SimplifyCFG.cpp revision 694e37f08a7c09ccc24642532106295cf7b3a1e3
1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3// Peephole optimize the CFG.
4//
5//===----------------------------------------------------------------------===//
6
7#include "llvm/Transforms/Utils/Local.h"
8#include "llvm/Constant.h"
9#include "llvm/iPHINode.h"
10#include "llvm/Support/CFG.h"
11#include <algorithm>
12#include <functional>
13
14// PropagatePredecessors - This gets "Succ" ready to have the predecessors from
15// "BB".  This is a little tricky because "Succ" has PHI nodes, which need to
16// have extra slots added to them to hold the merge edges from BB's
17// predecessors, and BB itself might have had PHI nodes in it.  This function
18// returns true (failure) if the Succ BB already has a predecessor that is a
19// predecessor of BB and incoming PHI arguments would not be discernable.
20//
21// Assumption: Succ is the single successor for BB.
22//
23static bool PropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
24  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
25
26  if (!isa<PHINode>(Succ->front()))
27    return false;  // We can make the transformation, no problem.
28
29  // If there is more than one predecessor, and there are PHI nodes in
30  // the successor, then we need to add incoming edges for the PHI nodes
31  //
32  const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB));
33
34  // Check to see if one of the predecessors of BB is already a predecessor of
35  // Succ.  If so, we cannot do the transformation if there are any PHI nodes
36  // with incompatible values coming in from the two edges!
37  //
38  for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); PI != PE; ++PI)
39    if (find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) {
40      // Loop over all of the PHI nodes checking to see if there are
41      // incompatible values coming in.
42      for (BasicBlock::iterator I = Succ->begin();
43           PHINode *PN = dyn_cast<PHINode>(I); ++I) {
44        // Loop up the entries in the PHI node for BB and for *PI if the values
45        // coming in are non-equal, we cannot merge these two blocks (instead we
46        // should insert a conditional move or something, then merge the
47        // blocks).
48        int Idx1 = PN->getBasicBlockIndex(BB);
49        int Idx2 = PN->getBasicBlockIndex(*PI);
50        assert(Idx1 != -1 && Idx2 != -1 &&
51               "Didn't have entries for my predecessors??");
52        if (PN->getIncomingValue(Idx1) != PN->getIncomingValue(Idx2))
53          return true;  // Values are not equal...
54      }
55    }
56
57  // Loop over all of the PHI nodes in the successor BB
58  for (BasicBlock::iterator I = Succ->begin();
59       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
60    Value *OldVal = PN->removeIncomingValue(BB, false);
61    assert(OldVal && "No entry in PHI for Pred BB!");
62
63    // If this incoming value is one of the PHI nodes in BB...
64    if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
65      PHINode *OldValPN = cast<PHINode>(OldVal);
66      for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
67             End = BBPreds.end(); PredI != End; ++PredI) {
68        PN->addIncoming(OldValPN->getIncomingValueForBlock(*PredI), *PredI);
69      }
70    } else {
71      for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
72             End = BBPreds.end(); PredI != End; ++PredI) {
73        // Add an incoming value for each of the new incoming values...
74        PN->addIncoming(OldVal, *PredI);
75      }
76    }
77  }
78  return false;
79}
80
81
82// SimplifyCFG - This function is used to do simplification of a CFG.  For
83// example, it adjusts branches to branches to eliminate the extra hop, it
84// eliminates unreachable basic blocks, and does other "peephole" optimization
85// of the CFG.  It returns true if a modification was made.
86//
87// WARNING:  The entry node of a function may not be simplified.
88//
89bool SimplifyCFG(BasicBlock *BB) {
90  Function *M = BB->getParent();
91
92  assert(BB && BB->getParent() && "Block not embedded in function!");
93  assert(BB->getTerminator() && "Degenerate basic block encountered!");
94  assert(&BB->getParent()->front() != BB && "Can't Simplify entry block!");
95
96  // Remove basic blocks that have no predecessors... which are unreachable.
97  if (pred_begin(BB) == pred_end(BB) &&
98      !BB->hasConstantReferences()) {
99    //cerr << "Removing BB: \n" << BB;
100
101    // Loop through all of our successors and make sure they know that one
102    // of their predecessors is going away.
103    for_each(succ_begin(BB), succ_end(BB),
104	     std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));
105
106    while (!BB->empty()) {
107      Instruction &I = BB->back();
108      // If this instruction is used, replace uses with an arbitrary
109      // constant value.  Because control flow can't get here, we don't care
110      // what we replace the value with.  Note that since this block is
111      // unreachable, and all values contained within it must dominate their
112      // uses, that all uses will eventually be removed.
113      if (!I.use_empty())
114        // Make all users of this instruction reference the constant instead
115        I.replaceAllUsesWith(Constant::getNullValue(I.getType()));
116
117      // Remove the instruction from the basic block
118      BB->getInstList().pop_back();
119    }
120    M->getBasicBlockList().erase(BB);
121    return true;
122  }
123
124  // Check to see if we can constant propagate this terminator instruction
125  // away...
126  bool Changed = ConstantFoldTerminator(BB);
127
128  // Check to see if this block has no non-phi instructions and only a single
129  // successor.  If so, replace references to this basic block with references
130  // to the successor.
131  succ_iterator SI(succ_begin(BB));
132  if (SI != succ_end(BB) && ++SI == succ_end(BB)) {  // One succ?
133
134    BasicBlock::iterator BBI = BB->begin();  // Skip over phi nodes...
135    while (isa<PHINode>(*BBI)) ++BBI;
136
137    if (BBI->isTerminator()) {   // Terminator is the only non-phi instruction!
138      BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor
139
140      if (Succ != BB) {   // Arg, don't hurt infinite loops!
141        // If our successor has PHI nodes, then we need to update them to
142        // include entries for BB's predecessors, not for BB itself.
143        // Be careful though, if this transformation fails (returns true) then
144        // we cannot do this transformation!
145        //
146	if (!PropagatePredecessorsForPHIs(BB, Succ)) {
147          //cerr << "Killing Trivial BB: \n" << BB;
148          std::string OldName = BB->getName();
149
150          std::vector<BasicBlock*>
151            OldSuccPreds(pred_begin(Succ), pred_end(Succ));
152
153          // Move all PHI nodes in BB to Succ if they are alive, otherwise
154          // delete them.
155          while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
156            if (PN->use_empty())
157              BB->getInstList().erase(BB->begin());  // Nuke instruction...
158            else {
159              // The instruction is alive, so this means that Succ must have
160              // *ONLY* had BB as a predecessor, and the PHI node is still valid
161              // now.  Simply move it into Succ, because we know that BB
162              // strictly dominated Succ.
163              BB->getInstList().remove(BB->begin());
164              Succ->getInstList().push_front(PN);
165
166              // We need to add new entries for the PHI node to account for
167              // predecessors of Succ that the PHI node does not take into
168              // account.  At this point, since we know that BB dominated succ,
169              // this means that we should any newly added incoming edges should
170              // use the PHI node as the value for these edges, because they are
171              // loop back edges.
172
173              for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
174                if (OldSuccPreds[i] != BB)
175                  PN->addIncoming(PN, OldSuccPreds[i]);
176            }
177
178          // Everything that jumped to BB now goes to Succ...
179          BB->replaceAllUsesWith(Succ);
180
181          // Delete the old basic block...
182          M->getBasicBlockList().erase(BB);
183
184          if (!OldName.empty() && !Succ->hasName())  // Transfer name if we can
185            Succ->setName(OldName);
186
187          //cerr << "Function after removal: \n" << M;
188          return true;
189	}
190      }
191    }
192  }
193
194  // Merge basic blocks into their predecessor if there is only one distinct
195  // pred, and if there is only one distinct successor of the predecessor, and
196  // if there are no PHI nodes.
197  //
198  if (!BB->hasConstantReferences()) {
199    pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
200    BasicBlock *OnlyPred = *PI++;
201    for (; PI != PE; ++PI)  // Search all predecessors, see if they are all same
202      if (*PI != OnlyPred) {
203        OnlyPred = 0;       // There are multiple different predecessors...
204        break;
205      }
206
207    BasicBlock *OnlySucc = 0;
208    if (OnlyPred && OnlyPred != BB &&    // Don't break self loops
209        OnlyPred->getTerminator()->getOpcode() != Instruction::Invoke) {
210      // Check to see if there is only one distinct successor...
211      succ_iterator SI(succ_begin(OnlyPred)), SE(succ_end(OnlyPred));
212      OnlySucc = BB;
213      for (; SI != SE; ++SI)
214        if (*SI != OnlySucc) {
215          OnlySucc = 0;     // There are multiple distinct successors!
216          break;
217        }
218    }
219
220    if (OnlySucc) {
221      //cerr << "Merging: " << BB << "into: " << OnlyPred;
222      TerminatorInst *Term = OnlyPred->getTerminator();
223
224      // Resolve any PHI nodes at the start of the block.  They are all
225      // guaranteed to have exactly one entry if they exist, unless there are
226      // multiple duplicate (but guaranteed to be equal) entries for the
227      // incoming edges.  This occurs when there are multiple edges from
228      // OnlyPred to OnlySucc.
229      //
230      while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
231        PN->replaceAllUsesWith(PN->getIncomingValue(0));
232        BB->getInstList().pop_front();  // Delete the phi node...
233      }
234
235      // Delete the unconditional branch from the predecessor...
236      OnlyPred->getInstList().pop_back();
237
238      // Move all definitions in the succecessor to the predecessor...
239      OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
240
241      // Make all PHI nodes that refered to BB now refer to Pred as their
242      // source...
243      BB->replaceAllUsesWith(OnlyPred);
244
245      std::string OldName = BB->getName();
246
247      // Erase basic block from the function...
248      M->getBasicBlockList().erase(BB);
249
250      // Inherit predecessors name if it exists...
251      if (!OldName.empty() && !OnlyPred->hasName())
252        OnlyPred->setName(OldName);
253
254      return true;
255    }
256  }
257
258  return Changed;
259}
260