(G2Oper)) {
263      // Make sure they are comparable...  and make sure the GEP with
264      // the smaller leading constant is GEP1.
265      ConstantBool *Compare =
266        *cast<Constant>(GEP1->getOperand(FirstConstantOper)) >
267        *cast<Constant>(GEP2->getOperand(FirstConstantOper));
268      if (Compare) {  // If they are comparable...
269        if (Compare->getValue())
270          std::swap(GEP1, GEP2);  // Make GEP1 < GEP2
271        break;
272      }
273    }
274  }
275
276  // No constant operands, we cannot tell anything...
277  if (FirstConstantOper == NumGEPOperands) return MayAlias;
278
279  // If there are non-equal constants arguments, then we can figure
280  // out a minimum known delta between the two index expressions... at
281  // this point we know that the first constant index of GEP1 is less
282  // than the first constant index of GEP2.
283  //
284  std::vector<Value*> Indices1;
285  Indices1.reserve(NumGEPOperands-1);
286  for (unsigned i = 1; i != FirstConstantOper; ++i)
287    if (GEP1->getOperand(i)->getType() == Type::UByteTy)
288      Indices1.push_back(GEP1->getOperand(i));
289    else
290      Indices1.push_back(Constant::getNullValue(Type::LongTy));
291  std::vector<Value*> Indices2;
292  Indices2.reserve(NumGEPOperands-1);
293  Indices2 = Indices1;           // Copy the zeros prefix...
294
295  // Add the two known constant operands...
296  Indices1.push_back((Value*)GEP1->getOperand(FirstConstantOper));
297  Indices2.push_back((Value*)GEP2->getOperand(FirstConstantOper));
298
299  const Type *GEPPointerTy = GEP1->getOperand(0)->getType();
300
301  // Loop over the rest of the operands...
302  for (unsigned i = FirstConstantOper+1; i != NumGEPOperands; ++i) {
303    const Value *Op1 = GEP1->getOperand(i);
304    const Value *Op2 = GEP2->getOperand(i);
305    if (Op1 == Op2) {   // If they are equal, use a zero index...
306      if (!isa<Constant>(Op1)) {
307        Indices1.push_back(Constant::getNullValue(Op1->getType()));
308        Indices2.push_back(Indices1.back());
309      } else {
310        Indices1.push_back((Value*)Op1);
311        Indices2.push_back((Value*)Op2);
312      }
313    } else {
314      if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
315        // If this is an array index, make sure the array element is in range...
316        if (i != 1)   // The pointer index can be "out of range"
317          Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices1, Op1C);
318
319        Indices1.push_back((Value*)Op1);
320      } else {
321        // GEP1 is known to produce a value less than GEP2.  To be
322        // conservatively correct, we must assume the largest possible constant
323        // is used in this position.  This cannot be the initial index to the
324        // GEP instructions (because we know we have at least one element before
325        // this one with the different constant arguments), so we know that the
326        // current index must be into either a struct or array.  Because we know
327        // it's not constant, this cannot be a structure index.  Because of
328        // this, we can calculate the maximum value possible.
329        //
330        const ArrayType *ElTy =
331          cast<ArrayType>(GEP1->getIndexedType(GEPPointerTy, Indices1, true));
332        Indices1.push_back(ConstantSInt::get(Type::LongTy,
333                                             ElTy->getNumElements()-1));
334      }
335
336      if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op2)) {
337        // If this is an array index, make sure the array element is in range...
338        if (i != 1)   // The pointer index can be "out of range"
339          Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices2, Op1C);
340
341        Indices2.push_back((Value*)Op2);
342      }
343      else // Conservatively assume the minimum value for this index
344        Indices2.push_back(Constant::getNullValue(Op2->getType()));
345    }
346  }
347
348  int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, Indices1);
349  int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, Indices2);
350  assert(Offset1 < Offset2 &&"There is at least one different constant here!");
351
352  if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
353    //std::cerr << "Determined that these two GEP's don't alias ["
354    //          << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
355    return NoAlias;
356  }
357  return MayAlias;
358}
359
360