CodeGenPrepare.cpp revision eed707b1e6097aac2bb6b3d47271f6300ace7f2e
1a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block//
3a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block//                     The LLVM Compiler Infrastructure
4a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block//
5a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block// This file is distributed under the University of Illinois Open Source
6ab9e7a118cf1ea2e3a93dce683b2ded3e7291ddbBen Murdoch// License. See LICENSE.TXT for details.
7ab9e7a118cf1ea2e3a93dce683b2ded3e7291ddbBen Murdoch//
8a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block//===----------------------------------------------------------------------===//
9a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block//
10a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block// This pass munges the code in the input function to better prepare it for
11a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block// SelectionDAG-based code generation. This works around limitations in it's
12a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block// basic-block-at-a-time approach. It should eventually be removed.
13a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block//
14a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block//===----------------------------------------------------------------------===//
15a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block
16a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#define DEBUG_TYPE "codegenprepare"
17a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/Transforms/Scalar.h"
18a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/Constants.h"
19a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/DerivedTypes.h"
20a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/Function.h"
21a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/InlineAsm.h"
22a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/Instructions.h"
23a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/IntrinsicInst.h"
24a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/LLVMContext.h"
25a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/Pass.h"
26a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/Target/TargetData.h"
27a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/Target/TargetLowering.h"
28a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/Transforms/Utils/AddrModeMatcher.h"
29a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/Transforms/Utils/BasicBlockUtils.h"
30a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/Transforms/Utils/Local.h"
31a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/ADT/DenseMap.h"
32a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/ADT/SmallSet.h"
33a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/Assembly/Writer.h"
34a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/Support/CallSite.h"
35a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/Support/CommandLine.h"
36a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/Support/Compiler.h"
37a9bfd6c4a32dfd9cc032cb67c6ccb8d09c16f579Steve Block#include "llvm/Support/Debug.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/PatternMatch.h"
40using namespace llvm;
41using namespace llvm::PatternMatch;
42
43static cl::opt<bool> FactorCommonPreds("split-critical-paths-tweak",
44                                       cl::init(false), cl::Hidden);
45
46namespace {
47  class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
48    /// TLI - Keep a pointer of a TargetLowering to consult for determining
49    /// transformation profitability.
50    const TargetLowering *TLI;
51
52    /// BackEdges - Keep a set of all the loop back edges.
53    ///
54    SmallSet<std::pair<const BasicBlock*, const BasicBlock*>, 8> BackEdges;
55  public:
56    static char ID; // Pass identification, replacement for typeid
57    explicit CodeGenPrepare(const TargetLowering *tli = 0)
58      : FunctionPass(&ID), TLI(tli) {}
59    bool runOnFunction(Function &F);
60
61  private:
62    bool EliminateMostlyEmptyBlocks(Function &F);
63    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
64    void EliminateMostlyEmptyBlock(BasicBlock *BB);
65    bool OptimizeBlock(BasicBlock &BB);
66    bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy,
67                            DenseMap<Value*,Value*> &SunkAddrs);
68    bool OptimizeInlineAsmInst(Instruction *I, CallSite CS,
69                               DenseMap<Value*,Value*> &SunkAddrs);
70    bool OptimizeExtUses(Instruction *I);
71    void findLoopBackEdges(const Function &F);
72  };
73}
74
75char CodeGenPrepare::ID = 0;
76static RegisterPass<CodeGenPrepare> X("codegenprepare",
77                                      "Optimize for code generation");
78
79FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
80  return new CodeGenPrepare(TLI);
81}
82
83/// findLoopBackEdges - Do a DFS walk to find loop back edges.
84///
85void CodeGenPrepare::findLoopBackEdges(const Function &F) {
86  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
87  FindFunctionBackedges(F, Edges);
88
89  BackEdges.insert(Edges.begin(), Edges.end());
90}
91
92
93bool CodeGenPrepare::runOnFunction(Function &F) {
94  bool EverMadeChange = false;
95
96  // First pass, eliminate blocks that contain only PHI nodes and an
97  // unconditional branch.
98  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
99
100  // Now find loop back edges.
101  findLoopBackEdges(F);
102
103  bool MadeChange = true;
104  while (MadeChange) {
105    MadeChange = false;
106    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
107      MadeChange |= OptimizeBlock(*BB);
108    EverMadeChange |= MadeChange;
109  }
110  return EverMadeChange;
111}
112
113/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
114/// debug info directives, and an unconditional branch.  Passes before isel
115/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
116/// isel.  Start by eliminating these blocks so we can split them the way we
117/// want them.
118bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
119  bool MadeChange = false;
120  // Note that this intentionally skips the entry block.
121  for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
122    BasicBlock *BB = I++;
123
124    // If this block doesn't end with an uncond branch, ignore it.
125    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
126    if (!BI || !BI->isUnconditional())
127      continue;
128
129    // If the instruction before the branch (skipping debug info) isn't a phi
130    // node, then other stuff is happening here.
131    BasicBlock::iterator BBI = BI;
132    if (BBI != BB->begin()) {
133      --BBI;
134      while (isa<DbgInfoIntrinsic>(BBI)) {
135        if (BBI == BB->begin())
136          break;
137        --BBI;
138      }
139      if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
140        continue;
141    }
142
143    // Do not break infinite loops.
144    BasicBlock *DestBB = BI->getSuccessor(0);
145    if (DestBB == BB)
146      continue;
147
148    if (!CanMergeBlocks(BB, DestBB))
149      continue;
150
151    EliminateMostlyEmptyBlock(BB);
152    MadeChange = true;
153  }
154  return MadeChange;
155}
156
157/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
158/// single uncond branch between them, and BB contains no other non-phi
159/// instructions.
160bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
161                                    const BasicBlock *DestBB) const {
162  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
163  // the successor.  If there are more complex condition (e.g. preheaders),
164  // don't mess around with them.
165  BasicBlock::const_iterator BBI = BB->begin();
166  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
167    for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
168         UI != E; ++UI) {
169      const Instruction *User = cast<Instruction>(*UI);
170      if (User->getParent() != DestBB || !isa<PHINode>(User))
171        return false;
172      // If User is inside DestBB block and it is a PHINode then check
173      // incoming value. If incoming value is not from BB then this is
174      // a complex condition (e.g. preheaders) we want to avoid here.
175      if (User->getParent() == DestBB) {
176        if (const PHINode *UPN = dyn_cast<PHINode>(User))
177          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
178            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
179            if (Insn && Insn->getParent() == BB &&
180                Insn->getParent() != UPN->getIncomingBlock(I))
181              return false;
182          }
183      }
184    }
185  }
186
187  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
188  // and DestBB may have conflicting incoming values for the block.  If so, we
189  // can't merge the block.
190  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
191  if (!DestBBPN) return true;  // no conflict.
192
193  // Collect the preds of BB.
194  SmallPtrSet<const BasicBlock*, 16> BBPreds;
195  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
196    // It is faster to get preds from a PHI than with pred_iterator.
197    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
198      BBPreds.insert(BBPN->getIncomingBlock(i));
199  } else {
200    BBPreds.insert(pred_begin(BB), pred_end(BB));
201  }
202
203  // Walk the preds of DestBB.
204  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
205    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
206    if (BBPreds.count(Pred)) {   // Common predecessor?
207      BBI = DestBB->begin();
208      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
209        const Value *V1 = PN->getIncomingValueForBlock(Pred);
210        const Value *V2 = PN->getIncomingValueForBlock(BB);
211
212        // If V2 is a phi node in BB, look up what the mapped value will be.
213        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
214          if (V2PN->getParent() == BB)
215            V2 = V2PN->getIncomingValueForBlock(Pred);
216
217        // If there is a conflict, bail out.
218        if (V1 != V2) return false;
219      }
220    }
221  }
222
223  return true;
224}
225
226
227/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
228/// an unconditional branch in it.
229void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
230  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
231  BasicBlock *DestBB = BI->getSuccessor(0);
232
233  DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB;
234
235  // If the destination block has a single pred, then this is a trivial edge,
236  // just collapse it.
237  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
238    if (SinglePred != DestBB) {
239      // Remember if SinglePred was the entry block of the function.  If so, we
240      // will need to move BB back to the entry position.
241      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
242      MergeBasicBlockIntoOnlyPred(DestBB);
243
244      if (isEntry && BB != &BB->getParent()->getEntryBlock())
245        BB->moveBefore(&BB->getParent()->getEntryBlock());
246
247      DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
248      return;
249    }
250  }
251
252  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
253  // to handle the new incoming edges it is about to have.
254  PHINode *PN;
255  for (BasicBlock::iterator BBI = DestBB->begin();
256       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
257    // Remove the incoming value for BB, and remember it.
258    Value *InVal = PN->removeIncomingValue(BB, false);
259
260    // Two options: either the InVal is a phi node defined in BB or it is some
261    // value that dominates BB.
262    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
263    if (InValPhi && InValPhi->getParent() == BB) {
264      // Add all of the input values of the input PHI as inputs of this phi.
265      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
266        PN->addIncoming(InValPhi->getIncomingValue(i),
267                        InValPhi->getIncomingBlock(i));
268    } else {
269      // Otherwise, add one instance of the dominating value for each edge that
270      // we will be adding.
271      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
272        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
273          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
274      } else {
275        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
276          PN->addIncoming(InVal, *PI);
277      }
278    }
279  }
280
281  // The PHIs are now updated, change everything that refers to BB to use
282  // DestBB and remove BB.
283  BB->replaceAllUsesWith(DestBB);
284  BB->eraseFromParent();
285
286  DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
287}
288
289
290/// SplitEdgeNicely - Split the critical edge from TI to its specified
291/// successor if it will improve codegen.  We only do this if the successor has
292/// phi nodes (otherwise critical edges are ok).  If there is already another
293/// predecessor of the succ that is empty (and thus has no phi nodes), use it
294/// instead of introducing a new block.
295static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum,
296                     SmallSet<std::pair<const BasicBlock*,
297                                        const BasicBlock*>, 8> &BackEdges,
298                             Pass *P) {
299  BasicBlock *TIBB = TI->getParent();
300  BasicBlock *Dest = TI->getSuccessor(SuccNum);
301  assert(isa<PHINode>(Dest->begin()) &&
302         "This should only be called if Dest has a PHI!");
303
304  // Do not split edges to EH landing pads.
305  if (InvokeInst *Invoke = dyn_cast<InvokeInst>(TI)) {
306    if (Invoke->getSuccessor(1) == Dest)
307      return;
308  }
309
310  // As a hack, never split backedges of loops.  Even though the copy for any
311  // PHIs inserted on the backedge would be dead for exits from the loop, we
312  // assume that the cost of *splitting* the backedge would be too high.
313  if (BackEdges.count(std::make_pair(TIBB, Dest)))
314    return;
315
316  if (!FactorCommonPreds) {
317    /// TIPHIValues - This array is lazily computed to determine the values of
318    /// PHIs in Dest that TI would provide.
319    SmallVector<Value*, 32> TIPHIValues;
320
321    // Check to see if Dest has any blocks that can be used as a split edge for
322    // this terminator.
323    for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
324      BasicBlock *Pred = *PI;
325      // To be usable, the pred has to end with an uncond branch to the dest.
326      BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
327      if (!PredBr || !PredBr->isUnconditional())
328        continue;
329      // Must be empty other than the branch and debug info.
330      BasicBlock::iterator I = Pred->begin();
331      while (isa<DbgInfoIntrinsic>(I))
332        I++;
333      if (dyn_cast<Instruction>(I) != PredBr)
334        continue;
335      // Cannot be the entry block; its label does not get emitted.
336      if (Pred == &(Dest->getParent()->getEntryBlock()))
337        continue;
338
339      // Finally, since we know that Dest has phi nodes in it, we have to make
340      // sure that jumping to Pred will have the same effect as going to Dest in
341      // terms of PHI values.
342      PHINode *PN;
343      unsigned PHINo = 0;
344      bool FoundMatch = true;
345      for (BasicBlock::iterator I = Dest->begin();
346           (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
347        if (PHINo == TIPHIValues.size())
348          TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
349
350        // If the PHI entry doesn't work, we can't use this pred.
351        if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
352          FoundMatch = false;
353          break;
354        }
355      }
356
357      // If we found a workable predecessor, change TI to branch to Succ.
358      if (FoundMatch) {
359        Dest->removePredecessor(TIBB);
360        TI->setSuccessor(SuccNum, Pred);
361        return;
362      }
363    }
364
365    SplitCriticalEdge(TI, SuccNum, P, true);
366    return;
367  }
368
369  PHINode *PN;
370  SmallVector<Value*, 8> TIPHIValues;
371  for (BasicBlock::iterator I = Dest->begin();
372       (PN = dyn_cast<PHINode>(I)); ++I)
373    TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
374
375  SmallVector<BasicBlock*, 8> IdenticalPreds;
376  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
377    BasicBlock *Pred = *PI;
378    if (BackEdges.count(std::make_pair(Pred, Dest)))
379      continue;
380    if (PI == TIBB)
381      IdenticalPreds.push_back(Pred);
382    else {
383      bool Identical = true;
384      unsigned PHINo = 0;
385      for (BasicBlock::iterator I = Dest->begin();
386           (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo)
387        if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
388          Identical = false;
389          break;
390        }
391      if (Identical)
392        IdenticalPreds.push_back(Pred);
393    }
394  }
395
396  assert(!IdenticalPreds.empty());
397  SplitBlockPredecessors(Dest, &IdenticalPreds[0], IdenticalPreds.size(),
398                         ".critedge", P);
399}
400
401
402/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
403/// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
404/// sink it into user blocks to reduce the number of virtual
405/// registers that must be created and coalesced.
406///
407/// Return true if any changes are made.
408///
409static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
410  // If this is a noop copy,
411  MVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
412  MVT DstVT = TLI.getValueType(CI->getType());
413
414  // This is an fp<->int conversion?
415  if (SrcVT.isInteger() != DstVT.isInteger())
416    return false;
417
418  // If this is an extension, it will be a zero or sign extension, which
419  // isn't a noop.
420  if (SrcVT.bitsLT(DstVT)) return false;
421
422  // If these values will be promoted, find out what they will be promoted
423  // to.  This helps us consider truncates on PPC as noop copies when they
424  // are.
425  if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
426    SrcVT = TLI.getTypeToTransformTo(SrcVT);
427  if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
428    DstVT = TLI.getTypeToTransformTo(DstVT);
429
430  // If, after promotion, these are the same types, this is a noop copy.
431  if (SrcVT != DstVT)
432    return false;
433
434  BasicBlock *DefBB = CI->getParent();
435
436  /// InsertedCasts - Only insert a cast in each block once.
437  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
438
439  bool MadeChange = false;
440  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
441       UI != E; ) {
442    Use &TheUse = UI.getUse();
443    Instruction *User = cast<Instruction>(*UI);
444
445    // Figure out which BB this cast is used in.  For PHI's this is the
446    // appropriate predecessor block.
447    BasicBlock *UserBB = User->getParent();
448    if (PHINode *PN = dyn_cast<PHINode>(User)) {
449      UserBB = PN->getIncomingBlock(UI);
450    }
451
452    // Preincrement use iterator so we don't invalidate it.
453    ++UI;
454
455    // If this user is in the same block as the cast, don't change the cast.
456    if (UserBB == DefBB) continue;
457
458    // If we have already inserted a cast into this block, use it.
459    CastInst *&InsertedCast = InsertedCasts[UserBB];
460
461    if (!InsertedCast) {
462      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
463
464      InsertedCast =
465        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
466                         InsertPt);
467      MadeChange = true;
468    }
469
470    // Replace a use of the cast with a use of the new cast.
471    TheUse = InsertedCast;
472  }
473
474  // If we removed all uses, nuke the cast.
475  if (CI->use_empty()) {
476    CI->eraseFromParent();
477    MadeChange = true;
478  }
479
480  return MadeChange;
481}
482
483/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
484/// the number of virtual registers that must be created and coalesced.  This is
485/// a clear win except on targets with multiple condition code registers
486///  (PowerPC), where it might lose; some adjustment may be wanted there.
487///
488/// Return true if any changes are made.
489static bool OptimizeCmpExpression(CmpInst *CI) {
490  BasicBlock *DefBB = CI->getParent();
491
492  /// InsertedCmp - Only insert a cmp in each block once.
493  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
494
495  bool MadeChange = false;
496  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
497       UI != E; ) {
498    Use &TheUse = UI.getUse();
499    Instruction *User = cast<Instruction>(*UI);
500
501    // Preincrement use iterator so we don't invalidate it.
502    ++UI;
503
504    // Don't bother for PHI nodes.
505    if (isa<PHINode>(User))
506      continue;
507
508    // Figure out which BB this cmp is used in.
509    BasicBlock *UserBB = User->getParent();
510
511    // If this user is in the same block as the cmp, don't change the cmp.
512    if (UserBB == DefBB) continue;
513
514    // If we have already inserted a cmp into this block, use it.
515    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
516
517    if (!InsertedCmp) {
518      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
519
520      InsertedCmp =
521        CmpInst::Create(DefBB->getContext(), CI->getOpcode(),
522                        CI->getPredicate(),  CI->getOperand(0),
523                        CI->getOperand(1), "", InsertPt);
524      MadeChange = true;
525    }
526
527    // Replace a use of the cmp with a use of the new cmp.
528    TheUse = InsertedCmp;
529  }
530
531  // If we removed all uses, nuke the cmp.
532  if (CI->use_empty())
533    CI->eraseFromParent();
534
535  return MadeChange;
536}
537
538//===----------------------------------------------------------------------===//
539// Memory Optimization
540//===----------------------------------------------------------------------===//
541
542/// IsNonLocalValue - Return true if the specified values are defined in a
543/// different basic block than BB.
544static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
545  if (Instruction *I = dyn_cast<Instruction>(V))
546    return I->getParent() != BB;
547  return false;
548}
549
550/// OptimizeMemoryInst - Load and Store Instructions have often have
551/// addressing modes that can do significant amounts of computation.  As such,
552/// instruction selection will try to get the load or store to do as much
553/// computation as possible for the program.  The problem is that isel can only
554/// see within a single block.  As such, we sink as much legal addressing mode
555/// stuff into the block as possible.
556///
557/// This method is used to optimize both load/store and inline asms with memory
558/// operands.
559bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
560                                        const Type *AccessTy,
561                                        DenseMap<Value*,Value*> &SunkAddrs) {
562  LLVMContext &Context = MemoryInst->getContext();
563
564  // Figure out what addressing mode will be built up for this operation.
565  SmallVector<Instruction*, 16> AddrModeInsts;
566  ExtAddrMode AddrMode = AddressingModeMatcher::Match(Addr, AccessTy,MemoryInst,
567                                                      AddrModeInsts, *TLI);
568
569  // Check to see if any of the instructions supersumed by this addr mode are
570  // non-local to I's BB.
571  bool AnyNonLocal = false;
572  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
573    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
574      AnyNonLocal = true;
575      break;
576    }
577  }
578
579  // If all the instructions matched are already in this BB, don't do anything.
580  if (!AnyNonLocal) {
581    DEBUG(cerr << "CGP: Found      local addrmode: " << AddrMode << "\n");
582    return false;
583  }
584
585  // Insert this computation right after this user.  Since our caller is
586  // scanning from the top of the BB to the bottom, reuse of the expr are
587  // guaranteed to happen later.
588  BasicBlock::iterator InsertPt = MemoryInst;
589
590  // Now that we determined the addressing expression we want to use and know
591  // that we have to sink it into this block.  Check to see if we have already
592  // done this for some other load/store instr in this block.  If so, reuse the
593  // computation.
594  Value *&SunkAddr = SunkAddrs[Addr];
595  if (SunkAddr) {
596    DEBUG(cerr << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
597               << *MemoryInst);
598    if (SunkAddr->getType() != Addr->getType())
599      SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
600  } else {
601    DEBUG(cerr << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
602               << *MemoryInst);
603    const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType();
604
605    Value *Result = 0;
606    // Start with the scale value.
607    if (AddrMode.Scale) {
608      Value *V = AddrMode.ScaledReg;
609      if (V->getType() == IntPtrTy) {
610        // done.
611      } else if (isa<PointerType>(V->getType())) {
612        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
613      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
614                 cast<IntegerType>(V->getType())->getBitWidth()) {
615        V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
616      } else {
617        V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
618      }
619      if (AddrMode.Scale != 1)
620        V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy,
621                                                                AddrMode.Scale),
622                                      "sunkaddr", InsertPt);
623      Result = V;
624    }
625
626    // Add in the base register.
627    if (AddrMode.BaseReg) {
628      Value *V = AddrMode.BaseReg;
629      if (isa<PointerType>(V->getType()))
630        V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
631      if (V->getType() != IntPtrTy)
632        V = CastInst::CreateIntegerCast(V, IntPtrTy, /*isSigned=*/true,
633                                        "sunkaddr", InsertPt);
634      if (Result)
635        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
636      else
637        Result = V;
638    }
639
640    // Add in the BaseGV if present.
641    if (AddrMode.BaseGV) {
642      Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
643                                  InsertPt);
644      if (Result)
645        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
646      else
647        Result = V;
648    }
649
650    // Add in the Base Offset if present.
651    if (AddrMode.BaseOffs) {
652      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
653      if (Result)
654        Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
655      else
656        Result = V;
657    }
658
659    if (Result == 0)
660      SunkAddr = Context.getNullValue(Addr->getType());
661    else
662      SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
663  }
664
665  MemoryInst->replaceUsesOfWith(Addr, SunkAddr);
666
667  if (Addr->use_empty())
668    RecursivelyDeleteTriviallyDeadInstructions(Addr);
669  return true;
670}
671
672/// OptimizeInlineAsmInst - If there are any memory operands, use
673/// OptimizeMemoryInst to sink their address computing into the block when
674/// possible / profitable.
675bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction *I, CallSite CS,
676                                           DenseMap<Value*,Value*> &SunkAddrs) {
677  bool MadeChange = false;
678  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
679
680  // Do a prepass over the constraints, canonicalizing them, and building up the
681  // ConstraintOperands list.
682  std::vector<InlineAsm::ConstraintInfo>
683    ConstraintInfos = IA->ParseConstraints();
684
685  /// ConstraintOperands - Information about all of the constraints.
686  std::vector<TargetLowering::AsmOperandInfo> ConstraintOperands;
687  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
688  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
689    ConstraintOperands.
690      push_back(TargetLowering::AsmOperandInfo(ConstraintInfos[i]));
691    TargetLowering::AsmOperandInfo &OpInfo = ConstraintOperands.back();
692
693    // Compute the value type for each operand.
694    switch (OpInfo.Type) {
695    case InlineAsm::isOutput:
696      if (OpInfo.isIndirect)
697        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
698      break;
699    case InlineAsm::isInput:
700      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
701      break;
702    case InlineAsm::isClobber:
703      // Nothing to do.
704      break;
705    }
706
707    // Compute the constraint code and ConstraintType to use.
708    TLI->ComputeConstraintToUse(OpInfo, SDValue(),
709                             OpInfo.ConstraintType == TargetLowering::C_Memory);
710
711    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
712        OpInfo.isIndirect) {
713      Value *OpVal = OpInfo.CallOperandVal;
714      MadeChange |= OptimizeMemoryInst(I, OpVal, OpVal->getType(), SunkAddrs);
715    }
716  }
717
718  return MadeChange;
719}
720
721bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
722  BasicBlock *DefBB = I->getParent();
723
724  // If both result of the {s|z}xt and its source are live out, rewrite all
725  // other uses of the source with result of extension.
726  Value *Src = I->getOperand(0);
727  if (Src->hasOneUse())
728    return false;
729
730  // Only do this xform if truncating is free.
731  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
732    return false;
733
734  // Only safe to perform the optimization if the source is also defined in
735  // this block.
736  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
737    return false;
738
739  bool DefIsLiveOut = false;
740  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
741       UI != E; ++UI) {
742    Instruction *User = cast<Instruction>(*UI);
743
744    // Figure out which BB this ext is used in.
745    BasicBlock *UserBB = User->getParent();
746    if (UserBB == DefBB) continue;
747    DefIsLiveOut = true;
748    break;
749  }
750  if (!DefIsLiveOut)
751    return false;
752
753  // Make sure non of the uses are PHI nodes.
754  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
755       UI != E; ++UI) {
756    Instruction *User = cast<Instruction>(*UI);
757    BasicBlock *UserBB = User->getParent();
758    if (UserBB == DefBB) continue;
759    // Be conservative. We don't want this xform to end up introducing
760    // reloads just before load / store instructions.
761    if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
762      return false;
763  }
764
765  // InsertedTruncs - Only insert one trunc in each block once.
766  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
767
768  bool MadeChange = false;
769  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
770       UI != E; ++UI) {
771    Use &TheUse = UI.getUse();
772    Instruction *User = cast<Instruction>(*UI);
773
774    // Figure out which BB this ext is used in.
775    BasicBlock *UserBB = User->getParent();
776    if (UserBB == DefBB) continue;
777
778    // Both src and def are live in this block. Rewrite the use.
779    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
780
781    if (!InsertedTrunc) {
782      BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
783
784      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
785    }
786
787    // Replace a use of the {s|z}ext source with a use of the result.
788    TheUse = InsertedTrunc;
789
790    MadeChange = true;
791  }
792
793  return MadeChange;
794}
795
796// In this pass we look for GEP and cast instructions that are used
797// across basic blocks and rewrite them to improve basic-block-at-a-time
798// selection.
799bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
800  bool MadeChange = false;
801
802  // Split all critical edges where the dest block has a PHI.
803  TerminatorInst *BBTI = BB.getTerminator();
804  if (BBTI->getNumSuccessors() > 1) {
805    for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i) {
806      BasicBlock *SuccBB = BBTI->getSuccessor(i);
807      if (isa<PHINode>(SuccBB->begin()) && isCriticalEdge(BBTI, i, true))
808        SplitEdgeNicely(BBTI, i, BackEdges, this);
809    }
810  }
811
812  // Keep track of non-local addresses that have been sunk into this block.
813  // This allows us to avoid inserting duplicate code for blocks with multiple
814  // load/stores of the same address.
815  DenseMap<Value*, Value*> SunkAddrs;
816
817  for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
818    Instruction *I = BBI++;
819
820    if (CastInst *CI = dyn_cast<CastInst>(I)) {
821      // If the source of the cast is a constant, then this should have
822      // already been constant folded.  The only reason NOT to constant fold
823      // it is if something (e.g. LSR) was careful to place the constant
824      // evaluation in a block other than then one that uses it (e.g. to hoist
825      // the address of globals out of a loop).  If this is the case, we don't
826      // want to forward-subst the cast.
827      if (isa<Constant>(CI->getOperand(0)))
828        continue;
829
830      bool Change = false;
831      if (TLI) {
832        Change = OptimizeNoopCopyExpression(CI, *TLI);
833        MadeChange |= Change;
834      }
835
836      if (!Change && (isa<ZExtInst>(I) || isa<SExtInst>(I)))
837        MadeChange |= OptimizeExtUses(I);
838    } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
839      MadeChange |= OptimizeCmpExpression(CI);
840    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
841      if (TLI)
842        MadeChange |= OptimizeMemoryInst(I, I->getOperand(0), LI->getType(),
843                                         SunkAddrs);
844    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
845      if (TLI)
846        MadeChange |= OptimizeMemoryInst(I, SI->getOperand(1),
847                                         SI->getOperand(0)->getType(),
848                                         SunkAddrs);
849    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
850      if (GEPI->hasAllZeroIndices()) {
851        /// The GEP operand must be a pointer, so must its result -> BitCast
852        Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
853                                          GEPI->getName(), GEPI);
854        GEPI->replaceAllUsesWith(NC);
855        GEPI->eraseFromParent();
856        MadeChange = true;
857        BBI = NC;
858      }
859    } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
860      // If we found an inline asm expession, and if the target knows how to
861      // lower it to normal LLVM code, do so now.
862      if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
863        if (TLI->ExpandInlineAsm(CI)) {
864          BBI = BB.begin();
865          // Avoid processing instructions out of order, which could cause
866          // reuse before a value is defined.
867          SunkAddrs.clear();
868        } else
869          // Sink address computing for memory operands into the block.
870          MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs);
871      }
872    }
873  }
874
875  return MadeChange;
876}
877