BasicAliasAnalysis.cpp revision f0429fd1ca7f6d359a33c20617785d7572a0292d
1//===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the default implementation of the Alias Analysis interface
11// that simply implements a few identities (two different globals cannot alias,
12// etc), but otherwise does no analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/CaptureTracking.h"
18#include "llvm/Analysis/MallocHelper.h"
19#include "llvm/Analysis/Passes.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Operator.h"
28#include "llvm/Pass.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/Support/Compiler.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include <algorithm>
37using namespace llvm;
38
39//===----------------------------------------------------------------------===//
40// Useful predicates
41//===----------------------------------------------------------------------===//
42
43static const GEPOperator *isGEP(const Value *V) {
44  return dyn_cast<GEPOperator>(V);
45}
46
47static const Value *GetGEPOperands(const Value *V,
48                                   SmallVector<Value*, 16> &GEPOps) {
49  assert(GEPOps.empty() && "Expect empty list to populate!");
50  GEPOps.insert(GEPOps.end(), cast<User>(V)->op_begin()+1,
51                cast<User>(V)->op_end());
52
53  // Accumulate all of the chained indexes into the operand array
54  V = cast<User>(V)->getOperand(0);
55
56  while (const User *G = isGEP(V)) {
57    if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
58        !cast<Constant>(GEPOps[0])->isNullValue())
59      break;  // Don't handle folding arbitrary pointer offsets yet...
60    GEPOps.erase(GEPOps.begin());   // Drop the zero index
61    GEPOps.insert(GEPOps.begin(), G->op_begin()+1, G->op_end());
62    V = G->getOperand(0);
63  }
64  return V;
65}
66
67/// isKnownNonNull - Return true if we know that the specified value is never
68/// null.
69static bool isKnownNonNull(const Value *V) {
70  // Alloca never returns null, malloc might.
71  if (isa<AllocaInst>(V)) return true;
72
73  // A byval argument is never null.
74  if (const Argument *A = dyn_cast<Argument>(V))
75    return A->hasByValAttr();
76
77  // Global values are not null unless extern weak.
78  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
79    return !GV->hasExternalWeakLinkage();
80  return false;
81}
82
83/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
84/// object that never escapes from the function.
85static bool isNonEscapingLocalObject(const Value *V) {
86  // If this is a local allocation, check to see if it escapes.
87  if (isa<AllocationInst>(V) || isNoAliasCall(V))
88    return !PointerMayBeCaptured(V, false);
89
90  // If this is an argument that corresponds to a byval or noalias argument,
91  // then it has not escaped before entering the function.  Check if it escapes
92  // inside the function.
93  if (const Argument *A = dyn_cast<Argument>(V))
94    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
95      // Don't bother analyzing arguments already known not to escape.
96      if (A->hasNoCaptureAttr())
97        return true;
98      return !PointerMayBeCaptured(V, false);
99    }
100  return false;
101}
102
103
104/// isObjectSmallerThan - Return true if we can prove that the object specified
105/// by V is smaller than Size.
106static bool isObjectSmallerThan(const Value *V, unsigned Size,
107                                LLVMContext &Context, const TargetData &TD) {
108  const Type *AccessTy;
109  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
110    AccessTy = GV->getType()->getElementType();
111  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
112    if (!AI->isArrayAllocation())
113      AccessTy = AI->getType()->getElementType();
114    else
115      return false;
116  } else if (const CallInst* CI = extractMallocCall(V)) {
117    if (!isArrayMalloc(V, Context, &TD))
118      // The size is the argument to the malloc call.
119      if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getOperand(1)))
120        return (C->getZExtValue() < Size);
121    return false;
122  } else if (const Argument *A = dyn_cast<Argument>(V)) {
123    if (A->hasByValAttr())
124      AccessTy = cast<PointerType>(A->getType())->getElementType();
125    else
126      return false;
127  } else {
128    return false;
129  }
130
131  if (AccessTy->isSized())
132    return TD.getTypeAllocSize(AccessTy) < Size;
133  return false;
134}
135
136//===----------------------------------------------------------------------===//
137// NoAA Pass
138//===----------------------------------------------------------------------===//
139
140namespace {
141  /// NoAA - This class implements the -no-aa pass, which always returns "I
142  /// don't know" for alias queries.  NoAA is unlike other alias analysis
143  /// implementations, in that it does not chain to a previous analysis.  As
144  /// such it doesn't follow many of the rules that other alias analyses must.
145  ///
146  struct VISIBILITY_HIDDEN NoAA : public ImmutablePass, public AliasAnalysis {
147    static char ID; // Class identification, replacement for typeinfo
148    NoAA() : ImmutablePass(&ID) {}
149    explicit NoAA(void *PID) : ImmutablePass(PID) { }
150
151    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
152    }
153
154    virtual void initializePass() {
155      TD = getAnalysisIfAvailable<TargetData>();
156    }
157
158    virtual AliasResult alias(const Value *V1, unsigned V1Size,
159                              const Value *V2, unsigned V2Size) {
160      return MayAlias;
161    }
162
163    virtual void getArgumentAccesses(Function *F, CallSite CS,
164                                     std::vector<PointerAccessInfo> &Info) {
165      llvm_unreachable("This method may not be called on this function!");
166    }
167
168    virtual void getMustAliases(Value *P, std::vector<Value*> &RetVals) { }
169    virtual bool pointsToConstantMemory(const Value *P) { return false; }
170    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) {
171      return ModRef;
172    }
173    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) {
174      return ModRef;
175    }
176    virtual bool hasNoModRefInfoForCalls() const { return true; }
177
178    virtual void deleteValue(Value *V) {}
179    virtual void copyValue(Value *From, Value *To) {}
180  };
181}  // End of anonymous namespace
182
183// Register this pass...
184char NoAA::ID = 0;
185static RegisterPass<NoAA>
186U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true);
187
188// Declare that we implement the AliasAnalysis interface
189static RegisterAnalysisGroup<AliasAnalysis> V(U);
190
191ImmutablePass *llvm::createNoAAPass() { return new NoAA(); }
192
193//===----------------------------------------------------------------------===//
194// BasicAA Pass
195//===----------------------------------------------------------------------===//
196
197namespace {
198  /// BasicAliasAnalysis - This is the default alias analysis implementation.
199  /// Because it doesn't chain to a previous alias analysis (like -no-aa), it
200  /// derives from the NoAA class.
201  struct VISIBILITY_HIDDEN BasicAliasAnalysis : public NoAA {
202    static char ID; // Class identification, replacement for typeinfo
203    BasicAliasAnalysis() : NoAA(&ID) {}
204    AliasResult alias(const Value *V1, unsigned V1Size,
205                      const Value *V2, unsigned V2Size) {
206      assert(VisitedPHIs.empty() && "VisitedPHIs must be cleared after use!");
207      AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size);
208      VisitedPHIs.clear();
209      return Alias;
210    }
211
212    ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
213    ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
214
215    /// hasNoModRefInfoForCalls - We can provide mod/ref information against
216    /// non-escaping allocations.
217    virtual bool hasNoModRefInfoForCalls() const { return false; }
218
219    /// pointsToConstantMemory - Chase pointers until we find a (constant
220    /// global) or not.
221    bool pointsToConstantMemory(const Value *P);
222
223  private:
224    // VisitedPHIs - Track PHI nodes visited by a aliasCheck() call.
225    SmallSet<const PHINode*, 16> VisitedPHIs;
226
227    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
228    // against another.
229    AliasResult aliasGEP(const Value *V1, unsigned V1Size,
230                         const Value *V2, unsigned V2Size);
231
232    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
233    // against another.
234    AliasResult aliasPHI(const PHINode *PN, unsigned PNSize,
235                         const Value *V2, unsigned V2Size);
236
237    AliasResult aliasCheck(const Value *V1, unsigned V1Size,
238                           const Value *V2, unsigned V2Size);
239
240    // CheckGEPInstructions - Check two GEP instructions with known
241    // must-aliasing base pointers.  This checks to see if the index expressions
242    // preclude the pointers from aliasing...
243    AliasResult
244    CheckGEPInstructions(const Type* BasePtr1Ty,
245                         Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1Size,
246                         const Type *BasePtr2Ty,
247                         Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2Size);
248  };
249}  // End of anonymous namespace
250
251// Register this pass...
252char BasicAliasAnalysis::ID = 0;
253static RegisterPass<BasicAliasAnalysis>
254X("basicaa", "Basic Alias Analysis (default AA impl)", false, true);
255
256// Declare that we implement the AliasAnalysis interface
257static RegisterAnalysisGroup<AliasAnalysis, true> Y(X);
258
259ImmutablePass *llvm::createBasicAliasAnalysisPass() {
260  return new BasicAliasAnalysis();
261}
262
263
264/// pointsToConstantMemory - Chase pointers until we find a (constant
265/// global) or not.
266bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) {
267  if (const GlobalVariable *GV =
268        dyn_cast<GlobalVariable>(P->getUnderlyingObject()))
269    return GV->isConstant();
270  return false;
271}
272
273
274// getModRefInfo - Check to see if the specified callsite can clobber the
275// specified memory object.  Since we only look at local properties of this
276// function, we really can't say much about this query.  We do, however, use
277// simple "address taken" analysis on local objects.
278//
279AliasAnalysis::ModRefResult
280BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
281  if (!isa<Constant>(P)) {
282    const Value *Object = P->getUnderlyingObject();
283
284    // If this is a tail call and P points to a stack location, we know that
285    // the tail call cannot access or modify the local stack.
286    // We cannot exclude byval arguments here; these belong to the caller of
287    // the current function not to the current function, and a tail callee
288    // may reference them.
289    if (isa<AllocaInst>(Object))
290      if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
291        if (CI->isTailCall())
292          return NoModRef;
293
294    // If the pointer is to a locally allocated object that does not escape,
295    // then the call can not mod/ref the pointer unless the call takes the
296    // argument without capturing it.
297    if (isNonEscapingLocalObject(Object) && CS.getInstruction() != Object) {
298      bool passedAsArg = false;
299      // TODO: Eventually only check 'nocapture' arguments.
300      for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
301           CI != CE; ++CI)
302        if (isa<PointerType>((*CI)->getType()) &&
303            alias(cast<Value>(CI), ~0U, P, ~0U) != NoAlias)
304          passedAsArg = true;
305
306      if (!passedAsArg)
307        return NoModRef;
308    }
309
310    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
311      switch (II->getIntrinsicID()) {
312      default: break;
313      case Intrinsic::atomic_cmp_swap:
314      case Intrinsic::atomic_swap:
315      case Intrinsic::atomic_load_add:
316      case Intrinsic::atomic_load_sub:
317      case Intrinsic::atomic_load_and:
318      case Intrinsic::atomic_load_nand:
319      case Intrinsic::atomic_load_or:
320      case Intrinsic::atomic_load_xor:
321      case Intrinsic::atomic_load_max:
322      case Intrinsic::atomic_load_min:
323      case Intrinsic::atomic_load_umax:
324      case Intrinsic::atomic_load_umin:
325        if (alias(II->getOperand(1), Size, P, Size) == NoAlias)
326          return NoModRef;
327        break;
328      }
329    }
330  }
331
332  // The AliasAnalysis base class has some smarts, lets use them.
333  return AliasAnalysis::getModRefInfo(CS, P, Size);
334}
335
336
337AliasAnalysis::ModRefResult
338BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) {
339  // If CS1 or CS2 are readnone, they don't interact.
340  ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1);
341  if (CS1B == DoesNotAccessMemory) return NoModRef;
342
343  ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2);
344  if (CS2B == DoesNotAccessMemory) return NoModRef;
345
346  // If they both only read from memory, just return ref.
347  if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory)
348    return Ref;
349
350  // Otherwise, fall back to NoAA (mod+ref).
351  return NoAA::getModRefInfo(CS1, CS2);
352}
353
354// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
355// against another.
356//
357AliasAnalysis::AliasResult
358BasicAliasAnalysis::aliasGEP(const Value *V1, unsigned V1Size,
359                             const Value *V2, unsigned V2Size) {
360  // If we have two gep instructions with must-alias'ing base pointers, figure
361  // out if the indexes to the GEP tell us anything about the derived pointer.
362  // Note that we also handle chains of getelementptr instructions as well as
363  // constant expression getelementptrs here.
364  //
365  if (isGEP(V1) && isGEP(V2)) {
366    const User *GEP1 = cast<User>(V1);
367    const User *GEP2 = cast<User>(V2);
368
369    // If V1 and V2 are identical GEPs, just recurse down on both of them.
370    // This allows us to analyze things like:
371    //   P = gep A, 0, i, 1
372    //   Q = gep B, 0, i, 1
373    // by just analyzing A and B.  This is even safe for variable indices.
374    if (GEP1->getType() == GEP2->getType() &&
375        GEP1->getNumOperands() == GEP2->getNumOperands() &&
376        GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType() &&
377        // All operands are the same, ignoring the base.
378        std::equal(GEP1->op_begin()+1, GEP1->op_end(), GEP2->op_begin()+1))
379      return aliasCheck(GEP1->getOperand(0), V1Size,
380                        GEP2->getOperand(0), V2Size);
381
382    // Drill down into the first non-gep value, to test for must-aliasing of
383    // the base pointers.
384    while (isGEP(GEP1->getOperand(0)) &&
385           GEP1->getOperand(1) ==
386           Constant::getNullValue(GEP1->getOperand(1)->getType()))
387      GEP1 = cast<User>(GEP1->getOperand(0));
388    const Value *BasePtr1 = GEP1->getOperand(0);
389
390    while (isGEP(GEP2->getOperand(0)) &&
391           GEP2->getOperand(1) ==
392           Constant::getNullValue(GEP2->getOperand(1)->getType()))
393      GEP2 = cast<User>(GEP2->getOperand(0));
394    const Value *BasePtr2 = GEP2->getOperand(0);
395
396    // Do the base pointers alias?
397    AliasResult BaseAlias = aliasCheck(BasePtr1, ~0U, BasePtr2, ~0U);
398    if (BaseAlias == NoAlias) return NoAlias;
399    if (BaseAlias == MustAlias) {
400      // If the base pointers alias each other exactly, check to see if we can
401      // figure out anything about the resultant pointers, to try to prove
402      // non-aliasing.
403
404      // Collect all of the chained GEP operands together into one simple place
405      SmallVector<Value*, 16> GEP1Ops, GEP2Ops;
406      BasePtr1 = GetGEPOperands(V1, GEP1Ops);
407      BasePtr2 = GetGEPOperands(V2, GEP2Ops);
408
409      // If GetGEPOperands were able to fold to the same must-aliased pointer,
410      // do the comparison.
411      if (BasePtr1 == BasePtr2) {
412        AliasResult GAlias =
413          CheckGEPInstructions(BasePtr1->getType(),
414                               &GEP1Ops[0], GEP1Ops.size(), V1Size,
415                               BasePtr2->getType(),
416                               &GEP2Ops[0], GEP2Ops.size(), V2Size);
417        if (GAlias != MayAlias)
418          return GAlias;
419      }
420    }
421  }
422
423  // Check to see if these two pointers are related by a getelementptr
424  // instruction.  If one pointer is a GEP with a non-zero index of the other
425  // pointer, we know they cannot alias.
426  //
427  if (V1Size == ~0U || V2Size == ~0U)
428    return MayAlias;
429
430  SmallVector<Value*, 16> GEPOperands;
431  const Value *BasePtr = GetGEPOperands(V1, GEPOperands);
432
433  AliasResult R = aliasCheck(BasePtr, ~0U, V2, V2Size);
434  if (R != MustAlias)
435    // If V2 may alias GEP base pointer, conservatively returns MayAlias.
436    // If V2 is known not to alias GEP base pointer, then the two values
437    // cannot alias per GEP semantics: "A pointer value formed from a
438    // getelementptr instruction is associated with the addresses associated
439    // with the first operand of the getelementptr".
440    return R;
441
442  // If there is at least one non-zero constant index, we know they cannot
443  // alias.
444  bool ConstantFound = false;
445  bool AllZerosFound = true;
446  for (unsigned i = 0, e = GEPOperands.size(); i != e; ++i)
447    if (const Constant *C = dyn_cast<Constant>(GEPOperands[i])) {
448      if (!C->isNullValue()) {
449        ConstantFound = true;
450        AllZerosFound = false;
451        break;
452      }
453    } else {
454      AllZerosFound = false;
455    }
456
457  // If we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 must aliases
458  // the ptr, the end result is a must alias also.
459  if (AllZerosFound)
460    return MustAlias;
461
462  if (ConstantFound) {
463    if (V2Size <= 1 && V1Size <= 1)  // Just pointer check?
464      return NoAlias;
465
466    // Otherwise we have to check to see that the distance is more than
467    // the size of the argument... build an index vector that is equal to
468    // the arguments provided, except substitute 0's for any variable
469    // indexes we find...
470    if (TD &&
471        cast<PointerType>(BasePtr->getType())->getElementType()->isSized()) {
472      for (unsigned i = 0; i != GEPOperands.size(); ++i)
473        if (!isa<ConstantInt>(GEPOperands[i]))
474          GEPOperands[i] = Constant::getNullValue(GEPOperands[i]->getType());
475      int64_t Offset = TD->getIndexedOffset(BasePtr->getType(),
476                                            &GEPOperands[0],
477                                            GEPOperands.size());
478
479      if (Offset >= (int64_t)V2Size || Offset <= -(int64_t)V1Size)
480        return NoAlias;
481    }
482  }
483
484  return MayAlias;
485}
486
487// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
488// against another.
489AliasAnalysis::AliasResult
490BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize,
491                             const Value *V2, unsigned V2Size) {
492  // The PHI node has already been visited, avoid recursion any further.
493  if (!VisitedPHIs.insert(PN))
494    return MayAlias;
495
496  SmallSet<Value*, 4> UniqueSrc;
497  SmallVector<Value*, 4> V1Srcs;
498  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
499    Value *PV1 = PN->getIncomingValue(i);
500    if (isa<PHINode>(PV1))
501      // If any of the source itself is a PHI, return MayAlias conservatively
502      // to avoid compile time explosion. The worst possible case is if both
503      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
504      // and 'n' are the number of PHI sources.
505      return MayAlias;
506    if (UniqueSrc.insert(PV1))
507      V1Srcs.push_back(PV1);
508  }
509
510  AliasResult Alias = aliasCheck(V1Srcs[0], PNSize, V2, V2Size);
511  // Early exit if the check of the first PHI source against V2 is MayAlias.
512  // Other results are not possible.
513  if (Alias == MayAlias)
514    return MayAlias;
515
516  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
517  // NoAlias / MustAlias. Otherwise, returns MayAlias.
518  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
519    Value *V = V1Srcs[i];
520    AliasResult ThisAlias = aliasCheck(V, PNSize, V2, V2Size);
521    if (ThisAlias != Alias || ThisAlias == MayAlias)
522      return MayAlias;
523  }
524
525  return Alias;
526}
527
528// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
529// such as array references.
530//
531AliasAnalysis::AliasResult
532BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size,
533                               const Value *V2, unsigned V2Size) {
534  // Strip off any casts if they exist.
535  V1 = V1->stripPointerCasts();
536  V2 = V2->stripPointerCasts();
537
538  // Are we checking for alias of the same value?
539  if (V1 == V2) return MustAlias;
540
541  if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
542    return NoAlias;  // Scalars cannot alias each other
543
544  // Figure out what objects these things are pointing to if we can.
545  const Value *O1 = V1->getUnderlyingObject();
546  const Value *O2 = V2->getUnderlyingObject();
547
548  if (O1 != O2) {
549    // If V1/V2 point to two different objects we know that we have no alias.
550    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
551      return NoAlias;
552
553    // Arguments can't alias with local allocations or noalias calls.
554    if ((isa<Argument>(O1) && (isa<AllocationInst>(O2) || isNoAliasCall(O2))) ||
555        (isa<Argument>(O2) && (isa<AllocationInst>(O1) || isNoAliasCall(O1))))
556      return NoAlias;
557
558    // Most objects can't alias null.
559    if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) ||
560        (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2)))
561      return NoAlias;
562  }
563
564  // If the size of one access is larger than the entire object on the other
565  // side, then we know such behavior is undefined and can assume no alias.
566  LLVMContext &Context = V1->getContext();
567  if (TD)
568    if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, Context, *TD)) ||
569        (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, Context, *TD)))
570      return NoAlias;
571
572  // If one pointer is the result of a call/invoke and the other is a
573  // non-escaping local object, then we know the object couldn't escape to a
574  // point where the call could return it.
575  if ((isa<CallInst>(O1) || isa<InvokeInst>(O1)) &&
576      isNonEscapingLocalObject(O2) && O1 != O2)
577    return NoAlias;
578  if ((isa<CallInst>(O2) || isa<InvokeInst>(O2)) &&
579      isNonEscapingLocalObject(O1) && O1 != O2)
580    return NoAlias;
581
582  if (!isGEP(V1) && isGEP(V2)) {
583    std::swap(V1, V2);
584    std::swap(V1Size, V2Size);
585  }
586  if (isGEP(V1))
587    return aliasGEP(V1, V1Size, V2, V2Size);
588
589  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
590    std::swap(V1, V2);
591    std::swap(V1Size, V2Size);
592  }
593  if (const PHINode *PN = dyn_cast<PHINode>(V1))
594    return aliasPHI(PN, V1Size, V2, V2Size);
595
596  return MayAlias;
597}
598
599// This function is used to determine if the indices of two GEP instructions are
600// equal. V1 and V2 are the indices.
601static bool IndexOperandsEqual(Value *V1, Value *V2, LLVMContext &Context) {
602  if (V1->getType() == V2->getType())
603    return V1 == V2;
604  if (Constant *C1 = dyn_cast<Constant>(V1))
605    if (Constant *C2 = dyn_cast<Constant>(V2)) {
606      // Sign extend the constants to long types, if necessary
607      if (C1->getType() != Type::getInt64Ty(Context))
608        C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(Context));
609      if (C2->getType() != Type::getInt64Ty(Context))
610        C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(Context));
611      return C1 == C2;
612    }
613  return false;
614}
615
616/// CheckGEPInstructions - Check two GEP instructions with known must-aliasing
617/// base pointers.  This checks to see if the index expressions preclude the
618/// pointers from aliasing...
619AliasAnalysis::AliasResult
620BasicAliasAnalysis::CheckGEPInstructions(
621  const Type* BasePtr1Ty, Value **GEP1Ops, unsigned NumGEP1Ops, unsigned G1S,
622  const Type *BasePtr2Ty, Value **GEP2Ops, unsigned NumGEP2Ops, unsigned G2S) {
623  // We currently can't handle the case when the base pointers have different
624  // primitive types.  Since this is uncommon anyway, we are happy being
625  // extremely conservative.
626  if (BasePtr1Ty != BasePtr2Ty)
627    return MayAlias;
628
629  const PointerType *GEPPointerTy = cast<PointerType>(BasePtr1Ty);
630
631  LLVMContext &Context = GEPPointerTy->getContext();
632
633  // Find the (possibly empty) initial sequence of equal values... which are not
634  // necessarily constants.
635  unsigned NumGEP1Operands = NumGEP1Ops, NumGEP2Operands = NumGEP2Ops;
636  unsigned MinOperands = std::min(NumGEP1Operands, NumGEP2Operands);
637  unsigned MaxOperands = std::max(NumGEP1Operands, NumGEP2Operands);
638  unsigned UnequalOper = 0;
639  while (UnequalOper != MinOperands &&
640         IndexOperandsEqual(GEP1Ops[UnequalOper], GEP2Ops[UnequalOper],
641         Context)) {
642    // Advance through the type as we go...
643    ++UnequalOper;
644    if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
645      BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[UnequalOper-1]);
646    else {
647      // If all operands equal each other, then the derived pointers must
648      // alias each other...
649      BasePtr1Ty = 0;
650      assert(UnequalOper == NumGEP1Operands && UnequalOper == NumGEP2Operands &&
651             "Ran out of type nesting, but not out of operands?");
652      return MustAlias;
653    }
654  }
655
656  // If we have seen all constant operands, and run out of indexes on one of the
657  // getelementptrs, check to see if the tail of the leftover one is all zeros.
658  // If so, return mustalias.
659  if (UnequalOper == MinOperands) {
660    if (NumGEP1Ops < NumGEP2Ops) {
661      std::swap(GEP1Ops, GEP2Ops);
662      std::swap(NumGEP1Ops, NumGEP2Ops);
663    }
664
665    bool AllAreZeros = true;
666    for (unsigned i = UnequalOper; i != MaxOperands; ++i)
667      if (!isa<Constant>(GEP1Ops[i]) ||
668          !cast<Constant>(GEP1Ops[i])->isNullValue()) {
669        AllAreZeros = false;
670        break;
671      }
672    if (AllAreZeros) return MustAlias;
673  }
674
675
676  // So now we know that the indexes derived from the base pointers,
677  // which are known to alias, are different.  We can still determine a
678  // no-alias result if there are differing constant pairs in the index
679  // chain.  For example:
680  //        A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
681  //
682  // We have to be careful here about array accesses.  In particular, consider:
683  //        A[1][0] vs A[0][i]
684  // In this case, we don't *know* that the array will be accessed in bounds:
685  // the index could even be negative.  Because of this, we have to
686  // conservatively *give up* and return may alias.  We disregard differing
687  // array subscripts that are followed by a variable index without going
688  // through a struct.
689  //
690  unsigned SizeMax = std::max(G1S, G2S);
691  if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work.
692
693  // Scan for the first operand that is constant and unequal in the
694  // two getelementptrs...
695  unsigned FirstConstantOper = UnequalOper;
696  for (; FirstConstantOper != MinOperands; ++FirstConstantOper) {
697    const Value *G1Oper = GEP1Ops[FirstConstantOper];
698    const Value *G2Oper = GEP2Ops[FirstConstantOper];
699
700    if (G1Oper != G2Oper)   // Found non-equal constant indexes...
701      if (Constant *G1OC = dyn_cast<ConstantInt>(const_cast<Value*>(G1Oper)))
702        if (Constant *G2OC = dyn_cast<ConstantInt>(const_cast<Value*>(G2Oper))){
703          if (G1OC->getType() != G2OC->getType()) {
704            // Sign extend both operands to long.
705            if (G1OC->getType() != Type::getInt64Ty(Context))
706              G1OC = ConstantExpr::getSExt(G1OC, Type::getInt64Ty(Context));
707            if (G2OC->getType() != Type::getInt64Ty(Context))
708              G2OC = ConstantExpr::getSExt(G2OC, Type::getInt64Ty(Context));
709            GEP1Ops[FirstConstantOper] = G1OC;
710            GEP2Ops[FirstConstantOper] = G2OC;
711          }
712
713          if (G1OC != G2OC) {
714            // Handle the "be careful" case above: if this is an array/vector
715            // subscript, scan for a subsequent variable array index.
716            if (const SequentialType *STy =
717                  dyn_cast<SequentialType>(BasePtr1Ty)) {
718              const Type *NextTy = STy;
719              bool isBadCase = false;
720
721              for (unsigned Idx = FirstConstantOper;
722                   Idx != MinOperands && isa<SequentialType>(NextTy); ++Idx) {
723                const Value *V1 = GEP1Ops[Idx], *V2 = GEP2Ops[Idx];
724                if (!isa<Constant>(V1) || !isa<Constant>(V2)) {
725                  isBadCase = true;
726                  break;
727                }
728                // If the array is indexed beyond the bounds of the static type
729                // at this level, it will also fall into the "be careful" case.
730                // It would theoretically be possible to analyze these cases,
731                // but for now just be conservatively correct.
732                if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
733                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
734                        ATy->getNumElements() ||
735                      cast<ConstantInt>(G2OC)->getZExtValue() >=
736                        ATy->getNumElements()) {
737                    isBadCase = true;
738                    break;
739                  }
740                if (const VectorType *VTy = dyn_cast<VectorType>(STy))
741                  if (cast<ConstantInt>(G1OC)->getZExtValue() >=
742                        VTy->getNumElements() ||
743                      cast<ConstantInt>(G2OC)->getZExtValue() >=
744                        VTy->getNumElements()) {
745                    isBadCase = true;
746                    break;
747                  }
748                STy = cast<SequentialType>(NextTy);
749                NextTy = cast<SequentialType>(NextTy)->getElementType();
750              }
751
752              if (isBadCase) G1OC = 0;
753            }
754
755            // Make sure they are comparable (ie, not constant expressions), and
756            // make sure the GEP with the smaller leading constant is GEP1.
757            if (G1OC) {
758              Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
759                                                        G1OC, G2OC);
760              if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
761                if (CV->getZExtValue()) {  // If they are comparable and G2 > G1
762                  std::swap(GEP1Ops, GEP2Ops);  // Make GEP1 < GEP2
763                  std::swap(NumGEP1Ops, NumGEP2Ops);
764                }
765                break;
766              }
767            }
768          }
769        }
770    BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->getTypeAtIndex(G1Oper);
771  }
772
773  // No shared constant operands, and we ran out of common operands.  At this
774  // point, the GEP instructions have run through all of their operands, and we
775  // haven't found evidence that there are any deltas between the GEP's.
776  // However, one GEP may have more operands than the other.  If this is the
777  // case, there may still be hope.  Check this now.
778  if (FirstConstantOper == MinOperands) {
779    // Without TargetData, we won't know what the offsets are.
780    if (!TD)
781      return MayAlias;
782
783    // Make GEP1Ops be the longer one if there is a longer one.
784    if (NumGEP1Ops < NumGEP2Ops) {
785      std::swap(GEP1Ops, GEP2Ops);
786      std::swap(NumGEP1Ops, NumGEP2Ops);
787    }
788
789    // Is there anything to check?
790    if (NumGEP1Ops > MinOperands) {
791      for (unsigned i = FirstConstantOper; i != MaxOperands; ++i)
792        if (isa<ConstantInt>(GEP1Ops[i]) &&
793            !cast<ConstantInt>(GEP1Ops[i])->isZero()) {
794          // Yup, there's a constant in the tail.  Set all variables to
795          // constants in the GEP instruction to make it suitable for
796          // TargetData::getIndexedOffset.
797          for (i = 0; i != MaxOperands; ++i)
798            if (!isa<ConstantInt>(GEP1Ops[i]))
799              GEP1Ops[i] = Constant::getNullValue(GEP1Ops[i]->getType());
800          // Okay, now get the offset.  This is the relative offset for the full
801          // instruction.
802          int64_t Offset1 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
803                                                 NumGEP1Ops);
804
805          // Now check without any constants at the end.
806          int64_t Offset2 = TD->getIndexedOffset(GEPPointerTy, GEP1Ops,
807                                                 MinOperands);
808
809          // Make sure we compare the absolute difference.
810          if (Offset1 > Offset2)
811            std::swap(Offset1, Offset2);
812
813          // If the tail provided a bit enough offset, return noalias!
814          if ((uint64_t)(Offset2-Offset1) >= SizeMax)
815            return NoAlias;
816          // Otherwise break - we don't look for another constant in the tail.
817          break;
818        }
819    }
820
821    // Couldn't find anything useful.
822    return MayAlias;
823  }
824
825  // If there are non-equal constants arguments, then we can figure
826  // out a minimum known delta between the two index expressions... at
827  // this point we know that the first constant index of GEP1 is less
828  // than the first constant index of GEP2.
829
830  // Advance BasePtr[12]Ty over this first differing constant operand.
831  BasePtr2Ty = cast<CompositeType>(BasePtr1Ty)->
832      getTypeAtIndex(GEP2Ops[FirstConstantOper]);
833  BasePtr1Ty = cast<CompositeType>(BasePtr1Ty)->
834      getTypeAtIndex(GEP1Ops[FirstConstantOper]);
835
836  // We are going to be using TargetData::getIndexedOffset to determine the
837  // offset that each of the GEP's is reaching.  To do this, we have to convert
838  // all variable references to constant references.  To do this, we convert the
839  // initial sequence of array subscripts into constant zeros to start with.
840  const Type *ZeroIdxTy = GEPPointerTy;
841  for (unsigned i = 0; i != FirstConstantOper; ++i) {
842    if (!isa<StructType>(ZeroIdxTy))
843      GEP1Ops[i] = GEP2Ops[i] =
844                              Constant::getNullValue(Type::getInt32Ty(Context));
845
846    if (const CompositeType *CT = dyn_cast<CompositeType>(ZeroIdxTy))
847      ZeroIdxTy = CT->getTypeAtIndex(GEP1Ops[i]);
848  }
849
850  // We know that GEP1Ops[FirstConstantOper] & GEP2Ops[FirstConstantOper] are ok
851
852  // Loop over the rest of the operands...
853  for (unsigned i = FirstConstantOper+1; i != MaxOperands; ++i) {
854    const Value *Op1 = i < NumGEP1Ops ? GEP1Ops[i] : 0;
855    const Value *Op2 = i < NumGEP2Ops ? GEP2Ops[i] : 0;
856    // If they are equal, use a zero index...
857    if (Op1 == Op2 && BasePtr1Ty == BasePtr2Ty) {
858      if (!isa<ConstantInt>(Op1))
859        GEP1Ops[i] = GEP2Ops[i] = Constant::getNullValue(Op1->getType());
860      // Otherwise, just keep the constants we have.
861    } else {
862      if (Op1) {
863        if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
864          // If this is an array index, make sure the array element is in range.
865          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty)) {
866            if (Op1C->getZExtValue() >= AT->getNumElements())
867              return MayAlias;  // Be conservative with out-of-range accesses
868          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty)) {
869            if (Op1C->getZExtValue() >= VT->getNumElements())
870              return MayAlias;  // Be conservative with out-of-range accesses
871          }
872
873        } else {
874          // GEP1 is known to produce a value less than GEP2.  To be
875          // conservatively correct, we must assume the largest possible
876          // constant is used in this position.  This cannot be the initial
877          // index to the GEP instructions (because we know we have at least one
878          // element before this one with the different constant arguments), so
879          // we know that the current index must be into either a struct or
880          // array.  Because we know it's not constant, this cannot be a
881          // structure index.  Because of this, we can calculate the maximum
882          // value possible.
883          //
884          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr1Ty))
885            GEP1Ops[i] =
886                  ConstantInt::get(Type::getInt64Ty(Context),
887                                   AT->getNumElements()-1);
888          else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr1Ty))
889            GEP1Ops[i] =
890                  ConstantInt::get(Type::getInt64Ty(Context),
891                                   VT->getNumElements()-1);
892        }
893      }
894
895      if (Op2) {
896        if (const ConstantInt *Op2C = dyn_cast<ConstantInt>(Op2)) {
897          // If this is an array index, make sure the array element is in range.
898          if (const ArrayType *AT = dyn_cast<ArrayType>(BasePtr2Ty)) {
899            if (Op2C->getZExtValue() >= AT->getNumElements())
900              return MayAlias;  // Be conservative with out-of-range accesses
901          } else if (const VectorType *VT = dyn_cast<VectorType>(BasePtr2Ty)) {
902            if (Op2C->getZExtValue() >= VT->getNumElements())
903              return MayAlias;  // Be conservative with out-of-range accesses
904          }
905        } else {  // Conservatively assume the minimum value for this index
906          GEP2Ops[i] = Constant::getNullValue(Op2->getType());
907        }
908      }
909    }
910
911    if (BasePtr1Ty && Op1) {
912      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr1Ty))
913        BasePtr1Ty = CT->getTypeAtIndex(GEP1Ops[i]);
914      else
915        BasePtr1Ty = 0;
916    }
917
918    if (BasePtr2Ty && Op2) {
919      if (const CompositeType *CT = dyn_cast<CompositeType>(BasePtr2Ty))
920        BasePtr2Ty = CT->getTypeAtIndex(GEP2Ops[i]);
921      else
922        BasePtr2Ty = 0;
923    }
924  }
925
926  if (TD && GEPPointerTy->getElementType()->isSized()) {
927    int64_t Offset1 =
928      TD->getIndexedOffset(GEPPointerTy, GEP1Ops, NumGEP1Ops);
929    int64_t Offset2 =
930      TD->getIndexedOffset(GEPPointerTy, GEP2Ops, NumGEP2Ops);
931    assert(Offset1 != Offset2 &&
932           "There is at least one different constant here!");
933
934    // Make sure we compare the absolute difference.
935    if (Offset1 > Offset2)
936      std::swap(Offset1, Offset2);
937
938    if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
939      //cerr << "Determined that these two GEP's don't alias ["
940      //     << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
941      return NoAlias;
942    }
943  }
944  return MayAlias;
945}
946
947// Make sure that anything that uses AliasAnalysis pulls in this file...
948DEFINING_FILE_FOR(BasicAliasAnalysis)
949