ConstantFolding.cpp revision 739208a790398cf1f9da05149c768371e48781e8
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic VMCore ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// TargetData information. These functions cannot go in VMCore due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/LLVMContext.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/StringMap.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/GetElementPtrTypeIterator.h"
33#include "llvm/Support/MathExtras.h"
34#include <cerrno>
35#include <cmath>
36using namespace llvm;
37
38//===----------------------------------------------------------------------===//
39// Constant Folding internal helper functions
40//===----------------------------------------------------------------------===//
41
42/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
43/// from a global, return the global and the constant.  Because of
44/// constantexprs, this function is recursive.
45static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
46                                       int64_t &Offset, const TargetData &TD) {
47  // Trivial case, constant is the global.
48  if ((GV = dyn_cast<GlobalValue>(C))) {
49    Offset = 0;
50    return true;
51  }
52
53  // Otherwise, if this isn't a constant expr, bail out.
54  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
55  if (!CE) return false;
56
57  // Look through ptr->int and ptr->ptr casts.
58  if (CE->getOpcode() == Instruction::PtrToInt ||
59      CE->getOpcode() == Instruction::BitCast)
60    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
61
62  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
63  if (CE->getOpcode() == Instruction::GetElementPtr) {
64    // Cannot compute this if the element type of the pointer is missing size
65    // info.
66    if (!cast<PointerType>(CE->getOperand(0)->getType())
67                 ->getElementType()->isSized())
68      return false;
69
70    // If the base isn't a global+constant, we aren't either.
71    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
72      return false;
73
74    // Otherwise, add any offset that our operands provide.
75    gep_type_iterator GTI = gep_type_begin(CE);
76    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
77         i != e; ++i, ++GTI) {
78      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
79      if (!CI) return false;  // Index isn't a simple constant?
80      if (CI->getZExtValue() == 0) continue;  // Not adding anything.
81
82      if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
83        // N = N + Offset
84        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
85      } else {
86        const SequentialType *SQT = cast<SequentialType>(*GTI);
87        Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
88      }
89    }
90    return true;
91  }
92
93  return false;
94}
95
96/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
97/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
98/// pointer to copy results into and BytesLeft is the number of bytes left in
99/// the CurPtr buffer.  TD is the target data.
100static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
101                               unsigned char *CurPtr, unsigned BytesLeft,
102                               const TargetData &TD) {
103  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
104         "Out of range access");
105
106  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
107    return true;
108
109  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
110    if (CI->getBitWidth() > 64 ||
111        (CI->getBitWidth() & 7) != 0)
112      return false;
113
114    uint64_t Val = CI->getZExtValue();
115    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
116
117    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
118      CurPtr[i] = (unsigned char)(Val >> ByteOffset * 8);
119      ++ByteOffset;
120    }
121    return true;
122  }
123
124  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
125    if (CFP->getType()->isDoubleTy()) {
126      C = ConstantExpr::getBitCast(C, Type::getInt64Ty(C->getContext()));
127      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
128    }
129    if (CFP->getType()->isFloatTy()){
130      C = ConstantExpr::getBitCast(C, Type::getInt32Ty(C->getContext()));
131      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
132    }
133  }
134
135  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
136    const StructLayout *SL = TD.getStructLayout(CS->getType());
137    unsigned Index = SL->getElementContainingOffset(ByteOffset);
138    uint64_t CurEltOffset = SL->getElementOffset(Index);
139    ByteOffset -= CurEltOffset;
140
141    while (1) {
142      // If the element access is to the element itself and not to tail padding,
143      // read the bytes from the element.
144      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
145
146      if (ByteOffset < EltSize &&
147          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
148                              BytesLeft, TD))
149        return false;
150
151      ++Index;
152
153      // Check to see if we read from the last struct element, if so we're done.
154      if (Index == CS->getType()->getNumElements())
155        return true;
156
157      // If we read all of the bytes we needed from this element we're done.
158      uint64_t NextEltOffset = SL->getElementOffset(Index);
159
160      if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
161        return true;
162
163      // Move to the next element of the struct.
164      BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
165      ByteOffset = 0;
166      CurEltOffset = NextEltOffset;
167    }
168    // not reached.
169  }
170
171  if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
172    uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
173    uint64_t Index = ByteOffset / EltSize;
174    uint64_t Offset = ByteOffset - Index * EltSize;
175    for (; Index != CA->getType()->getNumElements(); ++Index) {
176      if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
177                              BytesLeft, TD))
178        return false;
179      if (EltSize >= BytesLeft)
180        return true;
181
182      Offset = 0;
183      BytesLeft -= EltSize;
184      CurPtr += EltSize;
185    }
186    return true;
187  }
188
189  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
190    uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
191    uint64_t Index = ByteOffset / EltSize;
192    uint64_t Offset = ByteOffset - Index * EltSize;
193    for (; Index != CV->getType()->getNumElements(); ++Index) {
194      if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
195                              BytesLeft, TD))
196        return false;
197      if (EltSize >= BytesLeft)
198        return true;
199
200      Offset = 0;
201      BytesLeft -= EltSize;
202      CurPtr += EltSize;
203    }
204    return true;
205  }
206
207  // Otherwise, unknown initializer type.
208  return false;
209}
210
211static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
212                                                 const TargetData &TD) {
213  const Type *InitializerTy = cast<PointerType>(C->getType())->getElementType();
214  const IntegerType *IntType = dyn_cast<IntegerType>(InitializerTy);
215
216  // If this isn't an integer load we can't fold it directly.
217  if (!IntType) {
218    // If this is a float/double load, we can try folding it as an int32/64 load
219    // and then bitcast the result.  This can be useful for union cases.
220    const Type *MapTy;
221    if (InitializerTy->isFloatTy())
222      MapTy = Type::getInt32PtrTy(C->getContext());
223    else if (InitializerTy->isDoubleTy())
224      MapTy = Type::getInt64PtrTy(C->getContext());
225    else
226      return 0;
227
228    C = ConstantExpr::getBitCast(C, MapTy);
229    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
230      return ConstantExpr::getBitCast(Res, InitializerTy);
231    return 0;
232  }
233
234  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
235  if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
236
237  GlobalValue *GVal;
238  int64_t Offset;
239  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
240    return 0;
241
242  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
243  if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
244      !GV->hasDefinitiveInitializer() ||
245      !GV->getInitializer()->getType()->isSized())
246    return 0;
247
248  // If we're loading off the beginning of the global, some bytes may be valid,
249  // but we don't try to handle this.
250  if (Offset < 0) return 0;
251
252  // If we're not accessing anything in this constant, the result is undefined.
253  if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
254    return UndefValue::get(IntType);
255
256  unsigned char RawBytes[32] = {0};
257  if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
258                          BytesLoaded, TD))
259    return 0;
260
261  APInt ResultVal(IntType->getBitWidth(), 0);
262  for (unsigned i = 0; i != BytesLoaded; ++i) {
263    ResultVal <<= 8;
264    ResultVal |= APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1-i]);
265  }
266
267  return ConstantInt::get(IntType->getContext(), ResultVal);
268}
269
270/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
271/// produce if it is constant and determinable.  If this is not determinable,
272/// return null.
273Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
274                                             const TargetData *TD) {
275  // First, try the easy cases:
276  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
277    if (GV->isConstant() && GV->hasDefinitiveInitializer())
278      return GV->getInitializer();
279
280  // If the loaded value isn't a constant expr, we can't handle it.
281  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
282  if (!CE) return 0;
283
284  if (CE->getOpcode() == Instruction::GetElementPtr) {
285    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
286      if (GV->isConstant() && GV->hasDefinitiveInitializer())
287        if (Constant *V =
288             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
289          return V;
290  }
291
292  // Instead of loading constant c string, use corresponding integer value
293  // directly if string length is small enough.
294  std::string Str;
295  if (TD && GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
296    unsigned StrLen = Str.length();
297    const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
298    unsigned NumBits = Ty->getPrimitiveSizeInBits();
299    // Replace LI with immediate integer store.
300    if ((NumBits >> 3) == StrLen + 1) {
301      APInt StrVal(NumBits, 0);
302      APInt SingleChar(NumBits, 0);
303      if (TD->isLittleEndian()) {
304        for (signed i = StrLen-1; i >= 0; i--) {
305          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
306          StrVal = (StrVal << 8) | SingleChar;
307        }
308      } else {
309        for (unsigned i = 0; i < StrLen; i++) {
310          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
311          StrVal = (StrVal << 8) | SingleChar;
312        }
313        // Append NULL at the end.
314        SingleChar = 0;
315        StrVal = (StrVal << 8) | SingleChar;
316      }
317      return ConstantInt::get(CE->getContext(), StrVal);
318    }
319  }
320
321  // If this load comes from anywhere in a constant global, and if the global
322  // is all undef or zero, we know what it loads.
323  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getUnderlyingObject())){
324    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
325      const Type *ResTy = cast<PointerType>(C->getType())->getElementType();
326      if (GV->getInitializer()->isNullValue())
327        return Constant::getNullValue(ResTy);
328      if (isa<UndefValue>(GV->getInitializer()))
329        return UndefValue::get(ResTy);
330    }
331  }
332
333  // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
334  // currently don't do any of this for big endian systems.  It can be
335  // generalized in the future if someone is interested.
336  if (TD && TD->isLittleEndian())
337    return FoldReinterpretLoadFromConstPtr(CE, *TD);
338  return 0;
339}
340
341static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
342  if (LI->isVolatile()) return 0;
343
344  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
345    return ConstantFoldLoadFromConstPtr(C, TD);
346
347  return 0;
348}
349
350/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
351/// Attempt to symbolically evaluate the result of a binary operator merging
352/// these together.  If target data info is available, it is provided as TD,
353/// otherwise TD is null.
354static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
355                                           Constant *Op1, const TargetData *TD,
356                                           LLVMContext &Context){
357  // SROA
358
359  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
360  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
361  // bits.
362
363
364  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
365  // constant.  This happens frequently when iterating over a global array.
366  if (Opc == Instruction::Sub && TD) {
367    GlobalValue *GV1, *GV2;
368    int64_t Offs1, Offs2;
369
370    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
371      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
372          GV1 == GV2) {
373        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
374        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
375      }
376  }
377
378  return 0;
379}
380
381/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
382/// constant expression, do so.
383static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps,
384                                         const Type *ResultTy,
385                                         LLVMContext &Context,
386                                         const TargetData *TD) {
387  Constant *Ptr = Ops[0];
388  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
389    return 0;
390
391  unsigned BitWidth = TD->getTypeSizeInBits(TD->getIntPtrType(Context));
392  APInt BasePtr(BitWidth, 0);
393  bool BaseIsInt = true;
394  if (!Ptr->isNullValue()) {
395    // If this is a inttoptr from a constant int, we can fold this as the base,
396    // otherwise we can't.
397    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
398      if (CE->getOpcode() == Instruction::IntToPtr)
399        if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) {
400          BasePtr = Base->getValue();
401          BasePtr.zextOrTrunc(BitWidth);
402        }
403
404    if (BasePtr == 0)
405      BaseIsInt = false;
406  }
407
408  // If this is a constant expr gep that is effectively computing an
409  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
410  for (unsigned i = 1; i != NumOps; ++i)
411    if (!isa<ConstantInt>(Ops[i]))
412      return 0;
413
414  APInt Offset = APInt(BitWidth,
415                       TD->getIndexedOffset(Ptr->getType(),
416                                            (Value**)Ops+1, NumOps-1));
417  // If the base value for this address is a literal integer value, fold the
418  // getelementptr to the resulting integer value casted to the pointer type.
419  if (BaseIsInt) {
420    Constant *C = ConstantInt::get(Context, Offset+BasePtr);
421    return ConstantExpr::getIntToPtr(C, ResultTy);
422  }
423
424  // Otherwise form a regular getelementptr. Recompute the indices so that
425  // we eliminate over-indexing of the notional static type array bounds.
426  // This makes it easy to determine if the getelementptr is "inbounds".
427  // Also, this helps GlobalOpt do SROA on GlobalVariables.
428  const Type *Ty = Ptr->getType();
429  SmallVector<Constant*, 32> NewIdxs;
430  do {
431    if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
432      // The only pointer indexing we'll do is on the first index of the GEP.
433      if (isa<PointerType>(ATy) && !NewIdxs.empty())
434        break;
435      // Determine which element of the array the offset points into.
436      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
437      if (ElemSize == 0)
438        return 0;
439      APInt NewIdx = Offset.udiv(ElemSize);
440      Offset -= NewIdx * ElemSize;
441      NewIdxs.push_back(ConstantInt::get(TD->getIntPtrType(Context), NewIdx));
442      Ty = ATy->getElementType();
443    } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
444      // Determine which field of the struct the offset points into. The
445      // getZExtValue is at least as safe as the StructLayout API because we
446      // know the offset is within the struct at this point.
447      const StructLayout &SL = *TD->getStructLayout(STy);
448      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
449      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Context), ElIdx));
450      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
451      Ty = STy->getTypeAtIndex(ElIdx);
452    } else {
453      // We've reached some non-indexable type.
454      break;
455    }
456  } while (Ty != cast<PointerType>(ResultTy)->getElementType());
457
458  // If we haven't used up the entire offset by descending the static
459  // type, then the offset is pointing into the middle of an indivisible
460  // member, so we can't simplify it.
461  if (Offset != 0)
462    return 0;
463
464  // Create a GEP.
465  Constant *C =
466    ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
467  assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
468         "Computed GetElementPtr has unexpected type!");
469
470  // If we ended up indexing a member with a type that doesn't match
471  // the type of what the original indices indexed, add a cast.
472  if (Ty != cast<PointerType>(ResultTy)->getElementType())
473    C = ConstantExpr::getBitCast(C, ResultTy);
474
475  return C;
476}
477
478/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
479/// targetdata.  Return 0 if unfoldable.
480static Constant *FoldBitCast(Constant *C, const Type *DestTy,
481                             const TargetData &TD, LLVMContext &Context) {
482  // If this is a bitcast from constant vector -> vector, fold it.
483  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
484    if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
485      // If the element types match, VMCore can fold it.
486      unsigned NumDstElt = DestVTy->getNumElements();
487      unsigned NumSrcElt = CV->getNumOperands();
488      if (NumDstElt == NumSrcElt)
489        return 0;
490
491      const Type *SrcEltTy = CV->getType()->getElementType();
492      const Type *DstEltTy = DestVTy->getElementType();
493
494      // Otherwise, we're changing the number of elements in a vector, which
495      // requires endianness information to do the right thing.  For example,
496      //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
497      // folds to (little endian):
498      //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
499      // and to (big endian):
500      //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
501
502      // First thing is first.  We only want to think about integer here, so if
503      // we have something in FP form, recast it as integer.
504      if (DstEltTy->isFloatingPoint()) {
505        // Fold to an vector of integers with same size as our FP type.
506        unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
507        const Type *DestIVTy = VectorType::get(
508                                 IntegerType::get(Context, FPWidth), NumDstElt);
509        // Recursively handle this integer conversion, if possible.
510        C = FoldBitCast(C, DestIVTy, TD, Context);
511        if (!C) return 0;
512
513        // Finally, VMCore can handle this now that #elts line up.
514        return ConstantExpr::getBitCast(C, DestTy);
515      }
516
517      // Okay, we know the destination is integer, if the input is FP, convert
518      // it to integer first.
519      if (SrcEltTy->isFloatingPoint()) {
520        unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
521        const Type *SrcIVTy = VectorType::get(
522                                 IntegerType::get(Context, FPWidth), NumSrcElt);
523        // Ask VMCore to do the conversion now that #elts line up.
524        C = ConstantExpr::getBitCast(C, SrcIVTy);
525        CV = dyn_cast<ConstantVector>(C);
526        if (!CV) return 0;  // If VMCore wasn't able to fold it, bail out.
527      }
528
529      // Now we know that the input and output vectors are both integer vectors
530      // of the same size, and that their #elements is not the same.  Do the
531      // conversion here, which depends on whether the input or output has
532      // more elements.
533      bool isLittleEndian = TD.isLittleEndian();
534
535      SmallVector<Constant*, 32> Result;
536      if (NumDstElt < NumSrcElt) {
537        // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
538        Constant *Zero = Constant::getNullValue(DstEltTy);
539        unsigned Ratio = NumSrcElt/NumDstElt;
540        unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
541        unsigned SrcElt = 0;
542        for (unsigned i = 0; i != NumDstElt; ++i) {
543          // Build each element of the result.
544          Constant *Elt = Zero;
545          unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
546          for (unsigned j = 0; j != Ratio; ++j) {
547            Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
548            if (!Src) return 0;  // Reject constantexpr elements.
549
550            // Zero extend the element to the right size.
551            Src = ConstantExpr::getZExt(Src, Elt->getType());
552
553            // Shift it to the right place, depending on endianness.
554            Src = ConstantExpr::getShl(Src,
555                             ConstantInt::get(Src->getType(), ShiftAmt));
556            ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
557
558            // Mix it in.
559            Elt = ConstantExpr::getOr(Elt, Src);
560          }
561          Result.push_back(Elt);
562        }
563      } else {
564        // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
565        unsigned Ratio = NumDstElt/NumSrcElt;
566        unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
567
568        // Loop over each source value, expanding into multiple results.
569        for (unsigned i = 0; i != NumSrcElt; ++i) {
570          Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
571          if (!Src) return 0;  // Reject constantexpr elements.
572
573          unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
574          for (unsigned j = 0; j != Ratio; ++j) {
575            // Shift the piece of the value into the right place, depending on
576            // endianness.
577            Constant *Elt = ConstantExpr::getLShr(Src,
578                            ConstantInt::get(Src->getType(), ShiftAmt));
579            ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
580
581            // Truncate and remember this piece.
582            Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
583          }
584        }
585      }
586
587      return ConstantVector::get(Result.data(), Result.size());
588    }
589  }
590
591  return 0;
592}
593
594
595//===----------------------------------------------------------------------===//
596// Constant Folding public APIs
597//===----------------------------------------------------------------------===//
598
599
600/// ConstantFoldInstruction - Attempt to constant fold the specified
601/// instruction.  If successful, the constant result is returned, if not, null
602/// is returned.  Note that this function can only fail when attempting to fold
603/// instructions like loads and stores, which have no constant expression form.
604///
605Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext &Context,
606                                        const TargetData *TD) {
607  if (PHINode *PN = dyn_cast<PHINode>(I)) {
608    if (PN->getNumIncomingValues() == 0)
609      return UndefValue::get(PN->getType());
610
611    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
612    if (Result == 0) return 0;
613
614    // Handle PHI nodes specially here...
615    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
616      if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
617        return 0;   // Not all the same incoming constants...
618
619    // If we reach here, all incoming values are the same constant.
620    return Result;
621  }
622
623  // Scan the operand list, checking to see if they are all constants, if so,
624  // hand off to ConstantFoldInstOperands.
625  SmallVector<Constant*, 8> Ops;
626  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
627    if (Constant *Op = dyn_cast<Constant>(*i))
628      Ops.push_back(Op);
629    else
630      return 0;  // All operands not constant!
631
632  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
633    return ConstantFoldCompareInstOperands(CI->getPredicate(),
634                                           Ops.data(), Ops.size(),
635                                           Context, TD);
636
637  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
638    return ConstantFoldLoadInst(LI, TD);
639
640  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
641                                  Ops.data(), Ops.size(), Context, TD);
642}
643
644/// ConstantFoldConstantExpression - Attempt to fold the constant expression
645/// using the specified TargetData.  If successful, the constant result is
646/// result is returned, if not, null is returned.
647Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
648                                               LLVMContext &Context,
649                                               const TargetData *TD) {
650  SmallVector<Constant*, 8> Ops;
651  for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
652    Ops.push_back(cast<Constant>(*i));
653
654  if (CE->isCompare())
655    return ConstantFoldCompareInstOperands(CE->getPredicate(),
656                                           Ops.data(), Ops.size(),
657                                           Context, TD);
658  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
659                                  Ops.data(), Ops.size(), Context, TD);
660}
661
662/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
663/// specified opcode and operands.  If successful, the constant result is
664/// returned, if not, null is returned.  Note that this function can fail when
665/// attempting to fold instructions like loads and stores, which have no
666/// constant expression form.
667///
668Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
669                                         Constant* const* Ops, unsigned NumOps,
670                                         LLVMContext &Context,
671                                         const TargetData *TD) {
672  // Handle easy binops first.
673  if (Instruction::isBinaryOp(Opcode)) {
674    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
675      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD,
676                                                  Context))
677        return C;
678
679    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
680  }
681
682  switch (Opcode) {
683  default: return 0;
684  case Instruction::Call:
685    if (Function *F = dyn_cast<Function>(Ops[0]))
686      if (canConstantFoldCallTo(F))
687        return ConstantFoldCall(F, Ops+1, NumOps-1);
688    return 0;
689  case Instruction::ICmp:
690  case Instruction::FCmp:
691    llvm_unreachable("This function is invalid for compares: no predicate specified");
692  case Instruction::PtrToInt:
693    // If the input is a inttoptr, eliminate the pair.  This requires knowing
694    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
695    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
696      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
697        Constant *Input = CE->getOperand(0);
698        unsigned InWidth = Input->getType()->getScalarSizeInBits();
699        if (TD->getPointerSizeInBits() < InWidth) {
700          Constant *Mask =
701            ConstantInt::get(Context, APInt::getLowBitsSet(InWidth,
702                                                  TD->getPointerSizeInBits()));
703          Input = ConstantExpr::getAnd(Input, Mask);
704        }
705        // Do a zext or trunc to get to the dest size.
706        return ConstantExpr::getIntegerCast(Input, DestTy, false);
707      }
708    }
709    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
710  case Instruction::IntToPtr:
711    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
712    // the int size is >= the ptr size.  This requires knowing the width of a
713    // pointer, so it can't be done in ConstantExpr::getCast.
714    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
715      if (TD &&
716          TD->getPointerSizeInBits() <=
717          CE->getType()->getScalarSizeInBits()) {
718        if (CE->getOpcode() == Instruction::PtrToInt) {
719          Constant *Input = CE->getOperand(0);
720          Constant *C = FoldBitCast(Input, DestTy, *TD, Context);
721          return C ? C : ConstantExpr::getBitCast(Input, DestTy);
722        }
723        // If there's a constant offset added to the integer value before
724        // it is casted back to a pointer, see if the expression can be
725        // converted into a GEP.
726        if (CE->getOpcode() == Instruction::Add)
727          if (ConstantInt *L = dyn_cast<ConstantInt>(CE->getOperand(0)))
728            if (ConstantExpr *R = dyn_cast<ConstantExpr>(CE->getOperand(1)))
729              if (R->getOpcode() == Instruction::PtrToInt)
730                if (GlobalVariable *GV =
731                      dyn_cast<GlobalVariable>(R->getOperand(0))) {
732                  const PointerType *GVTy = cast<PointerType>(GV->getType());
733                  if (const ArrayType *AT =
734                        dyn_cast<ArrayType>(GVTy->getElementType())) {
735                    const Type *ElTy = AT->getElementType();
736                    uint64_t AllocSize = TD->getTypeAllocSize(ElTy);
737                    APInt PSA(L->getValue().getBitWidth(), AllocSize);
738                    if (ElTy == cast<PointerType>(DestTy)->getElementType() &&
739                        L->getValue().urem(PSA) == 0) {
740                      APInt ElemIdx = L->getValue().udiv(PSA);
741                      if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(),
742                                            AT->getNumElements()))) {
743                        Constant *Index[] = {
744                          Constant::getNullValue(CE->getType()),
745                          ConstantInt::get(Context, ElemIdx)
746                        };
747                        return
748                        ConstantExpr::getGetElementPtr(GV, &Index[0], 2);
749                      }
750                    }
751                  }
752                }
753      }
754    }
755    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
756  case Instruction::Trunc:
757  case Instruction::ZExt:
758  case Instruction::SExt:
759  case Instruction::FPTrunc:
760  case Instruction::FPExt:
761  case Instruction::UIToFP:
762  case Instruction::SIToFP:
763  case Instruction::FPToUI:
764  case Instruction::FPToSI:
765      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
766  case Instruction::BitCast:
767    if (TD)
768      if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD, Context))
769        return C;
770    return ConstantExpr::getBitCast(Ops[0], DestTy);
771  case Instruction::Select:
772    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
773  case Instruction::ExtractElement:
774    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
775  case Instruction::InsertElement:
776    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
777  case Instruction::ShuffleVector:
778    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
779  case Instruction::GetElementPtr:
780    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD))
781      return C;
782
783    return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
784  }
785}
786
787/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
788/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
789/// returns a constant expression of the specified operands.
790///
791Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
792                                                Constant*const * Ops,
793                                                unsigned NumOps,
794                                                LLVMContext &Context,
795                                                const TargetData *TD) {
796  // fold: icmp (inttoptr x), null         -> icmp x, 0
797  // fold: icmp (ptrtoint x), 0            -> icmp x, null
798  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
799  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
800  //
801  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
802  // around to know if bit truncation is happening.
803  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) {
804    if (TD && Ops[1]->isNullValue()) {
805      const Type *IntPtrTy = TD->getIntPtrType(Context);
806      if (CE0->getOpcode() == Instruction::IntToPtr) {
807        // Convert the integer value to the right size to ensure we get the
808        // proper extension or truncation.
809        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
810                                                   IntPtrTy, false);
811        Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
812        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
813                                               Context, TD);
814      }
815
816      // Only do this transformation if the int is intptrty in size, otherwise
817      // there is a truncation or extension that we aren't modeling.
818      if (CE0->getOpcode() == Instruction::PtrToInt &&
819          CE0->getType() == IntPtrTy) {
820        Constant *C = CE0->getOperand(0);
821        Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) };
822        // FIXME!
823        return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
824                                               Context, TD);
825      }
826    }
827
828    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) {
829      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
830        const Type *IntPtrTy = TD->getIntPtrType(Context);
831
832        if (CE0->getOpcode() == Instruction::IntToPtr) {
833          // Convert the integer value to the right size to ensure we get the
834          // proper extension or truncation.
835          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
836                                                      IntPtrTy, false);
837          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
838                                                      IntPtrTy, false);
839          Constant *NewOps[] = { C0, C1 };
840          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
841                                                 Context, TD);
842        }
843
844        // Only do this transformation if the int is intptrty in size, otherwise
845        // there is a truncation or extension that we aren't modeling.
846        if ((CE0->getOpcode() == Instruction::PtrToInt &&
847             CE0->getType() == IntPtrTy &&
848             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType())) {
849          Constant *NewOps[] = {
850            CE0->getOperand(0), CE1->getOperand(0)
851          };
852          return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,
853                                                 Context, TD);
854        }
855      }
856    }
857  }
858  return ConstantExpr::getCompare(Predicate, Ops[0], Ops[1]);
859}
860
861
862/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
863/// getelementptr constantexpr, return the constant value being addressed by the
864/// constant expression, or null if something is funny and we can't decide.
865Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
866                                                       ConstantExpr *CE) {
867  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
868    return 0;  // Do not allow stepping over the value!
869
870  // Loop over all of the operands, tracking down which value we are
871  // addressing...
872  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
873  for (++I; I != E; ++I)
874    if (const StructType *STy = dyn_cast<StructType>(*I)) {
875      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
876      assert(CU->getZExtValue() < STy->getNumElements() &&
877             "Struct index out of range!");
878      unsigned El = (unsigned)CU->getZExtValue();
879      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
880        C = CS->getOperand(El);
881      } else if (isa<ConstantAggregateZero>(C)) {
882        C = Constant::getNullValue(STy->getElementType(El));
883      } else if (isa<UndefValue>(C)) {
884        C = UndefValue::get(STy->getElementType(El));
885      } else {
886        return 0;
887      }
888    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
889      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
890        if (CI->getZExtValue() >= ATy->getNumElements())
891         return 0;
892        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
893          C = CA->getOperand(CI->getZExtValue());
894        else if (isa<ConstantAggregateZero>(C))
895          C = Constant::getNullValue(ATy->getElementType());
896        else if (isa<UndefValue>(C))
897          C = UndefValue::get(ATy->getElementType());
898        else
899          return 0;
900      } else if (const VectorType *VTy = dyn_cast<VectorType>(*I)) {
901        if (CI->getZExtValue() >= VTy->getNumElements())
902          return 0;
903        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
904          C = CP->getOperand(CI->getZExtValue());
905        else if (isa<ConstantAggregateZero>(C))
906          C = Constant::getNullValue(VTy->getElementType());
907        else if (isa<UndefValue>(C))
908          C = UndefValue::get(VTy->getElementType());
909        else
910          return 0;
911      } else {
912        return 0;
913      }
914    } else {
915      return 0;
916    }
917  return C;
918}
919
920
921//===----------------------------------------------------------------------===//
922//  Constant Folding for Calls
923//
924
925/// canConstantFoldCallTo - Return true if its even possible to fold a call to
926/// the specified function.
927bool
928llvm::canConstantFoldCallTo(const Function *F) {
929  switch (F->getIntrinsicID()) {
930  case Intrinsic::sqrt:
931  case Intrinsic::powi:
932  case Intrinsic::bswap:
933  case Intrinsic::ctpop:
934  case Intrinsic::ctlz:
935  case Intrinsic::cttz:
936  case Intrinsic::uadd_with_overflow:
937  case Intrinsic::usub_with_overflow:
938  case Intrinsic::sadd_with_overflow:
939  case Intrinsic::ssub_with_overflow:
940    return true;
941  default:
942    return false;
943  case 0: break;
944  }
945
946  if (!F->hasName()) return false;
947  StringRef Name = F->getName();
948
949  // In these cases, the check of the length is required.  We don't want to
950  // return true for a name like "cos\0blah" which strcmp would return equal to
951  // "cos", but has length 8.
952  switch (Name[0]) {
953  default: return false;
954  case 'a':
955    return Name == "acos" || Name == "asin" ||
956      Name == "atan" || Name == "atan2";
957  case 'c':
958    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
959  case 'e':
960    return Name == "exp";
961  case 'f':
962    return Name == "fabs" || Name == "fmod" || Name == "floor";
963  case 'l':
964    return Name == "log" || Name == "log10";
965  case 'p':
966    return Name == "pow";
967  case 's':
968    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
969      Name == "sinf" || Name == "sqrtf";
970  case 't':
971    return Name == "tan" || Name == "tanh";
972  }
973}
974
975static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
976                                const Type *Ty, LLVMContext &Context) {
977  errno = 0;
978  V = NativeFP(V);
979  if (errno != 0) {
980    errno = 0;
981    return 0;
982  }
983
984  if (Ty->isFloatTy())
985    return ConstantFP::get(Context, APFloat((float)V));
986  if (Ty->isDoubleTy())
987    return ConstantFP::get(Context, APFloat(V));
988  llvm_unreachable("Can only constant fold float/double");
989  return 0; // dummy return to suppress warning
990}
991
992static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
993                                      double V, double W,
994                                      const Type *Ty,
995                                      LLVMContext &Context) {
996  errno = 0;
997  V = NativeFP(V, W);
998  if (errno != 0) {
999    errno = 0;
1000    return 0;
1001  }
1002
1003  if (Ty->isFloatTy())
1004    return ConstantFP::get(Context, APFloat((float)V));
1005  if (Ty->isDoubleTy())
1006    return ConstantFP::get(Context, APFloat(V));
1007  llvm_unreachable("Can only constant fold float/double");
1008  return 0; // dummy return to suppress warning
1009}
1010
1011/// ConstantFoldCall - Attempt to constant fold a call to the specified function
1012/// with the specified arguments, returning null if unsuccessful.
1013Constant *
1014llvm::ConstantFoldCall(Function *F,
1015                       Constant *const *Operands, unsigned NumOperands) {
1016  if (!F->hasName()) return 0;
1017  LLVMContext &Context = F->getContext();
1018  StringRef Name = F->getName();
1019
1020  const Type *Ty = F->getReturnType();
1021  if (NumOperands == 1) {
1022    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1023      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1024        return 0;
1025      /// Currently APFloat versions of these functions do not exist, so we use
1026      /// the host native double versions.  Float versions are not called
1027      /// directly but for all these it is true (float)(f((double)arg)) ==
1028      /// f(arg).  Long double not supported yet.
1029      double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
1030                                     Op->getValueAPF().convertToDouble();
1031      switch (Name[0]) {
1032      case 'a':
1033        if (Name == "acos")
1034          return ConstantFoldFP(acos, V, Ty, Context);
1035        else if (Name == "asin")
1036          return ConstantFoldFP(asin, V, Ty, Context);
1037        else if (Name == "atan")
1038          return ConstantFoldFP(atan, V, Ty, Context);
1039        break;
1040      case 'c':
1041        if (Name == "ceil")
1042          return ConstantFoldFP(ceil, V, Ty, Context);
1043        else if (Name == "cos")
1044          return ConstantFoldFP(cos, V, Ty, Context);
1045        else if (Name == "cosh")
1046          return ConstantFoldFP(cosh, V, Ty, Context);
1047        else if (Name == "cosf")
1048          return ConstantFoldFP(cos, V, Ty, Context);
1049        break;
1050      case 'e':
1051        if (Name == "exp")
1052          return ConstantFoldFP(exp, V, Ty, Context);
1053        break;
1054      case 'f':
1055        if (Name == "fabs")
1056          return ConstantFoldFP(fabs, V, Ty, Context);
1057        else if (Name == "floor")
1058          return ConstantFoldFP(floor, V, Ty, Context);
1059        break;
1060      case 'l':
1061        if (Name == "log" && V > 0)
1062          return ConstantFoldFP(log, V, Ty, Context);
1063        else if (Name == "log10" && V > 0)
1064          return ConstantFoldFP(log10, V, Ty, Context);
1065        else if (Name == "llvm.sqrt.f32" ||
1066                 Name == "llvm.sqrt.f64") {
1067          if (V >= -0.0)
1068            return ConstantFoldFP(sqrt, V, Ty, Context);
1069          else // Undefined
1070            return Constant::getNullValue(Ty);
1071        }
1072        break;
1073      case 's':
1074        if (Name == "sin")
1075          return ConstantFoldFP(sin, V, Ty, Context);
1076        else if (Name == "sinh")
1077          return ConstantFoldFP(sinh, V, Ty, Context);
1078        else if (Name == "sqrt" && V >= 0)
1079          return ConstantFoldFP(sqrt, V, Ty, Context);
1080        else if (Name == "sqrtf" && V >= 0)
1081          return ConstantFoldFP(sqrt, V, Ty, Context);
1082        else if (Name == "sinf")
1083          return ConstantFoldFP(sin, V, Ty, Context);
1084        break;
1085      case 't':
1086        if (Name == "tan")
1087          return ConstantFoldFP(tan, V, Ty, Context);
1088        else if (Name == "tanh")
1089          return ConstantFoldFP(tanh, V, Ty, Context);
1090        break;
1091      default:
1092        break;
1093      }
1094      return 0;
1095    }
1096
1097
1098    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1099      if (Name.startswith("llvm.bswap"))
1100        return ConstantInt::get(Context, Op->getValue().byteSwap());
1101      else if (Name.startswith("llvm.ctpop"))
1102        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1103      else if (Name.startswith("llvm.cttz"))
1104        return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
1105      else if (Name.startswith("llvm.ctlz"))
1106        return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
1107      return 0;
1108    }
1109
1110    return 0;
1111  }
1112
1113  if (NumOperands == 2) {
1114    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1115      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1116        return 0;
1117      double Op1V = Ty->isFloatTy() ?
1118                      (double)Op1->getValueAPF().convertToFloat() :
1119                      Op1->getValueAPF().convertToDouble();
1120      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1121        if (Op2->getType() != Op1->getType())
1122          return 0;
1123
1124        double Op2V = Ty->isFloatTy() ?
1125                      (double)Op2->getValueAPF().convertToFloat():
1126                      Op2->getValueAPF().convertToDouble();
1127
1128        if (Name == "pow")
1129          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty, Context);
1130        if (Name == "fmod")
1131          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty, Context);
1132        if (Name == "atan2")
1133          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty, Context);
1134      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1135        if (Name == "llvm.powi.f32")
1136          return ConstantFP::get(Context, APFloat((float)std::pow((float)Op1V,
1137                                                 (int)Op2C->getZExtValue())));
1138        if (Name == "llvm.powi.f64")
1139          return ConstantFP::get(Context, APFloat((double)std::pow((double)Op1V,
1140                                                 (int)Op2C->getZExtValue())));
1141      }
1142      return 0;
1143    }
1144
1145
1146    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1147      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1148        switch (F->getIntrinsicID()) {
1149        default: break;
1150        case Intrinsic::uadd_with_overflow: {
1151          Constant *Res = ConstantExpr::getAdd(Op1, Op2);           // result.
1152          Constant *Ops[] = {
1153            Res, ConstantExpr::getICmp(CmpInst::ICMP_ULT, Res, Op1) // overflow.
1154          };
1155          return ConstantStruct::get(F->getContext(), Ops, 2, false);
1156        }
1157        case Intrinsic::usub_with_overflow: {
1158          Constant *Res = ConstantExpr::getSub(Op1, Op2);           // result.
1159          Constant *Ops[] = {
1160            Res, ConstantExpr::getICmp(CmpInst::ICMP_UGT, Res, Op1) // overflow.
1161          };
1162          return ConstantStruct::get(F->getContext(), Ops, 2, false);
1163        }
1164        case Intrinsic::sadd_with_overflow: {
1165          Constant *Res = ConstantExpr::getAdd(Op1, Op2);           // result.
1166          Constant *Overflow = ConstantExpr::getSelect(
1167              ConstantExpr::getICmp(CmpInst::ICMP_SGT,
1168                ConstantInt::get(Op1->getType(), 0), Op1),
1169              ConstantExpr::getICmp(CmpInst::ICMP_SGT, Res, Op2),
1170              ConstantExpr::getICmp(CmpInst::ICMP_SLT, Res, Op2)); // overflow.
1171
1172          Constant *Ops[] = { Res, Overflow };
1173          return ConstantStruct::get(F->getContext(), Ops, 2, false);
1174        }
1175        case Intrinsic::ssub_with_overflow: {
1176          Constant *Res = ConstantExpr::getSub(Op1, Op2);           // result.
1177          Constant *Overflow = ConstantExpr::getSelect(
1178              ConstantExpr::getICmp(CmpInst::ICMP_SGT,
1179                ConstantInt::get(Op2->getType(), 0), Op2),
1180              ConstantExpr::getICmp(CmpInst::ICMP_SLT, Res, Op1),
1181              ConstantExpr::getICmp(CmpInst::ICMP_SGT, Res, Op1)); // overflow.
1182
1183          Constant *Ops[] = { Res, Overflow };
1184          return ConstantStruct::get(F->getContext(), Ops, 2, false);
1185        }
1186        }
1187      }
1188
1189      return 0;
1190    }
1191    return 0;
1192  }
1193  return 0;
1194}
1195
1196