ArgumentPromotion.cpp revision ce63ffb52f249b62cdf2d250c128007b13f27e71
1//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass promotes "by reference" arguments to be "by value" arguments.  In
11// practice, this means looking for internal functions that have pointer
12// arguments.  If it can prove, through the use of alias analysis, that an
13// argument is *only* loaded, then it can pass the value into the function
14// instead of the address of the value.  This can cause recursive simplification
15// of code and lead to the elimination of allocas (especially in C++ template
16// code like the STL).
17//
18// This pass also handles aggregate arguments that are passed into a function,
19// scalarizing them if the elements of the aggregate are only loaded.  Note that
20// by default it refuses to scalarize aggregates which would require passing in
21// more than three operands to the function, because passing thousands of
22// operands for a large array or structure is unprofitable! This limit can be
23// configured or disabled, however.
24//
25// Note that this transformation could also be done for arguments that are only
26// stored to (returning the value instead), but does not currently.  This case
27// would be best handled when and if LLVM begins supporting multiple return
28// values from functions.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "argpromotion"
33#include "llvm/Transforms/IPO.h"
34#include "llvm/Constants.h"
35#include "llvm/DerivedTypes.h"
36#include "llvm/Module.h"
37#include "llvm/CallGraphSCCPass.h"
38#include "llvm/Instructions.h"
39#include "llvm/LLVMContext.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/CallGraph.h"
42#include "llvm/Target/TargetData.h"
43#include "llvm/Support/CallSite.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/CFG.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/ADT/DepthFirstIterator.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/ADT/StringExtras.h"
51#include <set>
52using namespace llvm;
53
54STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
55STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
56STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
57STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
58
59namespace {
60  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
61  ///
62  struct VISIBILITY_HIDDEN ArgPromotion : public CallGraphSCCPass {
63    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
64      AU.addRequired<AliasAnalysis>();
65      AU.addRequired<TargetData>();
66      CallGraphSCCPass::getAnalysisUsage(AU);
67    }
68
69    virtual bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
70    static char ID; // Pass identification, replacement for typeid
71    explicit ArgPromotion(unsigned maxElements = 3)
72      : CallGraphSCCPass(&ID), maxElements(maxElements) {}
73
74    /// A vector used to hold the indices of a single GEP instruction
75    typedef std::vector<uint64_t> IndicesVector;
76
77  private:
78    bool PromoteArguments(CallGraphNode *CGN);
79    bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
80    Function *DoPromotion(Function *F,
81                          SmallPtrSet<Argument*, 8> &ArgsToPromote,
82                          SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
83    /// The maximum number of elements to expand, or 0 for unlimited.
84    unsigned maxElements;
85  };
86}
87
88char ArgPromotion::ID = 0;
89static RegisterPass<ArgPromotion>
90X("argpromotion", "Promote 'by reference' arguments to scalars");
91
92Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
93  return new ArgPromotion(maxElements);
94}
95
96bool ArgPromotion::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
97  bool Changed = false, LocalChange;
98
99  do {  // Iterate until we stop promoting from this SCC.
100    LocalChange = false;
101    // Attempt to promote arguments from all functions in this SCC.
102    for (unsigned i = 0, e = SCC.size(); i != e; ++i)
103      LocalChange |= PromoteArguments(SCC[i]);
104    Changed |= LocalChange;               // Remember that we changed something.
105  } while (LocalChange);
106
107  return Changed;
108}
109
110/// PromoteArguments - This method checks the specified function to see if there
111/// are any promotable arguments and if it is safe to promote the function (for
112/// example, all callers are direct).  If safe to promote some arguments, it
113/// calls the DoPromotion method.
114///
115bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
116  Function *F = CGN->getFunction();
117
118  // Make sure that it is local to this module.
119  if (!F || !F->hasLocalLinkage()) return false;
120
121  // First check: see if there are any pointer arguments!  If not, quick exit.
122  SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
123  unsigned ArgNo = 0;
124  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
125       I != E; ++I, ++ArgNo)
126    if (isa<PointerType>(I->getType()))
127      PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
128  if (PointerArgs.empty()) return false;
129
130  // Second check: make sure that all callers are direct callers.  We can't
131  // transform functions that have indirect callers.
132  if (F->hasAddressTaken())
133    return false;
134
135  // Check to see which arguments are promotable.  If an argument is promotable,
136  // add it to ArgsToPromote.
137  SmallPtrSet<Argument*, 8> ArgsToPromote;
138  SmallPtrSet<Argument*, 8> ByValArgsToTransform;
139  for (unsigned i = 0; i != PointerArgs.size(); ++i) {
140    bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
141
142    // If this is a byval argument, and if the aggregate type is small, just
143    // pass the elements, which is always safe.
144    Argument *PtrArg = PointerArgs[i].first;
145    if (isByVal) {
146      const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
147      if (const StructType *STy = dyn_cast<StructType>(AgTy)) {
148        if (maxElements > 0 && STy->getNumElements() > maxElements) {
149          DEBUG(errs() << "argpromotion disable promoting argument '"
150                << PtrArg->getName() << "' because it would require adding more"
151                << " than " << maxElements << " arguments to the function.\n");
152        } else {
153          // If all the elements are single-value types, we can promote it.
154          bool AllSimple = true;
155          for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
156            if (!STy->getElementType(i)->isSingleValueType()) {
157              AllSimple = false;
158              break;
159            }
160
161          // Safe to transform, don't even bother trying to "promote" it.
162          // Passing the elements as a scalar will allow scalarrepl to hack on
163          // the new alloca we introduce.
164          if (AllSimple) {
165            ByValArgsToTransform.insert(PtrArg);
166            continue;
167          }
168        }
169      }
170    }
171
172    // Otherwise, see if we can promote the pointer to its value.
173    if (isSafeToPromoteArgument(PtrArg, isByVal))
174      ArgsToPromote.insert(PtrArg);
175  }
176
177  // No promotable pointer arguments.
178  if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) return false;
179
180  Function *NewF = DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
181
182  // Update the call graph to know that the function has been transformed.
183  getAnalysis<CallGraph>().changeFunction(F, NewF);
184  return true;
185}
186
187/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
188/// to load.
189static bool IsAlwaysValidPointer(Value *V) {
190  if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
191  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
192    return IsAlwaysValidPointer(GEP->getOperand(0));
193  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
194    if (CE->getOpcode() == Instruction::GetElementPtr)
195      return IsAlwaysValidPointer(CE->getOperand(0));
196
197  return false;
198}
199
200/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
201/// all callees pass in a valid pointer for the specified function argument.
202static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
203  Function *Callee = Arg->getParent();
204
205  unsigned ArgNo = std::distance(Callee->arg_begin(),
206                                 Function::arg_iterator(Arg));
207
208  // Look at all call sites of the function.  At this pointer we know we only
209  // have direct callees.
210  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
211       UI != E; ++UI) {
212    CallSite CS = CallSite::get(*UI);
213    assert(CS.getInstruction() && "Should only have direct calls!");
214
215    if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
216      return false;
217  }
218  return true;
219}
220
221/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
222/// that is greater than or equal to the size of prefix, and each of the
223/// elements in Prefix is the same as the corresponding elements in Longer.
224///
225/// This means it also returns true when Prefix and Longer are equal!
226static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
227                     const ArgPromotion::IndicesVector &Longer) {
228  if (Prefix.size() > Longer.size())
229    return false;
230  for (unsigned i = 0, e = Prefix.size(); i != e; ++i)
231    if (Prefix[i] != Longer[i])
232      return false;
233  return true;
234}
235
236
237/// Checks if Indices, or a prefix of Indices, is in Set.
238static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
239                     std::set<ArgPromotion::IndicesVector> &Set) {
240    std::set<ArgPromotion::IndicesVector>::iterator Low;
241    Low = Set.upper_bound(Indices);
242    if (Low != Set.begin())
243      Low--;
244    // Low is now the last element smaller than or equal to Indices. This means
245    // it points to a prefix of Indices (possibly Indices itself), if such
246    // prefix exists.
247    //
248    // This load is safe if any prefix of its operands is safe to load.
249    return Low != Set.end() && IsPrefix(*Low, Indices);
250}
251
252/// Mark the given indices (ToMark) as safe in the the given set of indices
253/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
254/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
255/// already. Furthermore, any indices that Indices is itself a prefix of, are
256/// removed from Safe (since they are implicitely safe because of Indices now).
257static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
258                            std::set<ArgPromotion::IndicesVector> &Safe) {
259  std::set<ArgPromotion::IndicesVector>::iterator Low;
260  Low = Safe.upper_bound(ToMark);
261  // Guard against the case where Safe is empty
262  if (Low != Safe.begin())
263    Low--;
264  // Low is now the last element smaller than or equal to Indices. This
265  // means it points to a prefix of Indices (possibly Indices itself), if
266  // such prefix exists.
267  if (Low != Safe.end()) {
268    if (IsPrefix(*Low, ToMark))
269      // If there is already a prefix of these indices (or exactly these
270      // indices) marked a safe, don't bother adding these indices
271      return;
272
273    // Increment Low, so we can use it as a "insert before" hint
274    ++Low;
275  }
276  // Insert
277  Low = Safe.insert(Low, ToMark);
278  ++Low;
279  // If there we're a prefix of longer index list(s), remove those
280  std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
281  while (Low != End && IsPrefix(ToMark, *Low)) {
282    std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
283    ++Low;
284    Safe.erase(Remove);
285  }
286}
287
288/// isSafeToPromoteArgument - As you might guess from the name of this method,
289/// it checks to see if it is both safe and useful to promote the argument.
290/// This method limits promotion of aggregates to only promote up to three
291/// elements of the aggregate in order to avoid exploding the number of
292/// arguments passed in.
293bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
294  typedef std::set<IndicesVector> GEPIndicesSet;
295
296  // Quick exit for unused arguments
297  if (Arg->use_empty())
298    return true;
299
300  // We can only promote this argument if all of the uses are loads, or are GEP
301  // instructions (with constant indices) that are subsequently loaded.
302  //
303  // Promoting the argument causes it to be loaded in the caller
304  // unconditionally. This is only safe if we can prove that either the load
305  // would have happened in the callee anyway (ie, there is a load in the entry
306  // block) or the pointer passed in at every call site is guaranteed to be
307  // valid.
308  // In the former case, invalid loads can happen, but would have happened
309  // anyway, in the latter case, invalid loads won't happen. This prevents us
310  // from introducing an invalid load that wouldn't have happened in the
311  // original code.
312  //
313  // This set will contain all sets of indices that are loaded in the entry
314  // block, and thus are safe to unconditionally load in the caller.
315  GEPIndicesSet SafeToUnconditionallyLoad;
316
317  // This set contains all the sets of indices that we are planning to promote.
318  // This makes it possible to limit the number of arguments added.
319  GEPIndicesSet ToPromote;
320
321  // If the pointer is always valid, any load with first index 0 is valid.
322  if(isByVal || AllCalleesPassInValidPointerForArgument(Arg))
323    SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
324
325  // First, iterate the entry block and mark loads of (geps of) arguments as
326  // safe.
327  BasicBlock *EntryBlock = Arg->getParent()->begin();
328  // Declare this here so we can reuse it
329  IndicesVector Indices;
330  for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
331       I != E; ++I)
332    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
333      Value *V = LI->getPointerOperand();
334      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
335        V = GEP->getPointerOperand();
336        if (V == Arg) {
337          // This load actually loads (part of) Arg? Check the indices then.
338          Indices.reserve(GEP->getNumIndices());
339          for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
340               II != IE; ++II)
341            if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
342              Indices.push_back(CI->getSExtValue());
343            else
344              // We found a non-constant GEP index for this argument? Bail out
345              // right away, can't promote this argument at all.
346              return false;
347
348          // Indices checked out, mark them as safe
349          MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
350          Indices.clear();
351        }
352      } else if (V == Arg) {
353        // Direct loads are equivalent to a GEP with a single 0 index.
354        MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
355      }
356    }
357
358  // Now, iterate all uses of the argument to see if there are any uses that are
359  // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
360  SmallVector<LoadInst*, 16> Loads;
361  IndicesVector Operands;
362  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
363       UI != E; ++UI) {
364    Operands.clear();
365    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
366      if (LI->isVolatile()) return false;  // Don't hack volatile loads
367      Loads.push_back(LI);
368      // Direct loads are equivalent to a GEP with a zero index and then a load.
369      Operands.push_back(0);
370    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
371      if (GEP->use_empty()) {
372        // Dead GEP's cause trouble later.  Just remove them if we run into
373        // them.
374        getAnalysis<AliasAnalysis>().deleteValue(GEP);
375        GEP->eraseFromParent();
376        // TODO: This runs the above loop over and over again for dead GEPS
377        // Couldn't we just do increment the UI iterator earlier and erase the
378        // use?
379        return isSafeToPromoteArgument(Arg, isByVal);
380      }
381
382      // Ensure that all of the indices are constants.
383      for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
384        i != e; ++i)
385        if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
386          Operands.push_back(C->getSExtValue());
387        else
388          return false;  // Not a constant operand GEP!
389
390      // Ensure that the only users of the GEP are load instructions.
391      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
392           UI != E; ++UI)
393        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
394          if (LI->isVolatile()) return false;  // Don't hack volatile loads
395          Loads.push_back(LI);
396        } else {
397          // Other uses than load?
398          return false;
399        }
400    } else {
401      return false;  // Not a load or a GEP.
402    }
403
404    // Now, see if it is safe to promote this load / loads of this GEP. Loading
405    // is safe if Operands, or a prefix of Operands, is marked as safe.
406    if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
407      return false;
408
409    // See if we are already promoting a load with these indices. If not, check
410    // to make sure that we aren't promoting too many elements.  If so, nothing
411    // to do.
412    if (ToPromote.find(Operands) == ToPromote.end()) {
413      if (maxElements > 0 && ToPromote.size() == maxElements) {
414        DEBUG(errs() << "argpromotion not promoting argument '"
415              << Arg->getName() << "' because it would require adding more "
416              << "than " << maxElements << " arguments to the function.\n");
417        // We limit aggregate promotion to only promoting up to a fixed number
418        // of elements of the aggregate.
419        return false;
420      }
421      ToPromote.insert(Operands);
422    }
423  }
424
425  if (Loads.empty()) return true;  // No users, this is a dead argument.
426
427  // Okay, now we know that the argument is only used by load instructions and
428  // it is safe to unconditionally perform all of them. Use alias analysis to
429  // check to see if the pointer is guaranteed to not be modified from entry of
430  // the function to each of the load instructions.
431
432  // Because there could be several/many load instructions, remember which
433  // blocks we know to be transparent to the load.
434  SmallPtrSet<BasicBlock*, 16> TranspBlocks;
435
436  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
437  TargetData &TD = getAnalysis<TargetData>();
438
439  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
440    // Check to see if the load is invalidated from the start of the block to
441    // the load itself.
442    LoadInst *Load = Loads[i];
443    BasicBlock *BB = Load->getParent();
444
445    const PointerType *LoadTy =
446      cast<PointerType>(Load->getPointerOperand()->getType());
447    unsigned LoadSize = (unsigned)TD.getTypeStoreSize(LoadTy->getElementType());
448
449    if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
450      return false;  // Pointer is invalidated!
451
452    // Now check every path from the entry block to the load for transparency.
453    // To do this, we perform a depth first search on the inverse CFG from the
454    // loading block.
455    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
456      for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
457             I = idf_ext_begin(*PI, TranspBlocks),
458             E = idf_ext_end(*PI, TranspBlocks); I != E; ++I)
459        if (AA.canBasicBlockModify(**I, Arg, LoadSize))
460          return false;
461  }
462
463  // If the path from the entry of the function to each load is free of
464  // instructions that potentially invalidate the load, we can make the
465  // transformation!
466  return true;
467}
468
469/// DoPromotion - This method actually performs the promotion of the specified
470/// arguments, and returns the new function.  At this point, we know that it's
471/// safe to do so.
472Function *ArgPromotion::DoPromotion(Function *F,
473                                    SmallPtrSet<Argument*, 8> &ArgsToPromote,
474                              SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
475
476  // Start by computing a new prototype for the function, which is the same as
477  // the old function, but has modified arguments.
478  const FunctionType *FTy = F->getFunctionType();
479  std::vector<const Type*> Params;
480
481  typedef std::set<IndicesVector> ScalarizeTable;
482
483  // ScalarizedElements - If we are promoting a pointer that has elements
484  // accessed out of it, keep track of which elements are accessed so that we
485  // can add one argument for each.
486  //
487  // Arguments that are directly loaded will have a zero element value here, to
488  // handle cases where there are both a direct load and GEP accesses.
489  //
490  std::map<Argument*, ScalarizeTable> ScalarizedElements;
491
492  // OriginalLoads - Keep track of a representative load instruction from the
493  // original function so that we can tell the alias analysis implementation
494  // what the new GEP/Load instructions we are inserting look like.
495  std::map<IndicesVector, LoadInst*> OriginalLoads;
496
497  // Attributes - Keep track of the parameter attributes for the arguments
498  // that we are *not* promoting. For the ones that we do promote, the parameter
499  // attributes are lost
500  SmallVector<AttributeWithIndex, 8> AttributesVec;
501  const AttrListPtr &PAL = F->getAttributes();
502
503  // Add any return attributes.
504  if (Attributes attrs = PAL.getRetAttributes())
505    AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
506
507  // First, determine the new argument list
508  unsigned ArgIndex = 1;
509  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
510       ++I, ++ArgIndex) {
511    if (ByValArgsToTransform.count(I)) {
512      // Simple byval argument? Just add all the struct element types.
513      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
514      const StructType *STy = cast<StructType>(AgTy);
515      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
516        Params.push_back(STy->getElementType(i));
517      ++NumByValArgsPromoted;
518    } else if (!ArgsToPromote.count(I)) {
519      // Unchanged argument
520      Params.push_back(I->getType());
521      if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
522        AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
523    } else if (I->use_empty()) {
524      // Dead argument (which are always marked as promotable)
525      ++NumArgumentsDead;
526    } else {
527      // Okay, this is being promoted. This means that the only uses are loads
528      // or GEPs which are only used by loads
529
530      // In this table, we will track which indices are loaded from the argument
531      // (where direct loads are tracked as no indices).
532      ScalarizeTable &ArgIndices = ScalarizedElements[I];
533      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
534           ++UI) {
535        Instruction *User = cast<Instruction>(*UI);
536        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
537        IndicesVector Indices;
538        Indices.reserve(User->getNumOperands() - 1);
539        // Since loads will only have a single operand, and GEPs only a single
540        // non-index operand, this will record direct loads without any indices,
541        // and gep+loads with the GEP indices.
542        for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
543             II != IE; ++II)
544          Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
545        // GEPs with a single 0 index can be merged with direct loads
546        if (Indices.size() == 1 && Indices.front() == 0)
547          Indices.clear();
548        ArgIndices.insert(Indices);
549        LoadInst *OrigLoad;
550        if (LoadInst *L = dyn_cast<LoadInst>(User))
551          OrigLoad = L;
552        else
553          // Take any load, we will use it only to update Alias Analysis
554          OrigLoad = cast<LoadInst>(User->use_back());
555        OriginalLoads[Indices] = OrigLoad;
556      }
557
558      // Add a parameter to the function for each element passed in.
559      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
560             E = ArgIndices.end(); SI != E; ++SI) {
561        // not allowed to dereference ->begin() if size() is 0
562        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(),
563                                                           SI->begin(),
564                                                           SI->end()));
565        assert(Params.back());
566      }
567
568      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
569        ++NumArgumentsPromoted;
570      else
571        ++NumAggregatesPromoted;
572    }
573  }
574
575  // Add any function attributes.
576  if (Attributes attrs = PAL.getFnAttributes())
577    AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
578
579  const Type *RetTy = FTy->getReturnType();
580  LLVMContext &Context = RetTy->getContext();
581
582  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
583  // have zero fixed arguments.
584  bool ExtraArgHack = false;
585  if (Params.empty() && FTy->isVarArg()) {
586    ExtraArgHack = true;
587    Params.push_back(Type::Int32Ty);
588  }
589
590  // Construct the new function type using the new arguments.
591  FunctionType *NFTy = Context.getFunctionType(RetTy, Params, FTy->isVarArg());
592
593  // Create the new function body and insert it into the module...
594  Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
595  NF->copyAttributesFrom(F);
596
597  // Recompute the parameter attributes list based on the new arguments for
598  // the function.
599  NF->setAttributes(AttrListPtr::get(AttributesVec.begin(), AttributesVec.end()));
600  AttributesVec.clear();
601
602  F->getParent()->getFunctionList().insert(F, NF);
603  NF->takeName(F);
604
605  // Get the alias analysis information that we need to update to reflect our
606  // changes.
607  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
608
609  // Get the callgraph information that we need to update to reflect our
610  // changes.
611  CallGraph &CG = getAnalysis<CallGraph>();
612
613  // Loop over all of the callers of the function, transforming the call sites
614  // to pass in the loaded pointers.
615  //
616  SmallVector<Value*, 16> Args;
617  while (!F->use_empty()) {
618    CallSite CS = CallSite::get(F->use_back());
619    Instruction *Call = CS.getInstruction();
620    const AttrListPtr &CallPAL = CS.getAttributes();
621
622    // Add any return attributes.
623    if (Attributes attrs = CallPAL.getRetAttributes())
624      AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
625
626    // Loop over the operands, inserting GEP and loads in the caller as
627    // appropriate.
628    CallSite::arg_iterator AI = CS.arg_begin();
629    ArgIndex = 1;
630    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
631         I != E; ++I, ++AI, ++ArgIndex)
632      if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
633        Args.push_back(*AI);          // Unmodified argument
634
635        if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
636          AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
637
638      } else if (ByValArgsToTransform.count(I)) {
639        // Emit a GEP and load for each element of the struct.
640        const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
641        const StructType *STy = cast<StructType>(AgTy);
642        Value *Idxs[2] = { ConstantInt::get(Type::Int32Ty, 0), 0 };
643        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
644          Idxs[1] = ConstantInt::get(Type::Int32Ty, i);
645          Value *Idx = GetElementPtrInst::Create(*AI, Idxs, Idxs+2,
646                                                 (*AI)->getName()+"."+utostr(i),
647                                                 Call);
648          // TODO: Tell AA about the new values?
649          Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
650        }
651      } else if (!I->use_empty()) {
652        // Non-dead argument: insert GEPs and loads as appropriate.
653        ScalarizeTable &ArgIndices = ScalarizedElements[I];
654        // Store the Value* version of the indices in here, but declare it now
655        // for reuse
656        std::vector<Value*> Ops;
657        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
658               E = ArgIndices.end(); SI != E; ++SI) {
659          Value *V = *AI;
660          LoadInst *OrigLoad = OriginalLoads[*SI];
661          if (!SI->empty()) {
662            Ops.reserve(SI->size());
663            const Type *ElTy = V->getType();
664            for (IndicesVector::const_iterator II = SI->begin(),
665                 IE = SI->end(); II != IE; ++II) {
666              // Use i32 to index structs, and i64 for others (pointers/arrays).
667              // This satisfies GEP constraints.
668              const Type *IdxTy = (isa<StructType>(ElTy) ? Type::Int32Ty : Type::Int64Ty);
669              Ops.push_back(ConstantInt::get(IdxTy, *II));
670              // Keep track of the type we're currently indexing
671              ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
672            }
673            // And create a GEP to extract those indices
674            V = GetElementPtrInst::Create(V, Ops.begin(), Ops.end(),
675                                          V->getName()+".idx", Call);
676            Ops.clear();
677            AA.copyValue(OrigLoad->getOperand(0), V);
678          }
679          Args.push_back(new LoadInst(V, V->getName()+".val", Call));
680          AA.copyValue(OrigLoad, Args.back());
681        }
682      }
683
684    if (ExtraArgHack)
685      Args.push_back(Context.getNullValue(Type::Int32Ty));
686
687    // Push any varargs arguments on the list
688    for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
689      Args.push_back(*AI);
690      if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
691        AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
692    }
693
694    // Add any function attributes.
695    if (Attributes attrs = CallPAL.getFnAttributes())
696      AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
697
698    Instruction *New;
699    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
700      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
701                               Args.begin(), Args.end(), "", Call);
702      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
703      cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
704                                                          AttributesVec.end()));
705    } else {
706      New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
707      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
708      cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
709                                                        AttributesVec.end()));
710      if (cast<CallInst>(Call)->isTailCall())
711        cast<CallInst>(New)->setTailCall();
712    }
713    Args.clear();
714    AttributesVec.clear();
715
716    // Update the alias analysis implementation to know that we are replacing
717    // the old call with a new one.
718    AA.replaceWithNewValue(Call, New);
719
720    // Update the callgraph to know that the callsite has been transformed.
721    CG[Call->getParent()->getParent()]->replaceCallSite(Call, New);
722
723    if (!Call->use_empty()) {
724      Call->replaceAllUsesWith(New);
725      New->takeName(Call);
726    }
727
728    // Finally, remove the old call from the program, reducing the use-count of
729    // F.
730    Call->eraseFromParent();
731  }
732
733  // Since we have now created the new function, splice the body of the old
734  // function right into the new function, leaving the old rotting hulk of the
735  // function empty.
736  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
737
738  // Loop over the argument list, transfering uses of the old arguments over to
739  // the new arguments, also transfering over the names as well.
740  //
741  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
742       I2 = NF->arg_begin(); I != E; ++I) {
743    if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
744      // If this is an unmodified argument, move the name and users over to the
745      // new version.
746      I->replaceAllUsesWith(I2);
747      I2->takeName(I);
748      AA.replaceWithNewValue(I, I2);
749      ++I2;
750      continue;
751    }
752
753    if (ByValArgsToTransform.count(I)) {
754      // In the callee, we create an alloca, and store each of the new incoming
755      // arguments into the alloca.
756      Instruction *InsertPt = NF->begin()->begin();
757
758      // Just add all the struct element types.
759      const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
760      Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
761      const StructType *STy = cast<StructType>(AgTy);
762      Value *Idxs[2] = { ConstantInt::get(Type::Int32Ty, 0), 0 };
763
764      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
765        Idxs[1] = ConstantInt::get(Type::Int32Ty, i);
766        Value *Idx =
767          GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
768                                    TheAlloca->getName()+"."+utostr(i),
769                                    InsertPt);
770        I2->setName(I->getName()+"."+utostr(i));
771        new StoreInst(I2++, Idx, InsertPt);
772      }
773
774      // Anything that used the arg should now use the alloca.
775      I->replaceAllUsesWith(TheAlloca);
776      TheAlloca->takeName(I);
777      AA.replaceWithNewValue(I, TheAlloca);
778      continue;
779    }
780
781    if (I->use_empty()) {
782      AA.deleteValue(I);
783      continue;
784    }
785
786    // Otherwise, if we promoted this argument, then all users are load
787    // instructions (or GEPs with only load users), and all loads should be
788    // using the new argument that we added.
789    ScalarizeTable &ArgIndices = ScalarizedElements[I];
790
791    while (!I->use_empty()) {
792      if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
793        assert(ArgIndices.begin()->empty() &&
794               "Load element should sort to front!");
795        I2->setName(I->getName()+".val");
796        LI->replaceAllUsesWith(I2);
797        AA.replaceWithNewValue(LI, I2);
798        LI->eraseFromParent();
799        DEBUG(errs() << "*** Promoted load of argument '" << I->getName()
800              << "' in function '" << F->getName() << "'\n");
801      } else {
802        GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
803        IndicesVector Operands;
804        Operands.reserve(GEP->getNumIndices());
805        for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
806             II != IE; ++II)
807          Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
808
809        // GEPs with a single 0 index can be merged with direct loads
810        if (Operands.size() == 1 && Operands.front() == 0)
811          Operands.clear();
812
813        Function::arg_iterator TheArg = I2;
814        for (ScalarizeTable::iterator It = ArgIndices.begin();
815             *It != Operands; ++It, ++TheArg) {
816          assert(It != ArgIndices.end() && "GEP not handled??");
817        }
818
819        std::string NewName = I->getName();
820        for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
821            NewName += "." + utostr(Operands[i]);
822        }
823        NewName += ".val";
824        TheArg->setName(NewName);
825
826        DEBUG(errs() << "*** Promoted agg argument '" << TheArg->getName()
827              << "' of function '" << NF->getName() << "'\n");
828
829        // All of the uses must be load instructions.  Replace them all with
830        // the argument specified by ArgNo.
831        while (!GEP->use_empty()) {
832          LoadInst *L = cast<LoadInst>(GEP->use_back());
833          L->replaceAllUsesWith(TheArg);
834          AA.replaceWithNewValue(L, TheArg);
835          L->eraseFromParent();
836        }
837        AA.deleteValue(GEP);
838        GEP->eraseFromParent();
839      }
840    }
841
842    // Increment I2 past all of the arguments added for this promoted pointer.
843    for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
844      ++I2;
845  }
846
847  // Notify the alias analysis implementation that we inserted a new argument.
848  if (ExtraArgHack)
849    AA.copyValue(Context.getNullValue(Type::Int32Ty), NF->arg_begin());
850
851
852  // Tell the alias analysis that the old function is about to disappear.
853  AA.replaceWithNewValue(F, NF);
854
855  // Now that the old function is dead, delete it.
856  F->eraseFromParent();
857  return NF;
858}
859