BasicAliasAnalysis.cpp revision eed707b1e6097aac2bb6b3d47271f6300ace7f2e
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/CaptureTracking.h"
18#include "llvm/Analysis/Passes.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Pass.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/GetElementPtrTypeIterator.h"
34#include <algorithm>
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38// Useful predicates
39//===----------------------------------------------------------------------===//
40
41static const GEPOperator *isGEP(const Value *V) {
42  return dyn_cast<GEPOperator>(V);
43}
44
45static const Value *GetGEPOperands(const Value *V,
46                                   SmallVector<Value*, 16> &GEPOps) {
47  assert(GEPOps.empty() && "Expect empty list to populate!");
48  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
49                cast<User>(V)->op_end());
50
51  // Accumulate all of the chained indexes into the operand array
52  V = cast<User>(V)->getOperand(0);
53
54  while (const User *G = isGEP(V)) {
55    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
56        !cast<Constant>(GEPOps[0])->isNullValue())
57      break;  // Don't handle folding arbitrary pointer offsets yet...
58    GEPOps.erase(GEPOps.begin());   // Drop the zero index
59    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
60    V = G->getOperand(0);
61  }
62  return V;
63}
64
65/// isKnownNonNull - Return true if we know that the specified value is never
66/// null.
67static bool isKnownNonNull(const Value *V) {
68  // Alloca never returns null, malloc might.
69  if (isa<AllocaInst>(V)) return true;
70
71  // A byval argument is never null.
72  if (const Argument *A = dyn_cast<Argument>(V))
73    return A->hasByValAttr();
74
75  // Global values are not null unless extern weak.
76  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
77    return !GV->hasExternalWeakLinkage();
78  return false;
79}
80
81/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
82/// object that never escapes from the function.
83static bool isNonEscapingLocalObject(const Value *V) {
84  // If this is a local allocation, check to see if it escapes.
85  if (isa<AllocationInst>(V) || isNoAliasCall(V))
86    return !PointerMayBeCaptured(V, false);
87
88  // If this is an argument that corresponds to a byval or noalias argument,
89  // then it has not escaped before entering the function.  Check if it escapes
90  // inside the function.
91  if (const Argument *A = dyn_cast<Argument>(V))
92    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
93      // Don't bother analyzing arguments already known not to escape.
94      if (A->hasNoCaptureAttr())
95        return true;
96      return !PointerMayBeCaptured(V, false);
97    }
98  return false;
99}
100
101
102/// isObjectSmallerThan - Return true if we can prove that the object specified
103/// by V is smaller than Size.
104static bool isObjectSmallerThan(const Value *V, unsigned Size,
105                                const TargetData &TD) {
106  const Type *AccessTy;
107  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
108    AccessTy = GV->getType()->getElementType();
109  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
110    if (!AI->isArrayAllocation())
111      AccessTy = AI->getType()->getElementType();
112    else
113      return false;
114  } else if (const Argument *A = dyn_cast<Argument>(V)) {
115    if (A->hasByValAttr())
116      AccessTy = cast<PointerType>(A->getType())->getElementType();
117    else
118      return false;
119  } else {
120    return false;
121  }
122
123  if (AccessTy->isSized())
124    return TD.getTypeAllocSize(AccessTy) < Size;
125  return false;
126}
127
128//===----------------------------------------------------------------------===//
129// NoAA Pass
130//===----------------------------------------------------------------------===//
131
132namespace {
133  /// NoAA - This class implements the -no-aa pass, which always returns "I
134  /// don't know" for alias queries.  NoAA is unlike other alias analysis
135  /// implementations, in that it does not chain to a previous analysis.  As
136  /// such it doesn't follow many of the rules that other alias analyses must.
137  ///
138  struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
139    static char ID; // Class identification, replacement for typeinfo
140    NoAA() : ImmutablePass(&ID) {}
141    explicit NoAA(void *PID) : ImmutablePass(PID) { }
142
143    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
144      AU.addRequired<TargetData>();
145    }
146
147    virtual void initializePass() {
148      TD = &getAnalysis<TargetData>();
149    }
150
151    virtual AliasResult alias(const Value *V1, unsigned V1Size,
152                              const Value *V2, unsigned V2Size) {
153      return MayAlias;
154    }
155
156    virtual void getArgumentAccesses(Function *F, CallSite CS,
157                                     std::vector<PointerAccessInfo> &Info) {
158      llvm_unreachable("This method may not be called on this function!");
159    }
160
161    virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
162    virtual bool pointsToConstantMemory(const Value *P) { return false; }
163    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
164      return ModRef;
165    }
166    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
167      return ModRef;
168    }
169    virtual bool hasNoModRefInfoForCalls() const { return true; }
170
171    virtual void deleteValue(Value *V) {}
172    virtual void copyValue(Value *From, Value *To) {}
173  };
174}  // End of anonymous namespace
175
176// Register this pass...
177char NoAA::ID = 0;
178static RegisterPass<NoAA>
179U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
180
181// Declare that we implement the AliasAnalysis interface
182static RegisterAnalysisGroup<AliasAnalysis> V(U);
183
184ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
185
186//===----------------------------------------------------------------------===//
187// BasicAA Pass
188//===----------------------------------------------------------------------===//
189
190namespace {
191  /// BasicAliasAnalysis - This is the default alias analysis implementation.
192  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
193  /// derives from the NoAA class.
194  struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
195    static char ID; // Class identification, replacement for typeinfo
196    BasicAliasAnalysis() : NoAA(&ID) {}
197    AliasResult alias(const Value *V1, unsigned V1Size,
198                      const Value *V2, unsigned V2Size);
199
200    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
201    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
202
203    /// hasNoModRefInfoForCalls - We can provide mod/ref information against
204    /// non-escaping allocations.
205    virtual bool hasNoModRefInfoForCalls() const { return false; }
206
207    /// pointsToConstantMemory - Chase pointers until we find a (constant
208    /// global) or not.
209    bool pointsToConstantMemory(const Value *P);
210
211  private:
212    // CheckGEPInstructions - Check two GEP instructions with known
213    // must-aliasing base pointers.  This checks to see if the index expressions
214    // preclude the pointers from aliasing...
215    AliasResult
216    CheckGEPInstructions(const Type* BasePtr1Ty,
217                         Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
218                         const Type *BasePtr2Ty,
219                         Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
220  };
221}  // End of anonymous namespace
222
223// Register this pass...
224char BasicAliasAnalysis::ID = 0;
225static RegisterPass<BasicAliasAnalysis>
226X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
227
228// Declare that we implement the AliasAnalysis interface
229static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
230
231ImmutablePass *llvm::createBasicAliasAnalysisPass() {
232  return new BasicAliasAnalysis();
233}
234
235
236/// pointsToConstantMemory - Chase pointers until we find a (constant
237/// global) or not.
238bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
239  if (const GlobalVariable *GV =
240        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
241    return GV->isConstant();
242  return false;
243}
244
245
246// getModRefInfo - Check to see if the specified callsite can clobber the
247// specified memory object.  Since we only look at local properties of this
248// function, we really can't say much about this query.  We do, however, use
249// simple "address taken" analysis on local objects.
250//
251AliasAnalysis::ModRefResult
252BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
253  if (!isa<Constant>(P)) {
254    const Value *Object = P->getUnderlyingObject();
255
256    // If this is a tail call and P points to a stack location, we know that
257    // the tail call cannot access or modify the local stack.
258    // We cannot exclude byval arguments here; these belong to the caller of
259    // the current function not to the current function, and a tail callee
260    // may reference them.
261    if (isa<AllocaInst>(Object))
262      if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
263        if (CI->isTailCall())
264          return NoModRef;
265
266    // If the pointer is to a locally allocated object that does not escape,
267    // then the call can not mod/ref the pointer unless the call takes the
268    // argument without capturing it.
269    if (isNonEscapingLocalObject(Object) && CS.getInstruction() != Object) {
270      bool passedAsArg = false;
271      // TODO: Eventually only check 'nocapture' arguments.
272      for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
273           CI != CE; ++CI)
274        if (isa<PointerType>((*CI)->getType()) &&
275            alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
276          passedAsArg = true;
277
278      if (!passedAsArg)
279        return NoModRef;
280    }
281  }
282
283  // The AliasAnalysis base class has some smarts, lets use them.
284  return AliasAnalysis::getModRefInfo(CS, P, Size);
285}
286
287
288AliasAnalysis::ModRefResult
289BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
290  // If CS1 or CS2 are readnone, they don't interact.
291  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
292  if (CS1B == DoesNotAccessMemory) return NoModRef;
293
294  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
295  if (CS2B == DoesNotAccessMemory) return NoModRef;
296
297  // If they both only read from memory, just return ref.
298  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
299    return Ref;
300
301  // Otherwise, fall back to NoAA (mod+ref).
302  return NoAA::getModRefInfo(CS1, CS2);
303}
304
305
306// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
307// as array references.
308//
309AliasAnalysis::AliasResult
310BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
311                          const Value *V2, unsigned V2Size) {
312  LLVMContext &Context = V1->getType()->getContext();
313
314  // Strip off any constant expression casts if they exist
315  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V1))
316    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
317      V1 = CE->getOperand(0);
318  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V2))
319    if (CE->isCast() && isa<PointerType>(CE->getOperand(0)->getType()))
320      V2 = CE->getOperand(0);
321
322  // Are we checking for alias of the same value?
323  if (V1 == V2) return MustAlias;
324
325  if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
326    return NoAlias;  // Scalars cannot alias each other
327
328  // Strip off cast instructions.   Since V1 and V2 are pointers, they must be
329  // pointer<->pointer bitcasts.
330  if (const BitCastInst *I = dyn_cast<BitCastInst>(V1))
331    return alias(I->getOperand(0), V1Size, V2, V2Size);
332  if (const BitCastInst *I = dyn_cast<BitCastInst>(V2))
333    return alias(V1, V1Size, I->getOperand(0), V2Size);
334
335  // Figure out what objects these things are pointing to if we can.
336  const Value *O1 = V1->getUnderlyingObject();
337  const Value *O2 = V2->getUnderlyingObject();
338
339  if (O1 != O2) {
340    // If V1/V2 point to two different objects we know that we have no alias.
341    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
342      return NoAlias;
343
344    // Arguments can't alias with local allocations or noalias calls.
345    if ((isa<Argument>(O1) && (isa<AllocationInst>(O2) || isNoAliasCall(O2))) ||
346        (isa<Argument>(O2) && (isa<AllocationInst>(O1) || isNoAliasCall(O1))))
347      return NoAlias;
348
349    // Most objects can't alias null.
350    if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
351        (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
352      return NoAlias;
353  }
354
355  // If the size of one access is larger than the entire object on the other
356  // side, then we know such behavior is undefined and can assume no alias.
357  const TargetData &TD = getTargetData();
358  if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, TD)) ||
359      (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, TD)))
360    return NoAlias;
361
362  // If one pointer is the result of a call/invoke and the other is a
363  // non-escaping local object, then we know the object couldn't escape to a
364  // point where the call could return it.
365  if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
366      isNonEscapingLocalObject(O2) && O1 != O2)
367    return NoAlias;
368  if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
369      isNonEscapingLocalObject(O1) && O1 != O2)
370    return NoAlias;
371
372  // If we have two gep instructions with must-alias'ing base pointers, figure
373  // out if the indexes to the GEP tell us anything about the derived pointer.
374  // Note that we also handle chains of getelementptr instructions as well as
375  // constant expression getelementptrs here.
376  //
377  if (isGEP(V1) && isGEP(V2)) {
378    const User *GEP1 = cast<User>(V1);
379    const User *GEP2 = cast<User>(V2);
380
381    // If V1 and V2 are identical GEPs, just recurse down on both of them.
382    // This allows us to analyze things like:
383    //   P = gep A, 0, i, 1
384    //   Q = gep B, 0, i, 1
385    // by just analyzing A and B.  This is even safe for variable indices.
386    if (GEP1->getType() == GEP2->getType() &&
387        GEP1->getNumOperands() == GEP2->getNumOperands() &&
388        GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
389        // All operands are the same, ignoring the base.
390        std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
391      return alias(GEP1->getOperand(0), V1Size, GEP2->getOperand(0), V2Size);
392
393
394    // Drill down into the first non-gep value, to test for must-aliasing of
395    // the base pointers.
396    while (isGEP(GEP1->getOperand(0)) &&
397           GEP1->getOperand(1) ==
398           Context.getNullValue(GEP1->getOperand(1)->getType()))
399      GEP1 = cast<User>(GEP1->getOperand(0));
400    const Value *BasePtr1 = GEP1->getOperand(0);
401
402    while (isGEP(GEP2->getOperand(0)) &&
403           GEP2->getOperand(1) ==
404           Context.getNullValue(GEP2->getOperand(1)->getType()))
405      GEP2 = cast<User>(GEP2->getOperand(0));
406    const Value *BasePtr2 = GEP2->getOperand(0);
407
408    // Do the base pointers alias?
409    AliasResult BaseAlias = alias(BasePtr1, ~0U, BasePtr2, ~0U);
410    if (BaseAlias == NoAlias) return NoAlias;
411    if (BaseAlias == MustAlias) {
412      // If the base pointers alias each other exactly, check to see if we can
413      // figure out anything about the resultant pointers, to try to prove
414      // non-aliasing.
415
416      // Collect all of the chained GEP operands together into one simple place
417      SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
418      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
419      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
420
421      // If GetGEPOperands were able to fold to the same must-aliased pointer,
422      // do the comparison.
423      if (BasePtr1 == BasePtr2) {
424        AliasResult GAlias =
425          CheckGEPInstructions(BasePtr1->getType(),
426                               &GEP1Ops[0], GEP1Ops.size(), V1Size,
427                               BasePtr2->getType(),
428                               &GEP2Ops[0], GEP2Ops.size(), V2Size);
429        if (GAlias != MayAlias)
430          return GAlias;
431      }
432    }
433  }
434
435  // Check to see if these two pointers are related by a getelementptr
436  // instruction.  If one pointer is a GEP with a non-zero index of the other
437  // pointer, we know they cannot alias.
438  //
439  if (isGEP(V2)) {
440    std::swap(V1, V2);
441    std::swap(V1Size, V2Size);
442  }
443
444  if (V1Size != ~0U && V2Size != ~0U)
445    if (isGEP(V1)) {
446      SmallVector<Value*, 16> GEPOperands;
447      const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
448
449      AliasResult R = alias(BasePtr, V1Size, V2, V2Size);
450      if (R == MustAlias) {
451        // If there is at least one non-zero constant index, we know they cannot
452        // alias.
453        bool ConstantFound = false;
454        bool AllZerosFound = true;
455        for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
456          if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
457            if (!C->isNullValue()) {
458              ConstantFound = true;
459              AllZerosFound = false;
460              break;
461            }
462          } else {
463            AllZerosFound = false;
464          }
465
466        // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
467        // the ptr, the end result is a must alias also.
468        if (AllZerosFound)
469          return MustAlias;
470
471        if (ConstantFound) {
472          if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
473            return NoAlias;
474
475          // Otherwise we have to check to see that the distance is more than
476          // the size of the argument... build an index vector that is equal to
477          // the arguments provided, except substitute 0's for any variable
478          // indexes we find...
479          if (cast<PointerType>(
480                BasePtr->getType())->getElementType()->isSized()) {
481            for (unsigned i = 0; i != GEPOperands.size(); ++i)
482              if (!isa<ConstantInt>(GEPOperands[i]))
483                GEPOperands[i] =
484                  Context.getNullValue(GEPOperands[i]->getType());
485            int64_t Offset =
486              getTargetData().getIndexedOffset(BasePtr->getType(),
487                                               &GEPOperands[0],
488                                               GEPOperands.size());
489
490            if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
491              return NoAlias;
492          }
493        }
494      }
495    }
496
497  return MayAlias;
498}
499
500// This function is used to determine if the indices of two GEP instructions are
501// equal. V1 and V2 are the indices.
502static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext &Context) {
503  if (V1->getType() == V2->getType())
504    return V1 == V2;
505  if (Constant *C1 = dyn_cast<Constant>(V1))
506    if (Constant *C2 = dyn_cast<Constant>(V2)) {
507      // Sign extend the constants to long types, if necessary
508      if (C1->getType() != Type::Int64Ty)
509        C1 = Context.getConstantExprSExt(C1, Type::Int64Ty);
510      if (C2->getType() != Type::Int64Ty)
511        C2 = Context.getConstantExprSExt(C2, Type::Int64Ty);
512      return C1 == C2;
513    }
514  return false;
515}
516
517/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
518/// base pointers.  This checks to see if the index expressions preclude the
519/// pointers from aliasing...
520AliasAnalysis::AliasResult
521BasicAliasAnalysis::CheckGEPInstructions(
522  const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
523  const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
524  // We currently can't handle the case when the base pointers have different
525  // primitive types.  Since this is uncommon anyway, we are happy being
526  // extremely conservative.
527  if (BasePtr1Ty != BasePtr2Ty)
528    return MayAlias;
529
530  const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
531
532  LLVMContext &Context = GEPPointerTy->getContext();
533
534  // Find the (possibly empty) initial sequence of equal values... which are not
535  // necessarily constants.
536  unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
537  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
538  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
539  unsigned UnequalOper = 0;
540  while (UnequalOper != MinOperands &&
541         IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper],
542         Context)) {
543    // Advance through the type as we go...
544    ++UnequalOper;
545    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
546      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
547    else {
548      // If all operands equal each other, then the derived pointers must
549      // alias each other...
550      BasePtr1Ty = 0;
551      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
552             "Ran out of type nesting, but not out of operands?");
553      return MustAlias;
554    }
555  }
556
557  // If we have seen all constant operands, and run out of indexes on one of the
558  // getelementptrs, check to see if the tail of the leftover one is all zeros.
559  // If so, return mustalias.
560  if (UnequalOper == MinOperands) {
561    if (NumGEP1Ops < NumGEP2Ops) {
562      std::swap(GEP1Ops, GEP2Ops);
563      std::swap(NumGEP1Ops, NumGEP2Ops);
564    }
565
566    bool AllAreZeros = true;
567    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
568      if (!isa<Constant>(GEP1Ops[i]) ||
569          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
570        AllAreZeros = false;
571        break;
572      }
573    if (AllAreZeros) return MustAlias;
574  }
575
576
577  // So now we know that the indexes derived from the base pointers,
578  // which are known to alias, are different.  We can still determine a
579  // no-alias result if there are differing constant pairs in the index
580  // chain.  For example:
581  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
582  //
583  // We have to be careful here about array accesses.  In particular, consider:
584  //        A[1][0] vs A[0][i]
585  // In this case, we don't *know* that the array will be accessed in bounds:
586  // the index could even be negative.  Because of this, we have to
587  // conservatively *give up* and return may alias.  We disregard differing
588  // array subscripts that are followed by a variable index without going
589  // through a struct.
590  //
591  unsigned SizeMax = std::max(G1S, G2S);
592  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
593
594  // Scan for the first operand that is constant and unequal in the
595  // two getelementptrs...
596  unsigned FirstConstantOper = UnequalOper;
597  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
598    const Value *G1Oper = GEP1Ops[FirstConstantOper];
599    const Value *G2Oper = GEP2Ops[FirstConstantOper];
600
601    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
602      if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
603        if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
604          if (G1OC->getType() != G2OC->getType()) {
605            // Sign extend both operands to long.
606            if (G1OC->getType() != Type::Int64Ty)
607              G1OC = Context.getConstantExprSExt(G1OC, Type::Int64Ty);
608            if (G2OC->getType() != Type::Int64Ty)
609              G2OC = Context.getConstantExprSExt(G2OC, Type::Int64Ty);
610            GEP1Ops[FirstConstantOper] = G1OC;
611            GEP2Ops[FirstConstantOper] = G2OC;
612          }
613
614          if (G1OC != G2OC) {
615            // Handle the "be careful" case above: if this is an array/vector
616            // subscript, scan for a subsequent variable array index.
617            if (const SequentialType *STy =
618                  dyn_cast<SequentialType>(BasePtr1Ty)) {
619              const Type *NextTy = STy;
620              bool isBadCase = false;
621
622              for (unsigned Idx = FirstConstantOper;
623                   Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
624                const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
625                if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
626                  isBadCase = true;
627                  break;
628                }
629                // If the array is indexed beyond the bounds of the static type
630                // at this level, it will also fall into the "be careful" case.
631                // It would theoretically be possible to analyze these cases,
632                // but for now just be conservatively correct.
633                if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
634                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
635                        ATy->getNumElements() ||
636                      cast<ConstantInt>(G2OC)->getZExtValue() >=
637                        ATy->getNumElements()) {
638                    isBadCase = true;
639                    break;
640                  }
641                if (const VectorType *VTy = dyn_cast<VectorType>(STy))
642                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
643                        VTy->getNumElements() ||
644                      cast<ConstantInt>(G2OC)->getZExtValue() >=
645                        VTy->getNumElements()) {
646                    isBadCase = true;
647                    break;
648                  }
649                STy = cast<SequentialType>(NextTy);
650                NextTy = cast<SequentialType>(NextTy)->getElementType();
651              }
652
653              if (isBadCase) G1OC = 0;
654            }
655
656            // Make sure they are comparable (ie, not constant expressions), and
657            // make sure the GEP with the smaller leading constant is GEP1.
658            if (G1OC) {
659              Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
660                                                        G1OC, G2OC);
661              if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
662                if (CV->getZExtValue()) {  // If they are comparable and G2 > G1
663                  std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
664                  std::swap(NumGEP1Ops, NumGEP2Ops);
665                }
666                break;
667              }
668            }
669          }
670        }
671    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
672  }
673
674  // No shared constant operands, and we ran out of common operands.  At this
675  // point, the GEP instructions have run through all of their operands, and we
676  // haven't found evidence that there are any deltas between the GEP's.
677  // However, one GEP may have more operands than the other.  If this is the
678  // case, there may still be hope.  Check this now.
679  if (FirstConstantOper == MinOperands) {
680    // Make GEP1Ops be the longer one if there is a longer one.
681    if (NumGEP1Ops < NumGEP2Ops) {
682      std::swap(GEP1Ops, GEP2Ops);
683      std::swap(NumGEP1Ops, NumGEP2Ops);
684    }
685
686    // Is there anything to check?
687    if (NumGEP1Ops > MinOperands) {
688      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
689        if (isa<ConstantInt>(GEP1Ops[i]) &&
690            !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
691          // Yup, there's a constant in the tail.  Set all variables to
692          // constants in the GEP instruction to make it suitable for
693          // TargetData::getIndexedOffset.
694          for (i = 0; i != MaxOperands; ++i)
695            if (!isa<ConstantInt>(GEP1Ops[i]))
696              GEP1Ops[i] = Context.getNullValue(GEP1Ops[i]->getType());
697          // Okay, now get the offset.  This is the relative offset for the full
698          // instruction.
699          const TargetData &TD = getTargetData();
700          int64_t Offset1 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
701                                                NumGEP1Ops);
702
703          // Now check without any constants at the end.
704          int64_t Offset2 = TD.getIndexedOffset(GEPPointerTy, GEP1Ops,
705                                                MinOperands);
706
707          // Make sure we compare the absolute difference.
708          if (Offset1 > Offset2)
709            std::swap(Offset1, Offset2);
710
711          // If the tail provided a bit enough offset, return noalias!
712          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
713            return NoAlias;
714          // Otherwise break - we don't look for another constant in the tail.
715          break;
716        }
717    }
718
719    // Couldn't find anything useful.
720    return MayAlias;
721  }
722
723  // If there are non-equal constants arguments, then we can figure
724  // out a minimum known delta between the two index expressions... at
725  // this point we know that the first constant index of GEP1 is less
726  // than the first constant index of GEP2.
727
728  // Advance BasePtr[12]Ty over this first differing constant operand.
729  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
730      getTypeAtIndex(GEP2Ops[FirstConstantOper]);
731  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
732      getTypeAtIndex(GEP1Ops[FirstConstantOper]);
733
734  // We are going to be using TargetData::getIndexedOffset to determine the
735  // offset that each of the GEP's is reaching.  To do this, we have to convert
736  // all variable references to constant references.  To do this, we convert the
737  // initial sequence of array subscripts into constant zeros to start with.
738  const Type *ZeroIdxTy = GEPPointerTy;
739  for (unsigned i = 0; i != FirstConstantOper; ++i) {
740    if (!isa<StructType>(ZeroIdxTy))
741      GEP1Ops[i] = GEP2Ops[i] = Context.getNullValue(Type::Int32Ty);
742
743    if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
744      ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
745  }
746
747  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
748
749  // Loop over the rest of the operands...
750  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
751    const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
752    const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
753    // If they are equal, use a zero index...
754    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
755      if (!isa<ConstantInt>(Op1))
756        GEP1Ops[i] = GEP2Ops[i] = Context.getNullValue(Op1->getType());
757      // Otherwise, just keep the constants we have.
758    } else {
759      if (Op1) {
760        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
761          // If this is an array index, make sure the array element is in range.
762          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
763            if (Op1C->getZExtValue() >= AT->getNumElements())
764              return MayAlias;  // Be conservative with out-of-range accesses
765          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
766            if (Op1C->getZExtValue() >= VT->getNumElements())
767              return MayAlias;  // Be conservative with out-of-range accesses
768          }
769
770        } else {
771          // GEP1 is known to produce a value less than GEP2.  To be
772          // conservatively correct, we must assume the largest possible
773          // constant is used in this position.  This cannot be the initial
774          // index to the GEP instructions (because we know we have at least one
775          // element before this one with the different constant arguments), so
776          // we know that the current index must be into either a struct or
777          // array.  Because we know it's not constant, this cannot be a
778          // structure index.  Because of this, we can calculate the maximum
779          // value possible.
780          //
781          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
782            GEP1Ops[i] =
783                  ConstantInt::get(Type::Int64Ty,AT->getNumElements()-1);
784          else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
785            GEP1Ops[i] =
786                  ConstantInt::get(Type::Int64Ty,VT->getNumElements()-1);
787        }
788      }
789
790      if (Op2) {
791        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
792          // If this is an array index, make sure the array element is in range.
793          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
794            if (Op2C->getZExtValue() >= AT->getNumElements())
795              return MayAlias;  // Be conservative with out-of-range accesses
796          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
797            if (Op2C->getZExtValue() >= VT->getNumElements())
798              return MayAlias;  // Be conservative with out-of-range accesses
799          }
800        } else {  // Conservatively assume the minimum value for this index
801          GEP2Ops[i] = Context.getNullValue(Op2->getType());
802        }
803      }
804    }
805
806    if (BasePtr1Ty && Op1) {
807      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
808        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
809      else
810        BasePtr1Ty = 0;
811    }
812
813    if (BasePtr2Ty && Op2) {
814      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
815        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
816      else
817        BasePtr2Ty = 0;
818    }
819  }
820
821  if (GEPPointerTy->getElementType()->isSized()) {
822    int64_t Offset1 =
823      getTargetData().getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
824    int64_t Offset2 =
825      getTargetData().getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
826    assert(Offset1 != Offset2 &&
827           "There is at least one different constant here!");
828
829    // Make sure we compare the absolute difference.
830    if (Offset1 > Offset2)
831      std::swap(Offset1, Offset2);
832
833    if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
834      //cerr << "Determined that these two GEP's don't alias ["
835      //     << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
836      return NoAlias;
837    }
838  }
839  return MayAlias;
840}
841
842// Make sure that anything that uses AliasAnalysis pulls in this file...
843DEFINING_FILE_FOR(BasicAliasAnalysis)
844