X86MCInstLower.cpp revision b88b00ba2b7d7be2939c55193900cf4e465098c3
1//===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains code to lower X86 MachineInstrs to their corresponding
11// MCInst records.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86MCInstLower.h"
16#include "X86AsmPrinter.h"
17#include "X86COFFMachineModuleInfo.h"
18#include "X86MCAsmInfo.h"
19#include "llvm/CodeGen/MachineModuleInfoImpls.h"
20#include "llvm/MC/MCContext.h"
21#include "llvm/MC/MCExpr.h"
22#include "llvm/MC/MCInst.h"
23#include "llvm/MC/MCStreamer.h"
24#include "llvm/MC/MCSymbol.h"
25#include "llvm/Target/Mangler.h"
26#include "llvm/Support/FormattedStream.h"
27#include "llvm/ADT/SmallString.h"
28#include "llvm/Type.h"
29using namespace llvm;
30
31X86MCInstLower::X86MCInstLower(Mangler *mang, const MachineFunction &mf,
32                               X86AsmPrinter &asmprinter)
33: Ctx(mf.getContext()), Mang(mang), MF(mf), TM(mf.getTarget()),
34  MAI(*TM.getMCAsmInfo()), AsmPrinter(asmprinter) {}
35
36MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
37  return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
38}
39
40
41MCSymbol *X86MCInstLower::GetPICBaseSymbol() const {
42  return static_cast<const X86TargetLowering*>(TM.getTargetLowering())->
43    getPICBaseSymbol(&MF, Ctx);
44}
45
46/// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
47/// operand to an MCSymbol.
48MCSymbol *X86MCInstLower::
49GetSymbolFromOperand(const MachineOperand &MO) const {
50  assert((MO.isGlobal() || MO.isSymbol()) && "Isn't a symbol reference");
51
52  SmallString<128> Name;
53
54  if (!MO.isGlobal()) {
55    assert(MO.isSymbol());
56    Name += MAI.getGlobalPrefix();
57    Name += MO.getSymbolName();
58  } else {
59    const GlobalValue *GV = MO.getGlobal();
60    bool isImplicitlyPrivate = false;
61    if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB ||
62        MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
63        MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE ||
64        MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE)
65      isImplicitlyPrivate = true;
66
67    Mang->getNameWithPrefix(Name, GV, isImplicitlyPrivate);
68  }
69
70  // If the target flags on the operand changes the name of the symbol, do that
71  // before we return the symbol.
72  switch (MO.getTargetFlags()) {
73  default: break;
74  case X86II::MO_DLLIMPORT: {
75    // Handle dllimport linkage.
76    const char *Prefix = "__imp_";
77    Name.insert(Name.begin(), Prefix, Prefix+strlen(Prefix));
78    break;
79  }
80  case X86II::MO_DARWIN_NONLAZY:
81  case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
82    Name += "$non_lazy_ptr";
83    MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
84
85    MachineModuleInfoImpl::StubValueTy &StubSym =
86      getMachOMMI().getGVStubEntry(Sym);
87    if (StubSym.getPointer() == 0) {
88      assert(MO.isGlobal() && "Extern symbol not handled yet");
89      StubSym =
90        MachineModuleInfoImpl::
91        StubValueTy(Mang->getSymbol(MO.getGlobal()),
92                    !MO.getGlobal()->hasInternalLinkage());
93    }
94    return Sym;
95  }
96  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: {
97    Name += "$non_lazy_ptr";
98    MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
99    MachineModuleInfoImpl::StubValueTy &StubSym =
100      getMachOMMI().getHiddenGVStubEntry(Sym);
101    if (StubSym.getPointer() == 0) {
102      assert(MO.isGlobal() && "Extern symbol not handled yet");
103      StubSym =
104        MachineModuleInfoImpl::
105        StubValueTy(Mang->getSymbol(MO.getGlobal()),
106                    !MO.getGlobal()->hasInternalLinkage());
107    }
108    return Sym;
109  }
110  case X86II::MO_DARWIN_STUB: {
111    Name += "$stub";
112    MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name.str());
113    MachineModuleInfoImpl::StubValueTy &StubSym =
114      getMachOMMI().getFnStubEntry(Sym);
115    if (StubSym.getPointer())
116      return Sym;
117
118    if (MO.isGlobal()) {
119      StubSym =
120        MachineModuleInfoImpl::
121        StubValueTy(Mang->getSymbol(MO.getGlobal()),
122                    !MO.getGlobal()->hasInternalLinkage());
123    } else {
124      Name.erase(Name.end()-5, Name.end());
125      StubSym =
126        MachineModuleInfoImpl::
127        StubValueTy(Ctx.GetOrCreateSymbol(Name.str()), false);
128    }
129    return Sym;
130  }
131  }
132
133  return Ctx.GetOrCreateSymbol(Name.str());
134}
135
136MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
137                                             MCSymbol *Sym) const {
138  // FIXME: We would like an efficient form for this, so we don't have to do a
139  // lot of extra uniquing.
140  const MCExpr *Expr = 0;
141  MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
142
143  switch (MO.getTargetFlags()) {
144  default: llvm_unreachable("Unknown target flag on GV operand");
145  case X86II::MO_NO_FLAG:    // No flag.
146  // These affect the name of the symbol, not any suffix.
147  case X86II::MO_DARWIN_NONLAZY:
148  case X86II::MO_DLLIMPORT:
149  case X86II::MO_DARWIN_STUB:
150    break;
151
152  case X86II::MO_TLVP:      RefKind = MCSymbolRefExpr::VK_TLVP; break;
153  case X86II::MO_TLVP_PIC_BASE:
154    Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
155    // Subtract the pic base.
156    Expr = MCBinaryExpr::CreateSub(Expr,
157                                   MCSymbolRefExpr::Create(GetPICBaseSymbol(),
158                                                           Ctx),
159                                   Ctx);
160    break;
161  case X86II::MO_TLSGD:     RefKind = MCSymbolRefExpr::VK_TLSGD; break;
162  case X86II::MO_GOTTPOFF:  RefKind = MCSymbolRefExpr::VK_GOTTPOFF; break;
163  case X86II::MO_INDNTPOFF: RefKind = MCSymbolRefExpr::VK_INDNTPOFF; break;
164  case X86II::MO_TPOFF:     RefKind = MCSymbolRefExpr::VK_TPOFF; break;
165  case X86II::MO_NTPOFF:    RefKind = MCSymbolRefExpr::VK_NTPOFF; break;
166  case X86II::MO_GOTPCREL:  RefKind = MCSymbolRefExpr::VK_GOTPCREL; break;
167  case X86II::MO_GOT:       RefKind = MCSymbolRefExpr::VK_GOT; break;
168  case X86II::MO_GOTOFF:    RefKind = MCSymbolRefExpr::VK_GOTOFF; break;
169  case X86II::MO_PLT:       RefKind = MCSymbolRefExpr::VK_PLT; break;
170  case X86II::MO_PIC_BASE_OFFSET:
171  case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
172  case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
173    Expr = MCSymbolRefExpr::Create(Sym, Ctx);
174    // Subtract the pic base.
175    Expr = MCBinaryExpr::CreateSub(Expr,
176                               MCSymbolRefExpr::Create(GetPICBaseSymbol(), Ctx),
177                                   Ctx);
178    if (MO.isJTI() && MAI.hasSetDirective()) {
179      // If .set directive is supported, use it to reduce the number of
180      // relocations the assembler will generate for differences between
181      // local labels. This is only safe when the symbols are in the same
182      // section so we are restricting it to jumptable references.
183      MCSymbol *Label = Ctx.CreateTempSymbol();
184      AsmPrinter.OutStreamer.EmitAssignment(Label, Expr);
185      Expr = MCSymbolRefExpr::Create(Label, Ctx);
186    }
187    break;
188  }
189
190  if (Expr == 0)
191    Expr = MCSymbolRefExpr::Create(Sym, RefKind, Ctx);
192
193  if (!MO.isJTI() && MO.getOffset())
194    Expr = MCBinaryExpr::CreateAdd(Expr,
195                                   MCConstantExpr::Create(MO.getOffset(), Ctx),
196                                   Ctx);
197  return MCOperand::CreateExpr(Expr);
198}
199
200
201
202static void lower_subreg32(MCInst *MI, unsigned OpNo) {
203  // Convert registers in the addr mode according to subreg32.
204  unsigned Reg = MI->getOperand(OpNo).getReg();
205  if (Reg != 0)
206    MI->getOperand(OpNo).setReg(getX86SubSuperRegister(Reg, MVT::i32));
207}
208
209static void lower_lea64_32mem(MCInst *MI, unsigned OpNo) {
210  // Convert registers in the addr mode according to subreg64.
211  for (unsigned i = 0; i != 4; ++i) {
212    if (!MI->getOperand(OpNo+i).isReg()) continue;
213
214    unsigned Reg = MI->getOperand(OpNo+i).getReg();
215    if (Reg == 0) continue;
216
217    MI->getOperand(OpNo+i).setReg(getX86SubSuperRegister(Reg, MVT::i64));
218  }
219}
220
221/// LowerSubReg32_Op0 - Things like MOVZX16rr8 -> MOVZX32rr8.
222static void LowerSubReg32_Op0(MCInst &OutMI, unsigned NewOpc) {
223  OutMI.setOpcode(NewOpc);
224  lower_subreg32(&OutMI, 0);
225}
226/// LowerUnaryToTwoAddr - R = setb   -> R = sbb R, R
227static void LowerUnaryToTwoAddr(MCInst &OutMI, unsigned NewOpc) {
228  OutMI.setOpcode(NewOpc);
229  OutMI.addOperand(OutMI.getOperand(0));
230  OutMI.addOperand(OutMI.getOperand(0));
231}
232
233/// \brief Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
234/// a short fixed-register form.
235static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
236  unsigned ImmOp = Inst.getNumOperands() - 1;
237  assert(Inst.getOperand(0).isReg() && Inst.getOperand(ImmOp).isImm() &&
238         ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
239           Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
240          Inst.getNumOperands() == 2) && "Unexpected instruction!");
241
242  // Check whether the destination register can be fixed.
243  unsigned Reg = Inst.getOperand(0).getReg();
244  if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
245    return;
246
247  // If so, rewrite the instruction.
248  MCOperand Saved = Inst.getOperand(ImmOp);
249  Inst = MCInst();
250  Inst.setOpcode(Opcode);
251  Inst.addOperand(Saved);
252}
253
254/// \brief Simplify things like MOV32rm to MOV32o32a.
255static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
256                                  unsigned Opcode) {
257  // Don't make these simplifications in 64-bit mode; other assemblers don't
258  // perform them because they make the code larger.
259  if (Printer.getSubtarget().is64Bit())
260    return;
261
262  bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
263  unsigned AddrBase = IsStore;
264  unsigned RegOp = IsStore ? 0 : 5;
265  unsigned AddrOp = AddrBase + 3;
266  assert(Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
267         Inst.getOperand(AddrBase + 0).isReg() && // base
268         Inst.getOperand(AddrBase + 1).isImm() && // scale
269         Inst.getOperand(AddrBase + 2).isReg() && // index register
270         (Inst.getOperand(AddrOp).isExpr() ||     // address
271          Inst.getOperand(AddrOp).isImm())&&
272         Inst.getOperand(AddrBase + 4).isReg() && // segment
273         "Unexpected instruction!");
274
275  // Check whether the destination register can be fixed.
276  unsigned Reg = Inst.getOperand(RegOp).getReg();
277  if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
278    return;
279
280  // Check whether this is an absolute address.
281  // FIXME: We know TLVP symbol refs aren't, but there should be a better way
282  // to do this here.
283  bool Absolute = true;
284  if (Inst.getOperand(AddrOp).isExpr()) {
285    const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
286    if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
287      if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
288        Absolute = false;
289  }
290
291  if (Absolute &&
292      (Inst.getOperand(AddrBase + 0).getReg() != 0 ||
293       Inst.getOperand(AddrBase + 2).getReg() != 0 ||
294       Inst.getOperand(AddrBase + 4).getReg() != 0 ||
295       Inst.getOperand(AddrBase + 1).getImm() != 1))
296    return;
297
298  // If so, rewrite the instruction.
299  MCOperand Saved = Inst.getOperand(AddrOp);
300  Inst = MCInst();
301  Inst.setOpcode(Opcode);
302  Inst.addOperand(Saved);
303}
304
305void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
306  OutMI.setOpcode(MI->getOpcode());
307
308  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
309    const MachineOperand &MO = MI->getOperand(i);
310
311    MCOperand MCOp;
312    switch (MO.getType()) {
313    default:
314      MI->dump();
315      llvm_unreachable("unknown operand type");
316    case MachineOperand::MO_Register:
317      // Ignore all implicit register operands.
318      if (MO.isImplicit()) continue;
319      MCOp = MCOperand::CreateReg(MO.getReg());
320      break;
321    case MachineOperand::MO_Immediate:
322      MCOp = MCOperand::CreateImm(MO.getImm());
323      break;
324    case MachineOperand::MO_MachineBasicBlock:
325      MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
326                       MO.getMBB()->getSymbol(), Ctx));
327      break;
328    case MachineOperand::MO_GlobalAddress:
329      MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
330      break;
331    case MachineOperand::MO_ExternalSymbol:
332      MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
333      break;
334    case MachineOperand::MO_JumpTableIndex:
335      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
336      break;
337    case MachineOperand::MO_ConstantPoolIndex:
338      MCOp = LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
339      break;
340    case MachineOperand::MO_BlockAddress:
341      MCOp = LowerSymbolOperand(MO,
342                     AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
343      break;
344    }
345
346    OutMI.addOperand(MCOp);
347  }
348
349  // Handle a few special cases to eliminate operand modifiers.
350  switch (OutMI.getOpcode()) {
351  case X86::LEA64_32r: // Handle 'subreg rewriting' for the lea64_32mem operand.
352    lower_lea64_32mem(&OutMI, 1);
353    // FALL THROUGH.
354  case X86::LEA64r:
355  case X86::LEA16r:
356  case X86::LEA32r:
357    // LEA should have a segment register, but it must be empty.
358    assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
359           "Unexpected # of LEA operands");
360    assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
361           "LEA has segment specified!");
362    break;
363  case X86::MOVZX16rr8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rr8); break;
364  case X86::MOVZX16rm8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rm8); break;
365  case X86::MOVSX16rr8:   LowerSubReg32_Op0(OutMI, X86::MOVSX32rr8); break;
366  case X86::MOVSX16rm8:   LowerSubReg32_Op0(OutMI, X86::MOVSX32rm8); break;
367  case X86::MOVZX64rr32:  LowerSubReg32_Op0(OutMI, X86::MOV32rr); break;
368  case X86::MOVZX64rm32:  LowerSubReg32_Op0(OutMI, X86::MOV32rm); break;
369  case X86::MOV64ri64i32: LowerSubReg32_Op0(OutMI, X86::MOV32ri); break;
370  case X86::MOVZX64rr8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rr8); break;
371  case X86::MOVZX64rm8:   LowerSubReg32_Op0(OutMI, X86::MOVZX32rm8); break;
372  case X86::MOVZX64rr16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rr16); break;
373  case X86::MOVZX64rm16:  LowerSubReg32_Op0(OutMI, X86::MOVZX32rm16); break;
374  case X86::SETB_C8r:     LowerUnaryToTwoAddr(OutMI, X86::SBB8rr); break;
375  case X86::SETB_C16r:    LowerUnaryToTwoAddr(OutMI, X86::SBB16rr); break;
376  case X86::SETB_C32r:    LowerUnaryToTwoAddr(OutMI, X86::SBB32rr); break;
377  case X86::SETB_C64r:    LowerUnaryToTwoAddr(OutMI, X86::SBB64rr); break;
378  case X86::MOV8r0:       LowerUnaryToTwoAddr(OutMI, X86::XOR8rr); break;
379  case X86::MOV32r0:      LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); break;
380  case X86::FsFLD0SS:      LowerUnaryToTwoAddr(OutMI, X86::PXORrr); break;
381  case X86::FsFLD0SD:      LowerUnaryToTwoAddr(OutMI, X86::PXORrr); break;
382  case X86::V_SET0PS:      LowerUnaryToTwoAddr(OutMI, X86::XORPSrr); break;
383  case X86::V_SET0PD:      LowerUnaryToTwoAddr(OutMI, X86::XORPDrr); break;
384  case X86::V_SET0PI:      LowerUnaryToTwoAddr(OutMI, X86::PXORrr); break;
385  case X86::V_SETALLONES:  LowerUnaryToTwoAddr(OutMI, X86::PCMPEQDrr); break;
386  case X86::AVX_SET0PS:    LowerUnaryToTwoAddr(OutMI, X86::VXORPSrr); break;
387  case X86::AVX_SET0PSY:   LowerUnaryToTwoAddr(OutMI, X86::VXORPSYrr); break;
388  case X86::AVX_SET0PD:    LowerUnaryToTwoAddr(OutMI, X86::VXORPDrr); break;
389  case X86::AVX_SET0PDY:   LowerUnaryToTwoAddr(OutMI, X86::VXORPDYrr); break;
390  case X86::AVX_SET0PI:    LowerUnaryToTwoAddr(OutMI, X86::VPXORrr); break;
391
392  case X86::MOV16r0:
393    LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV16r0 -> MOV32r0
394    LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
395    break;
396  case X86::MOV64r0:
397    LowerSubReg32_Op0(OutMI, X86::MOV32r0);   // MOV64r0 -> MOV32r0
398    LowerUnaryToTwoAddr(OutMI, X86::XOR32rr); // MOV32r0 -> XOR32rr
399    break;
400
401  // TAILJMPr64, [WIN]CALL64r, [WIN]CALL64pcrel32 - These instructions have
402  // register inputs modeled as normal uses instead of implicit uses.  As such,
403  // truncate off all but the first operand (the callee).  FIXME: Change isel.
404  case X86::TAILJMPr64:
405  case X86::CALL64r:
406  case X86::CALL64pcrel32:
407  case X86::WINCALL64r:
408  case X86::WINCALL64pcrel32: {
409    unsigned Opcode = OutMI.getOpcode();
410    MCOperand Saved = OutMI.getOperand(0);
411    OutMI = MCInst();
412    OutMI.setOpcode(Opcode);
413    OutMI.addOperand(Saved);
414    break;
415  }
416
417  // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
418  case X86::TAILJMPr:
419  case X86::TAILJMPd:
420  case X86::TAILJMPd64: {
421    unsigned Opcode;
422    switch (OutMI.getOpcode()) {
423    default: assert(0 && "Invalid opcode");
424    case X86::TAILJMPr: Opcode = X86::JMP32r; break;
425    case X86::TAILJMPd:
426    case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
427    }
428
429    MCOperand Saved = OutMI.getOperand(0);
430    OutMI = MCInst();
431    OutMI.setOpcode(Opcode);
432    OutMI.addOperand(Saved);
433    break;
434  }
435
436  // The assembler backend wants to see branches in their small form and relax
437  // them to their large form.  The JIT can only handle the large form because
438  // it does not do relaxation.  For now, translate the large form to the
439  // small one here.
440  case X86::JMP_4: OutMI.setOpcode(X86::JMP_1); break;
441  case X86::JO_4:  OutMI.setOpcode(X86::JO_1); break;
442  case X86::JNO_4: OutMI.setOpcode(X86::JNO_1); break;
443  case X86::JB_4:  OutMI.setOpcode(X86::JB_1); break;
444  case X86::JAE_4: OutMI.setOpcode(X86::JAE_1); break;
445  case X86::JE_4:  OutMI.setOpcode(X86::JE_1); break;
446  case X86::JNE_4: OutMI.setOpcode(X86::JNE_1); break;
447  case X86::JBE_4: OutMI.setOpcode(X86::JBE_1); break;
448  case X86::JA_4:  OutMI.setOpcode(X86::JA_1); break;
449  case X86::JS_4:  OutMI.setOpcode(X86::JS_1); break;
450  case X86::JNS_4: OutMI.setOpcode(X86::JNS_1); break;
451  case X86::JP_4:  OutMI.setOpcode(X86::JP_1); break;
452  case X86::JNP_4: OutMI.setOpcode(X86::JNP_1); break;
453  case X86::JL_4:  OutMI.setOpcode(X86::JL_1); break;
454  case X86::JGE_4: OutMI.setOpcode(X86::JGE_1); break;
455  case X86::JLE_4: OutMI.setOpcode(X86::JLE_1); break;
456  case X86::JG_4:  OutMI.setOpcode(X86::JG_1); break;
457
458  // We don't currently select the correct instruction form for instructions
459  // which have a short %eax, etc. form. Handle this by custom lowering, for
460  // now.
461  //
462  // Note, we are currently not handling the following instructions:
463  // MOV64ao8, MOV64o8a
464  // XCHG16ar, XCHG32ar, XCHG64ar
465  case X86::MOV8mr_NOREX:
466  case X86::MOV8mr:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao8); break;
467  case X86::MOV8rm_NOREX:
468  case X86::MOV8rm:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o8a); break;
469  case X86::MOV16mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao16); break;
470  case X86::MOV16rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o16a); break;
471  case X86::MOV32mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;
472  case X86::MOV32rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;
473
474  case X86::ADC8ri:     SimplifyShortImmForm(OutMI, X86::ADC8i8);    break;
475  case X86::ADC16ri:    SimplifyShortImmForm(OutMI, X86::ADC16i16);  break;
476  case X86::ADC32ri:    SimplifyShortImmForm(OutMI, X86::ADC32i32);  break;
477  case X86::ADC64ri32:  SimplifyShortImmForm(OutMI, X86::ADC64i32);  break;
478  case X86::ADD8ri:     SimplifyShortImmForm(OutMI, X86::ADD8i8);    break;
479  case X86::ADD16ri:    SimplifyShortImmForm(OutMI, X86::ADD16i16);  break;
480  case X86::ADD32ri:    SimplifyShortImmForm(OutMI, X86::ADD32i32);  break;
481  case X86::ADD64ri32:  SimplifyShortImmForm(OutMI, X86::ADD64i32);  break;
482  case X86::AND8ri:     SimplifyShortImmForm(OutMI, X86::AND8i8);    break;
483  case X86::AND16ri:    SimplifyShortImmForm(OutMI, X86::AND16i16);  break;
484  case X86::AND32ri:    SimplifyShortImmForm(OutMI, X86::AND32i32);  break;
485  case X86::AND64ri32:  SimplifyShortImmForm(OutMI, X86::AND64i32);  break;
486  case X86::CMP8ri:     SimplifyShortImmForm(OutMI, X86::CMP8i8);    break;
487  case X86::CMP16ri:    SimplifyShortImmForm(OutMI, X86::CMP16i16);  break;
488  case X86::CMP32ri:    SimplifyShortImmForm(OutMI, X86::CMP32i32);  break;
489  case X86::CMP64ri32:  SimplifyShortImmForm(OutMI, X86::CMP64i32);  break;
490  case X86::OR8ri:      SimplifyShortImmForm(OutMI, X86::OR8i8);     break;
491  case X86::OR16ri:     SimplifyShortImmForm(OutMI, X86::OR16i16);   break;
492  case X86::OR32ri:     SimplifyShortImmForm(OutMI, X86::OR32i32);   break;
493  case X86::OR64ri32:   SimplifyShortImmForm(OutMI, X86::OR64i32);   break;
494  case X86::SBB8ri:     SimplifyShortImmForm(OutMI, X86::SBB8i8);    break;
495  case X86::SBB16ri:    SimplifyShortImmForm(OutMI, X86::SBB16i16);  break;
496  case X86::SBB32ri:    SimplifyShortImmForm(OutMI, X86::SBB32i32);  break;
497  case X86::SBB64ri32:  SimplifyShortImmForm(OutMI, X86::SBB64i32);  break;
498  case X86::SUB8ri:     SimplifyShortImmForm(OutMI, X86::SUB8i8);    break;
499  case X86::SUB16ri:    SimplifyShortImmForm(OutMI, X86::SUB16i16);  break;
500  case X86::SUB32ri:    SimplifyShortImmForm(OutMI, X86::SUB32i32);  break;
501  case X86::SUB64ri32:  SimplifyShortImmForm(OutMI, X86::SUB64i32);  break;
502  case X86::TEST8ri:    SimplifyShortImmForm(OutMI, X86::TEST8i8);   break;
503  case X86::TEST16ri:   SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
504  case X86::TEST32ri:   SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
505  case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
506  case X86::XOR8ri:     SimplifyShortImmForm(OutMI, X86::XOR8i8);    break;
507  case X86::XOR16ri:    SimplifyShortImmForm(OutMI, X86::XOR16i16);  break;
508  case X86::XOR32ri:    SimplifyShortImmForm(OutMI, X86::XOR32i32);  break;
509  case X86::XOR64ri32:  SimplifyShortImmForm(OutMI, X86::XOR64i32);  break;
510  }
511}
512
513
514void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
515  X86MCInstLower MCInstLowering(Mang, *MF, *this);
516  switch (MI->getOpcode()) {
517  case TargetOpcode::DBG_VALUE:
518    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
519      std::string TmpStr;
520      raw_string_ostream OS(TmpStr);
521      PrintDebugValueComment(MI, OS);
522      OutStreamer.EmitRawText(StringRef(OS.str()));
523    }
524    return;
525
526  // Emit nothing here but a comment if we can.
527  case X86::Int_MemBarrier:
528    if (OutStreamer.hasRawTextSupport())
529      OutStreamer.EmitRawText(StringRef("\t#MEMBARRIER"));
530    return;
531
532  case X86::TAILJMPr:
533  case X86::TAILJMPd:
534  case X86::TAILJMPd64:
535    // Lower these as normal, but add some comments.
536    OutStreamer.AddComment("TAILCALL");
537    break;
538
539  case X86::MOVPC32r: {
540    MCInst TmpInst;
541    // This is a pseudo op for a two instruction sequence with a label, which
542    // looks like:
543    //     call "L1$pb"
544    // "L1$pb":
545    //     popl %esi
546
547    // Emit the call.
548    MCSymbol *PICBase = MCInstLowering.GetPICBaseSymbol();
549    TmpInst.setOpcode(X86::CALLpcrel32);
550    // FIXME: We would like an efficient form for this, so we don't have to do a
551    // lot of extra uniquing.
552    TmpInst.addOperand(MCOperand::CreateExpr(MCSymbolRefExpr::Create(PICBase,
553                                                                 OutContext)));
554    OutStreamer.EmitInstruction(TmpInst);
555
556    // Emit the label.
557    OutStreamer.EmitLabel(PICBase);
558
559    // popl $reg
560    TmpInst.setOpcode(X86::POP32r);
561    TmpInst.getOperand(0) = MCOperand::CreateReg(MI->getOperand(0).getReg());
562    OutStreamer.EmitInstruction(TmpInst);
563    return;
564  }
565
566  case X86::ADD32ri: {
567    // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
568    if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
569      break;
570
571    // Okay, we have something like:
572    //  EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
573
574    // For this, we want to print something like:
575    //   MYGLOBAL + (. - PICBASE)
576    // However, we can't generate a ".", so just emit a new label here and refer
577    // to it.
578    MCSymbol *DotSym = OutContext.CreateTempSymbol();
579    OutStreamer.EmitLabel(DotSym);
580
581    // Now that we have emitted the label, lower the complex operand expression.
582    MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
583
584    const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
585    const MCExpr *PICBase =
586      MCSymbolRefExpr::Create(MCInstLowering.GetPICBaseSymbol(), OutContext);
587    DotExpr = MCBinaryExpr::CreateSub(DotExpr, PICBase, OutContext);
588
589    DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym,OutContext),
590                                      DotExpr, OutContext);
591
592    MCInst TmpInst;
593    TmpInst.setOpcode(X86::ADD32ri);
594    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(0).getReg()));
595    TmpInst.addOperand(MCOperand::CreateReg(MI->getOperand(1).getReg()));
596    TmpInst.addOperand(MCOperand::CreateExpr(DotExpr));
597    OutStreamer.EmitInstruction(TmpInst);
598    return;
599  }
600  }
601
602  MCInst TmpInst;
603  MCInstLowering.Lower(MI, TmpInst);
604  OutStreamer.EmitInstruction(TmpInst);
605}
606
607