ADCE.cpp revision 1a84bd38efa9d3f638781e2502b2bee150a3471c
1//===- ADCE.cpp - Code to perform aggressive dead code elimination --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements "aggressive" dead code elimination.  ADCE is DCe where
11// values are assumed to be dead until proven otherwise.  This is similar to
12// SCCP, except applied to the liveness of values.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Scalar.h"
17#include "llvm/Constants.h"
18#include "llvm/Instructions.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/PostDominators.h"
21#include "llvm/Support/CFG.h"
22#include "llvm/Transforms/Utils/BasicBlockUtils.h"
23#include "llvm/Transforms/Utils/Local.h"
24#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/ADT/DepthFirstIterator.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30using namespace llvm;
31
32namespace {
33  Statistic<> NumBlockRemoved("adce", "Number of basic blocks removed");
34  Statistic<> NumInstRemoved ("adce", "Number of instructions removed");
35  Statistic<> NumCallRemoved ("adce", "Number of calls and invokes removed");
36
37//===----------------------------------------------------------------------===//
38// ADCE Class
39//
40// This class does all of the work of Aggressive Dead Code Elimination.
41// It's public interface consists of a constructor and a doADCE() method.
42//
43class ADCE : public FunctionPass {
44  Function *Func;                       // The function that we are working on
45  std::vector<Instruction*> WorkList;   // Instructions that just became live
46  std::set<Instruction*>    LiveSet;    // The set of live instructions
47
48  //===--------------------------------------------------------------------===//
49  // The public interface for this class
50  //
51public:
52  // Execute the Aggressive Dead Code Elimination Algorithm
53  //
54  virtual bool runOnFunction(Function &F) {
55    Func = &F;
56    bool Changed = doADCE();
57    assert(WorkList.empty());
58    LiveSet.clear();
59    return Changed;
60  }
61  // getAnalysisUsage - We require post dominance frontiers (aka Control
62  // Dependence Graph)
63  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
64    // We require that all function nodes are unified, because otherwise code
65    // can be marked live that wouldn't necessarily be otherwise.
66    AU.addRequired<UnifyFunctionExitNodes>();
67    AU.addRequired<AliasAnalysis>();
68    AU.addRequired<PostDominatorTree>();
69    AU.addRequired<PostDominanceFrontier>();
70  }
71
72
73  //===--------------------------------------------------------------------===//
74  // The implementation of this class
75  //
76private:
77  // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
78  // true if the function was modified.
79  //
80  bool doADCE();
81
82  void markBlockAlive(BasicBlock *BB);
83
84
85  // deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in
86  // the specified basic block, deleting ones that are dead according to
87  // LiveSet.
88  bool deleteDeadInstructionsInLiveBlock(BasicBlock *BB);
89
90  TerminatorInst *convertToUnconditionalBranch(TerminatorInst *TI);
91
92  inline void markInstructionLive(Instruction *I) {
93    if (!LiveSet.insert(I).second) return;
94    DEBUG(std::cerr << "Insn Live: " << *I);
95    WorkList.push_back(I);
96  }
97
98  inline void markTerminatorLive(const BasicBlock *BB) {
99    DEBUG(std::cerr << "Terminator Live: " << *BB->getTerminator());
100    markInstructionLive(const_cast<TerminatorInst*>(BB->getTerminator()));
101  }
102};
103
104  RegisterOpt<ADCE> X("adce", "Aggressive Dead Code Elimination");
105} // End of anonymous namespace
106
107FunctionPass *llvm::createAggressiveDCEPass() { return new ADCE(); }
108
109void ADCE::markBlockAlive(BasicBlock *BB) {
110  // Mark the basic block as being newly ALIVE... and mark all branches that
111  // this block is control dependent on as being alive also...
112  //
113  PostDominanceFrontier &CDG = getAnalysis<PostDominanceFrontier>();
114
115  PostDominanceFrontier::const_iterator It = CDG.find(BB);
116  if (It != CDG.end()) {
117    // Get the blocks that this node is control dependent on...
118    const PostDominanceFrontier::DomSetType &CDB = It->second;
119    for_each(CDB.begin(), CDB.end(),   // Mark all their terminators as live
120             bind_obj(this, &ADCE::markTerminatorLive));
121  }
122
123  // If this basic block is live, and it ends in an unconditional branch, then
124  // the branch is alive as well...
125  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
126    if (BI->isUnconditional())
127      markTerminatorLive(BB);
128}
129
130// deleteDeadInstructionsInLiveBlock - Loop over all of the instructions in the
131// specified basic block, deleting ones that are dead according to LiveSet.
132bool ADCE::deleteDeadInstructionsInLiveBlock(BasicBlock *BB) {
133  bool Changed = false;
134  for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ) {
135    Instruction *I = II++;
136    if (!LiveSet.count(I)) {              // Is this instruction alive?
137      if (!I->use_empty())
138        I->replaceAllUsesWith(UndefValue::get(I->getType()));
139
140      // Nope... remove the instruction from it's basic block...
141      if (isa<CallInst>(I))
142        ++NumCallRemoved;
143      else
144        ++NumInstRemoved;
145      BB->getInstList().erase(I);
146      Changed = true;
147    }
148  }
149  return Changed;
150}
151
152
153/// convertToUnconditionalBranch - Transform this conditional terminator
154/// instruction into an unconditional branch because we don't care which of the
155/// successors it goes to.  This eliminate a use of the condition as well.
156///
157TerminatorInst *ADCE::convertToUnconditionalBranch(TerminatorInst *TI) {
158  BranchInst *NB = new BranchInst(TI->getSuccessor(0), TI);
159  BasicBlock *BB = TI->getParent();
160
161  // Remove entries from PHI nodes to avoid confusing ourself later...
162  for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
163    TI->getSuccessor(i)->removePredecessor(BB);
164
165  // Delete the old branch itself...
166  BB->getInstList().erase(TI);
167  return NB;
168}
169
170
171// doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning
172// true if the function was modified.
173//
174bool ADCE::doADCE() {
175  bool MadeChanges = false;
176
177  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
178
179
180  // Iterate over all invokes in the function, turning invokes into calls if
181  // they cannot throw.
182  for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
183    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()))
184      if (Function *F = II->getCalledFunction())
185        if (AA.onlyReadsMemory(F)) {
186          // The function cannot unwind.  Convert it to a call with a branch
187          // after it to the normal destination.
188          std::vector<Value*> Args(II->op_begin()+3, II->op_end());
189          std::string Name = II->getName(); II->setName("");
190          Instruction *NewCall = new CallInst(F, Args, Name, II);
191          II->replaceAllUsesWith(NewCall);
192          new BranchInst(II->getNormalDest(), II);
193
194          // Update PHI nodes in the unwind destination
195          II->getUnwindDest()->removePredecessor(BB);
196          BB->getInstList().erase(II);
197
198          if (NewCall->use_empty()) {
199            BB->getInstList().erase(NewCall);
200            ++NumCallRemoved;
201          }
202        }
203
204  // Iterate over all of the instructions in the function, eliminating trivially
205  // dead instructions, and marking instructions live that are known to be
206  // needed.  Perform the walk in depth first order so that we avoid marking any
207  // instructions live in basic blocks that are unreachable.  These blocks will
208  // be eliminated later, along with the instructions inside.
209  //
210  std::set<BasicBlock*> ReachableBBs;
211  for (df_ext_iterator<BasicBlock*>
212         BBI = df_ext_begin(&Func->front(), ReachableBBs),
213         BBE = df_ext_end(&Func->front(), ReachableBBs); BBI != BBE; ++BBI) {
214    BasicBlock *BB = *BBI;
215    for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) {
216      Instruction *I = II++;
217      if (CallInst *CI = dyn_cast<CallInst>(I)) {
218        Function *F = CI->getCalledFunction();
219        if (F && AA.onlyReadsMemory(F)) {
220          if (CI->use_empty()) {
221            BB->getInstList().erase(CI);
222            ++NumCallRemoved;
223          }
224        } else {
225          markInstructionLive(I);
226        }
227      } else if (I->mayWriteToMemory() || isa<ReturnInst>(I) ||
228                 isa<UnwindInst>(I) || isa<UnreachableInst>(I)) {
229        // FIXME: Unreachable instructions should not be marked intrinsically
230        // live here.
231	markInstructionLive(I);
232      } else if (isInstructionTriviallyDead(I)) {
233        // Remove the instruction from it's basic block...
234        BB->getInstList().erase(I);
235        ++NumInstRemoved;
236      }
237    }
238  }
239
240  // Check to ensure we have an exit node for this CFG.  If we don't, we won't
241  // have any post-dominance information, thus we cannot perform our
242  // transformations safely.
243  //
244  PostDominatorTree &DT = getAnalysis<PostDominatorTree>();
245  if (DT[&Func->getEntryBlock()] == 0) {
246    WorkList.clear();
247    return MadeChanges;
248  }
249
250  // Scan the function marking blocks without post-dominance information as
251  // live.  Blocks without post-dominance information occur when there is an
252  // infinite loop in the program.  Because the infinite loop could contain a
253  // function which unwinds, exits or has side-effects, we don't want to delete
254  // the infinite loop or those blocks leading up to it.
255  for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
256    if (DT[I] == 0 && ReachableBBs.count(I))
257      for (pred_iterator PI = pred_begin(I), E = pred_end(I); PI != E; ++PI)
258        markInstructionLive((*PI)->getTerminator());
259
260  DEBUG(std::cerr << "Processing work list\n");
261
262  // AliveBlocks - Set of basic blocks that we know have instructions that are
263  // alive in them...
264  //
265  std::set<BasicBlock*> AliveBlocks;
266
267  // Process the work list of instructions that just became live... if they
268  // became live, then that means that all of their operands are necessary as
269  // well... make them live as well.
270  //
271  while (!WorkList.empty()) {
272    Instruction *I = WorkList.back(); // Get an instruction that became live...
273    WorkList.pop_back();
274
275    BasicBlock *BB = I->getParent();
276    if (!ReachableBBs.count(BB)) continue;
277    if (AliveBlocks.insert(BB).second)     // Basic block not alive yet.
278      markBlockAlive(BB);             // Make it so now!
279
280    // PHI nodes are a special case, because the incoming values are actually
281    // defined in the predecessor nodes of this block, meaning that the PHI
282    // makes the predecessors alive.
283    //
284    if (PHINode *PN = dyn_cast<PHINode>(I)) {
285      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
286        // If the incoming edge is clearly dead, it won't have control
287        // dependence information.  Do not mark it live.
288        BasicBlock *PredBB = PN->getIncomingBlock(i);
289        if (ReachableBBs.count(PredBB)) {
290          // FIXME: This should mark the control dependent edge as live, not
291          // necessarily the predecessor itself!
292          if (AliveBlocks.insert(PredBB).second)
293            markBlockAlive(PN->getIncomingBlock(i));   // Block is newly ALIVE!
294          if (Instruction *Op = dyn_cast<Instruction>(PN->getIncomingValue(i)))
295            markInstructionLive(Op);
296        }
297      }
298    } else {
299      // Loop over all of the operands of the live instruction, making sure that
300      // they are known to be alive as well.
301      //
302      for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op)
303        if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op)))
304          markInstructionLive(Operand);
305    }
306  }
307
308  DEBUG(
309    std::cerr << "Current Function: X = Live\n";
310    for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I){
311      std::cerr << I->getName() << ":\t"
312                << (AliveBlocks.count(I) ? "LIVE\n" : "DEAD\n");
313      for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE; ++BI){
314        if (LiveSet.count(BI)) std::cerr << "X ";
315        std::cerr << *BI;
316      }
317    });
318
319  // All blocks being live is a common case, handle it specially.
320  if (AliveBlocks.size() == Func->size()) {  // No dead blocks?
321    for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) {
322      // Loop over all of the instructions in the function deleting instructions
323      // to drop their references.
324      deleteDeadInstructionsInLiveBlock(I);
325
326      // Check to make sure the terminator instruction is live.  If it isn't,
327      // this means that the condition that it branches on (we know it is not an
328      // unconditional branch), is not needed to make the decision of where to
329      // go to, because all outgoing edges go to the same place.  We must remove
330      // the use of the condition (because it's probably dead), so we convert
331      // the terminator to an unconditional branch.
332      //
333      TerminatorInst *TI = I->getTerminator();
334      if (!LiveSet.count(TI))
335        convertToUnconditionalBranch(TI);
336    }
337
338    return MadeChanges;
339  }
340
341
342  // If the entry node is dead, insert a new entry node to eliminate the entry
343  // node as a special case.
344  //
345  if (!AliveBlocks.count(&Func->front())) {
346    BasicBlock *NewEntry = new BasicBlock();
347    new BranchInst(&Func->front(), NewEntry);
348    Func->getBasicBlockList().push_front(NewEntry);
349    AliveBlocks.insert(NewEntry);    // This block is always alive!
350    LiveSet.insert(NewEntry->getTerminator());  // The branch is live
351  }
352
353  // Loop over all of the alive blocks in the function.  If any successor
354  // blocks are not alive, we adjust the outgoing branches to branch to the
355  // first live postdominator of the live block, adjusting any PHI nodes in
356  // the block to reflect this.
357  //
358  for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
359    if (AliveBlocks.count(I)) {
360      BasicBlock *BB = I;
361      TerminatorInst *TI = BB->getTerminator();
362
363      // If the terminator instruction is alive, but the block it is contained
364      // in IS alive, this means that this terminator is a conditional branch on
365      // a condition that doesn't matter.  Make it an unconditional branch to
366      // ONE of the successors.  This has the side effect of dropping a use of
367      // the conditional value, which may also be dead.
368      if (!LiveSet.count(TI))
369        TI = convertToUnconditionalBranch(TI);
370
371      // Loop over all of the successors, looking for ones that are not alive.
372      // We cannot save the number of successors in the terminator instruction
373      // here because we may remove them if we don't have a postdominator.
374      //
375      for (unsigned i = 0; i != TI->getNumSuccessors(); ++i)
376        if (!AliveBlocks.count(TI->getSuccessor(i))) {
377          // Scan up the postdominator tree, looking for the first
378          // postdominator that is alive, and the last postdominator that is
379          // dead...
380          //
381          PostDominatorTree::Node *LastNode = DT[TI->getSuccessor(i)];
382          PostDominatorTree::Node *NextNode = 0;
383
384          if (LastNode) {
385            NextNode = LastNode->getIDom();
386            while (!AliveBlocks.count(NextNode->getBlock())) {
387              LastNode = NextNode;
388              NextNode = NextNode->getIDom();
389              if (NextNode == 0) {
390                LastNode = 0;
391                break;
392              }
393            }
394          }
395
396          // There is a special case here... if there IS no post-dominator for
397          // the block we have nowhere to point our branch to.  Instead, convert
398          // it to a return.  This can only happen if the code branched into an
399          // infinite loop.  Note that this may not be desirable, because we
400          // _are_ altering the behavior of the code.  This is a well known
401          // drawback of ADCE, so in the future if we choose to revisit the
402          // decision, this is where it should be.
403          //
404          if (LastNode == 0) {        // No postdominator!
405            if (!isa<InvokeInst>(TI)) {
406              // Call RemoveSuccessor to transmogrify the terminator instruction
407              // to not contain the outgoing branch, or to create a new
408              // terminator if the form fundamentally changes (i.e.,
409              // unconditional branch to return).  Note that this will change a
410              // branch into an infinite loop into a return instruction!
411              //
412              RemoveSuccessor(TI, i);
413
414              // RemoveSuccessor may replace TI... make sure we have a fresh
415              // pointer.
416              //
417              TI = BB->getTerminator();
418
419              // Rescan this successor...
420              --i;
421            } else {
422
423            }
424          } else {
425            // Get the basic blocks that we need...
426            BasicBlock *LastDead = LastNode->getBlock();
427            BasicBlock *NextAlive = NextNode->getBlock();
428
429            // Make the conditional branch now go to the next alive block...
430            TI->getSuccessor(i)->removePredecessor(BB);
431            TI->setSuccessor(i, NextAlive);
432
433            // If there are PHI nodes in NextAlive, we need to add entries to
434            // the PHI nodes for the new incoming edge.  The incoming values
435            // should be identical to the incoming values for LastDead.
436            //
437            for (BasicBlock::iterator II = NextAlive->begin();
438                 isa<PHINode>(II); ++II) {
439              PHINode *PN = cast<PHINode>(II);
440              if (LiveSet.count(PN)) {  // Only modify live phi nodes
441                // Get the incoming value for LastDead...
442                int OldIdx = PN->getBasicBlockIndex(LastDead);
443                assert(OldIdx != -1 &&"LastDead is not a pred of NextAlive!");
444                Value *InVal = PN->getIncomingValue(OldIdx);
445
446                // Add an incoming value for BB now...
447                PN->addIncoming(InVal, BB);
448              }
449            }
450          }
451        }
452
453      // Now loop over all of the instructions in the basic block, deleting
454      // dead instructions.  This is so that the next sweep over the program
455      // can safely delete dead instructions without other dead instructions
456      // still referring to them.
457      //
458      deleteDeadInstructionsInLiveBlock(BB);
459    }
460
461  // Loop over all of the basic blocks in the function, dropping references of
462  // the dead basic blocks.  We must do this after the previous step to avoid
463  // dropping references to PHIs which still have entries...
464  //
465  std::vector<BasicBlock*> DeadBlocks;
466  for (Function::iterator BB = Func->begin(), E = Func->end(); BB != E; ++BB)
467    if (!AliveBlocks.count(BB)) {
468      // Remove PHI node entries for this block in live successor blocks.
469      for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
470        if (!SI->empty() && isa<PHINode>(SI->front()) && AliveBlocks.count(*SI))
471          (*SI)->removePredecessor(BB);
472
473      BB->dropAllReferences();
474      MadeChanges = true;
475      DeadBlocks.push_back(BB);
476    }
477
478  NumBlockRemoved += DeadBlocks.size();
479
480  // Now loop through all of the blocks and delete the dead ones.  We can safely
481  // do this now because we know that there are no references to dead blocks
482  // (because they have dropped all of their references).
483  for (std::vector<BasicBlock*>::iterator I = DeadBlocks.begin(),
484         E = DeadBlocks.end(); I != E; ++I)
485    Func->getBasicBlockList().erase(*I);
486
487  return MadeChanges;
488}
489