BitcodeWriter.cpp revision 280a6e607d8eb7401749a92db624a82de47da777
1//===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Bitcode writer implementation.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "llvm/Bitcode/BitstreamWriter.h"
16#include "llvm/Bitcode/LLVMBitCodes.h"
17#include "ValueEnumerator.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/InlineAsm.h"
21#include "llvm/Instructions.h"
22#include "llvm/Module.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/ValueSymbolTable.h"
25#include "llvm/Support/MathExtras.h"
26using namespace llvm;
27
28/// These are manifest constants used by the bitcode writer. They do not need to
29/// be kept in sync with the reader, but need to be consistent within this file.
30enum {
31  CurVersion = 0,
32
33  // VALUE_SYMTAB_BLOCK abbrev id's.
34  VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
35  VST_ENTRY_7_ABBREV,
36  VST_ENTRY_6_ABBREV,
37  VST_BBENTRY_6_ABBREV,
38
39  // CONSTANTS_BLOCK abbrev id's.
40  CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
41  CONSTANTS_INTEGER_ABBREV,
42  CONSTANTS_CE_CAST_Abbrev,
43  CONSTANTS_NULL_Abbrev,
44
45  // FUNCTION_BLOCK abbrev id's.
46  FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
47  FUNCTION_INST_BINOP_ABBREV,
48  FUNCTION_INST_CAST_ABBREV,
49  FUNCTION_INST_RET_VOID_ABBREV,
50  FUNCTION_INST_RET_VAL_ABBREV,
51  FUNCTION_INST_UNREACHABLE_ABBREV
52};
53
54
55static unsigned GetEncodedCastOpcode(unsigned Opcode) {
56  switch (Opcode) {
57  default: assert(0 && "Unknown cast instruction!");
58  case Instruction::Trunc   : return bitc::CAST_TRUNC;
59  case Instruction::ZExt    : return bitc::CAST_ZEXT;
60  case Instruction::SExt    : return bitc::CAST_SEXT;
61  case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
62  case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
63  case Instruction::UIToFP  : return bitc::CAST_UITOFP;
64  case Instruction::SIToFP  : return bitc::CAST_SITOFP;
65  case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
66  case Instruction::FPExt   : return bitc::CAST_FPEXT;
67  case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
68  case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
69  case Instruction::BitCast : return bitc::CAST_BITCAST;
70  }
71}
72
73static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
74  switch (Opcode) {
75  default: assert(0 && "Unknown binary instruction!");
76  case Instruction::Add:  return bitc::BINOP_ADD;
77  case Instruction::Sub:  return bitc::BINOP_SUB;
78  case Instruction::Mul:  return bitc::BINOP_MUL;
79  case Instruction::UDiv: return bitc::BINOP_UDIV;
80  case Instruction::FDiv:
81  case Instruction::SDiv: return bitc::BINOP_SDIV;
82  case Instruction::URem: return bitc::BINOP_UREM;
83  case Instruction::FRem:
84  case Instruction::SRem: return bitc::BINOP_SREM;
85  case Instruction::Shl:  return bitc::BINOP_SHL;
86  case Instruction::LShr: return bitc::BINOP_LSHR;
87  case Instruction::AShr: return bitc::BINOP_ASHR;
88  case Instruction::And:  return bitc::BINOP_AND;
89  case Instruction::Or:   return bitc::BINOP_OR;
90  case Instruction::Xor:  return bitc::BINOP_XOR;
91  }
92}
93
94
95
96static void WriteStringRecord(unsigned Code, const std::string &Str,
97                              unsigned AbbrevToUse, BitstreamWriter &Stream) {
98  SmallVector<unsigned, 64> Vals;
99
100  // Code: [strchar x N]
101  for (unsigned i = 0, e = Str.size(); i != e; ++i)
102    Vals.push_back(Str[i]);
103
104  // Emit the finished record.
105  Stream.EmitRecord(Code, Vals, AbbrevToUse);
106}
107
108// Emit information about parameter attributes.
109static void WriteParamAttrTable(const ValueEnumerator &VE,
110                                BitstreamWriter &Stream) {
111  const std::vector<PAListPtr> &Attrs = VE.getParamAttrs();
112  if (Attrs.empty()) return;
113
114  Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
115
116  SmallVector<uint64_t, 64> Record;
117  for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
118    const PAListPtr &A = Attrs[i];
119    for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
120      const ParamAttrsWithIndex &PAWI = A.getSlot(i);
121      Record.push_back(PAWI.Index);
122      Record.push_back(PAWI.Attrs);
123    }
124
125    Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
126    Record.clear();
127  }
128
129  Stream.ExitBlock();
130}
131
132/// WriteTypeTable - Write out the type table for a module.
133static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
134  const ValueEnumerator::TypeList &TypeList = VE.getTypes();
135
136  Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */);
137  SmallVector<uint64_t, 64> TypeVals;
138
139  // Abbrev for TYPE_CODE_POINTER.
140  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
141  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
142  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
143                            Log2_32_Ceil(VE.getTypes().size()+1)));
144  Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
145  unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
146
147  // Abbrev for TYPE_CODE_FUNCTION.
148  Abbv = new BitCodeAbbrev();
149  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
150  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
151  Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
152  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
153  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
154                            Log2_32_Ceil(VE.getTypes().size()+1)));
155  unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
156
157  // Abbrev for TYPE_CODE_STRUCT.
158  Abbv = new BitCodeAbbrev();
159  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT));
160  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
161  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
162  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
163                            Log2_32_Ceil(VE.getTypes().size()+1)));
164  unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
165
166  // Abbrev for TYPE_CODE_ARRAY.
167  Abbv = new BitCodeAbbrev();
168  Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
169  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
170  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
171                            Log2_32_Ceil(VE.getTypes().size()+1)));
172  unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
173
174  // Emit an entry count so the reader can reserve space.
175  TypeVals.push_back(TypeList.size());
176  Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
177  TypeVals.clear();
178
179  // Loop over all of the types, emitting each in turn.
180  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
181    const Type *T = TypeList[i].first;
182    int AbbrevToUse = 0;
183    unsigned Code = 0;
184
185    switch (T->getTypeID()) {
186    default: assert(0 && "Unknown type!");
187    case Type::VoidTyID:   Code = bitc::TYPE_CODE_VOID;   break;
188    case Type::FloatTyID:  Code = bitc::TYPE_CODE_FLOAT;  break;
189    case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
190    case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
191    case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
192    case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
193    case Type::LabelTyID:  Code = bitc::TYPE_CODE_LABEL;  break;
194    case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break;
195    case Type::IntegerTyID:
196      // INTEGER: [width]
197      Code = bitc::TYPE_CODE_INTEGER;
198      TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
199      break;
200    case Type::PointerTyID: {
201      const PointerType *PTy = cast<PointerType>(T);
202      // POINTER: [pointee type, address space]
203      Code = bitc::TYPE_CODE_POINTER;
204      TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
205      unsigned AddressSpace = PTy->getAddressSpace();
206      TypeVals.push_back(AddressSpace);
207      if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
208      break;
209    }
210    case Type::FunctionTyID: {
211      const FunctionType *FT = cast<FunctionType>(T);
212      // FUNCTION: [isvararg, attrid, retty, paramty x N]
213      Code = bitc::TYPE_CODE_FUNCTION;
214      TypeVals.push_back(FT->isVarArg());
215      TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
216      TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
217      for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
218        TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
219      AbbrevToUse = FunctionAbbrev;
220      break;
221    }
222    case Type::StructTyID: {
223      const StructType *ST = cast<StructType>(T);
224      // STRUCT: [ispacked, eltty x N]
225      Code = bitc::TYPE_CODE_STRUCT;
226      TypeVals.push_back(ST->isPacked());
227      // Output all of the element types.
228      for (StructType::element_iterator I = ST->element_begin(),
229           E = ST->element_end(); I != E; ++I)
230        TypeVals.push_back(VE.getTypeID(*I));
231      AbbrevToUse = StructAbbrev;
232      break;
233    }
234    case Type::ArrayTyID: {
235      const ArrayType *AT = cast<ArrayType>(T);
236      // ARRAY: [numelts, eltty]
237      Code = bitc::TYPE_CODE_ARRAY;
238      TypeVals.push_back(AT->getNumElements());
239      TypeVals.push_back(VE.getTypeID(AT->getElementType()));
240      AbbrevToUse = ArrayAbbrev;
241      break;
242    }
243    case Type::VectorTyID: {
244      const VectorType *VT = cast<VectorType>(T);
245      // VECTOR [numelts, eltty]
246      Code = bitc::TYPE_CODE_VECTOR;
247      TypeVals.push_back(VT->getNumElements());
248      TypeVals.push_back(VE.getTypeID(VT->getElementType()));
249      break;
250    }
251    }
252
253    // Emit the finished record.
254    Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
255    TypeVals.clear();
256  }
257
258  Stream.ExitBlock();
259}
260
261static unsigned getEncodedLinkage(const GlobalValue *GV) {
262  switch (GV->getLinkage()) {
263  default: assert(0 && "Invalid linkage!");
264  case GlobalValue::GhostLinkage:  // Map ghost linkage onto external.
265  case GlobalValue::ExternalLinkage:     return 0;
266  case GlobalValue::WeakLinkage:         return 1;
267  case GlobalValue::AppendingLinkage:    return 2;
268  case GlobalValue::InternalLinkage:     return 3;
269  case GlobalValue::LinkOnceLinkage:     return 4;
270  case GlobalValue::DLLImportLinkage:    return 5;
271  case GlobalValue::DLLExportLinkage:    return 6;
272  case GlobalValue::ExternalWeakLinkage: return 7;
273  }
274}
275
276static unsigned getEncodedVisibility(const GlobalValue *GV) {
277  switch (GV->getVisibility()) {
278  default: assert(0 && "Invalid visibility!");
279  case GlobalValue::DefaultVisibility:   return 0;
280  case GlobalValue::HiddenVisibility:    return 1;
281  case GlobalValue::ProtectedVisibility: return 2;
282  }
283}
284
285// Emit top-level description of module, including target triple, inline asm,
286// descriptors for global variables, and function prototype info.
287static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
288                            BitstreamWriter &Stream) {
289  // Emit the list of dependent libraries for the Module.
290  for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
291    WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
292
293  // Emit various pieces of data attached to a module.
294  if (!M->getTargetTriple().empty())
295    WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
296                      0/*TODO*/, Stream);
297  if (!M->getDataLayout().empty())
298    WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
299                      0/*TODO*/, Stream);
300  if (!M->getModuleInlineAsm().empty())
301    WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
302                      0/*TODO*/, Stream);
303
304  // Emit information about sections and collectors, computing how many there
305  // are.  Also compute the maximum alignment value.
306  std::map<std::string, unsigned> SectionMap;
307  std::map<std::string, unsigned> CollectorMap;
308  unsigned MaxAlignment = 0;
309  unsigned MaxGlobalType = 0;
310  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
311       GV != E; ++GV) {
312    MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
313    MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
314
315    if (!GV->hasSection()) continue;
316    // Give section names unique ID's.
317    unsigned &Entry = SectionMap[GV->getSection()];
318    if (Entry != 0) continue;
319    WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
320                      0/*TODO*/, Stream);
321    Entry = SectionMap.size();
322  }
323  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
324    MaxAlignment = std::max(MaxAlignment, F->getAlignment());
325    if (F->hasSection()) {
326      // Give section names unique ID's.
327      unsigned &Entry = SectionMap[F->getSection()];
328      if (!Entry) {
329        WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
330                          0/*TODO*/, Stream);
331        Entry = SectionMap.size();
332      }
333    }
334    if (F->hasCollector()) {
335      // Same for collector names.
336      unsigned &Entry = CollectorMap[F->getCollector()];
337      if (!Entry) {
338        WriteStringRecord(bitc::MODULE_CODE_COLLECTORNAME, F->getCollector(),
339                          0/*TODO*/, Stream);
340        Entry = CollectorMap.size();
341      }
342    }
343  }
344
345  // Emit abbrev for globals, now that we know # sections and max alignment.
346  unsigned SimpleGVarAbbrev = 0;
347  if (!M->global_empty()) {
348    // Add an abbrev for common globals with no visibility or thread localness.
349    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
350    Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
351    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
352                              Log2_32_Ceil(MaxGlobalType+1)));
353    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
354    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
355    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));      // Linkage.
356    if (MaxAlignment == 0)                                      // Alignment.
357      Abbv->Add(BitCodeAbbrevOp(0));
358    else {
359      unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
360      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
361                               Log2_32_Ceil(MaxEncAlignment+1)));
362    }
363    if (SectionMap.empty())                                    // Section.
364      Abbv->Add(BitCodeAbbrevOp(0));
365    else
366      Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
367                               Log2_32_Ceil(SectionMap.size()+1)));
368    // Don't bother emitting vis + thread local.
369    SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
370  }
371
372  // Emit the global variable information.
373  SmallVector<unsigned, 64> Vals;
374  for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
375       GV != E; ++GV) {
376    unsigned AbbrevToUse = 0;
377
378    // GLOBALVAR: [type, isconst, initid,
379    //             linkage, alignment, section, visibility, threadlocal]
380    Vals.push_back(VE.getTypeID(GV->getType()));
381    Vals.push_back(GV->isConstant());
382    Vals.push_back(GV->isDeclaration() ? 0 :
383                   (VE.getValueID(GV->getInitializer()) + 1));
384    Vals.push_back(getEncodedLinkage(GV));
385    Vals.push_back(Log2_32(GV->getAlignment())+1);
386    Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
387    if (GV->isThreadLocal() ||
388        GV->getVisibility() != GlobalValue::DefaultVisibility) {
389      Vals.push_back(getEncodedVisibility(GV));
390      Vals.push_back(GV->isThreadLocal());
391    } else {
392      AbbrevToUse = SimpleGVarAbbrev;
393    }
394
395    Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
396    Vals.clear();
397  }
398
399  // Emit the function proto information.
400  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
401    // FUNCTION:  [type, callingconv, isproto, paramattr,
402    //             linkage, alignment, section, visibility, collector]
403    Vals.push_back(VE.getTypeID(F->getType()));
404    Vals.push_back(F->getCallingConv());
405    Vals.push_back(F->isDeclaration());
406    Vals.push_back(getEncodedLinkage(F));
407    Vals.push_back(VE.getParamAttrID(F->getParamAttrs()));
408    Vals.push_back(Log2_32(F->getAlignment())+1);
409    Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
410    Vals.push_back(getEncodedVisibility(F));
411    Vals.push_back(F->hasCollector() ? CollectorMap[F->getCollector()] : 0);
412
413    unsigned AbbrevToUse = 0;
414    Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
415    Vals.clear();
416  }
417
418
419  // Emit the alias information.
420  for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
421       AI != E; ++AI) {
422    Vals.push_back(VE.getTypeID(AI->getType()));
423    Vals.push_back(VE.getValueID(AI->getAliasee()));
424    Vals.push_back(getEncodedLinkage(AI));
425    Vals.push_back(getEncodedVisibility(AI));
426    unsigned AbbrevToUse = 0;
427    Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
428    Vals.clear();
429  }
430}
431
432
433static void WriteConstants(unsigned FirstVal, unsigned LastVal,
434                           const ValueEnumerator &VE,
435                           BitstreamWriter &Stream, bool isGlobal) {
436  if (FirstVal == LastVal) return;
437
438  Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
439
440  unsigned AggregateAbbrev = 0;
441  unsigned String8Abbrev = 0;
442  unsigned CString7Abbrev = 0;
443  unsigned CString6Abbrev = 0;
444  // If this is a constant pool for the module, emit module-specific abbrevs.
445  if (isGlobal) {
446    // Abbrev for CST_CODE_AGGREGATE.
447    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
448    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
449    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
450    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
451    AggregateAbbrev = Stream.EmitAbbrev(Abbv);
452
453    // Abbrev for CST_CODE_STRING.
454    Abbv = new BitCodeAbbrev();
455    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
456    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
457    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
458    String8Abbrev = Stream.EmitAbbrev(Abbv);
459    // Abbrev for CST_CODE_CSTRING.
460    Abbv = new BitCodeAbbrev();
461    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
462    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
463    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
464    CString7Abbrev = Stream.EmitAbbrev(Abbv);
465    // Abbrev for CST_CODE_CSTRING.
466    Abbv = new BitCodeAbbrev();
467    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
468    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
469    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
470    CString6Abbrev = Stream.EmitAbbrev(Abbv);
471  }
472
473  SmallVector<uint64_t, 64> Record;
474
475  const ValueEnumerator::ValueList &Vals = VE.getValues();
476  const Type *LastTy = 0;
477  for (unsigned i = FirstVal; i != LastVal; ++i) {
478    const Value *V = Vals[i].first;
479    // If we need to switch types, do so now.
480    if (V->getType() != LastTy) {
481      LastTy = V->getType();
482      Record.push_back(VE.getTypeID(LastTy));
483      Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
484                        CONSTANTS_SETTYPE_ABBREV);
485      Record.clear();
486    }
487
488    if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
489      Record.push_back(unsigned(IA->hasSideEffects()));
490
491      // Add the asm string.
492      const std::string &AsmStr = IA->getAsmString();
493      Record.push_back(AsmStr.size());
494      for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
495        Record.push_back(AsmStr[i]);
496
497      // Add the constraint string.
498      const std::string &ConstraintStr = IA->getConstraintString();
499      Record.push_back(ConstraintStr.size());
500      for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
501        Record.push_back(ConstraintStr[i]);
502      Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
503      Record.clear();
504      continue;
505    }
506    const Constant *C = cast<Constant>(V);
507    unsigned Code = -1U;
508    unsigned AbbrevToUse = 0;
509    if (C->isNullValue()) {
510      Code = bitc::CST_CODE_NULL;
511    } else if (isa<UndefValue>(C)) {
512      Code = bitc::CST_CODE_UNDEF;
513    } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
514      if (IV->getBitWidth() <= 64) {
515        int64_t V = IV->getSExtValue();
516        if (V >= 0)
517          Record.push_back(V << 1);
518        else
519          Record.push_back((-V << 1) | 1);
520        Code = bitc::CST_CODE_INTEGER;
521        AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
522      } else {                             // Wide integers, > 64 bits in size.
523        // We have an arbitrary precision integer value to write whose
524        // bit width is > 64. However, in canonical unsigned integer
525        // format it is likely that the high bits are going to be zero.
526        // So, we only write the number of active words.
527        unsigned NWords = IV->getValue().getActiveWords();
528        const uint64_t *RawWords = IV->getValue().getRawData();
529        for (unsigned i = 0; i != NWords; ++i) {
530          int64_t V = RawWords[i];
531          if (V >= 0)
532            Record.push_back(V << 1);
533          else
534            Record.push_back((-V << 1) | 1);
535        }
536        Code = bitc::CST_CODE_WIDE_INTEGER;
537      }
538    } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
539      Code = bitc::CST_CODE_FLOAT;
540      const Type *Ty = CFP->getType();
541      if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
542        Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue());
543      } else if (Ty == Type::X86_FP80Ty) {
544        // api needed to prevent premature destruction
545        APInt api = CFP->getValueAPF().convertToAPInt();
546        const uint64_t *p = api.getRawData();
547        Record.push_back(p[0]);
548        Record.push_back((uint16_t)p[1]);
549      } else if (Ty == Type::FP128Ty || Ty == Type::PPC_FP128Ty) {
550        APInt api = CFP->getValueAPF().convertToAPInt();
551        const uint64_t *p = api.getRawData();
552        Record.push_back(p[0]);
553        Record.push_back(p[1]);
554      } else {
555        assert (0 && "Unknown FP type!");
556      }
557    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
558      // Emit constant strings specially.
559      unsigned NumOps = C->getNumOperands();
560      // If this is a null-terminated string, use the denser CSTRING encoding.
561      if (C->getOperand(NumOps-1)->isNullValue()) {
562        Code = bitc::CST_CODE_CSTRING;
563        --NumOps;  // Don't encode the null, which isn't allowed by char6.
564      } else {
565        Code = bitc::CST_CODE_STRING;
566        AbbrevToUse = String8Abbrev;
567      }
568      bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
569      bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
570      for (unsigned i = 0; i != NumOps; ++i) {
571        unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue();
572        Record.push_back(V);
573        isCStr7 &= (V & 128) == 0;
574        if (isCStrChar6)
575          isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
576      }
577
578      if (isCStrChar6)
579        AbbrevToUse = CString6Abbrev;
580      else if (isCStr7)
581        AbbrevToUse = CString7Abbrev;
582    } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
583               isa<ConstantVector>(V)) {
584      Code = bitc::CST_CODE_AGGREGATE;
585      for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
586        Record.push_back(VE.getValueID(C->getOperand(i)));
587      AbbrevToUse = AggregateAbbrev;
588    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
589      switch (CE->getOpcode()) {
590      default:
591        if (Instruction::isCast(CE->getOpcode())) {
592          Code = bitc::CST_CODE_CE_CAST;
593          Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
594          Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
595          Record.push_back(VE.getValueID(C->getOperand(0)));
596          AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
597        } else {
598          assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
599          Code = bitc::CST_CODE_CE_BINOP;
600          Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
601          Record.push_back(VE.getValueID(C->getOperand(0)));
602          Record.push_back(VE.getValueID(C->getOperand(1)));
603        }
604        break;
605      case Instruction::GetElementPtr:
606        Code = bitc::CST_CODE_CE_GEP;
607        for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
608          Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
609          Record.push_back(VE.getValueID(C->getOperand(i)));
610        }
611        break;
612      case Instruction::Select:
613        Code = bitc::CST_CODE_CE_SELECT;
614        Record.push_back(VE.getValueID(C->getOperand(0)));
615        Record.push_back(VE.getValueID(C->getOperand(1)));
616        Record.push_back(VE.getValueID(C->getOperand(2)));
617        break;
618      case Instruction::ExtractElement:
619        Code = bitc::CST_CODE_CE_EXTRACTELT;
620        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
621        Record.push_back(VE.getValueID(C->getOperand(0)));
622        Record.push_back(VE.getValueID(C->getOperand(1)));
623        break;
624      case Instruction::InsertElement:
625        Code = bitc::CST_CODE_CE_INSERTELT;
626        Record.push_back(VE.getValueID(C->getOperand(0)));
627        Record.push_back(VE.getValueID(C->getOperand(1)));
628        Record.push_back(VE.getValueID(C->getOperand(2)));
629        break;
630      case Instruction::ShuffleVector:
631        Code = bitc::CST_CODE_CE_SHUFFLEVEC;
632        Record.push_back(VE.getValueID(C->getOperand(0)));
633        Record.push_back(VE.getValueID(C->getOperand(1)));
634        Record.push_back(VE.getValueID(C->getOperand(2)));
635        break;
636      case Instruction::ICmp:
637      case Instruction::FCmp:
638        Code = bitc::CST_CODE_CE_CMP;
639        Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
640        Record.push_back(VE.getValueID(C->getOperand(0)));
641        Record.push_back(VE.getValueID(C->getOperand(1)));
642        Record.push_back(CE->getPredicate());
643        break;
644      }
645    } else {
646      assert(0 && "Unknown constant!");
647    }
648    Stream.EmitRecord(Code, Record, AbbrevToUse);
649    Record.clear();
650  }
651
652  Stream.ExitBlock();
653}
654
655static void WriteModuleConstants(const ValueEnumerator &VE,
656                                 BitstreamWriter &Stream) {
657  const ValueEnumerator::ValueList &Vals = VE.getValues();
658
659  // Find the first constant to emit, which is the first non-globalvalue value.
660  // We know globalvalues have been emitted by WriteModuleInfo.
661  for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
662    if (!isa<GlobalValue>(Vals[i].first)) {
663      WriteConstants(i, Vals.size(), VE, Stream, true);
664      return;
665    }
666  }
667}
668
669/// PushValueAndType - The file has to encode both the value and type id for
670/// many values, because we need to know what type to create for forward
671/// references.  However, most operands are not forward references, so this type
672/// field is not needed.
673///
674/// This function adds V's value ID to Vals.  If the value ID is higher than the
675/// instruction ID, then it is a forward reference, and it also includes the
676/// type ID.
677static bool PushValueAndType(Value *V, unsigned InstID,
678                             SmallVector<unsigned, 64> &Vals,
679                             ValueEnumerator &VE) {
680  unsigned ValID = VE.getValueID(V);
681  Vals.push_back(ValID);
682  if (ValID >= InstID) {
683    Vals.push_back(VE.getTypeID(V->getType()));
684    return true;
685  }
686  return false;
687}
688
689/// WriteInstruction - Emit an instruction to the specified stream.
690static void WriteInstruction(const Instruction &I, unsigned InstID,
691                             ValueEnumerator &VE, BitstreamWriter &Stream,
692                             SmallVector<unsigned, 64> &Vals) {
693  unsigned Code = 0;
694  unsigned AbbrevToUse = 0;
695  switch (I.getOpcode()) {
696  default:
697    if (Instruction::isCast(I.getOpcode())) {
698      Code = bitc::FUNC_CODE_INST_CAST;
699      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
700        AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
701      Vals.push_back(VE.getTypeID(I.getType()));
702      Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
703    } else {
704      assert(isa<BinaryOperator>(I) && "Unknown instruction!");
705      Code = bitc::FUNC_CODE_INST_BINOP;
706      if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
707        AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
708      Vals.push_back(VE.getValueID(I.getOperand(1)));
709      Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
710    }
711    break;
712
713  case Instruction::GetElementPtr:
714    Code = bitc::FUNC_CODE_INST_GEP;
715    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
716      PushValueAndType(I.getOperand(i), InstID, Vals, VE);
717    break;
718  case Instruction::Select:
719    Code = bitc::FUNC_CODE_INST_SELECT;
720    PushValueAndType(I.getOperand(1), InstID, Vals, VE);
721    Vals.push_back(VE.getValueID(I.getOperand(2)));
722    Vals.push_back(VE.getValueID(I.getOperand(0)));
723    break;
724  case Instruction::ExtractElement:
725    Code = bitc::FUNC_CODE_INST_EXTRACTELT;
726    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
727    Vals.push_back(VE.getValueID(I.getOperand(1)));
728    break;
729  case Instruction::InsertElement:
730    Code = bitc::FUNC_CODE_INST_INSERTELT;
731    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
732    Vals.push_back(VE.getValueID(I.getOperand(1)));
733    Vals.push_back(VE.getValueID(I.getOperand(2)));
734    break;
735  case Instruction::ShuffleVector:
736    Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
737    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
738    Vals.push_back(VE.getValueID(I.getOperand(1)));
739    Vals.push_back(VE.getValueID(I.getOperand(2)));
740    break;
741  case Instruction::ICmp:
742  case Instruction::FCmp:
743    Code = bitc::FUNC_CODE_INST_CMP;
744    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
745    Vals.push_back(VE.getValueID(I.getOperand(1)));
746    Vals.push_back(cast<CmpInst>(I).getPredicate());
747    break;
748  case Instruction::GetResult:
749    Code = bitc::FUNC_CODE_INST_GETRESULT;
750    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
751    Vals.push_back(cast<GetResultInst>(I).getIndex());
752    break;
753
754  case Instruction::Ret:
755    {
756      Code = bitc::FUNC_CODE_INST_RET;
757      unsigned NumOperands = I.getNumOperands();
758      if (NumOperands == 0)
759        AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
760      else if (NumOperands == 1) {
761        if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
762          AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
763      } else {
764        for (unsigned i = 0, e = NumOperands; i != e; ++i)
765          PushValueAndType(I.getOperand(i), InstID, Vals, VE);
766      }
767    }
768    break;
769  case Instruction::Br:
770    Code = bitc::FUNC_CODE_INST_BR;
771    Vals.push_back(VE.getValueID(I.getOperand(0)));
772    if (cast<BranchInst>(I).isConditional()) {
773      Vals.push_back(VE.getValueID(I.getOperand(1)));
774      Vals.push_back(VE.getValueID(I.getOperand(2)));
775    }
776    break;
777  case Instruction::Switch:
778    Code = bitc::FUNC_CODE_INST_SWITCH;
779    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
780    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
781      Vals.push_back(VE.getValueID(I.getOperand(i)));
782    break;
783  case Instruction::Invoke: {
784    const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
785    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
786    Code = bitc::FUNC_CODE_INST_INVOKE;
787
788    const InvokeInst *II = cast<InvokeInst>(&I);
789    Vals.push_back(VE.getParamAttrID(II->getParamAttrs()));
790    Vals.push_back(II->getCallingConv());
791    Vals.push_back(VE.getValueID(I.getOperand(1)));      // normal dest
792    Vals.push_back(VE.getValueID(I.getOperand(2)));      // unwind dest
793    PushValueAndType(I.getOperand(0), InstID, Vals, VE); // callee
794
795    // Emit value #'s for the fixed parameters.
796    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
797      Vals.push_back(VE.getValueID(I.getOperand(i+3)));  // fixed param.
798
799    // Emit type/value pairs for varargs params.
800    if (FTy->isVarArg()) {
801      for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands();
802           i != e; ++i)
803        PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
804    }
805    break;
806  }
807  case Instruction::Unwind:
808    Code = bitc::FUNC_CODE_INST_UNWIND;
809    break;
810  case Instruction::Unreachable:
811    Code = bitc::FUNC_CODE_INST_UNREACHABLE;
812    AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
813    break;
814
815  case Instruction::PHI:
816    Code = bitc::FUNC_CODE_INST_PHI;
817    Vals.push_back(VE.getTypeID(I.getType()));
818    for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
819      Vals.push_back(VE.getValueID(I.getOperand(i)));
820    break;
821
822  case Instruction::Malloc:
823    Code = bitc::FUNC_CODE_INST_MALLOC;
824    Vals.push_back(VE.getTypeID(I.getType()));
825    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
826    Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1);
827    break;
828
829  case Instruction::Free:
830    Code = bitc::FUNC_CODE_INST_FREE;
831    PushValueAndType(I.getOperand(0), InstID, Vals, VE);
832    break;
833
834  case Instruction::Alloca:
835    Code = bitc::FUNC_CODE_INST_ALLOCA;
836    Vals.push_back(VE.getTypeID(I.getType()));
837    Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
838    Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
839    break;
840
841  case Instruction::Load:
842    Code = bitc::FUNC_CODE_INST_LOAD;
843    if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
844      AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
845
846    Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
847    Vals.push_back(cast<LoadInst>(I).isVolatile());
848    break;
849  case Instruction::Store:
850    Code = bitc::FUNC_CODE_INST_STORE2;
851    PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
852    Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
853    Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
854    Vals.push_back(cast<StoreInst>(I).isVolatile());
855    break;
856  case Instruction::Call: {
857    const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType());
858    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
859
860    Code = bitc::FUNC_CODE_INST_CALL;
861
862    const CallInst *CI = cast<CallInst>(&I);
863    Vals.push_back(VE.getParamAttrID(CI->getParamAttrs()));
864    Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall()));
865    PushValueAndType(CI->getOperand(0), InstID, Vals, VE);  // Callee
866
867    // Emit value #'s for the fixed parameters.
868    for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
869      Vals.push_back(VE.getValueID(I.getOperand(i+1)));  // fixed param.
870
871    // Emit type/value pairs for varargs params.
872    if (FTy->isVarArg()) {
873      unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams();
874      for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands();
875           i != e; ++i)
876        PushValueAndType(I.getOperand(i), InstID, Vals, VE);  // varargs
877    }
878    break;
879  }
880  case Instruction::VAArg:
881    Code = bitc::FUNC_CODE_INST_VAARG;
882    Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
883    Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
884    Vals.push_back(VE.getTypeID(I.getType())); // restype.
885    break;
886  }
887
888  Stream.EmitRecord(Code, Vals, AbbrevToUse);
889  Vals.clear();
890}
891
892// Emit names for globals/functions etc.
893static void WriteValueSymbolTable(const ValueSymbolTable &VST,
894                                  const ValueEnumerator &VE,
895                                  BitstreamWriter &Stream) {
896  if (VST.empty()) return;
897  Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
898
899  // FIXME: Set up the abbrev, we know how many values there are!
900  // FIXME: We know if the type names can use 7-bit ascii.
901  SmallVector<unsigned, 64> NameVals;
902
903  for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
904       SI != SE; ++SI) {
905
906    const ValueName &Name = *SI;
907
908    // Figure out the encoding to use for the name.
909    bool is7Bit = true;
910    bool isChar6 = true;
911    for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
912         C != E; ++C) {
913      if (isChar6)
914        isChar6 = BitCodeAbbrevOp::isChar6(*C);
915      if ((unsigned char)*C & 128) {
916        is7Bit = false;
917        break;  // don't bother scanning the rest.
918      }
919    }
920
921    unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
922
923    // VST_ENTRY:   [valueid, namechar x N]
924    // VST_BBENTRY: [bbid, namechar x N]
925    unsigned Code;
926    if (isa<BasicBlock>(SI->getValue())) {
927      Code = bitc::VST_CODE_BBENTRY;
928      if (isChar6)
929        AbbrevToUse = VST_BBENTRY_6_ABBREV;
930    } else {
931      Code = bitc::VST_CODE_ENTRY;
932      if (isChar6)
933        AbbrevToUse = VST_ENTRY_6_ABBREV;
934      else if (is7Bit)
935        AbbrevToUse = VST_ENTRY_7_ABBREV;
936    }
937
938    NameVals.push_back(VE.getValueID(SI->getValue()));
939    for (const char *P = Name.getKeyData(),
940         *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
941      NameVals.push_back((unsigned char)*P);
942
943    // Emit the finished record.
944    Stream.EmitRecord(Code, NameVals, AbbrevToUse);
945    NameVals.clear();
946  }
947  Stream.ExitBlock();
948}
949
950/// WriteFunction - Emit a function body to the module stream.
951static void WriteFunction(const Function &F, ValueEnumerator &VE,
952                          BitstreamWriter &Stream) {
953  Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
954  VE.incorporateFunction(F);
955
956  SmallVector<unsigned, 64> Vals;
957
958  // Emit the number of basic blocks, so the reader can create them ahead of
959  // time.
960  Vals.push_back(VE.getBasicBlocks().size());
961  Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
962  Vals.clear();
963
964  // If there are function-local constants, emit them now.
965  unsigned CstStart, CstEnd;
966  VE.getFunctionConstantRange(CstStart, CstEnd);
967  WriteConstants(CstStart, CstEnd, VE, Stream, false);
968
969  // Keep a running idea of what the instruction ID is.
970  unsigned InstID = CstEnd;
971
972  // Finally, emit all the instructions, in order.
973  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
974    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
975         I != E; ++I) {
976      WriteInstruction(*I, InstID, VE, Stream, Vals);
977      if (I->getType() != Type::VoidTy)
978        ++InstID;
979    }
980
981  // Emit names for all the instructions etc.
982  WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
983
984  VE.purgeFunction();
985  Stream.ExitBlock();
986}
987
988/// WriteTypeSymbolTable - Emit a block for the specified type symtab.
989static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
990                                 const ValueEnumerator &VE,
991                                 BitstreamWriter &Stream) {
992  if (TST.empty()) return;
993
994  Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3);
995
996  // 7-bit fixed width VST_CODE_ENTRY strings.
997  BitCodeAbbrev *Abbv = new BitCodeAbbrev();
998  Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
999  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1000                            Log2_32_Ceil(VE.getTypes().size()+1)));
1001  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1002  Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1003  unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
1004
1005  SmallVector<unsigned, 64> NameVals;
1006
1007  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
1008       TI != TE; ++TI) {
1009    // TST_ENTRY: [typeid, namechar x N]
1010    NameVals.push_back(VE.getTypeID(TI->second));
1011
1012    const std::string &Str = TI->first;
1013    bool is7Bit = true;
1014    for (unsigned i = 0, e = Str.size(); i != e; ++i) {
1015      NameVals.push_back((unsigned char)Str[i]);
1016      if (Str[i] & 128)
1017        is7Bit = false;
1018    }
1019
1020    // Emit the finished record.
1021    Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
1022    NameVals.clear();
1023  }
1024
1025  Stream.ExitBlock();
1026}
1027
1028// Emit blockinfo, which defines the standard abbreviations etc.
1029static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
1030  // We only want to emit block info records for blocks that have multiple
1031  // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
1032  // blocks can defined their abbrevs inline.
1033  Stream.EnterBlockInfoBlock(2);
1034
1035  { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1036    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1037    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
1038    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1039    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1040    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1041    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1042                                   Abbv) != VST_ENTRY_8_ABBREV)
1043      assert(0 && "Unexpected abbrev ordering!");
1044  }
1045
1046  { // 7-bit fixed width VST_ENTRY strings.
1047    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1048    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1049    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1050    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1051    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1052    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1053                                   Abbv) != VST_ENTRY_7_ABBREV)
1054      assert(0 && "Unexpected abbrev ordering!");
1055  }
1056  { // 6-bit char6 VST_ENTRY strings.
1057    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1058    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
1059    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1060    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1061    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1062    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1063                                   Abbv) != VST_ENTRY_6_ABBREV)
1064      assert(0 && "Unexpected abbrev ordering!");
1065  }
1066  { // 6-bit char6 VST_BBENTRY strings.
1067    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1068    Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
1069    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1070    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1071    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1072    if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
1073                                   Abbv) != VST_BBENTRY_6_ABBREV)
1074      assert(0 && "Unexpected abbrev ordering!");
1075  }
1076
1077
1078
1079  { // SETTYPE abbrev for CONSTANTS_BLOCK.
1080    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1081    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
1082    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1083                              Log2_32_Ceil(VE.getTypes().size()+1)));
1084    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1085                                   Abbv) != CONSTANTS_SETTYPE_ABBREV)
1086      assert(0 && "Unexpected abbrev ordering!");
1087  }
1088
1089  { // INTEGER abbrev for CONSTANTS_BLOCK.
1090    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1091    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
1092    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1093    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1094                                   Abbv) != CONSTANTS_INTEGER_ABBREV)
1095      assert(0 && "Unexpected abbrev ordering!");
1096  }
1097
1098  { // CE_CAST abbrev for CONSTANTS_BLOCK.
1099    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1100    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
1101    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
1102    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
1103                              Log2_32_Ceil(VE.getTypes().size()+1)));
1104    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
1105
1106    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1107                                   Abbv) != CONSTANTS_CE_CAST_Abbrev)
1108      assert(0 && "Unexpected abbrev ordering!");
1109  }
1110  { // NULL abbrev for CONSTANTS_BLOCK.
1111    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1112    Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
1113    if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
1114                                   Abbv) != CONSTANTS_NULL_Abbrev)
1115      assert(0 && "Unexpected abbrev ordering!");
1116  }
1117
1118  // FIXME: This should only use space for first class types!
1119
1120  { // INST_LOAD abbrev for FUNCTION_BLOCK.
1121    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1122    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
1123    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
1124    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
1125    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
1126    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1127                                   Abbv) != FUNCTION_INST_LOAD_ABBREV)
1128      assert(0 && "Unexpected abbrev ordering!");
1129  }
1130  { // INST_BINOP abbrev for FUNCTION_BLOCK.
1131    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1132    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
1133    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
1134    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
1135    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
1136    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1137                                   Abbv) != FUNCTION_INST_BINOP_ABBREV)
1138      assert(0 && "Unexpected abbrev ordering!");
1139  }
1140  { // INST_CAST abbrev for FUNCTION_BLOCK.
1141    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1142    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
1143    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
1144    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
1145                              Log2_32_Ceil(VE.getTypes().size()+1)));
1146    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
1147    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1148                                   Abbv) != FUNCTION_INST_CAST_ABBREV)
1149      assert(0 && "Unexpected abbrev ordering!");
1150  }
1151
1152  { // INST_RET abbrev for FUNCTION_BLOCK.
1153    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1154    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1155    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1156                                   Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
1157      assert(0 && "Unexpected abbrev ordering!");
1158  }
1159  { // INST_RET abbrev for FUNCTION_BLOCK.
1160    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1161    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
1162    Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
1163    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1164                                   Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
1165      assert(0 && "Unexpected abbrev ordering!");
1166  }
1167  { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1168    BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1169    Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
1170    if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
1171                                   Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
1172      assert(0 && "Unexpected abbrev ordering!");
1173  }
1174
1175  Stream.ExitBlock();
1176}
1177
1178
1179/// WriteModule - Emit the specified module to the bitstream.
1180static void WriteModule(const Module *M, BitstreamWriter &Stream) {
1181  Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
1182
1183  // Emit the version number if it is non-zero.
1184  if (CurVersion) {
1185    SmallVector<unsigned, 1> Vals;
1186    Vals.push_back(CurVersion);
1187    Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
1188  }
1189
1190  // Analyze the module, enumerating globals, functions, etc.
1191  ValueEnumerator VE(M);
1192
1193  // Emit blockinfo, which defines the standard abbreviations etc.
1194  WriteBlockInfo(VE, Stream);
1195
1196  // Emit information about parameter attributes.
1197  WriteParamAttrTable(VE, Stream);
1198
1199  // Emit information describing all of the types in the module.
1200  WriteTypeTable(VE, Stream);
1201
1202  // Emit top-level description of module, including target triple, inline asm,
1203  // descriptors for global variables, and function prototype info.
1204  WriteModuleInfo(M, VE, Stream);
1205
1206  // Emit constants.
1207  WriteModuleConstants(VE, Stream);
1208
1209  // If we have any aggregate values in the value table, purge them - these can
1210  // only be used to initialize global variables.  Doing so makes the value
1211  // namespace smaller for code in functions.
1212  int NumNonAggregates = VE.PurgeAggregateValues();
1213  if (NumNonAggregates != -1) {
1214    SmallVector<unsigned, 1> Vals;
1215    Vals.push_back(NumNonAggregates);
1216    Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
1217  }
1218
1219  // Emit function bodies.
1220  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1221    if (!I->isDeclaration())
1222      WriteFunction(*I, VE, Stream);
1223
1224  // Emit the type symbol table information.
1225  WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
1226
1227  // Emit names for globals/functions etc.
1228  WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
1229
1230  Stream.ExitBlock();
1231}
1232
1233
1234/// WriteBitcodeToFile - Write the specified module to the specified output
1235/// stream.
1236void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
1237  std::vector<unsigned char> Buffer;
1238  BitstreamWriter Stream(Buffer);
1239
1240  Buffer.reserve(256*1024);
1241
1242  // Emit the file header.
1243  Stream.Emit((unsigned)'B', 8);
1244  Stream.Emit((unsigned)'C', 8);
1245  Stream.Emit(0x0, 4);
1246  Stream.Emit(0xC, 4);
1247  Stream.Emit(0xE, 4);
1248  Stream.Emit(0xD, 4);
1249
1250  // Emit the module.
1251  WriteModule(M, Stream);
1252
1253  // Write the generated bitstream to "Out".
1254  Out.write((char*)&Buffer.front(), Buffer.size());
1255
1256  // Make sure it hits disk now.
1257  Out.flush();
1258}
1259