ConstantFold.cpp revision 093399cbf3bcdb31d04b3bf5c5691fc88c25da48
1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// pieces that don't need TargetData, and the pieces that do. This is to avoid
16// a dependence in VMCore on Target.
17//
18//===----------------------------------------------------------------------===//
19
20#include "ConstantFold.h"
21#include "llvm/Constants.h"
22#include "llvm/Instructions.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/ManagedStatic.h"
32#include "llvm/Support/MathExtras.h"
33#include <limits>
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37//                ConstantFold*Instruction Implementations
38//===----------------------------------------------------------------------===//
39
40/// BitCastConstantVector - Convert the specified ConstantVector node to the
41/// specified vector type.  At this point, we know that the elements of the
42/// input vector constant are all simple integer or FP values.
43static Constant *BitCastConstantVector(ConstantVector *CV,
44                                       const VectorType *DstTy) {
45
46  if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
47  if (CV->isNullValue()) return Constant::getNullValue(DstTy);
48
49  // If this cast changes element count then we can't handle it here:
50  // doing so requires endianness information.  This should be handled by
51  // Analysis/ConstantFolding.cpp
52  unsigned NumElts = DstTy->getNumElements();
53  if (NumElts != CV->getNumOperands())
54    return 0;
55
56  // Check to verify that all elements of the input are simple.
57  for (unsigned i = 0; i != NumElts; ++i) {
58    if (!isa<ConstantInt>(CV->getOperand(i)) &&
59        !isa<ConstantFP>(CV->getOperand(i)))
60      return 0;
61  }
62
63  // Bitcast each element now.
64  std::vector<Constant*> Result;
65  const Type *DstEltTy = DstTy->getElementType();
66  for (unsigned i = 0; i != NumElts; ++i)
67    Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i),
68                                                    DstEltTy));
69  return ConstantVector::get(Result);
70}
71
72/// This function determines which opcode to use to fold two constant cast
73/// expressions together. It uses CastInst::isEliminableCastPair to determine
74/// the opcode. Consequently its just a wrapper around that function.
75/// @brief Determine if it is valid to fold a cast of a cast
76static unsigned
77foldConstantCastPair(
78  unsigned opc,          ///< opcode of the second cast constant expression
79  ConstantExpr *Op,      ///< the first cast constant expression
80  const Type *DstTy      ///< desintation type of the first cast
81) {
82  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
83  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
84  assert(CastInst::isCast(opc) && "Invalid cast opcode");
85
86  // The the types and opcodes for the two Cast constant expressions
87  const Type *SrcTy = Op->getOperand(0)->getType();
88  const Type *MidTy = Op->getType();
89  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
90  Instruction::CastOps secondOp = Instruction::CastOps(opc);
91
92  // Let CastInst::isEliminableCastPair do the heavy lifting.
93  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
94                                        Type::getInt64Ty(DstTy->getContext()));
95}
96
97static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
98  const Type *SrcTy = V->getType();
99  if (SrcTy == DestTy)
100    return V; // no-op cast
101
102  // Check to see if we are casting a pointer to an aggregate to a pointer to
103  // the first element.  If so, return the appropriate GEP instruction.
104  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
105    if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
106      if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
107        SmallVector<Value*, 8> IdxList;
108        Value *Zero =
109          Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
110        IdxList.push_back(Zero);
111        const Type *ElTy = PTy->getElementType();
112        while (ElTy != DPTy->getElementType()) {
113          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
114            if (STy->getNumElements() == 0) break;
115            ElTy = STy->getElementType(0);
116            IdxList.push_back(Zero);
117          } else if (const SequentialType *STy =
118                     dyn_cast<SequentialType>(ElTy)) {
119            if (ElTy->isPointerTy()) break;  // Can't index into pointers!
120            ElTy = STy->getElementType();
121            IdxList.push_back(Zero);
122          } else {
123            break;
124          }
125        }
126
127        if (ElTy == DPTy->getElementType())
128          // This GEP is inbounds because all indices are zero.
129          return ConstantExpr::getInBoundsGetElementPtr(V, &IdxList[0],
130                                                        IdxList.size());
131      }
132
133  // Handle casts from one vector constant to another.  We know that the src
134  // and dest type have the same size (otherwise its an illegal cast).
135  if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
136    if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
137      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
138             "Not cast between same sized vectors!");
139      SrcTy = NULL;
140      // First, check for null.  Undef is already handled.
141      if (isa<ConstantAggregateZero>(V))
142        return Constant::getNullValue(DestTy);
143
144      if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
145        return BitCastConstantVector(CV, DestPTy);
146    }
147
148    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
149    // This allows for other simplifications (although some of them
150    // can only be handled by Analysis/ConstantFolding.cpp).
151    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
152      return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
153  }
154
155  // Finally, implement bitcast folding now.   The code below doesn't handle
156  // bitcast right.
157  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
158    return ConstantPointerNull::get(cast<PointerType>(DestTy));
159
160  // Handle integral constant input.
161  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
162    if (DestTy->isIntegerTy())
163      // Integral -> Integral. This is a no-op because the bit widths must
164      // be the same. Consequently, we just fold to V.
165      return V;
166
167    if (DestTy->isFloatingPointTy())
168      return ConstantFP::get(DestTy->getContext(),
169                             APFloat(CI->getValue(),
170                                     !DestTy->isPPC_FP128Ty()));
171
172    // Otherwise, can't fold this (vector?)
173    return 0;
174  }
175
176  // Handle ConstantFP input: FP -> Integral.
177  if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
178    return ConstantInt::get(FP->getContext(),
179                            FP->getValueAPF().bitcastToAPInt());
180
181  return 0;
182}
183
184
185/// ExtractConstantBytes - V is an integer constant which only has a subset of
186/// its bytes used.  The bytes used are indicated by ByteStart (which is the
187/// first byte used, counting from the least significant byte) and ByteSize,
188/// which is the number of bytes used.
189///
190/// This function analyzes the specified constant to see if the specified byte
191/// range can be returned as a simplified constant.  If so, the constant is
192/// returned, otherwise null is returned.
193///
194static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
195                                      unsigned ByteSize) {
196  assert(C->getType()->isIntegerTy() &&
197         (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
198         "Non-byte sized integer input");
199  unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
200  assert(ByteSize && "Must be accessing some piece");
201  assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
202  assert(ByteSize != CSize && "Should not extract everything");
203
204  // Constant Integers are simple.
205  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
206    APInt V = CI->getValue();
207    if (ByteStart)
208      V = V.lshr(ByteStart*8);
209    V = V.trunc(ByteSize*8);
210    return ConstantInt::get(CI->getContext(), V);
211  }
212
213  // In the input is a constant expr, we might be able to recursively simplify.
214  // If not, we definitely can't do anything.
215  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
216  if (CE == 0) return 0;
217
218  switch (CE->getOpcode()) {
219  default: return 0;
220  case Instruction::Or: {
221    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
222    if (RHS == 0)
223      return 0;
224
225    // X | -1 -> -1.
226    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
227      if (RHSC->isAllOnesValue())
228        return RHSC;
229
230    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
231    if (LHS == 0)
232      return 0;
233    return ConstantExpr::getOr(LHS, RHS);
234  }
235  case Instruction::And: {
236    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
237    if (RHS == 0)
238      return 0;
239
240    // X & 0 -> 0.
241    if (RHS->isNullValue())
242      return RHS;
243
244    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
245    if (LHS == 0)
246      return 0;
247    return ConstantExpr::getAnd(LHS, RHS);
248  }
249  case Instruction::LShr: {
250    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
251    if (Amt == 0)
252      return 0;
253    unsigned ShAmt = Amt->getZExtValue();
254    // Cannot analyze non-byte shifts.
255    if ((ShAmt & 7) != 0)
256      return 0;
257    ShAmt >>= 3;
258
259    // If the extract is known to be all zeros, return zero.
260    if (ByteStart >= CSize-ShAmt)
261      return Constant::getNullValue(IntegerType::get(CE->getContext(),
262                                                     ByteSize*8));
263    // If the extract is known to be fully in the input, extract it.
264    if (ByteStart+ByteSize+ShAmt <= CSize)
265      return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
266
267    // TODO: Handle the 'partially zero' case.
268    return 0;
269  }
270
271  case Instruction::Shl: {
272    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
273    if (Amt == 0)
274      return 0;
275    unsigned ShAmt = Amt->getZExtValue();
276    // Cannot analyze non-byte shifts.
277    if ((ShAmt & 7) != 0)
278      return 0;
279    ShAmt >>= 3;
280
281    // If the extract is known to be all zeros, return zero.
282    if (ByteStart+ByteSize <= ShAmt)
283      return Constant::getNullValue(IntegerType::get(CE->getContext(),
284                                                     ByteSize*8));
285    // If the extract is known to be fully in the input, extract it.
286    if (ByteStart >= ShAmt)
287      return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
288
289    // TODO: Handle the 'partially zero' case.
290    return 0;
291  }
292
293  case Instruction::ZExt: {
294    unsigned SrcBitSize =
295      cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
296
297    // If extracting something that is completely zero, return 0.
298    if (ByteStart*8 >= SrcBitSize)
299      return Constant::getNullValue(IntegerType::get(CE->getContext(),
300                                                     ByteSize*8));
301
302    // If exactly extracting the input, return it.
303    if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
304      return CE->getOperand(0);
305
306    // If extracting something completely in the input, if if the input is a
307    // multiple of 8 bits, recurse.
308    if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
309      return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
310
311    // Otherwise, if extracting a subset of the input, which is not multiple of
312    // 8 bits, do a shift and trunc to get the bits.
313    if ((ByteStart+ByteSize)*8 < SrcBitSize) {
314      assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
315      Constant *Res = CE->getOperand(0);
316      if (ByteStart)
317        Res = ConstantExpr::getLShr(Res,
318                                 ConstantInt::get(Res->getType(), ByteStart*8));
319      return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
320                                                          ByteSize*8));
321    }
322
323    // TODO: Handle the 'partially zero' case.
324    return 0;
325  }
326  }
327}
328
329/// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
330/// on Ty, with any known factors factored out. If Folded is false,
331/// return null if no factoring was possible, to avoid endlessly
332/// bouncing an unfoldable expression back into the top-level folder.
333///
334static Constant *getFoldedSizeOf(const Type *Ty, const Type *DestTy,
335                                 bool Folded) {
336  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
337    Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
338    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
339    return ConstantExpr::getNUWMul(E, N);
340  }
341
342  if (const StructType *STy = dyn_cast<StructType>(Ty))
343    if (!STy->isPacked()) {
344      unsigned NumElems = STy->getNumElements();
345      // An empty struct has size zero.
346      if (NumElems == 0)
347        return ConstantExpr::getNullValue(DestTy);
348      // Check for a struct with all members having the same size.
349      Constant *MemberSize =
350        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
351      bool AllSame = true;
352      for (unsigned i = 1; i != NumElems; ++i)
353        if (MemberSize !=
354            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
355          AllSame = false;
356          break;
357        }
358      if (AllSame) {
359        Constant *N = ConstantInt::get(DestTy, NumElems);
360        return ConstantExpr::getNUWMul(MemberSize, N);
361      }
362    }
363
364  // Pointer size doesn't depend on the pointee type, so canonicalize them
365  // to an arbitrary pointee.
366  if (const PointerType *PTy = dyn_cast<PointerType>(Ty))
367    if (!PTy->getElementType()->isIntegerTy(1))
368      return
369        getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
370                                         PTy->getAddressSpace()),
371                        DestTy, true);
372
373  // If there's no interesting folding happening, bail so that we don't create
374  // a constant that looks like it needs folding but really doesn't.
375  if (!Folded)
376    return 0;
377
378  // Base case: Get a regular sizeof expression.
379  Constant *C = ConstantExpr::getSizeOf(Ty);
380  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
381                                                    DestTy, false),
382                            C, DestTy);
383  return C;
384}
385
386/// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
387/// on Ty, with any known factors factored out. If Folded is false,
388/// return null if no factoring was possible, to avoid endlessly
389/// bouncing an unfoldable expression back into the top-level folder.
390///
391static Constant *getFoldedAlignOf(const Type *Ty, const Type *DestTy,
392                                  bool Folded) {
393  // The alignment of an array is equal to the alignment of the
394  // array element. Note that this is not always true for vectors.
395  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
396    Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
397    C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
398                                                      DestTy,
399                                                      false),
400                              C, DestTy);
401    return C;
402  }
403
404  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
405    // Packed structs always have an alignment of 1.
406    if (STy->isPacked())
407      return ConstantInt::get(DestTy, 1);
408
409    // Otherwise, struct alignment is the maximum alignment of any member.
410    // Without target data, we can't compare much, but we can check to see
411    // if all the members have the same alignment.
412    unsigned NumElems = STy->getNumElements();
413    // An empty struct has minimal alignment.
414    if (NumElems == 0)
415      return ConstantInt::get(DestTy, 1);
416    // Check for a struct with all members having the same alignment.
417    Constant *MemberAlign =
418      getFoldedAlignOf(STy->getElementType(0), DestTy, true);
419    bool AllSame = true;
420    for (unsigned i = 1; i != NumElems; ++i)
421      if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
422        AllSame = false;
423        break;
424      }
425    if (AllSame)
426      return MemberAlign;
427  }
428
429  // Pointer alignment doesn't depend on the pointee type, so canonicalize them
430  // to an arbitrary pointee.
431  if (const PointerType *PTy = dyn_cast<PointerType>(Ty))
432    if (!PTy->getElementType()->isIntegerTy(1))
433      return
434        getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
435                                                           1),
436                                          PTy->getAddressSpace()),
437                         DestTy, true);
438
439  // If there's no interesting folding happening, bail so that we don't create
440  // a constant that looks like it needs folding but really doesn't.
441  if (!Folded)
442    return 0;
443
444  // Base case: Get a regular alignof expression.
445  Constant *C = ConstantExpr::getAlignOf(Ty);
446  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
447                                                    DestTy, false),
448                            C, DestTy);
449  return C;
450}
451
452/// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
453/// on Ty and FieldNo, with any known factors factored out. If Folded is false,
454/// return null if no factoring was possible, to avoid endlessly
455/// bouncing an unfoldable expression back into the top-level folder.
456///
457static Constant *getFoldedOffsetOf(const Type *Ty, Constant *FieldNo,
458                                   const Type *DestTy,
459                                   bool Folded) {
460  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
461    Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
462                                                                DestTy, false),
463                                        FieldNo, DestTy);
464    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
465    return ConstantExpr::getNUWMul(E, N);
466  }
467
468  if (const StructType *STy = dyn_cast<StructType>(Ty))
469    if (!STy->isPacked()) {
470      unsigned NumElems = STy->getNumElements();
471      // An empty struct has no members.
472      if (NumElems == 0)
473        return 0;
474      // Check for a struct with all members having the same size.
475      Constant *MemberSize =
476        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
477      bool AllSame = true;
478      for (unsigned i = 1; i != NumElems; ++i)
479        if (MemberSize !=
480            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
481          AllSame = false;
482          break;
483        }
484      if (AllSame) {
485        Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
486                                                                    false,
487                                                                    DestTy,
488                                                                    false),
489                                            FieldNo, DestTy);
490        return ConstantExpr::getNUWMul(MemberSize, N);
491      }
492    }
493
494  // If there's no interesting folding happening, bail so that we don't create
495  // a constant that looks like it needs folding but really doesn't.
496  if (!Folded)
497    return 0;
498
499  // Base case: Get a regular offsetof expression.
500  Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
501  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
502                                                    DestTy, false),
503                            C, DestTy);
504  return C;
505}
506
507Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
508                                            const Type *DestTy) {
509  if (isa<UndefValue>(V)) {
510    // zext(undef) = 0, because the top bits will be zero.
511    // sext(undef) = 0, because the top bits will all be the same.
512    // [us]itofp(undef) = 0, because the result value is bounded.
513    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
514        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
515      return Constant::getNullValue(DestTy);
516    return UndefValue::get(DestTy);
517  }
518
519  // No compile-time operations on this type yet.
520  if (V->getType()->isPPC_FP128Ty() || DestTy->isPPC_FP128Ty())
521    return 0;
522
523  if (V->isNullValue() && !DestTy->isX86_MMXTy())
524    return Constant::getNullValue(DestTy);
525
526  // If the cast operand is a constant expression, there's a few things we can
527  // do to try to simplify it.
528  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
529    if (CE->isCast()) {
530      // Try hard to fold cast of cast because they are often eliminable.
531      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
532        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
533    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
534      // If all of the indexes in the GEP are null values, there is no pointer
535      // adjustment going on.  We might as well cast the source pointer.
536      bool isAllNull = true;
537      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
538        if (!CE->getOperand(i)->isNullValue()) {
539          isAllNull = false;
540          break;
541        }
542      if (isAllNull)
543        // This is casting one pointer type to another, always BitCast
544        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
545    }
546  }
547
548  // If the cast operand is a constant vector, perform the cast by
549  // operating on each element. In the cast of bitcasts, the element
550  // count may be mismatched; don't attempt to handle that here.
551  if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
552    if (DestTy->isVectorTy() &&
553        cast<VectorType>(DestTy)->getNumElements() ==
554        CV->getType()->getNumElements()) {
555      std::vector<Constant*> res;
556      const VectorType *DestVecTy = cast<VectorType>(DestTy);
557      const Type *DstEltTy = DestVecTy->getElementType();
558      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
559        res.push_back(ConstantExpr::getCast(opc,
560                                            CV->getOperand(i), DstEltTy));
561      return ConstantVector::get(DestVecTy, res);
562    }
563
564  // We actually have to do a cast now. Perform the cast according to the
565  // opcode specified.
566  switch (opc) {
567  default:
568    llvm_unreachable("Failed to cast constant expression");
569  case Instruction::FPTrunc:
570  case Instruction::FPExt:
571    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
572      bool ignored;
573      APFloat Val = FPC->getValueAPF();
574      Val.convert(DestTy->isFloatTy() ? APFloat::IEEEsingle :
575                  DestTy->isDoubleTy() ? APFloat::IEEEdouble :
576                  DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
577                  DestTy->isFP128Ty() ? APFloat::IEEEquad :
578                  APFloat::Bogus,
579                  APFloat::rmNearestTiesToEven, &ignored);
580      return ConstantFP::get(V->getContext(), Val);
581    }
582    return 0; // Can't fold.
583  case Instruction::FPToUI:
584  case Instruction::FPToSI:
585    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
586      const APFloat &V = FPC->getValueAPF();
587      bool ignored;
588      uint64_t x[2];
589      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
590      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
591                                APFloat::rmTowardZero, &ignored);
592      APInt Val(DestBitWidth, 2, x);
593      return ConstantInt::get(FPC->getContext(), Val);
594    }
595    return 0; // Can't fold.
596  case Instruction::IntToPtr:   //always treated as unsigned
597    if (V->isNullValue())       // Is it an integral null value?
598      return ConstantPointerNull::get(cast<PointerType>(DestTy));
599    return 0;                   // Other pointer types cannot be casted
600  case Instruction::PtrToInt:   // always treated as unsigned
601    // Is it a null pointer value?
602    if (V->isNullValue())
603      return ConstantInt::get(DestTy, 0);
604    // If this is a sizeof-like expression, pull out multiplications by
605    // known factors to expose them to subsequent folding. If it's an
606    // alignof-like expression, factor out known factors.
607    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
608      if (CE->getOpcode() == Instruction::GetElementPtr &&
609          CE->getOperand(0)->isNullValue()) {
610        const Type *Ty =
611          cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
612        if (CE->getNumOperands() == 2) {
613          // Handle a sizeof-like expression.
614          Constant *Idx = CE->getOperand(1);
615          bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
616          if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
617            Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
618                                                                DestTy, false),
619                                        Idx, DestTy);
620            return ConstantExpr::getMul(C, Idx);
621          }
622        } else if (CE->getNumOperands() == 3 &&
623                   CE->getOperand(1)->isNullValue()) {
624          // Handle an alignof-like expression.
625          if (const StructType *STy = dyn_cast<StructType>(Ty))
626            if (!STy->isPacked()) {
627              ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
628              if (CI->isOne() &&
629                  STy->getNumElements() == 2 &&
630                  STy->getElementType(0)->isIntegerTy(1)) {
631                return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
632              }
633            }
634          // Handle an offsetof-like expression.
635          if (Ty->isStructTy() || Ty->isArrayTy()) {
636            if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
637                                                DestTy, false))
638              return C;
639          }
640        }
641      }
642    // Other pointer types cannot be casted
643    return 0;
644  case Instruction::UIToFP:
645  case Instruction::SIToFP:
646    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
647      APInt api = CI->getValue();
648      APFloat apf(APInt::getNullValue(DestTy->getPrimitiveSizeInBits()), true);
649      (void)apf.convertFromAPInt(api,
650                                 opc==Instruction::SIToFP,
651                                 APFloat::rmNearestTiesToEven);
652      return ConstantFP::get(V->getContext(), apf);
653    }
654    return 0;
655  case Instruction::ZExt:
656    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
657      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
658      return ConstantInt::get(V->getContext(),
659                              CI->getValue().zext(BitWidth));
660    }
661    return 0;
662  case Instruction::SExt:
663    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
664      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
665      return ConstantInt::get(V->getContext(),
666                              CI->getValue().sext(BitWidth));
667    }
668    return 0;
669  case Instruction::Trunc: {
670    uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
671    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
672      return ConstantInt::get(V->getContext(),
673                              CI->getValue().trunc(DestBitWidth));
674    }
675
676    // The input must be a constantexpr.  See if we can simplify this based on
677    // the bytes we are demanding.  Only do this if the source and dest are an
678    // even multiple of a byte.
679    if ((DestBitWidth & 7) == 0 &&
680        (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
681      if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
682        return Res;
683
684    return 0;
685  }
686  case Instruction::BitCast:
687    return FoldBitCast(V, DestTy);
688  }
689}
690
691Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
692                                              Constant *V1, Constant *V2) {
693  if (ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
694    return CB->getZExtValue() ? V1 : V2;
695
696  // Check for zero aggregate and ConstantVector of zeros
697  if (Cond->isNullValue()) return V2;
698
699  if (ConstantVector* CondV = dyn_cast<ConstantVector>(Cond)) {
700
701    if (CondV->isAllOnesValue()) return V1;
702
703    const VectorType *VTy = cast<VectorType>(V1->getType());
704    ConstantVector *CP1 = dyn_cast<ConstantVector>(V1);
705    ConstantVector *CP2 = dyn_cast<ConstantVector>(V2);
706
707    if ((CP1 || isa<ConstantAggregateZero>(V1)) &&
708        (CP2 || isa<ConstantAggregateZero>(V2))) {
709
710      // Find the element type of the returned vector
711      const Type *EltTy = VTy->getElementType();
712      unsigned NumElem = VTy->getNumElements();
713      std::vector<Constant*> Res(NumElem);
714
715      bool Valid = true;
716      for (unsigned i = 0; i < NumElem; ++i) {
717        ConstantInt* c = dyn_cast<ConstantInt>(CondV->getOperand(i));
718        if (!c) {
719          Valid = false;
720          break;
721        }
722        Constant *C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
723        Constant *C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
724        Res[i] = c->getZExtValue() ? C1 : C2;
725      }
726      // If we were able to build the vector, return it
727      if (Valid) return ConstantVector::get(Res);
728    }
729  }
730
731
732  if (isa<UndefValue>(V1)) return V2;
733  if (isa<UndefValue>(V2)) return V1;
734  if (isa<UndefValue>(Cond)) return V1;
735  if (V1 == V2) return V1;
736
737  if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
738    if (TrueVal->getOpcode() == Instruction::Select)
739      if (TrueVal->getOperand(0) == Cond)
740	return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
741  }
742  if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
743    if (FalseVal->getOpcode() == Instruction::Select)
744      if (FalseVal->getOperand(0) == Cond)
745	return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
746  }
747
748  return 0;
749}
750
751Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
752                                                      Constant *Idx) {
753  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
754    return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
755  if (Val->isNullValue())  // ee(zero, x) -> zero
756    return Constant::getNullValue(
757                          cast<VectorType>(Val->getType())->getElementType());
758
759  if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
760    if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
761      return CVal->getOperand(CIdx->getZExtValue());
762    } else if (isa<UndefValue>(Idx)) {
763      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
764      return CVal->getOperand(0);
765    }
766  }
767  return 0;
768}
769
770Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
771                                                     Constant *Elt,
772                                                     Constant *Idx) {
773  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
774  if (!CIdx) return 0;
775  APInt idxVal = CIdx->getValue();
776  if (isa<UndefValue>(Val)) {
777    // Insertion of scalar constant into vector undef
778    // Optimize away insertion of undef
779    if (isa<UndefValue>(Elt))
780      return Val;
781    // Otherwise break the aggregate undef into multiple undefs and do
782    // the insertion
783    unsigned numOps =
784      cast<VectorType>(Val->getType())->getNumElements();
785    std::vector<Constant*> Ops;
786    Ops.reserve(numOps);
787    for (unsigned i = 0; i < numOps; ++i) {
788      Constant *Op =
789        (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
790      Ops.push_back(Op);
791    }
792    return ConstantVector::get(Ops);
793  }
794  if (isa<ConstantAggregateZero>(Val)) {
795    // Insertion of scalar constant into vector aggregate zero
796    // Optimize away insertion of zero
797    if (Elt->isNullValue())
798      return Val;
799    // Otherwise break the aggregate zero into multiple zeros and do
800    // the insertion
801    unsigned numOps =
802      cast<VectorType>(Val->getType())->getNumElements();
803    std::vector<Constant*> Ops;
804    Ops.reserve(numOps);
805    for (unsigned i = 0; i < numOps; ++i) {
806      Constant *Op =
807        (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
808      Ops.push_back(Op);
809    }
810    return ConstantVector::get(Ops);
811  }
812  if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
813    // Insertion of scalar constant into vector constant
814    std::vector<Constant*> Ops;
815    Ops.reserve(CVal->getNumOperands());
816    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
817      Constant *Op =
818        (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
819      Ops.push_back(Op);
820    }
821    return ConstantVector::get(Ops);
822  }
823
824  return 0;
825}
826
827/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
828/// return the specified element value.  Otherwise return null.
829static Constant *GetVectorElement(Constant *C, unsigned EltNo) {
830  if (ConstantVector *CV = dyn_cast<ConstantVector>(C))
831    return CV->getOperand(EltNo);
832
833  const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
834  if (isa<ConstantAggregateZero>(C))
835    return Constant::getNullValue(EltTy);
836  if (isa<UndefValue>(C))
837    return UndefValue::get(EltTy);
838  return 0;
839}
840
841Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
842                                                     Constant *V2,
843                                                     Constant *Mask) {
844  // Undefined shuffle mask -> undefined value.
845  if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
846
847  unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements();
848  unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements();
849  const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
850
851  // Loop over the shuffle mask, evaluating each element.
852  SmallVector<Constant*, 32> Result;
853  for (unsigned i = 0; i != MaskNumElts; ++i) {
854    Constant *InElt = GetVectorElement(Mask, i);
855    if (InElt == 0) return 0;
856
857    if (isa<UndefValue>(InElt))
858      InElt = UndefValue::get(EltTy);
859    else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
860      unsigned Elt = CI->getZExtValue();
861      if (Elt >= SrcNumElts*2)
862        InElt = UndefValue::get(EltTy);
863      else if (Elt >= SrcNumElts)
864        InElt = GetVectorElement(V2, Elt - SrcNumElts);
865      else
866        InElt = GetVectorElement(V1, Elt);
867      if (InElt == 0) return 0;
868    } else {
869      // Unknown value.
870      return 0;
871    }
872    Result.push_back(InElt);
873  }
874
875  return ConstantVector::get(Result);
876}
877
878Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
879                                                    const unsigned *Idxs,
880                                                    unsigned NumIdx) {
881  // Base case: no indices, so return the entire value.
882  if (NumIdx == 0)
883    return Agg;
884
885  if (isa<UndefValue>(Agg))  // ev(undef, x) -> undef
886    return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
887                                                            Idxs,
888                                                            Idxs + NumIdx));
889
890  if (isa<ConstantAggregateZero>(Agg))  // ev(0, x) -> 0
891    return
892      Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
893                                                              Idxs,
894                                                              Idxs + NumIdx));
895
896  // Otherwise recurse.
897  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg))
898    return ConstantFoldExtractValueInstruction(CS->getOperand(*Idxs),
899                                               Idxs+1, NumIdx-1);
900
901  if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg))
902    return ConstantFoldExtractValueInstruction(CA->getOperand(*Idxs),
903                                               Idxs+1, NumIdx-1);
904  ConstantVector *CV = cast<ConstantVector>(Agg);
905  return ConstantFoldExtractValueInstruction(CV->getOperand(*Idxs),
906                                             Idxs+1, NumIdx-1);
907}
908
909Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
910                                                   Constant *Val,
911                                                   const unsigned *Idxs,
912                                                   unsigned NumIdx) {
913  // Base case: no indices, so replace the entire value.
914  if (NumIdx == 0)
915    return Val;
916
917  if (isa<UndefValue>(Agg)) {
918    // Insertion of constant into aggregate undef
919    // Optimize away insertion of undef.
920    if (isa<UndefValue>(Val))
921      return Agg;
922
923    // Otherwise break the aggregate undef into multiple undefs and do
924    // the insertion.
925    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
926    unsigned numOps;
927    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
928      numOps = AR->getNumElements();
929    else
930      numOps = cast<StructType>(AggTy)->getNumElements();
931
932    std::vector<Constant*> Ops(numOps);
933    for (unsigned i = 0; i < numOps; ++i) {
934      const Type *MemberTy = AggTy->getTypeAtIndex(i);
935      Constant *Op =
936        (*Idxs == i) ?
937        ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy),
938                                           Val, Idxs+1, NumIdx-1) :
939        UndefValue::get(MemberTy);
940      Ops[i] = Op;
941    }
942
943    if (const StructType* ST = dyn_cast<StructType>(AggTy))
944      return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
945    return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
946  }
947
948  if (isa<ConstantAggregateZero>(Agg)) {
949    // Insertion of constant into aggregate zero
950    // Optimize away insertion of zero.
951    if (Val->isNullValue())
952      return Agg;
953
954    // Otherwise break the aggregate zero into multiple zeros and do
955    // the insertion.
956    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
957    unsigned numOps;
958    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
959      numOps = AR->getNumElements();
960    else
961      numOps = cast<StructType>(AggTy)->getNumElements();
962
963    std::vector<Constant*> Ops(numOps);
964    for (unsigned i = 0; i < numOps; ++i) {
965      const Type *MemberTy = AggTy->getTypeAtIndex(i);
966      Constant *Op =
967        (*Idxs == i) ?
968        ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy),
969                                           Val, Idxs+1, NumIdx-1) :
970        Constant::getNullValue(MemberTy);
971      Ops[i] = Op;
972    }
973
974    if (const StructType *ST = dyn_cast<StructType>(AggTy))
975      return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
976    return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
977  }
978
979  if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
980    // Insertion of constant into aggregate constant.
981    std::vector<Constant*> Ops(Agg->getNumOperands());
982    for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
983      Constant *Op = cast<Constant>(Agg->getOperand(i));
984      if (*Idxs == i)
985        Op = ConstantFoldInsertValueInstruction(Op, Val, Idxs+1, NumIdx-1);
986      Ops[i] = Op;
987    }
988
989    if (const StructType* ST = dyn_cast<StructType>(Agg->getType()))
990      return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
991    return ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
992  }
993
994  return 0;
995}
996
997
998Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
999                                              Constant *C1, Constant *C2) {
1000  // No compile-time operations on this type yet.
1001  if (C1->getType()->isPPC_FP128Ty())
1002    return 0;
1003
1004  // Handle UndefValue up front.
1005  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1006    switch (Opcode) {
1007    case Instruction::Xor:
1008      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1009        // Handle undef ^ undef -> 0 special case. This is a common
1010        // idiom (misuse).
1011        return Constant::getNullValue(C1->getType());
1012      // Fallthrough
1013    case Instruction::Add:
1014    case Instruction::Sub:
1015      return UndefValue::get(C1->getType());
1016    case Instruction::Mul:
1017    case Instruction::And:
1018      return Constant::getNullValue(C1->getType());
1019    case Instruction::UDiv:
1020    case Instruction::SDiv:
1021    case Instruction::URem:
1022    case Instruction::SRem:
1023      if (!isa<UndefValue>(C2))                    // undef / X -> 0
1024        return Constant::getNullValue(C1->getType());
1025      return C2;                                   // X / undef -> undef
1026    case Instruction::Or:                          // X | undef -> -1
1027      if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
1028        return Constant::getAllOnesValue(PTy);
1029      return Constant::getAllOnesValue(C1->getType());
1030    case Instruction::LShr:
1031      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
1032        return C1;                                  // undef lshr undef -> undef
1033      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
1034                                                    // undef lshr X -> 0
1035    case Instruction::AShr:
1036      if (!isa<UndefValue>(C2))                     // undef ashr X --> all ones
1037        return Constant::getAllOnesValue(C1->getType());
1038      else if (isa<UndefValue>(C1))
1039        return C1;                                  // undef ashr undef -> undef
1040      else
1041        return C1;                                  // X ashr undef --> X
1042    case Instruction::Shl:
1043      // undef << X -> 0   or   X << undef -> 0
1044      return Constant::getNullValue(C1->getType());
1045    }
1046  }
1047
1048  // Handle simplifications when the RHS is a constant int.
1049  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1050    switch (Opcode) {
1051    case Instruction::Add:
1052      if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
1053      break;
1054    case Instruction::Sub:
1055      if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
1056      break;
1057    case Instruction::Mul:
1058      if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
1059      if (CI2->equalsInt(1))
1060        return C1;                                              // X * 1 == X
1061      break;
1062    case Instruction::UDiv:
1063    case Instruction::SDiv:
1064      if (CI2->equalsInt(1))
1065        return C1;                                            // X / 1 == X
1066      if (CI2->equalsInt(0))
1067        return UndefValue::get(CI2->getType());               // X / 0 == undef
1068      break;
1069    case Instruction::URem:
1070    case Instruction::SRem:
1071      if (CI2->equalsInt(1))
1072        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
1073      if (CI2->equalsInt(0))
1074        return UndefValue::get(CI2->getType());               // X % 0 == undef
1075      break;
1076    case Instruction::And:
1077      if (CI2->isZero()) return C2;                           // X & 0 == 0
1078      if (CI2->isAllOnesValue())
1079        return C1;                                            // X & -1 == X
1080
1081      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1082        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1083        if (CE1->getOpcode() == Instruction::ZExt) {
1084          unsigned DstWidth = CI2->getType()->getBitWidth();
1085          unsigned SrcWidth =
1086            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1087          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1088          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1089            return C1;
1090        }
1091
1092        // If and'ing the address of a global with a constant, fold it.
1093        if (CE1->getOpcode() == Instruction::PtrToInt &&
1094            isa<GlobalValue>(CE1->getOperand(0))) {
1095          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1096
1097          // Functions are at least 4-byte aligned.
1098          unsigned GVAlign = GV->getAlignment();
1099          if (isa<Function>(GV))
1100            GVAlign = std::max(GVAlign, 4U);
1101
1102          if (GVAlign > 1) {
1103            unsigned DstWidth = CI2->getType()->getBitWidth();
1104            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
1105            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1106
1107            // If checking bits we know are clear, return zero.
1108            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1109              return Constant::getNullValue(CI2->getType());
1110          }
1111        }
1112      }
1113      break;
1114    case Instruction::Or:
1115      if (CI2->equalsInt(0)) return C1;    // X | 0 == X
1116      if (CI2->isAllOnesValue())
1117        return C2;                         // X | -1 == -1
1118      break;
1119    case Instruction::Xor:
1120      if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
1121
1122      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1123        switch (CE1->getOpcode()) {
1124        default: break;
1125        case Instruction::ICmp:
1126        case Instruction::FCmp:
1127          // cmp pred ^ true -> cmp !pred
1128          assert(CI2->equalsInt(1));
1129          CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1130          pred = CmpInst::getInversePredicate(pred);
1131          return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1132                                          CE1->getOperand(1));
1133        }
1134      }
1135      break;
1136    case Instruction::AShr:
1137      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1138      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1139        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1140          return ConstantExpr::getLShr(C1, C2);
1141      break;
1142    }
1143  } else if (isa<ConstantInt>(C1)) {
1144    // If C1 is a ConstantInt and C2 is not, swap the operands.
1145    if (Instruction::isCommutative(Opcode))
1146      return ConstantExpr::get(Opcode, C2, C1);
1147  }
1148
1149  // At this point we know neither constant is an UndefValue.
1150  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1151    if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1152      using namespace APIntOps;
1153      const APInt &C1V = CI1->getValue();
1154      const APInt &C2V = CI2->getValue();
1155      switch (Opcode) {
1156      default:
1157        break;
1158      case Instruction::Add:
1159        return ConstantInt::get(CI1->getContext(), C1V + C2V);
1160      case Instruction::Sub:
1161        return ConstantInt::get(CI1->getContext(), C1V - C2V);
1162      case Instruction::Mul:
1163        return ConstantInt::get(CI1->getContext(), C1V * C2V);
1164      case Instruction::UDiv:
1165        assert(!CI2->isNullValue() && "Div by zero handled above");
1166        return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1167      case Instruction::SDiv:
1168        assert(!CI2->isNullValue() && "Div by zero handled above");
1169        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1170          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1171        return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1172      case Instruction::URem:
1173        assert(!CI2->isNullValue() && "Div by zero handled above");
1174        return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1175      case Instruction::SRem:
1176        assert(!CI2->isNullValue() && "Div by zero handled above");
1177        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1178          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1179        return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1180      case Instruction::And:
1181        return ConstantInt::get(CI1->getContext(), C1V & C2V);
1182      case Instruction::Or:
1183        return ConstantInt::get(CI1->getContext(), C1V | C2V);
1184      case Instruction::Xor:
1185        return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1186      case Instruction::Shl: {
1187        uint32_t shiftAmt = C2V.getZExtValue();
1188        if (shiftAmt < C1V.getBitWidth())
1189          return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
1190        else
1191          return UndefValue::get(C1->getType()); // too big shift is undef
1192      }
1193      case Instruction::LShr: {
1194        uint32_t shiftAmt = C2V.getZExtValue();
1195        if (shiftAmt < C1V.getBitWidth())
1196          return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
1197        else
1198          return UndefValue::get(C1->getType()); // too big shift is undef
1199      }
1200      case Instruction::AShr: {
1201        uint32_t shiftAmt = C2V.getZExtValue();
1202        if (shiftAmt < C1V.getBitWidth())
1203          return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
1204        else
1205          return UndefValue::get(C1->getType()); // too big shift is undef
1206      }
1207      }
1208    }
1209
1210    switch (Opcode) {
1211    case Instruction::SDiv:
1212    case Instruction::UDiv:
1213    case Instruction::URem:
1214    case Instruction::SRem:
1215    case Instruction::LShr:
1216    case Instruction::AShr:
1217    case Instruction::Shl:
1218      if (CI1->equalsInt(0)) return C1;
1219      break;
1220    default:
1221      break;
1222    }
1223  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1224    if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1225      APFloat C1V = CFP1->getValueAPF();
1226      APFloat C2V = CFP2->getValueAPF();
1227      APFloat C3V = C1V;  // copy for modification
1228      switch (Opcode) {
1229      default:
1230        break;
1231      case Instruction::FAdd:
1232        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1233        return ConstantFP::get(C1->getContext(), C3V);
1234      case Instruction::FSub:
1235        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1236        return ConstantFP::get(C1->getContext(), C3V);
1237      case Instruction::FMul:
1238        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1239        return ConstantFP::get(C1->getContext(), C3V);
1240      case Instruction::FDiv:
1241        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1242        return ConstantFP::get(C1->getContext(), C3V);
1243      case Instruction::FRem:
1244        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
1245        return ConstantFP::get(C1->getContext(), C3V);
1246      }
1247    }
1248  } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1249    ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
1250    ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
1251    if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
1252        (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
1253      std::vector<Constant*> Res;
1254      const Type* EltTy = VTy->getElementType();
1255      Constant *C1 = 0;
1256      Constant *C2 = 0;
1257      switch (Opcode) {
1258      default:
1259        break;
1260      case Instruction::Add:
1261        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1262          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1263          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1264          Res.push_back(ConstantExpr::getAdd(C1, C2));
1265        }
1266        return ConstantVector::get(Res);
1267      case Instruction::FAdd:
1268        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1269          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1270          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1271          Res.push_back(ConstantExpr::getFAdd(C1, C2));
1272        }
1273        return ConstantVector::get(Res);
1274      case Instruction::Sub:
1275        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1276          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1277          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1278          Res.push_back(ConstantExpr::getSub(C1, C2));
1279        }
1280        return ConstantVector::get(Res);
1281      case Instruction::FSub:
1282        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1283          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1284          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1285          Res.push_back(ConstantExpr::getFSub(C1, C2));
1286        }
1287        return ConstantVector::get(Res);
1288      case Instruction::Mul:
1289        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1290          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1291          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1292          Res.push_back(ConstantExpr::getMul(C1, C2));
1293        }
1294        return ConstantVector::get(Res);
1295      case Instruction::FMul:
1296        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1297          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1298          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1299          Res.push_back(ConstantExpr::getFMul(C1, C2));
1300        }
1301        return ConstantVector::get(Res);
1302      case Instruction::UDiv:
1303        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1304          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1305          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1306          Res.push_back(ConstantExpr::getUDiv(C1, C2));
1307        }
1308        return ConstantVector::get(Res);
1309      case Instruction::SDiv:
1310        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1311          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1312          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1313          Res.push_back(ConstantExpr::getSDiv(C1, C2));
1314        }
1315        return ConstantVector::get(Res);
1316      case Instruction::FDiv:
1317        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1318          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1319          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1320          Res.push_back(ConstantExpr::getFDiv(C1, C2));
1321        }
1322        return ConstantVector::get(Res);
1323      case Instruction::URem:
1324        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1325          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1326          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1327          Res.push_back(ConstantExpr::getURem(C1, C2));
1328        }
1329        return ConstantVector::get(Res);
1330      case Instruction::SRem:
1331        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1332          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1333          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1334          Res.push_back(ConstantExpr::getSRem(C1, C2));
1335        }
1336        return ConstantVector::get(Res);
1337      case Instruction::FRem:
1338        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1339          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1340          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1341          Res.push_back(ConstantExpr::getFRem(C1, C2));
1342        }
1343        return ConstantVector::get(Res);
1344      case Instruction::And:
1345        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1346          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1347          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1348          Res.push_back(ConstantExpr::getAnd(C1, C2));
1349        }
1350        return ConstantVector::get(Res);
1351      case Instruction::Or:
1352        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1353          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1354          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1355          Res.push_back(ConstantExpr::getOr(C1, C2));
1356        }
1357        return ConstantVector::get(Res);
1358      case Instruction::Xor:
1359        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1360          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1361          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1362          Res.push_back(ConstantExpr::getXor(C1, C2));
1363        }
1364        return ConstantVector::get(Res);
1365      case Instruction::LShr:
1366        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1367          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1368          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1369          Res.push_back(ConstantExpr::getLShr(C1, C2));
1370        }
1371        return ConstantVector::get(Res);
1372      case Instruction::AShr:
1373        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1374          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1375          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1376          Res.push_back(ConstantExpr::getAShr(C1, C2));
1377        }
1378        return ConstantVector::get(Res);
1379      case Instruction::Shl:
1380        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1381          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1382          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1383          Res.push_back(ConstantExpr::getShl(C1, C2));
1384        }
1385        return ConstantVector::get(Res);
1386      }
1387    }
1388  }
1389
1390  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1391    // There are many possible foldings we could do here.  We should probably
1392    // at least fold add of a pointer with an integer into the appropriate
1393    // getelementptr.  This will improve alias analysis a bit.
1394
1395    // Given ((a + b) + c), if (b + c) folds to something interesting, return
1396    // (a + (b + c)).
1397    if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1398      Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1399      if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1400        return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1401    }
1402  } else if (isa<ConstantExpr>(C2)) {
1403    // If C2 is a constant expr and C1 isn't, flop them around and fold the
1404    // other way if possible.
1405    if (Instruction::isCommutative(Opcode))
1406      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1407  }
1408
1409  // i1 can be simplified in many cases.
1410  if (C1->getType()->isIntegerTy(1)) {
1411    switch (Opcode) {
1412    case Instruction::Add:
1413    case Instruction::Sub:
1414      return ConstantExpr::getXor(C1, C2);
1415    case Instruction::Mul:
1416      return ConstantExpr::getAnd(C1, C2);
1417    case Instruction::Shl:
1418    case Instruction::LShr:
1419    case Instruction::AShr:
1420      // We can assume that C2 == 0.  If it were one the result would be
1421      // undefined because the shift value is as large as the bitwidth.
1422      return C1;
1423    case Instruction::SDiv:
1424    case Instruction::UDiv:
1425      // We can assume that C2 == 1.  If it were zero the result would be
1426      // undefined through division by zero.
1427      return C1;
1428    case Instruction::URem:
1429    case Instruction::SRem:
1430      // We can assume that C2 == 1.  If it were zero the result would be
1431      // undefined through division by zero.
1432      return ConstantInt::getFalse(C1->getContext());
1433    default:
1434      break;
1435    }
1436  }
1437
1438  // We don't know how to fold this.
1439  return 0;
1440}
1441
1442/// isZeroSizedType - This type is zero sized if its an array or structure of
1443/// zero sized types.  The only leaf zero sized type is an empty structure.
1444static bool isMaybeZeroSizedType(const Type *Ty) {
1445  if (Ty->isOpaqueTy()) return true;  // Can't say.
1446  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1447
1448    // If all of elements have zero size, this does too.
1449    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1450      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1451    return true;
1452
1453  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1454    return isMaybeZeroSizedType(ATy->getElementType());
1455  }
1456  return false;
1457}
1458
1459/// IdxCompare - Compare the two constants as though they were getelementptr
1460/// indices.  This allows coersion of the types to be the same thing.
1461///
1462/// If the two constants are the "same" (after coersion), return 0.  If the
1463/// first is less than the second, return -1, if the second is less than the
1464/// first, return 1.  If the constants are not integral, return -2.
1465///
1466static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
1467  if (C1 == C2) return 0;
1468
1469  // Ok, we found a different index.  If they are not ConstantInt, we can't do
1470  // anything with them.
1471  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1472    return -2; // don't know!
1473
1474  // Ok, we have two differing integer indices.  Sign extend them to be the same
1475  // type.  Long is always big enough, so we use it.
1476  if (!C1->getType()->isIntegerTy(64))
1477    C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
1478
1479  if (!C2->getType()->isIntegerTy(64))
1480    C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
1481
1482  if (C1 == C2) return 0;  // They are equal
1483
1484  // If the type being indexed over is really just a zero sized type, there is
1485  // no pointer difference being made here.
1486  if (isMaybeZeroSizedType(ElTy))
1487    return -2; // dunno.
1488
1489  // If they are really different, now that they are the same type, then we
1490  // found a difference!
1491  if (cast<ConstantInt>(C1)->getSExtValue() <
1492      cast<ConstantInt>(C2)->getSExtValue())
1493    return -1;
1494  else
1495    return 1;
1496}
1497
1498/// evaluateFCmpRelation - This function determines if there is anything we can
1499/// decide about the two constants provided.  This doesn't need to handle simple
1500/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1501/// If we can determine that the two constants have a particular relation to
1502/// each other, we should return the corresponding FCmpInst predicate,
1503/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1504/// ConstantFoldCompareInstruction.
1505///
1506/// To simplify this code we canonicalize the relation so that the first
1507/// operand is always the most "complex" of the two.  We consider ConstantFP
1508/// to be the simplest, and ConstantExprs to be the most complex.
1509static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1510  assert(V1->getType() == V2->getType() &&
1511         "Cannot compare values of different types!");
1512
1513  // No compile-time operations on this type yet.
1514  if (V1->getType()->isPPC_FP128Ty())
1515    return FCmpInst::BAD_FCMP_PREDICATE;
1516
1517  // Handle degenerate case quickly
1518  if (V1 == V2) return FCmpInst::FCMP_OEQ;
1519
1520  if (!isa<ConstantExpr>(V1)) {
1521    if (!isa<ConstantExpr>(V2)) {
1522      // We distilled thisUse the standard constant folder for a few cases
1523      ConstantInt *R = 0;
1524      R = dyn_cast<ConstantInt>(
1525                      ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1526      if (R && !R->isZero())
1527        return FCmpInst::FCMP_OEQ;
1528      R = dyn_cast<ConstantInt>(
1529                      ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1530      if (R && !R->isZero())
1531        return FCmpInst::FCMP_OLT;
1532      R = dyn_cast<ConstantInt>(
1533                      ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1534      if (R && !R->isZero())
1535        return FCmpInst::FCMP_OGT;
1536
1537      // Nothing more we can do
1538      return FCmpInst::BAD_FCMP_PREDICATE;
1539    }
1540
1541    // If the first operand is simple and second is ConstantExpr, swap operands.
1542    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1543    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1544      return FCmpInst::getSwappedPredicate(SwappedRelation);
1545  } else {
1546    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1547    // constantexpr or a simple constant.
1548    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1549    switch (CE1->getOpcode()) {
1550    case Instruction::FPTrunc:
1551    case Instruction::FPExt:
1552    case Instruction::UIToFP:
1553    case Instruction::SIToFP:
1554      // We might be able to do something with these but we don't right now.
1555      break;
1556    default:
1557      break;
1558    }
1559  }
1560  // There are MANY other foldings that we could perform here.  They will
1561  // probably be added on demand, as they seem needed.
1562  return FCmpInst::BAD_FCMP_PREDICATE;
1563}
1564
1565/// evaluateICmpRelation - This function determines if there is anything we can
1566/// decide about the two constants provided.  This doesn't need to handle simple
1567/// things like integer comparisons, but should instead handle ConstantExprs
1568/// and GlobalValues.  If we can determine that the two constants have a
1569/// particular relation to each other, we should return the corresponding ICmp
1570/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1571///
1572/// To simplify this code we canonicalize the relation so that the first
1573/// operand is always the most "complex" of the two.  We consider simple
1574/// constants (like ConstantInt) to be the simplest, followed by
1575/// GlobalValues, followed by ConstantExpr's (the most complex).
1576///
1577static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1578                                                bool isSigned) {
1579  assert(V1->getType() == V2->getType() &&
1580         "Cannot compare different types of values!");
1581  if (V1 == V2) return ICmpInst::ICMP_EQ;
1582
1583  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1584      !isa<BlockAddress>(V1)) {
1585    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1586        !isa<BlockAddress>(V2)) {
1587      // We distilled this down to a simple case, use the standard constant
1588      // folder.
1589      ConstantInt *R = 0;
1590      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1591      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1592      if (R && !R->isZero())
1593        return pred;
1594      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1595      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1596      if (R && !R->isZero())
1597        return pred;
1598      pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1599      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1600      if (R && !R->isZero())
1601        return pred;
1602
1603      // If we couldn't figure it out, bail.
1604      return ICmpInst::BAD_ICMP_PREDICATE;
1605    }
1606
1607    // If the first operand is simple, swap operands.
1608    ICmpInst::Predicate SwappedRelation =
1609      evaluateICmpRelation(V2, V1, isSigned);
1610    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1611      return ICmpInst::getSwappedPredicate(SwappedRelation);
1612
1613  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1614    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1615      ICmpInst::Predicate SwappedRelation =
1616        evaluateICmpRelation(V2, V1, isSigned);
1617      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1618        return ICmpInst::getSwappedPredicate(SwappedRelation);
1619      return ICmpInst::BAD_ICMP_PREDICATE;
1620    }
1621
1622    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1623    // constant (which, since the types must match, means that it's a
1624    // ConstantPointerNull).
1625    if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1626      // Don't try to decide equality of aliases.
1627      if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
1628        if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
1629          return ICmpInst::ICMP_NE;
1630    } else if (isa<BlockAddress>(V2)) {
1631      return ICmpInst::ICMP_NE; // Globals never equal labels.
1632    } else {
1633      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1634      // GlobalVals can never be null unless they have external weak linkage.
1635      // We don't try to evaluate aliases here.
1636      if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1637        return ICmpInst::ICMP_NE;
1638    }
1639  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1640    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1641      ICmpInst::Predicate SwappedRelation =
1642        evaluateICmpRelation(V2, V1, isSigned);
1643      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1644        return ICmpInst::getSwappedPredicate(SwappedRelation);
1645      return ICmpInst::BAD_ICMP_PREDICATE;
1646    }
1647
1648    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1649    // constant (which, since the types must match, means that it is a
1650    // ConstantPointerNull).
1651    if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1652      // Block address in another function can't equal this one, but block
1653      // addresses in the current function might be the same if blocks are
1654      // empty.
1655      if (BA2->getFunction() != BA->getFunction())
1656        return ICmpInst::ICMP_NE;
1657    } else {
1658      // Block addresses aren't null, don't equal the address of globals.
1659      assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1660             "Canonicalization guarantee!");
1661      return ICmpInst::ICMP_NE;
1662    }
1663  } else {
1664    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1665    // constantexpr, a global, block address, or a simple constant.
1666    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1667    Constant *CE1Op0 = CE1->getOperand(0);
1668
1669    switch (CE1->getOpcode()) {
1670    case Instruction::Trunc:
1671    case Instruction::FPTrunc:
1672    case Instruction::FPExt:
1673    case Instruction::FPToUI:
1674    case Instruction::FPToSI:
1675      break; // We can't evaluate floating point casts or truncations.
1676
1677    case Instruction::UIToFP:
1678    case Instruction::SIToFP:
1679    case Instruction::BitCast:
1680    case Instruction::ZExt:
1681    case Instruction::SExt:
1682      // If the cast is not actually changing bits, and the second operand is a
1683      // null pointer, do the comparison with the pre-casted value.
1684      if (V2->isNullValue() &&
1685          (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
1686        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1687        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1688        return evaluateICmpRelation(CE1Op0,
1689                                    Constant::getNullValue(CE1Op0->getType()),
1690                                    isSigned);
1691      }
1692      break;
1693
1694    case Instruction::GetElementPtr:
1695      // Ok, since this is a getelementptr, we know that the constant has a
1696      // pointer type.  Check the various cases.
1697      if (isa<ConstantPointerNull>(V2)) {
1698        // If we are comparing a GEP to a null pointer, check to see if the base
1699        // of the GEP equals the null pointer.
1700        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1701          if (GV->hasExternalWeakLinkage())
1702            // Weak linkage GVals could be zero or not. We're comparing that
1703            // to null pointer so its greater-or-equal
1704            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1705          else
1706            // If its not weak linkage, the GVal must have a non-zero address
1707            // so the result is greater-than
1708            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1709        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1710          // If we are indexing from a null pointer, check to see if we have any
1711          // non-zero indices.
1712          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1713            if (!CE1->getOperand(i)->isNullValue())
1714              // Offsetting from null, must not be equal.
1715              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1716          // Only zero indexes from null, must still be zero.
1717          return ICmpInst::ICMP_EQ;
1718        }
1719        // Otherwise, we can't really say if the first operand is null or not.
1720      } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1721        if (isa<ConstantPointerNull>(CE1Op0)) {
1722          if (GV2->hasExternalWeakLinkage())
1723            // Weak linkage GVals could be zero or not. We're comparing it to
1724            // a null pointer, so its less-or-equal
1725            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1726          else
1727            // If its not weak linkage, the GVal must have a non-zero address
1728            // so the result is less-than
1729            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1730        } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1731          if (GV == GV2) {
1732            // If this is a getelementptr of the same global, then it must be
1733            // different.  Because the types must match, the getelementptr could
1734            // only have at most one index, and because we fold getelementptr's
1735            // with a single zero index, it must be nonzero.
1736            assert(CE1->getNumOperands() == 2 &&
1737                   !CE1->getOperand(1)->isNullValue() &&
1738                   "Suprising getelementptr!");
1739            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1740          } else {
1741            // If they are different globals, we don't know what the value is,
1742            // but they can't be equal.
1743            return ICmpInst::ICMP_NE;
1744          }
1745        }
1746      } else {
1747        ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1748        Constant *CE2Op0 = CE2->getOperand(0);
1749
1750        // There are MANY other foldings that we could perform here.  They will
1751        // probably be added on demand, as they seem needed.
1752        switch (CE2->getOpcode()) {
1753        default: break;
1754        case Instruction::GetElementPtr:
1755          // By far the most common case to handle is when the base pointers are
1756          // obviously to the same or different globals.
1757          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1758            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1759              return ICmpInst::ICMP_NE;
1760            // Ok, we know that both getelementptr instructions are based on the
1761            // same global.  From this, we can precisely determine the relative
1762            // ordering of the resultant pointers.
1763            unsigned i = 1;
1764
1765            // The logic below assumes that the result of the comparison
1766            // can be determined by finding the first index that differs.
1767            // This doesn't work if there is over-indexing in any
1768            // subsequent indices, so check for that case first.
1769            if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1770                !CE2->isGEPWithNoNotionalOverIndexing())
1771               return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1772
1773            // Compare all of the operands the GEP's have in common.
1774            gep_type_iterator GTI = gep_type_begin(CE1);
1775            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1776                 ++i, ++GTI)
1777              switch (IdxCompare(CE1->getOperand(i),
1778                                 CE2->getOperand(i), GTI.getIndexedType())) {
1779              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1780              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1781              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1782              }
1783
1784            // Ok, we ran out of things they have in common.  If any leftovers
1785            // are non-zero then we have a difference, otherwise we are equal.
1786            for (; i < CE1->getNumOperands(); ++i)
1787              if (!CE1->getOperand(i)->isNullValue()) {
1788                if (isa<ConstantInt>(CE1->getOperand(i)))
1789                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1790                else
1791                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1792              }
1793
1794            for (; i < CE2->getNumOperands(); ++i)
1795              if (!CE2->getOperand(i)->isNullValue()) {
1796                if (isa<ConstantInt>(CE2->getOperand(i)))
1797                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1798                else
1799                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1800              }
1801            return ICmpInst::ICMP_EQ;
1802          }
1803        }
1804      }
1805    default:
1806      break;
1807    }
1808  }
1809
1810  return ICmpInst::BAD_ICMP_PREDICATE;
1811}
1812
1813Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1814                                               Constant *C1, Constant *C2) {
1815  const Type *ResultTy;
1816  if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1817    ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1818                               VT->getNumElements());
1819  else
1820    ResultTy = Type::getInt1Ty(C1->getContext());
1821
1822  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1823  if (pred == FCmpInst::FCMP_FALSE)
1824    return Constant::getNullValue(ResultTy);
1825
1826  if (pred == FCmpInst::FCMP_TRUE)
1827    return Constant::getAllOnesValue(ResultTy);
1828
1829  // Handle some degenerate cases first
1830  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1831    // For EQ and NE, we can always pick a value for the undef to make the
1832    // predicate pass or fail, so we can return undef.
1833    if (ICmpInst::isEquality(ICmpInst::Predicate(pred)))
1834      return UndefValue::get(ResultTy);
1835    // Otherwise, pick the same value as the non-undef operand, and fold
1836    // it to true or false.
1837    return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred));
1838  }
1839
1840  // No compile-time operations on this type yet.
1841  if (C1->getType()->isPPC_FP128Ty())
1842    return 0;
1843
1844  // icmp eq/ne(null,GV) -> false/true
1845  if (C1->isNullValue()) {
1846    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1847      // Don't try to evaluate aliases.  External weak GV can be null.
1848      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1849        if (pred == ICmpInst::ICMP_EQ)
1850          return ConstantInt::getFalse(C1->getContext());
1851        else if (pred == ICmpInst::ICMP_NE)
1852          return ConstantInt::getTrue(C1->getContext());
1853      }
1854  // icmp eq/ne(GV,null) -> false/true
1855  } else if (C2->isNullValue()) {
1856    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1857      // Don't try to evaluate aliases.  External weak GV can be null.
1858      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1859        if (pred == ICmpInst::ICMP_EQ)
1860          return ConstantInt::getFalse(C1->getContext());
1861        else if (pred == ICmpInst::ICMP_NE)
1862          return ConstantInt::getTrue(C1->getContext());
1863      }
1864  }
1865
1866  // If the comparison is a comparison between two i1's, simplify it.
1867  if (C1->getType()->isIntegerTy(1)) {
1868    switch(pred) {
1869    case ICmpInst::ICMP_EQ:
1870      if (isa<ConstantInt>(C2))
1871        return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1872      return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1873    case ICmpInst::ICMP_NE:
1874      return ConstantExpr::getXor(C1, C2);
1875    default:
1876      break;
1877    }
1878  }
1879
1880  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1881    APInt V1 = cast<ConstantInt>(C1)->getValue();
1882    APInt V2 = cast<ConstantInt>(C2)->getValue();
1883    switch (pred) {
1884    default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
1885    case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1886    case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1887    case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1888    case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1889    case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1890    case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1891    case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1892    case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1893    case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1894    case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1895    }
1896  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1897    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1898    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1899    APFloat::cmpResult R = C1V.compare(C2V);
1900    switch (pred) {
1901    default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
1902    case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1903    case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1904    case FCmpInst::FCMP_UNO:
1905      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1906    case FCmpInst::FCMP_ORD:
1907      return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1908    case FCmpInst::FCMP_UEQ:
1909      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1910                                        R==APFloat::cmpEqual);
1911    case FCmpInst::FCMP_OEQ:
1912      return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1913    case FCmpInst::FCMP_UNE:
1914      return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1915    case FCmpInst::FCMP_ONE:
1916      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1917                                        R==APFloat::cmpGreaterThan);
1918    case FCmpInst::FCMP_ULT:
1919      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1920                                        R==APFloat::cmpLessThan);
1921    case FCmpInst::FCMP_OLT:
1922      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1923    case FCmpInst::FCMP_UGT:
1924      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1925                                        R==APFloat::cmpGreaterThan);
1926    case FCmpInst::FCMP_OGT:
1927      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1928    case FCmpInst::FCMP_ULE:
1929      return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1930    case FCmpInst::FCMP_OLE:
1931      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1932                                        R==APFloat::cmpEqual);
1933    case FCmpInst::FCMP_UGE:
1934      return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1935    case FCmpInst::FCMP_OGE:
1936      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1937                                        R==APFloat::cmpEqual);
1938    }
1939  } else if (C1->getType()->isVectorTy()) {
1940    SmallVector<Constant*, 16> C1Elts, C2Elts;
1941    C1->getVectorElements(C1Elts);
1942    C2->getVectorElements(C2Elts);
1943    if (C1Elts.empty() || C2Elts.empty())
1944      return 0;
1945
1946    // If we can constant fold the comparison of each element, constant fold
1947    // the whole vector comparison.
1948    SmallVector<Constant*, 4> ResElts;
1949    // Compare the elements, producing an i1 result or constant expr.
1950    for (unsigned i = 0, e = C1Elts.size(); i != e; ++i)
1951      ResElts.push_back(ConstantExpr::getCompare(pred, C1Elts[i], C2Elts[i]));
1952
1953    return ConstantVector::get(ResElts);
1954  }
1955
1956  if (C1->getType()->isFloatingPointTy()) {
1957    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1958    switch (evaluateFCmpRelation(C1, C2)) {
1959    default: llvm_unreachable("Unknown relation!");
1960    case FCmpInst::FCMP_UNO:
1961    case FCmpInst::FCMP_ORD:
1962    case FCmpInst::FCMP_UEQ:
1963    case FCmpInst::FCMP_UNE:
1964    case FCmpInst::FCMP_ULT:
1965    case FCmpInst::FCMP_UGT:
1966    case FCmpInst::FCMP_ULE:
1967    case FCmpInst::FCMP_UGE:
1968    case FCmpInst::FCMP_TRUE:
1969    case FCmpInst::FCMP_FALSE:
1970    case FCmpInst::BAD_FCMP_PREDICATE:
1971      break; // Couldn't determine anything about these constants.
1972    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1973      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1974                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1975                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1976      break;
1977    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1978      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1979                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1980                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1981      break;
1982    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1983      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1984                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1985                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1986      break;
1987    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1988      // We can only partially decide this relation.
1989      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1990        Result = 0;
1991      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1992        Result = 1;
1993      break;
1994    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1995      // We can only partially decide this relation.
1996      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1997        Result = 0;
1998      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1999        Result = 1;
2000      break;
2001    case FCmpInst::FCMP_ONE: // We know that C1 != C2
2002      // We can only partially decide this relation.
2003      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
2004        Result = 0;
2005      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
2006        Result = 1;
2007      break;
2008    }
2009
2010    // If we evaluated the result, return it now.
2011    if (Result != -1)
2012      return ConstantInt::get(ResultTy, Result);
2013
2014  } else {
2015    // Evaluate the relation between the two constants, per the predicate.
2016    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
2017    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
2018    default: llvm_unreachable("Unknown relational!");
2019    case ICmpInst::BAD_ICMP_PREDICATE:
2020      break;  // Couldn't determine anything about these constants.
2021    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
2022      // If we know the constants are equal, we can decide the result of this
2023      // computation precisely.
2024      Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
2025      break;
2026    case ICmpInst::ICMP_ULT:
2027      switch (pred) {
2028      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
2029        Result = 1; break;
2030      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
2031        Result = 0; break;
2032      }
2033      break;
2034    case ICmpInst::ICMP_SLT:
2035      switch (pred) {
2036      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
2037        Result = 1; break;
2038      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
2039        Result = 0; break;
2040      }
2041      break;
2042    case ICmpInst::ICMP_UGT:
2043      switch (pred) {
2044      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
2045        Result = 1; break;
2046      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
2047        Result = 0; break;
2048      }
2049      break;
2050    case ICmpInst::ICMP_SGT:
2051      switch (pred) {
2052      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
2053        Result = 1; break;
2054      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
2055        Result = 0; break;
2056      }
2057      break;
2058    case ICmpInst::ICMP_ULE:
2059      if (pred == ICmpInst::ICMP_UGT) Result = 0;
2060      if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
2061      break;
2062    case ICmpInst::ICMP_SLE:
2063      if (pred == ICmpInst::ICMP_SGT) Result = 0;
2064      if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
2065      break;
2066    case ICmpInst::ICMP_UGE:
2067      if (pred == ICmpInst::ICMP_ULT) Result = 0;
2068      if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
2069      break;
2070    case ICmpInst::ICMP_SGE:
2071      if (pred == ICmpInst::ICMP_SLT) Result = 0;
2072      if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2073      break;
2074    case ICmpInst::ICMP_NE:
2075      if (pred == ICmpInst::ICMP_EQ) Result = 0;
2076      if (pred == ICmpInst::ICMP_NE) Result = 1;
2077      break;
2078    }
2079
2080    // If we evaluated the result, return it now.
2081    if (Result != -1)
2082      return ConstantInt::get(ResultTy, Result);
2083
2084    // If the right hand side is a bitcast, try using its inverse to simplify
2085    // it by moving it to the left hand side.  We can't do this if it would turn
2086    // a vector compare into a scalar compare or visa versa.
2087    if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2088      Constant *CE2Op0 = CE2->getOperand(0);
2089      if (CE2->getOpcode() == Instruction::BitCast &&
2090          CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
2091        Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2092        return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2093      }
2094    }
2095
2096    // If the left hand side is an extension, try eliminating it.
2097    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2098      if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) ||
2099          (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){
2100        Constant *CE1Op0 = CE1->getOperand(0);
2101        Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2102        if (CE1Inverse == CE1Op0) {
2103          // Check whether we can safely truncate the right hand side.
2104          Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2105          if (ConstantExpr::getZExt(C2Inverse, C2->getType()) == C2) {
2106            return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2107          }
2108        }
2109      }
2110    }
2111
2112    if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2113        (C1->isNullValue() && !C2->isNullValue())) {
2114      // If C2 is a constant expr and C1 isn't, flip them around and fold the
2115      // other way if possible.
2116      // Also, if C1 is null and C2 isn't, flip them around.
2117      pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2118      return ConstantExpr::getICmp(pred, C2, C1);
2119    }
2120  }
2121  return 0;
2122}
2123
2124/// isInBoundsIndices - Test whether the given sequence of *normalized* indices
2125/// is "inbounds".
2126template<typename IndexTy>
2127static bool isInBoundsIndices(IndexTy const *Idxs, size_t NumIdx) {
2128  // No indices means nothing that could be out of bounds.
2129  if (NumIdx == 0) return true;
2130
2131  // If the first index is zero, it's in bounds.
2132  if (cast<Constant>(Idxs[0])->isNullValue()) return true;
2133
2134  // If the first index is one and all the rest are zero, it's in bounds,
2135  // by the one-past-the-end rule.
2136  if (!cast<ConstantInt>(Idxs[0])->isOne())
2137    return false;
2138  for (unsigned i = 1, e = NumIdx; i != e; ++i)
2139    if (!cast<Constant>(Idxs[i])->isNullValue())
2140      return false;
2141  return true;
2142}
2143
2144template<typename IndexTy>
2145static Constant *ConstantFoldGetElementPtrImpl(Constant *C,
2146                                               bool inBounds,
2147                                               IndexTy const *Idxs,
2148                                               unsigned NumIdx) {
2149  Constant *Idx0 = cast<Constant>(Idxs[0]);
2150  if (NumIdx == 0 ||
2151      (NumIdx == 1 && Idx0->isNullValue()))
2152    return C;
2153
2154  if (isa<UndefValue>(C)) {
2155    const PointerType *Ptr = cast<PointerType>(C->getType());
2156    const Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs, Idxs+NumIdx);
2157    assert(Ty != 0 && "Invalid indices for GEP!");
2158    return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
2159  }
2160
2161  if (C->isNullValue()) {
2162    bool isNull = true;
2163    for (unsigned i = 0, e = NumIdx; i != e; ++i)
2164      if (!cast<Constant>(Idxs[i])->isNullValue()) {
2165        isNull = false;
2166        break;
2167      }
2168    if (isNull) {
2169      const PointerType *Ptr = cast<PointerType>(C->getType());
2170      const Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs,
2171                                                         Idxs+NumIdx);
2172      assert(Ty != 0 && "Invalid indices for GEP!");
2173      return ConstantPointerNull::get(PointerType::get(Ty,
2174                                                       Ptr->getAddressSpace()));
2175    }
2176  }
2177
2178  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2179    // Combine Indices - If the source pointer to this getelementptr instruction
2180    // is a getelementptr instruction, combine the indices of the two
2181    // getelementptr instructions into a single instruction.
2182    //
2183    if (CE->getOpcode() == Instruction::GetElementPtr) {
2184      const Type *LastTy = 0;
2185      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2186           I != E; ++I)
2187        LastTy = *I;
2188
2189      if ((LastTy && LastTy->isArrayTy()) || Idx0->isNullValue()) {
2190        SmallVector<Value*, 16> NewIndices;
2191        NewIndices.reserve(NumIdx + CE->getNumOperands());
2192        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
2193          NewIndices.push_back(CE->getOperand(i));
2194
2195        // Add the last index of the source with the first index of the new GEP.
2196        // Make sure to handle the case when they are actually different types.
2197        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2198        // Otherwise it must be an array.
2199        if (!Idx0->isNullValue()) {
2200          const Type *IdxTy = Combined->getType();
2201          if (IdxTy != Idx0->getType()) {
2202            const Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
2203            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
2204            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
2205            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2206          } else {
2207            Combined =
2208              ConstantExpr::get(Instruction::Add, Idx0, Combined);
2209          }
2210        }
2211
2212        NewIndices.push_back(Combined);
2213        NewIndices.append(Idxs+1, Idxs+NumIdx);
2214        return (inBounds && cast<GEPOperator>(CE)->isInBounds()) ?
2215          ConstantExpr::getInBoundsGetElementPtr(CE->getOperand(0),
2216                                                 &NewIndices[0],
2217                                                 NewIndices.size()) :
2218          ConstantExpr::getGetElementPtr(CE->getOperand(0),
2219                                         &NewIndices[0],
2220                                         NewIndices.size());
2221      }
2222    }
2223
2224    // Implement folding of:
2225    //    i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2226    //                        i64 0, i64 0)
2227    // To: i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2228    //
2229    if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
2230      if (const PointerType *SPT =
2231          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
2232        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
2233          if (const ArrayType *CAT =
2234        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
2235            if (CAT->getElementType() == SAT->getElementType())
2236              return inBounds ?
2237                ConstantExpr::getInBoundsGetElementPtr(
2238                      (Constant*)CE->getOperand(0), Idxs, NumIdx) :
2239                ConstantExpr::getGetElementPtr(
2240                      (Constant*)CE->getOperand(0), Idxs, NumIdx);
2241    }
2242  }
2243
2244  // Check to see if any array indices are not within the corresponding
2245  // notional array bounds. If so, try to determine if they can be factored
2246  // out into preceding dimensions.
2247  bool Unknown = false;
2248  SmallVector<Constant *, 8> NewIdxs;
2249  const Type *Ty = C->getType();
2250  const Type *Prev = 0;
2251  for (unsigned i = 0; i != NumIdx;
2252       Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2253    if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2254      if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2255        if (ATy->getNumElements() <= INT64_MAX &&
2256            ATy->getNumElements() != 0 &&
2257            CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
2258          if (isa<SequentialType>(Prev)) {
2259            // It's out of range, but we can factor it into the prior
2260            // dimension.
2261            NewIdxs.resize(NumIdx);
2262            ConstantInt *Factor = ConstantInt::get(CI->getType(),
2263                                                   ATy->getNumElements());
2264            NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2265
2266            Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
2267            Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2268
2269            // Before adding, extend both operands to i64 to avoid
2270            // overflow trouble.
2271            if (!PrevIdx->getType()->isIntegerTy(64))
2272              PrevIdx = ConstantExpr::getSExt(PrevIdx,
2273                                           Type::getInt64Ty(Div->getContext()));
2274            if (!Div->getType()->isIntegerTy(64))
2275              Div = ConstantExpr::getSExt(Div,
2276                                          Type::getInt64Ty(Div->getContext()));
2277
2278            NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
2279          } else {
2280            // It's out of range, but the prior dimension is a struct
2281            // so we can't do anything about it.
2282            Unknown = true;
2283          }
2284        }
2285    } else {
2286      // We don't know if it's in range or not.
2287      Unknown = true;
2288    }
2289  }
2290
2291  // If we did any factoring, start over with the adjusted indices.
2292  if (!NewIdxs.empty()) {
2293    for (unsigned i = 0; i != NumIdx; ++i)
2294      if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2295    return inBounds ?
2296      ConstantExpr::getInBoundsGetElementPtr(C, NewIdxs.data(),
2297                                             NewIdxs.size()) :
2298      ConstantExpr::getGetElementPtr(C, NewIdxs.data(), NewIdxs.size());
2299  }
2300
2301  // If all indices are known integers and normalized, we can do a simple
2302  // check for the "inbounds" property.
2303  if (!Unknown && !inBounds &&
2304      isa<GlobalVariable>(C) && isInBoundsIndices(Idxs, NumIdx))
2305    return ConstantExpr::getInBoundsGetElementPtr(C, Idxs, NumIdx);
2306
2307  return 0;
2308}
2309
2310Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2311                                          bool inBounds,
2312                                          Constant* const *Idxs,
2313                                          unsigned NumIdx) {
2314  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs, NumIdx);
2315}
2316
2317Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2318                                          bool inBounds,
2319                                          Value* const *Idxs,
2320                                          unsigned NumIdx) {
2321  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs, NumIdx);
2322}
2323