ConstantFolding.cpp revision 8f73deaa8732a556046bf4ac6207be55972e3b74
1//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines routines for folding instructions into constants.
11//
12// Also, to supplement the basic VMCore ConstantExpr simplifications,
13// this file defines some additional folding routines that can make use of
14// TargetData information. These functions cannot go in VMCore due to library
15// dependency issues.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringMap.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/MathExtras.h"
33#include <cerrno>
34#include <cmath>
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38// Constant Folding internal helper functions
39//===----------------------------------------------------------------------===//
40
41/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
42/// TargetData.  This always returns a non-null constant, but it may be a
43/// ConstantExpr if unfoldable.
44static Constant *FoldBitCast(Constant *C, const Type *DestTy,
45                             const TargetData &TD) {
46
47  // This only handles casts to vectors currently.
48  const VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
49  if (DestVTy == 0)
50    return ConstantExpr::getBitCast(C, DestTy);
51
52  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
53  // vector so the code below can handle it uniformly.
54  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
55    Constant *Ops = C; // don't take the address of C!
56    return FoldBitCast(ConstantVector::get(&Ops, 1), DestTy, TD);
57  }
58
59  // If this is a bitcast from constant vector -> vector, fold it.
60  ConstantVector *CV = dyn_cast<ConstantVector>(C);
61  if (CV == 0)
62    return ConstantExpr::getBitCast(C, DestTy);
63
64  // If the element types match, VMCore can fold it.
65  unsigned NumDstElt = DestVTy->getNumElements();
66  unsigned NumSrcElt = CV->getNumOperands();
67  if (NumDstElt == NumSrcElt)
68    return ConstantExpr::getBitCast(C, DestTy);
69
70  const Type *SrcEltTy = CV->getType()->getElementType();
71  const Type *DstEltTy = DestVTy->getElementType();
72
73  // Otherwise, we're changing the number of elements in a vector, which
74  // requires endianness information to do the right thing.  For example,
75  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
76  // folds to (little endian):
77  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
78  // and to (big endian):
79  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
80
81  // First thing is first.  We only want to think about integer here, so if
82  // we have something in FP form, recast it as integer.
83  if (DstEltTy->isFloatingPoint()) {
84    // Fold to an vector of integers with same size as our FP type.
85    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
86    const Type *DestIVTy =
87      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
88    // Recursively handle this integer conversion, if possible.
89    C = FoldBitCast(C, DestIVTy, TD);
90    if (!C) return ConstantExpr::getBitCast(C, DestTy);
91
92    // Finally, VMCore can handle this now that #elts line up.
93    return ConstantExpr::getBitCast(C, DestTy);
94  }
95
96  // Okay, we know the destination is integer, if the input is FP, convert
97  // it to integer first.
98  if (SrcEltTy->isFloatingPoint()) {
99    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
100    const Type *SrcIVTy =
101      VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
102    // Ask VMCore to do the conversion now that #elts line up.
103    C = ConstantExpr::getBitCast(C, SrcIVTy);
104    CV = dyn_cast<ConstantVector>(C);
105    if (!CV)  // If VMCore wasn't able to fold it, bail out.
106      return C;
107  }
108
109  // Now we know that the input and output vectors are both integer vectors
110  // of the same size, and that their #elements is not the same.  Do the
111  // conversion here, which depends on whether the input or output has
112  // more elements.
113  bool isLittleEndian = TD.isLittleEndian();
114
115  SmallVector<Constant*, 32> Result;
116  if (NumDstElt < NumSrcElt) {
117    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
118    Constant *Zero = Constant::getNullValue(DstEltTy);
119    unsigned Ratio = NumSrcElt/NumDstElt;
120    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
121    unsigned SrcElt = 0;
122    for (unsigned i = 0; i != NumDstElt; ++i) {
123      // Build each element of the result.
124      Constant *Elt = Zero;
125      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
126      for (unsigned j = 0; j != Ratio; ++j) {
127        Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
128        if (!Src)  // Reject constantexpr elements.
129          return ConstantExpr::getBitCast(C, DestTy);
130
131        // Zero extend the element to the right size.
132        Src = ConstantExpr::getZExt(Src, Elt->getType());
133
134        // Shift it to the right place, depending on endianness.
135        Src = ConstantExpr::getShl(Src,
136                                   ConstantInt::get(Src->getType(), ShiftAmt));
137        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
138
139        // Mix it in.
140        Elt = ConstantExpr::getOr(Elt, Src);
141      }
142      Result.push_back(Elt);
143    }
144  } else {
145    // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
146    unsigned Ratio = NumDstElt/NumSrcElt;
147    unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
148
149    // Loop over each source value, expanding into multiple results.
150    for (unsigned i = 0; i != NumSrcElt; ++i) {
151      Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
152      if (!Src)  // Reject constantexpr elements.
153        return ConstantExpr::getBitCast(C, DestTy);
154
155      unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
156      for (unsigned j = 0; j != Ratio; ++j) {
157        // Shift the piece of the value into the right place, depending on
158        // endianness.
159        Constant *Elt = ConstantExpr::getLShr(Src,
160                                    ConstantInt::get(Src->getType(), ShiftAmt));
161        ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
162
163        // Truncate and remember this piece.
164        Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
165      }
166    }
167  }
168
169  return ConstantVector::get(Result.data(), Result.size());
170}
171
172
173/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
174/// from a global, return the global and the constant.  Because of
175/// constantexprs, this function is recursive.
176static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
177                                       int64_t &Offset, const TargetData &TD) {
178  // Trivial case, constant is the global.
179  if ((GV = dyn_cast<GlobalValue>(C))) {
180    Offset = 0;
181    return true;
182  }
183
184  // Otherwise, if this isn't a constant expr, bail out.
185  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
186  if (!CE) return false;
187
188  // Look through ptr->int and ptr->ptr casts.
189  if (CE->getOpcode() == Instruction::PtrToInt ||
190      CE->getOpcode() == Instruction::BitCast)
191    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
192
193  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
194  if (CE->getOpcode() == Instruction::GetElementPtr) {
195    // Cannot compute this if the element type of the pointer is missing size
196    // info.
197    if (!cast<PointerType>(CE->getOperand(0)->getType())
198                 ->getElementType()->isSized())
199      return false;
200
201    // If the base isn't a global+constant, we aren't either.
202    if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
203      return false;
204
205    // Otherwise, add any offset that our operands provide.
206    gep_type_iterator GTI = gep_type_begin(CE);
207    for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
208         i != e; ++i, ++GTI) {
209      ConstantInt *CI = dyn_cast<ConstantInt>(*i);
210      if (!CI) return false;  // Index isn't a simple constant?
211      if (CI->getZExtValue() == 0) continue;  // Not adding anything.
212
213      if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
214        // N = N + Offset
215        Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
216      } else {
217        const SequentialType *SQT = cast<SequentialType>(*GTI);
218        Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
219      }
220    }
221    return true;
222  }
223
224  return false;
225}
226
227/// ReadDataFromGlobal - Recursive helper to read bits out of global.  C is the
228/// constant being copied out of. ByteOffset is an offset into C.  CurPtr is the
229/// pointer to copy results into and BytesLeft is the number of bytes left in
230/// the CurPtr buffer.  TD is the target data.
231static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
232                               unsigned char *CurPtr, unsigned BytesLeft,
233                               const TargetData &TD) {
234  assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
235         "Out of range access");
236
237  // If this element is zero or undefined, we can just return since *CurPtr is
238  // zero initialized.
239  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
240    return true;
241
242  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
243    if (CI->getBitWidth() > 64 ||
244        (CI->getBitWidth() & 7) != 0)
245      return false;
246
247    uint64_t Val = CI->getZExtValue();
248    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
249
250    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
251      CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
252      ++ByteOffset;
253    }
254    return true;
255  }
256
257  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
258    if (CFP->getType()->isDoubleTy()) {
259      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
260      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
261    }
262    if (CFP->getType()->isFloatTy()){
263      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
264      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
265    }
266    return false;
267  }
268
269  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
270    const StructLayout *SL = TD.getStructLayout(CS->getType());
271    unsigned Index = SL->getElementContainingOffset(ByteOffset);
272    uint64_t CurEltOffset = SL->getElementOffset(Index);
273    ByteOffset -= CurEltOffset;
274
275    while (1) {
276      // If the element access is to the element itself and not to tail padding,
277      // read the bytes from the element.
278      uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
279
280      if (ByteOffset < EltSize &&
281          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
282                              BytesLeft, TD))
283        return false;
284
285      ++Index;
286
287      // Check to see if we read from the last struct element, if so we're done.
288      if (Index == CS->getType()->getNumElements())
289        return true;
290
291      // If we read all of the bytes we needed from this element we're done.
292      uint64_t NextEltOffset = SL->getElementOffset(Index);
293
294      if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
295        return true;
296
297      // Move to the next element of the struct.
298      CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
299      BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
300      ByteOffset = 0;
301      CurEltOffset = NextEltOffset;
302    }
303    // not reached.
304  }
305
306  if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
307    uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
308    uint64_t Index = ByteOffset / EltSize;
309    uint64_t Offset = ByteOffset - Index * EltSize;
310    for (; Index != CA->getType()->getNumElements(); ++Index) {
311      if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
312                              BytesLeft, TD))
313        return false;
314      if (EltSize >= BytesLeft)
315        return true;
316
317      Offset = 0;
318      BytesLeft -= EltSize;
319      CurPtr += EltSize;
320    }
321    return true;
322  }
323
324  if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
325    uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
326    uint64_t Index = ByteOffset / EltSize;
327    uint64_t Offset = ByteOffset - Index * EltSize;
328    for (; Index != CV->getType()->getNumElements(); ++Index) {
329      if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
330                              BytesLeft, TD))
331        return false;
332      if (EltSize >= BytesLeft)
333        return true;
334
335      Offset = 0;
336      BytesLeft -= EltSize;
337      CurPtr += EltSize;
338    }
339    return true;
340  }
341
342  // Otherwise, unknown initializer type.
343  return false;
344}
345
346static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
347                                                 const TargetData &TD) {
348  const Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
349  const IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
350
351  // If this isn't an integer load we can't fold it directly.
352  if (!IntType) {
353    // If this is a float/double load, we can try folding it as an int32/64 load
354    // and then bitcast the result.  This can be useful for union cases.  Note
355    // that address spaces don't matter here since we're not going to result in
356    // an actual new load.
357    const Type *MapTy;
358    if (LoadTy->isFloatTy())
359      MapTy = Type::getInt32PtrTy(C->getContext());
360    else if (LoadTy->isDoubleTy())
361      MapTy = Type::getInt64PtrTy(C->getContext());
362    else if (isa<VectorType>(LoadTy)) {
363      MapTy = IntegerType::get(C->getContext(),
364                               TD.getTypeAllocSizeInBits(LoadTy));
365      MapTy = PointerType::getUnqual(MapTy);
366    } else
367      return 0;
368
369    C = FoldBitCast(C, MapTy, TD);
370    if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
371      return FoldBitCast(Res, LoadTy, TD);
372    return 0;
373  }
374
375  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
376  if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
377
378  GlobalValue *GVal;
379  int64_t Offset;
380  if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
381    return 0;
382
383  GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
384  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
385      !GV->getInitializer()->getType()->isSized())
386    return 0;
387
388  // If we're loading off the beginning of the global, some bytes may be valid,
389  // but we don't try to handle this.
390  if (Offset < 0) return 0;
391
392  // If we're not accessing anything in this constant, the result is undefined.
393  if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
394    return UndefValue::get(IntType);
395
396  unsigned char RawBytes[32] = {0};
397  if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
398                          BytesLoaded, TD))
399    return 0;
400
401  APInt ResultVal(IntType->getBitWidth(), 0);
402  for (unsigned i = 0; i != BytesLoaded; ++i) {
403    ResultVal <<= 8;
404    ResultVal |= APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1-i]);
405  }
406
407  return ConstantInt::get(IntType->getContext(), ResultVal);
408}
409
410/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
411/// produce if it is constant and determinable.  If this is not determinable,
412/// return null.
413Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
414                                             const TargetData *TD) {
415  // First, try the easy cases:
416  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
417    if (GV->isConstant() && GV->hasDefinitiveInitializer())
418      return GV->getInitializer();
419
420  // If the loaded value isn't a constant expr, we can't handle it.
421  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
422  if (!CE) return 0;
423
424  if (CE->getOpcode() == Instruction::GetElementPtr) {
425    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
426      if (GV->isConstant() && GV->hasDefinitiveInitializer())
427        if (Constant *V =
428             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
429          return V;
430  }
431
432  // Instead of loading constant c string, use corresponding integer value
433  // directly if string length is small enough.
434  std::string Str;
435  if (TD && GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
436    unsigned StrLen = Str.length();
437    const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
438    unsigned NumBits = Ty->getPrimitiveSizeInBits();
439    // Replace LI with immediate integer store.
440    if ((NumBits >> 3) == StrLen + 1) {
441      APInt StrVal(NumBits, 0);
442      APInt SingleChar(NumBits, 0);
443      if (TD->isLittleEndian()) {
444        for (signed i = StrLen-1; i >= 0; i--) {
445          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
446          StrVal = (StrVal << 8) | SingleChar;
447        }
448      } else {
449        for (unsigned i = 0; i < StrLen; i++) {
450          SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
451          StrVal = (StrVal << 8) | SingleChar;
452        }
453        // Append NULL at the end.
454        SingleChar = 0;
455        StrVal = (StrVal << 8) | SingleChar;
456      }
457      return ConstantInt::get(CE->getContext(), StrVal);
458    }
459  }
460
461  // If this load comes from anywhere in a constant global, and if the global
462  // is all undef or zero, we know what it loads.
463  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getUnderlyingObject())){
464    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
465      const Type *ResTy = cast<PointerType>(C->getType())->getElementType();
466      if (GV->getInitializer()->isNullValue())
467        return Constant::getNullValue(ResTy);
468      if (isa<UndefValue>(GV->getInitializer()))
469        return UndefValue::get(ResTy);
470    }
471  }
472
473  // Try hard to fold loads from bitcasted strange and non-type-safe things.  We
474  // currently don't do any of this for big endian systems.  It can be
475  // generalized in the future if someone is interested.
476  if (TD && TD->isLittleEndian())
477    return FoldReinterpretLoadFromConstPtr(CE, *TD);
478  return 0;
479}
480
481static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
482  if (LI->isVolatile()) return 0;
483
484  if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
485    return ConstantFoldLoadFromConstPtr(C, TD);
486
487  return 0;
488}
489
490/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
491/// Attempt to symbolically evaluate the result of a binary operator merging
492/// these together.  If target data info is available, it is provided as TD,
493/// otherwise TD is null.
494static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
495                                           Constant *Op1, const TargetData *TD){
496  // SROA
497
498  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
499  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
500  // bits.
501
502
503  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
504  // constant.  This happens frequently when iterating over a global array.
505  if (Opc == Instruction::Sub && TD) {
506    GlobalValue *GV1, *GV2;
507    int64_t Offs1, Offs2;
508
509    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
510      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
511          GV1 == GV2) {
512        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
513        return ConstantInt::get(Op0->getType(), Offs1-Offs2);
514      }
515  }
516
517  return 0;
518}
519
520/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
521/// constant expression, do so.
522static Constant *SymbolicallyEvaluateGEP(Constant *const *Ops, unsigned NumOps,
523                                         const Type *ResultTy,
524                                         const TargetData *TD) {
525  Constant *Ptr = Ops[0];
526  if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized())
527    return 0;
528
529  unsigned BitWidth =
530    TD->getTypeSizeInBits(TD->getIntPtrType(Ptr->getContext()));
531  APInt BasePtr(BitWidth, 0);
532  bool BaseIsInt = true;
533  if (!Ptr->isNullValue()) {
534    // If this is a inttoptr from a constant int, we can fold this as the base,
535    // otherwise we can't.
536    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
537      if (CE->getOpcode() == Instruction::IntToPtr)
538        if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) {
539          BasePtr = Base->getValue();
540          BasePtr.zextOrTrunc(BitWidth);
541        }
542
543    if (BasePtr == 0)
544      BaseIsInt = false;
545  }
546
547  // If this is a constant expr gep that is effectively computing an
548  // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
549  for (unsigned i = 1; i != NumOps; ++i)
550    if (!isa<ConstantInt>(Ops[i]))
551      return 0;
552
553  APInt Offset = APInt(BitWidth,
554                       TD->getIndexedOffset(Ptr->getType(),
555                                            (Value**)Ops+1, NumOps-1));
556  // If the base value for this address is a literal integer value, fold the
557  // getelementptr to the resulting integer value casted to the pointer type.
558  if (BaseIsInt) {
559    Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
560    return ConstantExpr::getIntToPtr(C, ResultTy);
561  }
562
563  // Otherwise form a regular getelementptr. Recompute the indices so that
564  // we eliminate over-indexing of the notional static type array bounds.
565  // This makes it easy to determine if the getelementptr is "inbounds".
566  // Also, this helps GlobalOpt do SROA on GlobalVariables.
567  const Type *Ty = Ptr->getType();
568  SmallVector<Constant*, 32> NewIdxs;
569  do {
570    if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
571      // The only pointer indexing we'll do is on the first index of the GEP.
572      if (isa<PointerType>(ATy) && !NewIdxs.empty())
573        break;
574      // Determine which element of the array the offset points into.
575      APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
576      if (ElemSize == 0)
577        return 0;
578      APInt NewIdx = Offset.udiv(ElemSize);
579      Offset -= NewIdx * ElemSize;
580      NewIdxs.push_back(ConstantInt::get(TD->getIntPtrType(Ty->getContext()),
581                                         NewIdx));
582      Ty = ATy->getElementType();
583    } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
584      // Determine which field of the struct the offset points into. The
585      // getZExtValue is at least as safe as the StructLayout API because we
586      // know the offset is within the struct at this point.
587      const StructLayout &SL = *TD->getStructLayout(STy);
588      unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
589      NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
590                                         ElIdx));
591      Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
592      Ty = STy->getTypeAtIndex(ElIdx);
593    } else {
594      // We've reached some non-indexable type.
595      break;
596    }
597  } while (Ty != cast<PointerType>(ResultTy)->getElementType());
598
599  // If we haven't used up the entire offset by descending the static
600  // type, then the offset is pointing into the middle of an indivisible
601  // member, so we can't simplify it.
602  if (Offset != 0)
603    return 0;
604
605  // Create a GEP.
606  Constant *C =
607    ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size());
608  assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
609         "Computed GetElementPtr has unexpected type!");
610
611  // If we ended up indexing a member with a type that doesn't match
612  // the type of what the original indices indexed, add a cast.
613  if (Ty != cast<PointerType>(ResultTy)->getElementType())
614    C = FoldBitCast(C, ResultTy, *TD);
615
616  return C;
617}
618
619
620
621//===----------------------------------------------------------------------===//
622// Constant Folding public APIs
623//===----------------------------------------------------------------------===//
624
625
626/// ConstantFoldInstruction - Attempt to constant fold the specified
627/// instruction.  If successful, the constant result is returned, if not, null
628/// is returned.  Note that this function can only fail when attempting to fold
629/// instructions like loads and stores, which have no constant expression form.
630///
631Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
632  if (PHINode *PN = dyn_cast<PHINode>(I)) {
633    if (PN->getNumIncomingValues() == 0)
634      return UndefValue::get(PN->getType());
635
636    Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
637    if (Result == 0) return 0;
638
639    // Handle PHI nodes specially here...
640    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
641      if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
642        return 0;   // Not all the same incoming constants...
643
644    // If we reach here, all incoming values are the same constant.
645    return Result;
646  }
647
648  // Scan the operand list, checking to see if they are all constants, if so,
649  // hand off to ConstantFoldInstOperands.
650  SmallVector<Constant*, 8> Ops;
651  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
652    if (Constant *Op = dyn_cast<Constant>(*i))
653      Ops.push_back(Op);
654    else
655      return 0;  // All operands not constant!
656
657  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
658    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
659                                           TD);
660
661  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
662    return ConstantFoldLoadInst(LI, TD);
663
664  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
665                                  Ops.data(), Ops.size(), TD);
666}
667
668/// ConstantFoldConstantExpression - Attempt to fold the constant expression
669/// using the specified TargetData.  If successful, the constant result is
670/// result is returned, if not, null is returned.
671Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE,
672                                               const TargetData *TD) {
673  SmallVector<Constant*, 8> Ops;
674  for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i)
675    Ops.push_back(cast<Constant>(*i));
676
677  if (CE->isCompare())
678    return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
679                                           TD);
680  return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(),
681                                  Ops.data(), Ops.size(), TD);
682}
683
684/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
685/// specified opcode and operands.  If successful, the constant result is
686/// returned, if not, null is returned.  Note that this function can fail when
687/// attempting to fold instructions like loads and stores, which have no
688/// constant expression form.
689///
690Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,
691                                         Constant* const* Ops, unsigned NumOps,
692                                         const TargetData *TD) {
693  // Handle easy binops first.
694  if (Instruction::isBinaryOp(Opcode)) {
695    if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
696      if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
697        return C;
698
699    return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
700  }
701
702  switch (Opcode) {
703  default: return 0;
704  case Instruction::Call:
705    if (Function *F = dyn_cast<Function>(Ops[0]))
706      if (canConstantFoldCallTo(F))
707        return ConstantFoldCall(F, Ops+1, NumOps-1);
708    return 0;
709  case Instruction::ICmp:
710  case Instruction::FCmp:
711    llvm_unreachable("This function is invalid for compares: no predicate specified");
712  case Instruction::PtrToInt:
713    // If the input is a inttoptr, eliminate the pair.  This requires knowing
714    // the width of a pointer, so it can't be done in ConstantExpr::getCast.
715    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
716      if (TD && CE->getOpcode() == Instruction::IntToPtr) {
717        Constant *Input = CE->getOperand(0);
718        unsigned InWidth = Input->getType()->getScalarSizeInBits();
719        if (TD->getPointerSizeInBits() < InWidth) {
720          Constant *Mask =
721            ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
722                                                  TD->getPointerSizeInBits()));
723          Input = ConstantExpr::getAnd(Input, Mask);
724        }
725        // Do a zext or trunc to get to the dest size.
726        return ConstantExpr::getIntegerCast(Input, DestTy, false);
727      }
728    }
729    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
730  case Instruction::IntToPtr:
731    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
732    // the int size is >= the ptr size.  This requires knowing the width of a
733    // pointer, so it can't be done in ConstantExpr::getCast.
734    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
735      if (TD &&
736          TD->getPointerSizeInBits() <=
737          CE->getType()->getScalarSizeInBits()) {
738        if (CE->getOpcode() == Instruction::PtrToInt)
739          return FoldBitCast(CE->getOperand(0), DestTy, *TD);
740
741        // If there's a constant offset added to the integer value before
742        // it is casted back to a pointer, see if the expression can be
743        // converted into a GEP.
744        if (CE->getOpcode() == Instruction::Add)
745          if (ConstantInt *L = dyn_cast<ConstantInt>(CE->getOperand(0)))
746            if (ConstantExpr *R = dyn_cast<ConstantExpr>(CE->getOperand(1)))
747              if (R->getOpcode() == Instruction::PtrToInt)
748                if (GlobalVariable *GV =
749                      dyn_cast<GlobalVariable>(R->getOperand(0))) {
750                  const PointerType *GVTy = cast<PointerType>(GV->getType());
751                  if (const ArrayType *AT =
752                        dyn_cast<ArrayType>(GVTy->getElementType())) {
753                    const Type *ElTy = AT->getElementType();
754                    uint64_t AllocSize = TD->getTypeAllocSize(ElTy);
755                    APInt PSA(L->getValue().getBitWidth(), AllocSize);
756                    if (ElTy == cast<PointerType>(DestTy)->getElementType() &&
757                        L->getValue().urem(PSA) == 0) {
758                      APInt ElemIdx = L->getValue().udiv(PSA);
759                      if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(),
760                                            AT->getNumElements()))) {
761                        Constant *Index[] = {
762                          Constant::getNullValue(CE->getType()),
763                          ConstantInt::get(ElTy->getContext(), ElemIdx)
764                        };
765                        return
766                        ConstantExpr::getGetElementPtr(GV, &Index[0], 2);
767                      }
768                    }
769                  }
770                }
771      }
772    }
773    return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
774  case Instruction::Trunc:
775  case Instruction::ZExt:
776  case Instruction::SExt:
777  case Instruction::FPTrunc:
778  case Instruction::FPExt:
779  case Instruction::UIToFP:
780  case Instruction::SIToFP:
781  case Instruction::FPToUI:
782  case Instruction::FPToSI:
783      return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
784  case Instruction::BitCast:
785    if (TD)
786      return FoldBitCast(Ops[0], DestTy, *TD);
787    return ConstantExpr::getBitCast(Ops[0], DestTy);
788  case Instruction::Select:
789    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
790  case Instruction::ExtractElement:
791    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
792  case Instruction::InsertElement:
793    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
794  case Instruction::ShuffleVector:
795    return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
796  case Instruction::GetElementPtr:
797    if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, TD))
798      return C;
799
800    return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
801  }
802}
803
804/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
805/// instruction (icmp/fcmp) with the specified operands.  If it fails, it
806/// returns a constant expression of the specified operands.
807///
808Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
809                                                Constant *Ops0, Constant *Ops1,
810                                                const TargetData *TD) {
811  // fold: icmp (inttoptr x), null         -> icmp x, 0
812  // fold: icmp (ptrtoint x), 0            -> icmp x, null
813  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
814  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
815  //
816  // ConstantExpr::getCompare cannot do this, because it doesn't have TD
817  // around to know if bit truncation is happening.
818  if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
819    if (TD && Ops1->isNullValue()) {
820      const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
821      if (CE0->getOpcode() == Instruction::IntToPtr) {
822        // Convert the integer value to the right size to ensure we get the
823        // proper extension or truncation.
824        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
825                                                   IntPtrTy, false);
826        Constant *Null = Constant::getNullValue(C->getType());
827        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
828      }
829
830      // Only do this transformation if the int is intptrty in size, otherwise
831      // there is a truncation or extension that we aren't modeling.
832      if (CE0->getOpcode() == Instruction::PtrToInt &&
833          CE0->getType() == IntPtrTy) {
834        Constant *C = CE0->getOperand(0);
835        Constant *Null = Constant::getNullValue(C->getType());
836        return ConstantFoldCompareInstOperands(Predicate, C, Null, TD);
837      }
838    }
839
840    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
841      if (TD && CE0->getOpcode() == CE1->getOpcode()) {
842        const Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
843
844        if (CE0->getOpcode() == Instruction::IntToPtr) {
845          // Convert the integer value to the right size to ensure we get the
846          // proper extension or truncation.
847          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
848                                                      IntPtrTy, false);
849          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
850                                                      IntPtrTy, false);
851          return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD);
852        }
853
854        // Only do this transformation if the int is intptrty in size, otherwise
855        // there is a truncation or extension that we aren't modeling.
856        if ((CE0->getOpcode() == Instruction::PtrToInt &&
857             CE0->getType() == IntPtrTy &&
858             CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
859          return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
860                                                 CE1->getOperand(0), TD);
861      }
862    }
863  }
864
865  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
866}
867
868
869/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
870/// getelementptr constantexpr, return the constant value being addressed by the
871/// constant expression, or null if something is funny and we can't decide.
872Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
873                                                       ConstantExpr *CE) {
874  if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
875    return 0;  // Do not allow stepping over the value!
876
877  // Loop over all of the operands, tracking down which value we are
878  // addressing...
879  gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
880  for (++I; I != E; ++I)
881    if (const StructType *STy = dyn_cast<StructType>(*I)) {
882      ConstantInt *CU = cast<ConstantInt>(I.getOperand());
883      assert(CU->getZExtValue() < STy->getNumElements() &&
884             "Struct index out of range!");
885      unsigned El = (unsigned)CU->getZExtValue();
886      if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
887        C = CS->getOperand(El);
888      } else if (isa<ConstantAggregateZero>(C)) {
889        C = Constant::getNullValue(STy->getElementType(El));
890      } else if (isa<UndefValue>(C)) {
891        C = UndefValue::get(STy->getElementType(El));
892      } else {
893        return 0;
894      }
895    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
896      if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
897        if (CI->getZExtValue() >= ATy->getNumElements())
898         return 0;
899        if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
900          C = CA->getOperand(CI->getZExtValue());
901        else if (isa<ConstantAggregateZero>(C))
902          C = Constant::getNullValue(ATy->getElementType());
903        else if (isa<UndefValue>(C))
904          C = UndefValue::get(ATy->getElementType());
905        else
906          return 0;
907      } else if (const VectorType *VTy = dyn_cast<VectorType>(*I)) {
908        if (CI->getZExtValue() >= VTy->getNumElements())
909          return 0;
910        if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
911          C = CP->getOperand(CI->getZExtValue());
912        else if (isa<ConstantAggregateZero>(C))
913          C = Constant::getNullValue(VTy->getElementType());
914        else if (isa<UndefValue>(C))
915          C = UndefValue::get(VTy->getElementType());
916        else
917          return 0;
918      } else {
919        return 0;
920      }
921    } else {
922      return 0;
923    }
924  return C;
925}
926
927
928//===----------------------------------------------------------------------===//
929//  Constant Folding for Calls
930//
931
932/// canConstantFoldCallTo - Return true if its even possible to fold a call to
933/// the specified function.
934bool
935llvm::canConstantFoldCallTo(const Function *F) {
936  switch (F->getIntrinsicID()) {
937  case Intrinsic::sqrt:
938  case Intrinsic::powi:
939  case Intrinsic::bswap:
940  case Intrinsic::ctpop:
941  case Intrinsic::ctlz:
942  case Intrinsic::cttz:
943  case Intrinsic::uadd_with_overflow:
944  case Intrinsic::usub_with_overflow:
945  case Intrinsic::sadd_with_overflow:
946  case Intrinsic::ssub_with_overflow:
947    return true;
948  default:
949    return false;
950  case 0: break;
951  }
952
953  if (!F->hasName()) return false;
954  StringRef Name = F->getName();
955
956  // In these cases, the check of the length is required.  We don't want to
957  // return true for a name like "cos\0blah" which strcmp would return equal to
958  // "cos", but has length 8.
959  switch (Name[0]) {
960  default: return false;
961  case 'a':
962    return Name == "acos" || Name == "asin" ||
963      Name == "atan" || Name == "atan2";
964  case 'c':
965    return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
966  case 'e':
967    return Name == "exp";
968  case 'f':
969    return Name == "fabs" || Name == "fmod" || Name == "floor";
970  case 'l':
971    return Name == "log" || Name == "log10";
972  case 'p':
973    return Name == "pow";
974  case 's':
975    return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
976      Name == "sinf" || Name == "sqrtf";
977  case 't':
978    return Name == "tan" || Name == "tanh";
979  }
980}
981
982static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
983                                const Type *Ty) {
984  errno = 0;
985  V = NativeFP(V);
986  if (errno != 0) {
987    errno = 0;
988    return 0;
989  }
990
991  if (Ty->isFloatTy())
992    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
993  if (Ty->isDoubleTy())
994    return ConstantFP::get(Ty->getContext(), APFloat(V));
995  llvm_unreachable("Can only constant fold float/double");
996  return 0; // dummy return to suppress warning
997}
998
999static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1000                                      double V, double W, const Type *Ty) {
1001  errno = 0;
1002  V = NativeFP(V, W);
1003  if (errno != 0) {
1004    errno = 0;
1005    return 0;
1006  }
1007
1008  if (Ty->isFloatTy())
1009    return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1010  if (Ty->isDoubleTy())
1011    return ConstantFP::get(Ty->getContext(), APFloat(V));
1012  llvm_unreachable("Can only constant fold float/double");
1013  return 0; // dummy return to suppress warning
1014}
1015
1016/// ConstantFoldCall - Attempt to constant fold a call to the specified function
1017/// with the specified arguments, returning null if unsuccessful.
1018Constant *
1019llvm::ConstantFoldCall(Function *F,
1020                       Constant *const *Operands, unsigned NumOperands) {
1021  if (!F->hasName()) return 0;
1022  StringRef Name = F->getName();
1023
1024  const Type *Ty = F->getReturnType();
1025  if (NumOperands == 1) {
1026    if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1027      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1028        return 0;
1029      /// Currently APFloat versions of these functions do not exist, so we use
1030      /// the host native double versions.  Float versions are not called
1031      /// directly but for all these it is true (float)(f((double)arg)) ==
1032      /// f(arg).  Long double not supported yet.
1033      double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
1034                                     Op->getValueAPF().convertToDouble();
1035      switch (Name[0]) {
1036      case 'a':
1037        if (Name == "acos")
1038          return ConstantFoldFP(acos, V, Ty);
1039        else if (Name == "asin")
1040          return ConstantFoldFP(asin, V, Ty);
1041        else if (Name == "atan")
1042          return ConstantFoldFP(atan, V, Ty);
1043        break;
1044      case 'c':
1045        if (Name == "ceil")
1046          return ConstantFoldFP(ceil, V, Ty);
1047        else if (Name == "cos")
1048          return ConstantFoldFP(cos, V, Ty);
1049        else if (Name == "cosh")
1050          return ConstantFoldFP(cosh, V, Ty);
1051        else if (Name == "cosf")
1052          return ConstantFoldFP(cos, V, Ty);
1053        break;
1054      case 'e':
1055        if (Name == "exp")
1056          return ConstantFoldFP(exp, V, Ty);
1057        break;
1058      case 'f':
1059        if (Name == "fabs")
1060          return ConstantFoldFP(fabs, V, Ty);
1061        else if (Name == "floor")
1062          return ConstantFoldFP(floor, V, Ty);
1063        break;
1064      case 'l':
1065        if (Name == "log" && V > 0)
1066          return ConstantFoldFP(log, V, Ty);
1067        else if (Name == "log10" && V > 0)
1068          return ConstantFoldFP(log10, V, Ty);
1069        else if (Name == "llvm.sqrt.f32" ||
1070                 Name == "llvm.sqrt.f64") {
1071          if (V >= -0.0)
1072            return ConstantFoldFP(sqrt, V, Ty);
1073          else // Undefined
1074            return Constant::getNullValue(Ty);
1075        }
1076        break;
1077      case 's':
1078        if (Name == "sin")
1079          return ConstantFoldFP(sin, V, Ty);
1080        else if (Name == "sinh")
1081          return ConstantFoldFP(sinh, V, Ty);
1082        else if (Name == "sqrt" && V >= 0)
1083          return ConstantFoldFP(sqrt, V, Ty);
1084        else if (Name == "sqrtf" && V >= 0)
1085          return ConstantFoldFP(sqrt, V, Ty);
1086        else if (Name == "sinf")
1087          return ConstantFoldFP(sin, V, Ty);
1088        break;
1089      case 't':
1090        if (Name == "tan")
1091          return ConstantFoldFP(tan, V, Ty);
1092        else if (Name == "tanh")
1093          return ConstantFoldFP(tanh, V, Ty);
1094        break;
1095      default:
1096        break;
1097      }
1098      return 0;
1099    }
1100
1101
1102    if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1103      if (Name.startswith("llvm.bswap"))
1104        return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
1105      else if (Name.startswith("llvm.ctpop"))
1106        return ConstantInt::get(Ty, Op->getValue().countPopulation());
1107      else if (Name.startswith("llvm.cttz"))
1108        return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
1109      else if (Name.startswith("llvm.ctlz"))
1110        return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
1111      return 0;
1112    }
1113
1114    return 0;
1115  }
1116
1117  if (NumOperands == 2) {
1118    if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1119      if (!Ty->isFloatTy() && !Ty->isDoubleTy())
1120        return 0;
1121      double Op1V = Ty->isFloatTy() ?
1122                      (double)Op1->getValueAPF().convertToFloat() :
1123                      Op1->getValueAPF().convertToDouble();
1124      if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1125        if (Op2->getType() != Op1->getType())
1126          return 0;
1127
1128        double Op2V = Ty->isFloatTy() ?
1129                      (double)Op2->getValueAPF().convertToFloat():
1130                      Op2->getValueAPF().convertToDouble();
1131
1132        if (Name == "pow")
1133          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1134        if (Name == "fmod")
1135          return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1136        if (Name == "atan2")
1137          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1138      } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1139        if (Name == "llvm.powi.f32")
1140          return ConstantFP::get(F->getContext(),
1141                                 APFloat((float)std::pow((float)Op1V,
1142                                                 (int)Op2C->getZExtValue())));
1143        if (Name == "llvm.powi.f64")
1144          return ConstantFP::get(F->getContext(),
1145                                 APFloat((double)std::pow((double)Op1V,
1146                                                   (int)Op2C->getZExtValue())));
1147      }
1148      return 0;
1149    }
1150
1151
1152    if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1153      if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1154        switch (F->getIntrinsicID()) {
1155        default: break;
1156        case Intrinsic::uadd_with_overflow: {
1157          Constant *Res = ConstantExpr::getAdd(Op1, Op2);           // result.
1158          Constant *Ops[] = {
1159            Res, ConstantExpr::getICmp(CmpInst::ICMP_ULT, Res, Op1) // overflow.
1160          };
1161          return ConstantStruct::get(F->getContext(), Ops, 2, false);
1162        }
1163        case Intrinsic::usub_with_overflow: {
1164          Constant *Res = ConstantExpr::getSub(Op1, Op2);           // result.
1165          Constant *Ops[] = {
1166            Res, ConstantExpr::getICmp(CmpInst::ICMP_UGT, Res, Op1) // overflow.
1167          };
1168          return ConstantStruct::get(F->getContext(), Ops, 2, false);
1169        }
1170        case Intrinsic::sadd_with_overflow: {
1171          Constant *Res = ConstantExpr::getAdd(Op1, Op2);           // result.
1172          Constant *Overflow = ConstantExpr::getSelect(
1173              ConstantExpr::getICmp(CmpInst::ICMP_SGT,
1174                ConstantInt::get(Op1->getType(), 0), Op1),
1175              ConstantExpr::getICmp(CmpInst::ICMP_SGT, Res, Op2),
1176              ConstantExpr::getICmp(CmpInst::ICMP_SLT, Res, Op2)); // overflow.
1177
1178          Constant *Ops[] = { Res, Overflow };
1179          return ConstantStruct::get(F->getContext(), Ops, 2, false);
1180        }
1181        case Intrinsic::ssub_with_overflow: {
1182          Constant *Res = ConstantExpr::getSub(Op1, Op2);           // result.
1183          Constant *Overflow = ConstantExpr::getSelect(
1184              ConstantExpr::getICmp(CmpInst::ICMP_SGT,
1185                ConstantInt::get(Op2->getType(), 0), Op2),
1186              ConstantExpr::getICmp(CmpInst::ICMP_SLT, Res, Op1),
1187              ConstantExpr::getICmp(CmpInst::ICMP_SGT, Res, Op1)); // overflow.
1188
1189          Constant *Ops[] = { Res, Overflow };
1190          return ConstantStruct::get(F->getContext(), Ops, 2, false);
1191        }
1192        }
1193      }
1194
1195      return 0;
1196    }
1197    return 0;
1198  }
1199  return 0;
1200}
1201
1202